
Application of Genetic Algorithms to

Problems in Computational Fluid Dynamics

Submitted by Björn Fabritius to the University of Exeter
as a thesis for the degree of

Doctor of Philosophy in Engineering
January 2014

This thesis is available for Library use on the understanding that it is copyright
material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been
identified and that no material has previously been submitted and approved for

the award of a degree by this or any other University.

Signature: .

Acknowledgements

This work would not have been possible without the help and support of all my
friends and family. Thanks to everyone for seeing this through to the end and
trusting in my abilities more than I did myself. A special note of appreciation
to Gavin Tabor whose ideas, enthusiasm and encouragement made this research
worthwhile and even enjoyable. My brother Ingo for teaching me to believe in
myself. But most of all my parents Hubert and Monika without whose continuous
support and encouragement I would not be where I am today. They taught me
that curiosity and an open mind are the key to the universe.

The research was funded by the University of Exeter, of which I am very grateful.

München, 31. January 2014

Abstract

In this thesis a methodology is presented to optimise non–linear mathematical
models in numerical engineering applications. The method is based on biological
evolution and uses known concepts of genetic algorithms and evolutionary compu-
tation. The working principle is explained in detail, the implementation is outlined
and alternative approaches are mentioned. The optimisation is then tested on a
series of benchmark cases to prove its validity. It is then applied to two different
types of problems in computational engineering.

The first application is the mathematical modeling of turbulence. An overview
of existing turbulence models is followed by a series of tests of different models
applied to various types of flows. In this thesis the optimisation method is used to
find improved coefficient values for the k–ε, the k–ω-SST and the Spalart–Allmaras
models. In a second application optimisation is used to improve the quality of a
computational mesh automatically generated by a third party software tool. This
generation can be controlled by a set of parameters, which are subject to the
optimisation.

The results obtained in this work show an improvement when compared to
non–optimised results. While computationally expensive, the genetic optimisation
method can still be used in engineering applications to tune predefined settings
with the aim to produce results of higher quality. The implementation is modular
and allows for further extensions and modifactions for future applications.

Contents

List of Figures 8

List of Tables 12

1 Introduction 15

1.1 Background . 15

1.1.1 Research Question . 16

1.2 Thesis Outline . 17

2 Evolutionary Computation 19

2.1 Principles of Evolution . 19

2.2 Genetic Algorithms in Computer Science 20

2.3 Genetic Applications in Engineering 22

3 Computational Modelling 25

3.1 Introduction . 25

3.2 Reynolds-Averaged Navier-Stokes Equations 26

3.3 Zero-Equation models . 29

3.4 One-Equation models . 30

3.4.1 Spalart Allmaras Model . 30

3.5 Two-Equation models . 32

3.5.1 k-ε Model . 33

3.5.2 k-ω-SST Model . 36

3.6 Parameter Identification . 37

3.7 Finite Volume Method . 39

3.7.1 Spatial Discretisation . 39

Contents

4 Genetic Optimisation 43

4.1 Genetic Algorithm Basics . 43

4.1.1 Chromosome Encoding . 44

4.1.2 Objective Function . 45

4.1.3 Selection . 46

4.1.4 Crossover . 47

4.1.5 Mutation . 48

4.2 Fitness . 51

4.3 Implementation . 52

4.3.1 Language Selection . 52

4.3.2 Code Design . 52

4.3.3 Fitness Function . 55

4.3.4 Parallelisation . 56

4.4 Software Model . 57

4.4.1 Core Classes and Operators 57

4.4.2 Derived Classes . 59

4.4.3 Utility Classes . 61

4.5 Multi-Objective Optimisation . 62

4.5.1 Fast Non-Dominated Sorting 64

4.6 Benchmarking . 65

4.7 Example: Parameter Identification 71

4.7.1 Motivation . 71

4.7.2 Neuronal Model . 72

4.7.3 Problem Formulation . 74

4.7.4 Results . 78

5 Optimisation of Turbulence Models 81

5.1 Optimisation Objectives . 81

5.1.1 Multi-Objective Optimisation 82

5.1.2 Hardware . 83

5.2 Test Cases . 83

5.2.1 Backward Facing Step . 83

5.2.2 Results . 99

5.2.3 Impinging Jet . 102

6

Contents

5.2.4 Results . 105

5.2.5 Conical Concentrator and Sudden Expansion 108

5.2.6 Results . 117

5.3 Discussion . 121

6 Mesh Generation Quality Optimisation 123

6.1 Motivation . 123

6.1.1 snappyHexMesh Algorithm 124

6.1.2 snappyHexMesh Parameters 125

6.2 Optimisation Objectives . 127

6.3 Fitness Function . 128

6.3.1 Mesh Quality . 130

6.4 Genetic Algorithm Setup . 131

6.5 Test Cases . 132

6.5.1 Bearing . 132

6.5.2 Ahmed Body . 135

6.5.3 Packed Bed . 138

6.6 Discussion . 142

7 Summary 143

7.1 Turbulence Modelling . 143

7.2 Mesh Generation . 144

7.3 Conclusion . 145

7.4 Future Work . 146

A Using the Code 149

A.1 System Requirements . 149

A.2 Setting up the GA . 149

A.2.1 Dictionary File . 150

A.2.2 Operator Selection . 151

A.2.3 Fitness Function . 152

A.3 Execution . 152

Bibliography 155

7

List of Figures

3.1 A control volume . 39

4.1 Schematic of the workflow of a typical genetic algorithm. 49

4.2 Visualisation of the selection probabilty for each of five individuals
using roulette wheel selection. S̃ is the sum of all fitness values. . . 50

4.3 Example for a single point crossover operation on two individuals. . 50

4.4 Example for a uniform crossover operation. 50

4.5 Class diagram for the base class BasicIndividual. 59

4.6 Class diagram for the base class BasicPopulation. 61

4.7 deJong benchmark function F1 . 68

4.8 deJong benchmark function F2 . 69

4.9 deJong benchmark function F3 . 69

4.10 deJong benchmark function F4 . 70

4.11 deJong benchmark function F5 . 70

4.12 Schematic representations of the neural model proposed by Wendling
[106]. Edges represent interaction between the populations, where
solid edges are excitatory and dashed edges are inhibitory feedback. 72

4.13 Comparison of measured brain wave activity in healthy (left) and
photo–sensitive epileptic (right) patients. The measured intensity
phi is normalised with the maximum intensity. 76

4.14 Spectral analysis of the brain wave activity in healthy (left) and
photo–sensitive epileptic (right) patients. Power is normalised with
the maximum power observed. 77

4.15 Optimal parameter values for synaptic gains A and B for each EEG
measurement in a healthy (left) and an epileptic (right) test subject. 78

4.16 Projection of the parameter values obtained by the genetic algo-
rithm (red crosses) onto the bifurcation plane for the neuronal model
described by Wendling [106]. 79

List of Figures

5.1 Geometry of the backward facing step test case. The dashed ver-
tical line at x/H = 3 is an example of one of the lines where flow
characteristics were sampled for comparison with experimental data. 84

5.2 Variation study for each of the five parameters in the standard k-ε
turbulence model in the backward facing step case. The graphs show
velocity profiles along vertical cuts of the channel at three different
positions x/H =1,3 and 6 downstream of the step. Velocity U was
normalised with maximum inlet velocity U0 and y-coordinate with
step height H. The thick line shows the profile calculated with the
standard values, the dotted line represents results with 40% and the
dashed line with 160% of the standard values. 90

5.3 Variation study for each of the eleven parameters in the standard
k-ω turbulence model in the backward facing step case. The graphs
show velocity profiles along vertical cuts of the channel at three
different positions x/H =1,3 and 6 downstream of the step. Velocity
U was normalised with maximum inlet velocity U0 and y-coordinate
with step height H. The thick line shows the profile calculated with
the standard values, the dotted line represents results with 40% and
the dashed line with 160% of the standard values. 96

5.4 Velocity profiles at positions x/H = 1, x/H = 3, x/H = 6 down-
stream of the step. The dashed line shows profiles calculated using
the standard k-ε model parameters as implemented in OpenFOAM.
The bold line shows results obtained by the optimised set of param-
eters. Rectangles mark experimental values measured by Makiola
[65]. Reynolds number of the flow based on step height and inlet
velocity was 64,000. 101

5.5 Velocity profiles at positions x/H = 1, x/H = 3, x/H = 6 down-
stream of the step. The dashed line shows profiles calculated using
the standard k-ω model parameters as implemented in OpenFOAM.
The bold line shows results obtained by the optimised set of param-
eters. Rectangles mark experimental values measured by Makiola
[65]. Reynolds number of the flow based on step height and inlet
velocity was 64,000. 101

5.6 Geometry of the impingement jet test case 103

9

List of Figures

5.7 Normalised velocity profiles at positions x/B = 1, x/B = 2, x/B =
7, x/B = 8 away from the jet. The dashed line shows profiles
calculated using the k-ω-SST model parameters as implemented in
OpenFOAM. The bold line shows results obtained by the optimised
set of parameters. Rectangles mark experimental values measured
by Ashforth-Frost et al. [4] . 107

5.8 Nozzle specifications for the FDA test case 109

5.9 Variation study for each of the eight parameters in the standard
Spalart Allmaras turbulence model for the FDA case. The graphs
show velocity profiles along a vertical cut of the nozzle at positions
z/d = 6. The thick line shows the profile calculated with the stan-
dard values, the dotted line represents results with 40% and the
dashed line with 160% of the standard values. 115

5.10 Sampling positions along z-axis of the nozzle geometry. 117

5.11 Velocity profiles for streamwise velocity component at radial posi-
tions z = −12d, z = −2d, z = 2d and z = 6d along the nozzle,
where d is the diameter of the throat. Data was calculated using
the Spalart–Allmaras (SA) and k-ω model with standard parame-
ter values. X-axis is normalised with nozzle diameter at the current
z-position. Squares represent experimental data. 119

5.12 Velocity profiles for streamwise velocity component at radial po-
sitions z = −12d, z = −2d, z = 2d and z = 6d along the nozzle,
where d is the diameter of the throat. Comparing Spalart–Allmaras
(SA) standard (std) and optimised (opt) parameter sets. X-axis is
normalised with nozzle diameter at the current z-position. Squares
represent experimental data. 120

6.1 Determining skewness on a face . 130

6.2 Geometry of the snappyHexMesh bearing test case. The black box
on the left is the outline of the original mesh that will be snapped to
the inside of the geometry. The right image shows the three parts
that make up the bearing. 133

6.3 Detailed view of the connector disk’s top and bottom side showing
the chamfered edges. 133

6.4 Examples for bad (left) and good (right) snapping quality at the
intersection of the large tube (red) and the connector disk in the
bearing test case. 135

6.5 Geometry of the Ahmed body as a simplified car model for aerody-
namic investigations. 135

10

List of Figures

6.6 Examples for bad (left) and good (right) snapping quality in the
wheel region of the Ahmed body. 137

6.7 Examples for bad (left) and good (right) snapping quality in the
rear region of the Ahmed body. 137

6.8 Geometrical setup for the packed bed. Axial view (left) and isomet-
ric view with background mesh (right). 139

6.9 Solutions of the sphere meshing optimisation on the Pareto front
comparing three generations. Crosses (×) show the front after the
2nd generation, triangles (△) after the 10th, and squares (�) af-
ter the final 25th generation. Objectives were normalised by their
minimum and maximum values. 141

6.10 Comparison of a Pareto front individual (left) versus a non-optimal
solution (right). Notable is the difference in roundness and radius
of the connecting area. 142

11

List of Tables

3.1 Standard values for the Spalart–Allmaras model in OpenFOAM . . 32

3.2 Standard values for the k-ε model as implemented in OpenFOAM . 35

3.3 Standard values for the k-ω-SST model in OpenFOAM 37

4.1 Pseudo-code for the NSGA-II algorithm. 65

4.2 Benchmark minimisation problems to test GA performance as pro-
posed by deJong [23], along with the number of possible solutions
given a fixed discretisation of the xi-axis. 66

4.3 Topological characteristics of the solution space for test functions
F1-F5. 67

4.4 GA benchmark results after ten simulations compared to real optima. 68

4.5 Neurophysical interpretation of parameters in the population model
by Wendling et. al. [106]. Standard values were established in
Jansen and Rit [48]. 75

4.6 Value constraints for the objective function in the neuronal model
optimisation. 76

5.1 Boundary conditions in the backward facing step test case 85

5.2 Parameter values for variation study in the k-ε model 86

5.3 Value constraints for the objective variables in the backward facing
step case. 98

5.4 Standard vs. optimised values for coefficients in the k-ε model and
standard deviations from five optimisation runs. 100

5.5 Optimum values and standard deviations for the k-ω-SST model . . 100

5.6 Boundary conditions in the impinging jet test case 104

5.7 Optimum values and standard deviations for the k-ω-SST model . . 106

5.8 Boundary conditions in the concentrator and sudden expansion test
case . 110

List of Tables

5.9 Value constraints for the objective variables from the Spalart–Almaras
model in the conical concentrator and sudden expansion case. . . . 116

5.10 Standard values for the Spalart–Allmaras model in OpenFOAM . . 118

6.1 Value constraints for the objective variables in mesh generation op-
timisation. Accuracy value of 1 signifies an integer variable. 127

6.2 Mesh quality settings in snappyHexMesh 132

6.3 Parameter settings for snappyHexMesh for the bearing test case ref-
fering to the two examples depicted above and value ranges in the
Pareto front. 134

6.4 Parameter settings for snappyHexMesh for the two examples of the
Ahmed body test case depicted above. 138

6.5 Optimisation parameter value ranges for the packed bed test case
as defined in the gaDict. 140

13

1. Introduction

If we knew what it was we were

doing, it would not be called research,

would it?

Albert Einstein

1.1. Background

The developments in modelling and understanding the mathematics of physical

processes is accompanied by a constant improvement and expansion of numerical

methods and computer tools to simulate these processes. Although the basic

principals of fluid mechanics are mathematically well understood, an accurate

numerical treatment is difficult even with modern high performance computer

systems. While new models are emerging to describe more and more complex

processes like reactive flow, moving boundaries or multi-physics systems, many

equations and models that have been around for decades are still in use. On the

one hand these particular models have proven their worth in multiple applications

and are well tested and documented, but on the other hand assumptions that

were made in the derivation of the model equations might not always be fitting

to a specific problem and by exploiting computational resources that were not

available several years ago, accuracy and applicability of the "old" models might

still be improved.

An example for a family of models describing the same physical effect in a variety

of applications with different assumptions and differing levels of abstraction are

turbulence closure models. The earliest of these are very simple, reflecting the

limited possibilities to solve large systems of equations back in the days they were

invented. But with the advent of advanced computer power these models became

1.1 Background

more sophisticated and, in parts, more accurate. Many of the early models are

still in use today. The modeling error introduced by these approaches gets more

and more dominant over a discretization error due to the possibility of finer grid

resolution and it depends mainly on the accuracy of the model constants. These

constants are empirically calibrated to fit to a large variety of problems.

1.1.1. Research Question

The empirical constants in traditional turbulence models have been aquired by

fitting computational results to experimental observation and mathematical re-

quirements. It is a totally reasonable approach to make the model applicable to a

wide range of flow types. Otherwise, when only trying to map the model to one

particular flow, finding the right set of coefficients is nothing but an exercise in

curve fitting. An engineer who wants to use one of these turbulence models in his or

her simulation can rely on it yielding acceptable results, as long as the application

is of a similar type as those flows the model has been fitted to. The question now

is, can modern computational methods and high performance computers adapt a

model to a given problem type and promise better results? Could it even be pos-

sible to define a new range of parameters for one model that fits best to a certain

type of flow? In order to generate the fitting of a set of constants to something as

complicated as a numerical simulation, a robust optimization method is required.

Further are the results of such a simulation hard to foresee and the influence of

the turbulence model parameters on the outcome is difficult to predict. Therefore

an optimization technique that works without explicit knowledge of the topology

of the problem and solution spaces is needed. Traditional gradient based methods

are clearly not suitable for that kind of optimization for the reasons stated above,

because they require the differentiability of the problem formulation. In turbulence

modeling it is not granted that the parameters are mutually independent, adding

to the problem of finding the correct optimisation method. Furthermore are gra-

dient based methods prone to end their search in local optima if the solution space

is not sufficiently smooth. An alternative are non-deterministic methods, such

as genetic algorithms (described in detail in Chapter 2.2). In this work genetic

algorithms will be presented and used for optimisation.

16

1.2 Thesis Outline

The original contribution to knowledge is the application of genetic optimisa-

tion to improve the modelling aspect of a CFD (computational fluid dynamics)

simulation. It differs from existing applications in so far, that it tries to improve

the computed results by optimizing the underlying numerical method instead of

changing the geometry and topology of the case under investigation as shape or

layout optimization would do. To my knowledge this has never been done before

in the field of CFD.

1.2. Thesis Outline

Chapter 2 gives an overview over the origins and the development of evolutionary

computational methods in the last decades. It concentrates on the methods that

are used for the solution of difficult optimization tasks. A short review of their use

in engineering applications is also given. A comparison between the traditional,

biological principle of evolution and the more systematic computational realisation

is drawn and examples of applications in various fields are presented.

In Chapter 3 the principles of numerical modeling of fluid flows are briefly out-

lined, especially the discretization of the governing equations to show the necessity

of turbulence model considerations in the finite volume approach. The basic idea

behind this approach is also layed out. A review of commonly used turbulence

models in CFD is given and the models considered in later chapters are discussed

in more detail.

The following Chapter 4 describes in more depth the implementation details

of the genetic algorithm used throughout this work. Different interchangeable

operators in genetic algorithms are compared and the requirements needed to

develop a generic representation are outlined. A detailed description of the various

modules implemented for the Thesis is given in conjunction with a brief instruction

how they can be used to run a genetic optimisation on an arbitrary problem. In

order to prove that the implementation indeed produces an optimized solution to

a problem, a series of benchmarking problems is investigated and the known real

optimal solutions compared to the ones obtained with the code presented here.

The method implemented in the Thesis is applied to a series of test cases. This

is described in Chapter 5. Potential parameters for optimization are identified. A

17

1.2 Thesis Outline

summary of the set up procedure and results aquired by the optimization process

are presented and compared to the corresponding experimental data and non-

optimized calculations using standard settings for the models.

In Chapter 6 the optimization is used on an OpenFOAM application for auto-

mated mesh generation called snappyHexMesh. Improved mesh quality is achieved

by changing the values of parameters that control the building of the mesh. A

metric to assess the quality of the generated mesh is developed and a comparison

between meshes created with different settings is presented here.

Finally, Chapter 7 summarizes the findings presented in the Thesis and provides

some concluding remarks and suggestions for future research.

18

2. Evolutionary Computation

It is not the strongest of the species

that survive, nor the most intelligent,

but the one most responsive to

change.

Charles Darwin

2.1. Principles of Evolution

Biodiversity is the most apparent proof of the effectiveness of evolution. Within

millions of years of adaptation and modification based on a shared pool of similar

characteristics, all lifeforms we know today and millions more that became extinct

over the millenia have developed. Some survived and some were displaced by

better, more adopted specimen that had a higher chance to stand their ground in

a predator/prey environment. Life as we know it is able to exist in all the different

climates and ecosystems found on this planet. From freezing glaciers to soaring

deserts, from deep oceans to wind-swept mountain tops. And common to all these

manifestations of life is, that it fits into its niche with an optimised architecture

and behaviour. This adaptability to the environment is a marvellous mechanism

that ensures diversity and durability of species on earth (except for humans, who

use clever inventions and technology to evade the natural adaptation process, but

that is a different story). The first person to describe this natural selection process

was Sir Charles Darwin in 1859 [18].

The adaptation is done in small steps. By means of sexual reproduction genes of

both parents are mixed (crossed over) and passed on to their offspring in the next

generation. In this crossover process new attributes (phenotypes) might emerge

that are more beneficial to the survival of the new individual. With the additional

2.2 Genetic Algorithms in Computer Science

effect of random mutation, phenotypes might be created that were not present

in either parent. But not all changes are beneficial to the individual. Many, if

not most of the variations might have an adverse effect on the chances of that

individual to persist. Two things might happen: It dies before reproduction or

its chances to find a mating partner reduce. This effect was coined as ’survival

of the fittest ’ (erroneously attributed to Charles Darwin). Giving the process of

evolution enough time, i.e. a high number of generations, and enough competitive

pressure, the high diversity of creatures and plants as we see today on our planet

could evolve.

2.2. Genetic Algorithms in Computer Science

The principle of simulating evolutionary processes on a computer has been a sub-

discipline of artificial intelligence (AI) since the 1970s. Pioneers on this field were

the German computer scientists Ingo Rechenberg [84] and Hans-Paul Schwefel [88].

In their respective dissertations they theoretically founded the method of Evolu-

tion Strategies (ES). This was originally designed as a set of rules for experimental

optimisation, but is nowadays more commonly used as a numerical method for the

identification and optimisation of parameters in mathematical models. It was also

based on a phenomenological description of the population. It encoded strategic

parameters within a set of individuals instead of breaking down the genetics to a

chromosome level. That came later with the advent of genetic algorithms (GA),

invented by John Holland in the mid-seventies of the last century [46].

Just like the progression in the understanding of evolution principles took place

in biology, the adaptation of these principles to numerical optimisation took simi-

lar steps. Charles Darwin, as mentioned above, had no concept of the underlying

genetics when he first wrote about the origin of species. His assumptions were

based on observations purely of the phenotype. Only much later, after the discov-

ery of the DNA structure and its role in the conveyance of genetic information in

the late 1920s could evolution be explained on a finer level. In the same way did

evolutionary computation mature from a phenotypical rule set used in ES, where

characteristics of an individual were modified towards an optimal representative

instead of changing the genome, to an optimisation based on the actual chromo-

20

2.2 Genetic Algorithms in Computer Science

some representation, ie. genotypical, in genetic algorithms. At the same time it

moved away from the real biological meaning of evolution and became more of a

pure numerical and mathematical exercise. A strong indication of this is that in

GAs the evolution is always monotonic. There is no going back, whereas in nature

things are not always that simple [90] and may allow negative progression.

When compared to traditional methods of optimisation such as gradient-based

methods, GAs differ in some fundamental ways:

• GAs do not work with the parameter set, but with a coding of the set

• Instead of searching from a single point, GAs search from a population of

points

• No auxiliary knowledge or derivatives are used, but objective information

(or payoff)

• Transition rules are not deterministic but probabilistic

Genetic Algorithms are not the only evolutionary technique that can be used

for optimisation. Other methods have been developed over the years that copy

natural behaviour. Ant Colony Optimisation, for example, is a member of the

family of swarm intelligence methods that quickly became popular in the 1990s

[24]. The applications for this kind of method are more in the area of graph theory,

for example routing or assignment problems, with discrete solution space. It also

needs a very large population in order to produce good results, hence it would

not be a good choice for the problem presented here, where estimating the quality

of a solution is very time expensive. For algorithmic or process optimisation a

combination of genetic algorithms and programming is used, collectively named

Genetic Programming [56]. The method uses fitness information on a chain of

operations, trying to find an optimal way of finishing a given task. This can be used

to optimise algorithms or workflows, but is not suited for parameter optimisation.

Other possible, non-deterministic methods are, for example, Differential Evolu-

tion [97], thet iteratively tries to improve a single candidatet function, or Simulated

Annealing [55], where the search space decreases with time by adapting the prob-

abilities that control the optimisation process. All these approaches share the

21

2.3 Genetic Applications in Engineering

common feature that no topological information of the problem space is needed

and that they try to find an optimal solution with probabilistic methods.

Of all these evolutionary methods, Genetic Algorithms seemed the best choice

for the optimisation of turbulence model coefficients. The main reason why it

was chosen was that the formulation of the problem in GAs is very simple. No

topological knowledge of the solution space is required. That makes it easy to

reuse the same algorithm for a variety of optimisation problems in engineering,

beyond those discussed in this thesis.

2.3. Genetic Applications in Engineering

The question of how to apply genetic algorithms to problems that occur in in-

dustrial engineering has been an interesting subject in the fields of management

science, operations research or systems engineering [35]. One of the reasons for

this interest is the characteristic of genetic algorithms that makes them a versatile

and powerful tool to consider problems that would be very difficult to solve using

conventional optimization techniques.

The construction of technical equipment has to meet a certain quality standard

and often high efficiency is usually desirable. The design of a machine or parts of it

requires an experienced engineer. Often, subtle changes to the geometry of a part

can have a significant impact on its performance and this impact is not always easy

to predict. Genetic algorithms can help to generate a variety of different designs

within a simulation environment.

This technique has been used in various fields of engineering. For example, Aliev

et al. [1] used GA’s in electromagnetics to improve the shape of an accelerator

electrode to optimise the shape and stability of the manipulated electromagnetic

field. In the field of turbomachinery, Hilbert et al. [44] used multi–objective

optimisation to improve the shape of fan blades in a heat exchanger. Even in

classic aerodynamics, GA’s are used for shape optimisation. Marco et al. [68]

described the shape of an airfoil with bezier splines and used a genetic algorithm

to find the set of bezier coefficients that produced the best shape w.r.t. lift and

drag behaviour. They also mentioned a common problem of GA’s in engineering:

The computation of a single shape variety takes a long time, so that only few

22

2.3 Genetic Applications in Engineering

generations with a small number of individuals can be considered. In their case

the typical number of generations was 10–50.

