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ABSTRACT:

Rare event learning has not been actively researched since lately due to the unavailability of algorithms which deal with big samples.
The research addresses spatio-temporal streams from multi-resolution sensors to find actionable items from a perspective of real-time
algorithms. This computing framework is independent of the number of input samples, application domain, labelled or label-less
streams. A sampling overlap algorithm such as Brooks-Iyengar is used for dealing with noisy sensor streams. We extend the existing
noise pre-processing algorithms using Data-Cleaning trees. Pre-processing using ensemble of trees using bagging and multi-target
regression showed robustness to random noise and missing data. As spatio-temporal streams are highly statistically correlated, we
prove that a temporal window based sampling from sensor data streams converges after n samples using Hoeffding bounds. Which can
be used for fast prediction of new samples in real-time. The Data-cleaning tree model uses a nonparametric node splitting technique,
which can be learned in an iterative way which scales linearly in memory consumption for any size input stream. The improved task
based ensemble extraction is compared with non-linear computation models using various SVM kernels for speed and accuracy. We
show using empirical datasets the explicit rule learning computation is linear in time and is only dependent on the number of leafs
present in the tree ensemble. The use of unpruned trees (t) in our proposed ensemble always yields minimum number (m) of leafs
keeping pre-processing computation to n × t logm compared to N2 for Gram Matrix. We also show that the task based feature
induction yields higher Qualify of Data (QoD) in the feature space compared to kernel methods using Gram Matrix.

I. INTRODUCTION

We explore powerful label and label-less mechanisms for auto-
matic rule extraction from streams which have rare event embed-
ded in them using in-memory feature engineering. Data-intensive
computing needs to process fast input streams with very less mem-
ory and without storing the samples. We compare two task in-
duced feature induction models, explicit and non-linear kernels:
first method uses task induced similarity metric to learn rules
from the ensembles and, the second method learns the Gram ma-
trix of dimensional Rd using different kernel windows widths.
The explicit representation uses Random Forest ensembles to gen-
erate the overlap proximity matrix. The similarity counts com-
bines the k-similar trajectory paths ending up in the same termi-
nal node. More trees are grown and added to the Random Forest
till predictive accuracy is significantly higher. When learning the
data driven Gram matrix the kernel computation model uses ma-
trix factorization. At each iteration the best row of features are de-
termined using the category labels to reduce the rank of the final
kernel matrix. Finally a fast approximate in-memory data stream
model using Hoeffding tree is induced to combine the computa-
tional and predictive performance of both the models.

Just as the web browser brought us click-stream data, GPS en-
abled mobile phone has created huge amounts of geo-tagged streams.
Understanding of geo-intelligence and data mining actionable events
from random data has not been studied until recently due to lack
of scalable algorithms and computational models. The recent ref-
erence to ”Data bonanza” (Krause, A., 2012c) in the knowledge
discovery literature can be attributed to recent datasets and how it
is impacting wireless data driven applications. New streams such
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as trajectories generated due to the proliferation of GPS enabled
cabs (Zheng et al., 2009) in large metros and increase availability
of Wi-Fi hotspots. The computation models needs to learn tra-
jectories which can give insight to the behaviours of the users’
for designing future infrastructures. Just as designing a fast pre-
fetch cache from web users’ click stream, the tree model needs to
capture the branching of the paths by approximating from sparse
segments of moving data in motion. When using a tree to repre-
sent the trajectories the memory savings could be enormous when
compared to the size of the original trajectories due to potential
overlaps. Electronically generated streams do not contain labeled
data and thus not suitable for supervised algorithms. We propose
a powerful overlap function (Prasad et al., 1991) metric to iden-
tify the actionable events. The stream pre-processing algorithm
is resilient to noise and uses instance based learning and at the
same time, works in unsupervised settings (it can have labels).
The overlap function determines a proximity count induced by
the tree ensembles as shown in Fig 1(a).

Non-linear learning methods are associated with Gram matrix
and kernel methods. The kernel method uses a computational
shortcut to compute its feature space. The resulting higher-order
feature maps can be optimized for in-memory analytics and fast
predictive models (Agrawal et al., 1993). We compare our ex-
plicit ensemble overlap feature induction framework with stan-
dard non-linear kernel function learning. Even though Gram ma-
trix can be represent any input data and can learn the features by
using higher-order polynomials we show the the number of sup-
port vectors (SV) do not scale well with large n. Computation
of kernel methods are independent of the feature and hence does
not have the ”curse of dimensionality”, but still suffers from the
”curse of support”.
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We have successfully used Hoeffding bounds to guarantee that
the baseline model is within a small probability δ from its true
mean. We extend the Hoeffding principle to Data Streams (Bifet,
2009a), which have a property of infinite input size. For the in-
memory model (Brooks and Iyengar, 1996) (Iyer et al. 2013)
(Breiman, 2001) to fit the requirements to handle data in mo-
tion, the above rule extraction models needs to address the fol-
lowing resource constraints. To store sufficient statistics which
are needed to model the stream that are to be held within node
splits of the tree in-memory. Hoeffding bounds (Bifet and Kirkby,
2009) states that the estimated mean does not change very much
after sufficient samples (n) are seen and this is independent of the
distribution. To guarantee sufficient statistics for on-line classifi-
cation and to guarantee its true mean we use Hoeffding tree. We
also show that Hoeffsing tree is able to compute sufficient statis-
tics in memory and achieve a base line accuracy compared to the
above two kernel methods tested with large data streams.

In the cases discussed so we assume the datasets have known
events even though learning from them efficiently and its scal-
ing have been satisfactorily addressed. Still there are rare events
which are weekly labelled (due to unbalanced support) as they
are buried inside noise and outlier present in large streams. A
weekly labelled event (buried events) are illustrated in Fig. 1(b,c)
which can occur due to big sample sizes. Data models for large
data streams have successfully used to correct such outliers by
using Bonferroni principle (Rajaraman and Ullman, 2011) to ad-
dress false alarms. We further explore to mine actionable patterns
of practical significance using power of SVM in the following
ways: (i) One-class SVM for outliers and, (ii) soft-margin SVM
for novel patterns.

