
Neural Comput & Applic (1999)8:218–225
 1999 Springer-Verlag London Limited

An Enhanced Training Algorithm for Multilayer Neural
Networks Based on Reference Output of Hidden Layer

Y. Li 1, A.B. Rad1 and W. Peng2
1Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong;2School of Engineering,
The Flinders University of South Australia, Adelaide, Australia

In this paper, the authors propose a new training
algorithm which does not only rely upon the training
samples, but also depends upon the output of the
hidden layer. We adjust both the connecting weights
and outputs of the hidden layer based on Least
Square Backpropagation (LSB) algorithm. A set of
‘required’ outputs of the hidden layer is added to
the input sets through a feedback path to accelerate
the convergence speed. The numerical simulation
results have demonstrated that the algorithm is
better than conventional BP, Quasi-Newton BFGS
(an alternative to the conjugate gradient methods
for fast optimisation) and LSB algorithms in terms of
convergence speed and training error. The proposed
method does not suffer from the drawback of the
LSB algorithm, for which the training error cannot
be further reduced after three iterations.

Keywords: Backpropagation; BFGS Quasi-Newton
algorithm; Conjugate gradient algorithm; Least
squares; Multilayer neural networks

1. Introduction

Most supervised training algorithms are based on
the Backpropagation (BP) algorithm [1]. The main
reason for the success of the backpropagation algor-
ithm is its remarkable simplicity and ease of
implementation. The algorithm is, in its crude form,
an integration of the chain rule and the gradient
descent [2]. However, the original BP algorithm,
as introduced in [1], shares the same typical

Correspondence and offprint requests to: A.B. Rad, Department
of Electrical Engineering, The Hong Kong Polytechnic University,
Hung Hum, Kowloon, Hong Kong.

conundrums as all the steepest descent strategies:
very slow convergence rate and thea priori require-
ment of learning parameters. It is common practice
to increase the number of nodes of the hidden layers
or add more hidden layers to improve learning. On
the contrary, numerical experiments show that the
speed of convergence is frequently made worse by
the addition of extra nodes to either hidden layers
or more hidden layers of neural networks. Theoreti-
cally, even though an exact solution of the training
problem exists, steepest descent methods frequently
fail to converge at all. All the above phenomena
limit the practical use of this algorithm.

In the last decade, several improved training
algorithms have been reported in the literature. Some
use heuristic rules to find optimal learning para-
meters [2,3]. Others manage to improve the error
function [4,5]. Further approaches employ different
nonlinear optimisation methods [6,7]. By looking at
the structure of neural networks, Konig and Barmann
[8,9] separated neural networks into linear and non-
linear parts, and optimised the linear part layer-
by-layer using the least squares method. Various
linearisation methods of the nonlinear part of neural
networks and similar methods are also suggested
in [10,11].

All these improvements achieve better conver-
gence rates and, for many purposes, they perform
sufficiently. However, for applications particular to
real-time control systems, which require high speed
and high precision outputs, the known algorithms
are often still too slow and inefficient.

Careful analysis of the above algorithms points
to a common characteristic: they do not consider
the output of the hidden layer. All the training only
depends upon the inputs and outputs of the training
samples. This paper, inspired by the work of Konig

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/20551103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

219Training Algorithm for Multilayer NNs Based on Reference Output

and Barmann [8,9], proposes a new training algor-
ithm which does not only rely upon the training
samples, but also depends upon the output of the
hidden layer. The numerical simulations are
implemented to demonstrate the performance of the
proposed algorithm.

The rest of this paper is organised as follows.
The training method is derived in the next section.
Some simulation results are given in Section 3.
Finally, Section 4 contains the conclusion.

