
A Formal Model of Views for Object-Oriented Database

Systems

Giovanna Guerrini*
Dipartimento di Informatica e Scienze dell'Informazione, Universit�a degli Studi di Genova, Via Dodecaneso, 35 - 16146
Genova, Italy. E-mail: guerrini@disi.unige.it

Elisa Bertino, Barbara Catania
Dipartimento di Scienze dell'Informazione, Universit�a degli Studi di Milano, Via Comelico 39/41 - 20135 Milano, Italy.
E-mail: bertino/catania@dsi.unimi.it

Jesus Garcia-Molinay

Departamento de Informatica y Sistemas, Universidad de Murcia, Campus de Espinardo - 30071 Espinardo, Murcia,
Spain. E-mail: jmolina@fcu.um.es

The de�nition of a view mechanism is an important issue
for object-oriented database systems, in order to provide
a number of features that are crucial for the development
of advanced applications. Due to the complexity of the
data model, the object-oriented paradigm introduces new
problems in the de�nition of a view mechanism. Several
approaches have been de�ned, each de�ning a particular
view mechanism tailored to a set of functionalities that the
view mechanism should support. In particular, views can be
used as shorthand in queries, can support the de�nition of
external schemas, can be used for content-dependent au-
thorization, and, �nally, can support some form of schema
evolution. In this paper, we formally introduce a view
model for object-oriented databases. Our view model is
comparable to existing view models for what concerns the
supported features; however, our model is the only one
for which a formal de�nition is given. This formal de�ni-
tion of object-oriented view mechanisms is useful both for
understanding what views are and as a basis for further in-
vestigations on view properties. The paper introduces the
model, discussing all the supported features both from a
theoretical and practical point of view. A comparison of
our model with other models is also presented.

1. Introduction

The object-oriented paradigm has been recognized

as a sound basis for a new generation of database sys-

*The work of Giovanna Guerrini has been partially supported
by the EEC under ESPRIT Project 6333 IDEA.

yThe work of Jesus Garcia-Molina has been supported by
the DGICYT (Ministerio de Educacion y Ciencias, Spain) grant
PR94-286.

c
 (Year) John Wiley & Sons, Inc.

tems. Indeed, its ability to model complex objects,
together with its modularity and extensibility proper-
ties, overcomes most of the problems arising in the use
of the simple relational model [10]. A general agree-
ment exists on the fact that object-oriented database
features should meet as much as possible functionalit-
ies of the relational database systems [5, 7, 25]. Over
the last years, a considerable research e�ort has been
devoted to explore how the paradigm shift from the re-
lational data model to an object-oriented model a�ects
notions such as query languages, authorization, index-
ing, schema evolution and concurrency control.

An important relational functionality is represented
by views. In the relational model, a view is a virtual
(i.e. not physically stored) relation, de�ned by a query
on one or more stored relations. As relational languages
are closed (i.e. the result of a query expressed in a re-
lational language is a relation), the relation returned
by such a query represents the view content. Thus, re-
lational views can be used in (almost) any context in
which a relation may appear. Moreover, authorizations
may be granted and revoked on views as on ordinary re-
lations. At the same time, views can be used to de�ne
external schemas, in that virtual relations are gener-
ated by combining base relations. Views are an integral
component of the ANSI three-level schema architecture
standard that has driven the construction and use of
relational database systems. Such a schema architec-
ture consists of the storage schema describing the stor-
age structures for a database, the conceptual schema
describing the logical model of the database, and the

THEORYAND PRACTICEOF OBJECT SYSTEMS,Vol. (Volume Number)((Optional IssueNumber)), 1 28 (Year) CCC(cccline information)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205526715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

external schema describing the derived views of the con-

ceptual schema for particular users or group of users.

The de�nition of a view mechanism has been recog-

nized to be a fundamental aspect also for the practical

development of object-oriented applications. In this

new context, views should be still used as shorthand in

queries, should support the integration of heterogeneous

databases, should be the basis for content-dependent

authorization and, �nally, should support the simula-

tion of schema changes. Indeed, as it has been recog-

nized by several researchers [8, 11, 34], views allow to

dynamically modify a database schema yet retaining its

older versions, a very important capability for advanced

applications [24]. Moreover, a foundation for external

schemas will complete the development of a three-level

schema architecture for object-oriented database sys-

tems, comparable to that for relational database sys-

tems.
Unfortunately, the de�nition of an object-oriented

view mechanism does not come for free from the rela-
tional approach. The main problems in the de�nition of
an object-oriented view mechanism can be summarized
as follows:

1. The object-oriented model is far more complex
than the relational one. Whereas a relational
schema consists of a set of independent relations, an
object-oriented schema is a class hierarchy, where
classes are connected by inheritance relationships.
A view model should provide an answer to the ques-
tion: How are views integrated in the existing class

hierarchy?

2. Objects have an identity. A view, at the data level,
should be a class. But what are view instances?
Are they values, or existing objects, or newly gener-
ated objects? Note that this problem does not arise
in the relational model, where no strong identity
concept, such as the object identi�er, is modeled.

Several approaches have been proposed to model

views in object-oriented database systems [1, 8, 36, 39,

42] (see [30] for a survey). They address the previous

issues according to di�erent approaches. In general, be-

sides being based upon di�erent data models and ex-

ploiting di�erent query languages to express view pop-

ulations, the proposals di�er for: the set of functional-

ities supported by the view mechanism (shorthand in

queries, external schema de�nition, schema evolution,

authorization, etc.); the approach with respect to the

placement of views in the schema; the properties as-

signed to views objects (i.e., whether or not persist-

ent object identi�ers are provided); the update oper-

ations allowed on views. An optimal solution to the

view mechanism does not exists. Rather, some good

solutions can be de�ned for each class of chosen func-

tionalities. Thus, a view mechanism de�ned to support

schema evolution may be di�erent from a view mechan-
ism de�ned for only using views as shorthand in queries.

The aim of this paper is the formal de�nition of a
view mechanism in the context of the Chimera data
model [21]. Though the view mechanism has been pro-
posed for a particular object-oriented data model, the
basic concepts of our view mechanism can be applied
to other data models as well such as O2[19], GemStone
[12], as well as to the ODMG standard [15]. The choice
of Chimera as reference data model is mainly due to the
facts that (i) a formal speci�cation for Chimera exists;
(ii) the model is at the same time deductive, active and
object-oriented. This allows to investigate new insights
in the context of object-oriented view mechanisms, such
as the use of logical languages as a basis for de�ning
views. Note that another interesting topic is related to
the use of other Chimera capabilities, such as logical in-
tegrity constraints and triggers, in view de�nition. This
topic is however left to further research.

Our view mechanism is comparable to (or includes)
existing ones [1, 8, 36, 39, 42] for what concerns the
supported features; however, our model is the only one
for which a formal de�nition is given. Because of the
similarity of features, our de�nition can be adapted to
other object-oriented view mechanisms and, thus, has
value beyond the particular view mechanism we pro-
pose. Following [8], we agree with the requirement
that a view mechanism must support schema evolution.
Moreover, we believe that a view mechanism should al-
low the de�nition of external schemas, as a basis for
developing object-oriented applications. That requires
that a view, at class level, must be usable in any con-
text in which a class may appear. The main features of
our approach thus strictly depend on those choices1. In
particular:

� In de�ning a view, the user can choose among
object-preserving views, object-generating views or
set-tuple views, depending on whether the view is
populated with objects extracted from an existing
class, or the view must be instantiated with new
objects, or the view instances do not require per-
sistent object identi�ers. Set-tuple views allow to
support relations in the object data model, thus
meeting the requirements of relational object mod-
els such as UniSQL [26] or Matisse [2].

� Following [8], we do not integrate views in the class
inheritance hierarchy. Rather, views are organ-
ized in a separate hierarchy: they are related by a
view inheritance relationship which is analogous to
the inheritance relationship on classes. Moreover,
the schema is extended with a new relationship,
called view derivation relationship, connecting a
view with the classes from which it is derived. The
view derivation hierarchy is orthogonal to the class
inheritance hierarchy.

� Two view levels are devised: views and schema
views. Views are virtual classes and can be used in

2 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

any context in which classes can be used; schema
views provide the capability of restructuring a
schema so that it meets the need of speci�c ap-
plications. A schema view is a virtual schema, that
is, a schema which consists of views rather than of
classes.

Thus, our model basically extends the view model
presented in [8] with object-preserving views, the view
inheritance relationship and the concept of schema
view. Moreover, we analyze in depth our approach to
the placement of views in schemas, based on the view
derivation relationship.

The contribution of this work is, besides de�ning a
view model for Chimera, the development of a formal
framework within which the main issues concerning the
de�nition of a view model are systematically organ-
ized and formally described. In our opinion, a formal
de�nition for a view model is a useful contribution. It
is crucial in clearly and unambiguously specifying the
features of the view mechanism and it is a founda-
tion based on which properties about views (e.g., up-
date propagation, view maintenance) can be formally
stated and, possibly, better investigated. In particular,
based on this model, we have formally de�ned: sev-
eral notions of consistency for view instances and data-
bases; well-formedness conditions for view inheritance
hierarchies; the notion of view schema closure with re-
spect to aggregation and inheritance hierarchies. To our
knowledge, the above notions have never been formally
de�ned.

This paper is organized as follows. Section 2 brie
y
describes the Chimera language, introducing the Chi-
mera concepts relevant to our view model. In Section
3, our design choices are discussed and compared with
the most relevant approaches presented in the literat-
ure. The view de�nition language is described in Sec-
tion 4. Sections 5 and 6 present the formal speci�cation
of the view model proposed for Chimera; in particular,
Section 5 introduces views while Section 6 is devoted to
schema views. Finally, Section 7 presents some conclu-
sions and outlines future work.

2. Chimera

Chimera integrates an object-oriented data model,
a declarative query language based on deductive rules
and an active rule language for reactive processing2. In
what follows, we �rst introduce the basic notions of the
data model, then present its deductive query language.

2.1. Chimera object-oriented data model

Chimera provides all concepts commonly ascribed
to object-oriented data models. It is worth noting the
following features:

� Like other object-oriented data models (e.g.
O2[19]), Chimera provides both the notions of
values and types and the notions of objects and
classes. Values are instances of types and are ma-
nipulated by primitive operators. Values can be
primitive or complex. Each class is associated with
a type describing the structure of the class in-
stances. Moreover, in order to type variables that
have to be instantiated with objects instances of a
given class, class names are allowed as types.

� Object attributes can be derived, that is, de�ned
by deductive rules.

� The implementation of methods may be speci�ed
by an update rule, that is, a rule containing a
sequence of update primitives whose execution is
constrained by a declarative formula, or may be
external, implemented in some programming lan-
guage.

� Multiple inheritance and multiple class instanti-
ation are supported. Thus, an object can belong
to several classes, even classes not related in the
inheritance hierarchy.

� Classes are objects. Therefore a class de�nition can
include class attributes, methods and constraints
that collectively apply to the class.

� Each class has both intensional and extensional
nature.

In the remainder of this section, we recall the aspects
of the Chimera data model relevant to this work. A
complete formal de�nition of the model can be found
in [21].

The set of Chimera types T (that are collection of
values) is de�ned as the union of value types (VT) and
object types (OT). Object types are class names and
their instances are object identi�ers. Value types can be
either basic domains (integers, reals, booleans, charac-
ters, strings) or structured types built by applying the
set, list or record constructors to value or object types.
Object types are class names. A Chimera class de�n-
ition consists of two components: the signature, spe-
cifying all the information that the user must know for
using the class, and the implementation, providing an
implementation for the signature. The signature con-
sists of a number of clauses, including the name of the
superclasses and the speci�cation of the class features:
instance and class attributes, instance and class opera-
tions, instance and class constraints, and triggers. The
signature also speci�es for each attribute whether the
attribute is derived or not. The implementation of a
class must specify an implementation for all derived at-
tributes, operations, constraints, at instance as well as
at class level, and triggers that are speci�ed in the sig-
nature.

A Chimera class signature is characterized by a struc-
tural and a behavioral component, specifying the signa-
ture of attributes and methods for objects instances of
that class. In addition, a constraint component contains

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 3

the signature of the constraints on class instances. Be-
ing class attributes supported in Chimera, a class is also
characterized by a time-varying state, whose structure
is speci�ed in the corresponding metaclass. Finally, a
class is characterized by an extent and a proper extent,
denoting the set of all the oids of members of the class
and the oids of instances of the class, respectively. We
recall that, according to the usual terminology, an ob-
ject is an instance of a class if that class is the most
speci�c one, in the inheritance hierarchy, to which the
object belongs. Whenever an object o is an instance of
a class c then o is also a member of all the superclasses
of c.

In addition to a signature, classes have an imple-
mentation. In a Chimera class implementation, derived
attributes and constraints are implemented by means
of deductive rules specifying the computation of values,
and the implementation of an operation is an expression
of the form3

op name : condition! op code

where op name is the operation name applied to a list of
parameters, condition is a Chimera formula, specifying
a declarative control upon operation execution, while
op code is a sequence of update primitives (object cre-
ation and deletion, object migration from one class to
another and state changes). Side-e�ect free operations
can be expressed in Chimera by rules consisting only of
a condition without op code part. They can be useful
to compute derived data.

Given a type T 2 T , its extension [[T]] is de�ned as
the set of legal values for that type. The extension of
types, like classes, with an explicit time-varying extent,
is that extent. In particular, for an object type c, [[c]]
is the set of oids of members of class c. Starting from
the extensions of prede�ned basic types, which are pos-
tulated, the extensions of other value types are de�ned
in a quite straightforward way [21].

A Chimera object is characterized by an immutable
identi�er and a state. The set of classes to which the
object belongs as an instance is associated with each
object. Each object is required to be instance of one
class.

Chimera provides multiple inheritance and multiple
class instantiation. Inheritance relationships among
classes are described by an ISA hierarchy established by
the user. This ISA hierarchy represents which classes
are subclasses of (inherit from) other classes. A set of
conditions must be satis�ed by two classes related by
the ISA relationship. These conditions are related to
the fact that each subclass must contain all attributes,
operations, constraints (both on the class as well on
the instance level) of all its superclasses. Apart from
the inherited concepts, additional features can be in-
troduced in a subclass. Inherited concepts may be re-

de�ned (overwritten) in a subclass de�nition under a
number of restrictions. Indeed, in Chimera the rede�n-
ition of the signature of an attribute is possible by spe-
cializing the domain of the attribute. The rede�nition
of the signature of an operation must verify the covari-
ance rule for result parameters and the contravariance
rule for the input ones. Therefore, result parameter
domains may be specialized, whereas input parameter
domains may be generalized, in the subclass signature
of the operation. The implementation of an attribute or
an operation may be rede�ned as well, introducing a dif-
ferent implementation of the respective concept, which
\overrides" the inherited de�nition. The rede�nition
of derived and extensional attributes is not allowed if
a derived attribute becomes extensional or vice-versa.
Constraint rede�nition is not currently allowed in Chi-
mera. We also require that the extent of a subclass is a
subset of the extent of all its superclasses.