The rest of the paper is organized into two major sections (i)
low-level data-cleaning and (ii) task based feature extraction and
statistical model building. Section II, discusses why rare event
learning is an NP hard problem and seeks to use existing SVM to
solve them. Section III, surveys related work in spatio-temporal
domain to explore low-level data-cleaning reliability. Section IV,
introduces how algorithms are applied to spatio-temporal data
with a task based approach. As we will extend our low-level
model with a computation module based on our original overlap
function which is non-parametric. In Section V and VI we intro-
duces kernel method computations and algorithms to build robust
statistical models to deal with dynamic data. Section VII demon-
strates the results for spatio-temporal datasets with in-memory
models and compares preliminary streaming results with existing
standard machine learning libraries. Section VII summaries and
concludes the work.

II. RARE EVENT LEARNING

An example from weather dataset contains humidity, rain, tem-
perature, and wind to predict the occurrence of fog, a rare event
(Garimella and Iyer 2007), when rain attribute value happens to
be false. We like to further understand rare events (Lin et al.,
2013) and its prediction for label and label-less streams using
similarity measures. We already know that non-parametric meth-
ods such as k-means clustering needs to know the number of clus-
ters a priori. To overcome this limitation we use density based ap-
proaches in the feature space, which is explained in Section V. As
an introductory example to illustrate this concept by using one-
class SVM as illustrated in Fig. 1(b). We estimate the single class
features and infer the properties of a rare event without assuming
the number of clusters a priori. When using pattern recognition
using Support Vector Machine (SVM) (Cortes and Vapnik, 1995)
to classify rare events we use One-class and soft-margins SVMs

as discussed in this section. The Bonferronis principle states that
if the number of events in practice are know to occur can be cal-
culated then the outliers can detected and avoided in random data
sampling.

Looking at the same problem in terms of a probability density
function (pdf), given a set of data embedded in a space, the prob-
lem of finding the smallest hypersphere containing a specified
non-trivial fraction of the data is unfortunately NP-hard [kernel
methods]. Hence, there are no known algorithms to solve this
problem exactly. It can, however, be solved exactly for the case
when the hypersphere is required to include all of the data. So we
first consider the cases when all the data are available.

A. One-Class SVM

When estimating big samples sizes (Lin et al., 2013), one-class
SVM can be used in a unsupervised learning setting. We generate
two types of random data: one with ’normal’ novel patterns with
a fixed mean µ and, other with ’abnormal’ novel patterns which
are uniformly distributed. The effectiveness of the algorithms is
illustrated in Fig. 1(c). The results shows that the SVM is unable
to perfectly classify for the underlying unknown distribution as
it has some outliers. Use of robust covariance estimator which
assumes the data are Gaussian. The plot in Fig. 1(c) has no errors
as it applies the Bonferronis principle to further filter the practical
limits when applied to big samples.

B. Hinge-loss Cost Function with Soft Margins

When the data is completely random and cannot be completely
separated using SVM hyperplane. The hidden events present
which may be hard to classify needs and needs to be cross vali-
dated by splitting the training set into 80-20% splits and a soft-
margin. The soft-margin is an automatic way to rejects a hard
to classify sample by using cost function: the learning algorithm
needs to balance the ratio of false positives occurring during test-
ing (Lin et al., 2013) and help lower them. When a particular
pattern has probability close to 0.5 in the case of a binary classi-
fication, then use of soft-margin SVM combined with a penalty
function is more efficient to learn the hidden novel patterns we
discussed earlier using the complete data. The SVM model can
use the soft-margin tuning variables C and γ for their best fit (Hu
and Hao, 2012; Iyer et al., 2012). The key is to tune the soft-
margin hyperplane with the variable (ξi) for standard SVM hard
hyperplane (Cortes and Vapnik, 1995). SVM equation as shown
below.

yi(x
T
i w + b) ≥ 1yi ε{−1, 1}

We define a convex cost-function such that

yi(x
T
i w + b) ≥ 1− ξi ξi ≥ 0

The new estimate using reject option further helps to disambiguate
hard to classify samples.

How to compute and estimate large sensor data streams to mine
rare events:

• Feature Engineering - ”Data driven learning”

– Instance based label-less feature task-based induction

• Streams Models - ”Data in motion”

– Efficient in-memory sufficient statistics

• Rare Events - ”Statistical effects of big sample sizes”
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– One-class novel pattern detector using Bonferroni cor-
rection

– Soft margin SVM using loss function to find hard to
classify patterns

Current work focuses on feature extraction using explicit learning
algorithms. Events can be learned using labels or sometimes hard
to classify datasets. SVM based kernels can disambiguate hard to
classify datasets using soft-margins. Most of the learning algo-
rithms still have the training phase which make them unsuitable
for real-time analytics. In the domain of sensor networks, dis-
tributed measurements have been successfully calibrated (Prasad
et al., 1991) with fault tolerant (Prasad et al., 1993) algorithms to
avoid false alarms. The techniques used in feature extraction and
real-time fault tolerance does not address rare event learning di-
rectly. As rare events can be patterns, which may not necessarily
be induced by basic feature occurring in the dataset. The ability to
detect rare events is of at most importance, and needs the ability
to predict such occurrence without training from past data. The
proposed AI based rule learning technique allows to bridge the
gap between feature extraction and real-time rare event mining.

III. RELATED WORK

It is a known fact that when dealing with big samples the p-value
(Lin et al., 2013) linearly decreases causing false events detection
even though they are not significant. In a similar way the learn-
ing algorithms have to deal with ”curse of dimensionally” with
respect to attributes and ”curse of support” (Kar and Karnick.,
2012) when determining support vectors using SVMs. There is
a related problem of missing values in the dataset and how the
in-memory model addresses it for a particular task. The work by
Vens and Costa (Vens and Costa., 2011) on Random Forest a task
based feature induction, deals with statistical and missing value
sub-problems. A similar work by Bach and Jordan (Bach and
Jordan., 2005) to compute a predictive low-rank decomposition
for task based feature induction using kernel methods have ad-
dressed the same issue. In this work we use both methodologies
to study the statistical properties and the quality of data related to
the fitness needed in mobile data driven applications.