2. Multilayer Neural Networks and
The Algorithm

Multilayer feedforward networks have the capability
of learning the internal representation of complex
non-linear systems, which makes them desirable can-
didates in problems associated with system model-
ling and control. Cybenko [12] proved that multi-
layer perceptrons with only one hidden layer and
sigmoidal hidden layer activation are capable of
approximating any continuous function to within
an arbitrary accuracy. Therefore, three-layer neural
networks are generally considered and studied in
most of the published literature on training neural
network algorithms. It should be noted that a gener-
alisation of the algorithm to networks with more
than one hidden layer is a straightforward extension.
Before proceeding to describe the training algorithm,
it is necessary to give an explicit description of a
three-layer feedforward neural network. The archi-
tecture of such a network is shown in Fig. 1, where
X and Y are the input and output of the network,
respectively. The network may be represented in
block diagram form as a series of affine transform-
ations W1 and W2, and a diagonal non-linear oper-
ator Q with identical sigmoidal activations. In other
words, each layer of the network is regarded as the
composition of an affine transformation with a non-
linear mapping:

A = Q(XpW1) (1)

Fig. 1. Architecture of a three-layer neural network.

Y = Q(ApW2) (2)

As observed, a three-layer neural network is denoted
by f(W1,W2), where W1 and W2 are the weights
of the connection. A is the output of the hidden
layer in the network.

Here, let the input training data set X be aN × m
matrix; m is the number of input neurons andN is
the length of the training data set. Similarly, the
target data set T is anN × n matrix; n is the number
of output neurons. In practice, the number of input
nodes and the number of neurons in the output layer
are fixed by the number of inputs and outputs of
the system being considered. However, the numbers
and states of the neurons in the hidden layer are
important design parameters: they not only deter-
mine the structure of the network, but also play an
important role in the approximation of the network.
Unfortunately, all of the known algorithms and
methods of training and constructing neural networks
focus on the input-output training pairs, and the
number of the neurons in the hidden layer. Few
researchers have taken into consideration the state
of the hidden layer neurons. In fact, the potential
of the neuron states in the hidden layer can have a
significant impact on the training process.

In this paper, we highlight the use of the hidden
layer in the network after a brief review of the
Least Square Backpropagation (LSB) method. In
1993, Konig and Barmann [8,9] separated neural
networks into linear parts, summations of the
weighted inputs to the neurons, and nonlinear parts,
nonlinear activity functions (such as sigmoidal
activation). While solving the linear parts optimally,
they used the inverse of the activation to propagate
the remaining error back into the previous layer of
the neural networks. Therefore, the learning error is
minimised on each layer separately from the output
layer to the hidden and input layers by using the
least squares method (see [8,9] for details). That is
so-called Least Square Backpropagation. The con-
vergence of the algorithm is much higher than that
of the classical BP algorithm. However, the draw-
back of the LSB algorithm is that the training error
cannot be further reduced after the first two or
three iterations.

The final goal of training is to decrease the errors
between the outputs of the output layer (that is, the
outputs of the network) and the desired outputs.
Thus, the outputs of the network should be
optimised in a step-by-step fashion. In the process,
we assume that the hidden layer should have a
certain status R, and if R satisfies some require-
ments, then the outputs of the output layer would
be optimal. Therefore, R can be determined based

220 Y. Li et al.

on the objectives set out by the designer. Next, we
consider how to adjust the output of the hidden
layer and make it satisfy those requirements.
Although there are many ways to achieve that, here
we prefer to introduce the output as its input. The
main reason is that it adds a feedback loop for each
neuron. The neurons with feedback, as in a closed
control system, can sense the changes in the output
due to the process changes, and attempt to correct
the output. The neurons without feedback lack this
type of self-regulation [13].

Here we adjust both the outputs of the hidden
layer and the weights of network. To achieve this
target, the relationship between the outputs of the
hidden layer and the outputs of the output layer
should be predetermined, and a method to adjust
the outputs of the hidden layer should be determ-
ined. The overall training scheme is derived as fol-
lows.

2.1. To Determine the Output R of Hidden
Layer

Let us consider the above network. The structure of
the network ism-p-n and is fully connected between
layers. To obtain a good convergence, the first neu-
ron in each layer is a bias node with a constant
output of 0.5.

