
Hydrol. Earth Syst. Sci., 14, 1931–1941, 2010
www.hydrol-earth-syst-sci.net/14/1931/2010/
doi:10.5194/hess-14-1931-2010
© Author(s) 2010. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Experimental investigation of the predictive capabilities of
data driven modeling techniques in hydrology - Part 1: Concepts
and methodology

A. Elshorbagy1, G. Corzo2, S. Srinivasulu1, and D. P. Solomatine2,3

1Centre for Advanced Numerical Simulation (CANSIM), Department of Civil and Geological Engineering, University of
Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
2Department of Hydroinformatics and Knowledge Management, UNESCO-IHE Institute for Water Education,
Delft, The Netherlands
3Water Resources Section, Delft University of Technology, Delft, The Netherlands

Received: 29 October 2009 – Published in Hydrol. Earth Syst. Sci. Discuss.: 19 November 2009
Revised: 19 August 2010 – Accepted: 6 September 2010 – Published: 14 October 2010

Abstract. A comprehensive data driven modeling exper-
iment is presented in a two-part paper. In this first part,
an extensive data-driven modeling experiment is proposed.
The most important concerns regarding the way data driven
modeling (DDM) techniques and data were handled, com-
pared, and evaluated, and the basis on which findings and
conclusions were drawn are discussed. A concise review
of key articles that presented comparisons among various
DDM techniques is presented. Six DDM techniques, namely,
neural networks, genetic programming, evolutionary polyno-
mial regression, support vector machines, M5 model trees,
and K-nearest neighbors are proposed and explained. Multi-
ple linear regression and naı̈ve models are also suggested as
baseline for comparison with the various techniques. Five
datasets from Canada and Europe representing evapotran-
spiration, upper and lower layer soil moisture content, and
rainfall-runoff process are described and proposed, in the
second paper, for the modeling experiment. Twelve differ-
ent realizations (groups) from each dataset are created by a
procedure involving random sampling. Each group contains
three subsets; training, cross-validation, and testing. Each
modeling technique is proposed to be applied to each of the
12 groups of each dataset. This way, both prediction accu-
racy and uncertainty of the modeling techniques can be eval-
uated. The description of the datasets, the implementation of
the modeling techniques, results and analysis, and the find-
ings of the modeling experiment are deferred to the second
part of this paper.

Correspondence to:A. Elshorbagy
(amin.elshorbagy@usask.ca)

1 Introduction

Data driven modeling (DDM) techniques have been in use
for nearly two decades for hydrological modeling, predic-
tion, and forecasting. Many articles reporting the applica-
tion of various techniques to various hydrological case stud-
ies are available in literature. Yet, data driven techniques
are still facing some classical opposition because of multiple
reasons inherit in such techniques (e.g., lack of transparency
and difficulty of reproducing the results). Hydroinformat-
ics researchers started to identify problems of data driven
modeling (Maier and Dandy, 2000; Elshorbagy and Para-
suraman, 2008; Solomatine and Ostfeld, 2008) and tried to
suggest some solutions or modeling guidelines and frame-
works. Cherkassky et al. (2006) have listed the quality of
the datasets, choosing robust learning methods that can han-
dle heterogeneous data, and the need for uncertainty esti-
mates associated with predictions as some of the main issues
and challenges facing computational intelligence in earth
sciences.

There is no doubt that more scientific rigour should have
been maintained in the applications and use of data driven
techniques in earth sciences. Bowden et al. (2005) explored
different techniques for input determination for neural net-
work models in water resources applications, showing a com-
parative performance of different methodologies for deter-
mining input variables. Abrahart et al. (2008) have used
the example of neural network applications to highlight the
shortcomings of the present approach, and how to build
stronger foundations. Apparently, their argument can be eas-
ily generalized to apply to other data driven techniques. In
fact, the modeling shortcomings and ambiguity inherit in
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DDM techniques are less than the ones introduced by the
way such techniques were presented in earth sciences liter-
ature. One of the fundamental means to assess a model-
ing technique is to evaluate it against other modeling tech-
niques, whether conceptual or data driven ones. One can
observe that in the literature of data driven hydrology, the
modeling comparative studies are usually impaired due to the
less-than-comprehensive approach adopted. With few excep-
tions, the following problems can be noticed: (i) Only one or
two modeling techniques have been used at a time in a sin-
gle study; (ii) if more techniques were employed, then only
one or two datasets have been used for the applications. This
leads to conclusions that are based on the unique character-
istics of such dataset (Abrahart et al., 2008); (iii) Datasets
were split into two subsets for training and testing, where the
models were tested iteratively using the testing data subset.
This means, in fact, that the testing data are used, at least im-
plicitly, during training. In this case, the generalization abil-
ity of the developed model is questionable; and (iv) when
datasets were correctly split into three subsets for training,
cross-validation, and testing, only one random realization of
the three subsets was used. Such use of a single realization
of the dataset makes it difficult to assess the predictive un-
certainty and the effect of the split approach on the adopted
models.