The parallel computation of large tree ensembles has been re-
cently addressed by Breiman and Adele Cutler (Liaw and Wiener.,
2002). Which combines individual tree representation (Chang et
al., 2006) with a distributed feature table (big-memory scaling).
New frameworks such as R Programming Studio, Mapreduce,
and Spark MLLib, now support distributed processing just be-
yond < key, val > pairs. The pre-processing language seman-
tics support in the latest version of Spark further allows efficient
feature extraction in real-time. Which enables existing batch al-
gorithm to be ported to real-time sensor data stream environment
effortlessly.

When using kernel matrix to approximate higher-dimensional fea-
ture space to lower-dimension space, further allows to address the
huge number of SV’s. The optimization in (Kar and Karnick.,
2012) helps to linearly scale (refer to detailed proof) with the size
of input. The scalability of computation model is fast but it does
not help the predictive performance when features are indepen-
dent of their attributes. When modeling data of a user’s trajectory
or other forms of synthetic data, the features cannot be general-
ized by using the basic patterns and may not form regular clusters.
So one cannot use non-parametric clustering when the number of
clusters are not known a priori. So we argue the use of explicit
overlap function (Prasad et al., 1991) feature induction in these

cases works well. We further extend sensor data streams for fast
predictive overlap models which can handle real-time constrains.

On-line processing of noisy sensor measurements has been ex-
tended to distributed framework by Brooks-Iyengar (Brooks and
Iyengar 1996). This seminal work balances precision and accu-
racy to estimate the non-faulty (Iyer et al., 2008) sensor’s con-
fidence intervals. Real-time algorithm has been extended us-
ing Byzantine fault-tolerance principle to mitigate faulty sensors
(Brooks and Iyengar., 1996), which are likely to trigger false
alarms. The power-aware distributed computation is due to its
simplicity and the protocol keeps communication overhead to a
minimum using in-network processing and with minimum cen-
tralized coordination.

IV. AUTOMATIC RULE EXTRACTION

Computational data sciences has massive amounts of datasets gen-
erated from remote sensing and, periodic stream updates from
several sites spread across many geographical regions. Much of
the publicly available datasets have not been analyzed for the lack
of computationally viable algorithms. Stream analytics cannot
scale due to the following reasons: the known p-value statistical
problem (Lin2013c) with large scale datasets; the statistical sig-
nificance of a common feature increases linearly with number of
samples.

A. Calculating Higher Order Side Information

In this paper we are not only interested in rare event prediction but
also the temporal rules (slow moving in time) which attributes
to it. Important patterns occurring many times in the data if
there is enough support then it becomes a rule. Due to this large
size datasets needs to estimate rare events in practice differently.
One such estimation was suggested by the Bonferronis Principle.
Which states that models ability to mine data for features that
are not sufficiently rare in practice. Scientist in this domain have
used raw sensor attributes which when combined with learned
coefficients help to form linear ranking index functions such as
Fire Weather Index (FWI) estimation. Using FWI ranking the
streams from the weather model can track the time-series sensor
stream and predict rare events before than can happen. Due to the
number of datasets available for rare events being few for train-
ing, we propose an automatic methods to detect such events in
a timely fashion. When mining massive datasets the rule extrac-
tor is a correlated side-information (Iyer et al., 2013b) present in
the target concepts. Some of the feature extraction are discussed
with sensor data (Table I) and ground truth examples (Zheng et
al., 2009).

We generalize a predictive functions which has the following rules:

Descriptive inputs attt1, attt2 → side-information

The predictive rule suggests that the inputs of the dataset are
highly correlated to a few target attributes, which then uses as ob-
jective measures by tracking the side-information - especially in
the case of unlabeled streams. As an example we use the Landsat
dataset (Newman and Asuncion 2007) from University of Irvine,
Machine learning repository. Landsat dataset attributes have the
following attributes: channel-R; channel-G; Channel-invisible1,
Channel-invisible1. For example, the extracted rule for our e.g.
dataset is:

channel-R; channel-G→ channelinvisible1 , channelinvisible2

The input output mapping suggests that their exist a strong rela-
tion between visible channels (Statlog) (Newman and Asuncion,
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(a) Task based feature extraction (b) One-Class SVM. (c) Robust outlier detection.

Fig. 1 Learning methods using linear and non-linear feature space.

2007) and the observed values of invisible channels, because the
measured scenes are one and the same for the visible band and
the satellites invisible band. There was no significant deviation in
the normalized Root Mean Square Error (RMSE) values during
training and testing, suggesting the use of the side-information
are ideal in practice, when using regression trees.

The side-information concept can be extended (Iyer et al., 2013b)
to rare events such as forest fire by computing the temporal FWI
of that region. The above rule can then be written for FWI (Iyer
and Iyengar et al., 2011) as:

temp1, humidity1, wind1, precipitation1 → FWI scalar (0-80)

B. Performing Clustering Based On Data Cleaning Trees

The ensemble model which is illustrated in Fig. 1(a) uses Ran-
dom Forest where the node splits are based on clustering target
variables. The target variables help in finding unique clusters as
discussed in this section. The prototype function (Vens and Costa
2011) used for clustering and node splitting helps to estimate the
model density thresholds for the current window. The induction
of such a tree with actionable events results in extracting their
local temporal rules for further labeling and on-line event dash
boarding.

V. TASK BASED DISTRIBUTED FEATURE
ENGINEERING

Feature engineering as a domain, focuses on learning from data
streams without a priori knowledge of the underlying process or
the number of clusters. Source of the generating process are un-
known and random and due to their high variance its validation
can be only done solely by use of ground truth. Ground truth can
be in the form of past events recorded by weather station logs and
verifiable timestamps overlapping the same period as of the train-
ing dataset. Assuming that rare events are present in the data we
focus on various task-based feature induction as described in Fig.
1(a). We discuss the advantages of task based learning compared
to learning the kernel functions and how it handles missing val-
ues. The common metric used by the learning functions are non-
parametric (distance and similarity) induced in the feature space,
but we are interested in learning the fusion of spatio-temporal
features. The task based explicit feature metric representation has
other advantages. The computational advantage is that it does not
need to learn the pair-wise distance and need not store quadruple
amount of information such as the Gram Matrix. A tree based
representation naturally allows to deal with missing values, com-
pared to existing statistical methods.

