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ABSTRACT

Identifying the pathways that control a cellular phenotype is the first step to building
a mechanistic model. Recent examples in developmental biology, cancer genomics,
and neurological disease have demonstrated how changes in the variability of gene
expression can highlight important genes that are under different degrees of regulatory
control. Simple statistical tests exist to identify differentially-variable genes; however,
methods for investigating how changes in gene expression variability in the context of
pathways and gene sets are under-explored. Here we present pathVar, a new method
that provides functional interpretation of gene expression variability changes at the
level of pathways and gene sets. pathVar is based on a multinomial exact test, or
an asymptotic Chi-squared test as a more computationally-efficient alternative. The
method can be used for gene expression studies from any technology platform in all
biological settings either with a single phenotypic group, or two-group comparisons. To
demonstrate its utility, we applied the method to a diverse set of diseases, species and
samples. Results from pathVar are benchmarked against analyses based on average
expression and two methods of GSEA, and demonstrate that analyses using both
statistics are useful for understanding transcriptional regulation. We also provide
recommendations for the choice of variability statistic that have been informed through
analyses on simulations and real data. Based on the datasets selected, we show how
pathVar can be used to gain insight into expression variability of single cell versus bulk
samples, different stem cell populations, and cancer versus normal tissue comparisons.
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INTRODUCTION

Global studies of gene expression provide two quantitative parameters: a commonly-used
metric is the relative abundance of a transcript (and group differences in transcript
abundance), likewise the expression variability of that transcript provides insight into the
heterogeneity of a sample group (Mason et al., 2014), and expression variability changes
between groups have been shown to reflect underlying changes in transcriptional regulatory
processes (Blake et al., 2003; Chalancon et al., 2012; Munsky, Neuert ¢ Van Oudenaarden,
20125 Raser & O’Shea, 2004). Patterns of variability in gene expression have provided insight
into how pathways are regulated in cells (Burga, Casanueva ¢ Lehner, 2011; Raj et al., 2010);
especially in the context of single cell profiling studies, where the average expression of
a gene in a cell population carries limited information for understanding transcriptional
regulation. Recent studies have identified pathways showing differential control or
regulatory constraint that were discovered only by modeling changes in gene expression
variability and were not apparent from standard analyses of average gene expression (Yu
et al., 2008). While variability is becoming more prevalent as an informative metric, the
current challenge lies in how to interpret these analyses to maximize functional information,
such as with respect to pathways and curated gene sets. Due to the newness of this area,
statistical methods for investigating expression variability are currently under-developed,
and lacking for pathway-centric approaches. It is necessary, therefore, to develop such
methods since information on expression variability can be used to complement analyses
of average expression, and improve our understanding of the transcriptional state of the cell.

Intuitively, the distribution of gene expression variability in a pathway highlights the
subset of genes with different degrees of regulatory control (Fig. 1). In the case of a
one-group design, where multiple profiles represent replicates of the same phenotype, e.g.,
different embryonic stem cell (ESC) lines, identifying pathways that have an unexpected
proportion of low variability genes may point to those that contribute integral roles for stem
maintenance or regulation (Mason et al., 2014). To appreciate this, consider two previous
studies that provided evidence linking criticality of genes and their decreased variability in
expression. One study (Yu et al., 2008) identified genes with decreased expression variability
in tumors relative to normal tissue; this gene set, termed the Posed Gene Cassette, included
key genes whose expression impacted metastasis and patient survival as demonstrated
through in vivo and in vitro experimental approaches. More recently, a second study
(Hasegawa et al., 2015) showed that genes with decreased variability in expression for
four stages of early embryonic development (4-cell, 8-cell, morula and blastocyst) were
more likely to be associated with essentiality, haploinsufficiency or ubiquitous expression,
suggesting that these stably-expressed genes contribute to cell survival.

In the two-group design, where profiles are compared between two contrasting
phenotypes, e.g., ESCs versus induced pluripotent stem cells (iPSCs), identifying pathways
associated with different patterns of expression variability may highlight those pathways
that contribute to group-specific differences. Previous studies have analyzed the enrichment
of genes with different levels of expression variability for specific pathways (Hasegawa et
al., 2015; Mar et al., 2011); however, these analyses are based on gene lists defined by an
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Figure 1 The distribution of gene expression variability highlights the regulatory control that differ-
ent genes in the pathway are subjected to. (A) Absolute gene expression is a proxy for how genes are tran-
scriptionally regulated between samples. Studying the consistency of how genes are expressed can also add
information on pathway control e.g., lower levels of inter-individual variability may reflect increased reg-
ulatory control. (B) By considering the distribution of gene expression variability, we may be able to un-
derstand transcriptional regulation in a more comprehensive manner—this is the premise of the pathVar

method.
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arbitrary cut-off and do not take into account the expression distribution of genes in the
pathway. One would expect that more informative results could be obtained by focusing
on the shape of the expression distribution in a statistically rigorous manner, much like a
gene set enrichment analysis (GSEA) (Mootha et al., 2003) analogue for variability instead
of relying only on average expression, or over-representation (OR) analyses (Falcon ¢»
Gentleman, 2007). Computational methods to implement these kinds of approaches are
currently lacking for expression variability.

Our method, pathVar, addresses this gap by providing a pathway-based analysis of
gene expression variability where pathways are assessed based on deviations of their gene
expression variability distribution relative to a reference. In the one-group setting, the
reference can be the global distribution constructed from all genes. In a two-group setting,
one of the groups serves as the reference or control group. For each pathway, our method
also identifies which genes in a pathway show aberrant levels of gene expression variability
(Fig. 1). Additionally, we provide guidance on selecting an appropriate variability statistic
based on analyses of simulated and real data. We also highlight how pathVar can be used
to further understand transcriptional regulation based on gene expression variability for
selected group comparisons, e.g., single cell versus bulk data, different stem cell lines, and
cancer versus normal tissue.