Even though evolutionary methods have been proven to produce useful results,

their application in mechanical engineering is scarce. This could either be due to

their high computational costs, but also because they are not commonly known to

most engineers.

23

3. Computational Modelling

When I meet God, I am going to ask

him two questions: Why relativity?

And why turbulence? I really believe

he will have an answer for the first.

Werner Heisenberg

3.1. Introduction

Numerical simulation of complex flow phenomena is a challenging field in fluid

dynamics. Even with computers getting faster and massively parallel in recent

years, the accuracy of the computations is still dependent on the models that

describe the underlying flows. The execution of a direct numerical simulation

(DNS) is still far away from being affordable in terms of computation time. While

in the 80s and early 90s of the last century memory was the limiting factor, it

now is time. Even with modern high performance computers and massive parallel

calculation, simulating a case of relevance to the engineer in industry resolving all

length and timescales would theoretically take decades, if not centuries to compute.

For example, Pope [81] estimates the time TG in days required for DNS of isotropic

turbulence at a Reynolds number Re based on the integral length scale L is

TG ∼
(

ReL
800

)3

. (3.1)

That is why most solvers seek to solve the Reynolds-Averaged Navier-Stokes (RANS)

equations (see below). The main flow velocity is seperated into a mean velocity

component and turbulent fluctuations, expanding the NS-equations by additional

terms that need to be modelled. Several different approaches have been developed

3.2 Reynolds-Averaged Navier-Stokes Equations

and applied, ranging from zero-equation approaches like Prandtl’s mixing length

model [82], one-equation models like the Spalart-Allmaras model [93], over two-

equation models like the k-ε model by Jones and Launder [52] or the k-ω model

by Wilcox [110]. There also exist various combinations and derivations of these.

The empirical nature of the model formulations can lead to undesired behaviour,

especially in very heterogenous flows or flow regions with highly unsteady turbu-

lent fluctuations. To improve the applicability of all the models to as wide a range

of problems as possible several improvements and changes have been proposed. A

simple internet search reveals hundreds of different models, some only slight mod-

ifications to the most common ones [38, 40], others adjusted to specific flow types

like, for example, flow around buildings [25], oceanic flow [79, 39], flow through

porous media [100, 99, 15] and many others.

A different approach to handle turbulence in computational fluid dynamics

(CFD) is to model only the small scales of turbulence that cannot be resolved

on the computational grid while the larger structures maintain to be described by

the original formulation. Large Eddy Simulation (LES) is such an approach and

is widely used in industrial simulations already. The requirements to the grid in

terms of resolution, i.e. computational cost, can be very restrictive for this model,

though. Therefore hybrid models are implemented [3, 19], which use RANS on the

coarse parts of the grid and switch to LES where the resolution is fine enough to

capture the turbulent length scale. In this review, however, mainly RANS models

of turbulence are in the focus of the investigations, their application to industrial

flows and shortcomings and limitations in their formulation.

3.2. Reynolds-Averaged Navier-Stokes Equations

The governing equations that describe the flow of Newtonian fluids are the Navier–

Stokes Equations (NS). They combine a set of conservation equations, which typ-

ically are

conservation of mass (often referred to as the continuity equation)

∂ρ

∂t
+

∂

∂xj
[ρuj] = 0, (3.2)

26

3.2 Reynolds-Averaged Navier-Stokes Equations

conservation of momentum

∂

∂t
(ρui) +

∂

∂xj
[ρuiuj + pδij − τji] = 0, i = 1, 2, 3, (3.3)

and conservation of energy

∂

∂t
(ρe0) +

∂

∂xj

[ρuje0 + ujp + qj − uiτij] = 0. (3.4)

Here, ρ is the density of the fluid, p is the pressure, ui is the velocity in direction

xi, τij is the stress tensor and q is heat flow. Any flow property φ as a variable

of time and space in statistically steady flow can be described as the sum of an

average value and fluctuations about that value [27]:

φ(xi, t) = φ(xi) + φ′(xi, t) (3.5)

The method used for averaging could be a time or ensemble average. For unsteady

flow ensemble average is the natural choice, but for steady flow a time average

would suffice. If the time chosen for the averaging is large enough, i.e. large

compared to the time scale of the fluctuations, (φ) will be independent of the start

time of the averaging. Thus, the time averaging would be defined as

φ(xi) = lim
T→∞

1

T

T∫

0

φ(xi, t)dt (3.6)

or in case of an ensemble average with ensemble size N

φ(xi, t) = lim
N→∞

1

N

N∑

n=1

φ(xi, t) (3.7)

Reynolds first used an approach of expressing turbulent flow as the sum of mean

flow U and turbulent contribution u′ [86]. He then formulated the time average

of the Navier–Stokes equations, introducing momentum fluxes that are a–priori

unknown. These need to be modelled which leads to additional unknown param-

eters in the equation. New equations for these quantities have to be derived to

27

3.2 Reynolds-Averaged Navier-Stokes Equations

close the equation system. Statistical steadiness implies that φ′ = 0. Using that

information with Eqn. (3.5) shows that averaging a linear term in the conservation

equation just produces the identical term for the averaged quantity. Conventional

ensemble rules of averaging apply

a = a (3.8)

a+ b = a+ b (3.9)

ab = ab (3.10)

For a quadratic non–linear term when using (3.8)-(3.10) two terms emerge, the

product of the averages and a covariant:

uiφ = (ui + u′

i)(φ+ φ′)

= uiφ+ u′

iφ+ φ′ui + u′

iφ
′

= uiφ+ u′

iφ+ φ′ui + u′

iφ
′

= uiφ+ u′
iφ+ φ′ui + u′

iφ
′

= uiφ+ u′

iφ
′ (3.11)

The term u′

iφ
′ is zero only if the two quantities are uncorrelated which is rarely

the case in turbulent flows. Applying these thoughts to all linear and quadratic

terms of the NS equations gives the Reynolds–Averaged Navier–Stokes (RANS)

equations

∂(ρui)

∂xi
= 0 (3.12)

∂(ρui)

∂t
+

∂

∂xj

(
ρuiuj + ρu′

iu
′

j

)
= − ∂p

∂xi
+

∂τ ji

∂xj
(3.13)

with mean viscous stress tensor components

τ ij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)

(3.14)

where ρ is the density and µ the dynamic viscosity of the fluid.

28

3.3 Zero-Equation models

The inclusion of the Reynolds stresses ρu′

iu
′

j and the turbulent scalar flux ρφ′u′

i

into the conservation equations introduces new unknowns to the equation system.

These cannot be expressed in terms of the known variables. To solve this dilemma,

the Reynolds stresses could be computed directly, leading to Reynolds–Stress–

Models (e.g. [59]). Another way would be to relate the turbulence stresses to the

mean flow:

− u′

iu
′

j = 2νtSij −
2

3
Kδij (3.15)

where Sij is the mean rate of strain tensor and δ is the Kronecker delta. A new

proportionality factor νt > 0, the turbulence eddy viscosity, is introduced which

can be modeled. Following is a short summary of the most commonly applied

eddy viscosity models.

3.3. Zero-Equation models

The driving force that transports mass, momentum and energy orthogonal to the

streamlines is the viscosity. It is therefore natural to assume that the transport of

turbulent quantities is governed by a turbulent or eddy-viscosity [27]. The eddy–

viscosity can be expressed as the product of the turbulent velocity and a length

scale νT = u∗l∗. This length scale has to be prescribed on the whole domain for each

flow considered, but its actual quantity is very difficult to estimate. Prandtl used a

measure he called mixing length ℓ, a characteristic of the flow, but at the same time

described his expression as ‘only a rough approximation’ [82]. This approximation

is accurate enough to describe the general behaviour of the turbulence for very

simple flows only, but it provides some insight into the nature of turbulence.

The most often used derivations of the mixing–length theory are the Cebeci–

Smith [14] and the Baldwin–Lomax [8] models. Estimating the turbulent viscosity

separately in the two layers of a boundary-layer flow, Cebeci–Smith uses mean

velocity gradients while Baldwin-Lomax calculates the magnitude of vorticity in

the outer layer. The viscosity for the inner layer in both models is a function of

the distance to the closest wall. Common to both eddy viscosity models is that

they rely on quantities calculated on grid lines normal to the walls, leading to

problems when using unstructured or multilayered grids. Furthermore they are

29

3.4 One-Equation models

known to have problems predicting separated flows well [34]. Yet mixing-length

models still persist in industrial flow computations, mainly because they are very

easy to implement.

3.4. One-Equation models

In the original formulation the velocity scale was locally determined by velocity

gradients:

u∗ = l

∣
∣
∣
∣

∂〈U〉
∂y

∣
∣
∣
∣
, (3.16)

but it is obvious that the turbulent velocity scale can be far from zero while the

velocity gradient is zero, for example in the center of a round jet [81]. Instead of

basing the velocity scale on the velocity gradients, Prandtl [83] and Kolmogorov

(cited in [30]) have independently proposed to use the kinetic energy u∗ = ck1/2 as

a basis for the velocity scale instead. In this equation c is an empirical constant.

To estimate this quantity, they proposed a transport equation for k, leading to a

one-equation model. A derivation of the equation can be found in [110]. The intro-

duction of a modeling equation for the turbulent kinetic energy has the advantage

that it describes the velocity scale locally, whereas the zero–equation models are

strongly dependent on the structure of the grid. The most commonly used models

probably are the Spalart-Allmaras (SA) [93] and the Baldwin–Barth [7] model.

3.4.1. Spalart Allmaras Model

Spalart and Allmaras based their model mainly on dimensional analysis and empir-

ical observations. The transport equation contains up to twelve arbitrary parame-

ters that have to be tuned by experiment to fit a specific type of flow. But the set

of values for the parameters proposed by the authors is widely used in industrial

applications and gives reasonably good results in a wide range of applications. It

is known, though, that this model causes very high diffusion in regions of three–

dimensional vortical flow and can produce misleading results for these flow types.

Also the prediction of flow quantities gets very inaccurate close to walls.

30

3.4 One-Equation models

Based on dimensional analysis and introducing some modifications for the sake

of numerical stability the original model by Spalart and Allmaras is most often

used in this form:

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1(1− ft2)S̃ν̃ −

[

Cw1fw −
Cb1

κ2
ft2

](
ν̃

d

)2

+
1

s

[
∂

∂xj

(

(ν + ν̃)
∂ν̃

∂xj

)

+ Cb2
∂ν̃

∂xi

∂ν̃

∂xi

]

(3.17)

with

νt = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

, χ :=
ν̃

ν

S̃ ≡ S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1

and

S ≡
√

2ΩijΩij , Ωij ≡
1

2
(
∂ui

∂xj
− ∂uj

∂xi
)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

, g = r + Cw2(r
6 − r)

r ≡ ν̃

S̃κ2d2

ft2 = Ct3 exp(−Ct4χ
2)

ν̃ is the modeled viscosity, d is the distance to the closest wall and δ is the Kro-

necker delta. The trip ft2 was a numerical fix by Spalart and Allmaras that makes

ν̃ = 0 a stable solution. This behaviour was desired in conjunction with a trip

function ft1∆U given in the original reference to semi-automatically determine

the transition point from turbulent to laminar flow. But according to Rumsey [87]

most users do not employ this trip function, but run the model in fully turbulent

mode. The proposed standard values for the coefficients are given in Table 3.1.

The parameter Cw1 is implicitly calculated from

Cw1 =
Cb1

κ2
+

1 + Cb2

s
.

31

3.5 Two-Equation models

The Spalart–Allmaras model is different from other one-equation models like the

ones from Baldwin–Barth [7] or Bradshaw, Ferris and Atwell [13]. In contrast to

those, the SA model is not a simplified derivation of the k-ε but was instead built

“from scratch”. This ensured that it would not inherit some of the flaws of the k

and epsilon transport formulations. The equations for SA were developed in four

steps, successively adding more complex physical effects in each step. The cen-

tral quantity in all terms is the eddy viscosity νt. Then diffusion, production and

destruction terms were formulated based on effects in free shear flows, boundary

layer flows and transitional turbulence. All equations as well as model parameters

were derived using empiricism, arguments of dimensional analysis, Galilean invari-

ance and selective dependency on the molecular viscosity [93]. Even though the

authors gave a suggestion on the parameter values based on their experience, at

no point did they claim these values to be of general applicability. 1

Table 3.1.: Standard values for the Spalart–Allmaras model in OpenFOAM

Cb1 Cb2 s κ

0.1355 0.622 0.666 0.41

Cw2 Cw3 Cv1 Ct3 Ct4

0.3 2 7.1 1.2 0.5

3.5. Two-Equation models

In the previously described models the length scale ℓ had to be prescribed on

the whole domain, which required a certain knowledge of the character of the

flow in question. To avoid this, the turbulent length scale needs to be modelled.

Consequently, two–equation models are considered as complete, meaning they can

be used to predict the properties of a turbulent flow without prior knowledge of

the turbulence structure. There are two main ideas to do so: The first is to solve a

transport equation for the rate of dissipation ε of turbulent kinetic energy leading

1In a personal conversation Stephen Allmaras told me he would not be surprised but would
rather expect other values to work better for specific physical problems.

32

3.5 Two-Equation models

to the k-ε model first proposed by Jones and Launder [52] where (
√
k3/ε) ∼ ℓ.

The other is to model the specific dissipation rate ω, as Wilcox [110] suggested

in his k-ω model, in which (
√
k/ω) ∼ ℓ. Both these models are very popular

in industrial applications since they are easy to implement and generally robust.

Since the k-ω model can deal more efficiently with the region at the walls and

the k-ε model handles the free shear flow regions better, Menter [70] proposed his

’shear stress transport’ (SST) hybrid model that, amongst a few other features,

switches between these two models depending on the position in the flow.

3.5.1. k-ε Model

Probably the most commonly used turbulence closure model is the k-ε model

originally formulated by Jones and Launder in 1972 [52]. It makes some very

strong assumptions about the nature of the vorticity in the flow field. Foremost

it is a static model that does not take into account the history of the strain of

turbulence. Further it predicts isotropy of turbulence, which is not the case for

any flow with stratification or rotation. Despite these limitations it seems to work

reasonably well for many applications. In this model, the turbulent kinetic energy

is derived directly from the turbulent flow field as k = 1
2
(u′2). That means, the

higher the energy in the turbulent field, the greater the momentum exchange and

thus the greater the eddy viscosity νt. Following from that, the length scale ℓ

would be of the order of the integral scale, since the largest eddies contribute most

to the momentum exchange, leading to

νt ∼ k1/2ℓ. (3.18)

Now using the observation, that in most forms of turbulence ε ∼ u3/l [20], Jones

and Launder calculated the eddy viscosity from

µt = Cµρk
2/ε (3.19)

where Cµ is a coefficient with the (empirical) value of ∼ 0.09. There is no funda-

mental reason, why µt should only be dependent on turbulence parameters such

as k, ℓ, ε or ω. Thus, two-equation models are no more universal in describing

33

3.5 Two-Equation models

the behaviour of a flow than one-equation models are. Furthermore, they can be

expected to be inaccurate for many non-equilibrium turbulent flows [110].

Further simplification of the physical nature of turbulence and empirical obser-

vations lead Jones and Launder to these advection/diffusion equations for k and

ε:

ρ
∂k

∂t
+ ρUi

∂k

∂xi
= τij

∂Ui

∂xj
− ρε

+
∂

∂xi

[

(µ+ µT/σk)
∂k

∂xi

]

(3.20)

ρ
∂ε

∂t
+ ρUi

∂ε

∂xi
= C1

ε

k
τij

∂Ui

∂xj
− C2ρ

ε2

k

+
∂

∂xi

[

(µ+ µT/σε)
∂ε

∂xi

]

(3.21)

The ε equation 3.21 is almost pure construction. It is based on a general assump-

tion on the structure of the equation which models the turbulent length scale. A

proper derivation of the ε equation would involve more modeling and require a

sound understanding of the nature of turbulence which, unfortunately, is not avil-

able. Launder [60] presents a short overview of different approaches using a variety

of relations between k and ℓ, introducing a general variable z = kmℓn. In this case

z = ε = k3/2ℓ−1. The transport equation for z contains three nominally arbitrary

parameters C1, C2 and σz. Launder describes how each of the coefficients can be

determined from well documented flows: To obtain a value for σz in the diffusion

term of Eqn. 3.21 he compared computational results with measurements of asym-

metric flow between parallel planes of which one was smooth the other roughened.

The difference in texture leads to a larger contribution of the diffusion term than

in wall boundary layers. From his observations he concluded that σε and σk should

be in the order of unity, settling on 1.0 and 1.3 respectively in his final publication.

σz ≃ 1 (3.22)

For the value of C2, experimental data on the decay of turbulence behind a fine

wire screen was used. In this particular setup the variables become dependent only

34

3.5 Two-Equation models

of one directional coordinate, transforming the equations for k and z to ordinary

differential equations. To match the model with the observations, C2 would have

to be expressed as

C2 = Cµf(m,n) (3.23)

where in the case of the k-ε model m = 3/2, n = −1.
Finally, C1 was estimated by looking at near–wall turbulence, where convection

and diffusion of kinetic energy are negligible. By setting C1 in relation to other

constants, Launder derived an initial value of 1.5, but after fine tuning all C’s and

σ’s using computer optimisation, recommended a final value of 1.45.

Over the years, these parameters were all slightly modified to fit more univer-

sally to a wider range of flow problems. More canonical test cases were considered

for tuning the coefficients using regression analysis. As Davidson states in his book

about turbulence [20] ‘the k-ε model is a highly sophisticated exercise in interpolat-

ing between data sets.’ But just this property makes it a very promising candidate

for the purpose of this thesis, that aims to identify an optimal set of parameters

for any given flow. The main problem of the k-ε model is its treatment in the

near-wall region of the flow where the destruction-of-dissipation term is singular.

To avoid this in a layer close to the wall the flow has to be treated seperately by a

wall function. The resolution of the grid close to the walls has to be sufficiently fine

for the wall functions to yield reasonable results, meaning additional care needs to

be taken when solving a problem using this model.

The standard values for this model as they are found in the OpenFOAM imple-

mentation are given in Table 3.2.

Table 3.2.: Standard values for the k-ε model as implemented in OpenFOAM

σk σε C1 C2 Cµ

1.0 1.3 1.44 1.92 0.09

35

3.5 Two-Equation models

3.5.2. k-ω-SST Model

Another approach is to model the specific dissipation rate ω, as Wilcox [110]

suggested in his version of the k-ω model, in which (
√
k/ω) ∼ ℓ. Menter [71]

introduced a modification to that model combining the near-wall treatment of

the k-ε model and the accuracy in predicting the free flow from the k-ω model.

He used blending functions to switch from one model to the other. The eddy

viscosity equation is modified to account for the transport effects of the principle

turbulent shear stress (hence the name k-ω-SST). Menter’s formulation is widely

used in aerodynamics and is a good candidate to test the capability of the genetic

optimisation as it contains no less than eleven arbitrary coefficients, of which

the default values are given in Table 3.3. The implementation of this model in

OpenFOAM uses the following equations:

µt =
ρa1k

max(a1ω, SF2)
(3.24)

ρ
∂k

∂t
+ ρUi

∂k

∂xi
= P̃k − β∗ρkω

+
∂

∂xi

[

(µ+ skµt)
∂k

∂xi

]

(3.25)

ρ
∂ω

∂t
+ ρUi

∂ω

∂xi
= ρ

γP̃k

νt
− βρω2

+
∂

∂xi

[

(µ+ sωµt)
∂ω

∂xi

]

+ 2(1− F1)
ρsω2
ω

∂k

∂xi

∂ω

∂xi
(3.26)

using a production limiter

Pk = µt
∂Ui

∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)

→ P̃k = min (Pk, c1β
∗ρωk) .

Each of the constants φ ǫ {β, γ, sk, sω} is a blend of an inner φ1 and outer φ2

constant, blended via:

φ = F1φ1 + (1− F1)φ2

36

3.6 Parameter Identification

with blending function

F1 = tanh

min

[

max

(√
k

β∗ωy
,
500ν

y2ω

)

,
4ρsω2k

CDkωy2

]4

 (3.27)

CDkω = max

(

2ρsω2
1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)

(3.28)

where ρ is the density, νt = µt/ρ is the turbulent kinematic viscosity, µ is the

molecular dynamic viscosity, y is the distance from the field point to the nearest

wall. F1 is equal to zero away from the surface (k-ε model), and switches to

one inside the boundary layer (k-ω model). Note that the production limiter

coefficient c1 is proposed as a constant in the original paper by Menter [71], but is

implemented as a variable in OpenFOAM.

Table 3.3.: Standard values for the k-ω-SST model in OpenFOAM

sk1 sω1 γ1 β1

0.85034 0.5 0.5532 0.075

sk2 sω2 γ2 β2

1.0 0.85616 0.4403 0.0828

a1 c1 β∗

0.31 10 0.09

3.6. Parameter Identification

Most of the above mentioned turbulence models include a number of parameters

that need to be calibrated to the type of flow that is to be investigated. Sur-

prisingly, most of these coefficients have little or no physical relevance at all and

are merely empirical. The number of parameters vary from model to model with

up to twelve in the Spalart–Allmaras equation. Lengthy experiments have to be

conducted to estimate a set of values for the coefficients that best describes a

37

3.6 Parameter Identification

specific type of flow covered by the experiment. And even though the authors of

the models themselves provided standard values for the flows they investigated,

these standards are used by industrial users regardless if they are fit to adequately

describe a problem, or not. Some research was done in a-priori parameter identi-

fication by Qian et al. [104], Bardow [10], and others, but all these considerations

did not lead to a better understanding of the impact of the parameters to the

behaviour of the solution.

One of the more well known examples where a specific turbulence is known

to give bad results but where changes to the parameters have been proposed to

improve the quality of the calculation, is the spreading rate of round jets when

using a k-ε or k-ω model. Closer investigation of the agreement with experimental

data done by Wilcox [110] has shown an underprediction of the spreading rate

of up to 60% with the k-ω model and an overprediction of up to 30% with the

k-ε model. Suggestions of modifications to the dissipation equation have been

made to better match the predictions. (e.g. by Pope [80]). Yet, while varying

the coefficients might lower the discrepancy between computed and observed data,

a statistical analysis by Smith et. al. [91] has shown that it is not possible to

find a set of parameters that equally fits a wide range of jet configurations. So

optimisation can only be a solution with very limited applicability.

This notion, of course, raises the question what this current research is hoping

to achieve. First of all, the idea to generate an optimal parameter set for a tur-

bulence model is of more than just academic value. Consider, for example, a car

manufacturer who bases their design constraints on results from a CFD simula-

tion with the overall goal to reduce the drag coefficient. It is known, that small

changes to the coefficient affect the fuel consumption and, immediately connected

to this, the CO2 emissions. To capture minute changes accurately and reliably, a

good working turbulence model is required (if the value is obtained with RANS

simulations). The effort to tune the model parameters to the problem at hand is

expensive in terms of time and resources, but since the same type of flow will be

simulated over and over again within the workflow of the manufacturer, a benefit

can be gained from the optimisation procedure in the long run.

38

3.7 Finite Volume Method

3.7. Finite Volume Method

In order to solve the partial differential equations that govern the behaviour of fluid

flow it is required to transform them into a system of algebraic equations that can

be solved numerically. This discretisation has to be performed spatially as well as

temporally. The outcome of this procedure is a description of the computational

domain in terms of points in space where the solution shall be obtained and a set

of boundary conditions prescribing the solution at given points in time and space.

By means of this discretization the space is divided into a finite number of distinct

regions, called cells or control volumes. That is why it is known as the Finite

Volume Method (FVM).

3.7.1. Spatial Discretisation

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

f

S

P

N

Figure 3.1.: A control volume with centre point P, face area vector S of face f and
neighbour cell centre N (Source: OpenFOAM Programmer’s guide).

The accuracy of a numerical solution of a physical field problem depends not

only on the order of approximation, but also on the distribution of grid points

in the computational domain. The quality of the grid based on the geometric

characteristics, as well as on the solution characteristics influenced by the field

properties being simulated is an important aspect in the improvement of the accu-

racy and convergence rate of the solution. The setup of the computational grid and

39

3.7 Finite Volume Method

the structure of the partial differential equation (PDE) to be solved are therefore

closely coupled [69].

Figure 3.1 shows an arbitraryly shaped polyhedron that is used as a control

volume (CV). For the integration of the flux values in the finite volume formulation

of the flow equations, properties of the cell and its faces need to be known. The

centre of the CV is denoted here as P and the centre of the cell that is the direct

neighbour of face f is N . The area vector of the face is S and it is orthogonal to

the face, pointing outward from the cell centre.

