
Atmos. Chem. Phys., 18, 1629–1642, 2018
https://doi.org/10.5194/acp-18-1629-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

Maxwell–Stefan diffusion: a framework for predicting condensed
phase diffusion and phase separation in atmospheric aerosol
Kathryn Fowler, Paul J. Connolly, David O. Topping, and Simon O’Meara
School of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, UK

Correspondence: Paul James Connolly (p.connolly@manchester.ac.uk)

Received: 5 May 2017 – Discussion started: 6 June 2017
Revised: 10 November 2017 – Accepted: 28 November 2017 – Published: 5 February 2018

Abstract. The composition of atmospheric aerosol particles
has been found to influence their micro-physical properties
and their interaction with water vapour in the atmosphere.
Core–shell models have been used to investigate the rela-
tionship between composition, viscosity and equilibration
timescales. These models have traditionally relied on the
Fickian laws of diffusion with no explicit account of non-
ideal interactions. We introduce the Maxwell–Stefan diffu-
sion framework as an alternative method, which explicitly
accounts for non-ideal interactions through activity coeffi-
cients. e-folding time is the time it takes for the difference in
surface and bulk concentration to change by an exponential
factor and was used to investigate the interplay between vis-
cosity and solubility and the effect this has on equilibration
timescales within individual aerosol particles. The e-folding
time was estimated after instantaneous increases in relative
humidity to binary systems of water and an organic com-
ponent. At low water mole fractions, viscous effects were
found to dominate mixing. However, at high water mole frac-
tions, equilibration times were more sensitive to a range in
solubility, shown through the greater variation in e-folding
times. This is the first time the Maxwell–Stefan framework
has been applied to an atmospheric aerosol core–shell model
and shows that there is a complex interplay between the vis-
cous and solubility effects on aerosol composition that re-
quires further investigation.

1 Introduction

Aerosol particles are an uncertain component of the Earth’s
atmosphere, interacting directly by scattering and absorbing
radiation and indirectly by acting as nuclei for the forma-

tion of cloud droplets and ice crystals (Boucher et al., 2013).
Properties of atmospheric aerosols depend upon their shape,
composition and size, which can vary by orders of magnitude
between individual particles. Predicting changes in the com-
position and micro-physics of individual aerosol particles
is difficult, both theoretically and computationally, which is
largely due to the complexity of chemical compositions and
the need to account for multiple processes. Recent labora-
tory studies have found evidence that liquid–liquid phase
separations can exist within aerosol particles (Zuend et al.,
2010; Song et al., 2012). Further studies have found that or-
ganic aerosols can exist in an ultra-viscous or an amorphous
state (Virtanen et al., 2010), where viscosities can range over
many orders of magnitude (Lienhard et al., 2015). In an ultra-
viscous state, mixing, or diffusion, through the particle is in-
hibited. There is conflicting evidence on the importance of
the role that viscous aerosols play in the atmosphere accord-
ing to focused laboratory studies on single particles and en-
semble populations (Ye et al., 2016; Yli-Juuti et al., 2017). To
better understand this process, a number of studies have mod-
elled individual aerosol particles to have a core–shell struc-
ture to model changing composition (Zobrist et al., 2011;
Shiraiwa et al., 2013; O’Meara et al., 2016).

These core–shell models have relied upon Fickian laws of
diffusion to simulate the mixing of compounds through indi-
vidual particles. Fickian diffusion frameworks have played
an important role in the investigation of mixing in glassy
aerosol particles, where viscosity has been used as a proxy
for phase state changes between a liquid and an ultra-viscous
particle (Lienhard et al., 2015; Price et al., 2015). Diffusion
in the Fickian sense is driven by a gradient in concentration
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as described by Fick’s first law of diffusion,

J =−D
∂c

∂r
, (1)

where c(r) is the solute concentration, and D is the Fick-
ian coefficient that describes ideal diffusion properties (Fick,
1855). However, this assumes steady-state diffusion without
any time dependence. Non-steady diffusion is described nu-
merically by Fick’s second law of diffusion,

∂c

∂t
=∇ ·D∇c, (2)

where concentration c(r, t) is a function of both position and
time. It has been shown that numerical models solving both
Fick’s first and second laws for an aerosol particle give con-
sistent solutions when time steps in first-law models are suf-
ficiently small (O’Meara et al., 2016). Since the diffusion co-
efficient is an important factor in finding mixing timescales,
many studies have aimed to quantify this value, relying on in-
verting such models (Lienhard et al., 2015; Price et al., 2015,
2016).

Direct measurements of diffusion coefficients rely on
single-particle equilibration timescales and find the Fick-
ian diffusion coefficient in binary mixtures (Price et al.,
2014; Lienhard et al., 2014). These experimental findings
have given an insight into the physical processes underpin-
ning diffusion through aerosol particles. However, the lim-
ited database of these coefficients cannot represent the range
and complexity of multicomponent systems found in the at-
mosphere. There is also great uncertainty in measurements of
diffusion. For instance, the current best estimates of diffusion
rates for water through amorphous α-pinene at low-water ac-
tivities span over 4 orders of magnitude (Price et al., 2015).
Investigations into the equilibration time of aerosol particles
have largely been based on arbitrary limiting values or related
to the solution viscosity through the Stokes–Einstein equa-
tion, which relates the diffusion coefficient to the variables
of temperature, atomic radius and solution viscosity. How-
ever, use of the Stokes–Einstein equation can cause diffusion
coefficients to deviate by 3 orders of magnitude in non-dilute
solutions and up to 5 orders of magnitude in amorphous ma-
terials from direct experimental measurements (Power et al.,
2013).

