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Abstract. This paper presents the reconstruction of a 73-year

time series of the aerosol optical depth (AOD) at 500 nm at

the subtropical high-mountain Izaña Atmospheric Observa-

tory (IZO) located in Tenerife (Canary Islands, Spain). For

this purpose, we have combined AOD estimates from artifi-

cial neural networks (ANNs) from 1941 to 2001 and AOD

measurements directly obtained with a Precision Filter Ra-

diometer (PFR) between 2003 and 2013. The analysis is lim-

ited to summer months (July–August–September), when the

largest aerosol load is observed at IZO (Saharan mineral dust

particles). The ANN AOD time series has been comprehen-

sively validated against coincident AOD measurements per-

formed with a solar spectrometer Mark-I (1984–2009) and

AERONET (AErosol RObotic NETwork) CIMEL photome-

ters (2004–2009) at IZO, obtaining a rather good agreement

on a daily basis: Pearson coefficient, R, of 0.97 between

AERONET and ANN AOD, and 0.93 between Mark-I and

ANN AOD estimates. In addition, we have analysed the

long-term consistency between ANN AOD time series and

long-term meteorological records identifying Saharan min-

eral dust events at IZO (synoptical observations and local

wind records). Both analyses provide consistent results, with

correlations > 85 %. Therefore, we can conclude that the re-

constructed AOD time series captures well the AOD varia-

tions and dust-laden Saharan air mass outbreaks on short-

term and long-term timescales and, thus, it is suitable to be

used in climate analysis.

1 Introduction

Solar radiation reaching the Earth’s surface (SSR) plays a key

role in our climate and environment. In the last decades, nu-

merous analyses have demonstrated that SSR records have

not been constant over time, but have undergone climato-

logically significant decadal variations (e.g. Pallé and But-

ler, 2001; Stanhill and Cohen, 2001; Sanchez-Lorenzo et al.,

2007; Wild, 2009; García et al., 2014a). From the 1930s to

the early 1950s the few data available suggest an increase

of the SSR in the first part of the 20th century, known as

early brightening. This period is followed by a widespread

period of reduced solar radiation from the 1950s to the end

of the 1990s. This effect, extensively reported by the litera-

ture at a global scale, is known as dimming, with a general

decline between 4 and 6 % decade−1 considering worldwide

distributed stations. Recently, a gradual increase of the SSR

has been documented, known as brightening, with trends

between +1 and +11 % decade−1 from the 1980s onwards

(Ohmura and Lang, 1989; De Bruin et al., 1995; Gilgen et

al., 1998; Stanhill and Cohen, 2001; Ohmura, 2006; Wild et

al., 2005; Sanchez-Lorenzo et al., 2007; Wild et al., 2008;

Wild, 2009; Lachat and Wehrli , 2013; García et al., 2014a).

The causes of these phenomena are not fully understood

currently, but it has been pointed out that changes in the

transmissivity of the Earth’s atmosphere play a significant

role. These changes might be due to changes on global cloud

cover and atmospheric aerosol concentrations. Wild et al.

(2005) found that the changes are observed under all cloud-
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cover conditions, thus probably the most important cause is

the aerosol effects (Kaufman et al., 2002). In this context,

the study of the spatial and temporal variability of atmo-

spheric aerosols at sites in background conditions can of-

fer crucial insights to account for their key role on the ob-

served SSR trends. For this purpose, reliable long-term series

of aerosol content and properties are fundamental. However,

these long-term series are only available typically since the

middle of the 1970s, due to the poor data quality and changes

in measurements methodology before this date. There are

few studies treating aerosol long-term series in the literature.

The longest available series are those of normal direct irra-

diance measured at various stations in Russia, Ukraine and

Estonia covering together a 102-year period (1906–2007)

with which the atmospheric transparency has been estimated

(Ohvril et al., 2009). Kudo et al. (2011) estimated aerosol op-

tical depth (AOD) combining broadband direct and diffuse

irradiance measurements performed at Tsukuba, Japan, from

1975 to 2008. Shaw (1979) and Holben et al. (2001) stud-

ied long-term series of AOD from sun photometry at Mauna

Loa since 1976, and Barreto et al. (2014) derived AOD from

solar irradiance measurements at Izaña Atmospheric Obser-

vatory (IZO) since 1976. All of these studies are based on

solar spectrometry, but a different approach is needed to ob-

tain longer AOD time series.

