
 

A peer-reviewed version of this preprint was published in PeerJ on 24
March 2016.

View the peer-reviewed version (peerj.com/articles/1851), which is the
preferred citable publication unless you specifically need to cite this preprint.

Newe A. 2016. Dramatyping: a generic algorithm for detecting reasonable
temporal correlations between drug administration and lab value alterations.
PeerJ 4:e1851 https://doi.org/10.7717/peerj.1851

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205524284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.7717/peerj.1851
https://doi.org/10.7717/peerj.1851


Dramatyping: A Generic Algorithm for Detecting Reasonable 

Temporal Correlations between Drug Administration and Lab Value 

Alterations 

Author & Affiliation 

1. Corresponding author: 

Name: Axel Newe 

Affiliation: Chair of Medical Informatics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 

Germany 

Postal address: Lehrstuhl für Medizinische Informatik, Am Wetterkreuz 13, 91058, Erlangen, Germany 

E-mail address: axel.newe@fau.de 

 

Manuscript Version Info 

 

Current manuscript version:  Preprint v1 

 This manuscript has been accepted for publication in PeerJ. 

 

Abstract 

According to the World Health Organization, one of the criteria for the standardized 

assessment of case causality in adverse drug reactions is the temporal relationship between 

the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This 

article presents and describes an algorithm for the detection of a reasonable temporal 

correlation between the administration of a drug and the alteration of a laboratory value 

course. The algorithm is designed to process normalized lab values and is therefore 

universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that 

show changes in temporal correlation with the administration of a drug and it has a 

specificity of 0.967 for the detection of lab value courses that show no changes. Therefore 

the algorithm is appropriate to screen the data of electronic health records and to support 

human experts in revealing adverse drug reactions. A reference implementation in Python 

programming language is available. 
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Introduction 

Harmful reactions to pharmaceutical products (Adverse Drug Reactions, ADRs) are a well-

known cause of morbidity and mortality and are one of the common causes of death in 

many countries (WHO, 2008; Meier et al., 2015). Even if a drug is administered correctly 

(i.e., correct indication, correct dose, no contraindication etc.), it still can have unwanted 

side effects, of which some can be harmful (WHO, 2008). Therefore, the effects of a drug 

therapy cannot be predicted with absolute certainty: all drugs have both benefits and the 

potential for harm (WHO, 2008). 

Apart from the individual fate of the affected patients, ADRs are also a large economic 

burden because of the resources which are required for both the diagnostics and the 

treatment of the symptoms as well as the diseases caused by ADRs (Stausberg, 2014). ADR-

related costs (e.g., for hospitalization, surgery or lost productivity) exceed the cost of the 

medications in some countries (WHO, 2008). Recent figures show that the situation in 

different countries is roughly comparable. The average cost caused by a single ADR was 

calculated US$ 3420 for the USA (Hug et al., 2012), US$ 3681 for Germany (Meier et al., 

2015) and US$ 115 for India (Rajakannan et al., 2012). This corresponds to 42% (USA), 85% 

(Germany) and 91% (India) of the respective overall per capita expenditure on health (WHO, 

2013). 

The detection, assessment, monitoring, and prevention of drug-related adverse effects is 

termed pharmacovigilance (WHO, 2008).  The general standard and still the most commonly 

used method of ADR detection is mandatory spontaneous reporting (Neubert et al., 2013). 

In the USA, the primary source of such reports is the FDA Adverse Event Reporting System 

(FAERS) database (FDA, 2014) of the U.S. Food and Drug Administration (FDA). Other 

countries have similar systems installed (BfArM, 2015). This approach, however, is prone to 

several problems, such as under-reporting and bias (e.g., influences by media coverage) 

(Neubert et al., 2013). Up to 90% of adverse events remain undetected in hospital settings, 

while up to one third of hospital admissions is accompanied by ADRs (Classen et al., 2011). 

Another approach to the discovery of ADRs is the manual chart review – the gold standard in 

pharmacoepidemiology. It is very precise but also time-consuming and it causes high staff 

expenses (Neubert et al., 2013). 

An alternative approach is the analysis of Electronic Health Records (EHRs). One example is 

the Sentinel Initiative (FDA, 2008) of the FDA, which was launched in 2008 and which aims at 

the development and the implementation of a system which uses existing healthcare 

databases (including EHRs) to assess the safety of drugs and other medical products. 