While the rede�nition of operations does not hinder
the type safety of the language, the rede�nition of at-
tributes must be considered carefully [21]. The cov-
ariant rede�nition of attributes (the domain of an at-
tribute may be specialized in subclasses) re
ects what
is usually needed when creating a taxonomy of classes;
indeed, when specializing a class the designer usually
needs to add new attributes or to specialize existing
ones. The problems arising when attributes are re-
de�ned in a covariant way along the inheritance hier-
archy have been �rst recognized by Cardelli [14]. The
approach adopted in Chimera is to consider the domains
of attributes as integrity constraints, thus checked run-
time, rather than dealing with them as type constraints,
to be checked statically. Thus, whenever a value is as-
signed to an object attribute we dynamically check that
the value is appropriate for the domain.

At the intensional level (schema level) the ordering
on classes imposed by the ISA hierarchy is said to be
well-de�ned (int-well-de�ned [21]) if each subclass con-
tains all the features of the superclasses, possibly re-
de�ned as sketched previously. At the extensional level
(instance level), the ordering on classes imposed by the
ISA hierarchy is said to be well-de�ned (ext-well-de�ned
[21]) if it is consistent with the set inclusion relationship
on class extents.

A Chimera base schema is a set of classes, related
by inheritance and aggregation relationships, modeling
the structural and behavioral aspects of the problem
domain. A base schema is the database initial schema
de�ned by the system administrator, on which the ob-
ject database is created. An object database is a con-
sistent set of objects, coupled with two functions, one,
referred to as oid assignment, handles class extents,
that is, maps objects to classes, while the other one
assigns values to class attributes. For an object data-
base to be consistent, each object must belong to a class
de�ned in the schema, each object state must contain

4 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

a legal value for each attribute of each class the ob-
ject belongs to, and must meet each constraint in such
classes; �nally, the ISA ordering is required to be ext-
well-de�ned. Given a base schema, S, the term base
object database will denote an object database that is
instance of S; the objects in that database will be re-
ferred to as base objects.

2.2. Chimera formulas and rules

In this subsection we introduce Chimera rules, which
are a mean to express declarative conditions on a data-
base. Besides being used to specify the implementation
of di�erent class features, Chimera rules are used to
express queries. First, we consider the set of Chimera
terms, which is inductively de�ned as follows:

� variables are terms;

� values (basic and complex ones), excepts oids4 , are
terms;

� path expressions (built making use of the dot nota-
tion) are terms; path expressions may contain at-
tribute accesses and method invocations, provided
that the invoked method is side-e�ect free5.

In addition, a number of terms obtained using classical
prede�ned operators for integers, reals, lists and sets
are considered.

Chimera atomic formulas are built by applying a pre-
dicate symbol to a list of parameter terms. As stated
by the following de�nition, we consider three kinds of
atomic formulas6.

De�nition 1 (Atomic Formulas) [21]. Chimera
atomic formulas are de�ned as follows:

� if t1; t2 are terms and op 2 f<;>;�;�;=;==
;==d g

7 is a prede�ned predicate, then t1opt2 is
a comparison formula;

� if t1; t2 are terms, or if t1 is a term and t2 2 CI is a
class name, then t1int2 is a membership formula;

� if t is a term and c is a class (or type) name, then
c(t) is a class formula. 2

Complex formulas (or simply formulas) are obtained
from atomic formulas and negated atomic formulas by
means of conjunctions. All variables are assumed to be
implicitly quanti�ed as in Datalog [16].

De�nition 2 (Formulas) [21]. Formulas are in-
ductively de�ned as follows:

� all atomic formulas are formulas;

� if F is an atomic comparison or membership
formula8, then :F is a (complex) formula;

� if F1 and F2 are formulas, then F1 ^ F2 is a (com-
plex) formula. 2

De�nition 3 (Rules) [21]. A Chimera rule is an ex-
pression of the form

Head Body

where Head is an atomic formula and Body is an ar-
bitrary formula, such that each variable in Head occurs
in Body and Body contains exactly one class formula
for every variable appearing in the rule. 2

The interested reader can �nd additional details on
Chimera rules and their semantics in [21].

3. Dimensions in view design

In this section, we discuss the main dimensions in
the design of a view mechanism. For each dimension, we
contrast our choice with the ones made by most relevant
view models in the literature.

Besides choosing a reference data model and a query
language, the main design choices concern:

� how views are inserted in the database schema;

� whether views are only populated with base ob-
jects (object-preserving views), or it is possible to
populate a view by creating new objects (object-
generating views).

The choices to be taken with respect to those dimen-
sions are strongly in
uenced by the functionalities to be
supported by the view mechanism. In what follows, we
�rst present the goals of the proposed model, and ana-
lyze their implications on the view mechanism. Next,
we analyze the two main dimensions, showing how the
chosen objectives a�ect our choices. Subsection 3.4 con-
cludes the discussion by summarizing in Table 1 the
comparison among our model and other view models
proposed in the literature.

3.1. View functionalities

Whereas relational views have been used for external
schema de�nition, data protection (content-based au-
thorizations) and shorthand for queries, object-oriented
views can be exploited also for other kinds of functional-
ity, such as supporting schema evolution and integrating
heterogeneous databases. The use of views for integ-
rating heterogeneous database schemas has been con-
sidered in [22, 27]: a view de�nition integrates semantic-
ally equivalent classes belonging to di�erent schemas.
The use of views to simulate schema evolution, allowing
the users to experiment with schema changes without
a�ecting other users, was �rst proposed in [8]. Views
can support the implementation of a schema versioning
mechanism, such that any object stored in the data-
base can be accessed and modi�ed from any schema
version including a view of the object class. Recently,
other view models have considered that use of views
[11, 27, 34]. The properties of a view mechanism de-
termines which schema modi�cations can be simulated.
For instance, the models presented in [11, 34] allow to

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 5

simulate the addition of a new attribute to a class be-
cause they consider views which can include non-derived
additional attributes. However, the view model intro-
duced in [27] supports a very limited number of changes
because it does not support neither the generation of
persistent identi�ers for view instances nor views aug-
menting class de�nitions. Views allow the de�nition
of external schemas with the meaning proposed by the
ANSI three-level architecture: each external schema
consists of a set of views and base classes specifying how
a user perceives the database. Some of the proposed
object-oriented view models [29, 42, 39] have considered
external schemas. In those models view de�nitions are
part of a schema view.

The design of our view model has been in
uenced by
two main objectives: (i) it must be su�ciently powerful
for supporting all the kinds of schema changes included
in well-known taxonomies [6, 32], and (ii) it must sup-
port the de�nition of external schemas whose proper-
ties are identical to those of a base schema, so that it is
possible to develop object-oriented applications on an
external schema. The second goal implies that classes
and views must have the same nature. In order to sat-
isfy these requirements we have introduced the concept
of schema view. A schema view encapsulates a set of
related view de�nitions, with a well-de�ned purpose,
such as to de�ne an external schema or to perform some
schema changes. The database administrator initially
de�nes a base schema on which the object database is
created. A schema view can be derived from either the
base schema or from another schema view.

3.2. View placement

A relational schema consists of a set of relations,
while an object-oriented schema consists of a class hier-
archy, being classes connected by inheritance relation-
ships. Therefore, an object-oriented view model must
deal with the problem of inserting views in the class
hierarchy. We refer to this problem as view placement
problem. Three kinds of solutions have been proposed
to solve it:

1. Views are automatically positioned in the class
hierarchy by an integration algorithm
[1, 37, 39].

2. The user explicitly speci�es the position of the view
in the class hierarchy [23].

3. The view and class hierarchies are kept separated,
that is, a class can inherit only from classes and
a view can inherit only from views. By contrast,
a view derivation relationship relates a base class
and a view; the semantic of this relationship is \the
view is derived from the base class" [8].

Bearing in mind that views must behave like classes,
the integration of views and classes in a unique schema

may appear the most appropriate solution. However,
solution 1 above has two problems: �rst, the problem
of integrating a view in an existing schema is in general
undecidable [7, 39]; second, the hierarchy may become
very large because of many intermediate classes that are
not semantically meaningful. With the second solution
the mix of classes and views in the same hierarchy may
cause confusion in the user. Moreover, checks must be
made by the system to ensure that the speci�ed posi-
tion is coherent with the de�nition of the view. Note,
moreover, that when one wants to support the mingling
of classes and views in a single inheritance hierarchy the
placement of a view in the inheritance hierarchy must
be made by considering the two aspects of a view de�n-
ition: the signature (list of attributes and methods,
along with their domains) and the extent of the view
(the set of instances that will be materialized when the
query part of the view is evaluated). It may happen
that the type of a view is a supertype of the type of the
class from which it is derived but its extent is a subset
of the extent of that class. Consider as an example a
view extracting (that is, selecting) some objects from
a class and projecting out some of their attributes. In
a well-formed inheritance hierarchy, subtyping and set
containment between class extents go together, since
the extent of a class is de�ned as a subset of the ex-
tent of its superclass(es). Finally, note that none of the
models taking the approach of inserting views in the
class hierarchy supports object-generating views9.

Therefore, we think that the more adequate ap-
proach is the separation of classes and views in di�erent
hierarchies, extending the object-oriented schema with
the view derivation relationship, because it leads to a
schema easier to understand. A view can be derived
from other views, but in any case it will always be con-
nected to base classes. With respect to the view deriv-
ation relationship, the term root class always refers to
classes or views from which a view is derived. Let v
be a view derived from the root class c, then the view
derivation relationship denotes that v is a view of c, or,
equivalently, that c is a root class of v.

In order to satisfy the above mentioned goals, it is
also necessary to introduce a view inheritance relation-
ship, similar to the class inheritance relationship exist-
ing in the base schema. The inheritance relationship
is orthogonal to the view derivation relationship. The
view inheritance relationship organizes views in an ISA
hierarchy similar to the class hierarchy. An important
di�erence between class and view inheritance is the fact
that unlike a class, a view is not explicitly populated;
rather its population is derived from the population of
its root classes by the view query. Thus, to ensure that
the instances of a view are a subset of the instances of
its superviews, we impose two restrictions: (i) a view
v1 can be declared subview of a view v2 if and only
if the root class of v1 is a direct or indirect subclass

6 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

of the root class of v2, and (ii) the query of a view
must be stronger than the view queries of its super-
views. This topic is dealt with in Subsection 5.3. Like
the second solution, the user is responsible for the de-
clarations of inheritance relationship, but the system
must ensure that the placement of a view does not vi-
olate the semantics of a well-formed view inheritance
hierarchy. Recently, two view models have been pro-
posed which also solve the view placement problem by
combining the view derivation and view inheritance re-
lationships: the extension presented in [42, 41] to the
view model described in [1] for the O2 system, and the
view mechanism for the UniSQL system [27].

3.3. Object-generating vs object-preserving
views

If views are to be used as classes, it is essential
that their instances are objects, that is, that they are
provided with persistent identi�ers. In most situations
there is indeed the need of referencing view instances.
Two distinct kinds of views can however be identi�ed:

� object-preserving views: they are views that only
extract objects from existing classes; the instances
of these views can be identi�ed by the identi�ers of
the extracted base objects.

� object-generating views: they are views creating
new objects; the instances of these views must be
identi�ed by newly generated object identi�ers.

Most of the approaches [31, 43, 40, 38] only consider
object-preserving views. Thus, views only provide dif-
ferent views of existing objects. This approach is par-
ticularly useful for supporting objects with multiple in-
terfaces and context-dependent behavior. In this sense,
object-preserving views are similar to roles [3, 20, 35].
However, this kind of views is not powerful enough for
supporting all kinds of database reorganization. In [33]
a model is described whose views are object-preserving,
but with the capability of including new non-derived
attributes from existing data. By contrast, object-
generating views are proposed in [8] for supporting
schema evolution, so that the evaluation of a query al-
ways returns new objects. Object-generating views are
also considered in [23], where a query can include an oid
function: a partial function indicating that the query re-
turns a set of objects whose identi�ers are generated by
applying the function on the object identi�ers assigned
to its argument variables.

The approach proposed in [1] supports object-
preserving views as well as value-generating views.
Thus, two kinds of views are considered: virtual classes,
populated by objects selected from already existing
classes, and imaginary classes, populated by tuples
for which new oids are generated. Virtual classes
are de�ned by specialization or generalization of base

classes, while imaginary classes are declared by queries
that return sets of values. In this approach, an imagin-
ary class C is populated by a query that returns a set
of tuples. To each tuple t an oid denoted as C(t) is as-
signed, using a function associated with the class that
is applied to the tuple. Thus, in this approach quer-
ies create relations rather than creating sets of objects.
Therefore, queries cannot be used to de�ne views, since
it is necessary to convert tuples into objects outside the
query language. This object \creation" is performed at
each view evaluation, thus the problem arises of assign-
ing the same oid to the same tuple at each evaluation.

In our model, we consider both object-preserving and
object-generating views. Thus, when the view query
evaluation involves the creation of view instances in or-
der to populate the view class (e.g. a join operation),
new oids are generated. By contrast, when views are
populated by extracting existing objects from a class,
possibly, modifying their structure and behavior, (e.g.
a selection or projection operation) the view instances
preserve the identi�ers of base objects, instead of gen-
erating new objects. The support of object-preserving
views requires that an object instance of a base class
can also be an instance of all those views whose query is
satis�ed by the object. Thus, the use of the same iden-
ti�er for denoting an object which is instance of both a
class and a view implies that references to this object
can only be solved by taking into account the context of
the reference. However, this is already the case in Chi-
mera, because the language supports objects belonging
to multiple most speci�c classes [9]. We will elaborate
further on the problem of solving object references in
Subsection 6.3.

Together with views generating objects, we also allow
a user to specify that the instances of a view are not ob-
jects, and thus are not provided with persistent identi-
�ers. Therefore persistent identi�ers are generated only
when needed, that is, only when the view must be used
as a class. Views whose instances are values rather than
objects (which we refer to as set-tuple views) are use-
ful to include relations in the object data model , thus
providing a form of downward compatibility with re-
spect to the relational model. However, views, whose
instances are not provided with persistent identi�ers,
can only be used as shorthand in queries and cannot
have additional attributes. As a default, we assume
the view query returns a set of persistent objects, so
that the view has an extension de�ned as the set of the
oids of objects that belong to the view (both for object-
generating and object-preserving views). Whereas the
user needs to specify whether a view generates persist-
ent identi�ers or not, the system will be able to check
whether a view preserves or generates objects, by ana-
lyzing the view query, as we will see later in Section
4.

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 7

3.4. Discussion

Table 1 compares the most relevant proposals for
object-oriented view mechanisms, by taking into ac-
count the dimensions dealt with throughout the section.
The table shows that our view model aims at supporting
both external schemas and schema evolution. Moreover,
we choose to support both object-preserving and object-
generating views. As far as the view placement prob-
lem is concerned, in our approach we separate the class
and the view hierarchies. A view is linked to its root
classes by a view derivation relationship which is or-
thogonal to the inheritance relationship among classes.
Views are moreover related by an inheritance relation-
ship that results in a ISA hierarchy, just as classes. A
schema view is a set of related view de�nitions for a
well-de�ned purpose (e.g. de�ne an external schema,
de�ne a schema change, de�ne an authorization unit);
a view must be part of a schema view.