Mixing rules provide mutual diffusion coefficients in mix-
tures and describe the relationship between diffusion and
concentration. Diffusion coefficients of pure substances act
as limiting values in these functions at the extremes of con-
centration and are referred to as self-diffusion coefficients.
Many different mixing rules have been suggested, from a
simple constant relationship (O’Meara et al., 2016), to the
Darken relation (Darken, 1948), or the Vignes relation (Vi-
gnes, 1966) and a sigmoidal relationship (Lienhard et al.,
2014) between diffusion coefficient and concentration. Dif-
ferent mixing rules in numerical models have been found to

affect how aerosol composition varies with time (O’Meara
et al., 2016).

The limited database of diffusion coefficients and viscosi-
ties has restricted the testing of Fickian diffusion models. Al-
though the Fickian framework has been used to successfully
model simple binary mixtures, (Song et al., 2016), these sim-
ple binary systems cannot truly represent the complexity of
atmospheric aerosol particles. The molar-based concentra-
tions, c, used in Eq. (2) are not convenient forms of ther-
modynamic activity variables (Taylor and Krishna, 1993),
which relate to the non-ideal effects of mixing. Therefore,
the Fickian framework limits any investigation into the rel-
ative effects of solubility and drag on overall diffusion rate.
However, more recently, kinetic multi-layer models based on
the PRA framework (Pöschl et al., 2007) have treated both
the ideal mixing and solubility effects of diffusion using ac-
tivity coefficients (Shiraiwa et al., 2013). Furthermore, when
multicomponent systems are considered, the Fickian model
is not generally applicable (Krishna and Wesselingh, 1997).
For these reasons, we suggest that the Maxwell–Stefan diffu-
sion laws could offer an alternative framework in which the
effects of phase state and solubility are explicitly combined.

The Maxwell–Stefan diffusion equation differs from the
Fickian case as mixing is driven by a gradient in chemical
potential. The Maxwell–Stefan equation is given by

xi∇ lnai =−
N∑
j 6=i

ciJj − cjJi
c2Ðij

, (3)

where xi , ai , ci and Ji are the mole fraction, activity coeffi-
cients, concentration (molar density) and flux of the ith com-
ponent respectively, c is the molar density of the mixture, Ðij
is the Maxwell–Stefan diffusion coefficient of component i
through component j and N is the total number of compo-
nents. By solving Eq. (3) on a spherically symmetric grid,
the effect of solubility on mixing through aerosol particles
is explicitly accounted for through the inclusion of activity
coefficients.

The aim of this study is to investigate the effect of solubil-
ity on diffusion timescales, by comparing both Fickian and
Maxwell–Stefan model simulations. Binary mixtures of a
representative organic compound and water are used to inves-
tigate the sensitivities of these models to both self-diffusion
coefficient and solubility at room temperature. Self-diffusion
coefficients are investigated in the range of 1 × 10−9 to
1 × 10−25 m2 s−1. To test the non-ideal effects of diffusion,
sucrose was selected to represent a soluble compound and a
series of monocarboxylic acids as examples of varying im-
miscibility in water.

2 Model description

The numerical diffusion frameworks are solved for the spher-
ically symmetric shell model shown in Fig. 1. The Fickian
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and Maxwell–Stefan laws of diffusion are solved to find the
concentration fluxes on each of the shell boundaries. The
diffusion equations have been solved for multicomponent
systems and details of these calculations can be found in
Sects. 2.1 and 2.2. However, to investigate the sensitivities of
diffusion timescales to the model used, the number of com-
ponents in the aerosol particle has been limited to two.

The model has a moving boundary, which allows growth
and shrinkage of the particle depending on the ambient con-
ditions by assuming that equilibrium relative humidity equals
the liquid water mole fraction in the outer aerosol shell. By
assuming that the outer aerosol shell is in equilibration with
the ambient relative humidity, the study focuses solely on the
effect non-ideality has on the rate of condensed phase dif-
fusion and equilibration timescales. We appreciate that the
assumption that the surface layer is always in equilibrium
with the ambient relative humidity may not always be valid in
the case of viscous aerosol particles at low temperatures and
relative humidities. Laboratory evidence has suggested that
amorphous particles could efficiently absorb water into the
particle bulk under certain conditions, in contrast to glassy
particles, where water vapour may be limited to surface ad-
sorption (Mikhailov et al., 2009).

To ensure that numerical effects did not accelerate the rate
of diffusion, a maximum shell width is defined. When the
radius of the particle grows or shrinks, the number of shells
increases or decreases and the volume of the outer shell can
vary depending upon the number of moles it contains. More
details about the moving boundary can be found in the Ap-
pendix.