Although research has been conducted in this area for years, detecting ADRs in clinical 

records remains a challenging problem (Liu et al., 2012). Typical problems are inaccurate 

data, incomplete patient stories, data transformation and the use of narrative text instead of 

coded data (Hersh et al., 2013).   



However, laboratory data have been identified as suitable parameters for the detection of 

ADRs (Grönroos et al., 1995; Ramirez et al., 2010; Neubert et al., 2013). Reference material 

covering the influence of drug intake on laboratory test results is available in abundance 

(e.g., (Young et al., 1972; Siest, 1980; Young, 2000)). One of the criteria defined by the 

World Health Organization (WHO) for a standardized case causality assessment of ADRs 

considers the temporal relationship between drug intake and the occurrence of a reaction or 

a laboratory test abnormality (WHO, 2005). 

This article presents a heuristic screening algorithm for the detection of reasonable 

temporal correlations between drug administration and lab value alterations in appropriate 

data. It can be parameterized and thus be adjusted to specific use cases. A reference 

implementation in the Python programming language is available. 

Background and Related Work 

Secondary Use of EHR Data - Dramatyping 

Secondary Use, i.e., the use of data collected for other purposes is one of the most 

important fields of medical informatics research. A subdomain of this research is 

phenotyping: the identification and determination of observable characteristics of data sets, 

or of the underlying individuals on the basis of data that for example have been stored in 

EHRs. The analysis of EHR data already offers many opportunities to carry out phenotyping; 

however, the current methods still leave much room for improvement (Hripcsak & Albers, 

2013). 

Difficulties arise from a peculiarity of ADRs: even in the same individual, ADRs are neither 

reliably reproducible nor reliably detectable (Kramer, 1981). While patients are usually 

treated with a drug until the desired effect occurs, an adverse reaction may show up during 

one treatment episode while another episode stays free of ADRs. This may be because of a 

set of confounders that are possibly hidden from the observer. Furthermore, the imperfect 

quality of data found in EHRs (as mentioned above) is a factor to be considered. Therefore, 

the term "phenotype" is not enough in this case – instead, the term “dramatype” 
(introduced by (Russell & Burch, 1959)) should be chosen instead, because “phenotyping” 
refers to generally observable characteristics, whereas “dramatyping” refers to intra-

individual characteristics and/or shorter observation periods. 

Interactions between Drugs and Lab Values 

One subdomain of dramatyping is the detection of Drug-Lab Value Interactions (DLVI). 

These interactions can be caused in vivo (through the drug’s influence on metabolic 
processes or by tissue damage) or in vitro (by the drug’s influence on chemical processes 
during the actual laboratory tests) (Singh, Hebert & Gault, 1972; Sonntag & Scholer, 2001).  

The most obvious source of evidence for DLVI is reference literature (like (Young, 2000)), 

as well as relevant publications (like (Young et al., 1972; Siest, 1980; Tatonetti et al., 2011) 



and many others). In addition, the individual prescribing information and drug monographs 

provide valuable information. The latter are usually structured, but in large parts written in 

free text; therefore, they can only be processed indirectly by means of computers (e.g., 

through Natural Language Processing, NLP). Furthermore, often no direct DLVI can be 

derived from the drug monographs; it requires, for example, implicit medical knowledge to 

infer that a listed “liver injury” is related to liver-specific laboratory parameters such as 

Aspartate Transaminase, Alanine Transaminase or Gamma-glutamyl Transferase. This 

transfer work has been done and published, for example, by (Neubert et al., 2013). 

Detection of Temporal Correlations 

Most approaches of mining EHR databases for drug safety signals are based on measures 

that quantify the degree of deviation of an observed rate of a drug-related event from a 

control group (Harpaz et al., 2010), like,  e.g., the Relative Reporting Ratio (Hauben et al., 

2005). However, in order to calculate a ratio, numerator and denominator must be known, 

i.e., the number of observed cases and the number of expected cases must be quantifiable. 

Especially the former number can be difficult to figure out since the relevant cases must be 

documented or at least be identifiable. 

DLVIs have been proven to be suitable manifestations of such drug-related events 

(Grönroos et al., 1995; Ramirez et al., 2010; Neubert et al., 2013) and the temporal 

correlation between the occurrence of a lab value alteration and the preceding application 

of a drug is one of the criteria for a standardized case causality assessment of ADRs defined 

by the WHO (WHO, 2005) as well as by other authors (e.g., (Lucas & Colley, 1992)). 

