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ABSTRACT: 

The overarching aim of this paper is to enhance the visualisations and classifications of airborne remote sensing data for remote 

forest surveys. A new open source tool is presented for aligning hyperspectral and full-waveform LiDAR data. The tool produces 

coloured polygon representations of the scanned areas and aligned metrics from both datasets. Using data provided by NERC ARSF, 

tree coverage maps are generated and projected into the polygons.  The 3D polygon meshes show well-separated structures and are 

suitable for direct rendering with commodity 3D-accelerated hardware allowing smooth visualisation. The intensity profile of each 

wave sample is accumulated into a 3D discrete density volume building a 3D representation of the scanned area. The 3D volume is 

then polygonised using the Marching Cubes algorithm. Further, three user-defined bands from the hyperspectral images are projected 

into the polygon mesh as RGB colours. Regarding the classifications of full-waveform LiDAR data, previous work used extraction of 

point clouds while this paper introduces a new approach of deriving information from the 3D volume representation and the 

hyperspectral data. We generate aligned metrics of multiple resolutions, including the standard deviation of the hyperspectral bands 

and width of the reflected waveform derived from the volume. Tree coverage maps are then generated using a Bayesian probabilistic 

model and due to the combination of the data, higher accuracy classification results are expected. 

* Corresponding author.  This is useful to know for communication

with the appropriate person in cases with more than one author. 

1. INTRODUCTION

The integration of hyperspectral and full-waveform (FW) 

LiDAR data aims to improve remote forest surveys. Traditional 

ways of forest health monitoring suggest collecting ground 

information with fieldwork, which is time consuming and 

lacking in spatial coverage. Multiple sensors have been 

developed to improve forest health monitoring, including 

Airborne Laser Scanning (ALS) systems. ALS data contains 

huge amount of information, and the lack of tools handling 

these data (particularly FW LiDAR) in an integrated way makes 

interpretation difficult. This research aims to enhance the 

visualisation of FW LiDAR data and hyperspectral imagery and 

investigate the benefits of combining them in remote forest 

survey applications and classifications.  

The visualisation part of this paper is looking into enhancing 

the current visualisation and using the hyperspectral images to 

improve the visual output of the scanned area. Visualisations 

are important for understanding the remote sensing data and 

disseminating complicated information, especially to an 

audience with no scientific background.  

Some of the current FW LiDAR visualisation tools and 

approaches are given below: 

1. Voxelisation, proposed by Persson et al in 2005: This

approach inserts the waveforms into a 3D volume and 

visualising it using different transparencies across the 

voxels.  

1. FullAnalyze: for each waveform sample, a sphere

with radius proportional to its amplitude is created 

(Chauve et al, 2009).  

2. SPDlib: It visualises either the samples which are

above a threshold level as points coloured according to 

their intensity value or a points cloud extracted from the 

waveforms using Gaussian decomposition. 

3. Lag: a visualisation tool for analysis and inspection of

LiDAR point clouds. But it only supports two perspectives 

top-down and side view, limiting the visual perception of 

the user.  

Some of the visualisation tools for hyperspectral imagery are: 

ENVI, ArcGIS and other GIS, Matlab and GDAL.  

Regarding the integration of FW LiDAR and hyperspectral in 

remote forest surveys, Clark et al attempted to estimate forest 

biomass but no better results were observed after the integration 

(Clark et al, 2011). While the outcomes of Aderson et al for 

observing tree species abundances structures were improved 

after the integration of data (Anderson, et al., 2008).   

Buddenbaum et al, 2013, and Heinzel and Koch, 2012, used a 

combination of multi-sensor data for tree classifications. 

Buddenbaum et al use fusion of data to generate RGB images 

from a combination of FW LiDAR and hyperspectral features, 

although the fusion limits the dimensionality of a classifier 

(Buddenbaum et al, 2013). Further, in their study, three 

different classifiers were implemented and the Support Vector 

Machines (SVMs) returns the best results. SVMs were also 
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used in Heizel and Koch, 2012 to handle the high 

dimensionality of the metrics (464 metrics). In that research a 

combination of FW LiDAR, discrete LiDAR, hyperspectral and 

colour infrared (CIR) images are used. Each of the 125 

hyperspectral bands is directly used as a feature in the classifier, 

contributing to the high dimensionality. Here, some of the FW 

LiDAR and LiDAR features are used but in a digested form (i.e. 

the width of the waveform), and matches to the spectral 

signatures of each class are used to reduce the dimensionality. 