We illustrate the stream model for both cases using static data-
driven algorithms and mobile wireless application testbed as shown
in Fig. 2(a). There are two forms of stream quality (Iyer et
al., 2013a) non-parametric ranking for random streams which are
shown in Fig. 2: kappa score for missing values and, finding
actionable events of interest. Kappa score (Iyer 2013a) helps to
compare how the learning algorithm perform using euclidean dis-
tance measure when dealing with spatial measurement. For tem-
poral end-to-end trajectory streams, an explicit similarity mea-
sure is learned from Random Forest ensemble as shown in Fig
1(a). Which allows to learn similar trajectories during model
training. Both these methods are cross-validated by the ground
truth for selecting and refining the models for noisy, static and
mobile streams. When growing the Random Forest ensembles
the tree splitting at the root node is selected along one of these v
attributes to minimize the number of misclassified training points
if a majority vote is used in each node. The procedure is repeated
until every node is pure and assumes the following assumptions
such as n training samples and the samples are saved and can
be read back many times. The current assumptions cannot be
applied for real-time algorithms which cannot store stream sam-
ples and read the samples only once. Comparing the real-time
Brooks-Iyengar’s algorithm the metric used for parameters’ con-
fidence interval approximation are the weighted average of pre-
cision and its accuracy (Brooks and Iyengar 1996) over all the
sensor measurements. As our task based distributed feature en-
gineering needs to scale in a real-time window. The distributed
framework need to extend the current feature splitting method-
ology to an iterative learning model, which can handle data in
motion while computing in-memory.

Summary of the iterative stream learning model:

• Uses Hoeffding bounds for statistical sampling

• Uses task-induced similarity measure metric

• Handles missing value by randomization

• Distributed in-memory features representation using big-table

• Real-time computation guarantees to process fast streams

The main contribution of the paper is its evolution of static sensor
network algorithms to address dynamic nature of spatio-temporal
domain using Data Streams model. We divide the contribution
into two parts the low-level overlap function and two the in-memory
statistical computational model representation of actionable events.
We show that our overlap algorithm work as a proof of concept
using a simple one-dimensional case. Further experiments with
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(a) Label-less stream learning. (b) Synthetically generated trajectory.

Fig. 2 The prototype of rare event learning functions using distance and similarity of sensor streams produced by trajectory being
cross-validated with ground truth for stream quality.

two-dimensional GPS datasets provided high accuracy in predict-
ing actionable events with large datasets. Hoeffding tree and AI
(Garimella and Iyer 2007) based ANOVA kernel computational
model optimize resource requirements by one-tenth of other well
proven models such as Naive Bayes and non-linear kernels.

VI. METHOD

Lower-level sensor measurements task are prone to errors due to
noise and faulty (Iyer et al., 2008) sensors. Incorrect results can
be obtained as the upper level Gram Matrix relies on tuning few
parameters. Higher level data mining tasks should be descrip-
tive that summarizes the underlying relationships in data. To de-
sign a data-driven application the low-level should be task driven
that is independently supported by higher-level information. Our
higher-order feature induction approach uses learning as follows:
ensemble overlap similarity, Gram matrix using kernel methods,
and moving window using an iterative Hoeffding tree model. Re-
lated work shows that kernel methods have higher predictive per-
formance but does not allow to intuitively understand the rules
extracted from them given the original input space. As we are
analyzing data which has temporal attributes it is equally im-
portant to extract the thresholds which support them. Due to
mobility based location context requirements, our emphasis is
based on natural or explicit rule learning and does not rely on
high-dimensional Gram matrix. Once the rule extraction process
synchronizes with the low-level mining task, one can compare
its performance over a moving window using on-line Hoeffding
tree. The implementation methods discussed below addresses the
following memory requirements for any data stream type. How
learning natural rules from data can be learned in a task driven
model.

A. Algorithm

Real-time algorithms needs to maintain sufficient statistics and
the tree structure in memory. The incremental tree updates due to
the changing statistics are performed by splitting using the best
attribute. When referring to kernel methods an N × N Gram
matrix or an optimized lower rank is stored in memory.

1) Quallity of Data and Big Matrix Representation The
use of tree structure allows efficient in-memory model and at the
same time we like to extend the idea of instance based feature
induction in our mobile applications. Random Forest ensemble
builds many trees which prevents model over-fitting. The imple-
mentation of the distributed big-table (Chang et al., 2006)is by

allowing the ensemble growth of the current working set to be
more than the available fast memory. Internally the big table is
implement as a shared distributed table across worker nodes. Af-
ter the ensemble parameters are tuned and built with sufficient
number of trees then the model is tested. We use the training
set (n) and the out-of-bag samples together, and traverse down
the trees (t) taking one input sample at a time. In the case of
similar samples they will end up in the same terminal nodes (m-
leafs) using n(t lgm) steps. For those cases the model increases
the proximity count by one. To get a number between (0-1), the
model divides the proximity counts for each case by the number
of trees in the ensemble. The elements in the big-matrix will esti-
mate the number of times instances [m and n] end up in the same
node. This sparse measure is useful for upper-level trajectory
learning as shown in Fig. 2(b)and other higher task based rule ex-
tractions from random and synthetic datasets. Computation over-
head for the calculation of Gram matrix can have a worst case of
N ×N . The proximity computation of a Random Forest ensem-
ble is always efficient. The framework can handle any number of
attributes when performing proximity calculation in parallel with
less than ten classes. We show the worst case N ×N complexity
of calculating the primal Gram matrix can be efficiently com-
puted using via its duel representation. The data-cleaning duel
framework’s computation are only dependent on the number of
spatio-temporal features and is given by O(Nl) (Shawe-Taylor
and Cristianini, 2004) where l are linearly independent attributes
found using kernel transforms.