When exactly, however, such a temporal relationship exists (and how exactly it must be 

manifested), is not defined unequivocally – not even nearly. There are multiple degrees of 

freedom: 

 The overall timeframe can range between immediate reactions that are obvious and 

late events that become evident months after drug intake (like, e.g., the thalidomide 

tragedy of the late 1950s/early 1960s (Curran, 1971)). 

 The lab value course itself can show various types of changes (shifts of the mean value, 

deviations upwards and downwards, changes of curviness…). 

 The amplitude of the change is highly various as well: some liver and heart enzymes 

can rise tenfold or more, while other parameters like sodium or potassium only 

alternate in a very narrow interval, even in pathological conditions. 

Since no commonly accepted definition exists, only human expert assessments of 

pertinent lab value courses can be referenced as gold standard. A study covering this field of 

research which includes an open data corpus of such assessments made by human experts 

was published by (Newe et al., 2015). An algorithm that aims to detect generic temporal 

correlations between the application of drugs and corresponding lab value changes, 

however, has – to best knowledge – not been published before. 



Confusion of Definitions 

Due to the manifold settings in pharmacovigilance, literature regarding effects of drugs is 

characterized by a confusion of definitions. A 2012 review (Pintor-Mármol et al., 2012) has 

identified 189 associated terms used in relevant publications. For the term “Adverse Drug 
Event” (ADE), 15 different definitions were found, for “Adverse Drug Reaction” (ADR) there 
were 11. This confirms the findings of a 2005 review (Yu, Nation & Dooley, 2005), in which 

10 (ADE) and 11 (ADR) definitions were identified, and it shows that the situation has not 

improved in the intermediate years. 

Thus, for the rest of this article, the usual keywords or abbreviations will not be used in 

association with the presented algorithm. Instead, the new term “Observable Drug Event” 
(ODE), which – to best knowledge – has never been used before, will be used. In accordance 

with the criteria of the World Health Organization for a standardized case causality 

assessment of ADRs (WHO, 2005) and in analogy to the definitions in (Lucas & Colley, 1992), 

an “Observable Drug Event” shall be defined as an “event or laboratory test alteration with 
reasonable time relationship to drug intake”. This definition intentionally excludes the 
harmfulness or desirability of the observed events or laboratory test alterations (i.e., desired 

events or lab value alterations are included). This definition also excludes all other external 

factors or possible confounders and considers only the currently observed events (i.e., the 

lab value changes or any other event) and the medication intake. Furthermore, this 

definition intentionally includes all types of relationships, including correlations as well as 

causal relationships. 

Methods 

Ethics 

For the development of the algorithm described below, only previously published and 

freely available data has been used. Human subjects were not involved during any stage of 

the presented research. 

Development of the Algorithm 

As outlined above, the timeframe in which DLVI can be observed ranges between 

immediate reactions and late events that occur months after drug intake. These two 

extremes are out of focus of this article: immediate reactions are usually obvious and long 

term manifestations are hard to detect by means of EHRs. Therefore, the algorithm for 

detecting temporal correlations between drug administration and lab value alterations 

described here focuses on short term reactions, since they are well suited to be unveiled by 

EHR analysis (Newe et al., 2015).  

Due to the lack of an unambigious definition of “temporal correlations”, the 400 curves 
and their assessment by human experts published in (Newe et al., 2015) were taken as 

reference and gold standard for the development of the algorithm. Since using only a 



minority of this limited data for the development would not be reasonable (Hawkins, 2004), 

the Ground Truth data set was not divided into training data and validation data. Instead, an 

external dataset was used for validation (see next section). The curves and the 

corresponding expert assessments were analyzed by means of feature engineering in order 

to inductively work out the necessary classfication process.  

Since a remarkable number (47 out of 400; 11.75%) of these curves was classified as “no 
assessment possible” by the human experts, the algorithm has been designed in a way that 

it produces results in a three-part nominal classification scale as well: 

 “temporal correlation” if a reasonable temporal correlation between drug intake and 
lab value alteration is detected; 

 “no change” if no correlation between drug intake and lab value alteration exists, 

and 

 “no assessment” if the data basis does not allow for an assessment or if the 

incertainty is too high.  