METHODS

The pathVar method can be summarized in three main steps (Fig. 2).

Step 1: selecting a statistical measure to estimate gene expression
variability
Variability is defined as the amount of dispersion in a given distribution (Larsen ¢» Marx,
2017). Different statistical measures are available to estimate gene expression variability,
and in genomics, the estimators that are most often employed are the standard deviation
(SD) (Eq. (1)) (Hasegawa et al., 2015), the coefficient of variation (CV) (Eq. (2)) (Mar et al.,
2011; Mason et al., 2014), and the median absolute deviation (MAD (Eq. (3)) (Wijetunga et
al., 2014). Conceptually, these statistics share similarities in their mathematical definition,
and each one comes with their own advantages, as is often the case with any estimator that
is applied to data.

Let x1,...,x, denote a univariate dataset, then

SD= nilizzl(xi—?cﬂ (1)

cv=" 2)
X

MAD = median(|x; — median(x)|). (3)

A consensus on which estimator should be adopted for variability analysis remains unclear,
and this is partly because performance of the estimators appears to be data-specific. The
SD is often the preferred estimator for measuring gene expression variability since it is on
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Figure 2 Overview of pathVar, including the main functions in the R package.

the same scale as the average and therefore easy to interpret. The variance (i.e., SD?) is also
characterized by the second central moment of a distribution, and hence the SD is directly
linked to one of the fundamental metrics characterizing the probability distribution. A
criticism of the SD, however, is that it may be dependent on average expression and
therefore it is necessary to investigate the association between these two measures. To
address this concern, the CV, which represents the ratio of the SD and the average, is
often used; however it also has its own drawbacks. Most significantly, it can be affected by
zero-inflation which occurs when near zero levels of average expression result in extremely
large values of CV that do not necessarily reflect a large degree of overall variability. The
MAD is a robust measurement of dispersion that behaves well in the presence of outlier
data points. It has previously been used to study DNA methylation variability (Wijetunga
etal., 2014).

Data simulations suggest that in general, the SD shows stronger performance as the
variability estimator compared to MAD and CV in the pathVar method (see Text S1). The
simulations were conducted to test the performance of each estimator under a wide variety
of conditions. The choice of an estimator can also be motivated by the expectation that
an ideal estimator of gene expression variability will be uncorrelated with average gene
expression. If the variability estimator is highly correlated with the average expression, then
trends observed for expression variability may simply be recapitulated by those observed
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for average expression. We therefore desire an estimator of variability that is the least
correlated with average gene expression for an analysis of gene expression variability to
be maximally informative. Our suggestion is to use the SD since overall this estimator
displayed stronger performance in simulations or the estimator with the lowest correlation
with average expression; however, ultimately, the final choice of the estimator is left to the
user and can be easily specified in the software.

Step 2: identifying genes that belong to categories of high, medium
or low levels of expression variability

Using a specified estimator, all genes are assigned to a discrete level of expression variability.
In the one-group case, assignments are based on clustering the data using Normal mixture
models via the mclust algorithm (Fraley ¢ Raftery, 2002). The number of clusters or
mixtures corresponds to the discrete levels of variability and is a parameter inferred by
mclust. The mclust algorithm considers a finite range of values (starting with a minimum
of one level to a maximum of four by default) and chooses the number that is most
appropriate for the data using the Bayesian Information Criterion. The upper limit of four
levels is recommended out of simplicity, where it is more useful to model a handful of
variability levels, e.g., low, medium, high and very high, whereas for much larger numbers,
the interpretation ceases to be as intuitive. In the pathVar package, the user is, however,
free to use whatever upper limit is appropriate for the analysis.

For the two-group case, assignments are based instead on the 33rd and 66th percentiles
that are computed from the combined gene expression variability distribution of all genes
from both groups in the dataset. Low variability genes are defined as those with values falling
between 0 and the 33rd percentile, medium variability genes are those between the 33rd
percentile and the 66th percentile, and high variability genes being greater than the 66th
percentile. The variability levels are defined by a fixed number of standardized percentiles,
instead of inferred as in the one-group case, because it is possible that a different number
of variability levels might be inferred for the two groups. To ensure a straightforward and
balanced comparison between the two groups, the number of discrete categories are fixed
and the boundaries for variability levels are based on percentiles calculated from all the
data. Under both the one-group and two-group cases, the outcome of Step 2 is to identify
the fixed boundaries that define each of the discrete levels of expression variability.

Step 3: testing pathways for aberrant gene expression variability
signatures

The pathVar method decomposes each pathway into a set of counts corresponding to
the number of genes in each discrete level of expression variability. By default, pathways
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa ¢» Goto, 2000)
and REACTOME (Croft et al., 2014) are used; however, users may also import their own
definitions. For a specific pathway, let O; denote the observed count of genes annotated to
this pathway with expression variability in the ith level, where i =1,..., m discrete levels.
The total number of genes n is defined as n =7 ;" , O;. A statistical test is used to evaluate
whether the set of counts (O, ..., O,,) associated with a pathway deviates significantly from
either a reference count distribution in the one-group case, or between the two phenotypes
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in the two-group case. In the one-group case, the reference distribution is obtained by
counting the total number of genes in each level of gene expression variability (Fig. S1).
The null hypothesis that pathVar evaluates is:

e Hy()): the expression variability counts observed for a specific pathway were generated
under the same distribution as the reference counts for the one-group case.

e Hy(y): the variability-based counts for both groups were drawn from the same underlying
distribution, for the two-group case.