2) Data in Motion When estimating events from big sample
data which can run into 10,000 or more observations. The p-value
is inversely proportional to number of samples, the value goes
quickly to zero as n increases. Relying on p-value estimation
alone cannot find events of practical significance we use a con-
fidence parameter δ to determine the node splits. Due to model
building with fixed size datasets is not possible with limited mem-
ory, we propose a real-time windowed data stream model us-
ing Hoeffding bounds (similar approach to Brook-Iyengar algo-
rithm):

1. Data Streams cannot be stored and an emphasis of in-memory
model is assumed to have low processing latency

2. Sufficient statistics are kept which are essentially a summary
of the data and requires very small memory.

3. The distribution of the stream is expected to change over
time which triggers recalculation of the statistical summaries.
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Constraints (1) and (2) addresses the in-memory requirements of
the data mining algorithm. The constrain (3) for recalculating the
statistical summaries uses a sliding window concept, by which
the last W items are used in the model which have arrived. If the
size of W is moderate then the first two constraints (1) and (2) are
satisfied. The rate of change of spatio-temporal events determine
the optimum size of W. There are two case for selection of W:
(i) the rate of change is small compared to the size of W and (ii)
the data in motion can be drastic but the drastic changes are often
greater than W. The optimal W will vary on the accuracy of the
sensors and the higher level streaming application.

The in-memory iterative model uses a window W which is parti-
tioned into W0 ·W1 with lengths n0, n1, such that n = n0 +n1.
To determine sufficient statistics for our iterative model we de-
fine εcut which minimizes the error (1− δ). To further guarantee
real-time performance we rely on harmonic mean defined by:

m =
1

1
n0

+ 1
n1

δ =

√
1

2m
log

4

δ

There are two cases which can be used for performance guaran-
tees that estimate the change in distribution using a statistical test.

Theorem 1. The performance of our model depends upon on
event rate processing. The data stream model performs in incre-
mental time steps and we have:

1. False positive rate bounds. If the optimal window size is
chosen for the Data Stream application then µt remains
constant within the windows W . The probability that AD-
WIN will shrink the windows at this time step is at most δ.

2. False negative rate bounds. When the optimal window size
W is not known a priori for the Data Stream applications
some events may be ignored due to the overlapping settings
µ0 − µ1 > 2εcut. Then with probability 1 − δ, W shrinks
to W1 in the next time step.

Proof. Assure µw0 = µw1 = µw, we show that for any partition
W as W0W1 we have probability δ

n
that ADWIN will decide to

shrink W to W1, or equivalently.

Pr[|µw1 − µw0| ≥ εcut ≤ δ/n]

Since there are at most n partitions W0W1, the claim follows by
the union bound. For every real number k ∈ (0, 1), |µw1−µw0 ≥
εcut| can be decomposed as

Pr[|µw1 − µw0| ≥ εcut ≤ Pr[|µw1 − µw|
≥ kεcut] + Pr[|µw1 − µw|

≥ (1− k)εcut]

Applying the Hoeffding bound, we have then

Pr[|µw1 − µw0| ≥ εcut ≤ 2exp(−2(kεcut)
2n0)

+2exp(−2((1− k)εcut)
2n1)

Minimizing the sum, we choose the the value of k that makes
both probabilities equal.

(kεcut)
2n0 = ((1− k)εcut)

2n1

which is k =
√
n1/n0/(1 +

√
n1/n0) For this k, we have pre-

cisely

(kεcut)
2n0 =

n1n0

(
√
n0 +

√
n1)2

ε2cut = mε2cut

Therefore, to satisfy we have

Pr[|µw1 − µw0| ≥ εcut] ≤
δ

n

it suffices to have

4exp(−2nε2cut) ≤
δ

n

which is satisfied by

εcut =

√
1

2m
log

4

δ

Proof. Now assume |µw0−µw1 ≥ 2εcut|. We want to show that
Pr[|µw1−µw0| ≥ εcut] ≤ δ, which means that with probability
at least 1− δ change is detected and the algorithm cutsW toW1.
AS before, for any k ∈ (0, 1), we can decompose |µw1−µw0| ≥
εcut as

Pr[|µw1 − µw0| ≥ εcut] ≤ Pr[(|µw0 − µw0|
≥ kεcut) ∪ (| ˆµw1 − µw1| ≥ (1− k)εcut)]

≤ Pr[(|µw0 − µw0| ≥ kεcut)
+Pr| ˆµw1 − µw1| ≥ (1− k)εcut)

To see the first inequality, observe that if |µw0 − µw1| ≤ εcut,
and | ˆµw0 − µw0| ≤ (1 − k)εcut hold, by the triangle inequality
we have |µw0 − µw1| ≤ |µw0 −muw1| ≤ | ˆµw0|kεcut − ˆµw1 +
(1 − k)εcut| ≤ | ˆµw0 − ˆµw1| + εcut ≤ 2εcut], contradicting the
hypothesis. Using the Hoeffding bound, we have then

Pr[| ˆµw0 − ˆµw1| ≥ εcut] ≤ 2exp(−2(kεcut)
2n0)

+2exp(−2((1− k)εcut)
2n1

Now, choose k as before to make both terms equal. By the calcu-
lations in Part 1 we have

Pr[| ˆµw0 − ˆµw1| ≥ εcut] ≤ 4exp(2mε2cut) ≤
δ

n
≤ δ

as desired.

