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Abstract
Endogenous growth requires that non-reproducible factors of production be either augmented or elimi-

nated. Attention heretofore has focused almost exclusively on augmentation. In contrast, we study factor
elimination. Maximizing agents decide when to reduce the importance of non-reproducible factors. We use
a Cobb-Douglas production function with two factors of production, one reproducible ("capital") and one
not ("labor"). There is no augmenting progress of any kind, thus excluding the standard engine of growth.
What is new is the possibility of changing factor intensities endogenously by spending resources on R&D.
The economy starts with no capital and no knowledge of how to use it. By conducting R&D, the economy
learns new technologies that use capital, which then is built. There are two possible ultimate outcomes:
the economy may achieve perpetual growth, or it may stagnate with no growth. The �rst outcome is an
asymptotic version of the AK model of endogenous growth, and the second outcome is the standard Solow
model in the absence of any exogenous sources of growth. Which outcome is achieved depends on parameter
values of saving and production, and there always is a feasible saving rate that will give the perpetual growth
outcome. The model thus provides a theory of the endogenous emergence of a production technology with
constant returns to the reproducible factors, that is, one that is capable of supporting perpetual economic
growth. The model also allows derivation of the full transition dynamics, which have interesting properties.
One especially notable feature is that the origin is not a steady state. An economy that starts with pure
labor production becomes industrialized through its own e¤orts. The theory thus o¤ers a purely endogenous
explanation for the transition from a primitive to a developed economy, in contrast to several well-known
theories. Several aspects of the transition paths accord with the evidence, suggesting that the theory is rea-
sonable. In contrast to almost all the existing endogenous growth literature, neither monopoly power nor an
externality is a necessary condition for endogenous growth. It is su¢ cient that �rms be able to appropriate
the results of their research and development e¤orts.
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1 Introduction

Perpetual growth of income per capita requires that the marginal products of all reproducible factors
of production be bounded away from zero. Virtually all theoretical investigations achieve this necessary
condition by augmenting non-reproducible factors, the best-known example undoubtedly being Harrod-
neutral, labor-augmenting technical progress. Empirical investigations naturally follow the lead of the theory.
There is, however, another way to satisfy the necessary condition for growth: eliminate the non-reproducible
factors from the production function. If society can learn to produce without non-reproducible factors, it
can grow perpetually. In this paper, we propose an endogenous theory of factor elimination and examine its
implications for economic growth and other issues.

Non-reproducible factors act as a drag on the marginal products of reproducible factors. As the ratio of
reproducible to non-reproducible factors rises, the marginal products of the reproducible factors fall until they
reach su¢ ciently low values that further accumulation of those factors no longer is economically justi�ed. At
that point, growth stops. Augmentation o¤sets this drag by e¤ectively increasing the amounts of the non-
reproducible factors, thereby raising the marginal products of the reproducible factors and thus permitting
their accumulation to continue.

It is useful for later intuition to discuss this argument formally. The generic production function is
Y = F (K;L), where Y , K, and L are the aggregate amounts of output, capital, and labor, and F satis�es
the usual neoclassical assumptions (see, e.g., Barro and Sala-i-Martin 2004, chapter 2, for a list). Suppose
population is constant. As K grows, the marginal product of capital shrinks to the point where the marginal
bene�t of capital accumulation just equals its marginal cost, bringing growth to a halt.1 The property that
guarantees this outcome is the Inada condition that

lim
K!+1

FK (K;L) = 0:

To generate perpetual growth of income per capita the Solow and Cass models introduce augmentation of
labor. The production function has the form F (K;AL), where A is labor-augmenting knowledge that grows
at the exogenous rate g. Perpetual growth is feasible because the endowment of �e¤ective�labor AL grows
over time and drives up the marginal product of capital, sustaining incentives to accumulation. Speci�cally,
the linear homogeneity of F allows us to write

lim
K!+1

FK

�
K

A
;L

�
and the ratio K=A remains �nite since in steady state K and A grow at the same rate g. This theory is better
called a theory with growth than a theory of growth because growth arises from strictly exogenous forces
that the theory makes no attempt to explain. The great advance of endogenous growth theory is precisely
to endogenize technical progress. For example, in Romer�s (1986) path-breaking model of learning-by-doing,
A is proportional to K, so that we have F (K;KL). Variety expansion and quality ladder models have the
same property, augmenting the non-reproducible factor and thus enabling perpetual growth.2

