

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF A NOVEL ORAL VACCINE AGAINST HUMAN RESIPRATORY SYNCYTIAL VIRUS

FARID AZIZI JALILIAN

FBSB 2011 3

DEVELOPMENT OF A NOVEL ORAL VACCINE AGAINST HUMAN RESIPRATORY SYNCYTIAL VIRUS

By

FARID AZIZI JALILIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2011

Dedication

I gratefully dedicate this work to the loving memory of my father who exemplified a passion for kindness, love and honesty.

DEVELOPMENT OF A NOVEL ORAL VACCINE AGAINST HUMAN RESIPRATORY SYNCYTIAL VIRUS

By

FARID AZIZI JALILIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2011

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF A NOVEL ORAL VACCINE AGAINST RESPIRATORY SYNCYTIAL VIRUS

By

FARID AZIZI JALILIAN

March 2011

Chairman: Professor Datin Paduka Dr. Khatijah Mohd. Yusoff, PhD

Faculty: Biotechnology and Biomolecular Sciences

Human respiratory syncytial virus (HRSV) is the leading cause of bronchiolitis and pneumonia in infants, children, the elderly and the immune-compromised. The goal of immunization is to provide sufficient protection to prevent serious lower respiratory tract diseases leading to hospitalization and reducing the frequency of complications such as otitis media. Prevention and treatment of HRSV infection using antiviral agents is challenging because it is a rapid acute infection and by the time the infection is recognized it may be too late to control the disease with any antiviral therapy alone. Thus, there is a worldwide need for an HRSV vaccine.

Studies have shown that the immunogenic domains of F and G proteins could confer protection against HRSV infection in vaccinated hosts. In the present study, firstly the

immunogenic domain of HRSV G domain was expressed in *Escherichia coli*. Then a rabbit was immunized using purified-recombinant G domain protein. The results of neutralization assay showed that G domain alone could raise active polyclonal antibodies against HRSV successfully. Secondly, the potential of G and F immunogenic domains as vaccine candidates were studied by using live bacterial vaccines. Both the G and F domains were separately initially cloned in pKMSInak plasmid before they were surface displayed on *Salmonella typhi Ty21a* used as the delivery system. The surface displayed G and F domains were detected using indirect immunofluorescence, sero-agglutination and outer membrane protein separation approaches suggesting that the Inak protein successfully carried the G and F domains to the surface of *Salmonella* cells. For *in vivo* evaluation of the designed vaccines, Balb/c mice were immunized orally with live *Salmonella* cells harboring pKMSInak-G or pKMSInak-F and challenged against HRSV.

The humoral (TH2), cellular (TH1) and mucosal immune (IgA) responses of the immunized mice were studied by measuring cytokines (IL-2, IL-4, IL-5, IL-9, IL-10, IL-12, IL-13, IL-17, IFN- γ and TNF- α), chemokines (RANTES and MIP- α) and immunoglobulins (IgG, IgG1, IgG2a, IgG2b and IgA) levels in their sera before and after challenging with HRSV. Lymphocyte proliferation assay was performed to evaluate the cell mediated immunity. Histopathological examinations were also carried out as confirmatory tests. The results showed that pKMSInak-G and pKMSInak-F vaccines could significantly enhance TH1 and TH2 responses as well as mucosal immunity in the immunized mice compared to the control group. Histopathological examinations indicated that the immunized mice had significantly lesser lung tissue

damage than the control. Moreover, the obtained ratios of TH1/TH2 were desirable (~1) suggesting that *Salmonella* cells carrying pKMSInak-G and pKMSInak-F are potent vaccine candidates against HRSV.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGEMBANGAN NOVEL VAKSIN ORAL MELAWAN VIRUS SINSITIUM PERNAFASAN MANUSIA