2.1 Fickian framework

By assuming that concentration depends only on time and the
radial component, Eq. (2) was solved in a spherically sym-
metric coordinate system using the backward Euler method
of finite differences. After rearranging, the change in con-
centration between the time steps is related by a tri-diagonal
matrix of the form

cnk = αkc
n+1
k−1 +βkc

n+1
k + γkc

n+1
k+1 , (4)

where

αk =−
1t r2

n−1Dk−1

r2
n1rn− 1

2
1rn

,

βk = 1−
1t r2

n−1Dk−1

r2
n1rn− 1

2
1rn
+
1t r2

n+1Dk+1

r2
n1rn+ 1

2
1rn

,

γk =−
1t r2

n+1Dk+1

r2
n1rn+ 1

2
1rn

.

The subscript k corresponds to the shell number and super-
script n to the time step. Details of the steps taken during
the matrix manipulation are given in the Appendix. In the

Figure 1. The aerosol shell model, where diffusion equations are
solved numerically to find concentration flux across the shell bound-
aries. The flux across the outer shell is set to zero, denoted as JK .
However, during each time step water is added to the outer shell
to equilibrate it with the surrounding relative humidity, such that
xw =

RH
100 % . For the purposes of this study it is assumed that the

aerosol outer shell equilibrates instantaneously with the ambient
conditions in order to investigate the effect of condensed phase dif-
fusion on equilibration timescales. Concentric shells are initialized
to be equally spaced – as the aerosol particle grows or shrinks the
number of shells in the model increases or decreases. The radius of
the outer aerosol shell is variable and acts as a moving boundary to
denote the precise size of the particle.

diffusion step, it was assumed that the organics were in-
volatile; hence there is no external source of material diffus-
ing through the drop, by specifying Neumann flux boundary
conditions

cn+1
K+1− c

n+1
K−1

1rK
= 0,

cn+1
2 − cn+1

0
1r1

= 0, (5)

where the flux through the boundary of the Kth shell is set
to zero. Growth of the particle occurs when water is added to
the surface shell. Details of the moving boundary are given
in the Appendix.

2.2 Maxwell–Stefan framework

The Maxwell–Stefan law of diffusion from Eq. (3) was
solved on the aerosol shell model defined in Fig. 1. During
the diffusion step we assume that flux at the shell boundary
is zero, and consequently find a matrix to solve for the flux
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across each of the shells given by
x1∇ lna1
x2∇ lna2

...

xN−1∇ lnaN−1

= A
c2


J1
J2
...

JN−1,

 (6)

where A is a matrix defined as

Aij =


−

∑N

j 6=i

(
cj

Ðij
+

ciρNMi

ÐiN ρiMN

)
if i = j,

−

(
ci

Ðij
−

ciρNMj

ÐiN ρjMN

)
if i 6= j.

(7)

Details of this calculation are given in the Appendix. The
solution matrix in Eq. (6) is rearranged to find the diffusion
fluxes, J, which are used to find corresponding Fickian diffu-
sion coefficients on the shell boundaries by substituting into
Eq. (1). The diffusion coefficients are then used in the nu-
merical solution to Fick’s second law in Eq. (4).

In our experiments the organic component is assumed to
be non-volatile and only water enters and leaves the aerosol
particle. Water is added and removed from the particle at
the end of each time step, which allows us to assume that
the flux at the shell boundary is zero during the diffusion
step. The UNIFAC model is a semi-empirical system that
uses both the interactions between functional groups found
in the molecules and binary interaction coefficients to calcu-
late the activity coefficients of each component within a solu-
tion (Fredenslund et al., 1975). This study uses the UNIFAC
group contribution model to estimate the activity coefficients,
ai , in Eq. (3).

2.3 Diffusion coefficients

The Fickian and Maxwell–Stefan diffusion coefficients are
both functions of concentration, temperature, pressure and
composition. For higher-order systems, the diffusion coeffi-
cient describing each component in a mixed solvent is re-
quired. This is mathematically expressed as a matrix of indi-
vidual binary diffusion coefficients.

A mixing rule is used to estimate the relationship of a mu-
tual diffusion coefficient with mole fraction. These mixing
rules are based on self-diffusion coefficients of pure sub-
stances, found at the limits of mole fraction, Di,self. Diffu-
sion coefficients in the literature cover a wide range of val-
ues (Shiraiwa et al., 2013; Price et al., 2015; Lienhard et al.,
2015); hence the self-diffusion coefficients in this study have
been chosen to fall within this range in order to investigate
model sensitivities.

A variety of different mixing rules have been investigated
(O’Meara et al., 2016), however, for the purposes of this
study, we have selected the Darken and Vignes relations.

1. The Darken equation assumes a linear relationship be-
tween mole fraction and diffusion coefficient (Darken,

1948),

Ðij = xiDi,self+ xjDj,self. (8)

The Darken relation has been observed to better de-
scribe the mixing of ideal liquids (Wesselingh and
Bollen, 1997).

2. The Vignes equation assumes a logarithmic relationship
between mole fraction and diffusion coefficient (Vignes,
1966),

Ðij =
(
Di,self

)xi (Dj,self
)xj . (9)

The Vignes relation is preferred to describe the mixing
of viscous fluids, where there is a large difference be-
tween their respective self-diffusion coefficients (Wes-
selingh and Bollen, 1997).

The relationship between water mole fraction and the mu-
tual diffusion coefficient found from the Darken and Vignes
mixing rules are shown in Fig. 2.