Finally, we have considered whether the model allows
a view to add new non-derived attributes. A view may
indeed hide, modify and add features to those of the
classes (or views) it is derived from. All models allow
to hide features, as well as to add new methods and to
change the implementation of methods. The addition
of non-derived attributes has only been considered in
some models supporting schema evolution. This prop-
erty, obviously, increases the number of possible schema
changes, but on the other hand it makes the implement-
ation more di�cult. Our model has this augmentation
capability, thus view instances can have an additional
storage for new attributes. Of course, other actions
(e.g. hide attributes, hide/add/modify methods) are
also possible.

4. Chimera view de�nition language

In this section we describe the view de�nition lan-
guage proposed for Chimera, designed according to the
basic choices we have discussed in Section 3. In our
model, a view is de�ned as a query on one or more base
classes whose result is a new class, as a natural adapta-
tion of relational views. A view is identi�ed by a name,
which is the proposed identi�er for the view. A view
de�nition is thus similar to a class de�nition (name, list
of attributes, list of methods, list of constraints) except
that it includes a query on one or more base classes de-
termining the view population. A view can be used just
like a class. For example, the domain of an attribute,
parameter or variable of a view can be another view.

Throughout the paper, we use as a running ex-
ample the base schema presented in Figure 1. The
classes of the FacultyLibrary schema only contain in-
stance attributes, the other features are excluded for
the sake of simplicity. The symbol `*' denotes that

loanMember

loanBook

loanDate

devolutionDate

LoanPublication

title

year

editorial

month

volumen

periodicity

Journal Book

Author

Inheritance

Aggregation

Member

Student Professor

name

code

faculty

course

department

category

address

number

city

Address

street

memberLoans*

name

profession

writtenBooks*

address

authors*

isbn

week-end

onLoan

vatCode

vatCode

FIG. 1. FacultyLibrary example schema.

Publication

title

year

editorial

month

volumen

periodicity

JournalBook

number

city

Address

street

Author

name

profession

writtenBooks*

address

title

year

editorial

Magazine VBook

VPublication

Class Inheritance

 Aggregation

View Derivation

View Inheritance

authors*

isbn

week-end

authors*

isbn

month

manager

vatCode

onLoan

Bibliography Schema

FIG. 2. Schema including views derived from the
FacultyLibrary schema.

an instance attribute is multi-valued. Figure 2 shows
a schema view named Bibliography derived from the
FacultyLibrary base schema of our running example.
This schema view illustrates how view derivation and
view inheritance relationships can be used when views
are derived from a given schema, in order to create a
new schema. The Bibliography schema contains the
views Vpublication, Magazine and Vbook which have
been derived from the classes Publication, Journal
and Book, respectively. In this example, the root classes
are base classes because the view schema is derived
from the base schema. The view Magazine has an ad-
ditional attribute, manager, and hides the attributes
periodicity and volumen; the view Vbook has no addi-
tional attributes and hides week-end and onLoan, while
the view Vpublication imports all the attributes from

8 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

TABLE 1. Comparison of the Chimera view model with other OO view models

[8] [27] [36] [39] [42] Our model

data model general UniSQL MultiView COCOON O2 Chimera

query object-oriented deductive
language predicate calculus Object SQL Object algebra Object algebra O2 rules

external schemas NO NO YES NO YES YES

schema evolution YES L.F. L.F. L.F. L.F. YES

view integration separate view separate view views inserted in views inserted in separate view separate view
problem hierarchy hierarchy class hierarchy class hierarchya hierarchy hierarchy

object-preserving/ no persistent
object-generating generating identi�ers preserving preserving bothb both

augment class
de�nition YES NO YES NO NO YES

Legenda: L.F. limited form
a For operator individuals, it is speci�ed how the view is inserted in the class hierarchy, but the classi�cation of the views resulting of
composite queries is not addressed.

b Actually, a query may return a set of tuples that are converted to new objects outside the query language.

VIEW SIGNATURE ViewName

FROM RootClasses

IMPORTED-FEATURES

ATTRIBUTES ListOfImpAttrib

OPERATIONS ListOfImpOper

CONSTRAINTS ListOfImpCons

C-ATTRIBUTES ListOfImpCattrib

C-OPERATIONS ListOfImpCoper

C-CONSTRAINTS ListOfImpCconst

ADDITIONAL-FEATURES

ATTRIBUTES ListOfAddAttrib

OPERATIONS ListOfAddOper

CONSTRAINTS ListOfAddConst

C-ATTRIBUTES ListOfAddCattrib

C-OPERATIONS ListOfAddCOper

C-CONSTRAINTS ListOfAddCconst

VIEW-QUERY SetOfDeductiveRules

SUPERVIEWS ListOfViews

OID bool

FIG. 3. View speci�cation statement

the class Publication and does not add new attrib-
utes. For the remaining features, we suppose that the
views import all features from their root classes and

do not augment class de�nitions. The views Magazine
and Vbook have been declared subviews of the view

Vpublication. Note that the view Vpublication is
the identity view10 of the class Publication, being in-
tended to have a hierarchy of publications in the schema

view. As remarked in [39], schema views must sat-
isfy some consistency constraints concerning the schema

closure. For instance, because the domain of the attrib-
ute authors* is the class Author, the closure of the

schema view Bibliography must contain the identity

views of classes Author and Address. The closure of
schema views will be discussed in Subsection 6.1.

As for Chimera classes, we can distinguish two com-
ponents in a view de�nition: speci�cation and imple-
mentation. They are dealt with in the following subsec-
tions.

4.1. View speci�cation

The format of a view de�nition statement is shown in
Figure 3. The clauses of the view de�nition statement
in Figure 3 have the following meaning:

� ViewName denotes the view name and must be dis-
tinct from the names of all existing views and
classes.

� The FROM clause lists the root classes (which can
be either classes or views) from which the view is
derived.

� The IMPORTED-FEATURESand ADDITIONAL-FEATURES

clauses specify the view features, distinguishing
between imported and additional ones. They are
discussed in detail in Subsection 4.1.2..

� The VIEW-QUERY clause speci�es the population of
the view, by means of a set of Chimera deductive
rules. It is discussed in detail in Subsection 4.1.1..

� The SUPERVIEWS clause declares the superviews of
the view which is being de�ned, in a similar way as
for classes. In Subsection 5.3 we will further discuss
the meaning of this relationship.

� The OID clause contains a boolean value, indicating
whether persistent object identi�ers are provided
for view instances. The default value is true. The
false value is used for views whose instances are
not provided with persistent identi�ers, being thus
values rather than objects (set-tuple views).

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 9

Some view de�nition statements are presented in Ex-
amples 1 and 2. They use the FacultyLibrary schema
of Figure 1.

Example 1. Suppose we wish to consider a class rep-
resenting magazines whose periodicity is weekly. We
can derive the Magazine view from the Journal class,
populated with all the objects from Journal class such
that periodicity = `weekly'. The view has an addi-
tional attribute representing the magazine editor while
the volumen and periodicity attributes are hidden.
The VPublication view is declared as a superview of
the view Magazine.

VIEW SIGNATURE Magazine

FROM Journal

IMPORTED-FEATURES

ATTRIBUTES -volumen, -periodicity

ADDITIONAL-FEATURES

ATTRIBUTES manager: string

OPERATIONS changeManager(in NewMan:string)

VIEW-QUERY Magazine(X) Journal(X),

X.periodicity = `weekly'

SUPERVIEWS VPublication

OID true

�

Example 2. Suppose we wish to de�ne a class con-
taining all professors which are authors of some book
published by the University Editorial and available
in the library. We can de�ne the view ProfAuthor as a
view-query expressing an explicit join among the classes
Professor and Author, through the vatCode attribute
included in the two classes.

VIEW SIGNATURE ProfAuthor

FROM Author, Professor

IMPORTED-FEATURES
ATTRIBUTES name of Author,

vatCode of Author,

bookTitles: set-of(string) derived,

city: author.address.city

ADDITIONAL-FEATURES

OPERATIONS changecity(in City: string)

VIEW-QUERY ProfAuthor(X) Author(Y),

Professor(Z), Book(W),

Y.vatCode = Z.vatCode,

W in Y.writtenBooks,

W.editorial = `University Editorial'

OID true

�

4.1.1. View query Whereas most view models ex-
press the view query by an object algebra or calculus, we
use Chimera deductive rules. The VIEW-QUERY clause
contains one or more Chimera deductive rules specify-
ing the view population. The head of these rules is a
class formula on the name of the view whose population

is being de�ned and the body is an arbitrary formula on
instances of the root classes. We remark that only side-
e�ect free methods are allowed in queries. From now
on, the view-query term will denote the collection of
rules that de�ne the view population. The view-query
de�nes the extension of the view, while the structure
of each instance belonging to this extension is based on
imported and additional attributes.

Example 3. The following query de�nes the pop-
ulation of a view CsStudent derived from the class
Student of the schema FacultyLibrary, retrieving the
students whose faculty is Computer Science and that
have borrowed at least a book.

CsStudent(X) Student(X), Book(Z),

X.faculty = `Computer Science',
Z in X.memberLoans

�

If the variable of the class formula in the head of
the rule appears in (a class formula of) the rule body,
then the view is an object-preserving view (examples
of object-preserving views are the views of Example 1
and of Example 3), otherwise the view is an object-
generating view (an example of object-generating view
is the view of Example 2).

For object-preserving views, if the class formula in
the rule body which contains the variable in the head
of the rule is on the root class c, then the view instances
are objects extracted from c. Thus, all the members of
c that satisfy the body of the rule are instances of the
view. For example, instances of the CsStudent view of
Example 3 are objects belonging to class Student. By
contrast, the query of an object-generating view returns
a set of base object tuples. For each tuple in this set a
new object is generated and added to the view exten-
sion, and the correspondence between the new object
identi�er and the base object identi�er is stored in a
persistent table, named Derived By. It is sometimes
useful, in the de�nition of the implementation for de-
rived imported attributes, to explicitly refer to the base
objects a certain view object has been derived from. We
thus extend the syntax of Chimera deductive rules with
a special atomic formula built using the ternary predic-
ate derived-by, whose �rst argument is the identi�er
of a view instance, second argument is a class identi�er
and third argument is an object identi�er. The third
argument is bound to the base object, instance of the
speci�ed class, from which the speci�ed view object has
been derived. This predicate is simply a mean to refer
to the Derived By table from the body of a deductive
rule.

If the instances of a view are newly generated objects,
the view-query of such a view contains a variable in the
head which is not contained in any atomic formula in
the body. In such cases, we may think that an atomic
formula next-oid(X) is automatically added to the rule

10 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

body, being X the variable appearing as argument of the
class formula in the rule head, denoting the newly gen-
erated object. In Example 2 the body of the view-query
will include next-oid(X), being the rule head the class
formula ProfAuthor(X). The meaning of atomic formu-
las built with the next-oid predicate is the following:

1. a new object identi�er must be generated for each
successful evaluation of the formula in the rule
body;

2. the generated identi�er must be added to the view
extension;

3. for each new generated oid, an entry containing
the generated oid and the oids of base objects from
which it has been derived, must be stored in the
Derived By table.

Note that a view-query may consist of several de-
ductive rules. Thus, our view language is able to ex-
press views de�ned by queries on a union of classes us-
ing alternative predicates [8], as shown by the following
example. The example also shows that it is possible to
de�ne an object-preserving view by extracting objects
from two or more root classes.

Example 4. The following query retrieves all the
members that have borrowed at least one book, such that,
if they are student, their faculty is Computer Science

and if they are professors, their category is full time.

LoanMembers(X) Student(X), Book(Z),

Z in X.memberLoans,

X.faculty = `Computer Science'

LoanMembers(X) Professor(X), Book(Z),

Z in X.memberLoans,

X.category = `full time'

�

Finally, we remark that at the time being we do not
consider recursive views. A view v can be de�ned in
terms of another view v0 provided that v0 is not de�ned,
directly or indirectly, in terms of v. Thus, each view can
be ultimately seen as de�ned in terms of base classes.

4.1.2. Imported and additional features Besides
specifying the root classes and the query de�ning the
view, the view signature also speci�es information on
view features. We distinguish between imported and ad-
ditional view features: imported features are obtained
from one of the root classes, while additional features
are explicitly de�ned for the view. When considering at-
tributes, however, a view can have some attributes not
belonging to the signature of any root class, but whose
value can be derived (that is, computed) starting from
the values of some attributes in the root classes. We
consider this kind of attribute as imported rather than
as additional, to remark that for additional attributes

new storage space must be allocated and a value must
be provided for each view object, since all additional
attributes have a null value upon view materialization.

In the IMPORTED-FEATURES clause of the view de�n-
ition statement, ListOfImpOper, ListOfImp-Const,
ListOfImpCattrib,ListOfCoper and ListOfImpCconst
denote the lists of features imported from root classes.
In the case of imported attributes, ListOfImpAttrib
speci�es which attributes among the ones of the base
objects retrieved by the query are part of the view in-
stances. For each clause the associated list contains one
or more items specifying which features are imported.
There are di�erent options to specify the imported fea-
tures: listing the features to be imported, specifying
that all the features (of a root class) are imported, spe-
cifying that a feature is hidden, or specifying that a
feature is renamed in the view. The option of specify-
ing which features (of a given root classes) are hidden is
useful when the number of imported features is greater
than the number of hidden ones; another important (se-
mantic) advantage of allowing the speci�cation of hid-
den features rather than requiring the speci�cation of
imported ones, is that the view may change if the root
class changes, e.g. if new attributes are added to the
root class they are added to the view in the former case,
whereas they are not added in the latter. In the case of
imported attributes, there are two additional formats
for introducing derived attributes not corresponding to
any attribute of the root classes, but whose value can be
computed from attributes in the root classes by means
of Chimera deductive rules. Those attributes are part of
the state of the instances of the view but do not belong
to the state of any base object the view object is derived
by. A �rst option is to indicate that a view attribute is
derived; its implementation must be given in the view
implementation (see Example 5 below). The derived
imported attribute bookTitles in the view of Example
2 could be implemented by the following deductive rule:

X in self.bookTitles Author(Y), Book(W),

derived-by(self, Author, Y),

W.editorial = `University Editorial',
Y in W.authors

The above option supports the rede�nition of the do-
main of an attribute imported from a root class. It may
be useful for restricting the domain of an attribute to a
subtype of the current attribute type, or for changing it
to a view derived from the class which is the attribute
domain.

A second option is to specify that a view attribute
corresponds to a nested attribute of one of the root
classes of the considered view. Example 2 shows the
speci�cation of a view called ProfAuthorwhere the im-
ported attribute city is de�ned through the path ex-
pression Author.address.city. This expression spe-
ci�es that the view ProfAuthor has an attribute named
city whose value, for each object o belonging to the

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 11

view, is the value of address.city in the base object
from root class Author by which o is derived11.

The various formats for importing features in view
speci�cation are speci�ed in Appendix A.

In the ADDITIONAL-FEATURES clause of the view
de�nition statement, ListOfAddAttrib, ListOf-

AddOper, ListOfAddConst, ListOfAddCattrib, List-
OfAddCoper and ListOfAddCconst denote lists of ad-
ditional features speci�cations, one list of signatures for
each kind of feature. A feature signature is expressed
exactly like in class signatures.

4.2. View implementation

The view implementation is exactly like a class imple-
mentation, including the set of Chimera deductive rules
that specify the implementation of the imported and
additional derived attributes, methods and constraints.
The de�nition of a view implementation has the format
presented in Figure 4.