Oleh

FARID AZIZI JALILIAN

March 2011

Pengerusi : Profesor Datin Paduka Dr.Khatijah Mohd. Yusoff, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Virus sinsitium pernafasan manusia (hRSV) merupakan penyebab utama kepada jangkitan bronchiolitis dan pneumonia di kalangan bayi, kanak-kanak, dewasa dan pesakit kurang daya tahan. Memandangkan jangkitan RSV tidak dapat dibendung sekaligus, matlamat pengimunan adalah untuk memberikan perlindungan secukupnya untuk menghalang penyakit bahagian bawah sistem pernafasan yang serius sehingga mengakibatkan kemasukkan ke hospital dan mengurangkan frekuensi komplikasi seperti otitis media. Pencegahan dan rawatan bagi jangkitan RSV menggunakan agen antivirus memberikan cabaran kerana ia merupakan satu jangkitan akut yang pesat dan mungkin terlambat untuk mengawal penyakit itu dengan mana-mana terapi antivirus apabila jangkitan dikesan. Oleh yang demikian, vaksin terhadap RSV adalah diperlukan di seluruh dunia.

Kajian telah menunjukkan bahawa domain imunogenik protein F dan G boleh memberikan perlindungan terhadap jangkitan RSV dalam hos yang divaksinkan. Untuk

menilai keimunogenan gen yang terpilih, pertamanya domain G diekspreskan di dalam sistem pengekspresan bakteria (*E. coli*). Kemudian, arnab disuntik dengan domain G yang telah ditulenkan. Keputusan daripada penetapan kadar peneutralan menunjukkan bahawa domain G sahaja berjaya mengaruhkan antibodi poli-klon. Keduanya, potensi domain imunogenik G dan F sebagai calon vaksin telah dikaji dengan menggunakan vaksin bakteria hidup. Kedua-dua domain G dan F pada mulanya diklonkan secara berasingan ke dalam plasmid pKMSInak sebelum ianya wujud pada bahagian permukaan *Salmonella typhimurium 21a*. Permukaan di sel yang mempamerkan domain G dan F telah dikesan dengan menggunakan imunopendarfluor secara tak langsung, sero- pengaglutinatan dan pendekatan pemisahan protein membran luar yang mana mencadangkan protein Inak dengan jayanya dapat membawa domain-domain ke permukaan *Salmonella*. Penilaian secara *in vivo* untuk penghasilan vaksin, tikus Balb/c telah disuntik secara oral dengan sel hidup *Salmonella* yang mempunyai pKMSInak-G or pKMSInak-F dan menentang RSV.

Respon bagi keimunan humoral (TH2), selular (TH1) dan mukosa (IgA) yang telah disuntik pada tikus dikaji dengan menganalisa sitokin (IL-2, IL-4, IL-5, IL-9, IL-10, IL-12, IL-13, IL-17, IFN- γ and TNF- α), chemokines (RANTES AND MIP- α) dan imunoglobulin (IgG, IgG1, IgG2a, IgG2b and IgA) secara berperingkat serta ujian percambahan limfosit. Ujian histopatologi turut dijalankan sebagai ujian-ujian pengesahan. Keputusan menunjukkan bahawa vaksin pKMSInak-G dan pKMSInak-F itu boleh meningkatkan respon-respon TH1 dan TH2 serta keimunan mukosa tikus yang disuntik berbanding dengan kumpulan kawalan. Ujian histopatologi juga menunjukkan bahawa tikus-tikus yang telah diimunisasi mempunyai kerosakan tisu paru-paru yang

sedikit berbanding dengan kawalan. Tambahan pula, nisbah TH1/TH2 yang telah diperolehi (~ 1) menunjukkan sel-sel *Salmonella* yang membawa pKMSInak-G and pKMSInak-F merupakan vaksin yang berpotensi menentang jangkitan HRSV.

ACKNOWLEDGEMENTS

I express my sincere gratitude to my advisor, Prof.Khatijah Yusoff for her guidance and encouragement throughout the project. Her patience and understanding have helped me immensely in lab as well as outside.

I thank my committee members, Dr.Fatemeh Jahanshiri, Prof.Zamberi sekawi, Prof.Rahman Omar and Prof.Richard Surgue for their constructive suggestions and directions.

My special thanks to Dr.Jahanshiri who provided everything for me, a sympathetic ear and helping hand when it was needed which was often. I cannot thank her enough, and am forever grateful.

Thanks Dr.Zamberi for taking me into your Lab, letting me go about things on my own, and also allowing me create a comfortable lab environment in which to conduct research.