The Maxwell–Stefan framework separates the ideal and
non-ideal effects of diffusion, unlike the Fickian model.
Therefore, solutions to the Fickian and Maxwell–Stefan
equations only coincide when the mixture is ideal and solu-
bility does not affect the rate of mixing. The two frameworks
are related through the so-called thermodynamic factor 0:

D = Ð0. (10)

The thermodynamic factor gives an effective Fickian diffu-
sion coefficient for the Maxwell–Stefan case (Krishna and
Wesselingh, 1997) and is a function of mole fraction and ac-
tivity coefficient,

0ij = δij + xi
∂lnai
∂xj

∣∣∣∣
T ,p,xk,k 6=j=1,2,...,n−1

(11)

evaluated at given conditions for temperature T , pressure
p and mole fraction xi , while keeping the mole fraction of
all other species, xk , constant (Taylor and Krishna, 1993),
where δij is the Kronecker delta. The resulting diffusion co-
efficient does provide a non-ideal correction to the Fickian
diffusion coefficients. However, it predicts negative diffusion
coefficients when the thermodynamic factor becomes nega-
tive, which the Fickian framework has not been designed to
deal with. The resulting diffusion coefficients are sensitive
to the model used to calculate the activity coefficients (Tay-
lor and Krishna, 1993), which is why we have not used the
thermodynamic factor as a correction to Fick’s laws. Instead,
we show the relationship between the thermodynamic factor
from Eq. (10) and water mole fraction in Fig. 2 to give an
indication of how solubility effects differ between sucrose,
butanoic and hexanoic acid.
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Figure 2. The dependence of diffusion coefficient and thermody-
namic factor on water mole fraction. The solid and dashed black
lines represent the Darken and Vignes mixing rules from Eqs. (8)
and (9) respectively. The self-diffusion coefficients for water and
the non-volatile species are Dself = 1 × 10−9 and Dself = 1 ×
10−18 m2 s−1 respectively. The thermodynamic factors for sucrose
(red), butanoic acid (blue) and hexanoic acid (green) are shown in
the lower panel. Phase transitions are indicated when the thermo-
dynamic factor crosses the x axis and equals zero. Activity coeffi-
cients used to calculate the thermodynamic factor were found using
the UNIFAC model at a temperature of 293.15 K.

3 Results

3.1 General model behaviour

In this study small self-diffusion coefficients of the non-
volatile organic compound have been used as a proxy for sys-
tems with a pronounced glassy state. To investigate the model
sensitivities to viscosity and solubility, the self-diffusion co-
efficient of the non-volatile compound was varied between
10−26 and 10−9 m2 s−1 in the Darken and Vignes mixing
rules and the compounds of sucrose, butanoic and hexanoic
acid were chosen to simulate a variety non-ideal effects on
mixing timescales. The effect of relative humidity on diffu-
sion was also investigated by increasing the equilibrium rela-
tive humidity at t = 0 from 10 up to 30, 80 and 99 % respec-
tively.

Figures 3 and 4 show the general features of the diffusion
frameworks through plots of changes in radial composition
with time, after an instantaneous increase in equilibrium rel-
ative humidity at t = 0. In Figs. 3 and 4, the self-diffusion
coefficient of the organic component has been kept constant
at 1 × 10−18 m2 s−1, so as to focus on the effect of solubility
on mixing timescales and particle growth. The ideal Fickian
solution acts as a control, where change in aerosol composi-
tion with time is modelled without solubility effects arising
from intermolecular interactions. Sucrose, butanoic and hex-
anoic acid provide examples with a spectrum of solubility
in water to test the sensitivity of diffusion rates to non-ideal
effects.

By first considering the Fickian simulations in Figs. 3
and 4 we are able to focus on the general model behaviour
that relates to the ideal effects of diffusion, which in our
simulations relate to the Darken and Vignes mixing rules re-
spectively. There are two key differences between the simula-
tions. The first is the timescale of diffusion, and the second is
the gradient of the diffusion front. These features have also
been noted in previous modelling studies (O’Meara et al.,
2016). At low water mole fractions, where the relative hu-
midity is increased from 10 to 30 % the Vignes simulations
equilibrate on the scale of seconds, which is 6 orders of mag-
nitude greater than the Darken mixing rule in Fig. 3 predicts.
However, at high water mole fractions, when the relative hu-
midity is increased from 10 to 99 %, the timescales of diffu-
sion are more alike. This difference in diffusion timescales
between the two mixing rules can be related to the diffusion
coefficients in Fig. 2. At low water mole fractions the differ-
ence between the Darken and Vignes mixing rules is large,
whereas at high water mole fractions the difference between
the two mixing rules is smaller.

Now we move on to discuss the Maxwell–Stefan simu-
lations of sucrose, butanoic and hexanoic acids, which also
take into account the non-ideal effects of diffusion through
the activity coefficients from the UNIFAC model, which is
assuming the liquid state. First notice that there is little dif-
ference between any of the simulations when relative humid-
ity was instantaneously increased from 10 to 30 % in the first
column of both Figs. 3 and 4. The effects of solubility have a
negligible impact on the rate of diffusion at low water mole
fractions, as Fig. 2 shows that thermodynamic factors do not
diverge significantly at water mole fractions less than 0.3.