The windows management model assumes for a stable distribu-
tion, the error rate should decrease over time. We propose an
algorithm ADWIN (Bifet and Kirkby., 2009), which uses a dy-
namic window to maintain in-memory statistics. The procedure
is presented in Algorithm 1. At every step ADWIN outputs the
value µ̂w which is an approximate of the value µw. Current
models when mining static datasets the algorithm it able to re-
visit the input data many times. In the stream model this is not
possible when dealing with fast stream processing, as not all the
data needed can be held in memory. Moreover the distribution
of the data source can change over time for the evolving streams.
Due to this the existing mining techniques cannot be applied with
the single pass approach. When the working set is a tree structure
to represent the data model, a single instance of a Very Fast De-
cision Tree (VFDT) is preferred. The memory overhead is over-
come by using Hoeffding bounds. Hoeffding Tree which uses
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Algorithm 1 Adaptive Windowing Algorithm

1: procedure ADWIN(a, b) . The g.c.d. of a and b
2: for t > 0 do
3: Do W ←W ∪ xi
4: repeatDrop elements from the tail of W
5: until | ˆµw0 − ˆµwi | ≤ εcut holds
6: for every split of W into w = w0 ·W1 do
7: end for
8: output µw
9: end for

10:
11: end procedure

this technique for the representing the model does need a train-
ing phase; instead it learns incrementally and can be used to test
new samples at any given time to keep up with high speed of
stream processing. Hoeffding bound states that the true value of
the mean µ, of a random variable of range R, can be practically
approximated for big samples after n independent observations
by more than (with a low probability of error):

ε =

√
R2 lg(1/δ)

2n

The estimation using this bound is useful as it is independent of
the distribution. Maintaining sufficient statistics are explained in

Algorithm 2 Hoeffding tree induction algorithm

1: for training examples do
2: Sort example into leaf l using HT
3: Update sufficient statistics in l
4: Increment nl, the number of examples seen at l
5: if nl mod nmin = 0and examples seen at l not all of

same class then
6: Compute Gl(Xi) for each attribute
7: Let Xa be attribute with highest Ḡl
8: Let Xb be attribute with second-highest Ḡl

9: Compute Hoeffding bound ε =

√
R2 lg(1/δ)

2n

10: end if
11: if Xa 6= X0 and (ḠlXa − Ḡl(Xb) > ε or ε < τ then
12: Replace l with an internal node that splits on Xa
13: for branches of the split do
14: Add a new leaf with initialized sufficient statistics
15: end for
16: end if
17:
18: end for

(line 4-6) of Algorithm 1. Node splitting and how the tree grows
are show in line (12-15) in Algorithm. The Hoeffding bounds
allows to compute the true mean with in a reasonable margin of
error. The growth of the Hoeffding tree can be show in Algorithm
1, is compatible with p@0.01 (Lin et al., 2013) which is desired
for big sample data sizes.

Algorithm 3 Hoeffding Window Tree(Stream δ)

1: procedure EUCLID(a, b) .
2: Let HT be a tree with a single leaf(root)
3: Init estimators Aijk at root
4: for example(x,y) in Stream do
5: HWTreeGrow((x,y),HT,δ)
6: end for
7: end procedure

3) Cholesky Decomposition with Task based Side Informa-
tion - CSI Kernel based data driven learning has become popu-
lar as there are publicly available software libraries which support
to solve complex matrix multiplication, pseudo inverse and con-
vex optimizations needed in vector modeling (Kar and Karnick.,
2012). One of the popular forms of factorization is Cholesky
decomposition (Bach and Jordan., 2005). Since the Cholesky de-
composition is unique, performing a Cholesky decomposition of
the kernel matrix is equivalent to performing GramSchmidt or-
thonormalisation in the feature space, and hence we can view
Cholesky decomposition as the dual implementation of the Gram-
Schmidt orthonormalisation. The normal Gram matrix obtained
from this is very large and in the order of N2. The general opti-
mization does not include side information which are in the form
of class labels or response variables. Our previous discussion on
using a sparse representation instead of full Gram matrix (Bach
and Jordan., 2005) can be realized by this method. While the
optimizatio step pivots are generated during factorization an ad-
ditional optimizations is used by CSI to include the remaining la-
bel information. Which allows to generate sparse and most of the
time lower ranked matrices compared to the the general Cholesky
methods. CSI optimization methods allows to reduce size of the
final matrix allowing fast in-memory kernel models without loss
of prediction accuracy. Similar to our previous approach of using

Algorithm 4 Hoeffding Window Tree(Stream δ)

1: procedure HWTREEGROW(((x,y),HT,δ))
2: Sort (x, y) to leaf l using HT
3: Update estimators Aijk
4: at leaf l and nodes traversed in the sort
5: if l in Talt then
6: HWTreeGrow((x,y),Talt, δ)
7: end if
8: Compute G for each attribute
9: Evaluate condition for splitting leaf l

10: if (Best Attr.)-G(2nd best) > ε(δ
′
, ...) then

11: then Split leaf on best attribute

12: end if
13: for each branch of the split do
14: Start new leaf
15: and initialize estimators
16: end for
17: if if one change detector has detected change then
18: Create an alternate subtree Talt at leaf

l if there is none

19: end if
20: if existing alternate tree Talt is more accurate then
21: then replace current node l with

alternate tree Talt
22: end if
23: end procedure

task based Random Forest metric representation, we employ task
based optimization to kernel matrix decomposition as described
in CSI (Bach and Jordan., 2005) Algorithm 4. As previous dis-
cussed the kernel matrix are huge (Chang et al., 2006) and in the
order of N2 for real-time processing. To reduce the rank of the
kernel matrix we use its labels (side-information) to mitigate piv-
ots (5) used during matrix factorization. The spatial feature and
its residual characteristic of the significant Eigen values (λ) and
its following Eigen vectors (ν) are studied, the final rank obtained
is always lower than theN2 Gram matrix. Lines 5-9 in Algorithm
4 shows how the pivots are selected for a task based optimization.
The above pre-processing step allows in-memory representation
of large matrix.
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VII. EXPERIMENTS ON UCI AND MSR DATASETS

The spatio-temporal datasets used in testing included forest cover
(UCI), Statlog (UCI), and Geolife (Zheng et al., 2009) training
and testing sets. We study the two task induced in-memory mod-
els: (i) QoD and explicit rule proximity matrix learning with-
out kernel (bigrf-Table), and (ii) kernelized implementation in
R based on labels (CSI-Kernel class). The performance of the
predictive models are compared in three different memory scales
(shown in x-axis of Fig 3): temporal windows in real-time (samples-
per-sec), Original input space (Batch) (R2), and N ×N induced
big-table feature space (Rd) (see Fig 3.)