In order to avoid issues regarding the 

diversity of reference intervals of lab 

parameters (which might arise, e.g., from 

patient parameters like age, sex etc. or 

from individual laboratory equipment), the 

algorithm has been designed in a way that 

it expects normalized lab values (as 

proposed in formula (1) of (Newe et al., 

2015), see Table 1) as input. 

The output format has also been 

specified to match the proposal in (Newe 

et al., 2015) (Figure 1). 

Finally, some quality objectives have 

been specified. In (Newe et al., 2015), a 

Concordance Score Sc was introduced in 

order to provide a simple numerical value 

as a means for comparing external (e.g., 

algorithmic) assessment results of the 

Ground Truth data corpus with the 

assessment made by human experts. The 

lowest Sc achieved by a human expert in 

(Newe et al., 2015) was 0.766 and 

therefore this value has been set as the 

minimum to be achieved by the algorithm. 

Furthermore, the worst decision that the 

Table 1: Formula for normalizing lab values as 

published in (Newe et al., 2015). 

Formula 𝐿𝑉𝑛 = 𝐿𝑉𝑎 − 𝐵𝑉𝑙𝐵𝑉𝑢 − 𝐵𝑉𝑙  

Parameters LVn is the normalized lab value, LVa is the 

actual (absolute) lab value, BVl is the 

patient-specific lower border value and 

BVu is the patient-specific upper border 

value. 
 

 

Figure 1: XML structure of the output XML. It matches 

the original proposal from (Newe et al., 2015). 

 



algorithm could make was assumed to be a “no change” classification where actually a 
temporal correlation exists. Therefore, the specificity for the “no change” classification to be 

achieved by the algorithm has been specified to be 0.85 or better. Finally, since the 

algorithm was designed to detect temporal correlations, the sensitivity for the “temporal 
correlation” classification to be achieved by the algorithm has also been specified to be 0.80 

or better. The latter two specifications, however, have not been considered mandatory.  

A summary of all requirement specifications for the devlopment of the algorithm is listed 

in Table 2. 

Table 2: Requirement specifications for the development of the algorithm. 

ID Requirement 

1 The algorithm shall classify the course of a lab value curve according to the existence of a temporal 

relationship between a change of this lab value curve and the administration of a drug. 

1.1 The algorithm shall classify each lab value / medication episode into one of three categories: “temporal 
correlation”, “no change” or “no assessment”. 

1.2 The algorithm shall use normalized lab values (according to formula (1) in (Newe et al., 2015)) as input. 

1.3 The algorithm shall use the days of drug administration as input.  

2 The algorithm shall write the results into an XML file as modeled in Figure 1. 

3 The Concordance Score Sc of the algorithm result shall be larger than 0.766.  

4 The algorithm should achieve a specifity for the “no change” classification of > 0.85. 

5 The algorithm should achieve a sensitivity for the “temporal classification” of > 0.80. 

The reference implementation was developed using WinPython 

(http://winpython.github.io/) version 2.7.10.2. 

Validation of the Algorithm 

The validation of the algorithm was carried out in two steps in order to verify both the 

retrodictive value and the predictive value: First, the concordance of the algorithm 

classifications with the classifications made by human experts was verified, and second, the 

non-existence of overfitting was verified. 

While the algorithm has been developed by means of feature-engineering (i.e., induction) 

from the data corpus published in (Newe et al., 2015), the first step of the validation was 

carried out by means of deduction. Therefore, all curves from that data corpus were 

assessed by the algorithm and the classification results were then compared to the 

reference classifications that have been determined by human experts. By running the 

algorithm with varying parameters, it has been calibrated to the best possible outcome. 

This result comparison was carried out by means of the DOG software application (“Data 
Observation Gadget”) published with the data corpus article, using the result file created by 

the algorithm (Figure 1) as the input and the Concordance Score Sc as recommended the as 

output. In addition to that, a detailed breakdown of the classification results was created. 

In order to ensure that the algorithm is not biased by overfitting, a validation dataset was 

assessed by the algorithm and the result of this assessment was compared to the result of 

http://winpython.github.io/


the assessment of the Ground Truth data corpus. The criterion used for the comparison was 

the number of data sets that are classified by a certain step of the algorithm. The validation 

data consisted of the remaining 502 episodes of drug administrations with temporarily 

corresponding lab  value observations that had not been sampled for the Ground Truth data 

corpus (see (Newe et al., 2015) for details). 

