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ABSTRACT 

In order to improve the efficiency of scalar multiplications on elliptic Koblitz curves, 
expansions of the scalar to a complex base associated with the Frobenius 
endomorphism are commonly used. One such expansion is the τ-adic Non Adjacent 
Form (�-NAF), introduced by Solinas (1997). Some properties of this expansion, 

such as the average density, are well known. However in the literature there is no 
description on the same sequences occuring as length-� NAF's and length-� �-NAF's 

to proof that the average density is approximately 
�
� . In this paper we provide an 

alternative proof of this fact.  
   
Keywords: anomalous binary curves (Koblitz curves), scalar multiplication, �-adic 

non-adjacent form, norm. 

 

 

1. INTRODUCTION  

In cryptographic protocols whose security relies on the hardness of 

the discrete logarithm problem on elliptic curves, the computationally most 

dominant part is the scalar multiplication �� , where �  is a point on the 

curve and � is an integer, called the scalar. In order to increase the speed of 

this computation, special types of curves where large multiples of � could 

be computed quickly have been proposed very early in the history of elliptic 

curve cryptography (ECC). In this paper we will consider Koblitz curves. 
 

The Koblitz curves are a special type of curves for which the 

Frobenius endomorphism can be used for improving the performance of 
computing a scalar multiplication (Koblitz (1987)). The Koblitz curves are 

defined over �	 as follows 

 
�: 
	 � �
 � �� � ��	 � 1 
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where � � �0,1�  (Koblitz (1992)). The Frobenius map �: 
���	�� � 
���	�� for a point � � ��, 
� on 
���	�� is defined by  

 ���, 
� � ��	 , 
	�  ,           ���� � �  
where  � is the point at infinity. It stands that ��	   � 2�� � ����� for all � � 
���	�� , where the trace, � � � 1��!�  .  Thus, it follows that the 

Frobenius map can be considered as a multiplication with complex number 

� � #$√!&
	   (Solinas (2000)). 

 

The � -NAF proposed by Solinas, is one of the most efficient 
algorithms to compute scalar multiplications on Koblitz curves. Our paper 

is structured as follows.  

 
 

2.  �- ADIC NON-ADJACENT FORM 

In the ensuing discussion, the following definitions will be applied. 
 

Definition 2.1.  A non-adjacent form (NAF) of a positive integer � is an 

expression � � ∑ �(2()!�(*+  where �( � � 1,0,1� , �)!� , 0 , and no two 

consecutive digits �( are nonzero. The length of the NAF is �. 
 

Definition 2.2.  A �-adic Non-Adjacent Form of nonzero  �- an element of .���  is defined as � -NAF ��-� �  ∑ /(�()!�(*+  where  �  is the length of an 

expansion of  �-NAF��-�, /)!� , 0, /( �  � 1,0,1�  and  /(/($� � 0. 

 

Definition 2.3.  We denote 01)  as hamming weight of nonzero element 

occurring among �-NAF of all length-� element of  .���.  

 

Solinas proposed the following algorithm for computing the � -

NAF. It is completely analogous to the computation of the NAF for 

integers. 
 

Algorithm 2.1. (�-NAF) 

 

Input  :   Integers 23 , 2� 

Output  :  �-NAF�2+ � 2��� 
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Computation : Set /+ 4  2+,   /� 4  2� 

Set 5 4 67 
While /+ , 0  82 /� , 0 

If /+ odd then 

set 9 4 2  �/+  2/� :8; 4� 

set /+ 4 /+  9 

else 

set 9 4 0 

Prepend 9 to 5 

Set �/+, /�� 4 =/� � #>?
	 ,  >?

	 @ 

End While 

Output 5 

 
In the following proposition Solinas mentions that the expected density (i.e. 

the ratio of non-zero bits to the total number of bits) of  �-NAF is 
�
�.  Each 

�- � .��� admits a unique �-NAF. The length of the �-NAF of a randomly 

chosen scalar �- is A 2:, whereas the bit length of  �- is A :.  
 

Proposition 2.1.   The average density among �-NAF's of length  � is given 

by 

2)�3�  4�  � 1�)�6�  4�
9��  1��2)  � 1�)�  

                                                   
(1) 

 

and is therefore asymptotically 
�
�. 

Proof.   The result follows from  	E��)!F�!�!��E�G)!F�
H�)!��I	E!�!��EJ  since the same 

sequences occur as length-� NAF's and length-�  �-NAF's. K 

 

With retrieval from the above proposition, he is able to estimate 

that the average Hamming weight among length-� �-NAF's is roughly 
)
�. 