The weights on the connections between the input
layer and the hidden layer form a matrixW1 of
real numbers with elements wij(i = 1,2,%m;
j = 1,2,%p). An elementwij connects theith neuron
in the input layer with thejth neuron in the hidden
layer. Row number 1 ofW1 contains the weights
of the initiating connections at the bias node of the
input layer. Similarly,W2 is a p × n weight-matrix
between the hidden layer and the output layer.

The neurons used in this paper are of a standard
type. They first build a scalar product of the
incoming signals with their respective weights.
Afterwards, an activity function is applied, produc-
ing the output of the neuron, which is sent to all
neurons of the following layer or to the outside
world, respectively. We use the standard sigmoid
activation function with values between 0 and 1:

Q(x) = 1/(1 + e−x) (3)

For a givenN sets of input signals (each set contains
m real numbers between 0 and 1), there areN sets
of output values (each output set containsn real
numbers between 0 and 1). We can summarise all
given input signals in a matrix X withN rows and
m columns. Each row contains the signals of one
input set. All elements of the first column are

constant 0.5 (the outputs of the bias node of input
layer). Similarly, we can summarise all output sig-
nals we want to train the network in a matrix T
with N rows andn columns (no bias column).

Propagating the given examples through the net-
work, we get (by multiplying the input matrix with
the weights matrix between the input layer and the
hidden layer, applying the activation function to all
matrix elements, and adding a bias constant column
of 0.5):

A = [0.5uQ(XpW1)] (4)

Y = Q(ApW2) (5)

where A and Y are the outputs of the hidden layer
and output layer.

Teaching the network means trying to adjust the
weights such that Y is equal to (or as close as
possible to) T. By introducing

S = Q−1(T) (6)

let us reformulate the task of learning. Adjust the
weights of the network such that S is as close as
possible to ApW2. The problem of determining
W2 optimally can be formulated as a linear least
squares problem:

iApW2 − Si2 = minimal (7)

Note that, sinceQ is a nonlinear function, the
minimum of Eq. (7) is not necessarily identical with
the minimum of iY − Ti2.

After obtaining an optimal set W2 of weights,
we could determine a required output matrix R of
the hidden layer, which is as close as possible to
A, and fulfils

iRpW2 − Si2 = minimal (8)

Again, this is for a given matrix W2 and S, a linear
least square problem. Equivalently, one can find the
minimal norm solution ofDR in

iDRpW2 − (S − ApW2)i2 = minimal (9)

and determine R as R= A + DR
Since the output of the bias node is a constant

0.5, we require the first column ofDR to vanish.
Hence, we have to reformulate Eq. (9) to take care
of this constraint. Let T1 andDT1 be the matrixes
containing all columns of R andDR, except for the
first, and V be the matrix containing all rows of
W2 except for the first. We then have to solve the
linear least squares problem.

iDT1pV − (S − ApW2)i2 = minimal (10)

R = [0.5uT1] = A + [0.0uDT1] (11)

221Training Algorithm for Multilayer NNs Based on Reference Output

Now the output R of the hidden layer has been
determined.

Since the activation function (5) can only produce
values between 0 and 1, this is only feasible if all
elements of R are in this range. To transform R to
a matrix with elements between 0 and 1, we con-
struct a matrix C withp rows and columns such that

Rtrans= RpC−1 andWtrans= CpW2 (12)

The minimal condition (10) is then still valid for
the new matrices. Using the following notation:

ak = O
j=1,%N

gj,k YN, k = 1,2,%p (13)

bk = max
j=1,%,N

gj,k, k = 1,%p (14)

gk = min
j=1,%,N

gj,k, k = 1,%p (15)

we can define the elements of C:

c0,0 = 1, c0,k = 2(ak − max(0.5,bk − ak,

ak − gk)), k = 1,%,p (16)

ck,k = 2 max(0.5,bk − ak,ak − gk),

k = 1,%,p (17)