Results 

The Algorithm 

The algorithm uses signal processing methods and therefore treats the lab value curve as a 

discrete-time biosignal. The terms needed to understand the following description of the 

algorithm are defined in Table 3. 

The algorithm (Figure 2A) is generally divided into two major components: a main loop 

and a post-processing chain. An optional pre-processing step which checks if lab values are 

within the reference range [0..1] can be activated (a positive check would result in “no 
change”), but is deactivated by default in the reference implementation. Each step is only 

performed if the previous step ended without a classification result. 

Table 3: Terms used for the description of the algorithm. 

Term Explanation 

lab value curve The normalized laboratory values of one medication episode. 

pre-phase The time period before the first application of the drug. 

mid-phase The time period from the first application of the drug until the last application of 

the drug. 

post-phase The time period after the last application the drug. 

fitted curve An artificially generated signal curve that has been fitted to the lab value curve 

(i.e., parameters like slope and intercept of the fitted curve have been optimized 

to match the lab value curve by means of the Levenberg-Marquardt algorithm 

(Moré, 1978)). 

low-pass filtered data The lab value curve after application of a one-dimensional Gaussian low-pass filter 

(Haddad & Akansu, 1991) (σ = 1.5). 

removed outliers The lab value curve after replacement of the two most extremely deviating values 

by the median.   

The main loop consists of four steps (Figure 2B): 

 Main Loop Step 1: Checks if the lab value curve is constant during the pre-phase 

(i.e., if the values derive less than a parameterizable tolerance from a fitted 

constant curve) but no longer in the mid-phase/post-phase. If this is true, it checks 

if the mean values of the pre-phase differ from the mean values of the mid-/post 

phase (i.e., if the pre-phase mean values derive more than a parameterizable 

tolerance from the mean values of later phases). If this is also true, this step results 

in “temporal correlation”. 



 Main Loop Step 2: Checks if the lab value curve is linear (i.e., if the values derive 

less than a defined parameterizable threshold from a fitted linear curve). A positive 

check results in “no change”. 
 Main Loop Step 3: Checks if the lab value curve is linear for mid-phase and post-

phase (i.e., if the values derive less than a parameterizable threshold from a fitted 

linear curve). A positive check results in “no change”. 
 Main Loop Step 4: Checks if the mean values of the pre-phase differ from the mean 

values of the mid-/post phase (as in Main Loop Step 1). A positive check results in 

“temporal correlation”. 
This main loop is executed three times:  

 with the original, unfiltered data in the first pass (Algorithm Step 1), 

 with low-pass filtered data in the second pass (Algorithm Step 2), and 

 with removed outliers and low-pass filtered data in the third pass (Algorithm Step 

3). 

The post-processing chain (Figure 2C) comprises four additional steps: 

 Algorithm Step 4: Checks low-pass filtered data for differences in slope between 

the phases (i.e., checks if the low-pass filtered lab values are rising or falling in the 

pre-phase but not in the mid-phase or the post-phase). If the pre-phase has a 

falling edge or rising edge, but the mid-phase and the post-phase has not, the 

result is “no change”. If the pre-phase has a rising or falling edge, and either mid-

phase or the post-phase does have a rising or falling edge as well, the result is “no 
assessment”. 

 Algorithm Step 5: Checks lab values with removed outliers for deviations from the 

mean value (i.e., checks if the lab values with removed outliers differ more than a 

parameterizable tolerance from their mean value). A negative check results in “no 
change”. 

 Algorithm Step 6: Checks if lab values are alternating strongly (i.e., if they do "zig-

zag"). A positive check results in “no assessment”. 
 All lab value curves that could not be classified by the previous steps are finally 

classified as “temporal correlation”. 
Some of the steps seem to be redundant, but it must be kept in mind that a dataset that 

could be tagged with a result drops out of further processing. Therefore, the sequential 

processing of the steps is essential. 

 



 

Figure 2: Flowchart of the algorithm. (A) Complete overview; (B) Main Loop; (C) Post-processing Chain. LV: Lab 

values; MV: Mean value of lab values; PreP: Pre-Phase; MidP: Mid-Phase; PostP: Post-Phase; LP-LV: Low-pass 

filtered lab values; RO-LV: Lab values with removed outliers.  