 
Here, Solinas did not give evidence that the sequence of average 

density among  �-NAF's of length � was similar with NAF's.  Researchers 

subsequent to Solinas such as Avanzi et al. (2005), Li et al. (2007), 
Brumley and Jarvinen (2007), Lin (2009), Hakuta et al. (2010), Roy et al. 

(2011) had accepted and use the above evidence without any modification. 

Next section will present an alternative proof that the average density of 

among �-NAF's of length � is 
�
�. 
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3. RESULTS AND DISCUSSION 

We will start by making short analysis on �-NAF that have length-3 

as in the following example.  

 

Example 3.1.  Table 1 show us the all combination of  /+, /� and /	. 

 
TABLE 1: Combinations of /+ , /� , /	 and � and their hamming weight 

 

No. /	 /� /+ t HW 

1  1 0  1  1 2 

2  1 0 1  1 2 

3  1 0 0  1 1 

4  1 0  1 1 2 

5  1 0 1 1 2 

6  1 0 0 1 1 

7 1 0  1  1 2 

8 1 0 1  1 2 

9 1 0 0  1 1 

10 1 0  1 1 2 

11 1 0 1 1 2 

12 1 0 0 1 1 

4:� � 4�3� � 12 12:� � 12�3� � 36  01� � 20 

 

There are 12 combinations of /+, /�,   /	 and �. The combinations 
are constructed based on the following tree diagram.  

 

 
 
 

As such, we have 6 ways to arrange /+ , /� and /	 also 2 ways as the total 

number of �. Thus we will have 12 combinations as described in above 

schedule. By using the similar method, we could get all outcomes of  /(. 
 

 

 
 

 

c2=±1 c1=0

c0= –1

c0=0

c0=1
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From Table 1, we obtain the following results: 

 

1. The number of arrangements of  /	, /�, /+ and �  (or on the other hand, 

the number of all integers with �-NAF of length �) is 12. 
 

2. The total number of  1,0 and 1 is 36 (i.e. multiplication of � with the 

number of arrangements).  
 

3. We define �L  the total number of  1 and 1 in column /L  for M � 0,1,2, 

thus we have �	 � 12,   �� � 0 and �+ � 8. 
 

4. The number of nonzero coefficients (i.e. the hamming weight of length 

3, 01�) is 20. 
 

5. The average hamming weight (i.e. 01�  divided by the number of 

arrangements of /	, /� , /+ and �) is 2, and 
 

6. The average density (i.e. average hamming weight divided by length) is 

0.8. 

 

By using similar method of constructing Table 1, we will see that the 

number of arrangements /(  for � � 1, … ,15  follow like the following 

sequence 

 4,4,12, 20,44,84,172,340,684,1364,2732,5460,10924,43692. 
 

It can be written as 

 4,4�1�, 4�3�, 4�5�, 4�11�, 4�43�, … ,4�10923�. 
 

By making an analysis on the above sequence, we obtain the number of 

arrangements /( and � is 4:) where :) � 1,1,3,5, . . . ,10923 come from the 

following theorems. 

 

Theorem 3.2.   If :� � 1 and R) � S0 TU � TV WXW�1 TU � TV 8;;     Ythen  

                         :) � R) � Z :[
)!�
[*�                                                                   �2� 

for � \ 1. 
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Proof.  If  � � 2 then 

          :	 � R	 � Z :[
�
[*�  

 �  0 � 1 
                                                       �  1. 
 

Assume that :)′ � R)′ � ∑ :[)′!�[*�  for �′ \ 1 is true for � � �′. 
 

Now, for � � �′� 1               :)′$� �  R)′$� � :� � :	 � ] � :)′                                               

                                               �  R)′$� � ∑ :[)′[*�  
                                                                                               

                                               � R)′$� � ∑ :[)′$�!�[*� . 
. 

Thus, (2) is still true for � � �′� 1, therefore it is true for all � \ 1. 
 

The above expression can be simplified as follows. 
 

:)′$� �  R)′$� � Z :[
)′$�!�
[*�  

                                               � R)′$� � :� � ] � :)′!� � :)′ 
                                               � R)′!� � :� � ] � :)′!� � :)′  
                                               � IR)′!� � :� � ] � :)′!	J � :)′!� � :)′  
                                               � :)′!� � :)′!� � :)′  
                                               � 2:)′!� � :)′. K 
 

 

Theorem 3.3.   If :) � R) � ∑ :[)!�[*�   (as given by Theorem 3.2) then 
 

:) � � 1�)I� 2�)  1J
3  

 

(3) 
 

for � ^ 1. 
 

Proof.             