All other elements of C are zeros. The inverse
matrix of C has the same structure as C, with
elements

c(−1)
0,k = −c0,k/ck,k, k = 1,%,p (18)

c(−1)
k,k = 1/ck,k, k = 0,%,p (19)

With this choice of C, all elements of Rtrans are
between 0 and 1, and the average output of each
node is 0.5. We can now use the formalism as (6)
and (7) to teach the hidden layers of the networks
to produce Rtrans. Therefore, the desired output of
the hidden layer is R= Rtrans.

2.2. Adjustment of Hidden Layer Output

The hidden layer is adjusted by adding the desired
output of the hidden layer as the inputs. That is,
the input of the hidden layer is not only the input
samples, but also the desired output of the hidden
layer calculated from the output of the network. Let
the input weights of the hidden layer be Wr. Wr is
a (m + p) × p matrix including the weights W1 from
input layer and the weights W for the added inputs–
desired outputs of the hidden layer. Similarly, the
input matrix Xr should be aN × (m + p) matrix. It
includes the sample inputs X and the added inputs
R. Therefore,

Wr = [W1 W]T, Xr = [X R] (20)

XrpWr = Q−1(R) (21)

where Q−1(R) is the inverse function of sigmoid
activation function.

To adjust the weights and make it equal to (or
as close as possible to) Q−1(R), minimise
iQ−1(R) − XrpWri. It becomes a least square prob-
lem again, and can be solved as above. The solution
of the least squares problem is the new weights for
the hidden layer.

2.3. Description of the Complete Algorithm

To simplify the computation, the above process is
improved slightly. The desired outputs of the hidden
layer are initially set to zeros. The dimension of
the weights remains unchanged during the overall
training process.

The complete training procedure can be stated
as follows:

1. Initialisation:
I Set randomly initial values, between [−1, 1]

for weights W1, W2 and set the desired output
R of the hidden layer to zero. Form the input
matrix Xr of hidden layer

2. Optimisation of the output layer weights:
I Propagate the given input matrix Xr through

the network and get the outputs of the hidden
layer and the output layer.

I Get the ‘desired’ weighted sums of the output
neurons by inverse activation function Eq. (6).

I Compute the optimal weights of output layer
according to Eq. (7).

I Determine the ‘required’ output of the hidden
layer using Eqs (8) and (9).

I Normalise the ‘desired’ output of the hidden
layer through Eqs (13–19).

3. Optimisation of the hidden layer weights:
I Determine the ‘desired’ weighted sum of the

hidden neurons according to the desired output
of the hidden layer computed from above step
using Eq. (6).

I Form the input matrix Xr of the hidden layer.
I Compute the optimal weights Wr of the hidden

layer using Eq. (7).
4. Repeat steps 2–3 until a certain error tolerance

is satisfied.

Although the training process cannot be completed
in one iteration because the desired output of the
hidden layer is different every time, it can converge
within three iterations in general.

Note that, because the activation of the network

222 Y. Li et al.

is a nonlinear one, the linear minimum weighted
sum error is not necessarily identical to the output
error. Let the actual error and the weighted sum
error be as follows:

E = ON
i=1

On
j=1

(Yij − Tij) (22)

Esum= ON
i=1

On
j=1

(Q−1(Yij) − Q−1(Tij)) (23)

Here,n is the number of neurons in the output layer
and N is the length of the training set. In addition,
the optimal weights for a neural network are not
unique; there may be numerous optimal sets of
weights.

The algorithm derived above is constructed for
generality. The activity function can be adjusted to
other ones according to the application. For example,
the activation in the output layer can be set to a
linear function. During numerical simulation, it is
found that sometimes the training error for a network
using a linear function in the output layer is
unstable. This problem can be solved by adding a
hidden layer to the networks. Then the training
results are in harmony with those using a sigmoidal
function in the output layer. Therefore, the network
can be applied to some common regression prob-
lems.