In the cases where relative humidity has been instanta-
neously increased from 10 to 80 %, the variation in growth
rates and aerosol composition is greater than when relative
humidity is increased to 30 %. Variation in mixing timescales
can be explained by the diverging thermodynamic factors
at high water mole fractions in Fig. 2. It is the polarity of
molecules in solution that determines their ability to mix,
and water molecules are particularly polar due to the posi-
tion of hydrogen atoms and the permanent dipole moment.
Polar molecules, such as sucrose, are more likely to mix with
water as intermolecular bonds form between solute and sol-
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vent, which releases energy and further disrupts intermolecu-
lar forces between the solute particles and leads to mixing. In
contrast, non-polar molecules or sections of molecules, such
as alkyl chains, tend to aggregate within water due to hy-
drophobicity. Monocarboxylic acids are an example of this,
as a COOH functional group is positioned at the end of an
alkyl chain. As the length of the alkyl chain increases from
butanoic to hexanoic, we show that in both the Darken and
Vignes examples the rate of mixing reduces significantly due
to the greater hydrophobic tendency.

As expected, in Figs. 3 and 4 we find that sucrose grows
more quickly than the ideal Fickian case when relative hu-
midity is increased from 10 to 80 or 99 %, reaching equilib-
rium in almost half the time of the ideal case. The difference
in equilibration times shows that solubility needs to be taken
into consideration when modelling the change in composi-
tion of atmospheric aerosol particles with time, particularly
at high water mole fractions.

Butanoic and hexanoic acid, which are the immiscible ex-
amples in Figs. 3 and 4, are more interesting. The shorter
chain monocarboxylic acid, butanoic acid, containing four
carbon atoms, diffuses at a slower rate than the Fickian case,
as water on the surface of the particle is inhibited from dif-
fusing into the centre of the particle. The slower rate of mix-
ing corresponds to a thermodynamic factor which is between
zero and one at high water mole fractions for butanoic acid,
as shown in Fig. 2. Figures 3 and 4 show that under an instan-
taneous increase in relative humidity from 10 to 80 and 99 %
an aerosol particle of hexanoic acid does not grow and equi-
librate with the ambient conditions. At high water mole frac-
tions, Fig. 2 shows that the thermodynamic factor for hex-
anoic acid is negative, corresponding to backwards diffusion
against the concentration gradient, which is not expected in
the Fickian sense of diffusion. We also find that butanoic acid
equilibrates on a significantly slower timescale when the Vi-
gnes mixing rule is used with the Maxwell–Stefan frame-
work, which shows that there is a complex interplay between
the viscous and soluble effects of diffusion that needs to be
better understood.

The simulations in Figs. 3 and 4 were chosen to demon-
strate the efficacy of the numerical framework through their
wide range of aqueous solubility. For such systems that po-
tentially exhibit a range of amorphous states, it has been
hypothesized that combination of absorption and adsorption
is needed to explain observed hygroscopicity curves (Pa-
junoja et al., 2015). In each simulation here, diffusion is con-
trolled by an equilibrated surface mole fraction and predic-
tions from the UNIFAC model. For our model setup, there
is a marginally larger water content in the hexanoic acid core
after the 10–80 % increase over the 10–99 % increase. For the
Darken case in Fig. 3, when relative humidity is increased
to 80 % the hexanoic particle equilibrates at a water mole
fraction of 0.57. However, when relative humidity is instan-
taneously increased to 99 %, the hexanoic core equilibrates
to a water mole fraction of 0.54 and a shell of water mole

fraction greater than 0.95 develops. We believe that the for-
mation of a shell arises as the thermodynamic factor of hex-
anoic acid in Fig. 2 equals zero at two points, at approximate
water mole fractions of 0.7 and 0.95. When the thermody-
namic factor vanishes at these two points no further diffusion
takes place – hence a clear discontinuity between the two
different concentrations of the solution. This cannot be re-
ferred to as a liquid–liquid phase separation as schlieren are
not included in our simple model to initiate a second phase
(Ciobanu et al., 2009). However, our findings still support
laboratory evidence of liquid–liquid phase separations form-
ing under conditions of high relative humidities (Renbaum-
Wolff et al., 2016). In these studies the volatile liquid com-
ponent is enclosed in the core of the aerosol particle, which
suggests there are other surface effects that are not included
into these simple diffusion models. The slight difference in
water mole fraction of the equilibrated hexanoic acid core is
a result of our numerical approach to solving the diffusion
equations for the aerosol framework. In order to find the flux
across shell boundaries we use the average concentration of
the shells on either side. This may also be the reason that
the hexanoic cores equilibrate at lower water mole fractions
than the predicted 0.7 based on the thermodynamic factor in
Fig. 2. In future work, we propose to combine the core nu-
merical approach presented here with other processes likely
taking place that need to be considered with the history of the
particle and radial composition heterogeneity.