The above-mentioned deficiencies, in addition to other re-
quirements identified by Abrahart et al. (2008) including the
need for testing the models over a range of conditions, the
reasoning behind the data splitting, and the need for design-
ing repeatable experiments and reproducible findings, are the
motives behind this study. The aim of this study is to eval-
uate and test the predictive abilities of six DDM techniques
on five different case studies of rainfall-runoff, evapotran-
spiration, and soil moisture content. Multiple random real-
izations of the three subsets of each dataset will be created
and used with each and every modeling technique. The tech-
niques will be evaluated against multiple linear regression
models and, when applicable, naı̈ve models, which assume
no change compared to the long term trend or mean value.
Both prediction accuracy and uncertainty will be evaluated.
The prediction accuracy refers to the overall match between
the measured and the predicted values, whereas the predic-
tion uncertainty quantifies the variability and the distribution
of the model residuals (errors) around the mean error. The
authors intend to make all datasets used in this study avail-
able for all interested researchers to test the results and con-
duct further studies. The authors hope and aim that this study
could serve as a benchmark study for assessing future pro-
posed modeling, optimization, and input processing methods
or techniques.

This study is presented in two companion papers. This
first part consists of, after this introduction, a section that
briefly summarizes some of the key comparative studies in
hydrology literature, followed by a section explaining the
study methodology and the experimental set up. The fourth

section describes the modeling techniques adopted in this
study as well as the implementation tools. The last sec-
tion of this first part is a general summary. The second
part (Elshorbagy et al., 2010) begins with a brief introduc-
tion section that is followed by a section contains a descrip-
tion of study sites, the collected data, and how five differ-
ent case studies (datasets) representing various hydrological
processes were created from three sites. This section also
explains how the methodology was applied and how inputs
for the various case studies were selected. The third section
reports on the implementation details and parameter values,
when applicable, of each modeling techniques for the vari-
ous datasets. Results of the various techniques and analy-
sis are presented in the fourth section. A general discussion
and guidelines are presented in Sect. 5, whereas the conclu-
sions and findings of the entire study are presented in the last
section.

2 Comparative hydrological modeling studies using
data driven modeling techniques

The number of studies that reported some sort of comparison
between various DDM techniques in hydrology is very large,
and it is beyond the possibility of being summarized here (for
presentation of some of the latest advances see, for example,
the volume edited by Abrahart et al., 2008). However, some
key and representative studies are presented here. Soloma-
tine and Siek (2006) presented an algorithm, which facilitates
incorporation of domain knowledge into one particular type
of modular model (model tree). They employed the M5flex
algorithm to two hourly and daily rainfall-runoff datasets
as well as five widely used benchmark datasets-Autompg,
Bodyfat, CPU, Friedman, and Housing (Blake and Mertz,
1998). They compared the M5flex method with global ar-
tificial neural networks (ANNs) and other local M5 model
tree modeling methods (M5, M5opt). They concluded that
M5flex delivered high performance because of the use of ad-
ditional domain knowledge for determining the best split at-
tributes and values. Solomatine and Xue (2004) showed that
both M5 model tree technique and ANNs perform similarly
for flood forecasting problems in the upper reach of the Huai
River in China, but the model trees have certain advantages
in terms of transparency in the model structure over ANNs.

Sivapragasm et al. (2007) found that there is no signifi-
cant difference in the prediction accuracy between GP and
ANNs for forecast of daily flows, but genetic programming
(GP) has an advantage of identifying the optimum inputs.
Makkeasorn et al. (2008) compared GP and ANN models
for forecasting river discharges. The findings indicated that
GP-derived streamflow forecasting models were generally
favored for forecasting over ANNs. Further, the most for-
ward looking GP-derived models can even perform a 30-day
streamflow forecast ahead of time with a reasonable esti-
mation accuracty. Jayawardena et al. (2005) compared the
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GP technique in modeling rainfall-runoff process to more
conventional modelling approaches. They used the GP tech-
nique to predict the runoff from three catchments in Hong
Kong and two catchments in southern China, and showed
that the GP technique evolved simple models that enabled the
quantification of the significance of different input variables
for prediction. Parasuraman et al. (2007) used two hourly
evapotranspiration (ET) datasets to compare between GP and
ANNs for prediction of ET. Not much difference was found,
with regard to the prediction accuracy, between the two tech-
niques.

Wu et al. (2007) applied a modular support vector machine
(SVM) model, termed distributed SVR (D-SVR), with a two
step Genetic Algorithm parameter optimization method, to
carry out prediction of water level in a river. The D-SVR
method disaggregates the original training set into a couple
of subsets, and then generates a local SVR for each subset in-
dependently. Wu et al. (2007) evaluated the performance of
D-SVR against the predictions from linear regression (LR),
nearest neighbor (NN) method, and genetic algorithm-based
ANN (ANN-GA) methods. The proposed D-SVR model can
predict the water level better when compared with the other
models. However LR model performed better in compari-
son with NN, ANN-GA models, which was attributed to the
linear mapping relation between input and output variables
that restricts the power of NN and ANN. In their study, Lin
et al. (2006) employed an SVM model to predict long-term
flow discharges in Manwan Hydropower scheme in Tibet. It
was found through comparison of results with ARMA and
ANN models that the SVM model can provide more accu-
rate predictions of long term flow discharges. Further, Lin
et al. (2006) concluded that SVM has its distinct capabili-
ties and advantages, such as the error tolerance, in identify-
ing hydrological time series comprising nonlinear character-
istics. In their study, Çimen (2008) applied SVMs for the
estimation of suspended sediment concentration/load. The
observed streamflow and suspended sediment data of two
rivers in the USA, which have been already used in ear-
lier studies using ANNs, were considered. It was found that
the negative sedimentation estimates, which were encoun-
tered using ANNs, did not happen during the application of
SVMs. Khan and Coulibaly (2006) examined the applica-
tion of the SVM and successfully demonstrated the ability
of SVMs to predict the mean monthly lake water level up to
12 months ahead. SVM was found to be more advantageous
than ANNs, which prescribes more number of controlling
parameters. Khan and Coulibaly (2006) deduced that SVM
proved to be more competitive and promising compared to
the widely used ANNs and conventional seasonal multiplica-
tive autoregressive (SAR) models. Behzad et al. (2008) com-
pared SVM with ANN and ANN-GA models for prediction
of daily runoff of Bakhtiyari River watershed in Iran. They
considered available climate information as model inputs.
They concluded that the prediction accuracy of SVM was at
least as good as that of ANN and ANN-GA models in some