The proposed method is partially a recurrent neu-
ral network, but different from conventional NNs.
Conventional recurrent neural networks propagate
back the outputs (or parts) of neurons in the hidden
layer to their inputs through the recurrent paths,
whereas the desired outputs of the hidden layer are
used in this paper. It is a kind of teacher-forced
training in the hidden layer so that a better training
result can be achieved. Figure 2 shows the structure
of the proposed network. The recurrent paths apply
both during training and use. In the training process,
since the network can reach its steady state in two
feedforward propagations and the algorithm allows
variation of the outputs, the networks can be trained

Fig. 2. Structure of the proposed network.

as general feedforward networks, although there is
recurrency in it. It is not necessary to wait until the
network reaches its steady state, as for recurrent
networks. One advantage of the algorithm is being
able to begin the training while the network is still
in its dynamic period. During use, the network
needs only two feedforward propagations to reach
its steady states before a result is extracted, because
the delay in the recurrent paths is very small.

3. Numerical Simulation Results

In this section, we present some numerical experi-
mental results for the proposed algorithm. The
efficiency of a training procedure depends mainly
upon the training error and convergence speed.

To evaluate the performance of the training
method presented, some comparisons with other
methods have been carried out. We have im-
plemented the following: the well-known classical
BP algorithm, Quasi-Newton BFGS algorithm [14],
Least square algorithm and the algorithm presented
in this paper to train the networks with the same
structure.

3.1. Case 1. MIMO Nonlinear System

Consider the nonlinear mapping of eight input quan-
tities xi into three output quantitiesyi, defined by

y1 = (x1x2 + x3x4 + x5x6 + x7x8)/4

y2 = (x1 + x2 + x3 + x4 + x5 + x6

+ x7 + x8)/8

y3 = (1 − y1)2 (24)

All three functions are defined for values between
0 and 1, and produce values in this range. For the
training set, 100 sets of input signalsxi were gener-
ated with a random number generator; the corre-
spondingyi were computed using Eq. (24). The error
reported is the average absolute error on this learn-
ing set example and output nodes:

D = S O
i=1,%N

O
j=1,%n

uYi,j − Ti,juDY(Nn) (25)

The starting values for the weights of the networks
have also been determined between 0 and 1 using
a random number generator.

The training errors compare the algorithm
presented with the classical BP algorithm, LSB [8]
algorithm and BFGS Quasi-Newton algorithm, as
shown in Table 1.

223Training Algorithm for Multilayer NNs Based on Reference Output

The errors for the BP algorithm are obtained after
2000 iterations. The errors for LSB, BFGS Quasi-
Newton and the proposed algorithms are obtained
after 10 iterations. The BP algorithm is the standard
BP algorithm [1] with a learning rate of 0.1 and
momentum factor of 0.9. One iteration (or epoch)
indicates that all sets of input signalsXi are sent to
a certain network, a set of corresponding outputs of
the network is obtained, and all the weights are
adjusted once [15]. In fact, the LSB method and
the algorithm presented need about twice the com-
puter time of the backpropagation method per iter-
ation, independent of the network’s structure [8].

Comparing the results in Table 1, the perform-
ances of the proposed algorithm for the networks
8-12-3, 8-16-3, 8-24-3 and 8-36-3 are obviously the
best ones. The training errors have been improved
from 86.5% to 92.6% compared to the errors by
using the LSB algorithm, and from 96.8% to 99.1%
compared to the errors by using the BFGS Quasi-
Newton algorithm.

The BFGS Quasi-Newton algorithm is generally
faster than the conjugate gradient algorithms, but
requires storage of the approximate Hessian matrix,
and is slower than those algorithms developed from
LSB. By comparison, it is found that the training
errors of the method presented reduce iteratively,
but the errors of the LSB don’t reduce after three
iterations.