The discretisation of the spatial domain into cells of arbitrary shape requires a

numerical method that is easily adaptable to this kind of grid. The finite volume

approach is such a method [27] and the discretisation of the governing equations

shall be discussed in this section. Focus is on the parts of the equations that are

susceptible to bad mesh quality. These are mainly the spatial discretisations that

are tackled with low-order differencing schemes. The discretisation of the solution

domain produces a numerical description of the computational domain, including

the positions of points in which the solution is sought and the description of the

boundary. The common form of the transport equation for a scalar property φ is

∂ρφ

∂t
︸︷︷︸

temporal derivative

+ ∇ • (ρUφ)
︸ ︷︷ ︸

convection term

−∇ • (ρΓφ▽φ)
︸ ︷︷ ︸

diffusion term

= Sφ(φ)
︸ ︷︷ ︸

source term

. (3.29)

The entities in this equation are the density ρ of the fluid (which is constant for

incompressible flow), the velocity vector U and the diffusivity of the scalar Γ. The

finite volume method requires Eqn. 3.29 to be correct on the control volume V

around point P :

∫ t+∆t

t

[
∂

∂t

∫

VP

ρφdV +

∫

VP

∇ • (ρUφ)dV −
∫

VP

∇ • (ρΓφ▽φ)dV

]

dt

=

∫ t+∆t

t

(∫

VP

Sφ(φ)dV

)

dt.

(3.30)

40

3.7 Finite Volume Method

Applying Gauss’ theorem to each term of this equation and thereby transforming

the volume integrals to surface integrals over the boundary of the control volume,

the spatial terms are discretised [50]. The diffusion term becomes:

∫

VP

∇ • (ρΓφ▽φ)dV =
∑

f

(ρΓφ)fS · (▽φ)f (3.31)

The convection term is then handled as:
∫

VP

∇ • (ρUφ)dV =
∑

f

F · φf (3.32)

where F represents the mass flux through the face f :

F = S · (ρU)f (3.33)

Equation 3.32 is of interest in judging the quality of the mesh, especially the mesh

skewness. This is addressed in detail in Section 6.3.1.

One should bear in mind that the derivation of higher order CV methods is

rather difficult. Ferziger and Perić [27] make it clear, that second order accuracy

is the best one can reach with single-point approximations using the mid-point rule

and linear interpolation. For interpolation of higher order, more neighbours have

to be taken into account, which is difficult if not unmanagable on unstructured,

three dimensional grids.

41

4. Genetic Optimisation

Real stupidity beats artificial

intelligence every time.

Terry Pratchett, Hogfather

4.1. Genetic Algorithm Basics

Genetic Algorithms are based on the principle of natural selection and natural

genetics [37]. GAs are randomly initialised, asserting a diverse set of possible

solutions. Compared to conventional optimisation methods they will explore many

areas of the solution space simultaneously during the evolution process. That

reduces the probability to get trapped in local optima, as common gradient based

methods would do, possibly missing the global optimum completely.

Figure 4.1 depicts the sequence of operations in a typical GA. At first an ini-

tial population of possible solutions is generated randomly. Using a uniformally

distributed random number generator should ensure an equal spread of the popu-

lation over the solution space. In the evaluation phase each individual is assigned

a fitness value. Calculating this fitness is the most time consuming part of the pro-

cess. The order of application of genetic operators is interchangeable, but will be

repeated until termination of the optimisation. Candidates are chosen for repro-

duction based on their fitness, using one of the implemented selection operators.

Then, with a given probability, these candidates are transformed to create new

individuals by applying a crossover operator and eventually the chromosome is

changed by the mutation operator. After the new population is built that way it

will again be evaluated and the termination criterion will be checked. This crite-

rion might be reaching a maximum number of generations or a measure for the

4.1 Genetic Algorithm Basics

diversity of the population. If the criterion is not met, the algorithm repeats by

creating a new generation of individuals using the defined genetic operators.

A set of parameters in a GA will generally be coded as a string of finite length,

most commonly a binary string. Each of these strings (also chromosome or geno-

type) represents one possible solution to the optimisation problem. Two opposed

strategies are at work here: Exploitation of a solution versus exploration of the

solution space. Classical gradient based methods concentrate on exploiting, while

a fully exploratory approach would correspond to a random search. GAs manage

to reach a very good balance between those two extremes [73].

The implementation details described in the following sections refer to the real-

isation chosen for this thesis. Alternative implementations might be possible but

were either not considered or did not prove relevant within the scope of this work.

4.1.1. Chromosome Encoding

Since the problem variables are integer or real values and their chromosomal rep-

resentation is a binary string, a mapping has to be defined. For a single coefficient

c ǫ [clo, chi] the length of the bitfield b = 〈b0b1 . . . bn〉2 has to be determined by

taking into account the desired resolution ∆c of the interval. The number of bits

required to represent the interval [clo, chi] is

n =

⌈

log2

(
chi − clo

∆c

+ 1

)

− 1

⌉

(4.1)

Translation from binary to decimal and vice versa can now easily be done as

follows:

〈b1 b2 . . . bn−1 bn〉2 =

(
n∑

i=1

bi · 2i
)

10

= c′ (4.2)

c = clo + c′ · chi − clo
2n+1 − 1

(4.3)

In a first attempt chromosome encoding was implemented using Gray’s algorithm

[105], which ensures that successive numbers in a bit coded string only differ by a

single bit. Since uniform mutation is used where only a single bit is changed it is

44

4.1 Genetic Algorithm Basics

obvious that the result on a classical binary coded chromosome results in a greater

displacement in the solution space than applying the mutation operator to a Gray

coded chromosome. That is why for the remainder of this work all chromosomes

are coded in the fashion described in equation 4.2.

To convert a binary number b1 b2 . . . bn−1 bn into its corresponding binary Gray

code, the coding algorithm works as follows:

• Take the right most digit bn

• If the next digit bn−1 is 1, replace bn with 1− bn

• proceed with the next digit

• assume that b0 is always 0

For example the binary number 〈1 0 0 1 0 1〉 would be transformed to 〈1 1 0 1 1 1〉. It

is stated by Michalewicz in [73] that Gray coding would move the genetic algorithm

closer to the problem space, meaning that the distance between two points in the

representation space should be similar to the distance of these points in the problem

space.

4.1.2. Objective Function

The translation of the chromosome by decoding the binary representation is done

by the objective function. This function therefore converts the genotype into a

phenotype. It has no other functionality than producing an integer or real number

from the binary string. Validity of the value within the requirements imposed by

the problem description has already taken place before the value was encoded.

The resulting objective value is then mapped onto a fitness value, that is used in

the selection process described in the following section. This mapping can be an

identity mapping, if the objective value satisfies the conditions described in section

4.2, or it could be any kind of mathematical conversion that allows the value to

be used in the selection process.

45

4.1 Genetic Algorithm Basics

4.1.3. Selection

Individuals are selected for reproduction depending on their fitness value. This

selection process is stochastically controlled, assigning fitter individuals a higher

probability to get chosen. From those individuals (parents) selected in this manner,

offspring (children) are generated by applying crossover and mutation operators.

Two common selection procedures are implemented so far, but others can easily

be added.

Roulette Wheel selection In this selection operator fitness is directly propor-

tional to the probability of selection. To select an individual from a popula-

tion all fitness values are summed up and the contribution of one indiviual’s

fitness to the sum determines the chance to be selected. For example in a

population with five individuals, figure 4.2 shows the chances of selection for

each individual according to their respective fitness. The benefit of this se-

lection procedure is, that it perfectly reflects the fitness value in the selection

procedure. Individuals with very low fitness are not very likely to ever be

selected, therefore the population will advance rapidly in very few genera-

tions. This is also a downside, because the diversity will also diminish [73].

It will also not work very well if the fitness values are very close together,

giving all individuals an almost equal chance of selection. The range of the

fitness value is also important. For once it has to be a positive, real number

so summing up the fitness makes sense. Further the higher fitness value has

to be the optimisation target. If the fitness value shall be minimised it has

to be adjusted accordingly.

Tournament selection This selection operation is easier but also has a few ad-

vantages in many cases. From the population a number of individuals, deter-

mined by the tournament size parameter, is selected with equal probability.

Of this tournament set, the best individual, i.e. the individual with the best

fitness, is selected for reproduction. One advantage of this procedure is the

maintaining of diversity for more generations, allowing for a more thourough

exploration of the solution space. Especially if the topology of the solution

space is not known in advance and may contain many local optima, tourna-

ment selection is the better choice.

46

4.1 Genetic Algorithm Basics

The difference between these two methods is that in tournament selection indi-

viduals get chosen based on their ranking rather than their actual objective value.

It has been shown that this approach helps to avoid premature convergence and

speeds up the search when convergence is approaching [108]. There are other

selection algorithms that do not consider all individuals for selection, but only

those with a fitness value that is higher than a given arbitrary constant. Other

algorithms select from a restricted pool where only a certain percentage of the

individuals are allowed, based on fitness value. Other selection methods such as

stochastic universal sampling sampling (SUS) or reward-based selection (for multi-

objective optimization) can be found in literature [5, 64] and could easily be added

to the software framework presented in this research.

4.1.4. Crossover

The crossover operator uses two parents and combines elements from one parent

with elements from the other, creating a new individual that now contains infor-

mation from both its ancestors. In single-point crossover, one point is chosen at

random at which the two parent individuals are split and reassembled in switched

order, as illustrated in Figure 4.3. An example of single point crossover between

two chromosomes (binary strings) a and b of length n+1:

a = 〈an an−1 . . . a1 a0〉
b = 〈bn bn−1 . . . b1 b0〉 (4.4)

with a randomly selected crossover point X ǫ [0, n− 2], creating children:

a′ = 〈an an−1 . . . aX+1 bX bX−1 . . . b1 b0〉
b′ = 〈bn bn−1 . . . bX+1 aX aX−1 . . . a1 a0〉 (4.5)

The selection of crossover points as well as their number can be varied to pro-

duce new forms of crossover operators. In multi point crossover the number M

of crossover points is fixed, but greater than 1. A set of chromosomes that have

sections of bits in common are called a schema [37]. Over the course of an optimi-

sation, a small number of schema will dominate the population. In some problems,

47

4.1 Genetic Algorithm Basics

though, a single point crossover operator is not able to produce certain schema

[73]. In that case multi point crossover should be used. Another form is uniform

crossover, where a randomly generated mask is laid over the parent chromosomes

to produce offspring. The procedure is depicted in Figure 4.4.

The preference of which crossover method to use is still a matter of argument

in literature. It was not possible to find a final statement on this topic. It seems

rather that the selection of the "right" operator is very much problem dependent

[67], but no guideline could be found in related publications.

4.1.5. Mutation

Mutation is in most cases implemented as uniform mutation where the value of a

single bit in a chromosome is inverted from 1 to 0 or vice versa [74]. The proba-

bility of mutation is controlled by an external variable PM . The rate of mutation

is usually chosen in relation to the population size [114]. The random nature of

this operation is important to maintain diversity within the population. Even

with low mutation probability it prevents premature convergence to a possibly

false optimum throughout the whole evolution procedure. Another form of mu-

tation is Gaussian mutation, which is only applicable to integer or float variables

and instead of mutating the bit representation of the value, a gaussian distributed

random number is added or subtracted from the current value. In non-uniform

mutation the probability of mutation changes over time. Neither of these alterna-

tive mutation operators is implemented, but can easily be added to the modular

structure of the existing code.

48

4.1 Genetic Algorithm Basics

YES

NO
terminate?

Initialisation

Evaluation

Evaluation

Selection

Crossover

Mutation

Figure 4.1.: Schematic of the workflow of a typical genetic algorithm.

49

4.1 Genetic Algorithm Basics

0.6S̃

0.03S̃

0.2S̃

0.1S̃

0.07S̃

Figure 4.2.: Visualisation of the selection probabilty for each of five individuals
using roulette wheel selection. S̃ is the sum of all fitness values.

Parents

Children

Crossover Point

Figure 4.3.: Example for a single point crossover operation on two individuals.

Parents

Children

Mask 1111 0000

Figure 4.4.: Example for a uniform crossover operation.

50

4.2 Fitness

4.2. Fitness

The driving force, so to speak, of evolutionary strategies is the fitness of the in-

dividual. It influences the chance of being selected for reproduction, which allows

it to pass its characteristics on to new descendants via crossover operations or it

might remain unchanged and advance to the next generation. Fitness introduces

high inter–individual pressure for survival at different degrees, depending on the

type and the implementation of the selection procedure and the probabilities of

mating operators.

In traditional genetic algorithms the fitness value definition underlies a set of

requirements. Since many selection methods depend on meeting these conditions

in order to work, they have to be taken in consideration when conceiving a fitness

evaluation function. Foremost fitness should always be represented by a positive,

real number. Roulette wheel selection, for example, relies on this requirement

because it calculates the sum of all fitness values in one generation and selection

is based on each individual’s contribution to this sum. Which leads to another

condition the fitness value has to meet: The higher the value the higher the chances

of survival. These considerations have to be taken into account when defining a

fitness evaluation method.

Another requirement is limiting the fitness value to the interval [0, 1]. This

might be difficult to provide, especially if the range of possible fitnesses is un-

known a-priori. If a selection procedure relies on this requirement, for example

the crowding distance assignment in the improved Nondomniated Sorting Genetic

Algorithm (NSGA-II) (see Section 4.5.1), one could normalise fitness values by

dividing by the highest fitness among all individuals in a generation once all have

been evaluated. That requires careful design of the operations and the order in

which they are applied to avoid unnecessary calls to the evaluation function. It also

makes comparison between fitnesses over many generations difficult when they are

normalised with different values. This has to be taken into account if performance

statistics are of interest. In this thesis fitness requirements are handled rather

losely and active consideration of this problem has to be done when implementing

the fitness function to meet any requirements the selection function might impose.

No automated error handling is in place for this purpose. If it is not possible to

51

4.3 Implementation

ensure this, a certain selection function might not be appropriate for the problem

and should be dismissed outright.

4.3. Implementation

4.3.1. Language Selection

Many implementations of genetic algorithms are available online either as open

source software under a form of common license or as commercial software. Also

different programming languages are supported and libraries for those languages

are available. Yet within the scope of the current research an arbitrary implemen-

tation was designed and written to achieve maximum flexibility with minimum

overhead. Transparency is gained at the cost of efficiency, but since the compu-

tational cost for the genetic algorithm is negligible in comparison to that of the

fitness function evaluation, efficiency is less important.

The language chosen for this project is Python (current version 2.7), an object–

oriented interpreter language. The reason for this selection is the OpenFOAM

library PyFoam 1, which provides functions and applications to control the work-

flow of a simulation run with OpenFOAM. That includes reading and writing of

files in OpenFOAM’s own file format. Instantiating OpenFOAM applications such

as solvers and post-processing tools is supported and automatically creates log files

of the execution. These can then be parsed and analysed by the genetic algorithm.

Object–oriented features of Python make design and testing of the code easier, be-

cause these processes are well defined in the development cycle of object–oriented

software [9].

4.3.2. Code Design

In order to write software that is as generic as possible the design process has

to be treated with special care. Based on the guidelines by Gagné and Parizeau

on how to write generic EC software tools [31], the framework structure should

meet the criteria discussed in the following sections. The term ’generic’ in this

1http://openfoamwiki.net/index.php/Contrib_PyFoam

52

4.3 Implementation

context needs further explanation. According to the computer dictionary2, generic

software is ‘Software which can perform many different types of tasks but is not

specifically designed for one type of application’. Taking that into account the

development of a generic EC framework should not be tailored to one specific form

of optimisation. Operators, such as the crossover or selection operator, should be

interchangeable regardless of the objects they are applied to. In addition, the

underlying representation of a solution should not affect the way the GA works.

Interchangeability of operators can easily be implemented in modern object-

oriented programming languages. The developer can choose from a given set of

predefined operators or can add new operators to meet specific needs. This is

usually required for the fitness evaluation which is a problem dependent function.

Independence from the optimisation problem and reusability are key features of

the selection and crossover mechanisms. Commonly used realisations of these

are therefore included in the developed framework, but can be altered or new

ones can be implemented. This is possible through the realisation of the strategy

design pattern (see chapter 5 in [32]). In this pattern a family of algorithms is

defined, each one encapsulated in an individual module. This allows the different

algorithm to be interchangeable, regardless of the underlying calling procedure.

Equally flexible is the selection of the coding algorithm that encodes and decodes

the chromosome as described in section 4.1.1.

4.3.2.1. Generic representation

The way an individual is represented varies depending on the problem. It should

be possible to define a representation that is free in the choice of its underlying

data structure while it still provides a generic interface to interact with selection

or genetic operators. This criterion is fulfilled by implementing an evaluation

function as a member of the Individual class, that translates whichever machine

coding the individual uses into a context sensitive value that can be used by the

other operators. For example the IntegerValueIndividual would evaluate into

a single integer value, while the MultiRealValueIndividual would translate to

an array of real values.

2http://www.computingstudents.com/dictionary

53

4.3 Implementation

4.3.2.2. Generic fitness

The fitness of an individual is the most problem dependent part of the GA imple-

mentation. There is no way of realising a completely generic function that fits all

problems, but instead focus should be on the interface between selection operator

and fitness function. This interface should return a single value, or in case of a

multi-objective optimisation one value per objective that measures the fitness of

this individual. It is now up to the selection procedure to decide if the optimisa-

tion problem is to minimise or to maximise the fitness, or to decide which fitness

values precede others. The fitness function is also the place in the GA that is least

dependent of what other elements of evolutionary methods are used in the solution

of the problem at hand. To achieve generality in the implementation of the fitness

function, the return value should be abstracted and a comparison function should

be provided that returns the fitter of two values to the caller. In my case fitness

is always represented by a real number or an array of real numbers, so that this

additional level of abstraction was not considered.

4.3.2.3. Generic operations

Manipulation as well as selection operators should be usable for a wide range of

possible representations and should not have side effects that influence each other.

The usage of any number of operators in an arbitrary order should not alter the

behaviour of any other function, in other words operators should be independent

of each other. This requirement strongly suggests the use of the aforementioned

strategy design pattern. In this implementation, a population is assigned a number

of operators used for the evolution. These are operators for selection, crossover and

mutation. Common specimen like single point crossover or tournament selection

operators are provided, but new varieties can easily be added, as long as they fulfil

the condition of mutual independence.

4.3.2.4. Generic evolutionary model

Gagné and Parizeau describe the genericity of the evolutionary model as the pos-

sibility to interchange the order of operators or the number of times an operator

is applied to the population. They make a point that new operators can be added

54

4.3 Implementation

to the model without rewriting it [31]. In the implementation presented here the

order of operations is defined in the population’s evolve function. It is possible

to derive new classes from an existing population class that uses a different set of

operators or creates a different variety of offspring population.

4.3.2.5. Configurable in-/output

Some of the behaviour of a genetic algorithm is controlled by fixed parameters,

such as population size or mutation probability. It is desirable to make these

parameters modifiable without changing the code for optimal flexibility. Control

parameters are therefore stored in external configuration files. The structure of

such a file is explained in detail in Section A.2.1. For every variable that is subject

to the evolution process the end user of the software can define lower and upper

bounds as well as the desired precision. This allows running different test cases

with different initial setups without altering the code. The only element that has

to be adapted and implemented for each case is the fitness evaluation function

since it is problem dependent. None of the subclasses writes out any information,

data is merely stored in utility data structures. That allows full control over the

formatting and selection of information to be written from the main function.

4.3.3. Fitness Function

Implementation of a fitness function is rather easy. The function signature ex-

pects an object of type individual as input parameter and should return a single

real value as result. A pointer to this function is assigned to the individual’s

fitnessFunc member variable. The fitness() method calls this function, pass-

ing the objects self pointer and returning the fitness value. Internally the value

is stored as another member variable within the individual object and the valid

flag set to true to avoid multiple evaluation of the same individual. Only if the

object is flagged as invalid the fitness function is invoked.

55

4.3 Implementation

4.3.4. Parallelisation

The structure of a genetic algorithms makes it suitable for performing parts of

the computation in parallel. To evaluate the fitness the individuals do not have

to communicate with each other at all. To speed up the process of evaluating a

generation, the fitness can be computed on many computer cores simultaneously.

In this work the Message Passing Interface (MPI) standard was used to enable in-

teraction between seperate processes. The Python language offers a wrapper class

around the API called mpi4py. It provides all the functions required to initialise

the environment for parallel processing as well as data packaging (pickling) and

communication methods.

Parallelising the genetic algorithm is very straight forward. One process acts

as the master node and distributes the work load to the other processes. On the

master node the initialisation of the population takes place and the parameter files

are processed. In the main generation loop of the GA each free node receives one

individual and performs the fitness evaluation. It will then return the fitness value

to the master node, which will either send out another individual if there are any

left unevaluated, or it will perform the genetic operations crossover and mutation

on the current population and advance to the next generation. Once all individuals

have been computed, the master broadcasts a finalisation message, telling all the

slave nodes to stop listening for more individuals. Because of the huge difference in

computational costs between fitness evaluation and GA operations, the process is

totally dominated by the work of the slave nodes. Time spent on communication

and workload administration can be completely neglected when estimating the

total run–time of the optimisation. Evaluating the fitness should take constant

time with minimal variation even with different parameter sets. Therefore it can

be said that the total speedup of a parallelised GA compared to a serial one scales

linearly with the number of nodes used.

Overall it can be said that running the optimisation in parallel is always ad-

vantageous so long as the computational cost of the fitness evaluation massively

outweighs the administrative cost of the GA. To gain an even better speed up one

could think of a way to include all processes in the evaluation instead of having

one process solely do the broadcasting and reception and genetic operations. Also

56

4.4 Software Model

a more dynamic load balancing algorithm based on individual node performance

could be devised instead of sending jobs to the next best idling processor.

4.4. Software Model

The design of the class model is closely related to the structure of a genetic algo-

rithm. For each entity in the algorithm structure there is one class representing

it. In addition to that, auxiliary classes and specialised descendants of the main

classes are implemented. This section gives an overview over the existing classes,

their main interfaces and a detailed description how to set up an optimisation

routine using those classes. The Python language provides all the functionality

that allows for generic software code (see Section 4.3.2), i.e. class inheritance and

function pointers. Furthermore it has efficient data structures and flexible libraries

for standard algorithms.

4.4.1. Core Classes and Operators

The core classes are the building blocks for a genetic algorithm. They provide the

neccessary interfaces for communication between objects. They are base classes

that can be derived for more specialised tasks.

4.4.1.1. BasicIndividual

Objects of this class and its derivatives represent a single individual in a GA. The

data stored in BasicIndividual is the chromosome, which is an array of undefined

type which in itself does not contain any information. In this implementation it is

an array of binary values, but the code does not explicitly make that restriction.

BasicIndividual also stores a fitness value together with the information if this

value is valid or has to be reevaluated before usage. It also overwrites the standard

comparison functions for classes. Tests for equality and unequality (=, 6=) inter-

nally test for the (un-)equality of the chromosome string. Comparison operators

(<, >, ≤, ≥) evaluate the relation between fitness values. BasicIndividual also

holds function pointers for the fitness function and the evaluation function. The

57

4.4 Software Model

latter translates the chromosome (genotype) into its numeric counterpart (pheno-

type). The signature of an evaluation function takes an object of type Individual

and returns an arbitrary type dependent on the information coded in the chromo-

some (for details on chromosome coding see 4.1.1). Available evaluation functions

are:

IntegerValueEvaluate Converts a string of binary values into an integer in two

steps: First it converts the binary into a decimal value, then it maps the

resulting decimal to the allowed data range by shifting it such that the lower

bounds match. The data range is defined in the gaDict (see A.2.1) and might

be smaller than the range that is covered by binary strings with the length

of the chromosome length. For example, if the allowed data range is [34, 85]

the required chromosome length would be calculated as ⌈log2(85− 34)⌉ = 6.

But using 6 bits the available data range would be 26 = 64. In that case

numbers representing values that do not lie inside the interval will be ignored

to make sure no values of higher value than would fit into the data range are

stored.

MultiIntegerValueEvaluate Expects a string of binaries but will return an array

of integers. Conversion works as above, but the chromosome is split into

sections of lengths defined by the individual data ranges for each integer in

the array.

RealValueEvaluate A binary string of length l is converted into its decimal equiv-

alent D, then this value is mapped to the allowed data range using the

equation

rmapped =
(bU − bL)

2l ∗D + bL (4.6)

with bL, bU being the lower and upper bounds of the data range respectively.

In a last step the resulting value is rounded to the decimal accuracy requested

in the configuration dictionary.

MultiRealValueEvaluate As above, but the input chromosome is first split into

blocks, each block representing one real value in an array.

58

4.4 Software Model

4.4.1.2. BasicPopulation

BasicPopulation is an abstract class for the implementation of populations in

a GA. It stores an array of individuals, probability parameters for the evolution

as well as some book keeping information. More importantly it provides virtual

interfaces for genetic operators such as selection, crossover, mutation and genera-

tion advancement. All these functions must be assigned or implemented in derived

classes to make the population work.

4.4.2. Derived Classes

4.4.2.1. Derived from Individual

BasicIndividual

IntegerValueIndividualRealValueIndividual

MultiRealValueIndividual MultiIntegerValueIndividual

FoamCoefficientIndividual

MultiObjectiveIndividual

Figure 4.5.: Class diagram for the base class BasicIndividual.

59

4.4 Software Model

IntegerValueIndividual and RealValueIndividual Derived from BasicIndividual.

Store lower and upper bounds of the allowed data range as well as automati-

cally assigning the right evaluation function to convert a bit string to integer

or real values respectively.