Example 5. The implementation of the view Prof-
Author of Example 2 may be speci�ed by the following
statement.

VIEW IMPLEMENTATION ProfAuthor

ATTRIBUTES

X in self.bookTitles Author(Y), Book(W),

derived-by(self, Author, Y),

W.editorial = `University Editorial',

Y in W.authors

OPERATIONS

changecity(City) :
! modify(ProfAuthor:city;Self;City)

�

We remark that the view implementation is ex-
pressed by making use of Chimera deductive rules, as
de�ned in Section 2, extended as follows:

� the rules specifying the view population may con-
tain a variable in the head that do not appear
in any atomic formulas in the bodies; this is the
format for specifying object-generating views and
it is handled, as seen in Subsection 4.1.1., by in-
serting in the rule body a special atomic formula
on the next-oid predicate;

� the rules specifying the implementation for derived
attributes may contain, in their body, atomic for-
mulas on the ternary predicate derived-by, which
allows to refer to the base object(s) from which the
view object at hand has been derived.

VIEW IMPLEMENTATION ViewName

ATTRIBUTES derived attribute implementation

OPERATIONS operation implementation

CONSTRAINTS constraint implementation

C-ATTRIBUTES derived c-attribute implementation

C-OPERATIONS c-operation implementation

C-CONSTRAINTS c-constraint implementation

FIG. 4. View implementation statement

5. Formal de�nition of the Chimera view
model

In this section, the view model proposed for Chimera
is formally de�ned. First of all, we de�ne the notion of
view and we discuss what view instances are. Then, a
subview relationship is de�ned, showing how views can
be part of view hierarchies like classes are part of class
hierarchies.

In the following, let OI denote a set of object identi-
�ers and CI denote a set of class identi�ers. Moreover,
we consider a set of type names T N , a set of attribute
names AN , a set of method names MN and a set of
constraint predicate symbols PN . Finally, V denotes
the set of Chimera values, de�ned starting from basic
values and object identi�ers and applying the set, list
and record constructors [21]. From now on, we make
use of the dot notation to refer to the components of a
tuple: t:c denotes the component of the tuple t named
c.

5.1. Views

As for classes, we consider two components in a
view: signature and implementation, which derive from
the speci�cation and implementation components in the
view de�nition statement, respectively.

5.1.1. View signature In the following, let VI de-
note a set of view identi�ers, and CVI denote the set of
class and view identi�ers, thus, CVI = VI [CI. Fur-
thermore, in order to de�ne how the signature of a view
is obtained from the view de�nition statement, given a
view de�nition V , we de�ne the following structures:

� iStruct(V): it is obtained from the lists
listOfImpAttrib and listOfImpCattrib. It con-
tains the information on attributes and c-attributes
imported from the root classes. It is a record
value with two sets named inst (including instance
attributes) and class (including class attributes),
whose items are triples

(a name; a dom;a st)

where

{ a name 2 AN is the attribute name

12 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

{ a dom 2 T is the attribute domain

{ a st 2 fext; derg is the attribute type, that is,
whether it is extensional or derived.

� iBeh(V): it is obtained from the lists listOfImpOper
and listOfImpCoper. It contains the information
on methods and c-methods imported from the root
classes. It is a record value with two sets named
inst (including instance methods) and class (in-
cluding class methods), whose items are pairs

(op name; op sign)

where

{ op name 2 MN is the method name

{ op sign is the signature of the method, ex-
pressed as

T1 � : : :� Tk ! T

with T1; : : : ; Tk and T types in T , represent-
ing, respectively, domains of input and output
parameters of the method.

� iConst(V): it is obtained from the lists listOfImp-
Const and listOfImpCconst. It contains the in-
formation on constraints and c-constraints impor-
ted from the root classes. It is a record value
with two sets named inst (including instance con-
straints) and class (including class constraints),
whose items are pairs

(con name; con sign)

where

{ con name 2 PN is the constraint name

{ con sign is the signature of the constraint, ex-
pressed as

T1 � : : :� Tk

with T1; : : : ; Tk types in T , representing do-
mains of the output parameters of the con-
straint.

� aStruct(V): it is obtained from the lists
listOfAddAttrib and listOfAddCattrib. It is ex-
actly like iStruct, but it contains information on
additional attributes instead of on imported ones.

� aBeh(V): it is obtained from the lists listOfAddOper
and listOfAddCoper. It is exactly like iBeh, but
it contains information on additional methods in-
stead of on imported ones.

� aConst(V): it is obtained from the lists
listOfAddCconst and listOfAddCconst. It is ex-
actly like iConst, but it contains information on
additional constraints instead of on imported ones.

Table A1 in Appendix A speci�es how the introduced
structures are obtained from the corresponding �elds in
the view speci�cation statement.

De�nition 4 (View Signature). Given a view spe-
ci�cation V , the corresponding view signature is a tuple

V C = (id; struct; beh; constr; state;mc; q)

generated as follows:

� id 2 VI is the view identi�er speci�ed in the view
de�nition;

� struct = aStruct(V):inst [iStruct(V):inst;

� beh = aBeh(V):inst [iBeh(V):inst;

� constr = aConst(V):inst [iConst(V):inst;

� state is a record value, containing the values
for the view attributes which are obtained from
aStruct(V):class [iStruct(V):class; two addi-
tional �elds belong to the record, extent and
proper extent;

� mc is the identi�er of a virtual metaclass corres-
ponding to the view. This identi�er can be any
name not used as name of other class or metaclass.
The metaclass is derived as follows:

{ struct = aStruct:class(V)[iStruct:class(V)
[f(proper extent; set-of(id); extensional);
(extent; set-of(id); extensional)g;

{ beh = aBeh:class(V) [iBeh:class(V),

{ constr = aConst:class(V)[iConst:class(V);

� q is the view-query, that is, a set of deductive rules
specifying the view population; this set is exactly
the one speci�ed in the VIEW-QUERY clause of the
view de�nition statement. 2

The attributes extent and proper extent in the view
state denote respectively the set of all the oids of objects
members of the view and the oids of objects instances
of the view. Therefore the proper extent �eld of the
view state contains the set of objects belonging to the
view and not belonging to any of its subview in the view
inheritance hierarchy.

Example 6. Referring to the view ProfAuthor spe-
ci�ed in Example 2, the corresponding view signature is
as follows. Let f (name, string, ext), (vatcode, integer,
ext) g be included in the struct component of the class
identi�ed by Author. Let E and PE denote two sets of
(view) object identi�ers such that PE � E. Then:

V C:id = ProfAuthor

V C:struct = f (name; string; ext); (vatcode; integer; ext);
(bookTitles; set-of(string); der);
(city; string; der)g

V C:beh = f(changecity; string ! ProfAuthor)g
V C:constr = ;
V C:state = (extent : E; proper extent : PE)
V C:mc = MProfAuthor

V C:q = ProfAuthor(X) Author(Y), Professor(Z),

Book(W), Y.vatCode = Z.vatCode,

W in Y.writtenBooks,

W.editorial = `University Editorial'

�

The identi�er of a view V C denotes the object type
corresponding to V C. Such object type is the type of
the identi�ers of the objects instances of the view. A

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 13

value type is moreover implicitly associated with each
view, representing the type of values that constitute the
state of the view instances. If the struct component of
a view V C is the set f(a1; T1; at1); : : : ; (an; Tn; atn)g,
each object instance of V C must have as state a value
of (record) type record-of(a1 : T1; : : : ; an : Tn). This
type, which describes the structure of the objects in-
stances of the view, is the structural type of the view,
and it is denoted by stype(v), being v 2 VI the view
identi�er of V C (V C:id = v). Two components can be
distinguished in the state of a view instance: an addi-
tional component and an imported component. There-
fore, given the view structural type stype(v) = record-
of(a1 : T1; : : : ; an : Tn), it is possible to partition this
record type in two record types:

� stype imp(v) = record-of(a1 : T1; : : : ; ak : Tk),
and

� stype add(v) = record-of(ak+1 : Tk+1; : : : ; an :
Tn), for a k � n

where we assume that iStruct(V):inst = f(a1; T1; at1);
. . . , (ak; Tk; atk)g and aStruct(V):inst = f(ak+1; Tk+1;
atk+1); . . . , (an; Tn; atn)g. Therefore, stype add(v) de-
notes the additional structural type while stype imp(v)
denotes the imported structural type. We distinguish
these two components in the structural component of
a view, because the additional component is related to
additional attributes that must be stored for view in-
stances, whereas the imported component is related to
attributes imported from root classes. The values of the
imported component are, therefore, retrieved (or com-
puted) starting from values already stored in the data-
base. The system does not allocate space for imported
attributes, while it does for additional ones.

The set of the classes12 from which a view is de-
rived can be represented as a function defined on :
VI ! 2CVI . This function returns the elements of the
RootClasses list in the FROM clause of the view de�n-
ition statement. For example, referring to Example
2, defined on(ProfAuthor) = fProfessor; Authorg.
Note that, since views can be de�ned in terms of other
views, the function defined on returns a set containing
base classes as well as views. It is however possible to
determine the base classes on which a view is de�ned, by
recursively applying function defined on. For that pur-
pose the function defined on� : VI ! 2CI , de�ned as
follows, can be used: defined on�(v) = defined on(v)
if defined on(v) � CI, whereas defined on�(v) =
fc1; : : : ; ckg[defined on�(v1)[: : :[defined on�(vh) if
defined on(v) = fc1; : : : ; ck; v1; : : : ; vhg; fc1; : : : ; ckg �
CI and fv1; : : : ; vhg � VI.

We represent through a boolean function oid : VI !
Bool whether or not the view instances are provided
with persistent identi�ers, according to the boolean
value speci�ed in the OID clause of the view de�n-

ition statement. Moreover, we represent through a
boolean function new oid : VI ! Bool whether the
view is object-generating or object-preserving. That is,
new oid(v) = true for object-generating views, while it
is false for object-preserving ones.

5.1.2. View implementation A view implementa-
tion consists of three sets of rules:

1. a set of deductive rules specifying the implementa-
tions of the view derived attributes; an implement-
ation must be provided for

� each additional derived attribute; in this case
the implementation is speci�ed in the imple-
mentation part of the view de�nition;

� each imported attribute declared as derived
in the signature part of the view de�nition; in
this case the implementation is speci�ed in the
implementation part of the view de�nition;

� each imported attribute which is derived in
the root class from which it is taken; in this
case the implementation is the same as the one
in the (implicitly or explicitly) referred class;

� each imported attribute declared as a : c:a1: � � � :an
in the signature part of the view de�nition; in
this case the implementation consists of

a. the rule
self:a = X c(Y); Y = self;

X = Y:a1: � � � :an
if new oid(v) = false;

b. the rule
self:a = X c(Y); derived by(self; c; Y);

X = Y:a1: � � � :an
if new oid(v) = true;

2. a set of deductive rules specifying the constraints
on the view population; this set consists of the rules
speci�ed in the view class implementation for addi-
tional constraints and the rules in the intended root
class implementation for imported constraints;

3. a set of update rules specifying the implementation
of the view operations; this set consists of the rules
speci�ed in the view class implementation for addi-
tional operations and the rules in the intended root
class implementation for imported operations.

De�nition 5 (View Implementation). Given a
Chimera view signature

V C = (id; struct; beh; constr; state;mc)
an implementation for V C consists of a set of deductive
rules, specifying

� an attribute implementation for each derived at-
tribute in struct;

� a constraint implementation for each constraint in
constr;

� an operation implementation for each operation in
beh. 2

14 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

Example 7. The implementation of the view of Ex-
ample 6 consists of the following rules.

X in self.bookTitles Author(Y), Book(W),

derived-by(self, Author, Y),

W.editorial = `University Editorial',

Y in W.authors

self:city= X Author(Y),

derived-by(self, Author, Y),

Y.address.city = X

changecity(City) :
! modify(ProfAuthor:city;Self;City).

�

5.2. View instances

In our approach, the evaluation of a view de�ni-
tion results in a view whose instances have a structure
de�ned by function stype introduced above. Thus, a
view is a class and, if the value speci�ed in the OID

clause of the view de�nition statement is true, its in-
stances are objects referred through immutable identi-
�ers. The extent of a view may consist of objects ex-
tracted from an existing class or view (for the views
v such that new oid(v) = false), or it may consist
of newly generated objects (for the views v such that
new oid(v) = true). In the �rst case, the extracted ob-
ject is, obviously, an instance of the class from which
it has been extracted and it is also an instance of the
view. Thus, the object belongs to multiple most spe-
ci�c classes. We have addressed the problem of objects
belonging to multiple most speci�c classes in [9] where
only base classes are considered. Here, we extend that
approach by considering also views. Thus, an object
may belong to several most speci�c classes and to a set
of views derived from them. The notion of object can
be formalized as follows.

De�nition 6 (Object). An object is a tuple

o = (i; v; V S)

where:

� i 2 OI is the identi�er of o;

� v 2 V is a value, called state of o;

� V S � CVI is the set of most speci�c classes and
views to which o belongs. 2

For object-generating views, a new persistent oid is
generated for each view instance, in the same way as
base object identi�ers are generated upon object cre-
ation. The objects generated by the view evaluation
have only a virtual nature (though part of their state,
that is, the values for additional attributes, is stored)
and are referred to as view objects. They are objects

according to De�nition 6, though they do not belong to
any base class. We may thus partition the set OI of ob-
ject identi�ers in two sets: BOI , the set of base object
identi�ers; and VOI, the set of view object identi�ers,
that is, the set of identi�ers corresponding to view ob-
jects, generated upon view materialization. An object
o has an identi�er belonging to VOI if it has only a
virtual nature, that is, if it is not an instance of any
base classes.

De�nition 7 (View Object). A view object is an
object o de�ned according to De�nition 6 such that

� o:i 2 VOI, and

� o:V S � VI. 2

We remark that o:i 2 VOI) o:V S � VI , that
is, a view object belongs only to views. By contrast,
o:i 2 BOI) 9c 2 o:V S such that c 2 CI, that is, a
base object belongs to at least one base class.

The function derived by : VOI ! 2BOI, for each
view object identi�er i 2 VOI , returns the set of iden-
ti�ers of base objects from which the view object iden-
ti�ed by i has been derived. This function is de�ned
by recursively replacing each view object identi�er i

with the set of identi�ers appearing in the columns of
the Derived By table row, whose �rst column con-
tains i. This process ends when the set contains only
base object identi�ers. If, given a view identi�er v,
defined on�(v) = fc1; : : : ; cng then, for each view ob-
ject identi�er i such that i 2 [[v]] , derived by(i) =
fi1; : : : ; ing and for each j; 1 � j � n, a class ck exists,
1 � k � n, such that ij 2 [[ck]] .

5.2.1. Object state The state of an object belong-
ing to several most speci�c classes (and views), should
be a record value having as �elds the union of all the
attributes in those classes. However, the sets of attrib-
utes in the object most speci�c classes and views may
be non-disjoint. To handle this situation we introduce
the notion of source of an attribute. If an attribute
belongs to the intersection of the attribute sets of two
classes and it has in both classes the same source, then
the attribute is semantically unique, and thus the ob-
ject must have a unique value for this attribute. If, by
contrast, the attribute has di�erent sources, then the
two attributes in the two classes (views) have accident-
ally the same name, but represent di�erent information,
that must be kept in separate ways. Thus, the object
may have two di�erent values for the two attributes (a
renaming policy is applied).