Elimination of the non-reproducible factors achieves the same end by an entirely di¤erent mechanism.
The key insight is a straightforward implication of the reason why non-reproducible factors act as a drag
on growth. One of the usual Inada conditions is that the marginal product of capital approaches zero as
capital approaches in�nity. That condition has an important and intuitive basis: it is equivalent to imposing
essentiality of the non-reproducible factors of production. We can write

lim
K!+1

FK (K;L) = lim
K!+1

F (K;L)

K
= lim

K!+1
F

�
1;
L

K

�
:

1Of course, if L grows at rate n, then K and Y too grow perpetually at that rate; however, Y=L cannot grow because any
attempt to make K grow faster than L leads to a rise in k and thus a drop in the return to K.

2See chapters 6 and 7 in Barro and Sala-i-Martin (2004) for a discussion of these models.
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This �rst equality follows from L�Hopital�s rule. It shows that the Inada condition is equivalent to the
condition that the average product of capital goes to zero, which in turn implies in the Solow model that the
growth rate of capital goes to zero. The second equality says that the average product of capital goes to zero
because labor is essential, that is, because F (1; 0) = 0. The Inada condition is equivalent to the essentiality
of the non-reproducible factor. It follows that theories of perpetual growth are, in essence, theories of
how economic agents overcome scarcity of essential but non-reproducible factors of production. In e¤ect,
augmentation overcomes scarcity of a non-reproducible factor by transforming that factor into a reproducible
one. In contrast, elimination overcomes the same scarcity by dispensing with the non-reproducible factor
altogether.

This growth-through-elimination somewhat resembles growth-through-substitution that arises from a
CES production function with a high elasticity of substitution. In the latter type of model, reproducible
factors can be substituted for non-reproducible factors fast enough to allow growth to persist, even though
there is no augmentation of non-reproducible factors.3 The main weakness of that theory, however, is that
growth is simply a matter of chance, with R&D being totally irrelevant. If mankind has been endowed with a
su¢ ciently high elasticity of substitution, then the technology for producing with less of the non-reproducible
factor is available for free. All the economy needs to do is buy reproducible factors to substitute for the
non-reproducibles. If the elasticity of substitution is too low, then no amount of R&D can alter the situation,
and long-run growth cannot occur. R&D has no role to play. A more satisfying theory would be one in
which people could eliminate a non-reproducible factor only by committing resources to the task, which they
would do if the bene�ts of elimination exceed the cost. In what follows, we develop such a theory.

In our theory, maximizing agents decide when it is optimal to reduce the importance of a non-reproducible
factor. To keep matters as simple as possible, we use a Cobb-Douglas production function with two factors of
production, one reproducible (e.g., physical and/or human capital) and one not (e.g., unskilled labor and/or
natural resources). There is no factor-augmenting technical progress of any kind, whether Hicks, Harrod, or
Solow neutral, so the standard engine of growth is excluded by construction. What is new is the possibility
of changing factor intensities (i.e., factor exponents) by devoting resources to R&D. The model is eminently
tractable, allowing us to characterize the full transition dynamics. There are two possible ultimate outcomes,
depending on a few parameters. One possibility is an economy with perpetual growth and whose aggregate
production function asymptotically becomes AK. The other possibility is an economy that settles on a steady
state with no growth and a standard aggregate production function with �xed factor intensities bounded
away from 0 or 1. If the economy has a su¢ ciently high saving rate, it will achieve the perpetual growth
outcome, and such a saving rate always is feasible. Because the asymptotic AK model is an endogenous
outcome of a rational resource allocation process, our theory o¤ers a route to perpetual endogenous growth
that avoids most, or perhaps even all, of the criticisms proposed by the skeptics of endogenous growth theory,
such as Solow (1994), as discussed below.