  



Algorithm Validation 

As described in the Methods 

section, the validation of the 

algorithm was carried out in two 

steps.  

First, all curves of the Ground 

Truth data corpus (Newe et al., 

2015) were assessed by the 

algorithm and the results were then 

compared to the reference 

classifications that had been 

determined by human experts by 

means of the Concordance Score Sc 

proposed in (Newe et al., 2015). The 

Concordance Score reached by the 

algorithm was Sc=0.803. A more detailed breakdown of the classification results is listed in 

Table 4 and Table 5 and a mosaic plot is available in Figure 3. 

 

Figure 3: Mosaic plot of classification consensus between ground truth and algorithm output. The width of 

the faces represents the proportion of the ground truth data; the height represents the proportion of the 

algorithm result; the figures are the absolute numbers. The boldly framed bars are those in which the algorithm 

achieved consensus with the ground truth. 

Table 4: Classification consensus between ground truth and 

algorithm output. 

Algorithm Ground Truth 

No Change  Temporal 

Correlation 

No 

Assessment 

No Change 171 4 2 

Temporal 

Correlation 

40 124 37 

No Assessment 9 5 8 
 

Table 5: Algorithm Sensitivity and Specificity. 

Classification Sensitivity Specificity 

No change 0.777 0.967 

Temporal correlation 0.932 0.803 

No assessment 0.170 0.960 

 



Second, the processing results of the Ground Truth data corpus were compared in detail to 

the processing results of a validation dataset. For this purpose, the numbers of classifications 

found by each step of the algorithm were determined (Table 6 & Figure 4). The difference 

between both data sets was =0.34±0.30% (min=0.00%, max=1.07%). Fisher's exact test 

shows a significant correlation between the classification results of the Ground Truth data 

and of the validation data (p=0.9923).   

Table 6: Detailed comparison of the algorithm results for the Ground Truth data and the validation data.  

This table lists the absolute (#) and the relative (%) numbers of curves in relation to the algorithm step in which 

they were classified. The last column shows the absolute difference of the relative numbers. 

Step Number & Resulting 

Classification 

Ground Truth Data Validation Data abs. of %

# % # % 

1 – No Change
1
 0

1
 0.00

1
 0

1
 0.00

1
 n/a

1
 

2 – Temporal Correlation 57 14.25 71 14.14 0.11 

3 – No Change 126 31.50 158 31.47 0.03 

4 – No Change 4 1.00 6 1.20 0.20 

5 – Temporal Correlation 51 12.75 63 12.55 0.20 

6 – Temporal Correlation 2 0.50 7 1.39 0.89 

7 No Change 20 5.00 23 4.58 0.42 

8 – No Change 11 2.75 13 2.59 0.16 

9 – Temporal Correlation 0 0.00 0 0.00 0.00 

10 – Temporal Correlation 2 0.50 2 0.40 0.10 

11 – No Change 0 0.00 1 0.20 0.20 

12 – No Change 0 0.00 2 0.40 0.40 

13 – Temporal Correlation 25 6.25 26 5.18 1.07 

14 – No Change 6 1.50 9 1.79 0.29 

15 – No Assessment 20 5.00 29 5.78 0.78 

16 – No Change 10 2.50 10 1.99 0.51 

17 – No Assessment 2 0.50 1 0.20 0.30 

18 – Temporal Correlation 64 16.00 81 16.14 0.14 

1
 The first step (“Preprocessing”) is disabled by default and was not considered for the calculation of statistics. 



 

Figure 4: Comparison of the algorithm steps that yield an assessment result. Plotted are the relative (%) 

numbers of curves in relation to the algorithm step in which they were classified for the Ground truth data 

(green) and the validation data (red). Note that the first step (“Preprocessing”) is disabled by default. 

Reference Implementation  

The reference implementation of 

the algorithm is available in Python 

programming language. It requires 

the Python packages SciPy (Jones, 

Oliphant & Peterson, 2001) version 

0.16.1 and numpy (van der Walt, 

Colbert & Varoquaux, 2011) 

version 1.9.3 and is available as 

Supplemental File S1. 