cases, and better in some other cases. Furthermore, Behzad
et al. (2008) found that SVM converges considerably faster
compared to other models. Wu et al. (2008) demonstrated
the feasibility of SVM for forecasting of soil water con-
tent in Purple hilly area located in Southwest University in
Chongqing. They compared the predictions from SVM with
ANNs, and showed that the results from the SVM predictor
significantly outperformed other baseline predictors such as
ANNs.

Giustolisi and Savic (2006) found that Evolutionary Poly-
nomial Regression (EPR) was more accurate than GP for
extracting a symbolic expression for Chezy resistance co-
efficient. Elshorbagy and El-Baroudy (2009) differentiated
between equation-based GP and program-based GP. They
further compared GP with EPR technique using a highly
nonlinear dataset (soil moisture content). It was found that
program-based GP outperformed EPR in its prediction accu-
racy. More importantly, Elshorbagy and El-Baroudy (2009)
demonstrated the need for adopting multiple data driven
modeling techniques and tools (modeling environments) to
obtain reliable predictions. This brief literature review shows
that findings and conclusions were sometimes seemingly
contradictory with regard to the superiority of one technique
over the other. Apparently such findings should be viewed
as data-specific, and thus, lack generality and strong support
for cause-effect relationships.

3 Methodology and experimental setup

In order to achieve the objectives of this paper with regard
to the comparative predictive performance of various DDM
techniques, first, a set of distinctive modeling techniques
were identified. The selected techniques are (i) artificial neu-
ral networks (ANNs); (ii) genetic programming (GP); (iii)
evolutionary polynomial regression (EPR); (iv) support vec-
tor machines (SVM); (v) M5 model trees; and (vi) K-nearest
neighbors (K-nn). To facilitate the comparison and allow
for performance evaluation in light of easily understandable
and widely recognized techniques, multiple linear regression
(MLR) models and/or näıve models were employed as base
line references.

Second, five different case studies representing different
hydrological processes or variables (actual evapotranspira-
tion, soil moisture content, and rainfall-runoff) were selected.
The datasets present a wide range of challenges to data driven
techniques because of their various levels of complexity, em-
bedded feedback mechanism (such as the evapotranspiration
process), and nonlinearity. The datasets will be explained
in more details in a later section of this paper. Third, for
each dataset, model inputs were either identified in this re-
search or were pre-selected based on previous studies. Even
though appropriate model inputs were secured for this study,
the identification of the optimum inputs was not given an ex-
traordinary emphasis since the focus of this research is inter-
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technique comparison. As long as the inputs are the same for
the various modeling techniques, an unbiased analysis can be
conducted toward achieving the objectives of this study.

Fourth, split samples from each dataset were prepared for
the modeling experiment. Each set of the five datasets was
randomly sampled 100 times without replacement, such that
every time the dataset is split into three distinct subsets: train-
ing, which contains one half of the total data instances; cross-
validation, which contains one sixth of the data instances,
and testing, which contains one third of the data instances.
Twelve different groups (three subsets each) out of the 100
groups were selected based on the statistical properties of
the output variable (e.g., runoff). The aim was to select the
samples where the mean and the standard deviation values of
the three subsets (training, cross validation, and testing) are
similar or, at least, the differences are minimal. The cross-
validation subset was used for stopping the model training
and selecting the best model, whereas the testing subset was
kept completely unseen during the training process. Twelve
different models were developed based on the 12 data groups
(the best model based on cross-validation was picked every
time), and each model was tested using the corresponding
testing subset. These procedures were repeated using the six
different data driven modeling techniques, applied to each of
the five different datasets. The results of this experiment al-
lows for investigating ensemble outputs from each modeling
techniques, average and range of possible prediction accu-
racy, and predictive uncertainty. Minimizing the squared er-
ror was the error function used with all adopted techniques.