One of the most powerful tools used in science in the

last decades are the artificial neural networks (ANNs). The

ANNs have been employed in diverse applications and fields

such as robotics, pattern recognition, forecasting, medicine,

power systems, etc. In atmospheric science the use of ANNs

is quite recent, for example, ANNs have been successfully

used for estimating solar radiation values (Mohandes et al.,

1998; Dorvlo et al., 2002; López et al., 2005; Feister and

Junk, 2006; Junk et al., 2007; Feister et al., 2008; Paoli et al.,

2009; Linares-Rodríguez et al., 2011, 2013) or cloud proper-

ties (González et al., 2002; Cerdeña et al., 2006). However,

their use for AOD estimations is quite recent and limited to

short periods. For example, Cazorla et al. (2008) estimated

AOD values from all-sky images at Granada (Spain) between

2005 and 2006, finding uncertainties of 0.019 and 0.014

for AOD at 440 and 670 nm, respectively, by comparing

with AERONET (AErosol RObotic NETwork; http://aeronet.

gsfc.nasa.gov) AOD observations. Also, Foyo-Moreno et al.

(2014) used ANNs to obtained AOD from global, diffuse

and direct normal irradiance in Granada between 2006 and

2008. They found uncertainties of ∼13 % with respect to

AERONET AOD values.

In this context, the goal of this paper is to estimate the

long-term AOD time series of Saharan mineral dust events at

IZO and to document its quality and long-term consistency

by a comprehensive validation study. This has been done by

using ANN techniques and, as input parameters, in situ mete-

orological observations performed at IZO between 1941 and

2001. The estimated ANN AOD time series has been com-

pleted with AOD observations from sun photometry since

Figure 1. (a) MODIS/Terra image showing a strong Saharan dust

outbreak over the study area (the Canary Islands) on 25 June 2012;

(b) vertical cross section of Tenerife with a scheme of the vertical

atmospheric stratification (marine boundary layer (MBL), inversion

layer, and free troposphere) and the main atmospheric flows affect-

ing IZO (NW clean subtropical subsident air masses, low-level NE

trade winds, and E–SE Saharan dust intrusions). This figure has

been adapted from González et al. (2014).

2003. Given the strategic location of IZO, very close to the

Saharan desert, the reconstructed ANN AOD time series pro-

vide interesting clues on the intensity and the interannual and

interdecadal variability of Saharan dust outbreaks over the

North Atlantic. This might have important implications for

climate analysis. To address this study, this paper has been

divided as follows. Section 2 describes the main characteris-

tics of the site where the ANN AOD estimates have been ob-

tained, while Sect. 3 presents the architecture, training pro-

cess and input parameters used to select the optimal ANN

configuration, as well as an error analysis of ANN AOD

estimations. Section 4 shows the validation of ANN AOD

estimates with coincident AOD measurements, whereas the

comparison between long-term ANN AOD and meteorolog-

ical records is addressed in Sect. 5. Finally, a summary and

the main conclusions are given in Sect. 6.

2 Description of site and aerosol conditions

Izaña Atmospheric Observatory (http://izana.aemet.es) is a

high-mountain observatory located in Tenerife (Canary Is-

lands) at 28.3◦ N, 16.5◦W, 2373 ma.s.l., and situated ap-

proximately 300 km west from the African coast (Fig. 1a).

IZO is managed by the Izaña Atmospheric Research Cen-

ter (IARC) which forms part of the Meteorological State

Agency of Spain (AEMET).