We now specify the notion of source of an attribute.
For base classes13, the source of an attribute a in a
class c is the most general superclass of c in which the
attribute a is de�ned. Thus, it is the class from which
c has inherited attribute a. Two base classes have a
common attribute with the same source if they inherit

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 15

it from a common superclass. For views, the source of
an attribute can be:

� either the view itself, if the attribute is neither in-
herited nor included (with the meaning speci�ed
below) from any root class;

� the source of the attribute in the most general su-
perview from which the view has inherited the at-
tribute, for inherited attributes;

� the source of the attribute in the root class from
which the view has taken the attribute, for included
attributes.

In the second case, the most general superview from
which the view has inherited the attribute is determined
as for base classes [9]. In order to better explain the
third case, consider the di�erent formats for imported
attributes presented in Appendix A. In cases a) and c)
an attribute is included from a root class in the view,
and the source is the class from which the attribute is
taken (either the one explicitly speci�ed or the only one
containing that attribute). By contrast, in cases d), e)
and f) the attribute is not actually included from the
root class, and then its source is the view itself.

Let] be an operation de�ned as follows:

A(c1)]A(c2) =fa j a 2 A(c1) [A(c2)
^a =2 A(c1) \A(c2)g[

fa j a 2 A(c1) \A(c2)
^source(a; c1) = source(a; c2)g[

fc1-a j a 2 A(c1) \A(c2)
^source(a; c1) 6= source(a; c2)g[

fc2-a j a 2 A(c1) \A(c2)
^source(a; c1) 6= source(a; c2)g

where, given a class or view c 2 CVI, A(c) denotes the
set of attributes of that class and source(a; c) denotes
the source of an attribute a in a class c.

Let dom(a; c), for a 2 A(c), denote the domain of
attribute a in class c. Then, the state of an object (that
is, o:v) is characterized by the set of its most speci�c
classes and views (that is, o:V S) as follows.

De�nition 8 [9]. Let o be an object, such that o:v =
record-of(a1 : v1; : : : ; an : vn). Then:

�
U

c2o:V S
A(c) = fa1; : : : ; ang

� 8i; 1 � i � n; vi 2
T

c2o:V S
[[dom(ai; c)]] . 2

A function value : OI � CVI ! V is de�ned that,
given an object o and a class (or view) c, if o is a mem-
ber of c (that is, if o:i 2 [[c]]), returns the state of
object o seen as an instance of class c. That func-
tion only returns the �elds of the state value proper
of the structural component of c. Let o = (i; v; V S)
be an object and v be the record value record-of(a1 :
v1; : : : ; an : vn). Then value(i; c) is determined as fol-
lows, for j = 1 : : :n:

� if aj 2 A(c) then aj : vj is a �eld of value(i; c), and

� if aj = c-a0j and a0j 2 A(c), then a0j : vj is a �eld of
value(i; c).

If an object o = (i; v; V S) is a member of a class c,
then value(i; c) is uniquely determined and it is a legal
value for the type stype(c). This function is applied
whenever we want to see an object as a view instance.

Since Chimera is a strongly typed database language,
each object reference is assigned a single context in each
expression. Thus, for each object reference we are able
to determine (starting from the types declared for vari-
ables and using schema information) the class or view
the referenced object must be seen an instance of. Note
that this allows us to model notions such as context
dependent access restriction and context dependent be-
havior, typical of data models including roles.

We remark that we have denoted as state the collec-
tion of all the attribute values of an object. Not all these
values are stored, since some of them can be computed.
In particular, derived attributes are not stored.

Example 8. Consider view ProfAuthor, speci�ed
in Example 2, whose signature is given in Example 6.
Then:

(i1; record-of(name : `JohnSmith0; vatcode : 6432957;
city : `NewY ork0

bookTitles : set-of(`Object-Oriented Databases')),
f ProfAuthor g)

with i1 2 VOI, is an example of object instance of the
(object-generating) view ProfAuthor.

Consider now view Magazine, speci�ed in Example 1,
whose signature V C is such that

V C:id = Magazine

V C:struct = f (title; string; ext); (year; integer; ext);
(editorial; string; ext); (month;string; ext);
(manager; string; ext)g.

Then:

(i2; record-of(title : `InternationalJournal
0; year : 1995;

editorial : `ACM 0;month : `April0;
manager : `AlanFord0; volume : 17;
periodicity : `weekly0);

f Magazine, Journal g)

with i2 2 BOI , is an example of an object instance of the
object-preserving view Magazine, and of the class Journal,
whose signature C is such that C:id = Journal and

C:struct = f (title; string; ext); (year; integer; ext);
(editorial; string; ext); (month;string; ext);
(volume; integer; ext);
(periodicity; string; ext) g.

Moreover,

value(i2; Magazine) =
record-of(title : `InternationalJournal0;

year : 1995;
editorial : `ACM 0;
month : `April0;
manager : `AlanFord0);

value(i2; Journal) =
record-of(title : `InternationalJournal0;

16 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

year : 1995;
editorial : `ACM 0;
month : `April0,
volume : 17;
periodicity : `weekly0)

value(i2; Publication) = value(i2;VPublication) =
record-of(title : `InternationalJournal0;

year : 1995;
editorial : `ACM 0).

�

5.2.2. Object consistency Each view object must be
a consistent instance of all the views to which it belongs,
exactly as each object must be a consistent instance of
all the classes and the views to which it belongs. The
following de�nitions formalize the notions of consistency
we consider.

De�nition 9 (Structural Consistency). An ob-
ject o = (i; v; V S) is a structurally consistent instance
of a class (or view) c 2 CVI if v contains14 a legal
(record) value for the type stype(c). 2

De�nition 10 (Constraint Consistency). An ob-
ject o = (i; v; V S) is a constraint consistent instance of
a class (or view) c 2 CVI , if o falsi�es15 all the bod-
ies of rules implementing the constraints in the constr
component of C, where C:id is c. 2

De�nition 11 (View-query Consistency). An ob-
ject o = (i; v; V S) is a view-query consistent instance of
a view c 2 VI if for a rule H B in the view-query of
c, o meets B. 2

De�nition 12 (Consistency). An object o =
(i; v; V S) is a consistent instance of a base class c 2 CI
if o is both a structural and constraint consistent in-
stance of c.

An object o = (i; v; V S) is a consistent instance of
a view c 2 VI if o, besides being both a structural and
constraint consistent instance of c, is also a view-query
consistent instance of c. 2

A �nite set of objects OBJ is consistent if the set is
closed under the depend on relation, that is, for each
object in the set all the objects referred by it must
belong to the set, and the property of oid-uniqueness
must be ensured. The following de�nition formalizes
these concepts. Given an object o, ref(o) denotes the
set of identi�ers in OI appearing in o:v, and, given a
set of objects OBJ, I(OBJ) denotes the set fi j o =
(i; v; V S); o 2 OBJg.

De�nition 13 (Consistent Set of Objects). A (�-
nite) set of objects OBJ is consistent i� all the following
conditions hold:

1. oid-uniqueness

8o1; o2 2 OBJ, if o1:i = o2:i, then o1:v = o2:v and
o1:V S = o2:V S.

2. referential integrity

8o 2 OBJ , ref(o) � I(OBJ). 2

A �nite set of objects OBJ containing also view ob-
jects is closed under the derived by relation if the base
objects from which a view object in OBJ is derived be-
long to OBJ , too, as stated by the following de�nition.

De�nition 14 (Closed Set of Objects). A (�-
nite) set of objects OBJ is consistent i� 8o 2 OBJ

such that o:i 2 VOI , derived by(o:i) � I(OBJ). 2

5.3. Subview relationships

An object-oriented view mechanism should keep the
basic concepts of the object-oriented paradigm, so that
a view can be used in any context where a class is. Fol-
lowing this guideline, inheritance relationships among
views are supported in our model. Views are organized
in a view hierarchy exactly as classes are organized in a
class hierarchy. The view hierarchy is thus modeled by
an ISA relationship, representing which views are sub-
views of other views, and must be established by the
user.

The information of a view hierarchy can be expressed
by two functions V ISA : VI ! 2VI and V ISA� : VI !
2VI , such that given a view v, V ISA(v) denotes the set
of direct superviews of v and V ISA�(v) denotes the set
of all the superviews of v, similarly to the ISA and
ISA� functions which describe the class hierarchy. An
ordering �V ISA on views is de�ned, by simply stating
that v1 �V ISA v2 i� v2 2 V ISA�(v1), exactly as the
ordering �ISA is de�ned in [21].

However, a certain number of conditions on the well-
formedness of the view inheritance hierarchy must be
imposed. Those conditions concern the following as-
pects:

� subtyping among the structural types: a view must
have all the attributes of its superviews; attribute
domains may be specialized, the implementation
for a derived attribute may be rede�ned and new
attributes can be added;

� behavior specialization: a view must have all the
operations of its superviews; method signatures
can be rede�ned, by applying the covariance rule
for method results and the contravariance rule for
method parameters, the method implementations
may be rede�ned and new operations may be ad-
ded;

� constraint inheritance: on a view all the constraints
of its superviews must hold; constraint rede�nition
is not currently supported in Chimera;

� extent inclusion: the extent of a view class is a
subset of the extents of all its superviews.

Those conditions are formalized as follows.

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 17

De�nition 15 (Int-well-de�ned Subview). A sub-
view relationship V ISA is int-well-de�ned, if, for any
v1 and v2 such that v2 �V ISA v1, being V1 =
(v1; struct1; beh1; constr1; state1;mc1; q1), and V2 =
(v2; struct2; beh2; constr2; state2;mc2; q2), all the fol-
lowing conditions hold:

� struct1 = f(a
0
1; T

0
1; at

0
1); : : : ; (a

0
k1
; T 0k1 ; at

0
k1
)g, struct2 =

f(a001 ; T
00
1 ; at

00
1); : : : ; (a

00
k2
; T 00k2 ; at

00
k2
)g

and for each i = 1 : : : k1 (a00j ; T
00
j ; at

00
j) exists, 1 �

j � k2, such that

{ a0i = a00j

{ T 00j is a subtype of T 0i

{ at0i = at00j
16

� beh1 = f(m0
1; s

0
1); : : : ; (m

0
h1
; s0h1)g, beh2 =

f(m00
1 ; s

00
1); : : : ; (m

00
h2
; s00h2)g

and for each i = 1 : : : h1 (m
00
j ; s

00
j) exists, 1 � j � h2,

such that

{ m0
i =m00

j

{ if s00j = T 00j1 � : : :� T 00jn ! T 00j , then s0i = T 0i1 �
: : :�T 0in ! T 0i and T 00j is subtype of T 0i , while
for each r = 1; : : : ; n T 0ir is a subtype of T 00jr

� constr1 = f(con
0
1; s

0
1); : : : ; (con

0
h1
; s0h1)g, constr2 =

f(con001 ; s
00
1); : : : ; (con

00
h2
; s00h2)g

and for each i = 1 : : : h1 (con00j ; s
00
j) exists, 1 � j �

h2, such that

{ con0i = con00j

{ s0i = s00j .

The same re�nement conditions must hold for class fea-
tures as well, that is, they must be satis�ed by mc2 and
mc1. 2

The de�nition above only concerns the structure and
behavior of views, and it does not consider the exten-
sional components of views, thus no conditions are im-
posed on view-queries. Let us now turn to the exten-
sional level.

De�nition 16 (Ext-well-de�ned Subview). A sub-
view relationship V ISA is ext-well-de�ned, if, for any
v1 and v2 such that v1 �V ISA v2, [[v1]] � [[v2]]

17. 2

While the conditions for int-well-de�nedness of a
hierarchy are conditions on the schema level, and thus
can be checked at view de�nition time, the condition
for ext-well-de�nedness is a state-dependent (time vary-
ing) condition, that can only be checked at run-time.
However, since the instances of a view are computed
starting from the view root classes and the view-query,
we impose a number of conditions on view root classes
and query. Such conditions ensure that if the ISA hier-
archy on base classes is ext-well-de�ned, the same prop-
erty holds for the VISA hierarchy upon view material-
ization.

The conditions we impose on view queries in sub-
classes are syntactic conditions, and they are quite re-
strictive. Actually, we should impose that the view-

query of a view is subsumed by the view-queries of its
superviews. However, the problem of query subsump-
tion is undecidable in general, and, even for such query
languages for which it is decidable, it has a very high
complexity test [13]. For our (recursion-free) query lan-
guage, query subsumption is decidable, though intract-
able because of negation and disjunction [13].

We thus impose the syntactical restriction that the
view-query of the subview is stronger than the view-
query of the superview, as formalized by the following
de�nition. This syntactical condition ensures that the
view query of the subview is subsumed by the view-
query of the superview. The condition requires that:
(i) the root classes of the subview are the same or sub-
classes of the root classes of the superview; (ii) for each
rule r1 in the view query of the subview there must be
a corresponding rule r2 in the view-query of the super-
view such that the body of r1 can be obtained from the
body of r2 by adding some atoms and by replacing some
class formulas with class formulas on subclasses.

De�nition 17 (View-query Strengthening). A
subview relationship V ISA is view-query strengthening,
if, for any v1 and v2 such that v1 �V ISA v2, being
V1 = (v1; struct1; beh1; constr1; state1;mc1; q1), and
V2 = (v2; struct2; beh2; constr2; state2;mc2; q2), both
the following conditions hold:

� if defined on(v1) = fc1; : : : ; cng, then defined on(v2)
= fc01; : : : ; c

0
ng and 8i; 1 � i � n, either ci; c

0
i 2 CI

and ci �ISA c0i or ci; c
0
i 2 VI and ci �V ISA c0i;

� if q2 consists of the rules H 0
1 B0

1 : : :H
0
n B0

n,
then q1 consists the rules
H1 B1 : : :Hm Bm, and

{ m � n,

{ 8j; 1 � j �m, 9i; 1 � i � n, such that

� Bj = c1j(X1); : : : ; c
p
j (Xp);B�

j ,

� B0
i = c1i (X1); : : : ; c

p
i (Xp);B

0�
i ,

� B�
j = B0�

i ; ~B where ~B is any conjunc-
tion of atomic formulas,

� 8k; 1 � k � p, either ckj ; c
k
i 2 CI

and ckj �ISA cki or ckj ; c
k
i 2 VI and

ckj �V ISA cki . 2

If a subview relationship is view-query strengthen-
ing and the corresponding subclass relationship is ext-
well-de�ned, then the subview relationship is ext-well-
de�ned.

We remark that, according to the de�nition of view-
query strengthening, if a subview relationship V ISA is
view-query strengthening, then, for any v1 and v2 such
that v1 �V ISA v2, new oid(v1) = new oid(v2).

Example 9. Consider the view Magazine de�ned in
Example 1 and the view VPublication de�ned as iden-
tity view of the class Publication, both belonging to
the Bibliography schema of Figure 2. Let V C1:id =
Magazine, V C2:id = VPublication,

18 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

V C1:struct = f (title, string, ext), (year, integer, ext),
(editorial, string, ext), (month, string, ext)
(manager, string, ext) g.