To assess the deviation observed between the variability count distribution and an
expected distribution for a specific pathway, we provide two statistical tests as options
available for this analysis. Option 1 is the multinomial exact test, and Option 2 is the
Chi-squared test.

For Option 1, the exact test models the counts as a multinomial random variable
(Oy4,...,0,,) ~ Multi(n, p) where p= (p1,...,pm) and p; is the probability that a gene
belongs to the ith variability level for i =1,...,m in the reference distribution. Under
the exact test, the P-value is obtained by summing over all possible events that are less
likely than the set of counts observed. If the P-value falls below a specified significance
threshold (e.g., P-value < 0.05), sufficient evidence exists to reject the null hypothesis and
we conclude that the pathway has an aberrant distribution of expression variability counts.
In the one-group case, this means that the variability count distribution of the specific
pathway deviates from the reference distribution i.e., all genes surveyed. In the two-group
case, this result means that the variability is not identically distributed between the two
contrasting phenotypes.

While the exact test is attractive because it calculates the P-value exactly, from a practical
perspective, these kinds of tests can often be time and memory-intensive for genomic data,
especially as the number of levels m and the number of genes in the pathway n grows. For
example, consider a pathway with 30 genes, where the number of possible sets of counts
to consider with three variability levels for the calculation of the P-value is 496. If the
size of the pathway increases to 100, then the number of possibilities to consider grows to
5,151. From this basic example, it can be seen how increasing # or m can lead to some very
extensive calculations.

Option 2 overcomes this limitation, as it is less computationally intensive, and tests
the same null hypotheses using the Chi-squared test as an alternative to the exact test.
The test statistic X* =) 1", % follows a Chi-squared distribution X*> ~ x2 | with
m— 1 degrees of freedom: X*> ~ x2 . The expected counts E; = nxp; are the expected
number of genes in each level of expression variability within a specific pathway. The
Chi-squared test achieves its computational efficiency because it is based on an asymptotic
approximation, where the test becomes more accurate as #, the total number of genes in a
pathway increases.

Both the exact test and the Chi-squared test assess whether a pathway has a significant
change in gene expression variability. The resulting P-values from all pathways tested
are adjusted using the Benjamini—-Hochberg method which is based on controlling the
false discovery rate (Hochberg ¢ Benjamini, 1990). Finally, a pathway of interest can be
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investigated further using a Binomial test to assess within each level of variability, whether
a significant deviation exists between either the pathway and the reference in the one-group
case, or between the two phenotypic groups. This pairwise difference for each independent
level provides a means to pinpoint the subset of genes within a pathway showing deviation
in expression variability.

Power calculations indicate that pathVar has greater power to detect
changes for pathways with skewed expression variability distributions
than symmetric ones

Simulations were designed to investigate how experimental parameters influence the power
of pathVar (Text S1). The results demonstrate that for a fixed effect size, the power of the
Chi-squared test increases when the number of genes in a pathway also increases. Similarly,
for a pathway of fixed size, the power of the test is higher for a larger effect size (Text S1,
Fig. S1.5). The simulations also showed that the Chi-squared test had more power to detect
differences between the reference distribution and a pathway that has a skewed variability
distribution compared to a symmetric one. As an example, consider pathway p; where an
effect size of 0.24 results in 80% power for approximately 150 genes in the pathway. For
the symmetric distribution in pathway p,, in order to obtain the same level of power, a
pathway size of at least 200 genes is required (Text S1, Fig. S1.6).

The influence of sample size was also investigated on the power of the Chi-squared
test for fixed pathway sizes (Text S1, Fig. S1.7). Higher levels of power were obtained for
larger effect sizes, and this trend was more pronounced with smaller numbers of genes. As
expected, the asymptote to 100% power occurred with smaller numbers of samples when
the effect size was larger (0.5 or 0.9 versus 0.1). Overall, these calculations support the
recommendation that experimental designs with larger samples will yield higher powered
analyses, especially when the effect size is large.

RESULTS

Application of pathVar to human embryonic stem cell datasets
identify significant pathways with distinct profiles of gene expression
variability

To demonstrate the utility of pathVar in practice, the method was applied to three gene
expression datasets of human ESCs (Text S2). The Bock dataset (Bock et al., 2011) had
twenty ESC samples that were generated using microarray profiling, and the Yan dataset
(Yan et al., 2013) had hESC samples profiled using single cell RNA-sequencing (RNA-
seq) for eight cells at passage 0 (p0), and 26 cells at passage 10 (p10). pathVar was run
independently on the three datasets, and pathways with a statistically significant deviation
in their gene expression variability profile relative to the reference distribution were
detected (Table S1, P-value < 0.01). Significant KEGG pathways reflected aberrant gene
expression counts in ribosomes, metabolism (oxidative phosphorylation), the spliceosome
and neurodegenerative pathways (Alzheimer, Parkinson and Huntington) (Tables S2A—
54A). Significant REACTOME pathways fell into three main classes representing cell cycle,
metabolism and infectious disease (Tables S2B—54B). Considerable overlap was observed
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Figure 3 Example of four significant KEGG pathways for one-group pathVar analysis of the Bock embryonic stem cell data. (A) Variability
count distribution for the reference. (B) Splicesome pathway (hsa03040), (C) oxidative phosphorylation (hsa00190), (D) ECM-receptor interaction
(hsa04512). The red stars indicate a significant difference between the pathway and reference distribution for a specific level of expression variability.

in the significant results obtained between the three datasets (Fig. 52), where cell cycle was
the most highly represented REACTOME category. Similar percentage distributions were
observed (Fig. S2), demonstrating consistency in the results obtained from pathVar despite
differences in technology platforms, ESC lines and passage number.