The observatory is located above a strong subtropical tem-

perature inversion layer, which acts as a natural barrier for

local pollution (Fig. 1b). In addition, IZO is affected by

a quasi-permanent subsidence regime typical of subtropi-

cal latitudes, therefore the air surrounding the observatory

is representative of the background free troposphere (espe-

cially at night-time). The combination of these two features

makes IZO excellent for in situ and remote sensing atmo-
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spheric measurements and those features highlight the histor-

ical importance of the site. The first meteorological observa-

tions date from 1916 (DGIGE, 1915). In 1984 IZO became

a World Meteorological Organization (WMO) Background

Atmospheric Pollution Monitoring Network (BAPMon), and

afterwards (1989), a Global Atmosphere Watch (GAW) sta-

tion. IZO has been part of NDACC (Network for the Detec-

tion of Atmospheric Composition Change) since 2001, and

has actively contributed to international aerosols and radia-

tion networks such as GAW/PFR (Precision Filter Radiome-

ter Network) since 2001, AERONET (Aerosol Robotic Net-

work) since 2004 and BSRN (Baseline Surface Radiation

Network) since 2009. In 2014, IZO was appointed by WMO

as a CIMO (Commission for Instruments and Methods of

Observation) Testbed for Aerosols and Water Vapour Remote

Sensing Instruments (Cuevas et al., 2015a).

The typical background free troposphere conditions at IZO

are only significantly modified in summer, mainly in July and

August, when the most intense and relatively frequent Sa-

haran air mass outbreaks in the subtropical free troposphere

reach the observatory (Cuevas, 1996; Rodríguez et al., 2011;

Cuevas et al., 2013, 2015b; Barreto et al., 2014; Rodríguez

et al., 2015). During these months, Saharan dust long-range

transport over the Atlantic that can reach the Caribbean is

driven by incursions of the so-called Saharan air layer (SAL)

over the North Atlantic (Prospero et al., 2002, and references

therein).

In order to discriminate these two atmospheric conditions

at IZO (clean free troposphere and presence of the SAL) we

have combined AOD and Ångström exponent (α) informa-

tion. While AOD provides the overall solar extinction ef-

fect of aerosols, α characterizes the AOD spectral variation,

which is related to the aerosol median size (Kaufman et al.,

1994). High α values indicate fine particle predominance,

while low α values are related to coarse particles (Kaufman

et al., 1994; Kim et al., 2011). Figure 2 illustrates an exam-

ple of AOD–α distributions, showing the daily AOD time se-

ries at 500 nm labelled with the corresponding daily α val-

ues since AERONET records are available at IZO (2004 on-

wards). Values of AOD≤ 0.10 and α≥ 0.75 (zone I, 63 % of

days), correspond to background conditions, while values of

AOD≥ 0.20 and ≤ 0.50 (zone II, 9 % of days), are associ-

ated with Saharan dust episodes. Finally, the zone III, char-

acterized by 0.10<AOD< 0.20 and 0.50<α< 0.75 (28 %

of days), describes the periods of transition between these

two patterns. As observed, the Saharan dust events at IZO

are mainly detected in summer months (July, August and

September) with a median AOD value of 0.13± 0.02 and

α of 0.47± 0.03, in contrast with the clean conditions ob-

served in other months (median AOD and α of 0.05± 0.01

and 1.17± 0.02, respectively, for zone I and median AOD

and α of 0.07± 0.02 and 0.67± 0.03, respectively, for zone

III). Therefore, in this work, we have limited the ANN AOD

estimation to summer months in order to assess the long-term

variability of Saharan outbreaks over the subtropical Eastern

Figure 2. Daily AOD at 500 nm time series from AERONET

between 2004 and 2013 at IZO. The colour scale indicates the

daily Ånsgtröm exponent (α) values. The dashed lines distin-

guish the different AOD–α zones: (I) AOD≤ 0.10 and α≥ 0.75;

(II) AOD≥ 0.20 and α≤ 0.50, and (III) 0.10<AOD< 0.20 and

0.50<α< 0.75.

North Atlantic. Note that, hereafter, we use AOD medians in-

stead of means because the AOD values dramatically change

by orders of magnitude from background conditions to dusty

conditions. The errors are given as ±1 SEM (standard error

of the median).

3 Artificial neural networks (ANNs)

ANN is a statistical data modelling tool, inspired by the hu-

man brain, capable of simulating highly nonlinear and com-

plex relationships between inputs and outputs by a learning

process, the so-called training process. This tool mainly con-

sists of three layers of neurons: the input layer groups the

input data in the input vector p and connects them with the

hidden layer. In this layer the input vector is transformed into

a net input vector, a′, by using adaptive weights, Wh, biases,

bh, and a transfer function, TFh, such as a′=TFh(n), where

n= (Whp+ bh). Then, the hidden layer is connected with

the output layer, in which the outputs obtained in the previ-

ous step, a′, are transformed into the net input for the out-

put layer, n′= (W out a′+ bout). Finally, the output transfer

function, TFout, is applied to n′ to obtain the final output of

the ANN, a (Jain et al., 1996, and references therein). The

weights and biases used both in the hidden (Wh and bh) and

in the output layer (W out and bout) were previously computed

in the training process.