The model also o¤ers an interesting theory of economic development and the transition from primitive to
advanced technologies. Existing theories suppose that society is endowed from the start with two production
functions, one primitive and one advanced, and over time reallocates resources from the former to the latter.
For example, Hansen and Prescott (2002) posit primitive and advanced production functions (the �Malthus�
and �Solow� technologies) and study a transition driven by the fact that the exogenous rates of technical
progress in the two technologies di¤er. Goodfriend and McDermott (1995) present a theory of development
in which the transition from primitive to advanced production is driven by the growth of ideas, which in
turn is driven by exogenous population growth through a scale e¤ect. Even Galor and Weil�s (2000) model,
which has only one technology, relies on an initial episode of costless technical progress to kick the economy
out of its initial position of very low productivity, with no growth, and put it on a path of self-sustaining
endogenous growth. In our theory, by contrast, there is no exogenous technical progress, no scale e¤ect, and
only one initial technology. Alternative technologies appear endogenously, arising only if people use their
resources to invent them.

3See Chapter 2 of Barro and Sala-i-Martin (2004) for a discussion of this model.
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2 A Theory of Factor Elimination

There are three groups of agents: households, producers of �nal goods, producers of intermediate goods.
The number of intermediate goods is �xed and therefore not a source of economic growth. In addition to
production, intermediate �rms engage in capital accumulation and R&D. The novel feature of our analysis
is the nature of the technical change that results from R&D.

2.1 Households

Households own a �xed endowment of a non-reproducible factor. We call this factor �unskilled labor�
� just �labor� for short � but it could be any non-reproducible factor, such as land, that limits growth.
Households also own �rms and receive as dividend income the pro�ts that they generate. We assume that
households behave as in the Solow model, supplying labor services inelastically in a competitive market and
saving a �xed fraction, s, of their total income (wages plus pro�ts). These assumptions allow us to ignore
intertemporal utility maximization and the resulting consumption-saving and labor-leisure choices, greatly
simplifying the analysis.

2.2 The Final Good Sector

There is one �nal good, Y , produced by competitive �rms according to the technology

Y =

�Z 1

0

X
"�1
"

i di

� "
e�1

; " > 1; (1)

where Xi is the quantity of intermediate good i, " is the elasticity of substitution between intermediate
goods, and we posit a �xed continuum of intermediate goods ranging from 0 to 1 (i.e., there is no variety
expansion). The �nal good is the numeraire, PY � 1. The �nal producers maximize pro�t

�Y = Y �
Z 1

0

PiXidi

subject to (1), where Pi is the price of good i. The solution to this problem is the well known demand
function

Xi = Y
P�"i
P 1�"X

; (2)

where

PX =

�Z 1

0

P 1�"i di

� 1
1�"

is the price index of intermediate goods. Since �nal producers are competitive and earn zero pro�t, we have
PX = PY = 1 and we can drop the index PX from (2) in the remainder of the analysis.

2.3 The Intermediate Goods Sector

The intermediate goods sector is populated by monopolistically competitive �rms that do three things:
produce the intermediate goods, invest in capital accumulation, undertake factor-eliminating R&D.

2.3.1 Technologies

We begin with a discussion of the technologies available to the typical �rm. To keep the notation simple,
we suppress time arguments whenever confusion does not arise.
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Production The typical �rm hires labor from the households and combines it with its own capital accord-
ing to the technology

Xi = AKai
i L

1�ai
i ; A > 0: (3)

The �rm chooses the factor-intensity parameter ai out of a set of known technologies represented by the
interval a 2 [0; �], � < 1. The upper boundary of this set �the technology frontier �evolves over time as
a result of the �rm�s R&D, discussed momentarily. The total factor productivity (TFP) parameter A, in
contrast, is exogenous, constant and common to all �rms.4

We posit Cobb-Douglas technologies to impose in the simplest possible way essentiality for all ai 2 (0; 1).5
Note, however, that ai = 0 yields Xi = ALi so that capital is non-essential, whereas ai = 1 yields Xi = AKi

so that labor is non-essential. In our analysis, the fact that the limit case ai = 0 is included in the set of
known technologies has profound implications for the economy�s dynamics. Whether the economy reaches
the limit case ai = 1 is crucial for perpetual growth.

We use the term �capital�in a very broad sense to include all types of reproducible factors of production.
Thus we make no distinction between physical and human capital: we include both in our variable K. It
would be desirable to extend the theory to distinguish between at least these two broad types of reproducible
factors, but doing so is beyond the scope of the present paper.