We next inspect the variability count distributions for individual pathways of interest.
As an example, consider the Bock dataset, where the significant KEGG pathways for
spliceosome, oxidative phosphorylation and ECM-receptor interaction each cover different
aspects of hESC regulation. For both the spliceosome and oxidative phosphorylation
pathways, greater transcriptional stability was manifested through a significantly higher
number of low variability genes, in addition to significantly fewer medium variability genes
compared to the reference distribution (Figs. 3A—3C). A significant reduction in genes with
high variability in the ESCs was also observed for the oxidative phosphorylation pathway
compared to the reference (Fig. 3C). The opposite trend was observed for genes in the
ECM-receptor interaction where there was a significant increase in genes with medium,
high and very high levels of expression variability (Fig. 3D). This pathway also had a
concurrent reduction in low variability genes compared to the reference distribution.

Highlighting differences between ESC and iPSC usage of global gene
expression programs using pathVar

Human iPSCs were also profiled by Bock using microarrays, and we use this data to
investigate how ESCs and iPSCs differ with respect to expression variability. pathVar
identified five KEGG and thirty REACTOME statistically significant pathways between
the ESCs and iPSCs (Table S5, P-value < 0.01). The significant KEGG pathways reflected
aberrant gene expression activity in ribosome, oxidative phosphorylation, DNA replication
and disease processes (Huntington’s disease and Parkinson’s disease, Table S6). The
significant REACTOME terms were associated with cell cycle, splicing, and metabolic
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Figure 4 Example of two significant KEGG pathways when comparing human embryonic stem cells (ESC) and induced pluripotent stem cell
(iPSC) data using the two-group pathVar analysis. (A) Oxidative phosphorylation (hsa00190), (B) DNA replication (hsa03030). In both path-
ways, a higher number of genes with lower variability are present in ESCs versus iPSCs. The red stars indicate a significant difference between the
two groups for a specific level of expression variability.

processes as well as DNA replication and repair, namely homologous recombination
pathways (Table S6).

We then compared the variability count distributions in ESCs versus iPSCs for two
significant KEGG pathways, oxidative phosphorylation and DNA replication (Fig. 4). Both
pathways showed increased gene expression stability in ESCs compared to iPSCs. For the
oxidative phosphorylation pathway, a significantly higher number of low variability genes
were in ESCs versus iPSCs. The same trend was observed for the DNA replication pathway
where there was a significant reduction in the number of highly variable genes in ESCs

compared to iPSCs.

Benchmarking pathVar results using gene expression variability
versus average expression and two different GSEA approaches
pathVar results were benchmarked against those obtained using an average expression
statistic to investigate the utility of expression variability analyses. Under this average-
based setting, genes were first classified into discrete levels using average expression,
corresponding to low, medium, and high levels of absolute expression. This average-based
implementation allows for direct comparison with the results that are obtained when
studying gene expression variability by substituting the sample mean directly in place of
the variability statistic. In this way, we aim to distinguish the pathways that are identified
as having changes in expression variability that are not detected by changes in average
expression. Four statistically significant pathways (P-value < 0.01, Table 57) were identified
as having differences in average expression between iPSCs and ESCs (three REACTOME
terms: Heme biosynthesis, Sphingolipid metabolism, Metabolism of porphyrins; and one
KEGG pathway African trypanosomiasis). These results do not seem very informative or
relevant to stem cell regulation. This could be due to the over-simplified nature in which the
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average-based comparison was performed and suggested that this benchmarking approach
could be improved.

We next evaluated the performance of pathVar against two versions of GSEA. The first
method was based on generating P-values from limma (Ritchie et al., 2015) to determine
differential expression between the two groups being compared. The P-values for genes
belonging to the same pathway were then used as input to a Kolmogorov—Smirnov (KS)
test which assessed whether the distribution of this set of P-values was identical between
the two groups. Since the KS test is affected by tied values, we used the bootstrap version
of the KS test (R function ks.boot). This version of GSEA is similar to the implementation
of (Mootha et al. (2003 ). The second GSEA method is a stand-alone tool by Oron, Jiang ¢
Gentleman (2008) which uses a linear model to assess the differential usage of a pathway or
gene set and calculates permutation-based P-values to determine the significance of each
pathway. The resulting set of P-values for all pathways was adjusted for multiple testing
using the Benjamini—-Hochberg method (Benjamini & Hochberg, 1995).

In general, the two GSEA approaches detected significant pathways that had a moderate
to high degree of overlap with the significant pathways that were identified by pathVar for
all three of the cancer-based comparisons, and the mouse hippocampus versus striatum
comparison. This suggests that there are significant pathways common to both GSEA and
pathVar, but the latter also identifies distinct pathways since the highest overlap for all
six comparisons for GSEAIm was 61.1% (KEGG), 96.2% (REACTOME), and for GSEA
using limma P-values was 22.2% (KEGG), 33.3% (REACTOME). There are a considerable
number of pathways identified uniquely by pathVar, suggesting that there is value in using
multiple approaches to determine differential pathway usage or expression.

Regulatory insights from other datasets confirm utility of looking at
pathways with changes in both gene expression variability and
average gene expression using pathVar and GSEA

Examples using stem cells illustrate how pathVar works in practice; however, the method
can be applied to virtually any gene expression dataset. To highlight the generalizability of
pathVar, we selected ten other datasets that cover a variety of biological and experimental
variables. Collectively, these ten datasets were generated from multiple technology
platforms that featured samples from human, mouse and parasite which represent a
range of different disease phenotypes (see Text S3).