In this work, the ANNs have been implemented by us-

ing the Matlab Neural Network Toolbox (Demuth and Beale,

1993) with the architecture shown in Fig. 3: the input param-

eters of the input layer are different meteorological obser-

vations taken at IZO (Sect. 3.2 details the selection of these

inputs), and the hidden layer is made up of 30 neurons with a

transfer function defined by the hyperbolic tangent function:

ϕ = tanh(n)=
e2n
− 1

e2n+ 1
, (1)

www.atmos-meas-tech.net/9/53/2016/ Atmos. Meas. Tech., 9, 53–62, 2016



56 R. D. García et al.: 1941–2013 AOD time series at IZO

Figure 3. Schematic representation of the artificial neural network

used in this study, where pi =pi (Ndi , VISi , FCSi , RHi , Tempi )

with i = 1, . . .,N , with N being the total number of observations

and a=ANN AOD.

where n is the corresponding net input. The hyperbolic tan-

gent is one of the most used transfer function in ANN, since

it successfully combines a fast learning rate with reliable re-

sults (Zhang et al., 1998; Ozkan and Erbek, 2013). Finally,

the output layer has one neuron with the linear transfer func-

tion, which is often used in forecasting and approximation

tasks (Zhang et al., 1998).

3.1 Training process

The learning or training procedure plays a key role in the

ANN design and setting. In this process a set of inputs with

known outputs (targets) are used to calculate the weights

(Wh, W out) and biases (bh, bout) to be applied in the neu-

ral network, as explained in the previous section.

The first step on this process is to randomly divide the set

of known inputs and target values into three different sub-

sets: training (70 % of the data), validation (15 % of the data)

and test (15 % of the data). The weights (Wh, W out) and bi-

ases (bh, bout) are computed for each neuron. Then the vali-

dation subset is used to estimate the error by comparing the

obtained outputs with the targets of the validation subset. The

computation of weights and biases and the subsequent error

estimation is iteratively repeated until the error is lower than

a required value or if the assignation of new weights and bi-

ases does not decrease the error. In this work the estimation

of the error is supervised by the Levenberg–Marquardt opti-

mization algorithm, which has proved to be efficient and fast

for small and medium-sized networks, such as the architec-

ture used here (Foresee and Hagan, 1997; Hao and Wilam-

owski, 2011). The mentioned error is computed by the mean

square error (MSE) defined by the following equation:

MSE=
1

n

N∑
i=1

(ti − ai)
2, (2)

where N is the dimension of the validation subset, ti the tar-

gets in the validation subset and ai the ANN outputs obtained

from the validation subset inputs. Finally, the test subset, not

used in the training process, is used to check the quality of

the obtained ANN by applying it to “clean” inputs, that is,

inputs and targets not used in the training process (Beale et

al., 2014).

Given that the division of known data in training, valida-

tion and test subsets is random, we have repeated the training

process 1000 times. Then, the best ANN is selected as the

one showing the highest Pearson correlation coefficient (R),

slope closest to 1 and lowest intercept with respect to the

known outputs (Hao and Wilamowski, 2011).

The AOD measurements used to train the ANN were per-

formed with one of the most accurate and stable instruments

dedicated for atmospheric aerosol monitoring, a Precision

Filter Radiometer (hereafter PFR AOD), developed at the

World Radiation Center Physikalisch-Meteorologisches Ob-

servatorium (www.pmodwrc.ch). It was installed at IZO in

the framework of a high-precision world network for AOD

characterization and monitoring (GAW/PFR) in June 2001,

but continuous observations are only available since 2003.

The PFR measures direct solar radiation, with a field of view

of 2.5◦, at 862, 500, 412 and 368 nm. The AOD is esti-

mated at all these wavelengths with an expected uncertainty

of ±0.01 (Wehrli, 2000). In this study, we have used Level

3.0 of Version 3.0 AOD at 500 nm.