Members of the Molecular and clinical virology lab, Sobhan, Mehdi, Mohsen, Reza, Rand, Salmiah, Hermalizah, Syani, Hoon koon and Syaz have been a great bunch to work with who shared both their friendship and knowledge over the years. Special thanks to Syani for giving me a hand in a lot of my experiments and also my special thanks to Mehdi who helped me a lot to submit my thesis.

I cannot describe in words how important the love and support of my mother, my brother and sister and also my kind uncle has been in my achievements.

And last but not least, Razieh I don't even know where to start with you. Thank you for numerous supports stuff you have given me to cheer me up. Thank you for your technical help in facilitating the doing of this project. Thank you for your patience, understanding and comfort when I complain, whine and yell. Thank you for so much all of which I will never fully realize. You have been the one thing that kept me and still keeps me sane when things are rough and unbearable, you bring me smile on my face. When things are good, you make them better. Without your faith, your love, your encouragement, and you, I don't think I would have gotten this far so quickly or at all.

I certify that an Examination Committee met on 2th March 2011 to conduct the final examination of Farid Azizi Jalilian on his Doctor of Philosophy thesis entitled "Development of A Novel Oral Vaccine Against Respiratory Syncytial Virus" in accordance with Universities and University Colleges Act 1971 and the constitution of the university Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy. Members of the Thesis Examination Committee were as follows:

Phang Lai Yee, PhD

Senior lecturer Faculty of Biotechnology and Biomolecular Sciences University Putra Malaysia (Chairperson)

Tan Wen Siang, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences University Putra Malaysia (Internal Examiner)

Noorjahan Banu Mohammed Alitheen, PhD

Associated Professor Faculty of Biotechnology and Biomolecular Sciences University Putra Malaysia (Internal Examiner)

Domenico Iannelli, PhD

Professor Faculty of Biotechnology University of Naples "Federico II", Italy (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of supervisory committee were as follows:

Khatijah Mohd. Yusoff, PhD

Professor Datin Paduka Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairwoman)

Fatemeh jahanshiri, PhD

Senior Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Zamberi Sekawi, MD, MPath

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

Abdul Rahman b Omar, PhD

Professor Faculty of Veterinary Medicine Universiti Putra Malaysia (Member)

Richard J. Sugrue, Ph.D

Associate Professor Nanyang University of Singapore (Member)

HASANAH MOHD GHAZALI,PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

FARID AZIZI JALILIAN

Date: 2 March 2011

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	XX
LIST OF FIGURES	xxii
LIST OF ABBREVIATION	xxiv

CHAPTER

1.	INTE	RODUCT	ION	1
2.	LITERATURE REVIEW			6
	2.1	Respira	atory syncytial virus	6
		2.1.1	Virus structure and genome	6
	2.2	Virus s	urface proteins	8
		2.2.1	F glycoprotein	8
		2.2.2	G glycoprotein	10
	2.3	Pathog	genesis	12
	2.4	Treatn	nent	13
	2.5	Prever	ition	14
		2.5.1	Passive immunization	14
		2.5.2	Vaccination	15
		2.5.3	Subunit RSV vaccines	17
		2.5.4	Live attenuated respiratory syncytial virus	18
		2.5.5	Genetically engineered (complementary	
			DNA-drived) live attenuated RSV vaccines	19
	2.6	Production hosts		
	2.7	Gene constract		
	2.8	Bacterial delivery systems		22
		2.8.1	Salmonella typhi Ty21a	24
		2.8.2	Surface display systems	25
3.	MATERIALS AND METHODS			27
	3.1	Study location		
	3.2	Cell cu	llture	27
		3.2.1	Mycoplasma detection cells	28
	3.3	RSV propagation		
		3.3.1	Virus titration (TCID50)	29