Three cancer RNA-seq datasets from the Cancer Genome Atlas (TCGA) were
selected; these were the ovarian serous cystadenocarcinoma (OVC) (Cancer Genome
Atlas Research, 2011), acute myeloid leukemia (AML) (Cancer Genome Atlas Research,
2013), and glioblastoma multiforme (GBM) (Brennan et al., 2013) cohorts. An infectious
disease was included where transcriptomes from patients infected with cerebral malaria
were profiled using microarrays (Daily et al., 2007), as well as the Plasmodium falciparum
parasites that the patients were infected with (Feintuch et al., 2016). A genetic disorder
was featured where patient-derived iPSCs were collected from Down syndrome (DS)
donors and profiled using microarrays, with a set of matched controls from healthy
subjects (Briggs et al., 2013). A microarray dataset from a normal human population via
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the Geuvadis study (1000 Genomes Project) was used (Genomes Project et al., 2010), as well
as two mouse datasets that profiled tissues from two different regions of the brain, the
hippocampus and the striatum using microarrays (Park et al., 2011). pathVar identified
statistically significant pathways from KEGG and REACTOME pathway terms for the ten
different one-group analyses (Table S8), and five independent two-group comparisons
(Table S9) of all ten datasets.

The results from the different analyses were used to investigate the uniqueness of analyses
based on GSEA versus gene expression variability. The number of significant pathways
that had changes in both mean and variability via GSEA and pathVar respectively showed
that for all cases, the amount of overlap in significant pathways differed depending on the
datasets that were used. This suggests that average and variability-based statistics reflect
different ways in which cells may use their transcription programs depending on the
biological context (Tables S8 and 59). It is interesting to note that for the KEGG pathways,
pathVar results for the DS versus WT iPSC comparison, and the mouse hippocampus versus
striatum comparison both had zero overlap between average-based and variability-based
significant pathways (Table S9A). In fact, both comparisons also yielded no significant
pathways with a difference in average, whereas pathways were found to have a difference
in gene expression variability. These two comparisons are extreme examples where the
analyses of gene expression variability identify changes in the transcriptional program,
whereas average-based analyses do not yield significant results.

Overall, it was apparent that the transcriptional features responsible for distinguishing
one phenotype from another are exerted through changes in average expression or
variability in expression for key pathways. To further investigate the relevance of these
different modes, we focused only on the ten most significant pathways from the pathVar
results obtained for the three cancer versus normal comparisons (Tables S10 and S11).
For all three cancers, the KEGG DNA replication pathway and REACTOME “DNA strand
elongation term” had significant changes in both average and variability of expression.
Other terms with changes in both average and variability were related to DNA damage
response pathways, such as “base excision repair” (Table S10) for AML versus normal, and
“non-homologous end-joining” for OVC versus normal (Table S11).

Five KEGG pathways had changes in variability only, that were consistent in all three
cancer comparisons; these were the pathways involved in Epstein-Bar virus infection,
cell cycle, Fanconi anemia, lysosome and apoptosis (Table S10). The Epstein-Bar virus
is associated with certain kinds of cancer like lymphoma or carcinoma. Apoptosis is also
an important pathway for tumors because its inactivation is central in the development
of cancer. Similarly, for the REACTOME terms, those unique to changes in variability
were related to DNA repair and replication (SLBP dependent processing of replication-
dependent histone pre-mRNAs) for the AML and GBM comparisons. For OVC, several
terms were related to the cell cycle, e.g., G1 phase, cyclin D associated events in G1, cyclin
A/B1 associated events during G2/M transition (Table S11C).
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DISCUSSION

With pathway-centric approaches like GSEA and OR now such ubiquitous features of
transcriptomic analyses, pathVar represents a natural adjunct to this kind of analysis.
Our results from analyses of ESCs and other datasets have demonstrated that it is not
uncommon for phenotypes to be regulated by pathways that have altered levels in both
average expression and expression variability, as well as pathways unique to either statistic.
Therefore, to derive more accurate insights into transcriptional control, our results
suggest that pathway-based analyses should include the detection of changes in both
population statistics. pathVar may also be used to investigate the regulatory control
associated with common targets of transcription factors (Lachmann et al., 2010; Matys
et al., 2006), mictoRNA (Chou et al., 2016; Wong & Wang, 2015), or IncRNAs (Jiang et
al., 2015; Quek et al., 2015), genes with common variants identified from genome-wide
association studies (Welter et al., 2014), or other regulatory features (Guo et al., 2016) that
may benefit from further study of gene expression variability patterns.

In the analysis of ESCs versus iPSCs, pathVar identified very few significant pathways
relative to the other two-group comparisons conducted (Table S9). This result likely reflects
the high degree of similarity that exists between iPSC and ESC transcriptional programs.
While the two cell populations have identical developmental capabilities, in some instances,
iPSCs retain a limited memory of the gene expression program of the cell of origin. Some
of the significant pathways identified by pathVar may point to different usage of metabolic
processes or the cell cycle by iPSCs and ESCs. Overall, we see more variability in the
iPSCs than the ESCs and the increased heterogeneity for these pathways could reflect
underlying differences due to donor variability, or experimental factors associated with
their generation.

Of the six two-group comparisons performed, it is interesting to note that the ESC
and iPSC comparison also had the least number of significant pathways (Table S9) and
this may have been due to the fact that all other comparisons were between a disease and
normal group, or in the case of the mouse data, between two distinct regions of the brain
(Text S3). This result suggests that the degree of perturbation to a transcriptome in the
presence of a tumor, or extra chromosome, or even a different anatomical region of the
same organ, is greater globally, than how iPSCs differ from ESCs.

