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ABSTRACT: 

Global, timely, accurate and cost-effective cropland monitoring with a fine spatial resolution will dramatically improve our 

understanding of the effects of agriculture on greenhouse gases emissions, food safety, and human health. Time-series remote 

sensing imagery have been shown particularly potential to describe land cover dynamics. The traditional change detection 

techniques are often not capable of detecting land cover changes within time series that are severely influenced by seasonal 

difference, which are more likely to generate pseuso changes. Here,we introduced and tested LTSM ( Landsat time-series stacks 

model), an improved Continuous Change Detection and Classification (CCDC) proposed previously approach to extract spectral 

trajectories of land surface change using a dense Landsat time-series stacks (LTS). The method is expected to eliminate pseudo 

changes caused by phenology driven by seasonal patterns. The main idea of the method is that using all available Landsat 8 images 

within a year, LTSM consisting of two term harmonic function are estimated iteratively for each pixel in each spectral band .LTSM 

can defines change area by differencing the predicted and observed Landsat images. The LTSM approach was compared with 

change vector analysis (CVA) method. The results indicated that the LTSM method correctly detected the “true change” without 

overestimating the “false” one, while CVA pointed out “true change” pixels with a large number of “false changes”. The detection 

of change areas achieved an overall accuracy of 92.37%, with a kappa coefficient of 0.676. 

1. INTRODUCTION

Land use/cover change is among the main driving factor of 

global environmental change, affecting ecosystem services and 

biodiversity (Dixon et al., 1994; Foley et al., 2005; Wulder et 

al., 2008). Cultivated land play a key role in efforts to adapt to 

and mitigate climate and other ecosystem changes (Kimball et 

al., 2004; Bouman et al., 2007; Qin et al., 2015;). It is necessary 

to monitor temporal dynamics of cultivated land for the studies 

of food security, water management and climate change (Wu et 

al., 2010; Waldner, et al., 2015). Remote sensing satellite 

imageries provide a timely and convenient approach for 

detecting and classifyingchanges in the condition of the land 

surface over time (Seto et al., 2002; Chen et al., 2003; Coppin 

et al., 2004; Lu et al.,2004). The increasing available Landsat 

image data archive by the United States Geological Survey has 

sparked generation of new methodological approaches (Chan et 

al., 2001; Hussain et al., 2013; Tewkesbury et al., 2015). 

Traditionally, most of existing change detection methods have 

based on two date of Landsat images: one before and one after a 

change(Bovolo et al., 2012; Ghosh et al., 2014; Boldt et al, 

2012; Chen et al., 2013). For example, post-classification 

comparison (PCC), change vector analysis (CVA). However, 

many false changes may appear due to interference factors, 

such as geometric misregistration, variability in illumination 

and vagaries of seansonality and image date (Deren et al., 2003; 

Lunetta et al., 2004). Therefore, these method have limitations 

in data selection. To minimize phenonlogy differences and 

make multitemporal image differencing possible, all the image 

used should be within the same season and at the same time 

they should be almost cloud and snow free. 

Recognizing these limitation, several approaches have been 

proposed for analyzing image time series (i.e. trajectory-based 

change detection methods), such as the Continuous Monitoring 

of Forest Disturbance Algorithm(CMFDA), the Vegetation 

Change Tracker(VCT) and the Landsat-based detection of 

Trends in Disturbance and Recovery (LandTrendr) made full 

use of the Landsat time-series stacks (LTS) to reconstruct forest 

disturbance histories (Zhu et al., 2012; Huang et al., 2010; 

Kennedy et al., 2010). Moreover, LTS are able to discriminate 

noise from the signal by its temporal characteristic and separate 

sudden from gradual vegetation (Verbesselt et al., 2010; 

Griffiths et al., 2012). However, these approaches require 

predefine a hypothetical trajectory specific for the type of 

change to be detected. Only when the observed trajectory 

matches one of the hypothetical will the method function. In 

addition, few literatures have reported to use trajectory-based 

approaches for cropland change study as agriculture have more 

intra-annual variation. 

Recently, zhu & Woodcock, 2014 proposed a new technique for 

continuous change detection and classification (CCDC) at high 

temporal frequency. However, CCDC algorithm supposed that 

the simple sinusoidal model can help to predicted all kinds of 

land cover types, which may be unsuitable for land cover types 

that have more intra-annual variation, such as cropland. 

Therefore, based on the CCDC approach, we developed an 

improved change detection algorithm called Landsat time-series 

stacks model (LTSM) for detecting cropland change, which 

uses all available Landsat images to remove “flase” one. 