3.2 Input parameters and ANN AOD estimates

The other critical step in the ANN design is the selection of

an appropriate set of input parameters, since they should be

able to adequately capture the actual variability of the tar-

get. A parameter describing the extinction of the solar radia-

tion similarly to AOD is the horizontal visibility (VIS). The

VIS is estimated by human observations (by observers) man-

ually as the maximum distance at which the naked eye of

an observer can distinguish a predetermined marker object

(a building, a mountain, etc.) from the background (WMO,

1996). Therefore, it is very sensitive to the extinction of ra-

diation by atmospheric aerosols – Retalis et al. (2010), and

references therein – but also by the presence of hydromete-

ors (snow, fog, rain, . . .) and clouds. To minimize the latter

impacts on the variability of the VIS, we only work with

cloud-free days filtered with an average sky cover of 0 ok-

tas. Furthermore, we have introduced the fraction of clear

sky (FCS) defined as the ratio between SD performed with

a Campbell Stokes sunshine recorder (García et al., 2014a)

and the maximum daily sunshine duration SDmax to account

for the remaining variability introduced by the presence of

clouds, fog, etc. The introduction of FCS in the ANN training

allows the ANN to discriminate the patterns associated with

possible residual cloud cover for the days with oktas= 0. The

cloud-free days for the study were selected by considering a

median number of oktas equal to zero, but this value was cal-

culated from only three observations per day. Thereby, some

episodes with cloud contamination are likely and, as pointed

out by the referee, this residual cloud contamination could

give artificial ANN AOD values.
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Figure 4. Times series of the ANN AOD monthly medians (July, August and September) at 500 nm between 1941 and 2009 at IZO. Shadings

show the range of ±1 SEM (standard error of the monthly median).

Table 1. Parameters of the least-square fit (Pearson correlation co-

efficient, R, slope and intercept) between the measured PFR AOD

and the estimated ANN AOD using different configurations of input

parameters. The setup selected is highlighted in bold.

Inputs R Slope Intercept

(A) Nd -VIS 0.79 0.61 0.03

(B) Nd -VIS-FCS 0.94 0.90 0.01

(C)Nd -VIS-FCS-RH 0.99 0.99 −0.01

(D) Nd -VIS-FCS-RH-Temp 0.97 0.92 0.01

To complete the characterization of the meteorological

conditions, we have considered the relative humidity (RH)

and temperature records (T ). The latter inputs are only avail-

able every 3 h between 06:00 and 18:00 UTC, thus we have

calculated the daily medians. Finally, to account for the sea-

sonal variation of each parameter we have also introduced the

day of year (Nd ) as input parameter. The time series at IZO

are from 1916 up to now for T and RH, from 1921 to present

for FCS, and from 1941 to 2009 for VIS. Therefore, the lat-

ter time series determines the period in which the ANN AOD

time series can be estimated with ANN techniques: 1941–

2009. These data were taken from the AEMET climatologi-

cal database (http://www.aemet.es).

In order to study the relative importance of each input

parameter and select the best configuration, several combi-

nations of the input parameters has been trained, validated

and tested in the period 2003–2009 (period with coincident

PFR AOD and input parameter measurements). The different

combinations considered were: (A)Nd and VIS; (B)Nd , VIS

and FCS; (C) Nd , VIS, FCS and RH; and (D) Nd , VIS, FCS,

RH and Temp. As observed in Table 1, the VIS and FCS are

the most critical parameters determining ∼ 90 % of the ob-

served AOD variance, although the maximum agreement is

achieved when the RH is also taken into account as input

parameter (setup C). This configuration accounts for 98 %

of the actual AOD variability with a slope of 0.99 and inter-

cept of−0.01 between the measured and estimated AOD val-

ues. By applying this setup, we have obtained the daily ANN

AOD time series between 1941 and 2009 at IZO, which is

displayed in Fig. 4 on a monthly basis.

To analyse how the ANN AOD estimates could be affected

by uncertainties in the input parameters used, we have per-

formed a two-step theoretical error estimation. Firstly, AOD

estimations were conducted using the measured values for

all parameters described in the previous section, obtaining

the non-perturbed values (AOD). Secondly, the same sam-

ple was simulated again by applying the typical uncertainties

of the inputs parameters reported in the literature, ±5 % for

FCS (García et al., 2014a) and ±2 % for RH (Thies, 2011).