MultiIntegerValueIndividual and MultiRealValueIndividual Derived from Integer-,

RealValueIndividual. Store an array of lower and upper bounds of the

allowed data ranges for each value and assign the appropriate evaluation

function. The Real version also stores an array of requested accuracies for

each value.

FoamCoefficientIndividual Derived from MultiRealValueIndividual. Addi-

tionally stores names for each value, which makes it easier to use in the

context of an OpenFOAM optimisation procedure. The values can be refer-

enced by their position in the array as well as their names. It also introduces

a new mandatory index parameter requested upon construction of the object.

It enumerates individuals in a population and keeps track of the generation

an individual belongs to. This is mainly for statistical purposes.

MultiObjectiveIndividual Derived from FoamCoefficientIndividual. The fit-

ness function pointer is replaced by an array of function pointers, one for

each optimisation objective. Equally the single fitness value is replaced by

an array of values. The comparison functions (<, >, ≤, ≥) are overwritten

and now compare the crowding distance of each individual (see 4.5.1).

4.4.2.2. Derived from Population

SimplePopulation Derived directly from BasicPopulation. The order of op-

erations is set to be selection, crossover and then mutation. Tournament

selection with tournament size 2 and single-point crossover are predefined

operators. This is the most common combination of operators used in the

optimisation runs presented in this work. Of course all these preset assign-

ments can be changed after instantiation.

ElitistPopulation Derived from SimplePopulation. In the progression to the

next generation, instead of creating n new individuals from n parents, the

60

4.4 Software Model

BasicPopulation

SimplePopulation

ElitistPopulation

Figure 4.6.: Class diagram for the base class BasicPopulation.

best two individuals are preserved and automatically advance to the next

generation. Therefore only n − 2 new individuals are created. This has no

impact on the selection procedure. This method has proven to be valuable

especially towards the converged state of an optimisation, when fitness val-

ues tend to lie closer together. Elitism increases the part of the algorithm

that is exploiting an existing solution without giving up the diversity and

exploration that comes with random reproduction [37].

4.4.3. Utility Classes

Random This implementation of functions to create random numbers is just a

wrapper around Python’s regular random number library. It provides con-

venient methods that are used by the genetic algorithm for generation of

normally distributed random numbers. Apart from the basic RNG function

random01 that will return a normally distributed random number in the in-

terval [0; 1), it offers a generator for integer values within an interval [L,H)

(randomLoHi(L,H)) and a biased coin flip that returns 1 with probability p,

or 0 with probability 1− p (flip(p)).

61

4.5 Multi-Objective Optimisation

Statistics The statistics class serves as a repository for performance related data.

It provides functions to calculate the average fitness of a population and most

importantly stores a history of all chromosomes that have been members of

the gene pool at any time during the evolutionary process. That helps to

speed up the optimisation considerably, because in later generations some

genotypes will appear repeatedly in the population and good individuals will

move up to the next generation unchanged. Keeping track of all individuals

makes re-evaluation of their fitness unnecessary, saving a lot of computational

time.

4.5. Multi-Objective Optimisation

It is often of interest to optimise a problem with respect to different objectives.

These objectives are not necessarily independent of each other, usually they are

even opposing each other. For example a manufacturer wants to optimise his

production cycle by maximising the number of items produced per day while at

the same time minimising the costs. It is probably easy to find an optimal solution

to this two-dimensional problem but with an increase in the number of objectives

and with a huge number of influencing parameters, finding such a solution gets

more and more difficult and requires the use of heuristic or stochastic methods.

One subset of evolutionary algorithms to deal with that kind of problem that has

emerged in the mid-1980s are Multiobjective Evolutionary Algorithms (MOEA).

They combine the evolutionary approach discussed in Section 4.1 with algorithms

that find a tradeoff between competing objectives. Generally an optimisation prob-

lem with k objectives, which are all equally important for the sake of simplicity,

is to be solved. Any solution to this problem is represented as a decision vector

(x1, x2, . . . , xn) taken from the decision space X. A function f : X → Y, assigns

an objective vector (y1, y2, . . . , yk) to the solution in the objective space Y [113].

Different MOEAs have been developed using different ways to assign fitness to a

solution that enables the evolutionary operators to work.

In the case of a single objective maximisation problem, i.e. k = 1, a solution

x1 ∈ X is better than a different solution x2 ∈ X if for the assigned objectives

62

4.5 Multi-Objective Optimisation

f(x1) > f(x2) or y1 > y2. Comparison of two solutions in a multiobjective

problem is less obvious than in one with only a single objective.

In the case of optimising towards more than one objective, the basic purpose

of a fitness function remains unchanged. Instead, several fitness functions are

evaluated at the same time and the Pareto criterion is determined by the GA, in

this case the NSGA-II algorithm (see 4.5.1). Mathematically speaking all solutions

on the Pareto front are optimal solutions. To select the right solution for the

actual engineering application can not be automated. For the turbulence model

optimisation, for example, looking at the convergence behaviour of each solution

might be a good guidance to choose one individual on the Pareto front.

MOEAs make use of a method called Pareto efficiency [37] which defines domi-

nance as a comparison operator: An objective vector y1 in a maximisation problem

strictly dominates a vector y2, if each objective y1i is not strictly less than than

objective y2i and at least one objective is strictly greater. In other words, if y1i ≥ y2i

for each i and y1i > y2i for some i y1 dominates y2, written y1 ≺ y2. The Pareto

front is now the set of objective vectors that are not strictly dominated by any

other vector. The respective solutions make up the Pareto set.

Recent developments calculate the Pareto front of a solution space in situ by

sorting the solutions in order of dominance. This class of algorithms is known

as Nondominated Sorting Genetic Algorithms (NSGA). Classic NSGAs [21] have

been criticised for a number of reasons:

High computational costs The cost for the nondominated sorting scales with the

population size N and the number of objectives M as O(MN3). This leads

to expensive calculations of the sorting in large populations. This criticism is

of no particular concern for the current work, as the evaluation of the fitness

function usually takes considerably longer and therefore the cost for the GA

can be neglected.

Lack of elitism Classic NSGAs do not preserve the best individual. But research

has shown that elitism can speed up the performance of a GA and good

solutions will not be discarded [114].

Introduction of an additional parameter Traditional methods rely on a sharing

parameter σshare to ensure diversity in the population. Many suggestions

63

4.5 Multi-Objective Optimisation

have been made to control this value, but a parameter–free algorithm is

always desirable.

4.5.1. Fast Non-Dominated Sorting

To overcome the above disadvantages, Deb et al. [22] have developed an improved

version of the standard NSGA called NSGA-II. They show that it outperforms

existing implementations with respect to efficiency and diversity. The cost im-

provement of the sorting algorithm is of one order of magnitude, changing it to

O(MN2). For each generation all individuals of the population are assigned a level

representing the Pareto front they belong to. The actual front is level 0, the next

level contains all individuals that are Paretooptimal if all level 0 individuals are

removed from the population and so forth. This ordering is called non-dominated

sorting. Another addition they made to the original algorithm is the introduc-

tion of a crowding distance. That is the average side–length of the largest cuboid

around a solution that does not contain any other solution. So any solitary solu-

tion that has no other individuals in its immediate vicinity would be assigned a

large crowding distance, whereas individuals that are clustered together would get

a small distance. Using an operator ≥n that evaluates this value in the selection

procedure maintains an equal spread along the Pareto front.

The NSGA-II algorithm works as follows: Initially (t = 0) a population P0

is randomly generated. It is then sorted based on the non–domination. Using

binary tournament selection, mutation and crossover a new child generation Q0

of size N is formed. From there on the procedure shown in Table 4.1 is repeated

until a certain number of generations has been generated or another predefined

termination criterion is met.

64

4.6 Benchmarking

Table 4.1.: Pseudo-code for the NSGA-II algorithm.

Rt = Pt ∪Qt combine the parent and child poulations

F = nondominated-sort(Rt) F = {Fi} all fronts of Rt

until |Pt+1| ≥ N until new population is full

assign-crowding-distance(Fi)

Pt+1 = Pt+1 ∪ Fi include i-th nondominated front in P

Sort(Pt+1,≥n) sort using the the crowding dist operator

Pt+1 = Pt+1 [0 : N] trim population to size N

Qt+1 =make-new-pop(Pt+1) selection, crossover, mutation

t = t+ 1

4.6. Benchmarking

In order to prove functionality of my own implementation of a genetic algorithm,

the code was tested against a set of benchmarking problems. These are optimisa-

tion problems of which the answer is known or can be deduced analytically. For the

simple single objective algorithm, deJong [23] suggests a set of benchmark prob-

lems, that test different aspects of the GA implementation. These problems are

still widely used in order to test new optimisation methods (e.g. [98, 78]). To cover

a wide spectrum of solution space topologies, the tests include continous, disconti-

nous, convex, non-convex, unimodal, multimodal, quadratic, non-quadratic, low-

dimensional and high-dimensional functions. The function definitions are listed in

Table 4.2, along with the parameter ranges and the approximate size of the solu-

tion space. In all cases the optimisation target was to minimise the function value.

Table 4.3 lists the topological properties of each test function. To test the imple-

mentation against these benchmark functions, a common setup of 50 individuals

per population evolving over 100 generations was defined. The crossover proba-

bility was PC = 0.6 and chance of mutation pM = 0.01 for all tests. Comparison

of the real optimum and the one found using the GA implementation presented

here is listed in Table 4.4. The statistics were gathered by simulating each prob-

lem ten times and averaging the results. Table 4.3 lists the properties of each

65

4.6 Benchmarking

of deJong’s test functions showing the different topological characteristics of the

solution space.

Table 4.2.: Benchmark minimisation problems to test GA performance as pro-
posed by deJong [23], along with the number of possible solutions
given a fixed discretisation of the xi-axis.

Function Limits No. of Solutions

F1
∑3

i=1 x
2
i −5.12 ≤ xi ≤ 5.12 ∼= 109

F2 100(x2
1 − x2) + (1− x1)2 −2.048 ≤ xi ≤ 2.048 ∼= 1.7 · 106

F3
∑5

i=1⌈xi⌉ −5.12 ≤ xi ≤ 5.12 ∼= 1015

F4
∑30

i=1 ix
4
i + gauss(0, 1) −1.28 ≤ xi ≤ 1.28 ∼= 1072

F5
[

0.002 +
∑25

j=1
1

j+
∑2

i=1(xi−aij)6

]
−1

−65.536 ≤ xi ≤ 65.536 ∼= 1.6 · 1010

Figures 4.7 to 4.11 show plots of the solution space and projections of con-

tour lines to point out the location of local minima. In case of high-dimensional

problems F3 and F4, the space for the corresponding two-dimensional function is

shown. The matrix A in function F5 was defined as

(aij) =

−32,−16, 0 , 16 , 32 ,−32,−16,. . ., 0 ,16,32

−32,−32,−32,−32,−32,−16,−16,. . .,32,32,32

F5 is basically a plane of constant value 500, with 25 local minima centered about

(a1j , a2j), where it takes the values 1, 2, . . . , 25. Finding the global optimum with

gradient based methods is rather unreliable in this case. For most of the function

space has no gradient at all and any of the local minima ‘foxholes’ will be identified

by these classical methods as the optimum. The non-deterministic character of a

GA has a higher rate of success as the results in Table 4.4 show, thanks to a

more wide spread exploration of the solution space. The table actually compares

simulated results from ten GA runs with analytical solutions of the benchmark

problems. The first two columns show the average optimum found by the algorithm

and the standard deviation over the ten runs. The third column is the best possible

solution, i.e. the optimum found by mathematical analysis of these test functions.

66

4.6 Benchmarking

Table 4.3.: Topological characteristics of the solution space for test functions F1-
F5.

F1 F2 F3 F4 F5

continous
√ √ √ √

discontinous
√

convex
√ √

non-convex
√ √ √

unimodal
√ √ √ √

multimodal
√

quadratic
√ √ √

non-quadratic
√ √

low-dimensional
√ √ √ √

high-dimensional
√

The last column just shows the worst possible solution to give an idea of the ranges

in solution space.

Proximity to the optimal value and the ’hit–rate’, i.e. the standard deviation,

are a measure of the quality of the results. It can clearly be seen that for test

functions F1 to F3 the performance of the GA was very good, in the case of

F3 it even found the optimal solution in every single run. In F4 the results are

still very good, considering that the solution space is several orders of magnitude

larger than in the other problems, as shown in Table 4.2. In F5 it seems to be

difficult to find the real minimum, even for a non-deterministic search algorithm

as a GA. The problem might be that the minima are very localised in the solution

space and small movements in parameter space lead to great jumps in the function

value. This observation was also made by Goldberg [38] when investigating the

benchmark problems. Unfortunately, in case of turbulence model parameters, the

topology of the solution space is unknown. A rigorous mathematical analysis could

67

4.6 Benchmarking

be undertaken which is beyond the scope of this thesis but might be considered for

future work. The benchmark results presented here are in good agreement with

Goldberg’s findings, proving the validity of the GA implementation.

Table 4.4.: GA benchmark results after ten simulations compared to real optima.

Simulation Solution

Function avg. stdDev min max

F1 0.00041 0.00025 0 78.64

F2 0.15704 0.30686 0 3905.93

F3 -25 0 -25 25

F4 0.36352 0.18248 0 1248.2

F5 3.4045 4.59825 ≈ 1 ≈ 500

Figure 4.7.: deJong benchmark function F1

68

4.6 Benchmarking

Figure 4.8.: deJong benchmark function F2

Figure 4.9.: deJong benchmark function F3

69

4.6 Benchmarking

Figure 4.10.: deJong benchmark function F4

Figure 4.11.: deJong benchmark function F5

70

4.7 Example: Parameter Identification

4.7. Example: Parameter Identification

4.7.1. Motivation

To prove that the results of a genetic optimisation are valuable to various fields

of science, this implementation was used to generate solutions to a problem from

neuro science. During the work on this thesis the opportunity arose to participate

in a collaboration of medical scientists, mathematicians and computer scientists

in research on photo–sensitive epilepsy. The idea to use a genetic algorithms for

parameter identification was employed to advance the current knowledge on brain

wave activity in epileptic patients. The data base used so far, like EEG (electroen-

cephalogram) imagery and frequency analysis, failed to deliver insight into the

differences between healthy and epileptic patients. A new method fopr parameter

identification was sought. For the benefit of the research project and of this thesis

it was possible to try out the GA implementation on a real world optimisation

problem. This provided a good test environment with less computational cost

than optimising turbulence model coefficients (see Chapter 5), but with a similar

model setup.

The dynamics of the evolution of focal onset epileptic seizures in photo–sensitive

patients is not yet understood. It is believed, that it initiates in an ‘abnormal’

brain region and propagates by employing connections to ‘normal’ regions. It can

therefore be assumed that focal seizure activity can best be described by a model

that includes a network of interconnected neuronal regions. To identify connection

between clinically observed features and the structure of the measured EEG was

part of the aim of a study by Blenkinsop et al [12]. On the clinical side they studied

three groups of patients: photo-sensitive epileptic patients, epileptic patients, and

a healthy control group. In a series of experiments they confronted the patients

with a seizure-inducing stimulus and measured their brain activity with standard

EEG methods. By comparing the activity curves they tried to reveal the dynamical

evolution of focal-onset epilepsy and further aimed to identify the neurophysical

properties of the affected brain regions by reverse engineering the parameters of a

neuron-population based mathematical model. Identifiying the parameter values

for this model that caused the effects observed in experimental data was the task

71

4.7 Example: Parameter Identification

for the genetic algorithm. In further research, bifurcation analysis of the model has

led to a map of the parameter space that clearly identifies regions of distinguishable

brain wave shape. With the help of the genetic algorithm it could be shown, that

brain activity in epileptic patients coincides with one specific type of bifurcation.

4.7.2. Neuronal Model

Main neuronal cells
(pyramidal cells)

Slow inhibitory
interneurons

Fast inhibitory
interneurons

Excitatory
interneurons

+
++

+

-

-

-

Figure 4.12.: Schematic representations of the neural model proposed by
Wendling [106]. Edges represent interaction between the popula-
tions, where solid edges are excitatory and dashed edges are in-
hibitory feedback.

There are several ways how to best model the oscillatory behaviour of neu-

ronal populations observed in the brain with different levels of granularity. On

the cellular (or ‘detailed’ [109]) level a large number (i.e. several thousands) of

single neurons are modelled seperately, together with their structural and func-

tional properties. Neurons are then clustered into networks and EEG activity can

be studied in detail with respect to neuron type, network size, connectivity pat-

terns and so forth. A broader approach would be the ‘reduced’ model [107] with

a smaller number of neurons, which studies the dynamic behaviour of the net-

works. Above this is the population level model as used in this work. According

72

4.7 Example: Parameter Identification

to Wendling et. al [106] this approach has been succesfully used in the past to

reconstruct measured EEG data with a rather simple model of neuron populations

that interact with each other in a driving (excitatory) or suppressing (inhibitory)

fashion. The dynamics of these interactions can be described by second order

differential equations with a static nonlinearity in form of an asymmetric sigmoid

curve. Some model parameters are deduced from actual physical measurements,

others are of statistical nature. In the Wendling model four populations are repre-

sented as shown in Figure 4.12. The main subset of neurons contains the main cells

in the hippocampus or neocortex. This receives feedback from three minor subsets

comprised of local interneurons either excitatory or inhibitory. Neurologically one

inhibitory feedback loop links to the pyramidal cells via dendrites while the other

exhibits a more direct connection via the somae (nerve cells). This results in two

distinct time scales in the model. Any signal fed into a population will cause a

membrane potential that is then translated into a pulsed output by the sigmoid

function

S(v) = 2e0/[1 + exp(r(v − v0))]. (4.7)

The parameters identified in this model are connection strengths C1−C7 between

populations (one per edge) as well as synaptic gains (or signal strengths) A, B and

G, for the excitatory, slow inhibitory and fast inhibitory population respectively.

It is also driven by an underlying background Gaussian white noise p(t) fed into

the main cell population that ensures initial activity of the feedback loops. The

time scales are determined by the answer times of the loops a, b and g. Further

does the nonlinear asymetric sigmoid function contain the parameters v0, e0 and

r. Model output is the aggregated activity of all feedback loops and reflects an

EEG signal.

Transforming the set of second order differential equations into pairs of first

order linear differential equations delivers this set of ten governing terms of the

model:

ẏ0(t) = y5(t) (4.8)

ẏ5(t) = AaS[y1(t)− y2(t)− y3(t)]− 2ay5(t)− a2y0(t) (4.9)

ẏ1(t) = y6(t) (4.10)

73

4.7 Example: Parameter Identification

ẏ6(t) = Aa(p(t) + C2S[C1y0(t)])− 2ay6(t)− a2y1(t) (4.11)

ẏ2(t) = y7(t) (4.12)

ẏ7(t) = BbC4S[C3y0(t)]− 2by7(t)− b2y2(t) (4.13)

ẏ3(t) = y8(t) (4.14)

ẏ8(t) = GgC7S[C5y0(t)− y4(t)]− 2gy8(t)− g2y3(t) (4.15)

ẏ4(t) = y9(t) (4.16)

ẏ9(t) = BbS[C3y0(t)]− 2by9(t)− b2y4(t) (4.17)

Interpretation of the coefficients and proposed values to produce healthy patient

EEG signals are given in Table 4.5. The development of the signal over time is

shown in Figure 4.13. It depicts the measured electric potential over time during

the stimulation and, in case of the epileptic patients, the seizure onset. With the

naked eye it is difficult to spot a difference between healthy patients (left figure)

and epileptic patient (right figure). In both cases the stimulation starts at t=0.3 s

and a reaction in the epileptic signal can be noted after ≈ 0.5 s by an increase

in electrical activity. A clearer difference can be observed when looking at the

frequencies present in the signal using a fast Fourier transformation (FFT). This

is shown in Figure 4.14. In the case of the epileptic patient the power at Frequency

5-7 Hz (alpha wave) is much higher than in the healthy control and it is lacking

contributions in the higher spectrum range.

The task for the genetic algorithm in this scenario is to identify parameter

values for the neuronal model that match the measured EEG data sets. These val-

ues should then give the researchers an idea about the difference synaptic signal

strengths between healthy and epileptic subjects and how they effect the suscep-

tibility to photonic stimulation.

4.7.3. Problem Formulation

The optimisation problem targeted in this investigation was to identify those values

for the model parameters A, B and G which best generate the sort of brain wave

activity measured on the patients in the medical experiments. To quantify the

difference between experimental and numerical data, the frequency spectrum was

74

4.7
E

xam
ple:

P
aram

eter
Identification

Table 4.5.: Neurophysical interpretation of parameters in the population model by Wendling et. al. [106]. Standard
values were established in Jansen and Rit [48].

Parameter Interpretation Standard value

A Average excitatory synaptic gain 3.25mV

B Average slow inhibitory synaptic gain 22mV

G Average fast inhibitory synaptic gain 10mV

1/a Dendritic average time constant in the excitatory loop a = 100 s−1

1/b Dendritic average time constant in the slow inhibitory loop b = 50 s−1

1/g Somatic average time constant in the fast inhibitory loop g = 500 s−1

C1, C2 Average number of contacts in the excitatory loop C1 = C, C2 = 0.8C

(with C = 135)

C3, C4 Average number of contacts in the slow inhibitory loop C3 = C4 = 0.25C

C5, C6 Average number of contacts in the fast inhibitory loop C5 = 0.3C, C6 = 0.1C

C7 Average number of contacts between inhibitory neurons C7 = 0.8C

v0, e0, r Parameters of the nonlinear sigmoid function S v0 = 6mV, e0 = 2.5 s−1

r = 0.56mV−1

75

4.7 Example: Parameter Identification

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

ph
i [

-]

t [s]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

ph
i [

-]

t [s]

Figure 4.13.: Comparison of measured brain wave activity in healthy (left) and
photo–sensitive epileptic (right) patients. The measured intensity
phi is normalised with the maximum intensity.

calculated for both EEGs and the root mean square error between the data points

was the outcome of the objective function.

Range constraints imposed on the decision variables are given in Table 4.6. The

resolution of the solution space was 0.1 for all three parameters.

Table 4.6.: Value constraints for the objective function in the neuronal model
optimisation.

Parameter min value max value

A 3.0 7.0

B 5.0 25.0

G 5.0 15.0

76

4.7 Example: Parameter Identification

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

I n
or

m
 [-

]

f [Hz]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

I n
or

m
 [-

]

f [Hz]

Figure 4.14.: Spectral analysis of the brain wave activity in healthy (left) and
photo–sensitive epileptic (right) patients. Power is normalised with
the maximum power observed.

4.7.3.1. Fitness Function

The workflow of creating data using the model described above was as follows: The

model parameters the researchers were interested in were the synaptic gains for

the three neural connections A, B and G. A time series was produced solving the

set of differential equations that would represent an artificial EEG signal. Using

FFT, a spectral analysis was then performed on this signal and compared with

the frequency spectrum of the real data. Deviations were measured using a root

mean square algorithm. The magnitude of this deviation was used as a fitness

value for the GA. Over the course of 40 generations with 100 individuals the

parameter configuration that best mimicked the real EEG data was the solution

of the optimisation procedure.

77

4.7 Example: Parameter Identification

4.7.4. Results

In total the neuronal activity of 14 patients was measured; 8 photo-sensitive epilep-

tics and 6 healthy control subjects. For each patient a series between 70 and 92

EEGs were recorded with identical temporal exposure to the stimulus. The GA

identified a solution for the values A, B and G for each of these data sets, so a

total number of 1184 runs were neccessary. An interesting observation was, that

the solutions for one patient were usually not localized in the solution space but

rather covered a clearly bounded sub-space. Figure 4.15 shows the positions of

all solutions found for one patient, plotting the optimal values of parameters B

over A. Again the healthy control subject is shown on the left while the epileptic

patient is shown on the right hand side.

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25

A

B

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25

A

B

Figure 4.15.: Optimal parameter values for synaptic gains A and B for each EEG
measurement in a healthy (left) and an epileptic (right) test subject.

It was observed, that for the epileptic subjects the solutions appeared to cluster

around the Hopf bifurcation line as identified for this set of differential equations.

In comparison, the solutions for healthy patients did not seem to be attracted

78

4.7 Example: Parameter Identification

to any particular area of the solution space. Figure 4.16 shows the identified

bifurcation regions and on top the solutions found by the genetic algorithm.

This finding was surprising for the researchers involved in the project and hope-

fully some conclusions can be drawn that can in future help with the treatment

of this particular type of epilepsy. This work shows, that genetic algorithms can

be used as a tool to find parameter configurations, that would be very difficult to

find with common data fitting methods. The results also proved the reliability of

the GA implementation developed in the scope of this thesis, as it was intended

to do when this project was approached.

Figure 4.16.: Projection of the parameter values obtained by the genetic algo-
rithm (red crosses) onto the bifurcation plane for the neuronal
model described by Wendling [106].

79

5. Optimisation of Turbulence

Models

The k-ε model is a highly

sophisticated exercise in interpolating

between data sets.