As mentioned in the introduction, 

one of the problems of EHR data 

analyses is incomplete data. This 

also applies to the Ground Truth 

dataset: in some cases, the 

episodes of lab value observations 

are interrupted by gaps (e.g., curve 

#006). Since most implementations 

of standard functions in SciPy 

require continuous values, those 

gaps are temporarily filled with 

zeros during the processing, while 

 

Figure 5: XML structure of the input XML. This XML structure 

is required by the importer of the reference implementation. 



attributing these artificial values with a very low weighting of 10-6. As a result, the error 

introduced by the filling of the gaps becomes negligible. When the weighting was increased 

for testing purposes, the assessment results started to vary at a value of 10-3; therefore 10-6 

was considered to be sufficient. 

The entry to the reference implementation is the TCAlgo_TestExecution.py file. In line 

27, a source XML file can be specified. This source file must match the structure displayed in 

Figure 5 (the name of the root element can be arbitrary). 

In line 30, the main global parameter is set: the noChangeIfInReferenceRange switch 

can be activated or deactivated here. If it is activated, lab values that only vary within their 

reference range [0..1] are automatically assessed as “no change” (see description of the 
optional pre-processing step above). This switch is deactivated by default. 

The main processing function is 

PerformAssessmentForAllNormalizedLabValueEpisodes(). It takes all normalized lab 

values as input and returns a dictionary with all resulting assessments. As regards further 

details, please follow to the embedded documentation. 

The assessment result is written to the algorithm_assesssment_result.xml file. 

Discussion 

Result, Purpose & Usage  

This article presents a heuristic, parameterizable algorithm for the detection of temporal 

correlations between drug administrations and lab value alterations. The default parameters 

have been adjusted to match best a ground truth of such correlations published as a result 

of previous work (Newe et al., 2015). A reference implementation in Python programming 

language is available as Supplemental File S1.  

The algorithm can be used as a means for dramatyping EHR data in order to detect 

Observable Drug Events (ODEs) in EHRs or similar databases. It is not suitable (and 

notintended) as a sole means for the detection of ADRs, but it can serve as a module of a 

greater framework and thus contribute to ADR detection since ODE detection is a precursor 

of ADR detection. Creating this framework for ADR detection is subject of further research 

and therefore not within the scope of this article. 

For some time, human expertise in the pharmacovigilance domain will certainly be the 

critical factor regarding ADR detection and ADR identification. However, assistance for these 

experts can well be provided by data processing tools. Instead of using it only for the 

identification of signals which are worthy of further investigation – as proposed in (Hauben 

et al., 2005) –,the algorithm presented in this article can also be used as a screening tool for 

the exclusion of datasets from further investigation. In doing so, the data that needs to be 

reviewed by human experts can be reduced significantly (about 44% in the case of the 

Ground Truth dataset) with the high specificity of 0.967 for the “no change” classification 
ensuring reliable results. 



Especially the latter aspect should be kept in mind if the parameters are intended to be 

modified in future iterations or applications of the algorithm. A false-positive “no-change” 
classification is the worst decision since it would conceal a possible temporal correlation 

from the review by a human expert. Consequently, the specificity of the “no change” 
classification should always be kept as high as possible. 

Limitations 

It is important to resist the temptation to equate detected temporal correlations with 

causal relationships, especially as regards ADR detection.  

ADR detection is a complex task and the temporal correlation between the change of a lab 

value course and the admission of a drug is only one component of the criteria for a 

standardized case causality assessment of ADRs (WHO, 2005). The existence of a temporal 

correlation is, however, a necessary component. I.e., if no temporal correlation exists, the 

existence of an ADR can be denied. 

As (Harpaz et al., 2010) already pointed out with respect to causality assessment, the issue 

of confounding is a serious concern, since it may lead to biased inference. Possible 

confounders are co-medication, co-morbidities, or the underlying disease itself (WHO, 2005; 

Harpaz et al., 2010). Since the presented algorithm processes normalized data without any 

information about the laboratory parameters or the drugs, it does not take into account the 

effect of possible confounders. However, this is intentional and a comprehensive ADR 

detection is not within the focus of the algorithm. 

Validation Methodology and Result 

The objective was to design an algorithm that reproduces the assessment results of 

human experts whereby one has to consider that applicable data in this field is rare – in fact, 

(Newe et al., 2015) is the only available and validated source of such data. The algorithm is 

based on rules that were induced from this data and in order to consider as much of this 

limited input data as possible (Hawkins, 2004), the Ground Truth data set was not divided 

into training data and validation data. Instead, the validation was performed in two steps. 