3.2 Model sensitivities

e-folding time has been used previously by Zaveri et al.
(2014) and O’Meara et al. (2016) to compare equilibration
timescales. The e-folding time is defined as the time it takes
for the difference in surface and bulk concentration to change
by an exponential factor. Details of this metric and how it is
calculated can be found in the Appendix. Figure 5 shows the
results of the sensitivity of e-folding time to viscosity and
solubility. Solubility has been varied through activity coeffi-
cients in Eq. (3) and the viscosity of the solution through self-
diffusion coefficients in Eqs. (8) and (9). For this study the
self-diffusion coefficient of water has been kept constant at
2× 10−9 m2 s−1 and the self-diffusion coefficient of the sec-
ond compound has been varied along the x axis. The y axis
shows the effect of initial particle radius on e-folding time.
Figures 3 and 4 showed that hexanoic acid did not equilibrate
when relative humidity is increased instantaneously from 10
to 80 % and therefore does not reach the e-folding time cri-
teria. Hence sucrose and butanoic acid have been used to
show how a spectrum of solubility can effect equilibration
times through the red and blue lines respectively, in Fig. 5.
Throughout the experiment the equilibration timescales were
compared back to the Fickian solution, shown by the black
dashed line in Fig. 5, which does not take into account the
non-ideal effects of diffusion.
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Figure 3. The change in water mole fraction as a function of radius through time after an initial increase in relative humidity from 10 to 30,
80 and 99 %, at t = 0 in the left and right column respectively. Note that there is a different colour scale for each column to ensure clarity
in the rate of mixing. The rows correspond to different non-volatile substances, with an arbitrary ideal species in the Fickian case, sucrose,
butanoic acid and hexanoic acid from top to bottom. These simulations correspond to the Darken diffusion coefficient and thermodynamic
factors given in Fig. 2. The aerosol particles were initialized with a radius of 1 × 10−7m and the self-diffusion coefficient of water and
non-volatile as Dself = 1 × 10−9 and Dself = 1 × 10−18 m2 s−1 respectively. The simulations were run at a temperature of 293.15 K.

Figure 5 shows e-folding time contours as a function of
aerosol self-diffusion coefficient and initial radius. We found
that changing the mixing rule between Darken and Vignes
affected the gradient of the e-folding line contour. In the
Darken case, e-folding contours are horizontal, indicating
that equilibration times are independent of the self-diffusion
coefficient of the non-volatile organic compound and the size
of the particle has the biggest influence on equilibration time.
By referring back to Fig. 2, we see that the Darken mutual
diffusion coefficient on a logarithmic scale of diffusion coef-
ficients is around 1×10−9 m2 s−1, which is the self-diffusion
coefficient of water, the volatile component. In comparison,
the Vignes mixing rule gives e-folding time contours with a
positive gradient in Fig. 5, as a result of the more significant
role of the self-diffusion coefficient of the non-volatile com-
ponent in Eq. (9).

Through investigating both high and low water mole frac-
tions by increasing the relative humidity from 10 to 30 and
80 % in Fig. 5, we show how the spectrum of solubility
translates to equilibration timescales. In both the Vignes and
Darken cases solubility does not show a spread of equilibra-
tion times when water mole fractions are low and relative hu-
midity is increased from 10 to 30 %. However, when relative
humidity is increased from 10 to 80 % solubility becomes a
more important factor as the grey area shows the spread in
the conditions for the e-folding time contours.

Figure 5 also highlights the plasticizing effect of water
within the aerosol system, as at low water mole fractions
equilibration times are significantly longer than at high water
mole fractions, especially in the Vignes case. Here we have
shown that there is a complex interaction between viscosity,
solubility and humidity of equilibration timescales, which is
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Figure 4. The change in water mole fraction as a function of radius through time after an initial increase in relative humidity from 10 to 30,
80 and 99 %, at t = 0 in the left and right column respectively. Note that there is a different colour scale for each column to ensure clarity
in the rate of mixing. The rows correspond to different non-volatile substances, with an arbitrary ideal species in the Fickian case, sucrose,
butanoic acid and hexanoic acid from top to bottom. These simulations correspond to the Vignes diffusion coefficient and thermodynamic
factors given in Fig. 2. The aerosol particles were initialized with a radius of 1 × 10−7m and the self-diffusion coefficient of water and
non-volatile as Dself = 1 × 10−9 and Dself = 1 × 10−18 m2 s−1 respectively. The simulations were run at a temperature of 293.15 K.

important to understand due to the abundance on water in the
atmosphere.

4 Conclusions

The main aim of this study has been to introduce the
Maxwell–Stefan law of diffusion to describe the changing
composition of atmospheric aerosol particles with time. The
Maxwell–Stefan equation could act as an alternative frame-
work to the widely used Fickian framework, which has limi-
tations as it does not inherently account for solubility effects.
From comparing the sensitivities of these models we found
the following:

– Observed aerosol partitioning in laboratory studies can-
not be replicated using a Fickian framework, which is
driven by a gradient in concentration without modify-
ing the Fickian diffusion coefficient to account for the
non-ideal effects.

– Inclusion of the solubility effects arising from in-
termolecular interactions is essential to model sus-
tained component separations within aerosol particles.
The Maxwell–Stefan framework accounts for these
through activity coefficients, calculated using the UNI-
FAC model.
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Figure 5. The e-fold time contours for both the Darken and Vignes mixing rules and how they depend on initial particle radius and self-
diffusion coefficient of the non-volatile organic compound. In both cases e-folding times have been found for increases in relative humidity
from 10 to 30 and 80 %. The black dashed line represents the e-fold contour found using the Fickian framework. The grey shaded area
represents the sensitivity in the model due to the range in solubility between sucrose and butanoic acid given by the red and blue lines
respectively. The simulations were run at a temperature of 293.15 K with initially 30 shells equally distributed across the radius of the
particle.