For the horizontal visibility we have assumed a very conser-

vative error of ±25 %. Note that the day of year has been

omitted from this analysis.

This strategy was applied to all cloud-free days (oktas= 0)

between 2003 and 2009 in order to detect random and sys-

tematic behaviours in the error time series (AOD± δ) (Gar-

cía et al., 2014b). As the theoretical error distributions have

not shown dependence either on the input parameters or on

the ANN AOD values (correlation is not significant at 95 %

level of confidence), the systematic and random errors have

been calculated as the median and the standard deviation of

the corresponding error distributions.

The results of our error analysis are summarized in Ta-

ble 2, where the two prevalent atmospheric situations ob-

served at IZO have been distinguished: free-troposphere

background conditions with AOD≤ 0.10 and α≥ 0.75, and

Saharan dust events with AOD≥ 0.20 and α≤ 0.50. As ex-

pected, the uncertainties of the FCS and VIS dominate the

random and systematic error budgets for all the AOD ranges.

For AOD≤ 0.10 the scatter reaches 0.12 and the systematic

error is −0.02, while for AOD≥ 0.20 we obtain a scatter of

0.17, and a bias of 0.03. When considering all the AOD range

and all the input parameter errors, the overall uncertainty is

expected to be less than 0.15 (SD), with a positive bias of

0.03.

4 Validation of ANN AOD estimates

The ANN AOD estimates have been validated with coin-

cident AERONET CIMEL photometers of Level 2.0 AOD

(cloud screened and quality ensured) from 2004 to 2009, and

with a long-term AOD at 769.9 nm data series retrieved by

Barreto et al. (2014) from a solar spectrometer Mark-I for

the period 1975–2012.
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Table 2. Statistics of the difference between non-perturbed and per-

turbed ANN AOD estimates (AOD− (AOD± δ)): Pearson correla-

tion coefficient (R) between the differences and ANN AOD values,

standard deviation (SD) and median of the difference time series

(systematic bias). “All” represents the error estimation considering

the uncertainties of all parameters together (VIS± 25 %, FCS± 5 %

and RH± 2 %).

AOD Input R SD Systematic

ranges bias

RH 0.08 0.02 −0.01

≤ 0.10 FCS 0.06 0.09 −0.01

(102 days) VIS 0.05 0.04 −0.01

All 0.01 0.12 −0.02

RH −0.26 0.05 0.01

≥ 0.20 FCS 0.03 0.16 −0.04

(15 days) VIS −0.21 0.07 0.01

All −0.01 0.17 0.03

All AOD range – 0.16 0.13 0.03

CIMEL photometers retrieve AOD measurements at dif-

ferent wavelengths between 340–1640 nm from direct Sun

observations under cloud-free conditions, with an expected

uncertainty of 0.01 at 500 nm for field instruments (Eck et

al., 1999). The validation procedure of Mark-I AOD time se-

ries was performed by Barreto et al. (2014), showing a root-

mean-square error of 0.022 (R = 0.94) and 0.034 (R = 0.92)

in comparison with the PFR reference and AERONET mas-

ter instruments, respectively. In order to compare the Mark-

I AOD values at 769.9 nm and the ANN AOD estimates at

500 nm, we have extrapolated the ANN AOD values from

500 to 769.9 nm by using the Ångström law (Ångström,

1929) and the α data retrieved from PFR observations. For

Mark-I we have used the AOD records since 1984 when the

observations start to be seamlessly performed.