Note also that referring to a as the �capital share�is not correct because our monopolistic intermediate
�rms earn excess pro�t and payments to the two factors of production, K and L, do not exhaust their
revenues. The correct term for a is the �elasticity of output with respect to capital�, which is rather
cumbersome, or the simpler �capital intensity�, which is what we use in the remainder of the paper.

Capital Investment The �rm�s capital stock evolves according to the usual accumulation equation

_Ki = Ii � �Ki; (4)

where I is gross capital investment in units of the �nal good and � is the depreciation rate. To �x terminology,
we shall refer to this activity as simply �investment�and to research and development as �R&D�.

Research & Development The �rm conducts R&D to increase its highest known capital intensity �.
We posit the simplest possible research and development technology

_�i = Ri (5)

where R is R&D expenditure in units of the �nal good.

4Sato and Beckmann (1968) provided early evidence that factor intensities in an aggregage Cobb-Douglas production function
are not constant and even found that for Japan such function best �t the data among fourteen forms of production function tried.
Nonetheless, the only early theoretical investigation of a Cobb-Douglas function with endogenously varying factor intensities
was by Kamien and Schwartz (1968). Their model di¤ers substanially from ours in that they restrict attention to an atomistic
�rm facing �xed factor prices, whereas we study a fully speci�ed general equilibrium model with prices responding to the e¤ects
of R&D. Our results are markedly di¤erent from theirs, as we discuss below. Seater (2005) studied a model similar in spirit
to ours but in which a central planner makes all produrction and R&D decisions. Seater�s results are much more limited than
ours because the complicated dynamics emerging from his formulation make characterization of transition path impossible and
because imperfect competition is excluded from the analysis. Finally, Zuleta (2006) also examines a model in which R&D alters
factor intensities. Zuleta�s model incorporates some of the same ingredients as ours but develops along quite di¤erent lines
because it addresses di¤erent issues. Zuleta focuses on the evolution of factors�aggregate income shares whereas we focus on
factor elimination and its implications for long-run growth. We discuss the relation of our work to Zuleta�s below.

5 If we posited a CES technology we would need to impose an elasticity of subsitution between capital and labor smaller than
1 to ensure that labor holds down the marginal product of capital. The reason is that with elasticity of subsitution larger than
1 neither capital nor labor is essential and the AK limit can arise even though there is no expenditure on R&D.
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2.3.2 The Firm�s Decisions

The �rm chooses paths of capital intensity, the price of its product, employment, investment and R&D
expenditure to maximize the present value of its dividend payments:

max
fait;Pit;Lit;Iit;Ritg1t=0

Z 1

0

(PitXit � wtLit � Iit �Rit) e��rttdt;

where �rt � 1
t

R t
0
rudu is the average interest rate between time 0 and time t, ru is the instantaneous interest

rate at time u, and the optimization is subject to (2), (3), (4), (5) and the restrictions Iit � 0 and Rit � 0.
The individual intermediate �rm perceives no upper bound on its choices of I or R. In the aggregate, of
course, �rms�choices must satisfy the constraint

R 1
0
(Iit +Rit)di = sYt at every time t.

It is convenient to think of the �rm as operating two divisions: production and investment. We then
rewrite the �rm�s objective function in a way that re�ects that internal structure:

max
fait;Pit;Lit;Iit;Ritg1t=0

Z 1

0

[(PitXit � wtLit � rKiKit) + (rKiKit � Iit �Rit)]e��rttdt:

The term inside the �rst set of parentheses is the instantaneous pro�t of the production division; the term
inside the second set of parentheses is the instantaneous pro�t of the investment division. The production
division rents capital from the investment division, paying an internal transfer rate rK . The investment
division receives that rental income and spends resources on investment and R&D. We can then exploit
time-separability and solve the �rm�s maximization problem in two steps. First, the production division
chooses the optimal values of P , L, and K taking w, rK and � as given. Then the investment division
chooses I and R.