3.2. Case 2. Prediction of the Chaotic
Mackey-Glass Time Series

Mackey and Glass modelled the chaotic oscillations
in physiological processes. It is shown as

x(k + 1) − x(k) =
0.2x(k − t)

1 + x10(k − t)

− 0.1x(k), t = 17 (26)

One thousand training samples were generated
according to Eq. (26). The input vector of the net-
work consists of past values of X, i.e.,x(k), x(k − 1),

Table 1. Training errors of the three methods.

Algorithm 8-12-3 8-16-3 8-24-3 8-36-3

BP 0.0218 0.0193 0.0174 0.0346
BFGS Quasi- 0.0751 0.0734 0.0705 0.0872

Newton
LSB 0.0178 0.0165 0.0218 0.0109
The Proposed 0.0024 0.0012 0.0009 0.0008

Method

x(k − 2),%,x(k − 16). The target isx(k + 1). The net-
works retrained to predict the comingx(k + 1) from
the 17 past values. The first 750 samples are used
as the training set; the rest are used to test the
performance of the trained networks. The initial
values of the weights of all the networks are gener-
ated randomly between 0 and 1. The first 17 samples
are initialised randomly between 0 and 1. All desired
outputs are scaled between 0 and 1 through linear
mapping. Table 2 shows the performance results
compared with the BP, LSB and BFGS Quasi-
Newton algorithms. The training error tolerance is
chosen to be 0.02.

The overall time is the training time of each
corresponding method for reaching the criterion,
using Matlab to implement the simulations in an
IBM586. As shown in Table 2, to reach the training
error tolerance, 0.02, the proposed method takes a
little longer than LSB, due to a greater network
complexity. However, the testing error of the pro-
posed method is less than that of LSB. By compari-
son, the BFGs Quasi-Newton algorithm has the low-
est testing error, but it needs 7 or 8 minutes, 50
times longer than that of the proposed algorithm to
reach the same error tolerance. The Quasi-Newton
BFGS algorithm still suffers from the typical handi-
cap; slow convergence of all steepest descent
approaches. The BP algorithm takes more than three
hours to reach the same error tolerance, and the
testing error is the largest one among the four
methods.

3.3. Case 3. Comparison with General
Recurrent Neural Networks

It may be argued that the improvements of the
training algorithm may be due to the addition of
the weights in the hidden layer. To demonstrate that
the above is not true, we compare the performance

Table 2. Performance of different algorithms for Mackey-
Glass series.

Algorithm Number Overall time Testing
of training (sec) for error
iterations meeting

criterion

BP 9584 11307 0.051
BFGS Quasi- 63 468 0.023

Newton
LSB 3 6.38 0.034
The Proposed 2 8.79 0.028

Method

224 Y. Li et al.

Fig. 3. Performance of LSB for RNN, Quasi-Newton BFGS
algorithm and the proposed method for the MIMO case. ——:
proposed method;: LSB for Recurrent Neural Networks; -.-
.-.-: Quasi-Newton BFGS algorithm.

of the proposed algorithm with the LSB method for
a recurrent neural network with the same topology
(same number of neurons and same weights).

Take the MIMO case again, where 100 samples
are applied. The converging performances are shown
in Fig. 3. The training errors and iterations corre-
sponding to the errors are shown in Table 3. As
shown in Fig. 3, in the MIMO case, the errors of
LSB for RNN and the proposed method are nearly
the same at the first two iterations. Afterwards, the
error of LSB for RNN has no further reduction;
however, the error of the proposed scheme can be
reduced gradually. The error for the Quasi-Newton
BFGS method is much higher than the other two
algorithms.

4. Conclusions

A new training algorithm for multilayer networks is
proposed and tested, which optimises the network
weights through an iterative process layer-by-layer.
The proposed training algorithm takes the output of

Table 3. Training errors and number of iterations of LSB
for RNN and the proposed method for the MIMO case.