The straightforward comparisons between AOD observa-

tions and estimates show a good agreement for the daily

values with ∼ 94 % (R = 0.97) of the variance in agree-

ment between AERONET AOD and ANN AOD, and 85 %

(R = 0.93) between Mark-I AOD and ANN AOD values

(Fig. 5a and b). When considering monthly values the agree-

ment increases, achieving a correlation of 96 and 98 % with

Mark-I/ANN and AERONET/ANN, respectively. Although

the comparison with the Mark-I AOD records shows a poorer

agreement, both inter-comparisons behave similarly. We ob-

serve that the ANN AOD estimates have been shown to

be dependent on the AOD range (see Table 3), confirming

the results obtained in the theoretical error estimation (Ta-

ble 2). For low AOD, the ANN AOD values tend to over-

estimate compared with the observed AOD values (median

bias of ∼ 0.01–0.02), but the contrary behaviour is observed

for high AOD (underestimation by 0.01–0.03). However, the

overall ANN AOD/ Mark-I AOD scatter (0.06) duplicates

Table 3. Statistics for the difference between AOD observations and

ANN AOD estimates for different AOD ranges. The series of dif-

ferences between Mark-I AOD and ANN AOD is at 769.9 nm in the

period 1984–2009 and between AERONET AOD and ANN AOD

at 500 nm in the period 2004–2009. N is the number of data and

R is Pearson correlation coefficient. The bold values represent the

R, random bias and systematic bias considering all AOD range for

AERONET and Mark-I, respectively.

AOD Data N R Random Systematic

ranges bias bias

≤ 0.10 AERONET 113 0.73 0.02 −0.01

Mark-I 691 0.62 0.04 −0.02

≥ 0.20 AERONET 11 0.91 0.05 0.01

Mark-I 187 0.75 0.09 0.03

All AOD AERONET 154 0.97 0.03 −0.01

range Mark-I 1076 0.93 0.06 −0.01

Figure 5. Scatterplot of ANN AOD estimates vs. (a) daily Mark-

I AOD at 769.9 nm for all the cloud-free days (oktas= 0) and

(b) daily AERONET AOD at 500 nm for the periods 1984–2009

and 2004–2009, respectively. The black solid lines are the least-

square fits and the dotted lines are the diagonals. The least-square

fit parameters are shown in the legend (Pearson correlation coeffi-

cient, R, slope and intercept). (c) Time series of monthly medians

of Mark-I AOD and ANN AOD estimates in July (on the left axis)

and time series of the differences between these AOD values (on the

right axis). Shadings show the range of ±1 SEM (standard error of

the monthly median).

that observed for the ANN AOD/AERONET AOD compari-

son (0.03). This agreement is within the AOD uncertainty of

Mark-I (Barreto et al., 2014) and within our error estimation

(Table 2). Notice that the experimental scatter is significantly

smaller than the theoretical one, suggesting that our assumed

uncertainties could be very conservative. Therefore, in sum-

mary, we consider that the ANN AOD values capture well

the day-to-day AOD variability and successfully identify Sa-

haran mineral dust events at IZO.
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The long-term Mark-I AOD time series also allows us

to analyse the temporal consistency of the ANN AOD es-

timations by examining possible drifts and discontinuities

in the monthly time series of the differences between ANN

AOD and Mark-I AOD for July, August and September.

A drift is defined as the linear trend of monthly median

bias (measurements–estimations), while the change points

(changes in the median of the bias time series) are analysed

by using a robust rank order change-point test (Lanzante,

1996). The Lanzante’s procedure is an iterative method that

applies a (single) change-point test, based on summing the

ranks of the values from the beginning to each point in the

series, and followed by an adjustment step (the median com-

puted for the segments enclosed by the identified change

points is used to adjust the series). In the subsequent iteration

the change-point test is applied to the adjusted series and the

iterative process finishes when the significance of each new

change point is less than an a priori specified level.

By applying this change-point test we identify 1997 as the

change point in the monthly median bias time series (see

Fig. 5c), caused by the horizontal visibility records. Although

this discontinuity is significant at 99 % confidence level, the

difference of median bias is rather small (−0.013± 0.001

for the 1984–1997 period and +0.006± 0.003 for the 1998–

2009 period) and within the ANN AOD and Mark-I AOD ex-

pected uncertainties. Furthermore, we observe that there are

no significant drifts in the bias time series either before or af-

ter this systematic change point at 99 % of confidence level.

For the other months, August and September, the monthly

median bias time series have shown neither significant sys-

tematic change points nor temporal drifts. These findings in-

dicate that the ANN AOD estimates are consistent over time

and, thus, valid to reconstruct the AOD time series at IZO.