A. Estimating Events Using Hoeffding Bounds for Big Sam-
ple - Real Variables

When estimating big samples the underlying source can be one
of the following distributions:

• Normal

• Uniform

Algorithm 5 Cholesky decomposition with Side Information-
CSI

1: procedure CSI(K,Y )
2: Perform δ look-ahead steps of Cholesky and QR decom-

position selecting pivots according to learning task
3: Initialization: η = 2ε, k = 1
4: while doη > ε and k ≤ m
5: Compute estimated gains for the

remaining pivots, and select best pivot

6: If new pivot not in the set of

look-ahead pivots, perform a Cholesky and a

QR step, otherwise perform the steps with a

pivot optimization

7: Permute indices in the Cholesky and QR

decomposition to put new pivot in position k

8: Compute exact gain η;let k = k + 1
9: end while

10: Output G and its QR decomposition
11: end procedure

The accuracy of the ensemble model cannot be based on p-value
alone as discussed in earlier sections. We introduce an reliabil-
ity factor (Iyer2009b) which is used as a confidence measure to
further distinguish the best feature to split on at the nodes. The
sufficient statistics used by the in-memory model for prediction is
based on Hoeffding bounds where δ ≥ ε (statistical significance).

δ =

√
1

2m
log

4

δ

Where : δ ≥ ε

1) Performance in Real-Time- Using Hoeffding bounds To
simulate a huge live streams we used the forest cover type dataset
(Newman and Asuncion., 2007b), which has over 581,012 la-
beled samples. The predictive model builds a Hoeffding tree with
155 leafs nodes. Which took 12.69 seconds to build the tree in
memory with a node splitting probability of p@0.001. The Ho-
effding tree uses a very fast decision tree and closely approxi-
mates a full fledged decision tree. The estimated reduction of
tree size from the original 53,904 leafs used by Random Forest
classifier compared to 155 leafs used by Hoeffding tree. This fast
decision tree implementation with incremental learning performs
with a baseline accuracy of 79.5%.

Sensors S1 S2 S3 S4

Observed 4.7 ± 2.0 1.6 ± 1.6 3.0 ± 1.5 1.8 ± 1.0

TABLE I A typical sensor dataset.

S1 S2 S3 S4 Overlap
S1 1 0 1 1 0.66
S2 0 0 2 1 1
S3 1 1 0 1 1
S4 1 1 1 0 1

TABLE II Proximity counts after adding S4 (good sensor) the
ensemble overlap estimation now changes S1 to tamely faulty.

B. Estimating Events Using Hoeffding Bounds Random Vari-
ables - Explicit Lower Dimension Representation

When mapping higher dimension space to an approximate linear
lower dimension space, we use the following conversion:

• Euclidean distance

• Proximity distance

Optimization accuracy for linear case is:

sup| < Z(x), Z(y)−K(x, y) > | ≤ ε

1) Explicit Rule Extraction (Non-Gram matrix) in one di-
mension - R A typical sensor measurement with an average
and range that are provided as an base case example in Fig. 1.
Using our proposed explicit feature metric which can be scaled
between [0, 1]. This allows a uniform metric for all applications
and to compare events of interest in any domain. In the exam-
ple of four sensors we initially take three out of four to form an
ensemble feature matrix. The matrix uses our proposed explicit
feature representation as shown in this section. As shown in Fig.
3 (and tables) S1 and S3 fall into the same terminal node and
their proximity count is incremented by one. Table I shows the
overlapping rules on the right show the overlapped measure of
reliability of S1 − S3 combined. If we use fuzzy interval defini-
tion of sensors to represent the varying levels of overlap then we
represent its reliability by:

• Non faulty (= 1)

• Tamely faulty (≥ 0.5)

• Widely faulty (≤ 0.5)

Applying the rules to our dataset we find S2 and S3 are non faulty
(as illustrated in table) as they have the maximum overlapping
count. At the same time S3 and S2 is tamely faulty as S2 is in-
clusive of S3. The higher level application can now rely on mea-
surements from S2 and S3 for its precision and range accuracy.

To further see the ensemble optimization we introduce S4 and
create the new feature matrix as formed in Table II. Reading from
the data in the overlap column we see that S4 has a maximum
overlap of 1. The addition does not have any effect on S1. The
accuracy of the random subspace learned from the trees include
S4 as it has a narrow range compared to all others. The accuracy
of the one dimensional case can then be measured as, 3 out of 4
sensors have a high degree of precision.
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Sensors S1 S2 S3

1 2.7 0 1.5
2 4.7 1.6 3.0
3 6.7 3.2 4.5
... ... ... ...

S1
,S3

S1 S2 S3 Overlap
S1 1 0 2 0.67
S2 0 0 3 1
S3 1 2 0 1

Fig. 3 S1&S3 end up in the same terminal node. The Big-Table proximity count is incremented by 1. (The color metric in the overlap
columns specifies quality of data: Green=non faulty; Blue= tamely faulty; Red=widely faulty)

BUS CAR WALK Overlap
BUS 488 0 76 0.135
CAR 0 516 1 0.001

WALK 133 1 294 0.313

TABLE III Feature induced matrix using two dimensional
datasets.

2) Explicit Rule Extraction (Non-Gram Matrix) in two di-
mension - R2 Experiments are conducted Using the Geolife
trajectory dataset similar to the one-dimensional case discussed
as the base case example. The explicit learning algorithms use a
tree structure to learn the user’s trajectories generated by mobility
models of car, walking and riding bus. The matrix representation
of the feature space shows that the mobile user’s walking class
has the highest information gain as marked (green) in Table III.
The predictive peak performance of bigrf-table is 96% for an en-
semble size of 100 trees as shown in Fig. 5, when compared to
the real-time streaming model. The added memory overhead of
using a N × N in the two-dimensional case is solved by using
distributed shared configuration across multiple nodes of a clus-
ter.