Algorithm Training Training
iterations error

LSB for RNN 10 0.0178
Quasi-Newton BFGS 10 0.131
The Proposed Method 10 0.0124

nodes in the hidden layer into consideration. It not
only adjusts the weights of the networks, but also
adjusts the output of the hidden layer. To achieve
the goal of adjusting the output of the hidden layer,
a new structure for multi-layer neural networks is
suggested. The proposed network works like a recur-
rent neural network, but it can reach its steady state
very quickly because of its novel training algorithm.

From the simulation results, it is observed that
after the first three epochs for LSB, no substantial
progress could be achieved by continuing the iter-
ations. However, for the proposed method, not only
can it further reduce the error, but it can also
converge within 10 iterations. In the case of the
classical BP algorithm, to reach the same accuracy
it will take nearly 1000 iterations [2,3]. Although
the Quasi-Newton BFGS algorithm is the fastest
algorithm among the conjugate gradient methods, it
takes more than 50 times longer than that of the
proposed algorithm to reach the same error tolerance
for the same application. The Quasi-Newton BFGS
algorithm still suffers from the typical handicap;
slow convergence of all steepest descent approaches.

All the simulation results presented show that the
proposed algorithm is orders of magnitude faster
than the classical backpropagation and Quasi-New-
ton BFGS algorithms. The performance of the pro-
posed method is also better than that of the original
LSB method, with its inherent drawback that its
training error cannot be reduced further after three
iterations.

Acknowledgements. The first and second authors
gratefully acknowledge the financial support of the
Hong Kong Polytechnic University through the grant
G-V067.

References

1. Rumelhart DE, Hinton GE, Williams RJ. Learning
internal representations by error propagation in parallel
distributed processing. In: DE Rumelhart, JL Mc-
Clelland, eds., Explorations in the Microstructures of
Cognition, Vol. 1. Foundations, MIT Press, Cam-
bridge, MA, 1986; 318–362

2. Battiti R. Accelerating backpropagation learning, two
optimisation methods. Complex System 1989; 3:
331–342

3. Yam YF, Chow TWS. Extended backpropagation
algorithm. Electr Lett 1993; 29(9): 1701–1702

4. Humpert BK. Improving backpropagation with a new
error function. Neural Networks 1994; 7(8): 1191–
1192

5. Van Ooyen A, Nienhuis B. Improving the convergence
of the backpropagation algorithm. Neural Networks
1992; 5: 465–471

225Training Algorithm for Multilayer NNs Based on Reference Output

6. Kinnebrock W. Accelerating the standard backpropag-
ation method using genetic approach. Neurocomputing
1994; 13: 583–588

7. Zhang B, Zhang L, Wu F. Programming based learn-
ing algorithms of neural networks with self-feedback
connections. IEEE Trans Neural Networks 1995; 6(3):
771–778

8. Konig FB, Barmann F. A learning algorithm for multi-
layered neural networks based on linear least square
problems. Neural Networks 1993; 6: 127–131

9. Konig FB, Barmann F. On a class of efficient learning
algorithms for neural networks. Neural Networks
1992; 5: 139–144

10. Coetzee FM, Stonick VL. Topology and geometry
of single hidden layer network least squares weight
solutions. Neural Computation 1995; 7: 672–705

11. Ergezinger S, Thomsn E. An accelerated learning
algorithm for multilayer perceptrons: Optimisation
layer by layer. IEEE Trans Neural Networks 1995;
6(1): 31–42

12. Cybenko G. Approximation by superposition of a
sigmoidal function. Math. Control Signals Syst 1989;
2: 303–314

13. Dorf RC, Bishop HR. Modern Control System.
Addison-Wesley, 1995

14. Demuth H, Beale M. Neural network Toolbox for use
with MATLAB. The Matlab Works, Inc., January
1998 pp 5-20–5-40

15. Li Y, Rad AB. A cascading structure and training
method for multi-layer neural networks. Int J Neural
Systems 1997; 8(5/6): 509–515