V C2:struct = f (title, string, ext), (year, integer, ext),
(editorial, string, ext) g.

The int-well-de�nedness of the V ISA relationship stating
that Magazine�V ISA VPublication holds, because:

� the condition on the struct components is veri�ed,
since V C2:struct � V C1:struct;

� the condition on the beh components follows from the
int-well-de�nedness of the ISA relationship stating
that Journal �ISA Publication, since V C2:beh =
C2:beh, being C2:id = Publication and V C1:beh =
C1:beh [fchangeManager : string ! Magazineg,
being C1:id = Journal;

� the condition on the constr components immediately
follows from the int-well-de�nedness of the ISA re-
lationship stating that Journal �ISA Publication,
since V C2:constr = C2:constr, being C2:id =
Publication and V C1:constr = C1:constr, being
C1:id = Journal.

The ext-well-de�nedness of the V ISA relationship stating
that Magazine �V ISA VPublication follows from its view-
query strengthening, since:

� defined on(Magazine) = fJournalg;

defined on(VPublication) = fPublicationg

and Journal�ISA Publication;

� the view-query of VPublication, since VPublication

is an identity view, is

VPublication(X) Publication(X)

the view-query of Magazine is

Magazine(X) Journal(X);
X:periodicity= `weekly0

and Journal�ISA Publication.

�

The generation of view object identi�ers must be
carefully handled when views are related by inherit-
ance hierarchies. Recall that for a view v such that
new oid(v) = true, new object identi�ers are generated
for each object satisfying the view-query of v. The gen-
eration of these new oids is exactly like the generation
of base object identi�ers upon object creation. Thus,
when views are related by a subview relationship, v is
a view such that new oid(v) = true and V ISA(v) = ;,
the new oids for v are incrementally generated. For the
views v0 such that new oid(v0) = true and V ISA(v0) =
fv1; : : : ; vng; n > 0, the objects instances of the view
are by contrast extracted from the extents of the su-
perviews, rather than being generated upon view ma-
terialization. We thus ensure that if the view-query is
stronger than the view-queries of its superviews, the
extent of the view is a subset of the extents of its su-
perviews. Note that, if we had generated new oids for

each view v such as new oid(v) = true, without tak-
ing into account the VISA relationships among views,
the view-query strengthening of the VISA relationship
would not have ensured the ext-well-de�nedness of the
hierarchy. Thus, for object-generating views, new oids
are generated upon view materialization for the views
that are roots of the VISA hierarchy (which are mater-
ialized �rst), while for views having at least a super-
view the extent is determined by extracting from the
superview extents those objects meeting the condition
in the subview query. This process is sound though
in Chimera multiple inheritance is supported, since the
constraint is imposed that for multiple inheritance a
common ancestor must exist.

View identi�ers can be used as types for Chimera
expressions. Thus, the notion of Chimera type proposed
in [21] is modi�ed to include also view class identi�ers.
The set of Chimera types T then consists of the value
types in VT and the object types in OT , that is, of
class and view identi�ers. The set of Chimera object
types (that is, of types whose values are used to identify
objects) is thus de�ned as the union of class and view
identi�ers, that is, OT = CVI .

The notion of type extension is easily extended to
types that are view identi�ers (that is, for v 2 VI)
since views, like classes, have an explicit extent, thus
[[v]] = V:struct:extent, where V:id = v. The subtype
relationship �T can be simply adapted to a set T of
types containing also view identi�ers in VI, by stating
that:

� if v1; v2 2 VI and v1 2 V ISA�(v2) then v2 �T v1
that is, v2 is a subtype of v1 (as stated for object
types in CI [21]);

� view class identi�ers in VI are not related by the
subtype relationship with other types.

Since we consider only int-well-de�ned subview rela-
tionships, this is a sound de�nition of subtyping.

6. Schema views and database views

In this section, we \put things together", discuss-
ing the notions of schema views and database views.
Moreover, we address some issues related to the use of
views.

6.1. Schema views

The de�nition of schema view or subschema often
corresponds to the concept of external schema given in
the ANSI three-level schema architecture. In our ap-
proach, schema views are also intended to encapsulate
base schema evolutions, as a mean to prevent that a
schema update a�ects the base schema. Thus schema
views can be useful to de�ne external schemas as well
as to create new schema versions.

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 19

The notion of schema view is similar to that of
base schema, except that it consists of views instead of
classes. A schema view consists of a collection of views
connected by aggregation and view inheritance relation-
ships. All views in a schema view are derived from
the same schema. The schema, from which a schema
view is derived, is called root schema. A root schema
can be either a base schema or another schema view.
Frequently, the de�nition of a schema view requires to
include some base classes. We propose the notion of
identity view to satisfy this requirement, still having the
schema view consisting only of views. Given a class c,
its identity view is a view v having c as root class, such
that c and v are equivalent, both at the extensional and
at the intensional level.

The following de�nition formalizes the notion of
schema view. Let SVI denote a set of schema view
identi�ers.

De�nition 18 (Schema View). A schema view
having as root schema a schema S18 is de�ned as a
tuple

(id; V T; V Cl; V MCl; V ISA)

where

� id 2 SVI is the schema view identi�er;

� V T � VT = BV T [NV T , is the set of value types
included in the schema view, being BV T the set of
value types imported from the root schema S and
NV T the set of value types de�ned in the schema
view;

� V Cl is a �nite set of de�nitional components of
views 19;

� V MCl � MC is a �nite set of view metaclasses
corresponding to the views in V Cl;

� V ISA : V Cl! 2V Cl is a total function on V Cl for
which the following conditions hold:

a) V ISA is a DAG;

b) V ISA is int-well-de�ned;

c) V ISA is view-query strengthening.

All view and view metaclass names are distinct and for
each view the corresponding view metaclass must exist.

2

The following example is an example of schema view.

Example 10. Figure 2 shows a schema view
named Bibliography, directly derived from the base
schema. The Bibliography schema view contains
the views VPublication, Magazine and VBook. The
VPublication view has been imported as an identity
view, whereas Magazine and VBook views are derived
from Journal and Book classes, respectively, and they
are declared as subviews of the Vpublication view. The
importation of Publication as identity view allows to
de�ne a virtual hierarchy of publications. �

6.1.1. Closure of schema views A schema view is
a collection of views, grouped together to form a sub-
schema, or to model a schema evolution. One is not
completely free in choosing which views to include in
a schema view. In particular, if a view is included in
the schema view, also the domain of each attribute as
well as the components of the signature of each opera-
tion of the view must belong to the schema view. Thus,
including a view into the schema view may require the
inclusion of other views. In the following, we formalize
these notions, which are referred to as closure property
of a schema view.

In what follows, the term entity refers to an attribute,
c-attribute, parameter of an operation or parameter of a
c-operation of a class or view. We introduce a client of
relationship among classes and views in CVI . A class
(or view) c1 is said to be client of a class (or view) c2, if
some entity of c1 has as domain the class (or view) c2.
Since a user (e.g., an application program) must receive
a schema view consisting of a complete and coherent set
of views, it is clear that a schema view must be closed
under the client of relation. Given a view v included in
a schema view, the closure property involves:

1. for each entity of v, whose domain is a class, the
corresponding identity view must belong to the
schema view and it is the new domain of the entity;

2. for each entity of v, whose domain is a view, this
view must belong to the schema view.

A closed schema view contains all the views refer-
enced directly or indirectly by the schema view de�ni-
tion. Since we have chosen to model a schema view as
a collection of views, if the domain of an entity of v is
a class of the base schema, the corresponding identity
view is introduced in the schema view, thus \virtualiz-
ing" the class without modifying it.

We remark two important aspects related to our
de�nition of schema view closure. First, since Chimera
does not require the existence of a common superclass
of all the classes of the system, the closure property
does not involve the inclusion of all the superviews of
the views belonging to the schema. Second, the clos-
ure of a schema does not require the inclusion of all the
subviews of the views belonging to the schema. Thus, a
schema view is closed with respect to aggregation hier-
archies, while it is not closed with respect to inherit-
ance hierarchies. Indeed, the schema closure must con-
tain the essential views for a schema to be consistent.
In some contexts, it seems reasonable that a schema
view includes a view and it does not include some of its
subviews (so that some of the subviews are hidden in
the schema view). As a consequence of this choice, the
database view (that is, the database seen through the
schema view) may contain objects whose most speci�c
classes and views do not belong to the schema view.
Such objects are seen through the schema view as in-
stances of the most speci�c view to which the object

20 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

belongs, among the ones included in the schema view.
Note that this will require a careful propagation of up-
dates, since an attribute could result in having di�erent
domains depending on through which schema view it is
accessed. Possible solutions are: to consider the attrib-
ute as a di�erent attribute (for example, pre�xing its
name with the schema name) and thus allocating dif-
ferent storage space; to handle the propagation through
triggers which specialize the value assigned to the at-
tribute to the required domain. The most conservat-
ive solution to avoid those problems is to constrain a
schema to contain also the subclasses of the classes in
the schema, for those subclasses that re�ne the domain
of some included attribute. Since those problems are
related to update propagation, we do not elaborate on
them further in this paper.

To formalize the closure property of a schema view,
a function id view is introduced. It applies to a schema
view and returns the schema view modi�ed by substi-
tuting each class identi�er belonging to CI and appear-
ing as domain of an entity in the schema, with the iden-
ti�er of the corresponding identity view, which belongs
to VI. Thus, given a schema view SV , id view(SV) de-
notes a corresponding schema view having only views
or value types as entity domains. Furthermore, given a
view v, belonging to a schema view SV , let dom(v) de-
note the set of value types and views which are domains
of the entities of v in id view(SV). This set can be par-
titioned in vdom(v), only containing view identi�ers,
obtained as dom(v)\VI , and tdom(v), only containing
value types, obtained as dom(v) \ VT .

De�nition 19 (Schema View Closure). A schema
view SV is said to be closed if both the following condi-
tions are satis�ed:

1. 8v 2 SV:V Cl, vdom(v) � SV:V Cl

2. 8v 2 SV:V Cl, tdom(v) � SV:V T . 2

We remark that, given a schema view SV , it is de-
cidable whether SV is closed.

The following example illustrates the closure prop-
erty of a schema view.

Example 11. Consider again the Bibliography

schema view of Figure 2. Since the view Vbook con-
tains an attribute named authors whose domain is class
Author, the domain of this attribute must be replaced by
the identity view IdAuthor of the Author class, and
this identity view must be included in the schema. This
inclusion is propagated to the Address class because
there is an address attribute in the Author class whose
domain is Address, so that the identity view IdAddress

is also included. The closure of the schema is depicted
in Figure 5. The derivation links between IdAuthor

and Author, and between IdAddress and Address, are
not depicted in the �gure, to point out that these views

Publication

title

year

editorial

month

volumen

periodicity

JournalBook

title

year

editorial

Magazine VBook

VPublication

Class Inheritance

 Aggregation

View Derivation

View Inheritance

authors*

week-end

authors*

isbn

month

manager

onLoan

isbn

Address

Author

name

profession

writtenBooks*

address

vatCode

street

number

city

name

profession

writtenBooks*

address

vatCode

street

number

city

IdAuthor

IdAddress

Bibliography Schema

FIG. 5. Closure of the Bibliography view schema.

are added to the schema view to obtain a closed schema
view. �

6.1.2. Global database schema Now, by using the
notion of schema views, we give a formal de�nition of
global database schema. A global database schema con-
sists of a base schema together with a set of schema
views. The schema derivation and view derivation rela-
tionships are part of the global database schema, too.

De�nition 20 (Global Database Schema).
A global database schema is a tuple

(bs; SV S; defined ons; defined on),

where:

� bs is a base schema identi�er,

� SV S = fsv1; : : : ; svng; n � 0, is a set of schema
view identi�ers,

� defined ons : SVI ! SVI [fbsg is a total func-
tion, that given a schema view returns its root
schema,

� defined on : VI ! 2CVI is the function introduced
in Subsection 5.1, that represents the view deriva-
tion relationship.

The schema must satisfy the following conditions:

1. each schema in SV S must be closed according to
De�nition 19;

2. for each svi; svj 2 SV S, if defined ons(svj) = svi,
then 8v 2 SVj :V Cl; defined on(v) � SVi:V Cl, be-
ing svi = SVi:id and svj = SVj :id. 2

Note that the view derivation relationship may con-
nect view and classes belonging to di�erent schemas,

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 21

thus it is part of the global database schema rather
than of an individual schema view.

Example 12. Referring to our running example,
the global database schema consists of the Faculty-
Library base schema and the Bibliography schema
view, with the following relationships:

� defined ons(Bibliography) = FacultyLibrary;

� defined on(VPublication) = Publication

defined on(Magazine) = Journal

defined on(VBook) = Book

defined on(IdAuthor) = Author

defined on(IdAddress) = Address. �

6.2. Object database

In our approach, we consider a single database which
is associated with the global schema, and which is
shared by all the existing schemas. The database con-
tains all the instances created from classes and views be-
longing to the global schema. Thus, the database con-
sists of objects de�ned according to De�nition 6, that
can be, as a particular case, view objects as in De�nition
7. An object o = (i; v; V S) can be accessed from any
schema including a view or class of which o is member.
We remark that this view or class does not necessary
belong to the set V S, since V S only contains the classes
and views of which o is an instance. Suppose that an
object o can be accessed through the schema view SV ,
the function value, de�ned in Subsection 5.2.1., is then
used to provide the di�erent aspects under which the
object can be seen. Therefore, each schema view in the
global schema has associated a view database. Now, we
reformulate the de�nition of database, before giving a
de�nition of view database.

Given a global database GS, let CIGS denote the set
of identi�ers of classes belonging to the global database
schema, which are those included in the base schema,
that is

CIGS = fc j c 2 CI; c = C:id;C 2
S:V Cl; S:id = GS:bsg.

Let moreover VIGS denote the set of identi�ers of views
belonging to the global database schema, which are
those included in any schema view, that is

VIGS =
S

svi2GS:SV S
VIi

where each VI i is obtained as

VIi = fv j v 2 VI; v = V C:id;V C 2
SVi:V Cl; SVi:id = svig.

Finally, CVIGS = CIGS [VIGS .

De�nition 21 (Object Database). Let GS be a
global database schema de�ned according to De�nition
20, a database over GS is a tuple

(OT; �; cval)

where

� OT = OB [OV , is a consistent set of objects ac-
cording to De�nition 13, being

{ OB a set of base objects;

{ OV a set of view objects;

� � is a pair of functions

�OC : CIGS ! 2BOI , oid assignment for base
classes,
�OV : VIGS ! 2VOI, oid assignment for
views,

which handle class extents;

� cval is a total function cval : CVIGS ! V,
such that 8c 2 CVIGScval(c) is a legal value for
stype(C:mc), being C:id = c, that is, the function
cval assigns values to the class attributes of C. 2

For an object database to be consistent, we require
that it satis�es a number of conditions, as stated by
the following de�nition. These conditions are mainly
related to the proper assignment of objects to classes
and views.