P.A. Davidson

5.1. Optimisation Objectives

The criterion that determines the fitness of an individual in a genetic algorithm

is the fitness function (see Chapter 4.2). The higher the value calculated by the

objective function (or lower, depending on the problem formulation), the higher

the chances for this individual to reproduce and progress to the next generation.

In the case of turbulence model coefficient optimisation, the fitness is calculated

by comparing experimental data to simulation results. For each experimental data

point available, the corresponding value from the simulation is determined either

by direct sampling, or in case the measured data points do not agree with the grid

points, a linear interpolation is calculated using Eqn. 5.2. The objective value is

the square root of the sum S of squared residuals (root square error RSE) between

actual data and model:

Let (xi, yi) ∈ (X,Y), i = 1 . . . n a number of n experimentally retrieved data

points. Further, let (x̂j , ŷj) ∈ (X̂, Ŷ), j = 1 . . .m be a number m of data points

on the computational grid. S is now calculated from all grid points x̂j using

S =

√
√
√
√

n∑

i=1

(yi − y⋆i)
2, with (5.1)

5.1 Optimisation Objectives

y⋆i =

ŷj ∈ Ŷ if ∃ x̂j = xi

x̂j−xi

xi+1−xi
(yi+1 − yi) + yi else with xi = max(x ∈ X | xi < x̂j)

(5.2)

The value calculated with these equations is a direct measure of agreement

between experimental (reference) data and computational results. The quantity

Y can be any scalar property that can be derived from the simulation. The root

square error is a common method in regression analysis to quantify the difference

between a discrete data set and a continuous approximation .

Usually, experimental data contains a margin of error due to measuring inaccu-

racies and precision limitations. CFD simulation cannot reproduce this error, but

its deterministic nature will always produce the same results if the calculation was

repeated multiple times. In the optimisation procedure discussed in this chapter,

an optimal solution will therefore be evaluated against mean values of experimental

observations. Numerical treatment of the governing equations in CFD introduces

yet another error to the results, since an algebraic solution is not possible. Opti-

misation of uncertain data sets is not within the scope of this thesis and should

be discussed in future work on this problem.

5.1.1. Multi-Objective Optimisation

In the case of optimising towards more than one objective, the basic purpose of a

fitness function remains unchanged. Instead several fitness functions are evaluated

at the same time and the Pareto criterion is determined by the GA, in this case

the NSGA-II algorithm (see 4.5.1). Mathematically speaking all solutions on the

Pareto front are optimal solutions. To select the right solution for the actual

engineering application cannot be automised as was mentioned in the previous

chapter.

82

5.2 Test Cases

5.1.2. Hardware

For all subsequent test cases the same hard- and software were used to perform the

optimisation. CFD simulations were done with OpenFOAM version 2.1.1, while

the genetic algorithm was implemented especially for the purpose of this thesis.

The workstation contained two six-core AMD Opteron 2427 CPUs (2200 MHz) and

8 GB of RAM. The operating system was OpenSuSE Linux 12.1 “Asparagus”.

5.2. Test Cases

5.2.1. Backward Facing Step

One of the classical benchmark test cases for turbulence models is the flow over

a backward facing step [36, 33]. It is interesting for a variety of reasons. First,

the separation caused by the abrupt change of geometry is often found in real

engineering applications. Second, it can be seen as an extreme example of the

type of flow that occurs at high-lift airfoils at large angles of attack. Even though

the cause of the separation in these two cases is different (geometric change in the

step case versus adverse pressure gradients in the case of the airfoil) the topologies

of both flows are comparable. Further, the instability of the flow is not yet fully

understood and the backward facing step offers a non–trivial yet simple setup for

more fundamental investigations.

The geometry used here for the turbulence model verification and optimisation

is shown in Figure 5.1. The sketch is not to scale, in fact the channel downstream

of the step had a length of 11.4 times the step height H . The expansion ratio, the

ratio between channel height and step height, was h/H = 2. This geometry was

used because it matched the experimental setup by Makiola [65], which served as

the data basis for the optimisation process.

5.2.1.1. Boundary Conditions

In order to mimic the experimental setup as closely as possible, the boundary

conditions for the flow were chosen as described by Makiola [65], even though the

results were made non-dimensional using the step height H and the maximum inlet

83

5.2 Test Cases

U0

H

h

y

x

x/H=1 x/H=3 x/H=6

Figure 5.1.: Geometry of the backward facing step test case. The dashed ver-
tical line at x/H = 3 is an example of one of the lines where flow
characteristics were sampled for comparison with experimental data.

velocity U0. Simulations were computed at two different Reynolds numbers Re =

15, 000 and Re = 64, 000 and both the standard k-ε [52] and the k-ω turbulence

model [110] were applied. The Reynolds number was computed as follows

Re =
HU0

ν
, ν =

µ

ρ
. (5.3)

ν is the kinematic viscosity, the quotient of dynamic viscosity µ and fluid density

ρ. The chosen fluid properties were those of air at room temperature.

A grid convergence study was performed using three different grid sizes. The

coarsest grid G1 had 3410 cells, the medium grid G2 had 12,885 and the fine grid

G3 had 51,540 cells. Although the results from the medium and the fine grid were

not significantly different, all simulations were run on the fine grid to avoid grid

effects when changing the parameters of the turbulence model.

The top and bottom enclosure and the step of the channel were treated as

walls with a non-slip boundary condition for U and a gradient of zero in normal

direction, i.e. ∂p/∂n = 0 for pressure. At the outlet pressure was fixed to a

reference pressure value, nominally zero. Outlet velocity was set to zero gradient.

At the inlet the pressure boundary condition was of type zero gradient and the

velocity had a parabolic profile with a value of zero at the walls and a peak value

of U0 in the center of the inlet. The turbulent quantities k, ε and ω were calculated

using the following equations [102]

84

5.2 Test Cases

k =
2

3
(UrI)

2 (5.4)

ε =
C

3/4
µ k3/2

ℓ
(5.5)

ω =

√
k

C
1/4
µ ℓ

(5.6)

The quantity I is a measure for the turbulent intensity of the flow and is set

somewhere between 0.01 for low Reynolds flow and 0.1 for high intensity turbu-

lence. In this work the upper limit of 10% was selected. The reference velocity Ur

in this case was equalt to the maximum inlet velocity U0. The turbulent mixing

length ℓ is assumed to be 0.07H , the constant 0.07 being the maximum value of

mixing length in fully developed turbulent pipe flow. Cµ is a parameter of the

turbulence model. Table 5.1 lists the boundary conditions as they appear in the

OpenFOAM case setup. Dirichlet boundary conditions prescribe a fixed value for

the solution on the boundary, while von-Neumann conditions prescribe a value for

the spatial gradient (here equal to zero, if not stated otherwise).

Table 5.1.: Boundary conditions in the backward facing step test case

inlet outlet walls

U U(y) = −(y −H/2)2 + U0 von-Neumann Dirichlet

p von-Neumann Dirichlet p0 von-Neumann

k Dirichlet eqn. 5.4 von-Neumann wall function

ε Dirichlet eqn. 5.5 von-Neumann wall function

ω Dirichlet eqn. 5.6 von-Neumann wall function

The equations are solved using a steady–state incompressible solver simpleFoam.

The total number of simulation steps was 2000 iterations, after which the solution

is fully converged. A target residual error of 10−2 for the pressure equation and

10−3 for velocity and the turbulent quantities was used to determine convergedness

and these values were usually reached after less than 1000 iterations. The resid-

85

5.2 Test Cases

uals are chosen relatively high when compared to simulations performed by other

researchers [101, 102], who generally set them an order of magnitude lower. But

with respect to computational cost and the simplicit of the problem, the higher

values sufficed. To account for changes in convergence behaviour when modifying

the turbulence parameters, 2000 generations were thought to be sufficient to en-

sure convergence in any case. A convergence analysis of each modified case was

not made, but it can be assumed that non-converging solutions would produce

worse fitness values.

5.2.1.2. Preliminary Studies

Before running the optimisation algorithm on the full set of parameters in the

turbulence models considered for this test case, a study of the influence of each

single parameter on the evolution of the flow field was performed. Two simulations

were run for each coefficient changing its value by 60% in each direction and the

results compared with those obtained by using the standard values (as proposed by

the model’s authors). The value of 60% was chosen arbitrarily just to ensure that

the changes would have a significant impact. This requires at least two simulations

per parameter, sometimes more if intermediate values are to be investigated. For

example to test the influence of the five parameters in the k-ε model, ten runs of

the backward facing step case were performed and compared to the results achieved

by using the standard values (second column in Table 5.2).

Table 5.2.: Parameter values for variation study in the k-ε model

-60% std. +60%

σk 0.4 1.0 1.6

σε 0.52 1.3 2.08

C1 0.58 1.44 2.30

C2 0.77 1.92 3.07

Cµ 0.04 0.09 0.14

86

5.2 Test Cases

Figure 5.2 shows velocity profiles at three different positions downstream of the

step. The curves each apply to one parameter setting, either incrementing or

decrementing the standard value. For parameter σε almost no perceptible change

in the flow pattern can be observed, and for turbulent viscosity Cµ only a moderate

influence on the flow is observed. It seems for this particular test case that the

influence of these parameters is negligible. On the other hand the linear factors C1

and C2 that serve as weights to the production and dissipation of turbulent kinetic

energy have, as would be expected, a significant influence on the development

of the flow in the recirculation region downstream of the step. Looking at the

graphs also reveals that large modifications of up to 60% can make the resulting

flow field become physically unfeasible. For example, when looking at the velocity

profiles for parameters C1 and C2, large modifications seem to produce a second

recirculation zone on the top wall of the channel. Figure 5.3 shows the results of

an identical study for the k-ω-SST model coefficients.

Studying separate parameters in that way reveals information that can be used

in the setup of the genetic algorithms. It determines which parameters should be

subject to optimisation and gives a general idea of the value range these should

fall in. Including non-influential coefficients in the optimisation process tended

to prevent the algorithm from converging towards a best solution. That is easily

explained, as the fitness value, i.e. the difference between simulated flow field

and experiment, does not change even though a parameter might undergo large

transformations. It is then impossible for the GA to determine which result is

fitter as the selection operator will not give preference to a solution but will treat

a set of solutions equally.

87

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.2 0 0.2 0.4 0.6

y/
H

x/H=1

-0.2 0 0.2 0.4 0.6

U/U0

x/H=3

-0.2 0 0.2 0.4 0.6

x/H=6

(a) Variation study for Cµ. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

0.0

0.5

1.0

1.5

2.0

-0.2 0 0.2 0.4 0.6

y/
H

x/H=1

-0.2 0 0.2 0.4 0.6

U/U0

x/H=3

-0.2 0 0.2 0.4 0.6

x/H=6

(b) Variation study for C1. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

88

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.2 0 0.2 0.4 0.6

y/
H

x/H=1

-0.2 0 0.2 0.4 0.6

U/U0

x/H=3

-0.2 0 0.2 0.4 0.6

x/H=6

(c) Variation study for C2. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

0.0

0.5

1.0

1.5

2.0

-0.2 0 0.2 0.4 0.6

y/
H

x/H=1

-0.2 0 0.2 0.4 0.6

U/U0

x/H=3

-0.2 0 0.2 0.4 0.6

x/H=6

(d) Variation study for σε. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

89

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.2 0 0.2 0.4 0.6

y/
H

x/H=1

-0.2 0 0.2 0.4 0.6

U/U0

x/H=3

-0.2 0 0.2 0.4 0.6

x/H=6

(e) Variation study for σk. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

Figure 5.2.: Variation study for each of the five parameters in the standard k-ε
turbulence model in the backward facing step case. The graphs show
velocity profiles along vertical cuts of the channel at three different
positions x/H =1,3 and 6 downstream of the step. Velocity U was
normalised with maximum inlet velocity U0 and y-coordinate with
step height H. The thick line shows the profile calculated with the
standard values, the dotted line represents results with 40% and the
dashed line with 160% of the standard values.

90

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(a) Variation study for a1. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(b) Variation study for c1. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

91

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(c) Variation study for sK1. Plotted is normalised velocity over normalised
channel height at three positions x/H =1,3 and 6 downstream of the step.
The thick line shows the profile calculated with the standard values, the
dotted line represents results with 40% and the dashed line with 160% of
the standard values.

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(d) Variation study for sK2. Plotted is normalised velocity over normalised
channel height at three positions x/H =1,3 and 6 downstream of the step.
The thick line shows the profile calculated with the standard values, the
dotted line represents results with 40% and the dashed line with 160% of
the standard values.

92

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(e) Variation study for sω1. Plotted is normalised velocity over normalised
channel height at three positions x/H =1,3 and 6 downstream of the step.
The thick line shows the profile calculated with the standard values, the
dotted line represents results with 40% and the dashed line with 160% of
the standard values.

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(f) Variation study for sω2. Plotted is normalised velocity over normalised
channel height at three positions x/H =1,3 and 6 downstream of the step.
The thick line shows the profile calculated with the standard values, the
dotted line represents results with 40% and the dashed line with 160% of
the standard values.

93

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(g) Variation study for γ1. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(h) Variation study for γ2. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

94

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(i) Variation study for β∗. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(j) Variation study for β1. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

95

5.2 Test Cases

0.0

0.5

1.0

1.5

2.0

-0.4-0.2 0 0.2 0.4 0.6 0.8 1

y/
H

x/H=1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

U/U0

x/H=3

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/H=6

(k) Variation study for β2. Plotted is normalised velocity over normalised chan-
nel height at three positions x/H =1,3 and 6 downstream of the step. The
thick line shows the profile calculated with the standard values, the dot-
ted line represents results with 40% and the dashed line with 160% of the
standard values.

Figure 5.3.: Variation study for each of the eleven parameters in the standard k-ω
turbulence model in the backward facing step case. The graphs show
velocity profiles along vertical cuts of the channel at three different
positions x/H =1,3 and 6 downstream of the step. Velocity U was
normalised with maximum inlet velocity U0 and y-coordinate with
step height H. The thick line shows the profile calculated with the
standard values, the dotted line represents results with 40% and the
dashed line with 160% of the standard values.

96

5.2 Test Cases

5.2.1.3. Genetic Algorithm Setup

The optimisation using a genetic algorithm was run using the following genetic

operators. For all simulations tournament selection was used with a tournament

size of two. Tournament selection is less sensitive to fitness values that are very

close together. Because no normalisation was performed to map fitness values into

the range [0, 1], most solutions had very similar fitnesses. Using roulette wheel

or any other selection method that did not put too much competitive pressure

on the individuals led to slow convergence of the optimisation. In subsequent

runs tournament selection was used as the default setting because of the faster

convergence.

Further, single point crossover was used in all optimisation runs. No other

crossover operators were tested in this study. The crossover probability was set

to 60%. Single bit turnover mutation occured with a probability of 3% and was

applied to the child individual after the crossover. These values are based on rec-

ommendations by Goldberg [38]. The total number of individuals per population

was 30. That is rather low for genetic optimisation [73], but turned out to be

a good compromise between computational cost and GA performance. After al-

ready 20 generations the changes to the population were miniscule so that after

25 generations the evolution was terminated.

5.2.1.4. Fitness Function

The data used is published on the ERCOFTAC classic online database 1. Details

on the experimental setup can be found there and in the PhD thesis by Makiola

[66]. Data is available for different Reynolds numbers and a range of sloping

angles of the step. Only an orthogonal step is considered here (step angle 90 ◦)

and configurations with Reynolds numbers of 15,000 and 64,000 were simulated,

but because the results were almost identical, only the higher Reynolds number of

64,000 was pursued for the statistical analysis.

The objective variables were chosen based on the preliminary studies presented

in the previous sections. For the k-ε model these were the parameters C1, C2

and for the k-ω-SST model the parameters γ1, γ2, β1, β2 and β∗. The parameter

1http://cfd.mace.manchester.ac.uk/ercoftac/

97

5.2 Test Cases

constraints are listed in table 5.3. To compare experimental and simulated data

and derive an objective value, the root square error between velocity measurements

taken by Makiola [66] and sample data from the simulation in the same geometric

locations was calculated using the method described in Section 5.1.

Table 5.3.: Value constraints for the objective variables in the backward facing
step case.

Parameter min value max value accuracy

k-ε model

C1 0.864 2.020 10−3

C2 1.150 2.680 10−3

k-ω SST model

γ1 0.4426 0.6638 10−4

γ2 0.3522 0.5284 10−4

β1 0.045 0.105 10−3

β2 0.0662 0.0993 10−4

β∗ 0.072 0.128 10−3

98

5.2 Test Cases

5.2.2. Results

To simulate one generation of fifty individuals takes approximately 21 minutes on

ten computing cores in parallel. The algorithm saves time by not recalculating in-

dividuals that have been passed on from previous generations, so the total runtime

for 30 generations averaged around seven hours.

The geometry of the case had an expansion ratio of h/H = 2 and the examined

quantity was the normalised velocity u/U0 at three different positions x/H =

1, 3 and 6 in the channel. That means the fitness was estimated as being the root

mean square error between the simulated results and the velocity data measured

in the experiment. The smaller the difference between the results, the better was

the fitness of the solution. A parabolic velocity profile was prescribed at the inlet

(as shown in Table 5.1).

The estimated optimal values are listed in Table 5.4 for the k-ε model and in

Table 5.5 for the k-ω model respectively. The values shown have been calculated in

five GA runs with the settings mentioned above and presented results are averaged

over these runs. The standard deviation over the five samples is also shown in the

Tables. The variation is due to the non-deterministic nature of the optimisation

algorithm.

Figures 5.4 and 5.5 show the velocity profiles at different positions downstream

as calculated using the optimised k-ε and k-ω coefficients respectively compared

to the results obtained using the standard values included in OpenFOAM. The

parabolic shape of the velocity profile is better captured by the optimised setup

further downstream of the step. Using the standard coefficients, transition to fully

developed channel flow takes place considerably faster, while the optimised profile

maintains the dominance of the flow in the upper half of the channel in accordance

to experiment. In both cases a dicrepancy between measured and simulated peak

velocity can be observed. This could be due to the fact that the inlet velocity in

the simulation is parabolic, which is only an approximation of real channel flow

profile. Also the reduction to two dimensions might be an issue here. Qualitatively,

though, the shape of the profiles is in accordance to experimental data.

Another interesting feature of the flow is the length of the recirculation eddy

that forms downstream of the sudden geometry change. The k-ε model is known to

99

5.2 Test Cases

largely underestimate this entity [81]. When looking at the model equation 3.21 for

the dissipation of turbulent kinetic energy, one would suggest that increasing the

coefficient C1 in the production term and at the same time decreasing coefficient C2

in the dissipation term, turbulent eddies would prevail longer in the flow. Looking

at the optimisation results in Table 5.4, that is exactly what the genetic algorithm

determined as being the optimal solution. Similarly does an increase of the γ

values in the k-ω model lead to a decrease in energy dissipation and one would

expect better agreement with the data.

Table 5.4.: Standard vs. optimised values for coefficients in the k-ε model and
standard deviations from five optimisation runs.

Std Opt σ

C1 1.44 1.92 0.082

C2 1.92 1.86 0.093

Table 5.5.: Optimum values and standard deviations for the k-ω-SST model

Std Opt σ

γ1 0.553 0.606 0.018

γ2 0.440 0.510 0.021

β1 0.075 0.053 0.003

β2 0.083 0.076 0.019

β⋆ 0.09 0.095 0.0008

In summary it should be clear from these results, that the turbulence model

optimisation works well in improving the simulation results on this particular flow

type. The trends of the predicted optimal values agree well with the expectations

built when looking at the model equations.

100

5.2 Test Cases

 0

 0.5

 1

 1.5

 2

x/H=1 x/H=3 x/H=6

y
/
H

U/U0

Figure 5.4.: Velocity profiles at positions x/H = 1, x/H = 3, x/H = 6 down-
stream of the step. The dashed line shows profiles calculated using
the standard k-ε model parameters as implemented in OpenFOAM.
The bold line shows results obtained by the optimised set of param-
eters. Rectangles mark experimental values measured by Makiola
[65]. Reynolds number of the flow based on step height and inlet
velocity was 64,000.

 0

 0.5

 1

 1.5

 2

x/H=1 x/H=3 x/H=6

y/
H

U/U0

Figure 5.5.: Velocity profiles at positions x/H = 1, x/H = 3, x/H = 6 down-
stream of the step. The dashed line shows profiles calculated using
the standard k-ω model parameters as implemented in OpenFOAM.
The bold line shows results obtained by the optimised set of param-
eters. Rectangles mark experimental values measured by Makiola
[65]. Reynolds number of the flow based on step height and inlet
velocity was 64,000.

101

5.2 Test Cases

5.2.3. Impinging Jet

Impinging jets are used in industrial cooling, heating or drying processes such as

annealing of metal, air curtains or cooling of turbine blades and many other appli-

cations. Localised mass, momentum and heat transfer make them very useful and

a good understanding of their behaviour is essential for correct flow predictions.

Due to the importance of impinging jets, measurements of the velocity, vortic-

ity and temperature distributions are available [4, 16] as well as numerical data

for round and plane jets both in 2d and 3d using RANS modeling, LES/RANS

hybrid models, pure LES calculations or DNS for low Reynolds numbers (e.g.

[17, 77, 103]).

The performance of different turbulence models in the impinging jet case with

respect to heat transfer and flow field were investigated by Jaramillo et al [49].

They concentrated on non-linear eddy viscosity models (NLEVM) such as k − ε

and k−ω models, but also aquired data from Large Eddy Simulations and Direct

Numerical Simulations. Their results show that most k − ǫ models underpredict

the turbulent decay when the flow changes its main direction to spread parallel

to the impingement wall. The character of the flow changes at the stagnation

point from a free jet flow to a wall bounded shear flow. It is difficult for any

turbulence model to predict both configurations accurately. When the distance

between inlet and impingement plate is small and the jet reaches the wall before it

has completely developed to a free jet, the influence of the error in modelling the

turbulence of the stream is obviously smaller. When the distance increases and the

core jet has fully converged to a turbulent flow, the modelling error becomes more

dominant and is transported into the wall-shear dominated part of the flow. This

feature makes the impinging jet problem a good candidate for turbulence model

parameter optimisation.

5.2.3.1. Boundary Conditions

The case setup used in this work is a plane jet impinging perpendicularly onto a

wall of higher temperature TW . The dimensioning parameter for this case is the jet

width B (see Figure 5.6). The case investigated here had a distance of H/B = 4

from jet entry to the impingement wall. The Reynolds number for all cases was

102

5.2 Test Cases

H

y

x

50B

B/2

Figure 5.6.: Geometry of the impingement jet test case

20,000 based on the jet width and the inflow velocity. The mesh was created

based on the suggestions by Jaramillo [49] to ensure grid independent solutions.

A detailed grid convergence study has been performed by the authors and the

resulting mesh consists of 270 × 180 cells. Only half the domain was calculated

since the case is symmetric in the x-direction with the centerline of the jet as the

axis of symmetry. Results from their group were also used as reference for the

fitness evaluation.

Inlet turbulent kinetic energy (kin) and turbulent kinetic energy dissipation rate

(εin) are calculated using equations 5.4 and 5.5 respectively with a turbulent inten-

sity of Ui = 0.02Umax, and the characteristic length scale for the epsilon equation

is ℓ = 0.015B. The walls are isothermal, with the impingement plate at a constant

310K and the confinement plate at 300K. No-slip conditions were imposed at the

solid walls. The outlet was realised as a pressure outflow with zero gradient condi-

tions for the turbulent quantities. Table 5.6 gives an overview over the boundary

conditions in the terminology of OpenFOAM.

As it turned out, the convergence behaviour of this case in OpenFOAM was less

good than in an identically set up case in the commercial CFD code FLUENT
2. Changing relaxation factors for the p and U equations did improve matters

considerably, but in the end one simulation run of the case took 6000 iterations

with the buoyantBoussinesqSimpleFoam solver to converge. Unfortunately it was

2http://www.ansys.com

103

5.2 Test Cases

Table 5.6.: Boundary conditions in the impinging jet test case

inlet outlet

U Dirichlet U0 von-Neumann

p von-Neumann Dirichlet p0

k Dirichlet eqn. 5.4 von-Neumann

ε Dirichlet eqn. 5.5 von-Neumann

ω Dirichlet eqn. 5.6 von-Neumann

T Dirichlet 300 von-Neumann

top wall impingement wall

U fixedValue 0 fixedValue 0

p von-Neumann von-Neumann

k wall function wall function

ε wall function wall function

ω wall function wall function

T Dirichlet 300 Dirichlet 310

not possible to find the source for this discrepancy. To work around this problem,

the case was simulated using standard model parameters and the output of this

simulation was used as initial state for any run with modified coefficients. That

saved a considerable amount of time it would normally take for the flow to develop

the characteristic outward spreading parallel to the impingement wall. With this

slight modification it was possible to cut down the number of steps for the case to

converge to about 2000. For good measure all cases were run for 3000 iterations

of the SIMPLE algorithm [27], which took on average 25 minutes on a single core.

5.2.3.2. Genetic Algorithm Setup

The crossover probability was set to 60%. One bit turnover mutation occured

with a probability of 3%. The total number of individuals per population was 40.