        :) � R) � Z :[
)!�
[*�    where  R) � S0 TU � TV WXW�1 TU � TV 8;; Y 

                            � W) � 2:)!�  where W) � S 1 TU � TV WXW�1 TU � TV 8;; Y 
                            � � 1�)!� � 2:)!� 
                                                                   

                            � Z � 1�(!�2)!()
(*� .                                                                 
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This is a geometric series where the first term is 2)!�, the common ratio is 

 �
	 and the number of terms is �, therefore 

 

                                             :) � �!��EI�!	�E!��J
� .                                         K 

 

Thus, the number of all integers with �-NAF is 4 �!��E��!	�E!��
�  for 

any element of  .��� with length-�. This is four times of the number of 

positive integers with NAF of length-� (Ratsimihah and Prodinger (2005)). 
 

Now, we construct the following table in order to find the hamming 

weights occurring among � -NAF of all length- �  elements of .��� . We 

define �)!L as the total number of  1 and 1 for /)!L  where M � 1,2,3, … ,13. 

 
 TABLE 2: All hamming weight of element in .��� with  � � �1,2,3, … ,13� 

 

 

 

The hamming weight for � � 1,2,3, … ,13 is 

 4,4,20,36,100,212,500,1092,2436,5300,11540,24868,53412. 
 

It can be written as  

 4,4,4�3 � 2�1 c 1��,4�5 � 2�1 c 1 � 1 c 1��,4�11 � 2�1 c 3 � 1 c 1 � 3 c 1��, … , 4�2731 � 2� 1 c 683 � 1 c 341 � 3 c 171 � 5 c 85 � 11 c 43 � 21 c 21 �43 c 11 � 85 c 5 � 171 c 3 � 341 c 1 � 683 c 1��. 
 

As a result, we obtain the following theorems. 
 

� �)!� �)!	 �)!� �)!F �)!d �)!G �)!& �)!e �)!H �)!�+ �)!�� �)!�	 �)!�� 01)  

1 4             4 

2 4             4 

3 12 0 8           20 

4 20 0 8 8          36 

5 44 0 24 8 24         100 

6 84 0 40 24 24 40        212 

7 172 0 88 40 72 40 88       500 

8 340 0 168 88 120 120 88 168      1092 

9 684 0 344 168 264 200 264 168 344     2436 

10 1364 0 680 344 504 440 440 504 344 680    5300 

11 2732 0 1368 680 1032 840 968 840 1032 680 1368   11540 

12 5460 0 2728 1368 2040 1720 1848 1848 1720 2040 1368 2728  24868 

13 10924 0 5464 2728 4104 3400 3784 3528 3784 3400 4104 2728 5464 53412 
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Theorem 3.4.   If 01� � 01	 � 4 then  

 01) � 4 f:) � 2 Z :[ :)![!�
)!	
[*� g 

 

(4) 

 

for � \ 2. 

 

Proof.   If � � 3 then 

01� � 4 h:� � 2 Z :[ :	![
�
[*� i 

                                         �  4�:� � 2�:�:���  
                                         �  4�3 � 2�1 c 1�� 

                                         � 20. 

 

Assume that 01)′ � 4I:)′ � 2 ∑ :[:)′![!� )′!	[*� J is true for � � �′. 
Hence, if � � �′� 1, then 

    

01)′$� � 4 f :)′$� � 2 Z :[:)′![
)′!�
[*� g 

              � 4I :)′$� � 2:)′!� � 2 ∑ :[:)′![)′!	[*� J 

              � 4 h�2 :)′!� � :)′� � 2:)′!� � 2 ∑ :[)′!	[*� IR)′![  �
                    ∑ :[′)′![!�[′*� J@ 

  

� 4 h:)′ � 4:)′!� � 2 ∑ :[)′!	[*� IR)′![ � :)′![!� � ∑ :[′)′![!	[′*� Ji 
               

               � 4 =:)′ � 4:)′!� � 2 ∑ :[:)′![!�)′!	[*� � 2 ∑ :[)′!	[*� IR)′![ �
                   ∑ :[′)′![!	[′*� J@ 
             � 16:)′!� � 01)′ � 8 ∑ :[)′!	[*� IR)′![ � ∑ :[′)′![!	[′*� J 
 

Since R)′![ � R)′![!	  then 
 

 01)′$� � 16:)′!� � 01)′ � 8 ∑ :[)′!	[*� I:)′![!	 � R)′![!	 �
                     ∑ :[′)′![!�[′*� J 
              � 16:)′!� � 01)′ � 8 ∑ :[)′!	[*� �:)′![!	 � :)′![!	� 
              � 16:)′!� � 01)′ � 16 ∑ :[:)′![!	)′!	[*� . 
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Thus, (4) is true for � � �′� 1, therefore it is true for all � \ 2. K 

 

Theorem 3.5.  If 01) � 4I:) �  2 ∑ :[:)![!�)!	[*� J (as given by Theorem 

3.4) then  01) �  �!��EFI��)$d�I�!�!	�EJ$�)J
	&    for � \ 2. 