The observation that pathways were significant for changes in both average expression
and gene expression variability, as well as those identified by GSEA, reflects the different
modes in which cells are using pathways to regulate transcriptional signals. For the cancer-
based comparisons, common themes were observed across cancer types where pathways
involved in DNA replication and DNA damage response had significant changes in average
and variability (AML versus 1000 Genomes, OVC versus 1000 Genomes, Tables S10 and
S11). The reliance of DNA replication pathways may be to facilitate the proliferative nature
of tumor cells, while the pathways that control DNA damage response are important for
tumor cells to remain viable in the presence of increased rates of mutation. This result
suggests that a critical factor to understanding how cancer subverts cellular pathways to
promote growth and evade apoptosis more accurately may lie in focusing on how gene
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expression is being regulated based on average expression and expression variability from
cell to cell, or from patient to patient.

For the different datasets that were analyzed, the degree of dependency observed between
the variability statistic and the average expression varied. This was one criterion that we
suggest be used to select the variability statistic in pathVar where a measure with the least
dependence with average expression is preferred. Nevertheless, some kind of dependency is
bound to occur, and this is likely to affect the overlap in the number of significant pathways
detected by pathVar and also other approaches, such as GSEA. To investigate this effect
further, we looked at the Pearson correlation coefficients between average expression and
expression variability and the number of significant pathways identified between pathVar,
and both GSEA implementations (Table 512). Although only six two-group comparisons
were available to investigate this effect, we saw that four comparisons where the overall
data had positive correlations between average and variability had higher numbers of
overlapping pathways than the two comparisons with overall data that had negative
correlations. More datasets are needed to confirm this observation though, as two of the
positive correlations were also small.

Single cell heterogeneity, or inter-cellular variation is a common reality of all cell
populations since even isogenic cells have some degree of stochastic gene expression.
Across the transcriptome, gene expression variability is not distributed uniformly, and its
functional contribution of transcriptional regulation at the single cell-level remains largely
unknown. Genes with decreased variability may be useful as potential markers since they
have a higher degree of generalizability, where it is easier to predict the expression state
for such a gene in any cell in the population. Although the pathVar method is applicable
for both single cell and bulk cell datasets, the interpretation of gene expression variability
in the context of single cells would provide even more precise insights into how cells are
controlled by the transcriptional regulation of certain pathways.

Our analyses on ESCs allowed the opportunity to investigate how expression variability
differed between bulk and single cell populations (Text 54). The overall distributions
of expression variability indicated that the transcriptome in the bulk ESC data was
characterized by lower levels of expression variability compared to both sets of single
cells where more genes had medium to higher expression variability. The dependency
between variability and average expression appeared to be stronger in the single cell
data, while for bulk data, the two variables were almost independently-distributed. It is
worthwhile to highlight that the bulk data was profiled using a microarray platform, and
the single cell data was from RNA-sequencing so the effect of technology could also be
contributing to these observed differences. Nonetheless, these comparisons underscore the
importance of investigating the biological significance of variability at single cell resolution.

CONCLUSION

The pathVar method identifies pathways with aberrant distributions in gene expression
variability relative to either a reference distribution, or a contrasting control group. The
method is based on an intuitive framework where either a multinomial exact test or
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Chi-squared test is employed to assess the differences in variability distributions for each
pathway using definitions from any standard or custom annotation system. A Binomial
test is then used to identify genes within a specific pathway that show differences in
gene expression variability. Comparisons benchmarking results from pathVar applied
to a variety of gene expression datasets against those obtained using GSEA identified
significant pathways showing changes either in average expression, expression variability
or both. These results indicate that both population statistics are useful for interpreting
significant alterations of pathways and gene sets that underlie transcriptional regulation.
The implications of these results suggest that future studies may benefit from analyses of
gene expression variability to complement standard analyses of average expression.

ACKNOWLEDGEMENTS

We thank Drs. Barbra Birshtein, Maureen Charron, and Deepa Rastogi for valuable
feedback. We also thank Raymund Bueno for testing the method.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

SZ and JCM were supported by the New York State Department of Health (NYSTEM
Program) shared facility grant (C029154). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
New York State Department of Health (NYSTEM Program): C029154.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Laurence de Torrente and Jessica C. Mar conceived and designed the experiments,
performed the experiments, analyzed the data, wrote the paper, prepared figures and/or
tables, reviewed drafts of the paper.

e Samuel Zimmerman performed the experiments, analyzed the data, prepared figures
and/or tables, reviewed drafts of the paper.

e Deanne Taylor and Christine A. Wells reviewed drafts of the paper, provided feedback
that improved the method during its development.

e Yu Hasegawa analyzed the data, prepared figures and/or tables.

Data Availability

The following information was supplied regarding data availability:
All raw data and code is available at GitHub:
https://github.com/jessicamar/pathVar
The software is publicly available as an open source package from Bioconductor:
https://bioconductor.org/packages/release/bioc/html/pathVar.html

de Torrente et al. (2017), PeerJ, DOI 10.7717/peerj.3334 15/19


https://peerj.com
https://github.com/jessicamar/pathVar
https://bioconductor.org/packages/release/bioc/html/pathVar.html
http://dx.doi.org/10.7717/peerj.3334

Peer

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.3334#supplemental-information.

REFERENCES

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society Series
B (Methodological) 57:289-300.

Blake W], Kaern M, Cantor CR, Collins JJ. 2003. Noise in eukaryotic gene expression.
Nature 422:633-637 DOI 10.1038/nature01546.

Bock G, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, Ziller M, Croft GF,
Amoroso MW, Oakley DH, Gnirke A, Eggan K, Meissner A. 2011. Reference Maps
of human ES and iPS$ cell variation enable high-throughput characterization of
pluripotent cell lines. Cell 144:439-452 DOI 10.1016/j.cell.2010.12.032.