There is no explicit payment for technology, whose return is included in the total rental income accruing
to the investment division, rKK. The investment produces K and �, which a¤ect the total return according
to d (rKK) = [@ (rKK) =@K] dK + [@ (rKK) =@�] d� = rKdK + (@rK=@�)Kd�. The second term in this
last expression captures the implicit payment to technology. The intuition is that the more capital intensive
technology allows the production division to use its capital and labor more e¢ ciently and thus produce
more. This extra output makes the production division willing to pay more for capital, and the increased
payment for capital compensates the investment division for the R&D that made possible the increase in
capital e¢ ciency.

Choice of a, P , L and K We make the usual symmetry assumption that intermediate �rms are identical.
Henceforth, we omit the i subscript except where clarity requires it. The production division solves

max
fat;Pt;Lt;Ktg1t=0

Z 1

0

(PtXt � wtLt � rKtKt)e
��rttdt

subject to (2) and (3).

Note that by splitting the �rm into a production division and an investment division, we have isolated
the �rm�s intratemporal decisions from its intertemporal ones. Note also that price setting and quantity
setting are equivalent decisions for a monopolist so that the choice of inputs, which determines the quantity
produced, also determines the price at which that output sells. Hence, we can use the demand curve (2) to
eliminate P and think of the production division as facing a sequence of independent instantaneous pro�t
maximization problems of the form

max
a;L;K

� = Y
1
"X1� 1

" � wL� rKK

subject to (3).
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This setup posits a technology choice problem. As � rises in response to R&D, the �rm does not forget
the lower-a technologies in the interior of the set [0; �] that were previously in use. Given that the �rm
knows technologies in the interval a 2 [0; �], which does it use? All of them? Only that with the highest a?
The following proposition due to Zuleta (2006) provides the answer.

Proposition 1 (Zuleta 2006, Proposition 1). A �rm that has available Cobb-Douglas technologies with
constant returns to scale and capital intensities in the range a 2 [�min; �max] uses only one of the following
three possible technologies: (1) only that with the lowest capital intensity, (2) only that with the highest
capital intensity, or (3) only the two with the lowest and highest capital intensity.

The intuition behind this result is straightforward. Let k be the �rm�s capital/labor ratio, and consider
two values of a, a1 < a2. If k < 1, then ka1 > ka2 and the �rm will choose the lowest a at its disposal. The
opposite holds if k > 1. It might thus seem that the �rm would use only the technology with the lowest
or the highest a. That would be true if the �rm could use only one of the technologies available to it. If,
however, the �rm can operate more than one technology simultaneously, it will split its labor force between
the two technologies with the highest and lowest values of a. Doing so maximizes the �rm�s total output. In
certain constrained cases that we discuss below, the �rm may choose to operate only one of the two extreme
technologies rather than both.

In our analysis, we set �min = 0, thus positing that our economy starts with a technology that uses
only labor. As time passes, the economy develops �at a cost �increasingly capital intensive technologies,
so that �max = � > 0. The �rm�s production division divides its labor force between a plant that uses
the �primitive� technology a = 0 and one that uses the most �advanced� technology a = �, continuously
revising that allocation as new technologies become available, as we now explain.

The �rm�s total output is the sum of the output from its two plants:

X = A
�
(L� l) +

�
K�l1��

��
; (6)

where L is the �rm�s total employment, l 2 [0; L] is labor allocated to the advanced plant and L � l labor
allocated to the primitive plant. Note that this expression removes essentiality of capital for all � < 1,
not just for � = 0. This provides an interesting ingredient to our development story. An economy that
knows only the most primitive technology (i.e., an economy for which � = 0) would build no capital and
produce with labor only. A more advanced economy with � > 0 and some capital K can still use the
primitive technology and would produce output even if the capital were to disappear. Thus, thinking of
capital intensity as a choice �as opposed to an exogenous parameter �changes radically the properties of
an otherwise very conventional economy.