However, we differ from their method by: (1)using more 

targeted harmonic model with different frequencies and 

removing coefficients for inter-annual change to describe 

cropland change trajectory (Rayner, 1971)(2)using Levenburg-

Marquardt fitting algorithms instead of Partial Least Squares 

(PLS) simply because it is faster and more accurate (Xue et al, 

2014) (3) using an interative method based on the Expectation-

Maximization (EM) algorithmto determine threshold for 

defining change (Bruzzone et al, 2000).The main objectives of 

the paper is test that LTSM is able to compress the pseudo 

change signal more effectively compared to existing change 

detection methods.  

2. STUDY AREA AND DATA

Our study area (35°39′-36°12′and 115°55′-116°23′)(Fig.1)is 

located in the southwest of the Shandong province, China, 

which is part of the North China Plain. All available Level 1 

OLI Landsat 8 images for Worldwide Reference System (WRS) 

Path 122 and Row 35 with cloud cover less than 70% were 

download from the U.S. Geological Survey (USGS) Global 

Visualization Viewer website (http://glovis.usgs.gov/).17 
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images constituted the original data set with a median of one 

image per month (Table 1). These images taken from the 

Landsat-8 OLI sensor covering the area was used for test the 

methodology. 

Fig.1 Study area for testing the LTSM algorithm 

Table 1 Frequency by month of all available Landsat data for 

the study area at Path 122 Row 35, 2015 

3. METHODS

LTSM algorithm is the improvement of CCDC algorithm 

proposed by Zhu et al, 2014. It has many component parts, 

including: Image preprocessing; Screening of cloud and cloud 

shadow; Defining a stable cultivated land mask; Estimation of 

the time series model andchange detection. 

3.1 Image preprocessing 

To build time series set for trajectory, image preprocessing is 

critical for detecting changes. Three procedures were carried 

out. First, to reduce the effects of atmospheric conditions, we 

performed atmospheric corrections for all images, using the 

FLAASH model in ENVI/IDL image processing software. All 

images were converted from the DN value to reflectance 

through calibration. Second, geometric and radiometric 

normalization are necessary steps for any change detection 

approaches. All images were geometrically corrected to the 

base scene with RMSE of less than 0.2 pixels. Next, we 

employed the multivariate alteration detection algorithm to 

automatically each subject image to the base image (Canty et al, 

2004).Cloud and cloud shadow detection is essential for optical 

remote sensing processing. We used Haze Tool method that 

process each Landsat scene individually.  

3.2 Estimation of the time series model 

After acquired clear the LTS, the first step in our algorithm 

estimated a model of surface reflectance as a function of day of 

year (DOY) at each pixel.The fitting function may be linear or 

nonlinear in their parameters. To do this, we fitted function of 

sines and cosines to reflectance times series at each pixel 

(Eq.(2)). Our objective are mainly focused on intra-annual 

change caused by cultivated land phenology driven by season 

patterns of environmental factors. Therefore, we only used 

images in one year (2015). By fitting these functions to describe 

real trajectories, the parameters included in function themselves 

captured the main characteristics of change, e.g. the parameter 

 represent overall surface for the one year ; the parameter 

and  describe the annual change caused by phenology; the 

parameter  and  capture the bimodal change within a year, 

especially for crop because of an initial period of growth in the 

spring that is followed by plowing and a second period of 

growth.. 

The adopted harmonic model function have the general form. 

 (5) 

Where, 

t, Day of year. 

, predicted surface reflectance value. 

, the parameters describing functions. 

, frequency of periodic function. Here, =0.22 (acquired by a 

great number of tests ) 

The Levenburg-Marquardt algorithm was adopted to perform 

non-linear least-squares fitting of the observed trajectory.  

3.3 Change detection 

The central premise of change detection is comparison of model 

predictions with cloud-free observations to identify change and 

to normalize their differences by three times of the root mean 

square error (RMSE) (Zhu &Woodcock, 2014). The change 

pixels was defined if the normalized difference exceeded the 

pre-define thresholds. Zhu &Woodcock, 2014 chosed 1.0 as 

threshold of change magnitude to determine the change/mo-

change areas. However, due to cultivated land variation of 

intra-annual difference, some pixels may be wrongly classified 

if the distribution of image change magnitude cannot be taken 

into account. Therefore, we used a self-adaptive threshold 

algorithm called Expectation-Maximization (EM) to determine 

the change/no-change areas (Bruzzone et al, 2000). EM 

searched the optimal threshold that be used to drive the highest 

accuracy of change detection. Firstly, difference images were 

estimated by Eq.(3), the method is applied to six Landsat bands 

and the RMSE is computed for each spectral band. Secondly, 

difference images were regarded as a set of two opposite classes, 

associated with unchanged and changed pixels, respectively. 

Finally, using the EM discriminated these two classes to find 

change threshold. 