De�nition 22 (Consistent Object Database). Let
GS be a global database schema de�ned according to
De�nition 20, a consistent object database over GS is
a tuple

(OT; �; cval)

de�ned according to De�nition 21 such that:

(i) 8o 2 OT; o is a consistent instance of each class
and view in o:V S, that is o:v holds all the values
for the attributes of classes in o:V S, thus satisfying
conditions stated in De�nition 8;

(ii) the ISA component of GS is ext-well-de�ned;

(iii) the VISA components of GS are ext-well-de�ned;

(iv) 8c 2 CVIGS, c = C:id,
cval(C):extent= �(c) and
cval(C):proper extent = �(c)n

S
c0s.t.c2ISA(c0) �(c

0)20;

(v) 8o 2 OT; 8c 2 CVIGS, c = C:id, o:i 2
cval(C):proper extent i� c 2 o:V S;

(vi) 8o 2 OT; o:V S � CVIGS and

{ 8o 2 OB; o:V S � CVIGS and 9c 2 o:V S such
that c 2 CIGS, while

{ 8o 2 OV; o:V S � VIGS;

(vii) 8v 2 VIGS, if next oid(v) = false and
defined on(v) = fc1; : : : ; cng, then �(v) �S

i=1;::: ;n
�(ci);

(viii) 8o 2 OV , 9v 2 VIGS such that v 2 o:V S and
next oid(v) = true;

(ix) 8o 2 OT , 8v 2 o:V S \ VIGS, oid(v) = true;

(x) 8v 2 VIGS such that oid(v) = false, �(v) = ;;

(xi) 8c1; c2 2 CVI
GS

22 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

{ if c1; c2 2 CI
GS

�(c1)\�(c2) 6= ;) 9c3 2 CI
GS such

that c1 �ISA c3; c2 �ISA c3;

{ if c1; c2 2 VIGS and new oid(c1) =
new oid(c2) = true

�(c1)\�(c2) 6= ;) 9c3 2 VIGS such
that c1 �V ISA c3; c2 �V ISA c3;

{ if c1; c2 2 VIGS and new oid(c1) =
new oid(c2) = false

�(c1) \ �(c2) 6= ;) (9c3 2 VI
GS

such that c1 �V ISA c3; c2 �V ISA
c3)_
_ (9c4 2 VI

GS such that c4 2
defined on�(c1)^c4 2 defined on

�(c2)));

{ if c1; c2 2 VI
GS and new oid(c1) = true while

new oid(c2) = false

�(c1) \ �(c2) 6= ;) c2 2
defined on�(c1);

{ if c1 2 VI
GS, c2 2 CI

GS

�(c1) \ �(c2) 6= ;) c2 2
defined on�(c1) ^ new oid(c1) =
false.

2

In the de�nition above, condition (vi) requires that
each base object is instance of at least one base class
whereas each view object only belongs to views. Condi-
tion (vii) ensures that the extent of an object-preserving
view is contained in the union of the extents of its root
classes (we recall that an object-preserving view could
select objects from di�erent classes), while condition
(viii) imposes that the views to which a view object
belongs are object-generating views. Finally, condition
(xi) states the conditions under which two classes or
views may have non disjoint extents: they can be either
both base classes or both object-generating views with
a common ancestor in the inheritance hierarchy; they
can be both object-preserving views with a common
ancestor in the inheritance hierarchy or a common root
class; or they can �nally be a base class and an object-
preserving view such that the view is derived from the
base class.

De�nition 23 (Global Database). Let GS be a
global database schema, then a global database on GS

is a tuple exactly like in De�nition 21, of the form
(OT; �; cval) such that OT is closed under the view de-
rivation relationship according to De�nition 14. 2

Each schema views speci�es a di�erent view of the
global database, as stated by the following de�nition.

De�nition 24 (Database View). Let SV be a
schema view on a consistent object database ODB, then

a database view is a tuple exactly like in De�nition 21,
of the form (OTSV ; �SV ; cvalSV) satisfying the follow-
ing further conditions:

(i) I(OTSV) � I(ODB:OT)21 is such that

{ 8o 2 OTSV , 9v 2 VI
SV such that o:i 2 �(c);

{ 8o 2 OTSV , let o
0 2 ODB:OT be the object

such that o:i = o0:i; then

� o:v contains22 o0:v, and

� o:V S = o0:V S \ CVISV [ms(fv j
v 2 VISV ;9v0 2 o:V S; v0 62
VISV ; v0 �V ISA vg
where, given a set of views V S,
ms(V S) denotes the set
fv j v 2 VI; 6 9v0 2 VI such that
v0 <V ISA vg23;

(ii) �SV is the restriction of the function in ODB:� to
views in VISV ;

(iii) cvalSV is the restriction of the function in
ODB:cval to views in VISV . 2

6.3. Object references and contexts

Another important aspect concerning views is how
object references are solved, since \di�erent" objects
can be identi�ed by the same object identi�er. Indeed,
di�erent views of the same object are allowed, depend-
ing on the context in which the object is considered.

In our approach, the class (or view) the referenced
object must be seen an instance of, is chosen among
the ones belonging to the current schema view, taking
into account the context of the object reference. The
context of an object reference is simply determined by
the static type of the object in the expression containing
the object reference. Indeed, each object reference in
each Chimera expression is assigned a single static type
[9]. Thus, it is possible in each expression to derive a
unique context for each expression denoting an object
(object reference). The context of an object reference
can be derived from the types declared for the variables
in the expression and from schema information.

As far as attribute access is concerned, an attribute
access e:a is solved by simply returning value(o; ts(e)):a
where value is the function de�ned in Section 5, ts(e) is
the static type of the object reference e in the considered
expression and o is the object to which reference e is
instantiated. Note that, for the expression containing
the reference to be a legal expression, ts(e) must be
a view identi�er belonging to the schema view of the
user that has written the expression and that attribute
a must belong to the structure of ts(e) in this schema
view.

Method dispatching may however become more com-
plicated when several method implementations are ap-
plicable to a method invocation. In general, the im-

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 23

plementation speci�ed in the most speci�c class of the
invocation receiver is executed, as it is the one thatmost
closely matches the invocation. However, when objects
belong to classes and views not related by an inheritance
relationship, the choice of the method implementation
that \most closely matches" the invocation is not ob-
vious. We have addressed the problem of dispatching
for objects belonging to multiple most speci�c classes
in [9]24. The approach is based on the idea that each
object has in each context a preferred class, among its
most speci�c ones. This approach can be easily adap-
ted to our framework. Each method invocation is dis-
patched choosing the implementation in the preferred
class in the current context. This approach supports
a context-dependent behavior, as the same method in-
vocation may be dispatched di�erently, and thus may
return di�erent results and perform di�erent updates,
depending on the context where the method is invoked.
This approach is based on a total ordering on views,
de�ned consistently with the inheritance ordering, in
such a way that a method invocation is dispatched by
executing:

� the method in the view which is the static type of
the object reference, if this view is among the most
speci�c ones to which the object belongs;

� the minimum with respect to the considered total
ordering, of a set of views that verify the following
conditions:

{ they are subviews of the static type of the ob-
ject reference (this ensures that no run-time
type errors occur),

{ they belong to the current schema view,

otherwise;

� the method in the root class of the view which is
the static type of the object reference, if the two
cases above are not able to dispatch the method
(resolution in the root schema).

Note that while the static type of the object reference
certainly belongs to the user schema (otherwise the ex-
pression containing the reference would not be correct),
this may not be true for any subview/subclass of this
type. Thus, we remark that, though we store a single
object database, the objects stored in the database be-
have di�erently depending on through which schema
view they are accessed. The behavior does not only de-
pend from the static type of the object reference, but
also from the schema view in which the object reference
is contained.

7. Conclusions and future work

In this paper we propose a formal model of views for
object-oriented databases. The proposed view mechan-
ism is as powerful as existing view mechanisms and can
be easily adapted to any object-oriented data model.
An important aspect of our view mechanism is that dif-

ferent views of a single object database are provided,
through di�erent schema views. A schema view is a
coherent set of views. The schema view through which
an object database is accessed also in
uences the object
behavior, thus providing a context-dependent behavior.
Schema views also support a mechanism of schema ver-
sions, such that a single database is shared by all the
schemas.

The model we propose in this paper is the �rst, as far
as we know, formal model for views in object-oriented
databases. It can be used as a starting point for in-
vestigating several interesting issues related to object-
oriented views. As an example, update propagation
is being investigated on this model. The view up-
date problem has been widely investigated in the rela-
tional context. As noted in [40], the existence of object
identi�ers makes easier updating object-oriented views
than relational views, because it is possible to estab-
lish a mapping among a view instance and its base
object(s). In analyzing object-oriented view updates,
it is necessary to distinguish between updating object-
preserving views and object-generating views. To our
knowledge, all the proposed approaches [4, 40] have only
considered object-preserving views. View updates are
quite straightforward when a view model only includes
object-preserving views, because they are automatic-
ally propagated to the base objects: both the view in-
stance and its base object have the same object identi-
�er. The model described in [33] also uses an algebra
with object-preserving operators, but view updates are
more complex because view instances can have addi-
tional storage and the data model does not support mul-
tiple class instantiation. Since Chimera supports mul-
tiple class instantiation, the approach to view update
presented in [40] is applicable to the object-preserving
views considered in our view model. In the case of
object-generating views, the Derived By table can
be employed for holding the correspondence between
each generated view instance and the base objects from
which it is derived. Through this table, the update
operations (e.g. insert, delete, modify) can be propag-
ated to the base objects. We believe that the frame-
work presented in [27] for view updates is appropriate
to set up our proposal for updating object-generating
views in Chimera. Moreover, object-oriented data mod-
els o�er the possibility of specifying in methods how
to propagate ambiguous updates, such as deletions on
views de�ned as joins, which are forbidden in the rela-
tional context.

A topic which is strictly related to update propaga-
tion concerns integrity constraints. The presence of in-
tegrity constraints introduces new issues in the design of
a view mechanism. Indeed, a view de�nition is a�ected
by the constraints of its root classes. If it seems coherent
that a view modi�es (hides, adds or rede�nes) behavior
or structure of the base classes from which is derived,

24 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

it is not so obvious which modi�cations are possible on
constraints. It is clear that hiding constraints should be
allowed in a view mechanism supporting schema evolu-
tion, because, for example, hiding an instance attribute
implies hiding the constraints that use this attribute.
However, the ability to hide constraints can raise prob-
lems in update propagation. Problems may arise if one
creates an instance of a view not satisfying a constraint
which holds on the root class but which is hidden in the
view. Since the instance cannot be inserted in the root
class, the update cannot be propagated.

Another interesting topic of future work concerns ap-
proaches for view materialization in Chimera. In most
view models the extension of a view is not stored, but
rather view objects are derived from the view query
upon demand. However, materialization approaches
for object-oriented views have been recently proposed.
In [11], the model described in [1] is used to simulate
schema changes. A materialization approach for the
MultiView model [33] is presented in [28], providing the
necessary update operations to enforce the consistency
of the materialized views. If multiple class instanti-
ation is supported, as in the case of Chimera, the ma-
terialization of object-preserving views has important
advantages with respect to the relational views. The
storage overhead decreases because the materialization
does not involve storage duplication, but only marking
that the base objects satisfying the view query are also
instances of the view (a reference to the view identi�er
can be added in the object). Of course, if a view has ad-
ditional attributes it is necessary to allocate storage for
them. The cost of maintaining the view instances con-
sistent upon changes to base objects also decreases. By
contrast, materializing object-generating views presents
problems similar to those of relational view materializ-
ation.

The use of triggers for handling views is an inter-
esting possibility, as suggested in [18] for the relational
context. If views are materialized (that is, stored in the
database) rules can monitor dynamic changes to base
data and modify relevant views. If, by contrast, vir-
tual views are supported, rules can dynamically detect
queries on virtual views and transform them into quer-
ies on base data, by composing the user query with the
query de�ning the view. Finally, rules can propagate
view updates to base data.

As far as schema evolution is concerned, in our opin-
ion there are two fundamental approaches to support
schema evolution: modifying base classes, or de�ning a
view that realizes the update (thus, simulating it). Ob-
viously, each approach has some advantages over the
other; thus, we think that both should be supported
and the user should be free to choose the most ad-
equate for the schema update to be performed. If the
�rst approach is taken, modi�cations must be propag-
ated from the modi�ed class to the views derived from

it; we are currently investigating how this propagation
can be performed. Concerning the second approach, we
are investigating how the taxonomy of object-oriented
schema changes proposed in [6, 44] can be extended to
Chimera, and how the proposed view mechanism can be
exploited to support all the possible changes. Finally,
other interesting topics of future work include the ex-
tension of the model by taking into account all the Chi-
mera capabilities, that is, logical integrity constraints
and triggers. Recursive view de�nitions may also be
considered.

Acknowledgments

Wewish to thank G�unter Kniesel and Thomas Lemke
for useful comments both on the presentation and on
the technical contents of a preliminary version of this
paper. Thanks are also due to the anonymous referees
for their helpful comments.

Notes

1. We relate and compare in detail the features of our model
with features of other view models in Section 3.

2. A Chimera is a monster of the Greek mythology with a li-
on's head, a goat's body and a serpent's tail; each of them
represents one of the three components of the language.

3. Actually, in Chimera the operation implementation may be
de�ned in an external programming language, but we do not
consider this case because it heavily depends on the external
language which is used. Thus, we consider here only imple-
mentations expressed in the Chimera language itself.

4. We do not allow oids to be explicitlymanipulatedby the user,
thus oids cannot appear in Chimera formulas.

5. Only side-e�ect free methods can be employed in queries.

6. Chimera formulas also include event and constraint formulas,
but those kinds of formulas are not relevant for query and
view de�nitions.

7. = denotes identity, == shallow value equality and ==d deep
value equality.

8. Class formulas cannot be negated.

9. An exception is represented by [1] but, as we will see, that
model does not support truly object-generating views in that
a query returns a set of tuples, that are converted to new
objects outside the query language.

10. As we will see in Section 6, given a class c, its identity view is a
view v having c as root class, such that c and v are equivalent,
both at the extensional and at the intensional level.

11. Any attribute expressed with a path expression can be as
well declared as derived and its implementation speci�ed by
Chimera deductive rules. Path expressions are therefore a
shorthand of deductive rules specifying a navigation through
an aggregation hierarchy. For example the declaration city:

Author.address.city could be expressed by the declaration
city: string derived, being its implementation expressed
by the following deductive rule:

self:city= X Author(Y), Y.address.city = X

derived-by(self, Author, Y)

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 25

12. We refer with the term root classes to the views and classes
a certain view has been de�ned on. Thus, we sometimes
improperly denote as classes a set of classes and views.
Whenever confusionmay arise, we adopt the term base classes
to distinguish classes from views.

13. The notion of source of an attribute for base classes only is
formally de�ned in [9].

14. We say that a record value record-of(a1 : v1; : : : ; an : vn)
contains a record value record-of(a01 : v01; : : : ; a

0
m : v0m) if

m � n and, 9f : f1; : : : ;mg ! f1; : : : ; ng total injective
function, such that 8i;1 � i � n, a0i = af(i) and v0i = vf(i).

15. We recall that Chimera constraints are expressed in denial
form, that is they specify the inconsistent states as in [17].

16. The type of an attributemay not be changed from extensional
to derived nor vice-versa.

17. Equivalently, if V1:state:extent � V2:state:extent, being
V1:id = v1 and V2:id = v2.

18. S may be either a base schema or a schema view.

19. The de�nitional component of a view V C = (id; struct; beh;
constr; state;mc; q) is (id; struct; beh; constr;mc; q), that is,
its state-independent components.