Fifth, the predictive accuracy of the various models and
techniques were evaluated using the root mean squared er-
ror (RMSE), the mean absolute relative error (MARE), the
mean bias (MB), and the correlation coefficient (R). The au-
thors believe that these four error statistics, along with the
visual comparison between observed and predicted values,
are sufficient to reveal any significant differences among the
various modeling techniques with regard to their prediction
accuracy. The formulae of the error measures are presented
in Eqs. (1–4) below.
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WhereN represents the number of instances presented to the
model;Oi andPi represent observed and predicted counter-
parts; andO andP represent the mean of the corresponding
variables. However, sometimes conflicting results regarding
the performance of various models may arise due to the use
of various error measures (Dawson et al., 2007; Elshorbagy
et al., 2000). In this study, a supplemental error measure
that combines the effects of the four error measures in one
indicator is proposed. The new indicator, called the ideal
point error (IPE) is based on identifying the ideal point in
the four dimensional space that each model aims to reach.
The coordinates of the ideal point should be: (RMSE = 0.0;
MARE = 0.0; MB = 0.0;R = 1.0). The IPE (Eq. 5) measures
how far the model is from the ideal point. All individual
error measures are given equal relative weights, and all are
normalized using the maximum error so that the final IPE
value for each model ranges between 0.0 for the best model
and 1.0 for the worst model.
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Wherei denotes model (i) andj denotes technique (j).
Sixth, the predictive uncertainty of the models was as-

sessed using the model residuals, the difference between the
observed and the predicted values. For each dataset and each
modeling technique, the residuals are computed for all 12
models representing the range of possible residuals. The
residuals of the 12 models are merged in one set of presum-
ably random variable, and a probability distribution was fit
to this variable.

Seventh, the gamma test was conducted to assist in gaining
some insight into the predictability of the output variables us-
ing nonlinear smooth functions, and possibly some leads into
the process of selecting appropriate modeling techniques for
a particular case study. The main idea of the gamma test (0-
test) is estimating the variance of the noise on the output vari-
able, which could be an estimate of the best mean squared
error that a smooth model can achieve for the corresponding
output. The test was implemented usingwinGamma(Jones
et al., 2001) that assumes that non-determinism in a smooth
model from inputs to outputs is due to the presence of statis-
tical noise on the outputs:

y = f (X1......Xm)+ε (6)

Wheref is a smooth function andε is noise, and that the
variance of the noise Var(ε) is bounded. The0-test is based
onL[i,k], which arek nearest neighborsXL[i,k] (1 ≤ k ≤ p)
for each input vectorXi(1≤ i ≤ N ) (Stef́ansson et al., 1997).
Delta (δ) andγ functions can be defined as follows:

δN (k) =
1

N

N∑
i=1

∣∣XL(i,k) −Xi

∣∣2 (1≤ k ≤ p) (7)
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γN (k) =
1

2N

N∑
i=1

∣∣yL(i,k) −yi

∣∣2 (1≤ k ≤ p) (8)

Wherep is a pre-selected value, andyL(i,k) is the correspond-
ing output value for thek nearest neighbors ofXi in Eq. (7)
(Stef́ansson et al., 1997). A least squares regression line can
be constructed for thep points (δN (k), γN (k)) where0 can
be computed:

γ = Aδ+0 (9)

The intercept on the vertical axis is the0 value (Jones et al.,
2001). AsδN (k) approaches zero,γ N (k) approaches Var(ε)
in probability. In addition to0, three other useful statistics
can be calculated: (i) thegradient A, which is the slope of
the regression line that indicates the complexity of the sys-
tem (steeper gradient indicates greater complexity) (Evans
and Jones, 2002), (ii) the V-ratio, which is a scale invariant
noise estimate where0 is divided by the variance of the out-
put variable. A V-ratio close to zero indicates high degree
of predictability of the output variable, and (iii) the M-test,
which is the size of data that is possibly required to produce
a stable asymptote of0. The0 value might be estimated for
scaled (normalized) or unscaled dataset, but thegradientwill
be more informative if estimated based on scaled dataset. In
general, if the inputs have inconsistent units, it is advisable to
conduct the0-test using the scaled data (Jones et al., 2001).

4 The modeling techniques and tools

4.1 Artificial neural networks (ANNs)

ANN is a method of computation and information processing
motivated by the functional units of the human brain, namely
neurons. Since abundant information on ANNs is available
in literature (e.g., Haykin, 1999; ASCE Task Committee
on Application of Artificial Neural Networks in Hydrology,
2000), the description of ANNs herein is brief, and limited
to the needs of this study. According to Haykin (1999), a
neural network is a massively parallel distributed information
processing system that is capable of storing the experiential
knowledge gained by the process of learning, and of making
it available for future use. Mathematically, ANNs are univer-
sal approximators with an ability to solve large-scale com-
plex problems such as time series forecasting, pattern recog-
nition, nonlinear modeling, classification, and control. This
is achieved by identifying the relationships among given pat-
terns.

Feedforward neural networks (FFNNs) are the most
widely adopted network architecture for the prediction and
forecasting of hydrological variables (Minns and Hall, 1996;
Maier and Dandy, 2000; Dibike and Solomatine, 2001). Typ-
ically, FFNNs consist of three layers: input layer, hidden
layer, and output layer. The number of nodes in the input
layer corresponds to the number of inputs considered for

modeling the output. The input layer is connected to the
hidden layer with weights that determine the strength of the
connections. The number of nodes in the hidden layer(s) in-
dicates the complexity of the problem being modeled. The
hidden layer nodes come with an activation function, which
helps in nonlinearly transforming the inputs into an alterna-
tive space where the training samples are linearly separable
(Brown and Harris, 1994). Detailed review of ANNs and
their application in hydrology can be found in Maier and
Dandy (2000) and in ASCE Task Committee on Application
of Artificial Neural Networks in Hydrology (2000).