The production division�s problem now is

max
l;L;K

� = Y
1
"X1� 1

" � wL� rKK

subject to (6). The �rst-order conditions are:

Y
1
"X1� 1

"

�
1� 1

"

�
1

X

@X

@K
= rK ; (7)

Y
1
"X1� 1

"

�
1� 1

"

�
1

X

@X

@L
= w; (8)

Y
1
"X1� 1

"

�
1� 1

"

�
1

X

@X

@l
= 0: (9)
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The �rst condition is the �rm�s demand for capital, the second is the �rm�s demand for labor, and the third
gives the e¢ cient allocation of labor across the two plants. There is a constraint that we must consider that
complicates discussion of these conditions and of the rest of the analysis. Rewrite equation (9) as

0 =
@X

@l
= A

�
�1 + (1� �)

�
K

l

���
) l = K (1� �)

1
� (10)

The problem is that the right side of (10) may exceed the �rm�s total employment, L. In that case, the �rm
would allocate all its labor to the advanced plant. This possibility becomes relevant in general equilibrium,
when the population may act as a binding constraint on the representative �rm�s total employment. The
constraint can be written in several useful ways:

K (1� �)
1
� � L, K � L

�
1

1� �

� 1
�

, K

L
�
�

1

1� �

� 1
�

(11)

We must write the �rst-order condition (9) in two parts, one for the unconstrained case and one for the
constrained case:

l =

(
K (1� �)

1
� K (1� �)

1
� < L

L K (1� �)
1
� � L

: (12)

In the same way, equations (7) and (8) must be written in two parts:

rK =

8<: Y
1
"X1� 1

"

�
1� 1

"

�
1
X

h
�A

�
K
l

���1i
K (1� �)

1
� < L

Y
1
"X1� 1

"

�
1� 1

"

�
1
X

h
�A

�
K
L

���1i
K (1� �)

1
� � L

; (13)

w =

(
A K (1� �)

1
� < L

Y
1
"X1� 1

"

�
1� 1

"

�
1
X

h
(1� �)

�
K
L

��i
K (1� �)

1
� � L

: (14)

Note that, in the unconstrained version of these alternatives, the capital/labor ratio is K=l, whose denomi-
nator is not the �rm�s total labor employment L (and thus in general equilibrium is not the economy�s labor
endowment) because the �rm splits total labor across the two plants. It is important for what follows to
understand that (11) constrains the relation between k and �, not the absolute size of the capital stock K.
As �! 1, the term (1� �)�1=� !1, so that K, K=l, and K=L all can be arbitrarily large.

Figure 1 shows the optimal labor allocation a given � and two di¤erent values of K. The horizontal
line marked MPL0 is the marginal product of labor in the primitive plant, the downward sloping line
marked MPL� is the marginal product of labor in the advanced plant. The vertical line is the �rm�s total
employment. Anticipating the properties of the general equilibrium of this model we note that L is also the
economy�s labor endowment. Figure 1 tells us two things. First, the �rm does not shut down the primitive
plant unless capital is large. Second, when both plants operate, the �rm allocates labor across plants to
equalize the marginal products of labor. To see why, suppose that the �rm allocates very little labor to the
advanced plant. Because l is small, K=l is large and the marginal product of labor in the advanced plant is
large. That, however, means the marginal product of capital is small, and the �rm is better o¤ increasing l
and accepting the reduction in MPL� in order to have a larger MPK�. This solution is feasible if desired l
does not exceed the �rm�s total employment. If it does, the constraint l = L binds and the �rm shuts down
the primitive plant. With su¢ ciently abundant capital MPL� > MPL0 for all l � L.

To see the advantage of keeping the primitive plant operational for small K, observe that the uncon-
strained part of (12) can be written

k =

�
1

1� �

� 1
�

> 1. (15)
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where k � K=l. This relation tells us that the �rm splits labor across the two plants so that the capital/labor
ratio in the advanced plant is (a) independent of factor prices, (b) always larger than 1, (c) increasing in
capital intensity �. Property (a) implies that the capital/labor ratio in the advanced plant is di¤erent from
and independent of the economy�s endowment ratio K=L. Property (b) implies that the plant�s output is
increasing in �. That fact provides the underlying rationale both for using only the a = � technology out of
the set (0; �] and for pursuing �-increasing innovations. Property (c) implies that the development of more
capital intensive technologies drives up the optimal capital/labor ratio and thus the incentive to accumulate
capital. Together, (b) and (c) say that there exists a positive feedback between capital accumulation and
the pursuit of higher capital intensity. This feedback explains why the advanced technology becomes AK in
the long run, as we explain in detail later.