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng
S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Gen-
ovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G,
Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG,
Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews
DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny
R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E,
Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW,
Haussler D, Getz G, Chin L, Network TR. 2013. The somatic genomic landscape of
glioblastoma. Cell 155:462—-477 DOI 10.1016/j.cell.2013.09.034.

Briggs JA, Sun J, Shepherd J, Ovchinnikov DA, Chung TL, Nayler SP, Kao LP, Morrow
CA, Thakar NY, Soo SY, Peura T, Grimmond S, Wolvetang EJ. 2013. Integration-
free induced pluripotent stem cells model genetic and neural developmental features
of down syndrome etiology. Stem Cells 31:467—-478 DOI 10.1002/stem.1297.

Burga A, Casanueva MO, Lehner B. 2011. Predicting mutation outcome from
early stochastic variation in genetic interaction partners. Nature 480:250-253
DOI 10.1038/naturel0665.

Cancer Genome Atlas Research N. 2011. Integrated genomic analyses of ovarian
carcinoma. Nature 474:609-615 DOI 10.1038/naturel0166.

Cancer Genome Atlas Research N. 2013. Genomic and epigenomic landscapes of adult
de novo acute myeloid leukemia. New England Journal of Medicine 368:2059-2074
DOI 10.1056/NEJMoal301689.

Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, Aravind L, Jothi R, Babu MM.
2012. Interplay between gene expression noise and regulatory network architecture.
Trends in Genetics 28:221-232 DOI 10.1016/j.tig.2012.01.006.

Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC,

Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT,
Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu

de Torrente et al. (2017), PeerJ, DOI 10.7717/peer|.3334 16/19


https://peerj.com
http://dx.doi.org/10.7717/peerj.3334#supplemental-information
http://dx.doi.org/10.7717/peerj.3334#supplemental-information
http://dx.doi.org/10.1038/nature01546
http://dx.doi.org/10.1016/j.cell.2010.12.032
http://dx.doi.org/10.1016/j.cell.2013.09.034
http://dx.doi.org/10.1002/stem.1297
http://dx.doi.org/10.1038/nature10665
http://dx.doi.org/10.1038/nature10166
http://dx.doi.org/10.1056/NEJMoa1301689
http://dx.doi.org/10.1016/j.tig.2012.01.006
http://dx.doi.org/10.7717/peerj.3334

Peer

WL, Huang HD. 2016. miRTarBase 2016: updates to the experimentally validated
miRNA-target interactions database. Nucleic Acids Research 44:D239-D247
DOI 10.1093/nar/gkv1258.

Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P,
Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S,
Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L,
D’Eustachio P. 2014. The Reactome pathway knowledgebase. Nucleic Acids Research
42:D472-D477 DOI 10.1093/nar/gkt1102.

Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, Kamal M, Sarr O, Mboup S,
Ndir O, Wypij D, Levasseur K, Thomas E, Tamayo P, Dong C, Zhou Y, Lander ES,
Ndiaye D, Wirth D, Winzeler EA, Mesirov JP, Regev A. 2007. Distinct physiological
states of Plasmodium falciparum in malaria-infected patients. Nature 450:1091-1095
DOI 10.1038/nature06311.

Falcon S, Gentleman R. 2007. Using GOstats to test gene lists for GO term association.
Bioinformatics 23:257-258 DOI 10.1093/bioinformatics/btl567.

Feintuch CM, Saidi A, Seydel K, Chen G, Goldman-Yassen A, Mita-Mendoza NK, Kim
RS, Frenette PS, Taylor T, Daily JP. 2016. Activated neutrophils are associated
with pediatric cerebral malaria vasculopathy in malawian children. mBio 7:e01300—
e01315 DOI 10.1128/mBi0.01300-15.

Fraley C, Raftery AE. 2002. Model-based clustering, discriminant analysis and
density estimation. Journal of the American Statistical Association 97:611-631
DOI10.1198/016214502760047131.

Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM,
Gibbs RA, Hurles ME, McVean GA. 2010. A map of human genome variation from
population-scale sequencing. Nature 467:1061-1073 DOI 10.1038/nature09534.

Guo L, DuY, QuS, Wang]J. 2016. rVarBase: an updated database for regulatory features
of human variants. Nucleic Acids Research 44:D888-D893 DOI 10.1093/nar/gkv1107.

Hasegawa Y, Taylor D, Ovchinnikov DA, Wolvetang EJ, De Torrente L, Mar
JC. 2015. Variability of gene expression identifies transcriptional regula-
tors of early human embryonic development. PLOS Genetics 11:¢1005428
DOI 10.1371/journal.pgen.1005428.

Hochberg Y, Benjamini Y. 1990. More powerful procedures for multiple significance
testing. Statistics in Medicine 9:811-818 DOI 10.1002/sim.4780090710.

Jiang Q, Wang J, Wu X, Ma R, Zhang T, Jin S, Han Z, Tan R, Peng J, Liu G, Li Y,

Wang Y. 2015. LncRNA2Target: a database for differentially expressed genes after
IncRNA knockdown or overexpression. Nucleic Acids Research 43:D193-D196
DOI 10.1093/nar/gkul173.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Research 28:27-30 DOI 10.1093/nar/28.1.27.

Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. 2010. ChEA:
transcription factor regulation inferred from integrating genome-wide ChIP-X
experiments. Bioinformatics 26:2438-2444 DOI 10.1093/bioinformatics/btq466.

de Torrente et al. (2017), PeerJ, DOI 10.7717/peer|.3334 1719


https://peerj.com
http://dx.doi.org/10.1093/nar/gkv1258
http://dx.doi.org/10.1093/nar/gkt1102
http://dx.doi.org/10.1038/nature06311
http://dx.doi.org/10.1093/bioinformatics/btl567
http://dx.doi.org/10.1128/mBio.01300-15
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1093/nar/gkv1107
http://dx.doi.org/10.1371/journal.pgen.1005428
http://dx.doi.org/10.1002/sim.4780090710
http://dx.doi.org/10.1093/nar/gku1173
http://dx.doi.org/10.1093/nar/28.1.27
http://dx.doi.org/10.1093/bioinformatics/btq466
http://dx.doi.org/10.7717/peerj.3334

Peer

Larsen RJ, Marx ML. 2017. An introduction to mathematical statistics and its applications.
Pearson.