4. RESULTS AND DISCUSSION

4.1  change/no-change areas detection 

Now, assuming no land cover change has occurred, in order to 

test whether the predicted image obtained by time series model 

can eliminating the pseudo ones caused by cultivated land 

phenology. Firstly, Eq.(2) is used to predict the surface 

reflectance for each pixel and each spectral band at the 360th 

day (on December, 26th, 2015). Secondly, image acquired on 

August, 30th, 2010 was regard as observed image. According to 

Eq.(3), the change magnitude between the predicted image and 

observed image was calculated and is shown in Fig.7. Next, a 

specific threshold estimated by EM algorithm was used to 

determine the change/no-change areas. In this study, the 

threshold of change magnitude image was 1.3. The pixel with 

larger magnitudes than the threshold were defined as changed 

areas. In addition,to assess improvement of change detection 

using LTSM, CVA change detection methods were conducted 

on August,30th, 2010 and on December, 18th, 2015. Similarly, 

we also employed EM algorithm to identify change areas.  
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In order to visually compare the three methods in detail, two 

subareas of the study area were selected, area A and area B 

respectively. After analyze for reference data and high spatial 

resolution images from Google Earth, we found that area A 

have almost no change between 2010 amd 2015 while area B 

have a greater change from cultivated land to water. The final 

change detection result was formatted as a binary image (Fig.8 ). 

Fig.8A shows the area A, the area inside the green polygon 

almost remained unchanged from 2010 to 2015. It is obvious 

CVA generate a lot of pseudo changes and overestimated the 

changed area. By comparison, our proposed LTSM method 

perform well. This result may be due mainly to the seasonal 

difference. The surface reflectance of crop land have more 

intra-annual variarion by the affection of phenology 

information such as different growing type and time delaying. 

In generally, the spectral change of cultivated land is very 

similar to that of vegetation in the growing season while it is the 

same as bare land at harvest time. Therefore, the results 

indicated that the information contained in the time model is 

helpful for eliminate pseuso change caused by phonological 

difference. 

Fig.8B shows the area B, the greater change take place in the 

red polygon area, including from cultivated land to water bodies 

and from cultivated land to urban or impervious surface. It is 

clear that our proposed LTSM acquired optimal results. 

Although CVA also perform well in this region, It missed 

slightly some real changes. The reason that this phenomenon 

happened may be that the change magnitude of pseudo change 

is greater than that of the real change, which made the real 

change pixels were wronly classified when the threshold 

derived from EM algorithm was used for determing change/no-

change areas. In conclusion, our proposed LTSM method is 

more accurate compared to the other two change detection 

approaches.  

Fig.2. Landsat Images of the study area. (a) predicted image on 

December, 26th, 2015; (b) Observed Images on August, 30th, 

2010 

Fig.3. change detection result of LTSM (a), and CVA (b); 

Fig.3A.shows area A and Fig.3B. shows area B in Fig.2. 

4.2 Accuracy assessment 

Accuracy assessment gives information on map quality and 

identifies possible sources of errors. Confusion matrix or error 

matrix has emerged as a standardized method to represent 

accuracy of classification results derived from remote sensing 

data. In order to evaluate the performance of the proposed 

method, samples were randomly taken for assessing the 

accuracy of change/no-change areas detection. Accuracy 

assessment analyses (Table 2) revealed superiority of the LTSM 

approaches for change detection compared with other methods. 

LTSM acquired change detection accuracy with an overall 

accuracy of 92.37% and Kappa coefficient of 0.676.  

Table 2 Accuracies of three change detection methods 

5. CONCLUSION

The initial objective of our study was to develop a method to 

eliminate pseudo change caused by phenology difference driven 

by seasonal patterns, especially for cultivated land. Many 

traditional change detection method based on bi-temporal 

images are more prone to generate pseudo due to sensonal 

difference. However, increasing availability of the Landsat 

image archive has sparked the development of new 

methodological approaches. For example, continuous change 

detection and classification (CCDC) proposed by Zhu & 

Woodcock, 2014. Therefore, in this paper, the CCDC algorithm 

was improved to make it more suitable for the cropland change 

detection in this paper in a dense time series of Landsat 8 OLI. 

Our proposed LTSM method differ from CCDC approach 

by :more sophisticated harmonic model, more efficient fitting 

algorithm, select iteratively more robust function and determine 

the threshold by EM algorithm. With this improved method, 

change magnitude is calculated. Compared to CVA, our method 

can acquired the highest accuracy of change detection and 

eliminate the flase changes caused by seasonal difference, with 

overall accuracy of 92.37% and kappa coefficient of 0.676.  
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However, the improved LSTM approach in this paper also has 

several limitations. Firstly, a larger number of Landsat images 

were needed to estimate model, which may be difficult due to 

lack for enough observations, especially for area outside the 

U.S..secondly, to obtain clear observation, the three-step 

cloud/cloud shadow must be performed for all the available 

images with cloud cover greater than 10%, which can take a lot 

of time. Next, the robustness of this approach has not been 

validated in other area. Finally, a knowledgebase of reference 

land cover classes needed be established and change type 

discrimination by LSTM approach has not been studied.      

Therefore, there is still much work needed.  
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