The intuition for the positive feedback is that, by developing more capital intensive technologies, the �rm
uses the available capital and labor more e¢ ciently. Speci�cally, the de�nition of k allows us to rewrite (6)
as

X = A

�
L+K

k� � 1
k

�
:

It is then straightforward to show that�
1

1� �

� 1
�

= argmax
k

k� � 1
k

:

The left side of this equation is the same as the right side of (15), which in turn is a rewriting of the
unconstrained part of the �rst-order condition (12). Thus the �rm�s (unconstrained) optimal allocation of
its total labor L between the primitive and advanced plant is that which maximizes the marginal product
of capital in the advanced plant, given the stock of capital available to the �rm at the time. Any remaining
labor is employed in the primitive technology. As already explained, this maximizing value of k depends on
� alone and so does not diminish as K is accumulated. The reason is that the primitive plant provides the
�rm with a "labor pool" that it can use to keep the maximized marginal product of capital constant even as
capital is accumulated. In addition, as we explain later, that same "labor pool" guarantees that it is always
desirable to increase �.

It is useful for later discussion to de�ne the maximized value of (k� � 1) =k as

m (�) � max
k

k� � 1
k

= � (1� �)
1��
� : (16)

The function m (�) has the following properties: m0 > 0 and m00 > 0 for all � 2 [0; 1], m (0) = 0, m (1) = 1,
and m0 (1) = 1 (see the Appendix for details). The marginal product of capital in the advanced plant is
A (k� � 1) =k, and its maximized value is Am (�). We call m (�) the "maximized discretionary marginal
product," i.e., the part of the maximized marginal product that the �rm can a¤ect.

Choice of I and R We complete our description of the �rm�s behavior by looking at its intertemporal
investment and R&D decisions. The investment division, taking the production division�s decision rules as
given, chooses I and R to maximize the �rm�s present value:

max
fIt;Rtg1t=0

Z 1

0

(�t + rKKt � It �Rt) e��rttdt;

subject to (4), (5) and initial conditions. The current-value Hamiltonian is

H = (� + rKK � I �R) +  (I � �K) + �R+ !1I + !2R; (17)

where  and � are the costate variables corresponding to K and �, respectively, and !1 and !2 are Lagrange
multipliers satisfying the Kuhn-Tucker conditions:

!1 � 0; I � 0; !1I = 0;

!2 � 0; R � 0; !2R = 0:
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We present the full set of necessary conditions for this problem in the Appendix. It is su¢ cient for the
discussion here to state that they yield the following expressions for the returns to capital and R&D

r = rK � �;

where rK is given by (13), and

r = r� �
@�

@�
= Y

1
"X1� 1

"

�
1� 1

"

�
1

X

@X

@�
: (18)

The Hamiltonian (17) is linear in the control variables I and R, so we have a bang-bang control problem.
That means one of I or R is zero and the other is set at its possible maximum value, determined by the
aggregate resource constraint, as explained below. Speci�cally, whenever I > 0 we have !1 = 0 and thus
 = 1. Similarly, whenever R > 0 we have !2 = 0 and � = 1. The fact that  = 1 and � = 1 at all times
e¤ectively reduces the dimension of the state space from four to two because instead of having to solve for
the paths of K, �,  and �, we need to solve only for the paths of K and �.

2.4 Taking Stock: The �hybrid�AK model

Before we discuss the model�s general equilibrium solution, it is useful to assess what we have so far.
The main innovations of this paper are that:

a. the �rm chooses its capital intensity a out of a set of known technologies [0; �];

b. the �rm invests in R&D to expand the technology frontier �.

The �rst innovation changes radically the production structure of the economy and gives rise to what we refer
to as the �hybrid AK�model. The second innovation has important implications for long-run growth. In
this subsection we focus on the main features of the hybrid AK model. We discuss its dynamic implications
in the next section.

The e¢ ciency condition (12) has the striking implication that there exists a region of (�;K)-space where
output is linear in labor and capital separately. To see this, we use (12) to rewrite (6) as

X =

8><>: A [L+m (�)K] K < L
�

1
1��

� 1
�

AK�L1�� K � L
�

1
1��

� 1
�

: (19)

Recall that the term m (�) is the maximized (discretionary) marginal product contributed by the advanced
plant.