C. Estimating Events Using Hoeffding Bounds for Kernel
Variables - Curse of Support

When dealing with support vector machine to transform non-
linear relations to linear space we use the following kernels:

• ANOVA kernel k(x;x
′
) =

∑
1≤i1...<iD≤N

∏D
d=1 k(xid, x

′
id)

• Bassel Kernel k(x;x
′
) = (−Besselny+1ρ||x− x

′
||)

• Radial Basis Kernel k(x;x
′
) = exp(−ρ||x− x

′||2)

• Laplace Kernel k(x;x
′
) = exp(−ρ||x− x

′
||)

Optimization accuracy for non-linear case is:

sup|K(x, y)| ≤ ε

1) Data Representation Using Gram Matrix with Side Infor-
mation Optimization - FRd For computational comparison,
we perform feature space analysis using the Incomplete Cholesky
(CSI) R package. The task based optimization uses pivoting to

reduces the original [4434x4434] matrix. The final feature ma-
trix rank is reduced from 4437 to 20 as show in Table IV. The
lower rank outcome is based on the type of features induced us-
ing the kernel functions. ANOVA kernel uses the least number
of samples and at the same time has superior prediction accuracy.
The rest of the kernels RBF, Laplace and Bassel have comparable
accuracies but the computation is 5× slower due to large matrix
ranks. Further using visualization and projection as shown in Fig.
4. (Scholkopf et al., 1999) reveals that ANOVA kernel is able to
induce higher-order features (up to 20) to separate all the six cat-
egories. This is due to ANOVA being able to learn statistical
similarities from subspaces and represent them efficiently as fac-
tors. Earlier results verifies from section IV on side-information
using associates rules for the same dataset that the attributes are
statistically correlated.

The same experiments are repeated without PCA like optimiza-
tion and using the kernels directly with the input datasets. The
following results for the non-optimized Gram matrix are shown
in Table V. The overall reduction is accuracy is by 10%.

2) Data Representation Using N × N Gram Matrix - with
No Memory Optimization The standard kernels: ANOVA, Gaus-
sian RBF and linear SVMs are used with full rank matrices (i.e.
without memory optimization). The non-optimized model’s ac-
curacies are moderate to base line variability, when compared to
kernels with in-memory optimization. The comparative results
are illustrated in the Fig. 4., ANOVA-kernel has a peak perfor-
mance of 89.56% is significantly lower than the task based ap-
proach. The kernel KSVM R package (Karatzoglou et al., 2004)
allows to tune the SVM (Blanchard et al., 2004) soft margin pa-
rameters C and γ by use of cross-validation. The higher the C
the better would be the fit (see Section 2), but it may not general-
ize well. Using the cross-validation techniques discussed above,
we arrive at d=2,sigma=0.015,C=50, when using cross-validation
(cross=4) for the spatio-temporal example UCI dataset (Newman
and Asucion., 2007).

We provide the optimization driven by real-time streaming re-
quirements with related cloud streaming analytics services. The
details are in the plot as shown in Fig. 5. The on-line ver-
sion of TREEFORESTCOVER supports multi-class and labelled
samples in its in-memory implementation similar to the fault-
tolerant algorithm of Brook-Iyengar. The approximate Hoeffding
tree performs close to the best tree classifier with an accuracy of
79.5%. The results signifies the Hoeffding tree are among the
best category of classifiers.
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TABLE IV Reconstruction Error: Results for the UCI-Landsat dataset when pre-processing features with statistical properties of kernels
(included Incomplete-Cholesky).Configuration:Intel i5-2435M Processor, 2.40GHz; 4GB DDR3. The timings included show feature
extraction during pre-processing. Side-Info column indicates if it is supervised or unsupervised learning.

Pivot election Training Accuracy Rank SV Time (Batch in sec.) Side-Info.
ANOVA kernel 89.6% 20 20 40 Y
Laplace kernel 86.5% 100 1489 120 Y
Bassel kernel 86.4% 100 1488 120 Y
RBF kernel 78.6% 100 1636 120 Y
Inchol RBF - 3067 - - N

TABLE V Prediction Error: Results for the UCI-Landsat dataset when post-processing to predict or categorize the datasets using
unknown test samples. The timings included show training time during learning the models.

Models Gram Matrix Task Matrix
No. of Trees

Statistical Models Train Test t=25 t=50 t=75 t ≥ 100
Task Based Learning - Trajectory Dataset 91% 95% 96% ⇑
Task Based Learning - Landsat Dataset 89% 91% 85% ⇓
ANOVA-Kernel SVM 81.6% 82.87%
RBF-Kernel SVM 62.1% 52.2%
Linear SVM 69.1% 67.7%
Hoefdding Tree Learning - Forest Cover Type Dataset 155 leafs (baseline)

53904 leafs (original RF) = 350% reduction in sufficient stats.

The ensemble based rfBig explicit deep feature engineering frame-
work performs significantly well for the synthetic datasets such
as trajectories. The popularity of distance based kernel method
shows how higher-order features helps to better predictive per-
formance, without knowing a priori the underlying distribution,
specially with few number of training data.

VIII. CONCLUSION

In this work we have extended an existing real-time sensor net-
work algorithm using Hoeffding bounds to learn rare events of
practical significance which can be applied to any stream distri-
bution. The rare event feature learning which are computation-
ally expensive have been adapted for resource constrained real-
time streaming needs. The enhancements distinguishes the im-
pact on model performance which sometimes can be biased due
to the datasets. The spario-temporal concepts learned shows that
explicit rule learning has many advantages and can significantly
increase performance when used with mobile trajectories. On
the other hand when learning the kernel function and its Gram
matrix, and using far more induced features helps the model to
predict with higher accuracy. The use of spatio-temporal datasets
brings out the art of pattern recognition and AI to life. The task
based approach when applied to explicit and kernel based pre-
diction has shown improved accuracy compared to earlier kernel
versions. This AI framework’s enhancements will help develop
geo-spatial applications which can reliably and efficiently find
actionable events from satellite imagery. The learning of stream
uses a non-parametric approach for outliers detection in time se-
ries streams and, a task based approach to improve QoD.
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max. 4 classes. All 6 classes. All 6 classes.
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Random Forest Performance: (a) SATLOG (Spatial Landsat) (b) GEOLIFE Trajectory.

(c) Gram Matrix SATLOG (Spatial Landsat) (d) Hoeffding Tree.
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Fig. 5 Average accuracy of randomForest, randomForest-Big, CSI-Kernel matrix and Hoeffding tree and over many datasets versus
the maximum number of options per example. Accuracies were estimated to perform memory optimizations for the final model. The
real-time streaming is show in green which performs close to the best known batch tree model.
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