2. DASOS – THE INTEGRATION SYSTEM

The system implemented for this research is named DASOS, 

which is derived from the Greek word δάσος (=forest) and it has 

been released as an open source software. It is available at: 

https://github.com/Art-n-MathS/DASOS . 

The software takes as input full-waveform (FW) LiDAR data 

and hyperspectral images and returns  

1. A coloured polygon representation

2. Aligned metrics from both datasets with user-defined

resolution 

There are also instructions and an example on how to use 

DASOS in the readme.txt file and the following blog post: 

http://miltomiltiadou.blogspot.co.uk/2015/03/las13vis.html 

3. INPUTS

The data used in this research are provided by the Natural 

Environment Research Council’s Airborne Research & Survey 

Facility (NERC ARSF) and are publicly available. They were 

acquired on the 8th of April in 2010 at New Forest in UK. For 

every flightline, two airborne remote sensing datasets are 

captured: FW LiDAR data and hyperspectral images. But since 

the data are collected from different instruments they are not 

aligned. 

The LiDAR data are captured using a small foot-print Leica 

ALS50-II system. The system emits a laser beam and collects 

information from its return. It records both discrete and full-

waveform LiDAR data. For the discrete LiDAR data, points are 

recorded for peak reflectances. Every peak reflectance 

corresponds to a hit point and the position of the hit point is 

calculated by measuring the round trip time of beam. The 

system records up to four peak returns with a minimum of 2.7m 

distance from each other.  

Once the 1st return is received the Leica system starts recording 

the waveform. Each waveform in the dataset contains 256 

samples of the returned backscattered signal digitised at 2ns 

intervals. This corresponds to 76.8m of waveform length. Each 

wave sample has an intensity value, which is related to the 

amount of radiation returned during the corresponding time 

interval. The  position of each sample’s hit point is calculated 

using the first discrete return and a given offset. 

Here it worth mentioning two of the main drawbacks of the 

LiDAR data. When the Leica system operates at a pulse rate 

greater than 120KHz, it starts dropping every other waveform. 

This applies to the data used in this project, so there are 

waveforms for about half of the emitted pulses and discrete 

returns for all of them. Further, the intensities recorded are not 

calibrated. As mentioned at Vain et al (2009) the emitted 

radiation of the pulse is usually unknown in Airborne laser 

scanning system and it depends on the speed or height of the 

flight.  

The hyperspectral images are collected from two instruments: 

1. The Eagle, which captures the visible and near infra-

red spectrum, 400 - 970nm. 

2. The Hawk, which covers short wave infrared

wavelengths, 970 - 2450nm 

Around 250 bands are captured by each instrument and, after 

post-processing, each pixel has a calibrated radiance spectrum 

and a geolocation.  

4. VISUALISATION

To enhance the visualisation of FW LiDAR data, a volumetric 

approach of polygonising the data was proposed by Miltiadou et 

al, 2014. First, the waveforms are inserted into a 3D discrete 

density volume, an implicit object is defined from the volume 

and the object is polygonised using the Marching Cubes 

algorithm. In this paper we emphasis the sampling of the 

volume versus the sampling of the Marching Cubes algorithm 

as well as the effects of using full-waveform versus discrete 

LiDAR. Further hyperspectral imagery is introduced to improve 

the visual output and allow parallel interpretation of the data.  

4.1 Efficient representation of FW LiDAR 

Similar to Persson et al, the waveforms are converted into 

voxels by inserting the waves into a 3D discrete density volume. 

In this approach the noise is removed by a threshold first. When 

a pulse doesn’t hit any objects, the system captures low signals 

which are noise. For that reason, the samples with amplitude 

lower than the noise level are discarded. Further, to overcome 

the uneven number of samples per voxel, the average amplitude 

of the samples that lie inside each voxel is taken, instead of 

selecting the sample with the highest amplitude (Persson et al, 

2005): 

(1) 

where n = number of samples of a voxel,  

Ii = the intensity of the sample i,  

Iv is the accumulated intensity of the voxel. 

The main issue with this approach is that the intensities of the 

LiDAR data haven’t been calibrated. Non calibrated intensities 

do not significantly affect the creation of polygon meshes, 

because during polygonisation, the system treats the intensities 

as Booleans; is that voxel empty or not? Nevertheless, the noise 

threshold could be set lower if the intensities were calibrated 

and more details would be preserved into the polygon meshes.  