– At low water mole fractions, viscosity was shown to be
the most influential factor on equilibration times within
aerosol particles.

– At high water mole fractions, the variation in equilibra-
tion timescales is due to solubility effects, which is es-
pecially significant in the atmosphere where there is an
abundance of water.

– Through simple binary systems of water and a non-
volatile secondary organic aerosol, we have shown that
there is a complicated relationship between the viscous
and soluble effects of mixing. Atmospheric particles are
far more complicated systems, with a far greater number
of components, all with differing properties. Therefore
it is essential to ensure the most suitable framework is
used to model this system.

This area of research aims to understand the key micro-
physical processes that underpin cloud development and
therefore produce models that better predict these processes.
We found that at low water mole fractions, equilibration
times were most sensitive to changes in viscosity. However
at high water mole fractions solubility became a more im-

portant factor to consider. This could have significant impli-
cations for atmospheric processes – especially for the activa-
tion of cloud condensation nuclei and ice nuclei, which occur
at high water mole fractions.

This study highlights one key question that needs to be
addressed before we continue to investigate the impact of
partitioning within aerosol particles on atmospheric models,
which is whether current frameworks used to model aerosol
composition are suitable to apply to highly complex atmo-
spheric systems. The Fickian model works well for simple
two-component systems, where diffusion coefficients can be
measured directly. However, for complex systems with mul-
tiple components, the Maxwell–Stefan framework offers an
alternative which allows mixing against the concentration
gradient and phase separations to form.

The Fickian approach has been preferred, as direct mea-
surements of mixing based on equilibration timescales gives
a mutual Fickian diffusion coefficient. However, the applica-
tion of these binary diffusion coefficients to complex, mul-
ticomponent atmospheric systems is questionable. On the
other hand, the Maxwell–Stefan laws are inherently multi-
component. The difficulty we have is selecting the most ap-
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propriate mixing rule, which relates a mutual diffusion coef-
ficient to mole fraction as a function of the self-diffusion co-
efficients at infinite dilution. Predictive models for Maxwell–
Stefan diffusivities have been found experimentally from
self-diffusion coefficients (Xin, 2013) and can also be ac-
cessed theoretically using molecular dynamic simulations in
the region of infinite dilution, where thermodynamic factors
can be neglected (Xin, 2013; Krishna and van Baten, 2010a,
b). In this study the Darken and Vignes mixing rules have
been investigated, but alternatives such as a constant rela-
tionship or a sigmoidal relationship should also be consid-
ered (O’Meara et al., 2016). Further investigation is needed
to decide which of the relationships are most appropriate and
also whether they capture the complexity of multicomponent
systems under a range of conditions.

To ultimately answer the question of whether current
frameworks describing aerosol composition successfully
model atmospheric processes, more laboratory studies are
required to test model predictions. Through these investiga-
tions, we will then be able to better understand the competi-
tion between viscosity (or phase state) and solubility to dom-
inate partitioning within atmospheric aerosol particles.

Code availability. The code has been made open access at
https://doi.org/10.5281/zenodo.1156927 (Fowler et al., 2018).
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Appendix A: Numerical method

A1 Solving Fick’s second law of diffusion using the
backward Euler method

Fick’s second law predicts how concentration changes with
time,

∂c

∂t
=∇ ·D∇c, (A1)

where c(r, t) is the solute concentration. For an aerosol parti-
cle we assume that the concentration only depends upon the
radius in a spherically symmetric coordinate system,

∂c

∂t
=

1
r2
∂

∂r

(
Dr2 ∂c

∂r

)
. (A2)

In order to solve this numerically the backward Euler method
of finite differences was applied to give

cn+1
k − cnk

1t
=

1
r2
k1rk

[
Dk+1r

2
k+1

(
cn+1
k+1 − c

n+1
k

1r
k+ 1

2

)

−Dk−1r
2
k−1

(
cn+1
k − cn+1

k−1

1r
k− 1

2

)]
. (A3)

Rearranging this equation so all future time steps appear on
one side of the equation gives a tri-diagonal matrix of the
form

cnk = αkc
n+1
k−1 +βkc

n+1
k + γkc

n+1
k+1 , (A4)

where

αk =−
1t r2

k−1Dk−1

r2
k1rk− 1

2
1rk

,

βk = 1−
1t r2

k−1Dk−1

r2
k1rk− 1

2
1rk
+
1t r2

k+1Dk+1

r2
k1rk+ 1

2
1rk

,

γi =−
1t r2

k+1Dk+1

r2
k1rk+ 1

2
1rk

.

To solve this equation it was assumed that there was no ex-
ternal source of material diffusing through the drop. We spec-
ify Neumann boundary conditions, where the flux through
the shell boundary is set to zero. The flux conditions are
given as

cn+1
K+1− c

n+1
K−1

1rK
= 0,

cn+1
2 − cn+1

0
1r1

= 0,

(A5)

which means that elements in the first and last rows of the
matrix are adjusted to agree with this condition.