The FFNNs adopted in this study make use of the tan-
sigmoidal activation function in the hidden layer and the lin-
ear activation function in the output layer. While the tan-
sigmoidal activation function squashes the input between
−1 and 1, the linear activation function calculates the neu-
rons output by simply returning the value passed to it. One
of the important issues in the development of neural net-
works model is the determination of optimal number of hid-
den neurons that can satisfactorily capture the nonlinear re-
lationship existing between the input variables and the out-
put. The number of neurons in the hidden layer is usually
determined by trial-and-error method with the objective of
minimizing the cost function (typically, the error on cross-
validation dataset) (ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000). Levenberg-
Marquardt back propagation algorithm is used for training
the FFNNs in this study.

4.2 Genetic programming (GP)

Genetic Programming (GP), introduced by Koza (1992), is
an evolutionary algorithm based on the concepts of natural
selection and genetics. GP extends the search of genetic al-
gorithms for optimal set of parameters to include the model
space, so that both the model structure and the associated
model parameters can be optimized simultaneously. Genetic
symbolic regression (GSR) is a special application of GP in
the area of symbolic regression, where the objective is to find
a mathematical expression in symbolic form, which provides
an optimal fit between a finite sample of values of the inde-
pendent variable and its associated values of the dependent
variable (Koza, 1992). GSR can be considered as an exten-
sion of numerical regression problems, where the objective
is to find the set of numerical coefficients that best fits a pre-
defined model structure (linear, quadratic, or polynomial).
Nevertheless, GSR does not require the functional form to be
defined a priori, as GSR involves finding the optimal math-
ematical expression in symbolic form (both the discovery of
the correct functional form and the appropriate numerical co-
efficients) that defines the predictand-predictor relationship.
GSR is sometimes referred to as equation-based GP. Another
form of GP is program-based GP, where the explicit equation
may not be necessarily produced, but rather a program (code)
is the final output. Elshorbagy and El-Baroudy (2009) noted
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that program-based GP can be more effective than equation-
based GP with regard to its prediction accuracy. GPLAB
(Silva, 2005), a GP toolbox for MATLAB that provides the
evolved equation in the form of a parse tree is an example of
an equation-based GP tool, whereas Discipulus (Francone,
2001), used in this study, is an example of a program-based
GP tool.

Genetic Programming (GP) is a widely used machine
learning (ML) technique; it uses a tree-like structure, as de-
cision trees, to represent its concepts and its interpreter as
a computer program. Therefore, some authors even consid-
ered it to be a superset of all other ML representations; this
may enable GP to produce any solution that is produced by
any other ML system (Banzhaf et al., 1998). It uses different
genetic operators such as crossover and mutation, together
with beam search to reach candidate solutions from the over-
all population of solutions. Although GP is computation-
ally intensive, like most machine learning techniques, it has
its own limitations. The major problem is the deterioration
of the prediction ability of the developed model with longer
prediction horizon, which is a common problem in any mod-
eling method. The adverse consequences of this problem can
be mitigated by combining GP technique with knowledge-
based techniques that depend on the accumulated knowledge
of the process under consideration. This will enhance the
quality of the developed models and add to the understand-
ing of the complicated hydrological processes (Babovic and
Keijzer, 2002).

Several applications of the GP technique in hydrology
exist in the literature. Parasuranam et al. (2007a) ex-
plored the utility of GP to develop explicit models for eddy
covariance-measured actual evapotranspiration. Babovic and
Keijzer (2002) addressed the utility of GP in developing
rainfall-runoff models on the basis of hydro-meteorological
data, as well as in combination with other conventional mod-
els, i.e. conceptual models. It was reported that the GP mod-
els gave more insights into the functional relationships be-
tween different input variables resulting in more robust mod-
els. Parasuraman et al. (2007b) used GP to evolve pedotrans-
fer functions (PTFs) for estimating the saturated hydraulic
conductivity (Ks) from soil texture (sand, silt, and clay) and
the bulk density. Similarly, Jayawardena et al. (2005) com-
pared the GP technique in modeling rainfall-runoff process to
the traditional modeling approaches. They used the GP tech-
nique to predict the runoff from three catchments in Hong
Kong and two catchments in southern China, and showed
that the GP technique evolved simple models that enabled
the quantification of the significance of different input vari-
ables for prediction. In literature, there was an emphasis on
GP’s ability to produce explicit equations, but in this research
program-based GP is employed to utilize the full predictive
ability of the technique.

For GP implementation, the first step is to define the func-
tional and terminal sets, along with the objective function
and the genetic operators. The functional set and the termi-