4.2 Generating a polygon representation 

Numerical implicitization was introduced by Blinn in 1982; A 

function f(X) defines an object, when for every n-dimensional 

point X that lies on the surface of the object, satisfied the 

condition f(X) = α. Numerical implicitization allows definition 

of complex objects, which can easily be modified, without using 

large numbers of triangles and it is used in this project to 
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represent the 3D volume using a discrete density function 

(f(X),α) that satisfies the following conditions:  

f(X) = α , when X lies on the surface of the object 

f(X) > α , when X lies inside the object and 

f(X) < α , when X lies outside the object  (2) 

where X = a 3D point (x, y, z) representing the longitude, 

latitude and height respectively   

f(X) = the discrete density function that takes X as 

input and returns the accumulated intensity value of 

the voxel that X lies in  

α = the isosurface of the object, which defines the 

boundary of the object. f(X) is equal to α iff X lies on 

the surface of the object.  

Even though numerical implicitization is beneficial in reducing 

storage memory and for various resolution renderings of the 

same object, visualising numerical/algebraic objects is not 

straight forward, since they contain no discrete values. This 

problem can be addressed either by ray-tracing or 

polygonisation. In 1983, Hanraham suggested a ray-tracing 

approach, which used the equation derived from the ray and 

surface intersection to depict the algebraic object into an image. 

The Marching Cubes algorithm was later introduced for 

polygonising implicit objects. The Marching cubes algorithm 

constructs surfaces from implicit objects using a search table. 

Assume that f(X) defines an algebraic object. At first the space 

is divided into cubes, named voxels. Each voxel is defined by 

eight corner points, which lie either inside or outside the object. 

By enumerating all the possible cases and linearly interpolating 

the intersections along the edges, the surface of the implicit 

object is constructed (Lorensen and Cline, 1987). 

According to Lorensen and Cline, the normal of each vertex is 

calculated by measuring the gradient change. But in our case, 

due to the high gradient changes inside the volume, calculating 

the normal in that way leads to a non-smooth visualisation. For 

that reason, in this research the normal of each vertex is equal to 

the average normal of its adjacent triangles.  

4.3 Selecting the Sampling 

m  

m + 1 

n
 + 1  

n
  

Figure 1: Suggested marching cubes' sampling 

Further the sampling of the Marching cubes is independent 

from the sampling of the 3D density volume, but consistency 

between the two is required. Let’s assume the discrete volume 

has (n * m * k) voxels. The volume can be sampled into cubes 

at any rate but to reduce aliasing a ((n+1) *(m+1) * (k+1)) 

dimensional sampling is suggested. Please note that every point 

that lies outside the volume is considered to be below the 

boundary threshold and set to a value lower than the isosurface 

value.  An example of the corresponding sampling in 2D is 

shown on Figure 1, where the black grid represents a 2D density 

table and the blue grid represents the sampling used in during 

polygonisation.  

The following table shows the effects of oversampling during 

polygonisation. The right image was oversampled and the 

second one was sampled as explained above.  

Figure 2: Oversampling versus suggested sampling 

4.4 Full-waveform versus discrete LiDAR data 

Furthermore, DASOS allows the user to choose whether the 

waveform samples or the discrete returns are inserted into the 

3D density volume. Each sample or each return has a hit point 

and an intensity value. So, in both case the space is divided into 

3D voxels and the intensity of each return or sample is inserted 

into the voxel it lies inside.  

 In general the results of discrete returns contain less 

information compared to the results from the FW LiDAR, even 

though the FW LiDAR contain information from about half of 

the emitted pulses (Section 3). As shown on the 1st example of 

table 3 the polygon mesh generated from the FW LiDAR 

contains more details comparing to the one created from the 

discrete LiDAR. The forest on the top is more detailed, the 

warehouses in the middle have a clearer shape and the fence on 

the right lower corner is continuous while in the discrete data it 

is disconnected and merged with the aliasing. 

FW LiDAR polygons, compared to the discrete LiDAR ones, 

contain more geometry below the outlined surface of the trees. 

On the one hand this is positive because they include much 

information about the tree branches but on the other hand the 

complexity of the objects generated is high. A potential use of 

the polygon representations is in movie productions: instead of 

creating a 3D virtual city or forest from scratch, the area of 

interest can be scanned and then polygonised using our system. 