	3.3.2 Plaque assay	29
3.4	Virus RNA isolation	30
	3.4.1 Quantification of total viral RNA	31
3.5	Reverse transcriptase – PCR (RT-PCR)	31
	3.5.1 cDNA synthesis	31
	3.5.2 PCR amplification	32
3.6	Cloning of the F and G genes in pET-32c and	
	pKMSInak	33
	3.6.1 Directional ligation	33
3.7	Transformation of <i>E.coli</i>	34
	3.7.1 Preparation of competent <i>E.coli</i> cells and	
	transformation	34
3.8	Identification of the recombinant plasmids	35
	3.8.1 Plasmid extraction	35
	3.8.2 Single and double digestion of the	
	recombinant plasmids	36
	3.8.3 DNA sequencing	36
3.9	Transformation of <i>E.coli</i> BL21 (DE3) plysS cells	36
3.10	Expression of the G protein in <i>E.coli</i> BL21 (DE3)	37
	plysS cells and solubility test	
3.11	Purification of His-tagged G protein	38
3.12	Dialysis of the purified protein	39
3.13	Protein concentration	39
3.14	Thrombin cleavage	40
3.15	Rabbit immunization	40
3.16	Transformation of Salmonella typhi Ty21a	41
	3.16.1 Preparation of electrocompetent cell and	41
	transformation	
3.17	Virus Neutralization Test (VNT)	42
3.18	SDS-PAGE	42
3.19	Western blotting	44
3.20	ELISA	45
3.21	Recombinant plasmid stability	46
3.22	Surface displaying of the recombinant F and G	
	proteins	46
	3.22.1 Indirect immunofluorescence	46
	3.22.2 Preparation of outer membrane proteins	47
	3.22.3 Seroagglutination	47
3.23	Immunization	48
	3.23.1 Live bacteria counting	48
	3.23.2 Vaccine preparation	48
	3.23.3 Animal preparation	49
	3.23.4 Preparation of freeze stock	49
	3.23.5 Animal challenging	50

3.24 Serum collection

3.25	Determination of Salmonella typhimurium TY21a in	7 1
2.26	the mouse spleen	51
3.26	Lymphocyte Proliferation Test (LPT)	51
3.27	Detection of cytokines using Bioplex method	52
3.28	Histopathology	53
	3.28.1 Processing of mouse lung and staining	53
3.29	Viral titration in the Lung tissue	53
3.30	Data analysis	54
Results		55
4.1	Cell culture	55
4.2	Virus propagation	56
4.3	Virus titration results	56
	4.3.1 TCID50	56
	4.3.2 Plaque assay	58
4.4	Amplification and cloning of G domain in pET-32c	
	plasmid	59
4.5	Cloning of G domain in pKMSInak plasmid	60
4.6	Amplification and cloning of F domain in pKMSInak	
	plasmid	63
4.7	Expression of G domain in <i>E.coli</i> BL21 (DE3) pLysS	64
4.8	Purification, dialysis and concentration of the G	
	domain	65
4.9	Virus neutralization by antibodies	69
4.10	Surface displaying of the recombinant F and G	07
	domains protein on <i>Salmonella typhi Ty21a</i>	70
	4.10.1 Indirect immunofluorescence	70
	4.10.2 Seroagglutination	71
4.11	Outer membrane protein separation	72
4.12	Vaccine preparation and live bacteria counting	74
4.12		74
4.14	Recombinant plasmid stability test7-Immunological studies7-	
4.14	4.14.1 Determination of recombinant <i>salmonella</i>	/4
	<i>typhi Ty21a</i> in the spleen of immunized mice	75
		76
	4.14.2 Lymphocyte proliferation test4.14.3 Cytokines assay	70
1 15	4.14.4 Immunoglobulin assay	83
4.15	Histopathology	86
4.16	Presence of RSV in the lung tissue of RSV-challenged	89
	Mice	00
	4.16.1 RT-PCR	89
	4.16.2 Virus titration	89
DISCU		91
5.1	Salmonella delivery	92
5.2	Immune response against RSV	93

4.

5.

5.3	Humoral immunity against RSV		93
	5.3.1	Induction of humoral immune response	
		against RSV G epitope	94
	5.3.2	Humoral immune response against live	
		vaccine	95
	5.3.3	Cell mediated immunity responses	99
5.4	Chemo	okines	103
	5.4.1	MIP-a	104
	5.4.2	RANTES	105
5.5	Interleu	ukin 17	106
5.6	TH1an	d TH2 balance	107
5.7	Histopa	athology	109
CON	CLUSION	N	111
Recor	Recommendations and future directions		
REFI	ERENCES	S	114
APPE	ENDICES		130
BIOD	ATA OF	STUDENT	155

6.