nal set are the main building blocks of GP, and hence, their
appropriate identification is central in developing a robust GP
model. The functional set consists of basic mathematical op-
erators{+, −, *, /, sin, exp, . . .} that may be used to form the
model. The choice of the operators considered in the func-
tional set depends upon the degree of complexity of the prob-
lem to be modeled. The terminal set consists of independent
variables and constants. The constants can either be physi-
cal constants (e.g. Earth’s gravitational acceleration, specific
gravity of fluid) or randomly generated constants. Different
combinations of functional and terminal sets are used to con-
struct a population of mathematical models (or programs).
Each model (individual) in the population can be considered
as a potential solution to the problem. Genetic operators in-
clude crossover and mutation, and they are discussed in de-
tail later in this section. Once the functional and terminal
sets are defined, the next step is to generate the initial pop-
ulation for a given population size. The initial population
can be generated in a multitude of ways, including, the full
method, grow method, and ramped half-and-half method. In
the full method, the new trees are generated by assigning
non-terminal nodes until a pre-specified initial maximum tree
depth is reached, and the last depth level is limited to the ter-
minal nodes. In the grow method, each new node is randomly
chosen between the terminals and the non-terminals, with
the terminals making up the nodes at the initial maximum
tree depth. The ramped half-and-half method is a combina-
tion of the full and the grow methods. For each depth level
considered, half of the individuals are initialized using the
full method and the other half using the grow method. The
ramped half-and-half method is shown to produce highly di-
verse trees, both in terms of size and shape (Koza, 1992), and
thereby provides a good coverage of the search space. More
information on the different methods of generating the initial
population can be found in Koza (1992). Once initialized,
the fitness of each individual (mathematical model) in the
population is evaluated based on the selected objective func-
tion. The better the fitness of an individual, the greater is the
chance of the individual breeding into the next generation.
In this study, root mean squared error is used as the objective
function, and a lower value of RMSE indicates better fitness.
At each generation, new sets of models are evolved by ap-
plying the genetic operators: crossover and mutation (Koza,
1992; Babovic and Keijzer, 2000). These new models are
termed offspring, and they form the basis for the next gener-
ation.

After the fitness of the individual models in the population
is evaluated, the next step is to carry out selection. The ob-
jective of the selection process is to create a temporary pop-
ulation called the mating pool, which can be acted upon by
genetic operators: crossover and mutation. Selection can be
carried out by several methods like truncation selection, tour-
nament selection, and roulette wheel selection. As roulette
wheel selection is one of the most commonly used meth-
ods including Koza (1992), it has been adopted in this study.
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Roulette wheel is constructed by proportioning the space in a
roulette wheel based on the fitness of each model in the pop-
ulation. The selection process ensures that the models with
better fitness have more chance of breeding into the next gen-
eration. Crossover is carried out by initially choosing two
parent models from the mating pool, and selecting random
crossover points for each of the parents. Based on the se-
lected crossover points, the corresponding sub-tree structures
are swapped between the parents to produce two different
offspring with different characteristics. The number of mod-
els undergoing crossover depends upon the chosen probabil-
ity of crossover (Pc). Mutation involves random alteration
of the parse tree at the branch or node level. This alter-
ation is done based on the probability of mutation (Pm). For
an overview of different types of computational mutations,
readers are referred to Babovic and Keijzer (2000). While
the role of the crossover operator is to generate new models,
which did not exist in the old population, the mutation opera-
tor guards the search against premature convergence by con-
stantly introducing new genetic material into the population.

4.3 Evolutionary polynomial regression (EPR)

Evolutionary Polynomial Regression (EPR) is another data
driven and machine learning technique that models time se-
ries or regression-type data containing information about
physical processes (Giustolisi and Savic, 2006). EPR com-
bines the power of evolutionary algorithms with numerical
regression to develop polynomial models combining the in-
dependent variables together with the user-defined function
as follows (Laucelli at al., 2005):

Ŷ =

m∑
i=1

F(X,f (x),ai)+a0 (10)

whereŶ is the EPR-estimated dependent variable,F (.) is the
polynomial function constructed by EPR,X is the indepen-
dent variables’ matrix,f (.) is a user-defined function,ai is
the coefficient of thei-th term in the polynomial,ao is the
bias andm is the total number of the polynomial terms. In-
clusion of the user-defined function is provided to enhance
the characterization of the response (dependant) variable. As
the developers of the EPR tool state “EPR is a two-stage tech-
nique for constructing symbolic models: (i) structure identi-
fication; and (ii) parameter estimation”, where it uses genetic
algorithm (GA) simple search method to search in the model
structure space. EPR uses the least squares (LS) method to
estimate the parameters of the selected model structure based
on the performed GA search. Applications of EPR are found
in Savic et al. (2006), Doglioni et al. (2008), Elshorbagy and
el-Baroudy (2009), and Giustolisi et al. (2007). The search
proceeds by using the standard GA operators, crossover and
mutation; noting that this type of search is not exhaustive as
it is practically impossible to conduct such search on an in-
finite search space (Laucelli et al., 2005). Even though EPR

might be viewed as a subset of GP, its reported good perfor-
mance while emphasizing the polynomial structure makes it
a potential candidate for this study.

This study makes use of the EPR toolbox (Laucelli et al.,
2005), which is based on “homonymous modeling methodol-
ogy based on a hybrid evolutionary paradigm”. It is a multi-
objective implementation of EPR in the sense that it produces
several models, which are the best trade-off, considering fit-
ness to training data vs. parsimony. The EPR tool performs
three types of regression, i.e. dynamic, static, and classifica-
tion. Dynamic modeling is used to model systems that have
memory, or in other words, when the present state of the sys-
tem depends on the previous states of other input variables.
On the other hand, static systems are systems that are not
influenced by the previous states of input variables. Classifi-
cation modeling is a special type of static modeling in which
the model output is an integer (Laucelli et al., 2005). The
readers may refer to the user manual for the details of the
EPR toolbox and the different components of its simple in-
terface (Laucelli et al., 2005).