Mar JC, Matigian NA, Mackay-Sim A, Mellick GD, Sue CM, Silburn PA, McGrath
JJ, Quackenbush J, Wells CA. 2011. Variance of gene expression identifies al-
tered network constraints in neurological disease. PLOS Genetics 7:1002207
DOI 10.1371/journal.pgen.1002207.

Mason EA, Mar JC, Laslett AL, Pera MF, Quackenbush J, Wolvetang E, Wells CA. 2014.
Gene expression variability as a unifying element of the pluripotency network. Stem
Cell Reports 3:365-377 DOI 10.1016/j.stemcr.2014.06.008.

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I,
Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B,
Saxel H, Kel AE, Wingender E. 2006. TRANSFAC and its module TRANSCompel:
transcriptional gene regulation in eukaryotes. Nucleic Acids Research 34:D108-D110
DOI 10.1093/nar/gkj143.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver
P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly M], Patterson N,
Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN,
Altshuler D, Groop LC. 2003. PGC-1lalpha-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nature Genetics
34:267-273 DOI 10.1038/ng1180.

Munsky B, Neuert G, Van Oudenaarden A. 2012. Using gene expression noise to
understand gene regulation. Science 336:183—187 DOI 10.1126/science.1216379.
Oron AP, Jiang Z, Gentleman R. 2008. Gene set enrichment analysis using linear models

and diagnostics. Bioinformatics 24:2586-2591 DOI 10.1093/bioinformatics/btn465.

Park CC, Gale GD, De Jong S, Ghazalpour A, Bennett BJ, Farber CR, Langfelder P,

Lin A, Khan AH, Eskin E, Horvath S, Lusis AJ, Ophoff RA, Smith DJ. 2011. Gene
networks associated with conditional fear in mice identified using a systems genetics
approach. BMC Systems Biology 5:43 DOI 10.1186/1752-0509-5-43.

Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger
ME. 2015. IncRNAdD v2.0: expanding the reference database for functional long
noncoding RNAs. Nucleic Acids Research 43:D168-D173 DOI 10.1093/nar/gku988.

Raj A, Rifkin SA, Andersen E, Van Oudenaarden A. 2010. Variability in gene expression
underlies incomplete penetrance. Nature 463:913-918 DOI 10.1038/nature08781.

Raser JM, O’Shea EK. 2004. Control of stochasticity in eukaryotic gene expression.
Science 304:1811-1814 DOI 10.1126/science.1098641.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Research 43:e47 DOI 10.1093/nar/gkv007.

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek
P, Manolio T, Hindorff L, Parkinson H. 2014. The NHGRI GWAS Catalog, a
curated resource of SNP-trait associations. Nucleic Acids Research 42:D1001-D1006
DOI 10.1093/nar/gkt1229.

de Torrente et al. (2017), PeerJ, DOI 10.7717/peer|.3334 18/19


https://peerj.com
http://dx.doi.org/10.1371/journal.pgen.1002207
http://dx.doi.org/10.1016/j.stemcr.2014.06.008
http://dx.doi.org/10.1093/nar/gkj143
http://dx.doi.org/10.1038/ng1180
http://dx.doi.org/10.1126/science.1216379
http://dx.doi.org/10.1093/bioinformatics/btn465
http://dx.doi.org/10.1186/1752-0509-5-43
http://dx.doi.org/10.1093/nar/gku988
http://dx.doi.org/10.1038/nature08781
http://dx.doi.org/10.1126/science.1098641
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1093/nar/gkt1229
http://dx.doi.org/10.7717/peerj.3334

Peer

Wijetunga NA, Delahaye F, Zhao YM, Golden A, Mar JC, Einstein FH, Greally JM.
2014. The meta-epigenomic structure of purified human stem cell populations
is defined at cis-regulatory sequences. Nature Communications 5:5195-5203
DOI 10.1038/ncomms6195.

Wong N, Wang X. 2015. miRDB: an online resource for microRNA target pre-
diction and functional annotations. Nucleic Acids Research 43:D146-D152
DOI 10.1093/nar/gkul104.

Yan L, Yang M, Guo H, Yang L, Wu ], Li R, Liu P, Lian Y, Zheng X, Yan J, HuangJ, Li
M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F. 2013. Single-cell RNA-Seq profiling
of human preimplantation embryos and embryonic stem cells. Nature Structural &
Molecular Biology 20:1131-1139 DOI 10.1038/nsmb.2660.

Yu K, Ganesan K, Tan LK, Laban M, Wu ], Zhao XD, Li H, Leung CH, Zhu Y, Wei
CL, Hooi SC, Miller L, Tan P. 2008. A precisely regulated gene expression cassette
potently modulates metastasis and survival in multiple solid cancers. PLOS Genetics
4:¢1000129 DOI 10.1371/journal.pgen.1000129.

de Torrente et al. (2017), PeerdJ, DOI 10.7717/peerj.3334 19/19


https://peerj.com
http://dx.doi.org/10.1038/ncomms6195
http://dx.doi.org/10.1093/nar/gku1104
http://dx.doi.org/10.1038/nsmb.2660
http://dx.doi.org/10.1371/journal.pgen.1000129
http://dx.doi.org/10.7717/peerj.3334