But for efficiency purposes in both animation and rendering, 

polygonal objects should be closed and their faces should be 

connected. Hence, in movie productions, polygons generated 

from the FW LiDAR will require more post-processing in 

comparison with object generated from the discrete LiDAR.  

Example 2 in table 3 shows the differences in the geometry 

complexity of the discrete and FW polygons using the x-ray 

Oversampling Suggested Sampling 
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shader of Meshlab. The brighter the surface appears the more 

geometry exists below the top surface. The brightness difference 

between area 1 and area 2 appears less in the discrete polygon. 

Nevertheless, the trees in area 2 are much taller than in area 1, 

therefore more geometry should have existed in area 2 and 

sequentially be brighter. But the two areas are only well-

distinguished in the FW LiDAR. On average the FW polygon is 

brighter than the discrete polygon, which implies higher 

geometry complexity in the FW polygon.  

The comparison example 3 is rendered using the Radiance 

Scaling shader of Meshlab (Vergne et al, 2010). The shader 

highlights the details of the mesh, making the comparison 

easier. Not only the FW polygons are more detailed but also 

holes appear on the discrete polygons. The resolution of the 

voxels of those examples is 1.7m3 and the higher the resolution 

is, the bigger the holes are, while the full-waveform can be 

polygonised at a resolution of 1m3 without any significant 

holes. Figure 4 shows an example of rendering the same 

flightline of examples 3 at the resolution of 1m3 using FW 

LiDAR data.  

The last two examples (4 and 5) compare the side views of 

small regions. On the one hand the top of the trees are better-

shaped in the discrete data. This may occur either because the 

discrete data contain information from double pulses than the 

FW data (Section 3) or because the noise threshold of the 

waveforms is not accurate and the top of the trees appear noisier 

on the FW LiDAR data. On the other hand more details appear 

close to the ground on the FW LiDAR data. 

FW LiDAR Discrete LiDAR 

Example 1 of 6 

File: LDR-FW-FW10_01-201018722.LAS 

Resolution: 4.4m 

Example 2 of 5 

File: LDR-FW-FW10_01-201018721.LAS 

Resolution: 1.7m 

Example 3 of 5 

File: LDR-FW-FW10_01-201018721.LAS 

Resolution: 1.7m 

Example 4 of 5 

File: LDR-FW-FW10_01-201018721.LAS 

Resolution: 1.5m 

Example 5 of 5 

File: LDR-FW-FW10_01-201018721.LAS 

Resolution: 2m 

Table 3: Full-waveform versus discrete LiDAR data 

4.5 Integrating hyperspectral Images 

When the hyperspectral images are loaded along with the 

LiDAR files, then the outputs are: 

1. the 3D geometry, which contains all the information

about the vertices, edges, faces, normal and texture 

coordinates, and  

2. a texture, which is an RGB image which is aligned

with the texture coordinates of the polygon mesh. 

For every scanned area, there are both FW LiDAR and 

hyperspectral data, but since the data are collected from 

different instruments they are not aligned.  To integrate the data 

geospatially, aligning the data is required. In order to preserve 

the highest possible quality and avoid blurring that occurs 

during georectification, data in original sense of geometry (level 

1) are used.

Here it worth mentioning that the texture coordinates (u, v) of 

each vertex lies in the range [0, 1] and if they are multiplied by 

the height/width of the texture, then the position of the 

corresponding pixel of the 2D texture is given. The 2D texture 

is simply an image generated from three user-selected bands for 

the RGB colours and its width is equal to the number of 

samples per line while its height is equal to the number of lines. 

Further the values of the three user-defined bands are 

normalised to lie in the range [0,255]. 

DASOS projects level 1 hyperspectral images by adjusting the 

texture coordinates of the polygon according to the geolocation 

of the samples. That is, for each vertex (xv, yv, zv) we find the 

pixel, whose geolocation (xg, yg) is closest to it. Then by using 

the position of the pixel on the image (xp, yp), the texture 

coordinates of the vertex are calculated accordingly. 

For speed up purposes, we first import the pixels into a 2D grid, 

similar to Warren et al, 2014. The dimensions of the grid and 

the length of squares are constant, but in our case the average 

1 

2 

1 

2 
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number of pixels per square (Aps) can be modified and the 

dimensions (nx, ny) of the grid are calculated as follow: 

(3) 

where  ns =  the number of samples and 

 nl  = the number of lines in the hyperspectral images. 

Furthermore, while Warren et al use a tree-like structure, here a 

structure similar to hash tables is used to speed up searching. 