20. For views the V ISA function must be considered instead of
the ISA function.

21. Recall that given a set of objects OBJ, I(OBJ) denotes the
set of identi�ers of objects in OBJ.

22. The notion of containment between record value types has
been speci�ed in Subsection 5.2.2..

23. <V ISA denotes the non-re
exive relation obtained from
the order �V ISA as follows: v1 <V ISA v2 if and only if
v1 �V ISA v2 and v1 6= v2.

24. Actually, in [9] we have considered only base classes, but con-
sidering views does not introduce new problems with respect
to dispatching.

References

1. Abiteboul,S. and Bonner,A. (1991). Objects and Views. In
J. Cli�ord and R. King, editors, Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 238{247.

2. A.D.B. S.A, Paris. Matisse 2.3 Tutorial, 1995.

3. Albano, A., Bergamini, R., Ghelli, G., and Orsini, R. (1993).
An Object Data Model with Roles. In R. Agrawal, S. Baker,
and D. Bell, editors, Proc. Nineteenth Int'l Conf. on Very

Large Data Bases, pages 39{51.

4. Amer-Yahia, S., Breche, P., and Souza dos Santos, C. (1996).
Object Views and Updates. In Proc. of Journ�ees Bases de

Donn�ees Avanc�ees - BDA'96.

5. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier,
D., and Zdonik, S. (1989). The Object-Oriented Database
SystemManifesto. In W. Kim et al., editors, Proc. First Int'l
Conf. on Deductive and Object-Oriented Databases, pages
40{57, 1989.

6. Banerjee, J., Kim, W., Kim, H.K., and Korth, H. (1987). Se-
mantics and Implementation of Schema Evolution in Object-
Oriented Databases. In Proc. of the ACM SIGMOD Int'l

Conf. on Management of Data.

7. Beeri, C. (1989). Formal Models for Object Oriented Data-
bases. In W. Kim et al., editors, Proc. First Int'l Conf. on

Deductive and Object-Oriented Databases, pages 370{395.

8. Bertino, E. (1992). A View Mechanism for Object-Oriented
Databases. In M. L. Brodie and S. Ceri, editors, Proc. Third
Int'l Conf. on Extending Database Technology, pages 136{
151.

9. Bertino, E. and Guerrini, G. (1995). Objects with Mul-
tiple Most Speci�c Classes. In W. Oltho�, editor, Proc.
Ninth European Conference on Object-Oriented Program-

ming, number 952 in Lecture Notes in Computer Science,
pages 102{126, Aarhus (Denmark).

10. Bertino, E. and Martino, L.D. (1993). Object-Oriented Data-

base Systems - Concepts and Architecture. Addison-Wesley.

11. Breche, P., Ferrandina, F., and Kuklok, M. (1995). Simu-
lation of Schema Changes using Views. In N. Revell and
A M. Tjoa, editors, Proc. Sixth International Conference

and Workshop on Database and Expert Systems Applications,
number 978 in LectureNotes in Computer Science, pages 247{
258.

12. Breitl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B.,
Stein, J., Williams, E.H., and Williams, M. (1989). The
GemStone Data Management System. In W. Kim and F. H.
Lochovsky, editors, Object-Oriented Concepts, Databasases,

and Applications, pages 283{308. Addison-Wesley.

13. Buchheit, M., Jeusfeld, M., Nutt, W., and Staudt, M. (1994).
SubsumptionBetween Queries to Object-OrientedDatabases.
In M. Jarke, J. Bubenko, and K. Je�ery, editors,Proc. Fourth
Int'l Conf. on Extending Database Technology, number 779 in
Lecture Notes in Computer Science, pages 15{22. Extended
version in Information Systems, 19(1).

14. Cardelli, L. (1988). Types for Data Oriented Languages. In
J. W. Schmidt, S. Ceri, and M. Missiko�, editors, Proc. First
Int'l Conf. on Extending Database Technology, Lecture Notes
in Computer Science, pages 1{15.

15. Cattel, R. (1996). The Object Database Standard: ODMG-

93. Morgan-Kaufmann.

16. Ceri, S., Gottlob, G., and Tanca, L. (1990). Logic Program-

ming and Databases. Springer-Verlag, Berlin, 1990.

17. Ceri, S. andWidom, J. (1990). Deriving ProductionRules for
Constraint Maintenance. In Proc. Sixteenth Int'l Conf. on

Very Large Data Bases, pages 566{577, Brisbane, Australia.

18. Ceri, S. andWidom, J. (1991). Deriving ProductionRules for
Incremental View Maintenance. In G. M. Lohman, A. Ser-
nadas, and R. Camps, editors, Proc. Seventeenth Int'l Conf.

on Very Large Data Bases, Barcelona, Spain.

19. Deux, O. et al (1990). The Story of 02. IEEE Transactions

on Knowledge and Data Engineering, 2(1):91{108.

20. Gottlob, G., Schre
, M., and Rock, B. (1994). Extending
Object-Oriented Systems with Roles. ACM Transactions on

Information Systems. To appear.

21. Guerrini, G., Bertino, E., and Bal, R. (1994). A FormalDe�n-
ition of the Chimera Object-Oriented Data Model. Technical
Report IDEA.DE.2P.011.01, ESPRIT Project 6333. Submit-
ted for publication.

22. Ishikawa, H., Izumida, Y., Kawato, N., and Hayashi, T.
(1992). An Object-Oriented Database System and its View
Mechanism for Schema Integration. In Proc. of the Second

Far-East Workshop on Future Databases, pages 194{200.

23. Kifer, M., Kim, W., and Sagiv, Y. (1992). Querying Object-
Oriented Databases. In M. Stonebraker, editor, Proc. of the

ACM SIGMOD Int'l Conf. on Management of Data, pages
393{402.

24. Kim, W. andChou, T. (1988). Versions of Schema for Object-
Oriented Databases. In Proc. Fourteenth Int'l Conf. on Very

Large Data Bases, pages 148{159.

25. Kim, W. (1993). Object-Oriented Databases Systems: Prom-
ises, Reality and Future. In R. Agrawal, S. Baker, and D. Bell,
editors, Proc. Nineteenth Int'l Conf. on Very Large Data

Bases, pages 676{687.

26. Kim, W. (1994). UniSQL/X Uni�ed Relational and Object-
Oriented Database System. In Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, page 481.

27. Kim, W. and Kelley, W. (1995). On View Support in Object-
Oriented Database Systems. In W. Kim, editor, Modern

Database System, pages 108{129. ACM Press.

26 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

28. Kuno, H.A. and Rundensteiner, E.A. (1995). Materialized
Object-Oriented Views in MultiView. In Proc. Fifth Inter-

national IEEE Workshop on Research Issues in Data Engin-

eering - Distributed Object Management.

29. Kuno, H.A. and Rundensteiner, E.A. (1996). The MultiView
OODB View System: Design and Implementation. Theory

and Practice of Object Systems, 2(3):203{225.

30. Motschnig-Pitrik, R. (1996). Requirements and Comparison
of View Mechanisms for Object-Oriented Databases. Inform-
ation Systems, 21(3):229{252.

31. Ohori, A. and Tajima, K. (1994). A Polimorphic Calculus
for Views and Object Sharing. In Proc. of the Thirteenth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, pages 255{266.

32. Penney, D.J. and Stein, J. (1987). Class Modi�cation in
the GemStone Object-Oriented DBMS. In Proc. Second In-

t'l Conf. on Object-Oriented Programming: Systems, Lan-

guages, and Applications.

33. Ra, Y.G., Kuno, H.A., and Rundensteiner, E.A. (1994). A
Flexible Object-Oriented Database Model and Implementa-
tion for Capacity-Augmenting Views. Technical report, De-
partment of Electronic Engineering and Computer Science,
University of Michigan.

34. Ra, Y. and Rundensteiner, E.A. (1995). A Transparent
Schema Evolution System Based on Object-Oriented View
Technology. In Proc. Eleventh IEEE Int'l Conf. on Data

Engineering, pages 165{172.

35. Richardson, J. and Schwarz, P. (1991). Aspects: Extending
Objects to Support Multiple, Independent Roles. In J. Clif-
ford and R. King, editors, Proc. of the ACM SIGMOD Int'l

Conf. on Management of Data, pages 298{307.

36. Rundensteiner, E.A. (1992). A Methodology for Support-
ing Multiples Views in Object-Oriented Databases. In Proc.

Eighteenth Int'l Conf. on Very Large Data Bases, pages 187{
198.

37. Rundensteiner, E.A. (1995). The MultiView Approach to the
Object-Oriented View Classi�cation Problem. Technical re-
port, Department of Electronic Engineering and Computer
Science, University of Michigan.

38. Schilling, J. and Sweeney, P. (1989). Three Steps to Views:
Extending the Object-Oriented Paradigm. In Proc. Fourth

Int'l Conf. on Object-Oriented Programming: Systems, Lan-

guages, and Applications, pages 353{361.

39. Scholl, M., Laasch, C., and Tresch, M. (1990). Views in
Object-Oriented Databases. In Proc. Second International

Workshop on Foundations of Models and Languages for Data

and Objects, pages 37{58.

40. Scholl, M., Laasch, C., and Tresch, M. (1991). Updatable
Views in Object-Oriented Databases. In M. Kifer et al., ed-
itors, Proc. Second Int'l Conf. on Deductive and Object-

Oriented Databases, number 566 in Lecture Notes in Com-
puter Science, pages 189{207.

41. Souza dos Santos, C. (1995). Design and Implementation of
Object-Oriented Views. In N. Revell and A M. Tjoa, edit-
ors, Proc. Sixth International Conference and Workshop on

Database and Expert Systems Applications, number 978 in
Lecture Notes in Computer Science, pages 91{102.

42. Souza dos Santos, C., Abiteboul, S., and Delobel, C. (1994).
Virtual Schemas and Bases. In M. Jarke, J. Bubenko, and
K. Je�ery, editors, Proc. Fourth Int'l Conf. on Extending

Database Technology, number 779 in Lecture Notes in Com-
puter Science, pages 81{94.

43. Staudt, M., Jarke, M., Jeusfeld, M., and Nissen, H. (1993).
Query Classes. In S. Tsur, S. Ceri, and K. Tanaka, editors,
Proc. Third Int'l Conf. on Deductive and Object-Oriented

Databases, number 760 in LectureNotes in Computer Science,
pages 283{295.

44. Zicari, R. (1992). A Framework for Schema Udates in an
Object-Oriented Database System. In F. Bancilhon, C. Delo-
bel, and P. Kanellakis, editors, Building an Object-Oriented

Database System: The Story of O2 , pages 146{182. Morgan-
Kaufmann.

Appendix

1.1. Formats for importing features in view
speci�cation

In the IMPORTED-FEATURES clause of the view de�n-
ition statement, ListOfImpOper, ListOfImpConst,
ListOfImpCattrib,ListOfCoper and ListOfImpCconst
denote the lists of features imported from root classes.
For each feature, the associated list contains one or
more items whose format can be one of the following:

a) pName [of className], indicating that the feature
named pName is imported from the root class named
className. The speci�cation of the class name is
optional, except if the view is derived from sev-
eral root classes having a feature of the same kind
named pname.

b) - pname [of className], indicating that the fea-
ture named pname is hidden1 . As in the previous
case, it is mandatory to specify the class name if
name con
icts arise.

c) all [of ListofClassNames], indicating that the
view imports all the features of the class (or classes)
speci�ed. If no class is speci�ed, the view imports
all the features of all its root classes.

d) name1 [of className] as name2, indicating that
the feature named name1 is renamed as name2 in
the view. As in the �rst case, it is mandatory to
specify the class name if name con
icts arise.

e) attName: typeName derived, indicating that a
view attribute named attName is derived, with do-
main type typeName. Its implementation must be
given in the view implementation.

f) attName : className:a1: � � � :an, specifying that the
view attribute attName corresponds to the nes-
ted attribute a1: � � � :an of the class className.
className is one of the root classes of the con-
sidered view. The expression className:a1: � � � :an
is very similar to commonly used path expressions2 .
Thus, for 1 � i � n�1, ai must be an object valued
attribute, while an can be either an object valued
or a value attribute.

Formats e) and f) are allowed only for attributes.
Table A1 shows the correspondence between those

formats and the corresponding items in the view signa-
ture.

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 27

TABLE A1. Correspondence between clauses of the view
de�nition statement and components of view signature

1. for each item aiofclassci in ListOfImpAttrib the
item (ai; Ti; ati) is added to iStruct(V):inst if the
item (ai; Ti; ati) 2 Ci:struct, being Ci:id = ci (that
is, if Ci is the class identi�ed by ci);

2. for each item ai in ListOfImpAttrib the item
(ai; Ti; ati) is added to iStruct(V):inst if the item
(ai; Ti; ati) 2 Ci:struct, being Ci the only(1) class
among the ones identi�ed by an element of the
RootClasses list in the FROM clause of V , containing in
its struct component an item whose �rst component
is ai;

3. for each item aiofclassciasaj in ListOfImpAttrib

the item (aj ; Ti; ati) is added to iStruct(V):inst if the
item (ai; Ti; ati) 2 Ci:struct, being Ci:id = ci;

4. for each item aiasaj in ListOfImpAttrib the item
(aj; Ti; ati) is added to iStruct(V):inst if the item
(ai; Ti; ati) 2 Ci:struct, being Ci as in (2);

5. if ListOfImpAttrib contains the keyword all,
then iStruct(V):inst =

S
i=1;::: ;n Ci:struct, being

fC1; : : : ; Cng the classes identi�ed by the elements of
the RootClasses list in the FROM clause of V ;

6. if ListOfImpAttrib contains the keyword all of

c1; : : : ;cn, then iStruct(V):inst =
S

i=1;::: ;n Ci:struct,
being Ci:id = ci, for each i; 1 � i � n;

7. for each item �aiofclassci in ListOfImpAttrib the
item (ai; Ti; ati) is removed from iStruct(V):inst if
the item (ai; Ti; ati) 2 Ci:struct, being Ci:id = ci

(2);

8. for each item �ai in ListOfImpAttrib the item
(ai; Ti; ati) is added to iStruct(V):inst if the item
(ai; Ti; ati) 2 Ci:struct, being Ci as in (2);

9. for each item ai = ci:a1: � � � :an in ListOfImpAttrib

the item (ai; Ti; derived) is added to iStruct(V):inst
if Ti is the type of ci:a1: � � � :an

(3);

10. for each item ai : Tiderived in ListOfImpAttrib the
item (ai; Ti; derived) is added to iStruct(V):inst(4).

(1)
If more than one root class of V contains an attribute whose
name is ai, then the speci�cation of the class from which the
attribute must be taken is mandatory.

(2) We assume that the keyword all implicitly added to the clause
has been already considered by applying items 5 and 6.

(3) The type of ci:a1 � � � :an is obtained by making use of the fol-
lowing rule

e : cc 2 OT (a;T; at) 2 C:structc= C:id

e:a : T

starting from the base

c : c
c 2 OT :

(4) In the case of derived attributes (for example, items (9) and
(10)), the deductive rules specifying the attribute implement-
ation must be present in the view implementation.

28 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)