5 Comparison of long-term ANN AOD with

meteorological records

We have analysed the long-term variability of ANN AOD

time series by comparing with long-term meteorological

records identifying Saharan dust events at IZO. On the one

hand, we have compared the number of days in which es-

timated ANN AOD values fall within different AOD inter-

vals with the number of days in which the meteorological

observers reported presence of dust in suspension (05–06

SYNOP codes, WMO, 1998) at IZO during the dust sea-

son (July–September) since 1941 (see Fig. 6a and b). On the

other hand, locally at the observatory, when haze or dust in

suspension is reported by the observers, the wind normally

blows from the second sector (90–180◦) (Fig. 6c). There-

fore, we have analysed the relation between the monthly

AOD medians in July (month with the maximum frequency

of Saharan dust events at IZO in the study period) and the

monthly percentage of time the wind is blowing from each

of the four quadrants for the period 1941–2009. Both anal-

yses provide consistent results. On the one hand, we found

that the number of days with 05–06 Synop codes time se-

ries agrees with the number of days with ANN AOD≥ 0.20

time series (R = 0.89). On the other hand, a high correlation

(R = 0.86) between the ANN AOD monthly medians and

the percentage of time the wind blows in the second quad-

rant is observed, whilst no correlation at all is found in the

other three quadrants (R of 0.24, 0.16 and 0.14, for the first,

third and fourth quadrants, respectively) (see Fig. 6c and d).

These results show that the reconstructed ANN AOD series

correlates well with other series of independent atmospheric

parameters, confirming its consistency in this long period

(1941–2009), and probing its capability for tracking inter-

annual variations of dust-laden Saharan air mass outbreaks.

The ANN AOD series is suitable to be used in climate anal-

ysis.

6 Summary and conclusions

This paper presents, for the first time, the AOD time series

of Saharan mineral dust outbreaks over the subtropical North

Atlantic between 1941 and 2013. This has been done at the

Izaña Atmospheric Observatory, frequently affected by the

Saharan Air layer during the summer months, and by com-

bining AOD estimates from artificial neural networks be-

tween 1941 and 2001, and AOD measurements during the

period 2003–2013.

The ANN method has proved to be a very useful tool

for the reconstruction of daily AOD values at 500 nm from

meteorological input data, such as the horizontal visibil-

ity, fraction of clear sky, and relative humidity, recorded at

IZO. ANN AOD estimates adequately capture the day-to-

day AOD variations and the long-term trends when compared

to coincident AOD measurements from Mark-I solar spec-

trometer (1984–2009) and AERONET (2004–2009). The re-

sults show a good agreement for the daily values, with Pear-

son coefficients of 0.97 (AERONET/ANN) and 0.93 (Mark-

I/ANN). At the longest timescale (1941–2009), we found a

good agreement between ANN AOD monthly medians and

the percentage of time the wind blows from the Sahara desert

(SE) (R = 0.86), and also a good correlation between the

number of days with AOD≥ 0.20 and the number of days in

which synoptical observations reported mineral dust events

(R = 0.89). These results show the reliability of the recon-

structed ANN AOD series, confirming its consistency in this

long period (1941–2009), and capability for tracking inter-

annual variations of dust-laden Saharan air mass outbreaks.

Finally, this paper also highlights the potential of ANN to

estimate AOD values and probe its suitability for long-term

AOD series reconstruction. Thereby, the ANN methodology

developed here for AOD series reconstruction might be suit-

able to be applied in Synoptic stations of North Africa, the

Middle East and Asia, in which the reduced visibility is pri-

marily due to the presence of mineral dust, and where recent

AOD observations are available for validation.
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Figure 6. (a) Time series of the number of days grouped into ANN AOD intervals (AOD≥ 0.05; AOD≥ 0.10; AOD≥ 0.20) on the left axis,

while on the right axis, the bars indicate the number of days with SYNOP data reporting dust in suspension (05–06 SYNOP codes) for the

period 1941–2009. The 5-year running mean is shown in black. (b) Scatterplot of number of days with ANN AOD≥ 0.20 and number of

days with 05–06 SYNOP codes. The least-square fit parameters are shown in the legend. (c) Time series of the ANN AOD monthly medians

(blue line) and monthly percentage of time the wind blows from the second quadrant (E–S; 90–180◦) (black line) at IZO in July in the period

1941–2009. (d) Percentage of time (y axis) the wind blows from in each one of the four quadrants vs. the ANN AOD monthly medians

(x axis). R indicates the Pearson coefficient.
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