Hash table is a data structure, which maps keys to values. In our 

case, we utilise the unordered_multimap of c++11 (a version of 

the c++ programming language), where for every key there is a 

bucket with multiple values stored inside. Each square (xs, ys) 

has a unique key, which is equal to (xs + ys *nXs) and each pixel 

is associated with the square it lies inside. In other words, every 

key with its bucket corresponds to a single square of the grid 

and every bucket includes all the pixels that lie inside that 

square.  The next step is for every vertex (xv, yv, zv) to find the 

pixel whose geolocation is closest it. First we project each 

vertex into 2D by dropping the z coordinate and then we find 

the square (xs, ys) that its projection (xv, yv) lies in, as follow: 

(4) 

(5) 

where maxX, minX, maxY, minY = the geolocation 

boundaries of all the hyperspectral image.  

From the square (xs, ys) we can get the set of pixels that lie 

inside the same square with the vertex of our interest. Let’s 

assume that the positions and geolocations of these pixels are 

defined by p1, p2, p3, … , pn and g1, g2 g3, … , gn respectively. 

Then, by looping through only that set of pixels, we can find the 

pixel i that lies closest to the vertex v(xv , yv): 

(6) 

Finally, we need to scale the pixel position pi = (xp, yp), such 

that it lies in the range [0,1]. The scale factors are the number of 

samples (ns) and lines (nl) of the hyperspectral image. So, the 

texture coordinates (u, v) of each vertex v(xv , yv) are given by 

the following: 

(7) 

4.6 Results 

Some coloured polygon representations of flightlines from New 

Forest are shown in this section. Figure 4, shows the results 

before and after projecting the hyperspectral images and Table 5 

shows the results of the same flightline while projecting 

hyperspectral images captured with different instruments or 

using different bands.  

Figure 4. Visualisation results before and after projecting 

hyperspectral images on the polygon representation 
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Table 5: Projecting hyperspectral images from different 

instruments 
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5. INTEGRATION FOR REMOTE FOREST SURVEY

5.1 Metrics and Sampling 

In Anderson et al, 2008, an inverse distance weighted algorithm 

is used to raster the hyperspectral images and the pixel size is 

constant, 15.8m. While in this study an approach similar to 

Warren el is used and the resolution is changeable.  

Further, the metrics generated from both hyperspectral and 

LiDAR are 2D aligned pictures. In other words, the pixel (x, y) 

has the same geographical coordinates in every metric. Further 

the resolution of the metrics depends on the resolution of the 

3D volume. If the dimensions of the volume are (x, y, z) then 

the dimensions of the metrics are (x, y). For LiDAR each pixel 

is coloured according to the information derived from the 

corresponding column. For Hyperspectral metrics level 1 data 

are used to preserve the highest possible quality. The same 

method as section 4.5 is used for finding the pixels from the 

hyperspectral data that are closest to the centre of the every 

column of the 3D discrete density volume.  

The metrics used in this project are shown in the following 

table, but the list of the metrics can easily be extended. The 

metrics L1 to L4 are generated from the FW LiDAR data while 

the metrics H1 to H4 are generated from the hyperspectral 

images. 

Description 

L1 The thickness map, defined as the distance 

between the first and last non empty voxels in 

every column of the 3D volume. This map 

corresponds to the width of the reflected 

waveform. 

L2 Density map: Number of non-empty voxel over all 

voxels within the range from the first to last non-

empty voxels.  

L3 First/Top continued batch of non-empty voxels; 

the number of non-empty adjacent voxels, starting 

from the first/top non-empty voxel in that column.  

L4 Last/Lower continued batch of non-empty voxels; 

the number of non-empty adjacent voxels, starting 

from the last/lower non-empty voxel in that 

column. 

H1 NDVI: Normalised Difference Vegetation index 

H2 Mean of all bands: the average of all the 

hyperspectral bands 

H3 The standard deviation of the complete spectrum 

at the pixel 

H4 The squared spectral difference between each 

pixels’ spectrum and the generalised vegetation 

signature retrieved from USGS Digital Spectral 

Library (Clark et al, 2003). 