A2 Solving Maxwell–Stefan equation for an aerosol
particle

We begin with the Maxwell–Stefan equation

xi∇ lnai =−
N∑

j=1,j 6=i

ciJj − cjJi
c2Ðij

. (A6)

By specifying that the N th volume flux is equal to the nega-
tive sum of all other volume fluxes, therefore not allowing an
external source of material to enter the particle, we can define
a reference frame in which to solve the problem. Rewriting
the equation gives

xi∇ lnai =
ciJN
c2ÐiN

−

N∑
j=1,j 6=i

cjJi
c2Ðij

+

N−1∑
j=1,j 6=i

ciJj
c2Ðij

, (A7)

where

JN =−
ρN

MN

N−1∑
j=1

MjJj
ρj

,

=−
ρN

MN

MiJi
ρi
−
ρN

MN

N−1∑
j 6=1

MjJj
ρj

, (A8)

where ρi and Mi correspond to the density and mass of
shell i. Substituting this into Eq. (A7) yields

xi∇ lnai =
Ji
c2

(
ciρNMi

ÐiN ρiMN

−

N∑
j=1,j 6=i

cj

Ðij

)

+

N−1∑
j=1,j 6=i

Jj

c2

(
ci

Ðij
−

ciρNMj

ÐiN ρjMN

)
. (A9)

The numerical model is solved using matrix algebra and
written in that form gives

x1∇ lna1
x2∇ lna2

...

xN−1∇ lnaN−1

= A
c2


J1
J2
...

JN−1

 , (A10)

where A is a matrix defined as

Aij =


−

∑N

j 6=i

(
cj

Ðij
+

ciρNMi

ÐiN ρiMN

)
if i = j,

−

(
ci
Ð ij −

ciρNMj

ÐiN ρjMN

)
if i 6= j.

(A11)

A3 Moving boundary

Each time step is separated into a diffusion step and a mov-
ing boundary step, which allows the amount of water in the
particle to change. This was not used during the model runs
in this paper. However, the development of a moving bound-
ary is vital for the inclusion of a diffusion step into a parcel
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model and to investigate the effect of aerosol composition on
cloud micro-physical properties.

If the change in volume is positive and water is deposited
onto the surface of the aerosol particle, then the steps in-
volved to change the outer boundary of the particle are as
follows:

1. The new radius, R, of the particle is found, based on the
change in volume, 1V .

2. The change in volume is then used to calculate the molar
concentration in the outer shell as follows:

xn+1
w = xnw +

1Vρw

Mw
, (A12)

where n corresponds to the time step.

3. Shell boundaries are then initiated and filled with the
total moles in each layer. If the final shell is filled the
molar concentration is distributed over to a new shell;
see Fig. 1.

4. Shell boundaries are initially fixed distances apart, how-
ever in the final step, the outer shell radius, RK is
changed to the same as the new radius, R, calculated
in the first step, such that RK = R, as in Fig. 1.

If the change in volume is negative and water is being re-
moved from the particle surface, then the steps involved to
change the outer boundary of the particle are as follows:

1. The total volume of water is calculated as sum of the
volume of each individual shell Vk , the molar concen-
tration of each shell ck , molar mass of water Mw and
the density of water ρw,

Vw =

K∑
k=1

ckVkMw

ρw
. (A13)

2. Only water is removed from the aerosol particle, there-
fore if Vw = 0 then there are no changes to the particle
volume, if Vw <1V then all of the water is removed
from the particle and if Vw >1V , water is first removed
from the outer shells and replaced by with other compo-
nents.

3. After the water has been removed, a new outer shell ra-
dius is found,

RK =

(
RK−1

3
−

3MsNs

4πρs

) 1
3
, (A14)

where RK is the new radius of the outer shell and the
subscript corresponds the number of the shell, Ns is the
number of moles of solute in the Kth shell, Ms and ρs
are the molar mass and density of the compound respec-
tively; see Fig. 1.

Appendix B: Model testing

B1 Model initialization

This study has assumed that the mole fraction of water in the
condensed phase in the outer shell is in equilibration with
the ambient saturation relative humidity. This assumes ide-
ality of the accommodation coefficient, which enables the
study to focus on the sensitivity of diffusion timescales to
the framework used. The equation for water mole fraction,

xw =
Nw

Nw+Ns
, (B1)

where Nw and Ns are the number of molecules of water and
the solute in the outer shell respectively, and the equation for
the volume of the outer shell,

V =Nw

(
Mw

ρw

)
+Ns

(
Ms

ρs

)
, (B2)

was used to find the volume of water to be added or removed
from the system in order to keep the outer shell equilibrated
with the saturation relative humidity. In this study the molar
mass and density of the solute were kept constant at Ms =

400 gmol−1 and ρs = 1.5× 103 kgm−3. For water these val-
ues were Mw = 18 gmol−1 and ρs = 1 × 103 kgm−3.

B2 e-folding time

To find the e-folding time of a system, first the ratio Q is
defined as

Q=

∣∣Cs−Cb
∣∣
t≥0∣∣Cs−Cb
∣∣
t=0

, (B3)

where Cs is the surface shell concentration and Cb bulk con-
centration (O’Meara et al., 2016). The e-folding time is then
defined as the time when the difference between surface shell
and bulk concentration changes by an exponential factor. Nu-
merically this is Q= e−1.
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