First, the rules were verified deductively in order to proof that the inductive reasoning 

process was valid. The default parameters yield an overall Concordance Score SC of 0.803 

which is not a 100% match, but still within in the range of the Concordance Scores of the 

original assessors in (Newe et al., 2015) (minimum SC = 0,766 for Assessor 05; maximum SC = 

0,883 for Assessor 08). Therefore, the overall result achieved by the algorithm is equal to the 

results of the assessments made by human experts and better than the result of the worst 

performing human expert. 

In order to address the overfitting problem, a validation dataset with the same 

provenance as the Ground Truth dataset was used (Hawkins, 2004). The algorithms assesses 

both datasets with nearly the same outcome (p=0.9923). Since both the Ground Truth data 

and the validation data originate from the same raw data it can be assumed that the 



algorithm produces valid results without being overfitted to the Ground Truth data set 

(Hawkins, 2004). 

Another aspect that should be considered is, that one single step of the algorithm (#3) 

covers more than 30% of the data and that a total of four steps (#2, #3, #5, #18) covers 

nearly 75% of the data (in both the Ground Truth data and the validation data). The number 

of steps is much smaller than the number of data points in the Ground Truth dataset (400:17 

 23:1). This provides further evidence that the algorithm is not biased by overfitting. 

Other Approaches of Mining EHRs for Drug Safety Signals 

Several studies and large-scaled projects examined the possibilities to retrospectively 

detect ADRs on the basis of EHR data.  

Chazard developed and implemented 236 partly very complex rules for the detection of 

selected ADRs that were not limited to DLVI (Chazard, 2011). (Liu et al., 2012) used a 

timeline-based approach to correlate drug administrations with possible ADR diagnoses that 

were extracted from textual medical records by means of Natural Language Processing 

(NLP). (Rozich, Haraden & Resar, 2003) evolved a method introduced by (Classen et al., 

1991) and used 24 selected triggers (including 12 well-defined lab value conditions) to 

identify ADRs in a setting of 86 hospitals. (Harpaz et al., 2010) published ab article about the 

feasibility of a method that has been designed to perform an automatic mining of narrative 

texts in EHRs for the identification of ADE signals, and, at the same time, taking account of 

confounding factors. 

The EU-ADR project exploited eight EHR databases of four European countries in order to 

detect drug safety signals (Trifirò et al., 2011; Coloma et al., 2013). The SALUS project, 

which has been funded with more than € 3 million by the European Union 
(http://www.salusproject.eu/) is concerned with the creation of a proactive solution for the 

detection of ADRs based on EHR data. It aims to provide a standard-based interoperability 

framework in order to enable the performance of safety studies that can analyze real-time 

patient data in communication with heterogeneous EHR systems. The Sentinel Initiative, 

governed by the FDA (FDA, 2008), is a comparable project in the United States.  

The work presented in this article, by contrast, takes a more generic approach and focuses 

on ODEs rather than ADRs. In addition, the presented algorithm does not need any 

information about the involved laboratory parameters or the specific drug(s). Therefore, it 

can be used not only as a module of a larger framework that is aimed to detect ADRs, but 

also for other purposes like the assessment of data quality or the verification of desired drug 

effects. 

  

http://www.salusproject.eu/


Conclusion 

In this article, an algorithm for detecting reasonable temporal correlations between drug 

administration and laboratory value alterations is presented. It processes normalized values 

and is thus universally applicable. It has a specificity (0.967) for the detection of lab value 

courses that show no change in temporal correlation with drug administrations and it has a 

sensitivity (0.932) for the detection of lab value courses that do show a change. Therefore it 

is very well suited to screen EHRs and to support human experts in the search of ADRs. 

List of abbreviations 

ADE – Adverse Drug Event 

ADR – Adverse Drug Reaction 

DLVI – Drug-Lab Value Interaction(s) 

EHR – Electronic Health Record 

FAERS – FDA Adverse Event Reporting System  

FDA – U.S. Food and Drug Administration 

NLP – Natural Language Processing 

ODE – Observable Drug Event  

U.S., USA – United States of America 

WHO – World Health Organization 

XML – Extensible Markup Language 
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