4.4 Support vector machine (SVM)

The foundation for the subject of Support Vector Machines
has been largely developed by Vapnik in the 1960s and 1970s
(Vapnik, 1998, see also Cherkassky and Mulier, 2007) and
it is now gaining popularity due to many attractive features.
Its formulation embodies the Structural Risk Minimisation
(SRM) principle, which has been shown to be superior to
the traditional Empirical Risk Minimisation (ERM) princi-
ple, employed by many of the other modelling techniques.
SRM minimises an upper bound on the expected risk, as op-
posed to ERM that minimises the error on the training data.
It is this difference that is claimed to provide SVM with a
greater ability to generalise, which is a principal goal in sta-
tistical learning.

SVM algorithm was first developed to solve the classifica-
tion problem, but was extended to the domain of regression
problems. In regression and time series prediction applica-
tions, excellent performances were obtained (Muller et al.,
1997; Mattera and Haykin, 1999; Dibike et al., 2001). The
goal ofε-SV regression (Vapnik, 1995) is to find a function
f (x) that has at mostε deviation from the actually obtained
targetsyi for all the training data, and at the same time, is as
flat as possible. In case of linear functionsf ,

f (x) = 〈w,x〉+b (11)

where〈·, ·〉 denotes the dot product in X. Flatness in this case
means seeking smallw, which can be ensured by minimizing
the Euclidean norm, i.e.,‖w‖

2. Sometimes, it is not possible
to approximate all pairs (xi,yi) with ε precision. So, it is pos-
sible to allow for some errors in the form of slack variables
ζi,ζ

∗

i . The problem can be written as a convex optimization
problem:
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minimize 1
2‖w‖

2
+C

l∑
i=1

(ζi +ζ ∗

i )

subject to

yi −〈w,xi〉−b ≤ ε+ζi

〈w,xi〉+b−yi ≤ ε+ζ ∗

i

ζi,ζ
∗

i ≥ 0
(12)

The constantC > 0 determines the tradeoff between the
flatness off and the amount up to which deviations larger
thanε are tolerated. Fig. 1 presents an example of SV regres-
sion with theε-tube in which errors are ignored – leading to
better model generalization.

A Lagrange function from both the objective function and
the corresponding constraints can be constructed by intro-
ducing a dual set of variables (M̈uller et al., 1997):

L :=
1

2
‖w‖

2
+C

l∑
i=1

(ζi +ζ ∗

i )−

l∑
i=1

αi(ε+ζi −yi +〈w,xi〉+b)

−

l∑
i=1

α∗

i (ε+ζ ∗

i +yi −〈w,xi〉−b)−

l∑
i=1

(ηiζi +η∗

i ζ
∗

i ) (13)

whereαi,α
∗

i ,ηi,η
∗

i ≥ 0. Finally, w can be written as fol-
lows:

w =

l∑
i=1

(αi −α∗

i )xi and thereforef (x) =
(
αi −α∗

i

)
〈xi,x〉+b (14)

This is called Support Vector expansion, i.e.w can be
completely described as a linear combination of the train-
ing patternsxi . The above discussion is based only on lin-
ear SVM regression. For nonlinear regression, the SVM
has a great advantage that can represent the nonlinear func-
tion in an arbitrary number of dimensions efficiently through
a defined Kernel. The idea is to map the training in-
put vectorxi into a higher dimensional space (called fea-
ture space) or hyperplane, by the function8, while the re-
gression forx remains linear. Thus, the procedure is the
same as the linear SVM except changing the dot product
〈xi,x〉by 〈8(xi),8(x)〉. The Kernel function:K(xi,x) =

〈8(xi),8(x)〉 can assume any form. Many Kernels are being
proposed by researchers; however, the most common ones
are:

– Linear Kernel:K(xi,x)= 〈xi,x〉

– Polynomial Kernel:K(xi,x)= (γ 〈xi,x〉+τ)d γ > 0

– Radial basis function Kernel: K(xi,x) =

exp(−γ ‖xi −x‖
2),γ > 0

– Sigmoid Kernel:K(xi,x)= tanh(γ 〈xi,x〉+τ),γ > 0

Whereγ, τ, andd are Kernel parameters.
In this study, the SVM implementation within WEKA

3.6.0 Software (Bouckaert et al., 2008; Witten and Frank,
2005) has been used.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Illustration of SV regression. Model errors inside theε-tube
are ignored.

4.5 Model trees

Model trees (or M5 model trees) are a relatively new machine
learning technique introduced by Quinlan (1992) who also
suggested the algorithm that uses information theory to build
them – the M5 algorithm. This is effectively a piece-wise
linear regression model. A complex modelling problem can
be solved by dividing it into a number of simple tasks and
building simple models for each of them.

A model tree (MT) belongs to a class of modular mod-
els, which uses the “hard” (i.e. yes-no) splits of input space
into regions progressively narrowing the regions of the input
space. Thus model tree is a hierarchical (or tree-like) mod-
ular model that has splitting rules in non-terminal nodes and
the expert models at the leaves of the tree. In M5 model
trees, the expert models are simple linear regression equa-
tions derived by fitting to the non-intersecting data subsets.
Once these models are formed recursively in the leaves of
the hierarchical tree, then prediction with the new input vec-
tor consists of the two steps: (i) attributing the input vector to
a particular subspace by following the tree; and (ii) running
the corresponding model. A brief description of the model
tree algorithm is presented below.