104

5.2 Test Cases

As in the backward facing step test case, the optimisation converged after a few

generations, so the maximum number of iterations for the jet case was set to 30

generations. Taking into account the run time of a single simulation, the opti-

misation procedure took about 380 hours without parallelisation. By distributing

the workload onto ten computational cores and not simulating recurring individ-

uals repeatedly the overall runtime could be cut down to approximately 30 hours,

depending on the evolution of the population.

5.2.3.3. Fitness Function

For this case both experimental data as well as previous simulation results by other

researchers were used as input. The experiments were conducted by Ashforth-

Frost [4]. The measurements presented were heat–transfer distribution expressed

as local Nusselt number as well as velocity and turbulence values. To compare

experimental and simulated data and derive a fitness value, the root square error

was calculated using the method described in Chapter 5.1. Fitness was based on

derivation from the experimental data, while the available simulations were used

to judge the initial performance of the OpenFOAM code and see if it were able to

produce similar results.

5.2.4. Results

The runtime of the impinging jet case was about 40 minutes per simulation. That

was due to the slow convergence especially of the pressure equation. Modifying

the relaxation factors of the solver improved matters slightly, but to be on the

safe side when it came to changing the model coefficients the decision was to set

the relaxation conservatively low to ensure full convergence in all runs during the

optimisation.

The velocity profiles shown in Figure 5.7 clearly show improved performance

with modified turbulence model coefficients. Further away from the jet core

(x/B ≪ 1) the improved equations capture the flow behaviour almost perfectly

in comparison with experiment. While the standard results predict almost inlet

velocity in the region close to the wall (at about y/B ≈ 0.15), experiment and

105

5.2 Test Cases

Table 5.7.: Optimum values and standard deviations for the k-ω-SST model

Std Opt σ

γ1 0.553 0.457 0.024

γ2 0.440 0.486 0.0

β1 0.075 0.104 0.003

β2 0.083 0.0941 0.019

β⋆ 0.09 0.075 0.0008

optimised model show more energy loss and therefore lower total velocity values.

This is due to the increase in the γ parameters.

Comparing these parameters to those found for the backwarding face case (see

Table 5.5 a significant difference can be observed. This proves the initial postula-

tion that turbulence model coefficients are mainly problem dependent.

For the impinging jet case it can be said that using an optimisation procedure to

adapt the turbulence model coefficients can improve the accuracy of the simulation

significantly.

106

5.2 Test Cases

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

x/B=1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

x/B=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

x/B=7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

x/B=8

U
/
U

i
n

U
/
U

i
n

U
/
U

i
n

U
/
U

i
n

y/By/B

y/By/B

Figure 5.7.: Normalised velocity profiles at positions x/B = 1, x/B = 2, x/B =

7, x/B = 8 away from the jet. The dashed line shows profiles calcu-
lated using the k-ω-SST model parameters as implemented in Open-
FOAM. The bold line shows results obtained by the optimised set
of parameters. Rectangles mark experimental values measured by
Ashforth-Frost et al. [4]

107

5.2 Test Cases

5.2.5. Conical Concentrator and Sudden Expansion

Stewart et. al. [96] from the United States Food & Drug Administration (FDA)

designed a benchmark case to develop guidelines for CFD users in industry con-

sisiting of a cylindrical nozzle with a conical collector and a sudden expansion.

Their interest stems from the fact that the nozzle characteristics are typical for

medical devices transporting blood, such as catheters, syringes, blood tubing etc.

Reliability of results from flow simulations using these devices is naturally of high

importance and defining benchmarks to test new models and methods against

experimental data is a logical step.

The intention behind this is that although CFD is widely used in the develop-

ment of medical devices, validation of the simulations lacks standardised methods

and regulations. For their study the researchers invited twenty-eight groups that

offer CFD services on an international level to submit results of calculations of five

different flow rates, covering laminar, transitional and turbulent flow. In addition

to this they employed three independent laboratories to provide the required ex-

perimental validation data using particle image velocimetry (PIV). As it turned

out, the computational results showed large discrepancies between each other and

to the experimental data, which shows that CFD studies should not be taken for

granted and require a close examination and careful experimental validation.

The main sources of errors identified by Stewart’s group involved false estima-

tions of centerline velocities in the laminar regions and inaccurate prediction of

the recirculation in the sudden expansion. Figure 5.8 shows the dimensions of

the geometry used in the laboratories to obtain experimental results. The model

includes a radial step, sharp edges, and a cross-sectional contraction that combine

to induce shear stresses related to reported problems in these devices. The device

was designed to include accelerating flow, decelerating flow, variations in shear

stress and velocities, and recirculating flow, all of which may be related to blood

damage in medical devices [96].

The nozzle is rotationally axisymmetric and contains a neck of 0.04 m in length

connecting a diffuser with a 20◦ incline on one end and a sudden diameter change

on the other end. The device can be operated in both flow directions, but in

this treatment of the benchmark study only the flow from left to right is consid-

108

5.2 Test Cases

ered. That would model a conical collector and a sudden expansion. The length

of the inlet and outlet channels were not specified and could be chosen by the

experimentators to ensure fully developed turbulent flow before entering the coni-

cal concentrator and the outflow condition should not influence the reattachment

point in the model. In the simulation the length of the inlet and outlet chan-

nels were chosen as 15d and 300d respectively, with d being the diameter of the

throat. For a throat Reynolds number of 5000, the inlet velocity was specified

as 0.46 m
s
. The best simulation results according to the study [96] were achieved

using the Spalart-Allmaras one-equation turbulence model [93] (see also Chapter

3.4.1). Hence this turbulence model was used in the GA optimisation for this test

case.

The ultimate findings of the study were, as expected, a strong coupling between

simulation results and the choice of turbulence model. Especially the transitional

Reynolds regime produced a wide spread of numerical results. Surprisingly not

using any form of turbulence modeling and instead doing a laminar computation

resulted in good agreement to experimental data. Yet the aim of this work is to try

and reproduce the experimental results with two possible turbulence models, the

k-ω and Spalart-Allmaras model. A genetic optimisation will then be used to tune

these models to better match the nozzle configuration. It would be interesting to

see, if these modified models hold if the flow direction is reversed. Unfortunately

by the time the current research was concluded, the experimental data for the

reverse case has not yet been published.

0.012m

0.04m

z=00.012m

d=0.004m

U 20
◦

Figure 5.8.: Nozzle specifications for the FDA test case

109

5.2 Test Cases

5.2.5.1. Boundary Conditions

The computational mesh used in the optimisation study was provided by one of the

authors of the FDA paper (Eric Patterson). The required grid refinement study

has already been conducted and the results achieved using this mesh have been

fairly close to the experimental data. Because of the rotational symmetry of the

geometry only a wedge shaped mesh with a symmetry axis boundary condition was

used. That simplifies the case to quasi 2–D, with cyclic boundary conditions on

the cut faces. The total number of cells was 25,000 with most of the cells making

up the leading and trailing pipe surrounding the throat and collector to ensure

fully developed turbulence when the flow reaches the diffuser and minimising the

influence from the outlet to the recirculation downstream of the sudden expansion.

Two throat Reynolds numbers were considered, Ret = 3, 500 and Ret = 6, 500

based on the diameter of the throat, a dynamic viscosity of µ = 0.0035 Ns
m2 and a

fluid density of ρ = 1056 kg
m3 . These are the physical values for water, which was

the fluid used in the laboratory experiments. The Reynolds numbers at the inlet,

where the diameter of the nozzle is three times larger than along the throat, were

Rei = 1, 167 and Rei = 2, 167 respectively. It is important to note, that these

Reynolds numbers mark the transitional phase between laminar and turbulent

flow which is especially challenging for a turbulence model. Table 5.1 lists the

boundary conditions as they appear in the OpenFOAM case setup.

Table 5.8.: Boundary conditions in the concentrator and sudden expansion test
case

Field inlet outlet walls

U U(y) = −(y −H/2)2 + U0 von-Neumann Dirichlet

p von-Neumann Dirichlet p0 von-Neumann

k Dirichlet eqn. 5.4 von-Neumann wall function

ε Dirichlet eqn. 5.5 von-Neumann wall function

ω Dirichlet eqn. 5.6 von-Neumann wall function

110

5.2 Test Cases

5.2.5.2. Preliminary Studies

Similar to the variation studies for the turbulence models in the backward facing

step test case (see Section (5.2.1.2)), an investigation of the single parameters

as they appear in the OpenFOAM implementation and their influence on the

development of the flow field was conducted. The results of this study are shown

in Figure 5.9.

111

5.2 Test Cases

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(a) Variation study for Cb1. Plotted is velocity over radial distance
at z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.Cb1

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(b) Variation study for Cb2. Plotted is velocity over radial distance
at z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.

112

5.2 Test Cases

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(c) Variation study for Cv1. Plotted is velocity over radial distance
at z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(d) Variation study for Cv2. Plotted is velocity over radial distance
at z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.

113

5.2 Test Cases

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(e) Variation study for Cw2. Plotted is velocity over radial distance
at z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(f) Variation study for Cw3. Plotted is velocity over radial distance
at z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.

114

5.2 Test Cases

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(g) Variation study for σνt. Plotted is velocity over radial distance at
z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

(h) Variation study for κ. Plotted is velocity over radial distance at
z–position z/d = 6. The thick line shows the profile calculated
with the standard values, the dotted line represents results with
40% and the dashed line with 160% of the standard values.

Figure 5.9.: Variation study for each of the eight parameters in the standard
Spalart Allmaras turbulence model for the FDA case. The graphs
show velocity profiles along a vertical cut of the nozzle at positions
z/d = 6. The thick line shows the profile calculated with the stan-
dard values, the dotted line represents results with 40% and the
dashed line with 160% of the standard values.

115

5.2 Test Cases

5.2.5.3. Genetic Algorithm Setup

Since this case setup is slightly more complicated and requires a larger grid than the

previous ones, computation time was considerably longer. One set of 30 individuals

over 30 generations takes on average about 72 hours to complete on 10 cores.

The objective variables were chosen based on the preliminary studies presented

in the previous section. Following these results a decision was made to only include

five parameters in the optimisation procedure. These were Cb1, σνt, κ, Cv1 and

Cv2 for the Spalart–Allmaras model. The parameter constraints are listed in table

5.9.

Table 5.9.: Value constraints for the objective variables from the Spalart–Almaras
model in the conical concentrator and sudden expansion case.

Parameter min value max value accuracy

Cb1 0.0810 0.1900 10−4

σνt 0.3000 0.6666 10−4

κ 0.245 0.410 10−3

Cv1 7.10 14.20 10−2

Cv2 5.00 10.00 10−2

The fitness of a solution was calculated by taking experimental results gathered

by Stewart et. al. [96]. All data is publicly available on the U.S. Food and Drug

Administration website 3. Three seperate datasets were available and an ensemble

average was calculated to serve as reference data. The measured quantity used

for the objective function was the flow velocity at multiple positions along the

nozzle geometry. Figure 5.10 shows the radial samples on cross-sections along the

geometry. Further data was collected along the centerline.

The same positions were sampled in the CFD results and an overall r.m.s. de-

viation of the streamwise velocity component z from experiment was calculated.

The smaller this deviation, the fitter the individual solution. When running the

simulation with standard model coefficients, agreement with the experiment was

3https://fdacfd.nci.nih.gov/ , last accessed 1st Dec 2013

116

https://fdacfd.nci.nih.gov/

5.2 Test Cases

Figure 5.10.: Sampling positions along z-axis of the nozzle geometry.

not particularly good before the flow entered the throat, but got better after the

sudden expansion (z = 0).

5.2.6. Results

As mentioned earlier, the time to complete an optimisation run on the geometry

described in Section 5.2.5 was over 72 hours. For that reason only five optimisations

could be performed. Figure 5.11 shows velocity profiles at four distinct points along

the nozzle for the k-ω and the Spalart–Allmaras models using standard model

parameters. These results were the basis for further optimisation. The graphs

indicate, that in the simulation with the k-ω model mass conservation seems not

satisfied. These results were reproducable and the source is unclear.

Figure 5.12 shows z-directional velocity at four different slices along the nozzle.

It clearly shows an improvement when compared to the experimental data. The

parameter values that were the outcome of the optimisation procedure are listed

in Table 5.10. It is interesting to find one set of parameters that improves both

the flow profile inside the throat as well as the profiles after the expansion. While

inside of the throat simple pipe flow is present, a free spreading jet occurs after

the step. Yet the proposed values seem to be of general validity. This is counter

intuitive in so far, no turbulence model is known to model both these flow types

with the same accuracy. On the other hand it is important to see that the standard

deviation calculated from five optimisation runs for the κ and Cb1 parameter are

relatively large in relation to the absolute values (> 25%). That means these two

117

5.2 Test Cases

coefficients do not have as large an impact on the development of the flow as the

preliminary studies have suggested.

Table 5.10.: Standard values for the Spalart–Allmaras model in OpenFOAM

Std Opt σ

Cb1 0.1355 0.146 0.041

σνt 0.666 0.492 0.10

κ 0.41 0.363 0.12

Cv2 10 9.734 0.622

Cv1 7.1 5.791 1.08

118

5.2 Test Cases

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

k-omega
SA std

exp
-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

k-omega
SA std

exp

(a) z = −12d (left), z = −2d (right)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

k-omega
SA std

exp
-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

k-omega
SA std

exp

(b) z = 2d (left), z = 6d (right)

Figure 5.11.: Velocity profiles for streamwise velocity component at radial posi-
tions z = −12d, z = −2d, z = 2d and z = 6d along the nozzle,
where d is the diameter of the throat. Data was calculated using
the Spalart–Allmaras (SA) and k-ω model with standard parame-
ter values. X-axis is normalised with nozzle diameter at the current
z-position. Squares represent experimental data.

119

5.2 Test Cases

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

SA Opt
SA
exp

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1
U

_z
y/d

SA Opt
SA
exp

(a) z = −12d (left), z = −2d (right)

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

SA Opt
SA
exp

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

U
_z

y/d

SA Opt
SA
exp

(b) z = 2d (left), z = 6d (right)

Figure 5.12.: Velocity profiles for streamwise velocity component at radial po-
sitions z = −12d, z = −2d, z = 2d and z = 6d along the nozzle,
where d is the diameter of the throat. Comparing Spalart–Allmaras
(SA) standard (std) and optimised (opt) parameter sets. X-axis is
normalised with nozzle diameter at the current z-position. Squares
represent experimental data.

120

5.3 Discussion

5.3. Discussion

The results presented in this Chapter clearly show the potential of a non-deterministic

optimisation method in finding improved model coefficents for turbulence closure

formulations. The robustness of the method guarantees to produce solutions for

each of the problems approached here. On the down side the computation of the

optimum is expensive in relation to the time used to simulate the actual flow prob-

lem. That makes it only useful to realistically sized engineering problems, if a long

term benefit can be expected from the model optimisation. Its ability to function

without knowledge of the solution space topology, on the other hand, allows for

a very versatile use of the method. Approaching a similar task with traditional,

deterministic algorithms is not likely to be fruitful if the complexity of the problem

is high. This is especially the case with multi–objective optimisation tasks.

The examples shown above do reveal the lack of universality that is inherent

to all turbulence closure formulations. Knowing that this can also be expected

from any models developed in the future, genetic algorithms can be used to help

with the initial adjusting of these new models to canonical flow types using a

multi-objective approach.

121

6. Mesh Generation Quality

Optimisation

It doesn’t make a difference how

beautiful your guess is. It doesn’t

make a difference how smart you are,

who made the guess, or what his

name is. If it disagrees with

experiment, it’s wrong.

Richard P. Feynman

6.1. Motivation

Creating a computational mesh for a CFD simulation is a tedious process, espe-

cially for complicated geometries with small angles, many spherical surfaces or

small wall-to-wall distances. It takes a lot of experience and patience to manually

build a mesh from scratch. There are many software tools to support the engi-

neer in the process and as many different proprietary data formats how meshes

are stored on the computer. Until recently it was neccessary to create meshes in

external applications and convert them to OpenFOAM format. OpenFOAM of-

fers a wide range of conversion programs from the most common software vendors

like, for example, StarCD, Gambit or CFX. From early on OpenFOAM had its

own mesh creation tool called blockMesh. But, as the name suggests, this is used

for block structured meshes and since it is completely file driven with no GUI

or any other visual design support, creating meshes with blockMesh is not very

comfortable and for more complex geometries just unfeasible. Since version 1.6

of OpenFOAM a new tool is available called snappyHexMesh. The idea is that in

6.1 Motivation

order to create a mesh around a solid body one would need the geometry of the

body’s surface (usually in STL1 file format) and a simple hexagonal mesh describ-

ing the computational domain. The algorithm would then try to align the edges

of the mesh to the surface of the body by ‘snapping’ grid points onto the STL sur-

face. The quality of the resulting mesh is improved with local mesh refinement and

re-iteration of the snapping algorithm until a user defined termination criterion is

reached.

The snappyHexMesh tool is very interesting from an optimisation point of view,

because it uses a long list of control parameters to steer the algorithm towards a

result of reasonably good quality. Since a lot of these parameters’ influence is not

easily predictable, changing them might have devastating effects on the outcome.

The mesh generation is very time and memory consuming and sometimes, while

the overall mesh quality might increase by running an additional iteration, local

quality requirements might be violated. Tuning all available parameters manually

is pretty much a trial-and-error procedure. Hence the idea is to let a genetic

algorithm do the work of finding the optimal settings for good mesh quality while

keeping the size of the mesh manageable.

6.1.1. snappyHexMesh Algorithm

Meshing a geometry using snappyHexMesh is divided into three distinct parts,

which are building up on each other. The first part is the castellation of the

background mesh. In this step the algorithm identifies the cells of the original

mesh that are intersected by edges of the surface geometry. These cells are then

refined by repeated cell splitting. Hexagonal cells are split into eight refined cells,

by splitting each edge of the cell and connecting the newly created points with the

cell centre, thus creating eight internal faces which are then connected to make up

eight new cells. The minimum and maximum level of refinement can be defined in

the dictionary snappyHexMeshDict. Further surface refinement can be achieved

by providing feature edges of the target geometry to maintain the curvature of the

cells. These feature edges can be constructed automatically, using OpenFOAM’s

1STL stands for STereoLithographie. It is a hierarchical description language defining vertices
and using these vertices to define faces and then combining faces to make up solids.

124

6.1 Motivation

surfaceFeatureExtract application. To finish the castellation step, all cells that

lie outside of the refined surface, controlled by the definition of a point in the

target mesh in the dictionary, are removed from the mesh.

The next step is the snapping of the outer gridpoints to the target surface.

Here it is important to capture the features of the geometry. An iterative process

of mesh movement, cell refinement and face merging dictates the quality of the

result. Parameters like the number of iterations and the mesh quality constraints

are again defined in the dictionary.

In a final and optional step, cell layers can be added to the surface to move

the mesh away from the boundary to specifically refine a boundary layer. The

surface that shall be treated and the number of layers to be added is user-defined.

To control the size of the resulting grid the layer addition and the refinement

parameters are the major adjustable settings. For enhanced grid quality, i.e. cap-

turing the target surface and maintaining a grid that is suitable for a finite volume

computation, the snapping parameters are most important. The following section

lists a selection of parameters from the snappyHexMesh dictionary, explains their

meaning in the meshing process and gives a value range used in the optimisation.

6.1.2. snappyHexMesh Parameters

The following section describes ther influence of each parameter on the mesh gen-

eration process. All these parameters were used as decision variables in the opti-

misation and Table 6.1 lists these variables and their value constraints used in the

optimisation.

6.1.2.1. Mesh Quality Controls

maxNonOrtho Non-orthogonality measures the angle between two faces of the

same cell. In a grid with only rectangluar cells the value would be zero. Any

deviation from this counts as non-orthogonal. High values mean there are

very low angles that usually occur in a prism layer.

maxSkewness Skewness is a ratio between the largest and the smallest face angles

in a cell. A velue of 0 is the perfect cell and 1 is the worst. For tetrahedral

125

6.1 Motivation

cells the value should not be greater than 0.95 to ensure accuracy of the cal-

culation. Within the dictionary different quality constraints can be assigned

to boundary cells and internal cells. Because in a simple geometry the cells

on the boundaries are more likely to be affected by skewness problems, only

this value was part of the optimisation. 6.3.1 explains this property in more

detail.

minVolRatio The ratio in cell volume between adjacent cells should not be too

large. A large aspect ratio leads to interpolation errors of unacceptable

magnitude.

6.1.2.2. Snap Controls

nSmoothPatch Number of patch smoothing operations before a corresponding

point is searched on the target surface. Smooth patches are more likely to

be parallel to the target surface, making it more probable to find a matching

point.

nRelaxIter Number of iterations to relax the mesh after moving points. When

points are snapped to the target, the displacement propagates through the

underlying layers of points that are not on the surface. By relaxing this

propagation, a smoother displacement can be achieved.

nFeatureSnapIter The total number of iterations trying to snap points to the

target. If no sufficient quality is reached after nFeatureSnapIter iterations,

the snapping is cancelled and the last state is recovered.

6.1.2.3. Castellated Mesh Controls

resolveFeatureAngle Maximum level of refinement is applied to cells that inter-

sect with edges at angles exceeding this value.

126

6.2 Optimisation Objectives

Table 6.1.: Value constraints for the objective variables in mesh generation opti-
misation. Accuracy value of 1 signifies an integer variable.

Parameter min value max value accuracy

maxNonOrto 30 80 1

maxSkewness 0.5 1 0.01

minVolRatio 0.01 0.1 0.01

nSmoothPatch 5 50 1

nRelaxIter 3 15 1

nFeatureSnapIter 10 30 1

resolveFeatureAngle 30 80 1

6.2. Optimisation Objectives

When generating a mesh with snappyHexMesh one tries to find the trade-off be-

tween mesh quality and a feasible number of cells. These two criteria are usually

not brought together easily. As one can imagine, with an unlimited number of

cells even the most complex surfaces could be captured accurately. On the other

hand introducing too many cells in the refinement process will lead to unfavourable

cell shapes and will also increase the cost of the simulation or even break it com-

pletely. That calls for a multi–objective optimisation approach that will try to

balance these competing objectives to find meshes of desirable quality and size.

The actual criteria to look at in this problem will be the total number of cells in

the final grid, the results of the snapping algorithm in terms of deviation from the

original STL surface and overall mesh quality.

So the three objectives for the multi–objective optimisation are

i) total number of mesh cells

ii) accuracy of snapping to STL surface

iii) mesh quality

127

6.3 Fitness Function

6.3. Fitness Function

Three fitness functions were implemented to solve this problem. One each for the

three optimisation objectives mentioned above. Because of the strucure of the

algorithm, the fitness evaluation operator had to be defined such that it would

try to minimise the value of each objective function. Multi-objective optimisation

with mixed objective value interpretation, where for example one objective value

has to minimised while another one has to be maximised, is not possible in the

current implementation of the NSGA-II algorithm.

To get a measure of the achieved mesh quality the output of snappyHexMesh

is logged and analysed once the tool has terminated. Another source of quality

information is the output of checkMesh. This OpenFOAM application summarises

some mesh statistics and logs them into a file that is read and evaluated by the

fitness function. This is admittedly not the best way to obtain the data because

it depends on the output having a specific format and order, but it is efficient

and saves time and memory. The reasoning is, that the log file would be written

anyway by the checkMesh utility and obtaining the desired information another

way would require to load the mesh into memory again and execute the necessary

OpenFOAM functions.

The first objective is the easiest to evaluate: total number of grid cells. Be-

cause snappyHexMesh reads a parameter from the dictionary file that controls the

maximum mesh size and uses it as a termination criterium, the number of cells is

both an optimisation objective and a variable in the decision space. The second

objective is cell quality and to measure that, the output of checkMesh is analysed

further. Listing 6.1 shows an example of such a log file. Over the complete mesh

the checking application gathers information on cell shape and connectivity and

calculates the total range of occuring values. The upper and lower limits of these

cell quality measurements can now be considered as optimisation variables, e.g.

maximum cell skewness or minimum cell volume.

Listing 6.1: Excerpt from output generated by checkMesh

Checking geometry ...
Overall domain bounding box (0 0 0) (2.362 0.16 0.001)
Mesh (non -empty , non -wedge) directions (1 1 0)
Mesh (non -empty) directions (1 1 0)

128

6.3 Fitness Function

All edges aligned with or perpendicular to non -empty
←֓ directions.

Boundary openness (1.68653e-19 3.41982e-18 2.81651e-15)
←֓ OK.

Max cell openness = 1.66354e-16 OK.
Max aspect ratio = 148.524 OK.
Minumum face area = 4.46498e-08. Maximum face area =
←֓ 5.98541e-05. Face area magnitudes OK.

Min volume = 4.46498e-11. Max volume = 5.98541e-08.
←֓ Total volume = 0.00037792. Cell volumes OK.

Mesh non -orthogonality Max: 0 average: 0
Non -orthogonality check OK.
Face pyramids OK.
Max skewness = 5.59845e-05 OK.
Coupled point location match (average 0) OK.