 

Proof.  From Theorem 3.4, we have 01) � 4I:) �  2 ∑ :[:)![!�)!	[*� J.   
 

By using (3), we obtain 
 

01) � 4 f� 1�)I� 2�)  1J
3 � 2 Z � 1�[I� 2�[  1J

3
)!	
[*�

c � 1�)![!�I� 2�)![! �  1J
3 g 
 

                    � 4 h�!��EI�!	�E!�J
�  	�!��E ∑ I�!	�j!�JEkljmn ��!	�Ekjk n!��

H i 
                    �  F�!��E

� h1  � 2�) � 	
� I∑ 1)!	[*�  ∑ � 2�)![! �)!	[*�  

                           ∑ � 2�[)!	[*� � ∑ � 2�)!�)!	[*� �i 
 

                     �  F�!��E
� h1  � 2�) � 	

� =�  2 � 	
� I1  �2�)!	J � 	

� �1  
                           �2�)!	� � ��  2�� 2�)!�@i 
                     �  F�!��E

� =	
� =�  2 � F

� �1  � 2�)!	� � � 2�)!���  2�@ �
                           1  � 2�)@ 
                     �  F�!��E

	& I�3� � 5��1  � 2�)� � 3�J.      K 

 

Theorem 3.6.   Suppose that the average hamming weight of �-NAF of all 

length-� elements of  .��� is denoted as opq01), then we have 

 

                                opq01) � 1
3 h3� � 5

3 � �
1  � 2�)i.                              �5�  
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Proof.  

                            opq01) � rsE
FtE  

                                              � !u�kn�E
lv I��)$d���!�!	�E�$�)J

F�kn�E��kl�Ekn�
w

 

 
                                            � �

� =�)$d
� � )

�!�!	�E@.   K 
 

Theorem 3.7.   Suppose that the average density of nonzero coefficient /(  
for every length � denoted as opqxW�VT�
), then we have 

 

                     opqxW�VT�
) � 1
3 h1 � 5

3� � 1
1  � 2�)i.                                 �6� 

 

Proof. 

                                    opqxW�VT�
) � yz{rsE
)   

 

By using equation (5), we get 
                                                                                                           

opqxW�VT�
) �  13 h3� � 53 � �1  � 2�)i
�  

                                                   � �
� =1 � d

�) � �
�!�!	�E@ .     K   

 

Example 3.8.  The average hamming weight and density occurring among � -NAF of an integer of element in .���  with length, � � 83  are 

28.22222222 A 29 and  0.340026774 A �
� respectively. 

 

Example 3.9. The average hamming weight and the average density 

occurring among � -NAF of an integer of element in .���  with length, 

� � 163 are 54.88888889 A 55 and 0.33674165 A �
� respectively. 

 

This means that we have proved that the sequence of average 

density among �-NAF's of length � is similar with NAF's.  This is because 
our formula (6) is equal to Proposition 3.6 (see page 16 Ratsimihah and  

Prodinger (2005)) with their analysis on NAF's.  Also surprisingly that 

fomula (6) is not equal to formula (1). We showed that formula (6) is more 

accurate compared to formula (1) that have been applied by previous 
researchers.  
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This study is particular about the accuracy of formula of average 

density and improving the proof made by Solinas (2000). It was built not 

for the purpose to speed up communication or denying the formula (1) 

which is suitable for � \ 2 but the formula (6) is more accurate option in 
order to calculate the number of elliptic operations. The main purpose of 

our research is to prove that average density among �-NAF's of length � is 

asymptotically 
�
� as �  increases will be easily accessible by the following  

Theorem.  

 

Theorem 3.10.   lim��� opqxW�VT�
) � �
�. 

 

Proof.   By using equation (6), 
 

                      lim)�� opqxW�VT�
) � �
� lim)�� �

� =1 � d
�) � �

�!�!	�E@ 
                                                          � �

�.                                        K 

 

 

4. CONCLUSION 

As we know the advantage of  �-adic method is it can eliminate the 

elliptic doublings in scalar multiplication method, and double the number of 

elliptic additions. This is a scalar expression that is equivalent to �-NAF 
developed by some researchers for example Solinas (2000) and Joye and 

Tymen (2001).   Since the hamming weight of a scalar representation is the 

product of its length and its density, our alternative formula (6) will help us 

to estimate the hamming weight of scalar based on � -NAF's method. 
Therefore we can observe the effectiveness of that method in scalar 

multiplication compared to the ordinary �-NAF.  
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