 Table 6. Available Metrics 

The following figure shows an example of all the metrics 

derived from a flightline at resolution 1.8m (the metrics follow 

the same order as Table 6): 

Figure 7. Metrics (Table 6) from the same flightline, with 

brighter intensity indicating a higher-valued metric 

5.2 Tree Coverage Maps 

To demonstrate the usefulness of DASOS, tree coverage maps 

are generated using a classifier and the results projected back 

into the polygon representations as shown in the following 

figure:  

Figure 8. 3D tree coverage model 

 A Naïve Bayesian classifier using a multi-variance Gaussian 

model is applied for distinguishing tree covered areas from the 

ground. The main idea is for each pixel/column to find the class 

that is more likely to belong to (Tree or Ground). 

A Bayesian probabilistic likelihood inference is used to find the 

probability of a pixel to belong to a given class: 
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(8) 

where x = a column of the volume and the corresponding 

pixels of the metrics to be classified 

A = one of the classes, i.e. ground 

P(A|x) = the probability of x to belong to class A 

P(x|A) = the likelihood function that gives the 

probability of x given A  

P(A) = the prior probability of a pixel to belong in A 

P(x) = the probability of that pixel x  

The probability of x to belong to each one of the classes of our 

interest is calculated and then the pixel/column x is assigned to 

the class that is most probable to belong to. The probability 

P(x|A) is a likelihood function and a Gaussian probabilistic 

model is used for calculating it. By calculating the covariance 

(C) and mean (µ) of the class cluster, the Gaussian probabilistic 

model is given as follow (Murphy, 2012): 

(9) 

5.3 Results and Testing 

As expected the total accuracy was increased with the 

integration of FW LiDAR data and hyperspectral images. For 

validating the results, ground truth data were hand painted using 

3D models generated with DASOS. Further there are three test 

cases and for each test case the following metrics are used: 

1. L1-L4: Metrics generated from the FW LiDAR

2. H1-H4: Metrics generated from the hyperspectral

imagery 

3. L1-L4 & H1-H4: A combination of metrics generated

from either FW LiDAR or hyperspectral imagery 

An error matrix represents the accuracy of the classifications 

(Congalton, 1991). Each row shows the number of pixels 

assigned to each class relative to their actual class. For example, 

the first row of Table 9 shows that 130445 pixels were 

classified as trees, where 125375 were actual trees and the rest 

5070 were ground.  

For each test case, an error matrix is generated to indicate the 

accuracy of the classification results as verified on the ground 

truth data (Table 9-11).  From the error matrices the 

classification accuracy of each test case was calculated and is 

presented in the Table 12.  

Table 9. Error Matrix of the 1st test case (FW LiDAR) 

Table 10. Error Matrix of the 2nd test case (Hyperspectral 

Imagery)  

Table 11. Error Matrix of the 3rd test case (FW LiDAR and 

Hyperspectral Imagery)  

FW LiDAR Hyperspectral 

Imagery 

Both 

Tree 73.55% 90.79% 89.52% 

Ground 97.83% 83.09% 95.48% 

Total 87.58% 86.34% 92.97% 

Table 12. Classification accuracy of each test case 

Figure 13 depicts the coverage maps generated for each test 

case. Three areas were also marked for comparison. Area 1 has 

been wrongly classified when only the hyperspectral data were 

used; nevertheless with the height information of the LiDAR 

data, area 1 was correctly classified. Similarly, area 2 was 

wrongly classified using the FW LiDAR because the height of 

the trees were less than the training samples but since the 

hyperspectral images do not contain height information, the 

trees were better labelled at the related test cases. By the end 

area 3 contains greenhouses, which seems to confuse the first 

two classifications in different ways, while the combination is 

much improved.  

Figure 13. Tree coverage maps of each test case 
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6. SUMMARY AND CONCLUSIONS

In this paper we showed an efficient way of aligning the FW 

LiDAR data and hyperspectral images. The voxel representation 

of the FW LiDAR data eases the handling of data as well as the 

alignment with the hyperspectral images. Furthermore, the 

spatial representation of hyperspectral pixels into a grid 

contributes to the efficiency of the alignement.  

The visualisation of FW LiDAR data and hyperspectral images 

has been improved by introducing computer graphics 

approaches to remote sensing. While the state-of-the-art FW 

LiDAR visualisations talks about points clouds and transparent 

voxels, the output of DASOS is a coloured polygon 

representation which can be exported and interpretated in 

modeling softwares, like Meshlab. 

It was also showed that the integration of the data has great 

potentials in remote forest surveys. This was demonstrated 

using a Bayesian probabilistic classifier for generating tree 

coverage maps. Positive results were shown by improved 

classification accuracy when both datasets were used.  

By the end, the tools developed for this research are now openly 

available (Section 2).  
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