The evaluation of a solution’s fitness now depends on how a quality value needs

to be interpreted. In case of cell volume, for example, good fitness would mean

that the minimum volume is not lower than a given value, while the average cell

volume lies within a certain range of values. All these individual fitness measures

then have to be accumulated into one number that represents the mesh quality,

i.e. the third objective in the multi–objective optimisation. Agreement with the

quality constraints of each parameter calculated by the checkMesh utility was not

realised as a different objective function for each value. Instead the grades of

agreement (or disagreement) were combined into a single fitness value. To account

for different orders of magnitude in the actual calculated numbers, the fractional

biased error was used to limit the fitness value for each entry to a certain range.

Equation 6.1 shows how such a value is computed per quality constraint. The

symbol ξO represents the observed value obtained by running checkMesh and ξP

is the prescribed value set in an optimisation objective.

FB(I) = 2× ξO − ξP
ξO + ξP

(6.1)

The advantage of the fractional bias is that it limits the values to the interval

[−2, 2]. The sign just represents the direction of disagreement and a value of zero

means a total agreement of prescription and observation. If the direction is not of

interest, the bias can be squared to assure positive numbers only. The fractional

129

6.3 Fitness Function

bias is a useful method to compare real data with predicted data, because it equally

weighs positive and negative bias estimates.

The last objective considered is the accuracy of the snapping algorithm, that

means how close does the resulting mesh coincide with the desired surface. To

quantify this criterion the distance between external mesh faces and any of the

STL surfaces is measured and the sum of all these distances represents the fitness

value. This is of course limited to the cells that are near an STL surface in their

normal direction. To this end an application was developed within the OpenFOAM

framework that loops over all exterior faces and calculates the distance to the

nearest STL patch. Exterior faces in this sense are those, that lie on the surface

of the domain.

6.3.1. Mesh Quality

f

fi

P

N
d

S

m

Figure 6.1.: Determining skewness on a face

The skewness condition needs a closer investigation. The skewness error is an-

other numerical diffusion-type error emerging from the finite volume discretisation

[50]. Figure 6.1 shows a typical situation causing the skewness error in two adja-

cent cells P and N connected by a face with centre f, and face area vector S. The

value of the face integral requires the variable value at point f.

∫

f

dSφ = Sφf (6.2)

130

6.4 Genetic Algorithm Setup

In the finite volume implementation the value φf is often calculated from a linear

interpolation between points P and N . This yields the value of φ at the point fi,

which is not necessarily equal to f . The error ES of the convection term in Eqn.

3.32 is estimated as:

ES =
∑

f

S · [(ρU)fm · (∇φ)f] . (6.3)

On meshes of reasonable quality, |m| should be much smaller than |d|, but when

this condition is no longer met, as in very skewed meshes, the influence of m in

Eqn. (6.3) becomes more significant. The accuracy will suffer when the mesh

is highly skewed. This results mainly from the way in which the face–centered

pressure gradients are computed using cell–centered pressure values. Usually a

second order central-difference approximation is used and the accuracy might drop

to first order for very high skewness [112]. In other words, skewness is a measure

of how far off the face center between two adjacent cells does the connecting vector

d of the two cell centers intersect the face.

A similar measure is non–orthogonality, which describes the angle between the

vector d and the face normal S. In a good quality mesh, these two vectors should

be parallel, i.e. d is orthogonal to the face. Since the diffusive terms in the finite

volume discretisation of the Navier-Stokes-Equationsin OpenFOAM use the face

normal vector to calculate fluxes between cells, it is desirable to minimise non–

orthogonality.

6.4. Genetic Algorithm Setup

As mentioned above, the mesh creation optimises towards multiple objectives.

The NSGA-II algorithm used is described in detail in Section 4.5.1. Running

snappyHexMesh on a case with a target size of about 250,000 cells is computation-

ally very expensive in terms of time and memory. To save disk space the workflow

was slightly modified so that only the Pareto optimal individuals of each genera-

tion are physically stored, while the others are deleted after their evaluation and

before the evolution proceeds to the next generation. Since the coefficients of each

individual in every generation are logged anyway, this could yet be improved by

131

6.5 Test Cases

not storing any meshes, but reconstruct a solution on demand using the values

stored in the log file.

The parameters that were subject to the optimisation can be split into two

groups: cell quality and snapping accuracy. For the first group of cell quality the

snappHexMesh sub-dictionary meshQualityControls contains the values that were

of interest here. From experience using snappyHexMesh and because the bearing

test case was a rather simple geometry without any sharp angles, the constraints

listed in Table 6.2 were considered.

Table 6.2.: Mesh quality settings in snappyHexMesh

Parameter Min Max

maxBoundarySkewness 1.1 2.4

maxNonOrtho 40 80

minVolRatio 0.01 0.1

6.5. Test Cases

6.5.1. Bearing

This simple test case is comprised of two pipes of different diameter that are

connected by a planar disk. The inside of this assembly is to be meshed using

snappyHexMesh. Figure 6.2 shows the three parts and how they are arranged in

the structure. A detailed view of the connector disk (Figure 6.3) reveals a chamfer

at the inlet to the smaller pipe. From a meshing standpoint this geometry is

relatively easy to describe, but contains a few difficulties that can have severe

impacts on the mesh quality. For example where the base of the bigger pipe

meets the connector disk, a combination of straight and curved edges in one cell is

required. The curvature should be captured by all cells along the joint and should

be reasonably smooth to represent good cell quality. On the other hand around

the chamfer different angles between faces have to be created to fully capture the

geometry change in this area. While being a rather simple geometry, it offers

132

6.5 Test Cases

enough difficulties for an automatic mesh generator to be of academic interest

here.

The initial rectangular mesh outlined on the left of Figure 6.2 was created using

OpenFOAM’s blockMesh utility. It consists of 1372 cells, or 28 by 28 by 14 in

three dimensions. The axial direction of the tubes is the z-axis. The target mesh

size was limited to 200,000 cells in the snappyHexDict with refinement along the

tube walls and around the diameter change at the position of the connector.

Figure 6.2.: Geometry of the snappyHexMesh bearing test case. The black box
on the left is the outline of the original mesh that will be snapped
to the inside of the geometry. The right image shows the three parts
that make up the bearing.

Figure 6.3.: Detailed view of the connector disk’s top and bottom side showing
the chamfered edges.

6.5.1.1. Results

The decision if a mesh created with snappyHexMesh is of good quality can not

automatically be decided by the computer. Even if all mesh quality constraints

133

6.5 Test Cases

are met and the snapping accuracy is good, the resulting meshes might still be

very different. From a CFD engineering point of view it does not make sense to

tighten the requirements too much. Even with a weak constraint on, for example,

the cell orthogonality, the results of the simulation and the numerical behaviour

will most likely still be within the desired range. Choosing one set of parameters

from the Pareto set should be done manually, for example using a visualisation

tool.

Table 6.3 shows the final parameter settings in the snappyHexMeshDict. The

bad quality example was randomly selected from the dominated population of the

last generation and the good example was taken from the Pareto front. The results

of the mesh optimisation are visualised in Figure 6.4. These images should high-

light those parts of the mesh that are clearly of different quality. The total number

of cells was almost identical in both meshes, with 60,452 in the bad example versus

62,195 in the optimal case. Comparing the parameter settings in all individuals

of the Pareto front showed that for the minVolRatio the value was always 0.01 or

very close to it. It can be assumed that this is actually the optimal setting for this

parameter. Table 6.3 lists the meshing parameters for these two example meshes

as well as the value ranges found in the Pareto front of the final generation.

Table 6.3.: Parameter settings for snappyHexMesh for the bearing test case ref-
fering to the two examples depicted above and value ranges in the
Pareto front.

Parameter bad example good example Pareto range

maxNonOrtho 70 72 60–79

maxSkewness 6.0 10.7 8.0–12.3

minVolRatio 0.07 0.01 0.01–0.03

134

6.5 Test Cases

Figure 6.4.: Examples for bad (left) and good (right) snapping quality at the
intersection of the large tube (red) and the connector disk in the
bearing test case.

6.5.2. Ahmed Body

Figure 6.5.: Geometry of the Ahmed body as a simplified car model for aerody-
namic investigations.

The characteristics of the Ahmed body were first described by Ahmed [2] in an

experimental paper. It has become a well documented benchmark test case for

car aerodynamics and is widely used to test turbulence models or other modelling

techniques. Also many experimental data sets are available (e.g. [63, 62]). To

accurately predict lift and drag coefficients, as these are important quantities in

135

6.5 Test Cases

automobile aerodynamics, good grid quality has to be assured especially in the

area of eddy detachment at the back of the car and also on the underside of the

body. This is even more the case for Large-Eddy Simulations as performed on this

test geometry by various researchers [45, 57, 75]. The geometry pictured in Figure

6.5 was used here, again to test the meshing quality of snappyHexMesh.

As was the case for the bearing discussed in the previous chapter, the Pareto

set after the end of the optimisation procedure was rather large. In this case it

still contained up to 50 % of the total population which were identified as be-

ing mutually non–dominant. This could mean, that the parameters modified in

the snappyHexMeshDict had little or no influence on the outcome of the meshing

process. Or it could be that creating a really ’bad’ mesh for this geometry was

actually difficult. One explanation for the latter could be that the fitness measure-

ments as defined in the previous chapter were insufficient to identify discrepancies

between target and result. In comparison to the bearing case, bad mesh quality

would be very localised, mainly around the ’wheels’ at the bottom of the body. If

the quality restrictions were met on the majority of the surface, maybe small local

errors do not influence the fitness very much. Unfortunately, there was not enough

time and resources within the scope of this study to find the reason behind these

optimisation difficulties. This could be a subject for future contributions.

6.5.2.1. Results

The initial rectangular mesh created with OpenFOAM’s blockMesh utility con-

sisted of 12,000 cells, or 40 by 30 by 10 in three dimensions. Figure 6.6 shows the

results of the snappyHexMesh optimisation around the body’s wheels while Figure

6.7 highlights the curved edge of the rear end of the body. It can be seen that

the parameter values listed in Table 6.4 did not only better capture the feature

edges, but also led to more cells in the resulting mesh. Actually the bad quality

example had a total of 163,723 cells, while the example taken from the Pareto

front consisted of 632,073 cells. If such a large difference in grid size is not desired,

the total number of cells could be used as another fitness requirement. Also in

this test case a larger number of parameters was subject to the optimisation. A

total of six values was modified, this time not only taken from the mesh quality

136

6.5 Test Cases

sub-dictionary, but also from some controlling the castellation and the snapping

procedure. The respective sub-dictionaries and the prescribed values are listed in

Table 6.4.

Figure 6.6.: Examples for bad (left) and good (right) snapping quality in the
wheel region of the Ahmed body.

Figure 6.7.: Examples for bad (left) and good (right) snapping quality in the rear
region of the Ahmed body.

137

6.5 Test Cases

Table 6.4.: Parameter settings for snappyHexMesh for the two examples of the
Ahmed body test case depicted above.

Parameter bad example good example

castellated mesh controls

resolveFeatureAngle 45 32

mesh quality controls

maxNonOrtho 65 80

maxSkewness 20 22

snap controls

nSmoothPatch 3 7

nRelaxIter 3 6

nFeatureSnapIter 10 10

6.5.3. Packed Bed

In simulations of granular media on a macroscopic scale, material granules are often

modelled in an idealised manner as spheres. These spheres are then stacked to

tesselate the computational domain. That leaves small spaces between individual

particles which need to be meshed in order to simulate flow through such a region,

known as a “packed bed” [6]. Because of the spheres only touching in one point, the

cells around this connection need to be wedge shaped, resulting in high skewness

and non–orthogonality. Finding a good compromise between cell shape and mesh

quality is vital for a reliable numerical treatment of the flow through a packed

bed. Thus, automatically generating a mesh that meets the quality requirements

is a difficult task. Using a genetic algorithm to improve the mesh generation can

therefore be a useful tool.

The case setup for this problem consisted of eight spheres enclosed by a rect-

angular box. Each of the spheres touches its three neighbouring spheres in a very

small area. Figure 6.8 shows an axial and an isometric view of the geometry as

138

6.5 Test Cases

well as the background mesh created with blockMesh, used in snappyHexMesh to

confine the computational domain.

Figure 6.8.: Geometrical setup for the packed bed. Axial view (left) and isometric
view with background mesh (right).

6.5.3.1. Results

The initial mesh created with OpenFOAM’s blockMesh utility consisted of 80,000

cells, or 20 by 20 by 20 in three dimensions, forming a cube with edge length

L = 1.8R not quite enclosing eight spheres of radius R. The snappyHexMesh

parameters that were subject to optimisation and their allowed value ranges are

listed in Table 6.5. The size of the solution space can be calculated from this table

as ≈ 1.5 × 1010. Three optimisation targets were prescribed in this case: Overall

cell quality, accuracy of capturing the geometric features and total number of cells.

Interestingly, just changing the quality restrictions in the snappyHexMeshDict had

no influence on the resulting mesh size. Hence all individuals produced equally

sized meshes, rendering the third optimisation objective obsolete.

After 25 generations the optimisation was terminated. The fitness values for the

two remaining objectives of each individual on the Pareto front are shown in Figure

6.9. The actual fitness values were normalised by their maximum and minimum

values, to map them onto the interval [0, 1]. The graph depicts the advancement

139

6.5 Test Cases

Table 6.5.: Optimisation parameter value ranges for the packed bed test case as
defined in the gaDict.

Parameter min value max value accuracy

castellated mesh controls

resolveFeatureAngle 30 60 1.

mesh quality controls

maxNonOrtho 40 80 1.

maxSkewness 2.0 10.0 0.1

snap controls

nSmoothPatch 5 50 1.

tolerance 1. 2.5 0.1

nRelaxIter 3 15 1.

nFeatureSnapIter 10 30 1.

of the Pareto front exemplary for three generations. The second generation was

chosen because it is very close to the initial, i.e. random, population. From

halfway through the optimisation, the 10th generation was selected and for obvious

reasons the final generation. The second generation’s Pareto front only contained

two elements, but the size of the front settled toward 70-80% of all individuals

in the population towards the end of the optimisation. This is achieved through

the crowding distance assignment described in Section 4.5.1 which assures a more

balanced spread of solutions along the Pareto front.

When visualising the resulting meshes, it is possible to discern good from bad

quality meshes in terms of capturing the geometric features. When looking at the

thin volume in between two neighbouring spheres, the optimal shape would be a

perfectly round circle with a small radius. Comparing a Pareto optimal mesh and

a non–optimal mesh, as shown in Figure 6.10, one can see the higher roundness

in the good mesh. Unfortunately this characteristic is not easily measurable au-

140

6.5 Test Cases

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Cell Quality

Sn
ap

pi
ng

A
cc

ur
ac

y

Figure 6.9.: Solutions of the sphere meshing optimisation on the Pareto front
comparing three generations. Crosses (×) show the front after the
2nd generation, triangles (△) after the 10th, and squares (�) after the
final 25th generation. Objectives were normalised by their minimum
and maximum values.

tomatically, otherwise it could be used as an additional optimisation objective.

The results presented here with this simple test case show that with the inclusion

of further parameters or objectives, a tricky geometry like a packed bed can be

discretised with a good quality mesh.

141

6.6 Discussion

Figure 6.10.: Comparison of a Pareto front individual (left) versus a non-optimal
solution (right). Notable is the difference in roundness and radius
of the connecting area.

6.6. Discussion

Automated mesh generation is a highly useful tool in the pre–processing of com-

putational fluid dynamics. Building meshes is not always part of the skill set of

a CFD engineer, so that person has to rely on the generator to do a good job

with respect to preset quality parameters. The studies presented in this chapter

have shown that a genetic algorithm is capable of finding a satisfying solution

in conjunction with a versatile and highly adjustable mesh generator like Open-

FOAM’s snappyHexMesh. It shifts the problem from finding the right setting for

an algorithm that creates the mesh to defining quality requirements that the gen-

erated result has to meet, thus allowing the engineer to concentrate on the desired

outcome rather than worrying about the details of the underlying algorithm.

In the work presented here, only a fraction of all possible settings were adjusted

in the optimisation process. Future work on this topic will show to what extent

other coefficients can be modified to further improve the quality of the generated

spatial discretisation. Given the importance of the mesh quality to the accuracy

and stability of a finite volume flow simulation, the amount of time needed to find

the optimal mesh generator settings is well worth being invested.

142

7. Summary

An expert is a person who has made

all the mistakes that can be made in

a very narrow field.

Niels Bohr

The method presented in this thesis is already established in other fields of

research. Yet here it was for the first time applied to problems of modelling in

computational fluid dynamics. The implementation of the genetic algorithm was

shown to produce reliable results by testing it against academic benchmarking

problems as presented in Chapter 4.6. After this proof of method, it has been

applied to realistic engineering problems. The challenges discussed in this work

were the optimisation of turbulence model coefficients and the optimisation of

automated mesh generation. The presented studies as a whole demonstrate the

capability of a genetic algorithm to find improved parameters even if the topol-

ogy of the problem or solution space are unknown and if the parameters are not

mutually independent.

7.1. Turbulence Modelling

Although it is without doubt that the closure models for the RANS equations lack a

theoretical foundation and a formal connection to the solution of the Navier–Stokes

equations can not be made, these models are still widely used in the description

of turbulent flow phenomena. Johnson [51] is optimistic that with more computa-

tional power and further development of the models approximation comes closer

to reality. I cannot share this optimism. Recent developments have shown that

the models need to be modified in order to agree with corresponding experiments,

7.2 Mesh Generation

ultimately creating a whole zoo of turbulence models but without progressing the

basic understanding of the nature of turbulence. Unless the latter is achieved,

there will be no universal model that describes the complete range of flows with

relevance to the engineer. Further, tuning the coefficients to match a given problem

inevitably narrows the applicability to a small subset of problems. To improve the

accuracy of computational fluid dynamics w.r.t. turbulent flows further research

needs to be invested in the underlying physics which could then lead to a com-

pletely different approach to a numerical formulation. But until that is done, one

has to rely on the output of existing formulations and has to live with the error

they incorporate.

On the other hand, using a genetic algorithm approach can simplify the task

of adjusting a turbulence model to an existing flow configuration. Where tuning

parameters manually or via mathematical deduction could be very difficult or even

impossible, a GA finds a solution or a set of solutions that yields a satisfactory

improvement to the accuracy of the simulation. Projecting these results onto

similar flow problems can possibly help to get a better insight into the physical

nature of the flow. When comparing Tables 5.5 and 5.7 which show the estimated

optimae for the k-ω SST model in two completely different flow configurations, it

can be seen that the derivation from the so called standard values is very much

problem dependent. This finding justifies the use of GAs to adapt models to the

flow problem at hand.

Using the findings of this thesis, further work on turbulence model optimisation

can be done. It would be interesting to use multi–objective optimisation to fit one

model to a series of different flow problems. The objectives would be to find the

best parameter set for each type with respect to agreement with experimental or

DNS data. That way a more universal model would emerge that can be applied

to a wider range of problems.

7.2. Mesh Generation

Since spatial discretisation of the computational domain is a major part of simu-

lations using the finite volume method, automated mesh generation with full con-

trol over grid quality requirements is a very desirable functionality. OpenFOAM’s

144

7.3 Conclusion

snappyHexMesh utility is a powerful tool, but because it tries to be of universal use

for any kind of geometric setup, the sheer amount of possible settings makes it dif-

ficult to use in the best possible way. By employing genetic algorithm based search

strategies, a prescribed level of accuracy and cell quality can be achieved, that does

not require manual adjustments. Some of the benefits of using this technique are

that mesh generation is still fully automated, no manual grid correction needs to

be done. Also the focus can be laid on the outcome of the meshing procedure,

while the process is taken care of by the GA.

Including additional aspects of the mesh generation workflow of snappyHexMesh

into the parameter space of the genetic algorithm can further improve the over-

all quality of the resulting computational grid. For instance controlling surface

refinement or refinement of local areas within the mesh could be subject to op-

timisation. Also running actual calculations on the meshes generated by the GA

and comparing the results to those obtained with manually created meshes would

allow us to quantify the reliability of a fully automated mesh generation process.

7.3. Conclusion

With evolution based optimisation a wider range of problems can be solved at

the cost of higher computational effort. The major advantage is the fact, that

no a–priori knowledge of the solution or problem space topology is required to

obtain results. On the contrary, using this non–deterministic approach might even

reveal insight into the structure of the problem, that could not be deduced with

the knowledge available before. This research has proven that genetic algorithms

are a useful addition to the tool set available to the CFD engineer. Not only are

they powerful enough to generate optimised solutions that would be difficult if not

impossible to find with deterministic approaches, but they are also numerically

very robust and can be employed to solve problems about which not much is

known in advance.

In summary, the methods and test cases presented in this thesis have shown

that

145

7.4 Future Work

• genetic algorithms are a powerful tool to identify optimised parameters in

turbulence modelling

• a genetic algorithm can solve an optimisation problem if the solution space

is unknown or mathematically inaccessible, like mesh generation

• with sufficient computational resources, GAs are a handy tool for engineers

without much knowledge of computer science

• GAs can find solutions thast could not easily be identified with common

sense and experience alone, but could be rather unexpected, like the findings

from Section 4.7.

Applying evolutionary principles to problems of modeling in engineering is a new

approach that is yet in its infancy, but will itself evolve to a multi–purpose tool

that, given sufficient resources, can improve our knowledge about the physics whose

models are operating on, or make difficult optimisation tasks more approachable.

7.4. Future Work

Based on the findings in this thesis further research into the matter can be done.

On the methodological side it would be interesting to compare results found by

other optimisation methods, both in terms of accuracy as well as computational

effort. For example a swarm intelligence based method could be employed or

variations of the genetic algorithm presented here.

Another interesting point that was neglected in this work is the influence of

measurement errors and numerical error on the parameter optimisation in turbu-

lence modelling. Both sources of error introduce a degree of uncertainty to the

results that should be quantified mathematically, leading to a parameter range

rather than specific values.

The model parameters identified in Chapters 5 to 6 should also be tested on a

series of different physical problems. This thesis does not proclaim universality to

the parameter values, but for similar problems to those the values were optimised

for, an improvement should be observable.

146

7.4 Future Work

During the course of further work in the field, the source code should also be

expanded with more GA operators like new crossover and selection methods. The

modularity of the code should make this an easy task. The performance of these

new methods could then be tested against the problems discussed in this work.

147

A. Using the Code

Always be wary of any helpful item

that weighs less than its operating

manual.

Terry Pratchett, Jingo

A.1. System Requirements

The Genetic Algorithm implementation presented in this thesis requires a working

installation of python 2.6 or higher. To use the parallelisation facilities it needs

the mpi4py package and any MPI library that is supported by this package. It was

tested with Open MPI version 1.4.3 that came with the OpenFOAM bundle. The

PyFoam library is used to read dictionary files, but is not required if parameters

are passed to the program in any other way.

Obviously to run OpenFOAM solvers from within the GA framework, a full in-

stallation of OpenFOAM is essential. It should work with any version that is

supported by PyFoam and I used it with versions 1.7.x, 2.1.0 and 2.1.x. There is

no specific hardware required to use this library.

A.2. Setting up the GA

There are mainly three things that need to be adapted by the user to tailor the

genetic algorithm to any optimisation problem. The parameters that control the

behaviour of the algorithm and define the optimisation objectives are placed in

the dictionary file. The selection of operators and assignment of a fitness function

is placed in the main program and the actual fitness function should be defined

A.2 Setting up the GA

in a separate file but can also be placed next to the main function. The following

sections describe the format of these items in more detail.

A.2.1. Dictionary File

To control the settings for the execution of a genetic algorithm an external config-

uration file is used. That allows changing parameters and modifying environment

variables without making changes to the source code. The structure of the param-

eter file is in accordance with the OpenFOAM dictionary file format. The default

name is gaDict (short for genetic algorithm dictionary). A dictionary contains

keyword/value pairs, where the type of the value might be a real or integer num-

ber, a string, a list or a subdictionary. The first three are self-explanatory. A list

value consists of a list name followed by a list of values of any of the above types in

round brackets (). A subdictionary is defined by a unique name and a list of key-

word/value pairs enclosed in curly brackets {}. Listing A.1 shows an example of a

gaDict using all the types defined above. In the example mutationProbability

is a real value, variables is a list and C1, C2 etc. define a subdictionary. The

string value workingDirectory is optional but can be used to define an output

directory. The file format is flexible in a way that the user can add new entries ad

libitum to be used in the main code.

The syntax to define an optimisation variable takes three items of information.

The lower and upper bound define a range constraint within which the variable

will lie. The accuracy sets the number of digits that are considered. Those values

together define the length of a variable in the chromosome representation. For

example the variable C1 in the example below is limited to the range [0.864; 1.888]

and the accuracy is 0.001, allowing a total number of 1,024 different values. In

a bit encoded chromosome it would therefore take up 10 genes (210 = 1, 024). If

the length of the interval is not a power of two, a mapping takes place to assert

fulfillment of the constraint.

Listing A.1: Example gaDict file to control parameters for the genetic algorithm

externally.

populationSize 50;
generations 30;

150

A.2 Setting up the GA

mutationProbability 0.03;

crossoverProbability 0.6;
tournamentSize 2;

workingDirectory bfsRe64k -kEps;

variables
(

C1
{

lowerBound 0.864;
upperBound 1.888;
accuracy 1.e-3;

}
C2
{

lowerBound 1.152;
upperBound 2.149;
accuracy 1.e-3;

}
);

A.2.2. Operator Selection

Selection of genetic operators is implemented by using function pointers within

the source code. After insantiating an object of class BasicPopulation or one

of its derivatives, it can be assigned pointers to selection and crossover functions.