The first step in building a model tree is to determine
which input variable is the best to split the training set. The
splitting criterion (i.e. selection of the input variable and
splitting value of the input variable) is based on treating the
standard deviation of the target values that reach a node as
a measure of the error at that node, and calculating the ex-
pected reduction in error as a result of testing each input
variable at that node. The expected error reduction, which
is called standard deviation reduction, SDR, is calculated by

SDR= sd(T )−
∑

i

|Ti |

|T |
sd(Ti) (15)
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Figure 2. Illustration of splitting in a model tree 
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Fig. 2. Illustration of splitting in a model tree.

where,T represents set of examples that reach the splitting
node,T1, T2,. . . , represents the subset ofT that results from
splitting the node according to the chosen input variable, sd
represents standard deviation,|Ti |/|T | is the weight that rep-
resents the fraction of the examples belonging to subsetTi .

After examining all possible splits by exhaustive search,
M5 chooses the one that maximizes SDR. The splitting of
the training examples is done recursively to the subsets. The
splitting process terminates when the target values of all the
examples that reach a node vary only slightly, or only a few
instances remain (this is a user-defined parameter). This divi-
sion often produces over-elaborate structures leading to over-
fitting models. They can be pruned back, for instance by
replacing a subtree with a single model in a leaf. Addition-
ally, ‘smoothing’ may be also performed to compensate for
the sharp discontinuities that will inevitably occur between
the adjacent linear models at the leaves of the pruned tree.
In smoothing, the outputs from adjacent linear equations are
updated in such a way that their difference for the neighbor-
ing input vectors belonging to the different leaf models will
be smaller. Details of the pruning and smoothing process can
be found in Witten and Frank (2000). Figure 2 presents an
example of model tree.

As compared to other machine learning techniques, model
tree learns efficiently and can tackle tasks with very high
dimensionality – up to hundreds of variables. The main
advantage of model tree is that results are transparent and
interpretable. During the last years several authors have
shown the effectiveness of the M5 machine learning method
in rainfall-runoff modelling (see, e.g., Solomatine and Dulal,
2003; Solomatine and Siek, 2006; Stravs and Brilly, 2007).

4.6 K-nearest neighbors

The K-nearest neighbors (K-nn) technique is one of the sim-
plest forms of instance-based learning, which can be treated
as plain memorization (Witten and Frank, 2005). Once a
set of training instances has been memorized, one encoun-

tering a new (testing) instance, the memory is searched for
the training instance that most closely resembles the testing
instance. Instead of creating rules (or continuous function
approximation surface), K-nn technique works directly from
the examples themselves. Each new instance is compared
with existing ones using a distance metric, and the closest
existing distance is used to assign the output to the new in-
stance. Usually, more than one nearest neighbors is used.
Standard Euclidean distance (or any other distance measure)
is used as a metric to represent “resemblance”. When multi-
ple nearest neighbors are employed, the output of the testing
instance can be based either on simple average, weighted av-
erage, or any more sophisticated function. In this study, the
simplest method, which is the average value of the K-nearest
neighbors, is used. An apparent drawback to instance-based
representation is that it does not make explicit the structures
that are learnt. Instances do not really describe the pat-
terns in data. Karlsson and Yakowitz (1987); Parasuraman
and Elshorbagy (2007); and Solomatine et al. (2008) pre-
sented some hydrological prediction case studies using K-nn
technique.

5 Summary

Data driven modeling techniques, and in particular machine
learning techniques, have addressed and solved many issues
in hydrological modeling but also caused questions and con-
cerns to be raised. The most important concerns are regard-
ing the way DDM techniques are handled, compared, evalu-
ated, and the basis on which findings and conclusions were
drawn. The sub-optimal approach in designing modeling ex-
periments, the use and the split of datasets, the exclusive
use of techniques and case studies, and writing research ar-
ticles from the standpoint of advocating certain techniques
have contributed to the problem. In this first part of the two-
part paper, a concise but comprehensive review of key arti-
cles that presented comparisons among various data driven
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modeling techniques was summarized. It was concluded that
findings were usually dataset-specific, to some extent con-
tradictory, and thus, difficult to generalize. A comprehen-
sive data driven modeling experiment was proposed and ex-
plained. Six data driven modeling techniques, namely, neu-
ral networks, genetic programming, evolutionary polynomial
regression, support vector machines, M5 model trees, and K-
nearest neighbors were proposed and briefly explained. Mul-
tiple linear regression and naı̈ve models were also suggested
as baseline for comparison with the various techniques.

Five different case studies representing three different
hydrological processes or variables (evapotranspiration, soil
moisture, and rainfall-runoff) from Canada and Europe were
proposed for the modeling experiment, and described in
the second paper. The central step of the methodology is
creating 12 different realizations (groups) from each dataset
by random sampling. Each group contains three subsets;
training, cross-validation, and testing. Each technique
was proposed to be applied to each of the 12 groups of
each dataset. This methodology was designed to evaluate
both prediction accuracy and uncertainty of the various
techniques on a wide range of possibilities that allow for
comprehensive testing the modeling capabilities of these
techniques. This study focused on regression-type problems.
No consideration was given to time series or real time
prediction cases. The second part (Elshorbagy et al., 2010)
describes the datasets and addresses the application of the
proposed methodology through the input selection and the
implementation of the various techniques. Results, analysis,
and discussion of the findings of this study are presented in
the second paper as well.

Edited by: R. Merz
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