Standard operators for selection are roulette wheel and tournament selection, found

in module SimpleEA.SimplePopulation. The same goes for crossover functions.

To use these the modules have to be imported into the main file.

Listing A.2: Example setting up a simple population with selection function.

from SimpleEA import SimplePopulation

pop = SimplePopulation()
pop.selectionFunc = pop.tournamentSelect
pop.tournamentSize=2
{...}
mate=pop.select()
pop.crossover ()

151

A.3 Execution

The function signature for selection expects no parameters and returns the index of

the selected individual in the list of individuals that is a member of the population.

In simple and elitist populations the crossover function neither receives nor returns

any values. It rather performs the crossover operation in situ on the population’s

list of individuals, creating a new list that can then replace the old one at the

end of one generation. Other implementations are possible by just overwriting the

existing one or assigning a new crossover function to the population object. The

calling methods are select() and crossover() respectively.

A.2.3. Fitness Function

The fitness function is problem dependent, therefore it needs to be redefined for

each case individually. To connect the fitness function to an individual a function

pointer is assigned to objects of class BasicIndividual. In Python function point-

ers can have any signature, allowing a very flexible implementation of the fitness.

That means it can have any return type and the user has to make sure to interpret

the returned value appropriately. The method fitness() in the Individual class

will call the assigned function.

Listing A.3: Example for defining and assigning a fitness function. Here the num-

ber of ones in the chromosome is counted as a measure of fitness

def maxOne(indiv):
sums=0
for a in indiv.chromosome:

if a==1: sums=sums+1.
return sums

{...}
indiv=BasicIndividual()
indiv.fitnessFunc = maxOne
{...}
fit=indiv.fitness ()

A.3. Execution

Running the genetic algorithm requires runnable Python code in the main mod-

ule. There the population should be set up, individuals assigned and randomly

152

A.3 Execution

generated and the main evolution loop should be placed there. The code can

then simply be executed by calling python main.py from the commandline where

main.py is the name of the main module. If parallel processing is required the

MPI code has to be in the main module and it is simply executed by calling

mpirun -np 10 python main.py

The -np directive passes the number of processes to be used on to the MPI main

routine.

153

Bibliography

[1] Using Genetic Algorithms for Electrode Shape Optimization in Accelerators
with RF Focusing (2012).

[2] Abe, K., and Ohtsuka, T. Some salient features of the time-averaged
ground vehicle wake. Tech. Rep. SAE-Paper 840300, SAE, 1984.

[3] Abe, K., and Ohtsuka, T. An investigation of LES and hybrid
LES/RANS models for predicting 3-d diffuser flow. International Journal
of Heat and Fluid Flow 31, 5 (2010), 833–844.

[4] Ashforth-Frost, S., Jambunathan, K., and Whitney, C. Velocity
and turbulence characteristics of a semiconfined orthogonally impinging slot
jet. Experimental Thermal and Fluid Science 14 (1997), 60–67.

[5] Baker, J. E. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the 2nd Int. Conference on Genetic Algorithms (1987), L. E.
Assoc., Ed., pp. 14–21.

[6] Baker, M., and Tabor, G. Computational analysis of transitional air
flow through packed columns of spheres using the finite volume technique.
Computers & Chemical Engineering 34, 6 (2010), 878–885.

[7] Baldwin, B. S., and Barth, T. J. A one-equation turbulence trans-
port model for high reynolds number wall-bounded flows. Tech. Rep. AIAA
PAPER 91-0610, AIAA, 1991.

[8] Baldwin, B. S., and Lomax, H. Thin layer approximation and alge-
braic model for separated turbulent flows. In AIAA 16th Aerospace Sciences
Meeting (1978), vol. 78-257.

[9] Balzert, H. Lehrbuch der Software-Technik : Software-Entwicklung. Spek-
trum, Akadem. Verlag, 1996.

[10] Bardow, A., Bischof, C. H., Bucker, H. M., Dietze, G., Kneer,
R., Leefken, A., Marquardt, W., Renz, U., and Slusanschi, E.
Sensitivity-based analysis of the k-ε model for the turbulent flow between
two plates. Chemical Engineering Science 63, 19 (2008), 4763–4775.

Bibliography

[11] Behzadian, K., Kapelan, Z., Savic, D., and Ardeshir, A. Stochas-
tic sampling design using a multi-objective genetic algorithm and adaptive
neural networks. Environmental Modelling & Software 24, 4 (2009), 530–541.

[12] Blenkinsop, A., Valentin, A., Richardson, M., and Terry, J. The
dynamic evolution of focal-onset epilepsies: Combining theoretical and clini-
cal observations. European Journal of Neuroscience 36, 2 (2012), 2188–2200.

[13] Bradshaw, P., Ferris, D. H., and Atwell, N. P. Calculation of
boundary-layer development using the turbulent kinetic energy equation.
Journal of Fluid Mechanics 28, 3 (1967), 593–616.

[14] Cebeci, T., and Smith, A. M. O. Analysis of Turbulent Boundary Layers.
Academic Press, New York, 1974.

[15] Chandesris, M., Serre, G., and Sagaut, P. A macroscopic turbulence
model for flow in porous media suited for channel, pipe and rod bundle
flows. International Journal of Heat and Mass Transfer 49, 15-16 (2006),
2739–2750.

[16] Cooper, D., Jackson, D., Launder, B., and Liao, G. Impinging jet
studies for turbulence model assessment - I. flow-field experiments. Interna-
tional Journal of Heat and Mass Transfer 36, 10 (1993), 2675–2684.

[17] Cziesla, T., Tandogan, E., and Mitra, N. Large-eddy simulation of
heat transfer from impinging slot jets. Numerical Heat Transfer, Part A
Applications 32, 1 (1997), 1–17.

[18] Darwin, C. On the Origin of Species by means of natural selection. John
Murray, London, 1859.

[19] Davidson, L., and Peng, S. Hybrid LES-RANS modelling: A one-
equation SGS model combined with a k-ω model for predicting recirculating
flows. International Journal for Numerical Methods in Fluids 43, 9 (2003),
1003–1018.

[20] Davidson, P. Turbulence. OUP Oxford, 2004.

[21] Deb, K., Anand, A., and Joshi, D. A computationally efficient evolu-
tionary algorithm for real-parameter optimization. Evolutionary Computa-
tion 10, 4 (2002), 371–395.

[22] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

156

Bibliography

[23] deJong, K. A. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

[24] Dorigo, M. Optimization, Learning and Natural Algorithms. PhD thesis,
Politecnico di Milano, Italie, 1992.

[25] Ehrhard, J., and Moussiopoulos, N. On a new nonlinear turbulence
model for simulating flows around building-shaped structures. Journal of
Wind Engineering and Industrial Aerodynamics 88, 1 (2000), 91–99.

[26] Erturk, E., Corke, T., and Gökc.öl, C. Numerical solutions of 2-D
steady incompressible driven cavity flow at high reynolds numbers. Int. J.
Numer. Meth. Fluids 48 (2005), 747–774.

[27] Ferziger, J. H., and Perić, M. Computational Methods for Fluid Dy-
namics, 3rd rev. ed. Springer-Verlag, Berlin, 2002.

[28] Fogel, L. J., Walsh, A. J., and Owens, A. J. Artificial Intelligence
through simulated evolution. John Wiley, New York, 1966.

[29] Fonseca, C. M., and Fleming, P. J. An overview of evolutionary algo-
rithms in multiobjective optimization. Evolutionary Computation 3 (1995),
1–16.

[30] Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge
University Press, 2005.

[31] Gagné, C., and Parizeau, M. Genericity in evolutionary computation
software tools: Principles and case-study. International Journal on Artificial
Intelligence Tools 15, 2 (2006), 173–194.

[32] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[33] Gartling, D. A test problem for outflow boundary conditions – flow over
a backward facing step. Int. J. Numer. Meth. Fluids 11 (1990), 953–967.

[34] Gatski, T. B., and Rumsey, C. L. Linear and nonlinear eddy viscosity
models. In Closure Strategies for Turbulent and Transitional Flows (2002),
B. Launder and N. D. Sandham, Eds., Cambridge University Press, pp. 9–46.

[35] Gen, M., and Cheng, R. Genetic Algorithms and Engineering Optimiza-
tion. John Wiley & Sons, 2000.

157

Bibliography

[36] Ghia, K., Osswald, G., and Ghia, U. Analysis of incompressible mas-
sively separated viscous flows using unsteady navier-stokes equations. Int.
J. Numer. Meth. Fluids 9 (1989), 1025–1050.

[37] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, 1989.

[38] Goldberg, U. Exploring a three-equation r-k-ε turbulence model. Journal
of Fluids Engineering, Transactions of the ASME 118, 4 (1996), 795 – 799.

[39] Hakimzadeh, H. Numerical simulation of oscillatory shallow-water flow
around a conical headland using the k-ε and algebraic stress turbulence mod-
els. ASME Conference Proceedings 2008, 48227 (2008), 987–992.

[40] Han, X.-S., Ye, T.-H., Zhu, M.-M., and Chen, Y.-L. A new k-ε tur-
bulence model with compressibility modifications. Kongqi Donglixue Xue-
bao/Acta Aerodynamica Sinica 27, 6 (2009), 677–682.

[41] Hanjalić, K., and Launder, B. A reynolds stress model of turbulence
and its application to thin shear flow. Journal of Fluid Mechanics 52 (1972),
609–638.

[42] Hariharan, P., Giarra, M., Reddy, V., and Day, S. W. Multilab-
oratory particle image velocimetry analysis of the FDA benchmark nozzle
model to support validation of computational fluid dynamics simulations.
Journal of Biomechanical Engineering 133 (2011), 410021–14.

[43] Hattori, H., and Nagano, Y. Direct numerical simulation of turbulent
heat transfer in plane impinging jet. International journal of heat and fluid
flow 25, 5 (2004), 749–758.

[44] Hilbert, R., Janiga, G., Baron, R., and Thèvenin, D. Multi-
objective shape optimization of a heat exchanger using parallel genetic algo-
rithms. International Journal of Heat and Mass Transfer 49, 15-16 (2006),
2567–2577.

[45] Hinterberger, C., GarcÃŋa-Villalba, M., and Rodi, W. Large
eddy simulation of flow around the ahmed body. In Lecture Notes in Ap-
plied and Computational Mechanics / The Aerodynamics of Heavy Vehicles:
Trucks, Buses, and Trains (2004), J. R. R. McCallen, F. Browand, Ed.,
Springer Verlag.

[46] Holland, H. J. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, 1975.

158

Bibliography

[47] Hollstien, R. B. Artificial genetic adaptation in cmoputer control systems.
PhD thesis, University of Michigan, 1971.

[48] Jansen, B., and Rit, V. Electroencephalogram and visual evoked poten-
tial generation in a mathematical model of coupled cortical columns. Bio-
logical Cybernetics 73 (1995), 357–366.

[49] Jaramillo, J., Pèrez-Segarra, C., Rodriguez, I., and Oliva, A.
Numerical study of plane and round impinging jets using RANS models.
Numerical Heat Transfer 54 (2008), 213–237.

[50] Jasak, H. Error Analysis and Estimation for the Finite Volume Method
with Applications to Fluid Flows. PhD thesis, Imperial College of Science,
Technology and Medicine, London, 1996.

[51] Johnson, R. W. The handbook of fluid dynamics. Springer, 1998.

[52] Jones, W. P., and Launder, B. E. The prediction of laminarization
with a two-equation model of turbulence. International Journal of Heat and
Mass Transfer 15 (1972), 301–314.

[53] Jourdan, L., Corne, D., Savic, D., and Walters, G. Preliminary
investigation of the ’learnable evolution model’ for faster/better multiobjec-
tive water systems design. In EMO 2005, C. A. C. et al., Ed., vol. LNCS
3410. Springer-Verlag Berlin Heidelberg, 2005, pp. 841–855.

[54] Jourdan, L., Corne, D., Savic, D. A., and Walters, G. A. LEMMO:
Hybridising rule induction and NSGA II for multi-objective water systems
design. In CCWI2005, Computing and Control in the Water Industry (2005),
pp. 45–50.

[55] Kirkpatrick, S., jr., C. D. G., and Vecchi, M. P. Optimization by
simulated annealing. Science 220, 4598 (1983), 671–680.

[56] Koza, J. R. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[57] Krajnovic, S., and Davidson, L. Large eddy simulation of the flow
around a simplified car model. In SAE 2004 World Congress, Detroit, USA
(2004).

[58] Lai, Y., So, R., and Hwang, B. Calculation of planar and conical diffuser
flows. AIAA Journal 27, 5 (1989), 542–548.

159

Bibliography

[59] Launder, B., Reece, G., and Rodi, W. Progress in the development of
a reynolds–stress turbulent closure. Journal of Fluid Mechanics 68, 3 (1975),
537–566.

[60] Launder, B., and Spalding, D. Lectures in Mathematical Models of
Turbulence. Academic Press, 1972.

[61] León-Rovira, N., Uresti, E., and Arcos, W. Fan shape optimisation
using CFD and genetic algorithms for increasing the efficiency of electric
motors. Int. J. Computer Applications in Technology 30, 1/2 (2007), 47–58.

[62] Lienhart, H., and Becker, S. Flow and turbulence structure in the
wake of a simplified car model. In SAE 2003 World Congress, Detroit, USA
(2003).

[63] Lienhart, H., Stoots, C., and Becker, S. Flow and turbulence struc-
tures in the wake of a simplified car model (ahmed model). In DGLR Fach
Symp. der AG STAB, Stuttgart University (2000).

[64] Loshchilov, I., Schoenauer, M., and Sebag, M. Not all parents are
equal for MO-CMA-ES. In Evolutionary Multi-Criterion Optimization 2011
(2011), Springer Verlag, pp. 31–45.

[65] Makiola, B. Experimentelle Untersuchungen zur Strömung über die
schräge Stufe. PhD thesis, Institut für Hydromechanik, Universität Karl-
sruhe, 1992.

[66] Makiola, B., and Ruck, B. Flow separation over the step with inclined
walls. In Near-Wall Turbulent Flows (1993), R. So, C. Speziale, and B. Laun-
der, Eds., Elsevier Press, p. 999.

[67] Man, K. F., Tang, K. S., and Kwong, S. Genetic algorithms: Concepts
and applications. IEEE Transactions on Industrial Electronics 43, 5 (1996),
519–534.

[68] Marco, N., Désidéri, J.-A., and Lanteri, S. Multi-objective optimiza-
tion in CFD by genetic algorithms. Tech. Rep. 3686, Institut National de
Recherche en Informatique en Automatique, 1999.

[69] McRae, D., and Laflin, K. Dynamic grid adaption and grid quality. In
Handbook of Grid Generation, J. Thompson, B. Soni, and N. Weatherhill,
Eds. CRC Press, 1999, ch. 34.

[70] Menter, F. Two-equation eddy-viscosity turbulent models for engineering
applications. AIAA Journal 32 (1994), 1598–1605.

160

Bibliography

[71] Menter, F. R., Kuntz, M., and Langtry, R. Ten Years of Industrial
Experience with the SST Turbulence Model. Turbulence, Heat and Mass
Transfer 4. Begell House, Inc, 2003.

[72] Message Passing Interface Forum. MPI: A Message-Passing Inter-
face Standard, Version 2.2. High-Performance Computing Center Stuttgart,
2009.

[73] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, Berlin, Heidelberg, 1996.

[74] Michalewicz, Z., and Schoenauer, M. Evolutionary algorithms for
constrained parameter optimization problems. Evolutionary Computation 4,
1 (1996), 1 – 32.

[75] Minguez, M., Pasquetti, R., and Serre, E. High-order large-eddy
simulation of flow over the ’ahmed body’ car model. Physics of Fluids 20, 9
(2008), 095101.

[76] Moin, P., and Mahesh, K. Direct numerical simulation: A tool in turbu-
lence research. Annual Review of Fluid Mechanics 30 (1998), 539–78.

[77] Olsson, M., and Fuchs, L. Large eddy simulations of a forced semicon-
fined circular impinging jet. Physics of fluids 10 (1998), 476.

[78] Ortiz-Boyer, D., Hervás-Martínez, C., and García-Pedrajas, N.
Cixl2: A crossover operator for evolutionary algorithms based on population
features. Tech. rep., University of Cordoba, Spain, 2005.

[79] Petersen, M. R., Hecht, M. W., and Wingate, B. A. Efficient form of
the LANS-α turbulence model in a primitive-equation ocean model. Journal
of Computational Physics 227, 11 (2008), 5717–5735.

[80] Pope, S. An explanation of the turbulent round-jet/plane-jet anomaly.
AIAA Journal 16 (1978), 279–281.

[81] Pope, S. B. Turbulent Flows. Cambridge University Press, 2000.

[82] Prandtl, L. no title. In Proceedings of the second international congress
in applied mechanics (Zurich, 1926), p. 341.

[83] Prandtl, L. Über ein neues Formelsystem für die ausgebildete Turbulenz.
Nachrichten der Akademie der Wissenschaften zu Göttingen (1945), 6–19.
(german).

161

Bibliography

[84] Rechenberg, I. Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. PhD thesis, Technical University
of Berlin, Germany, 1971.

[85] Rechenberg, I. Evolutionsstrategie. Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann Holzboog, 1973.

[86] Reynolds, O. On the dynamical theory of incompressible viscous fluids
and the determination of the criterion. Philosophical Transactions of the
Royal Society London A 186 (1895), 123–164.

[87] Rumsey, C. L. Apparent transition behavior of widely-used turbulence
models. International Journal of Heat and Fluid Flow 28 (2007), 1460–1471.

[88] Schwefel, H.-P. Evolutionsstrategie und numerische Optimierung. PhD
thesis, Technical University of Berlin, Germany, 1975.

[89] Schwefel, H.-P. Evolution and Optimum Seeking. Wiley & Sons, New
York, 1994.

[90] Schwefel, H.-P. Artificial evolution: How and why? In Genetic Al-
gorithms and Evolution Strategies in Engineering and Computer Science,
D. Quagliarella, J. Périaux, C. Poloni, and G. Winter, Eds. John Wiley &
Sons Ltd., Chichester, 1998.

[91] Smith, E., Mi, J., Nathan, G., and Dally, B. The ”round jet inflow-
condition anomaly” for the k-e turbulence model. Tech. Rep. unpublished,
University of Adelaide, 2012.

[92] So, R., Lai, Y., Zhang, H., and Hwang, B. Second-order near-wall
turbulence closures. a review. AIAA journal 29, 11 (1991), 1819–1835.

[93] Spalart, P. R., and Allmaras, S. R. A one-equation turbulence model
for aerodynamic flows. AIAA Paper 92 (1992), 439.

[94] Speziale, C. G., and Thangham, S. Analysis of an RNG based turbu-
lence model for separated flows. Tech. Rep. ICASE Report No 92-3, NASA
Langley Reseach Center, 1992.

[95] Srinivas, N., and Deb, K. Multiobjective optimization using nondomi-
nated sorting in genetic algorithms. Evolutionary Computation 2, 3 (1995),
221–248.

162

Bibliography

[96] Stewart, S., Paterson, E., Burgreen, G., Hariharan, P., Giarra,
M., Reddy, V., Day, S., Manning, K., Deutsch, S., Berman, M.,
Myers, M., and Malinauskas, R. Assessment of CFD performance in
simulations of an idealized medical device: Results of FDA’s first compu-
tational interlaboratory study. Cardiovascular Engineering and Technology
(2012), 1–22.

[97] Storn, R., and Price, K. Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization 11 (1997), 341–359.

[98] Tagen, A. Performance comparison DE vs PSO for benchmark function:
De Jong’s in [-50:50]. PhD thesis, University of Trento, Italy, 2013.

[99] Takatsu, Y., Masuoka, T., and Tsuruta, T. Turbulence model for flow
through porous media. Nippon Kikai Gakkai Ronbunshu, B Hen/Transac-
tions of the Japan Society of Mechanical Engineers, Part B 60, 571 (1994),
965–970.

[100] Teruel, F. E., and Rizwan-uddin. A new turbulence model for porous
media flows. Part I: Constitutive equations and model closure. International
Journal of Heat and Mass Transfer 52, 19-20 (2009), 4264–4272.

[101] Thangam, S., and Speziale, C. G. Turbulent flow past a backward-
facing step - a critical evaluation of two-equation models. AIAA Journal 30
(May 1992), 1314–1320.

[102] Versteeg, H. K., and Malalasekera, W. An introduction to Compu-
tational Fluid Dynamics, 2nd ed. Pearson Prentice Hall, 2007.

[103] Voke, P. R., and Gao, S. Numerical study of heat transfer from an
impinging jet. International journal of heat and mass transfer 41, 4 (1998),
671–680.

[104] W., Q., and J., C. Parameter estimation of engineering turbulence model.
Acta Mechanica Sinica 17, 4 (2001), 302–309.

[105] Weisstein, E. W. Gray code, Last Accessed:
04.03.2012. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GrayCode.html.

[106] Wendling, F., Bartolomei, F., Bellanger, J., and Chauvel, P.
Epileptic fast activity can be explained by a model of impaired GABAergic
dendritic inhibition. European Journal of Neuroscience 15 (2002), 1499–
1508.

163

Bibliography

[107] White, J., Chow, C., Ritt, J., Soto-Trevino, C., and Kopell,
N. Synchronization and oscillatory dynamics in heterogeneous, mutually
inhibited neurons. Journal of Computational Neuroscience 5 (1998), 5–16.

[108] Whitley, D. The GENITOR algorithm and selection pressure: why rank-
based allocation of reproductive trials is best. In Proceedings of the 3rd Int.
Conference on Genetic Algorithms (1989), J. D. Schaffer, Ed., pp. 116–121.

[109] Whittington, M., Traub, R., Kopell, N., Ermentrout, B., and
Buhl, E. Inhibition-based rhythms: experimental and mathematical obser-
vations on network dynamics. International Journal of Psychophysiology 38
(2000), 315–336.

[110] Wilcox, D. C. Turbulence Modeling for CFD, 3rd ed. DCW Industries,
Inc., La Cañada, 2006.

[111] Xuesong, Y., Wei, W., Qingzhong, L., Chengyu, H., and Yuan, Y.
Designing electronic circuits by means of gene expression programming II. In
Proceedings of the 7th international conference on Evolvable systems: from
biology to hardware (Berlin, Heidelberg, 2007), ICES’07, Springer-Verlag,
pp. 319–330.

[112] Zang, Y., Street, R. L., and Koseff, J. R. A non-staggered grid, frac-
tional step method for time-dependent incompressible navier-stokes equa-
tions in curvilinear coordinates. Journal of Computational Physics 114, 1
(1994), 18–33.

[113] Zitzler, E., Deb, K., and Thiele, L. A Tutorial on Evolutionary Multi-
objective Optimization. Swiss Federal Institute of Technology (ETH), Com-
puter Engineering and Networks Laboratory (TIK), Gloriastrasse 35, CH-
8092 Zurich, Switzerland, 2002.

[114] Zitzler, E., Laumanns, M., and Bleuler, S. Comparison of multiob-
jective evolutionary algorithms: Empirical results. Evolutionary Computa-
tion 8 (2000), 173–195.

164

	List of Figures
	List of Tables
	Introduction
	Background
	Research Question

	Thesis Outline

	Evolutionary Computation
	Principles of Evolution
	Genetic Algorithms in Computer Science
	Genetic Applications in Engineering

	Computational Modelling
	Introduction
	Reynolds-Averaged Navier-Stokes Equations
	Zero-Equation models
	One-Equation models
	Spalart Allmaras Model

	Two-Equation models
	k- Model
	k–SST Model

	Parameter Identification
	Finite Volume Method
	Spatial Discretisation

	Genetic Optimisation
	Genetic Algorithm Basics
	Chromosome Encoding
	Objective Function
	Selection
	Crossover
	Mutation

	Fitness
	Implementation
	Language Selection
	Code Design
	Fitness Function
	Parallelisation

	Software Model
	Core Classes and Operators
	Derived Classes
	Utility Classes

	Multi-Objective Optimisation
	Fast Non-Dominated Sorting

	Benchmarking
	Example: Parameter Identification
	Motivation
	Neuronal Model
	Problem Formulation
	Results

	Optimisation of Turbulence Models
	Optimisation Objectives
	Multi-Objective Optimisation
	Hardware

	Test Cases
	Backward Facing Step
	Results
	Impinging Jet
	Results
	Conical Concentrator and Sudden Expansion
	Results

	Discussion

	Mesh Generation Quality Optimisation
	Motivation
	snappyHexMesh Algorithm
	snappyHexMesh Parameters

	Optimisation Objectives
	Fitness Function
	Mesh Quality

	Genetic Algorithm Setup
	Test Cases
	Bearing
	Ahmed Body
	Packed Bed

	Discussion

	Summary
	Turbulence Modelling
	Mesh Generation
	Conclusion
	Future Work

	Using the Code
	System Requirements
	Setting up the GA
	Dictionary File
	Operator Selection
	Fitness Function

	Execution

	Bibliography