Figure 2 illustrates various aspects of the production technology. The upper panel shows the choice
of the optimal labor allocation. By operating simultaneously two plants with a = 0 and a = �, the �rm
does not follow the upper envelope of the two technologies (the very heavy dotted curve that �rst runs
along the labor-intensive technology and then along the capital-intensive technology), switching from one to
the other at K=L = 1. Instead, the �rm�s operates the two technologies simultaneously, weighted average
"total" technology of the two underlying technologies with optimal weights determined by the allocation of
labor across plants. The weighted average is shown by the straight line running from the point A on the
vertical axis to the tangency point T . To the right of point T the �rm no longer can follow the straight line
because the constraint (11) binds, so it then follows the curved function by shutting down the labor-intensive
technology and devoting all its labor to the capital-intensive plant. This behavior convexi�es the overall
production function. The pro�le of the overall production function captures the fundamental idea that the
�rm, confronted with a menu of technologies having di¤erent capital intensities, maximizes output by using
both the lowest, a = 0, and the highest, a = �. Restricting production to just one of the two technologies
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would not maximize output. The lower panel show how the choice of factor intensity from the set a 2 [0; a]
changes the structure of production. As the �-innovations arrive, the production function for the capital-
intensive plant rotates and �attens, becoming increasingly linear until it reaches the limit m (1) = 1 and
is linear everywhere. The tangency point of the "average" technology and the capital-intensive technology
moves right as � grows, going to in�nity as � goes to 1.

The unconstrained part of the solution to the �rm�s allocation problem, given by �rst half of (19), has
two characteristics that are important for the economy�s dynamics that we discuss in the next section. First,
for any given �, capital has constant rather than diminishing returns. For given K, the �rm uses the
labor-intensive technology to absorb any excess labor beyond that necessary to yield the output-maximizing
capital/labor ratio in the capital-intensive plant. As a result, the �rm always is willing to invest in the
marginal unit of capital. Second, the presence of the labor-intensive plant allows the �rm to keep the
capital/labor ratio in the capital-intensive plant above one, that is, k > 1. An increase in � then increases
output, thus making the �rm always willing to invest in R&D to generate a marginal increase in �. These
two aspects of the solution reinforce each other in a way that tends to generate perpetual growth. If the �rm
had to use all its labor in the capital-intensive plant, neither of these conditions would hold, and the economy
would be unable to leave a neighborhood of the origin. These issues are pursued further and explained in
detail in the next section.

This reasoning brings to the forefront of our story the notion of �localized elimination�and �separation�
(or �segregation� if one �nds this word more descriptive) of the factors of production. The �rm invests in
R&D to learn how to produce without labor (� = 1). It thus eliminates labor from the advanced plant and
thereby creates endogenously the engine of perpetual growth �a technology that (asymptotically) produces
with reproducible inputs only. This elimination is �local�in the sense that it a¤ects only the advanced plant,
not the overall production function of the �rm. Labor, in fact, is a productive resource that the �rm knows
how to use, with or without capital. It obviously is not optimal to leave labor idle under these conditions,
so the �rm completely �separates�labor from capital and thus removes diminishing returns altogether from
its technology.

Note that we talk about a ��rm�allocating labor to two di¤erent �plants�because we found useful to set
up the problem with only one decision maker. Is should be obvious that we can decentralize decisions and
talk about an �economy� that allocates labor to two di¤erent �sectors� linked by the arbitrage condition
that wages be equalized. In that case, the reallocation of labor from the primitive to the advanced plant
and vice versa is done by the market. The thrust of the story does not change: the economy endogenously
creates perpetual growth through R&D investment that brings into existence a technology that eventually
uses only capital. As labor demand falls in the capital-using sector, labor is absorbed by the primitive sector.
As we shall see, the process ends when capital and labor are fully separated so that neither sector is subject
to diminishing returns.

2.5 General Equilibrium Dynamics

To study the general equilibrium dynamics of our economy we need to clear four markets: intermediate
goods, �nal good, labor and assets. The market for intermediate goods is in fact a continuum of monopolistic
markets wherein equilibrium follows from the fact that each producer sets its price and thereby chooses a
point on the demand curve it faces. Moreover, because the mass of �rms is set at 1 (recall the limits of
integration in equation (1)), we have that in symmetric equilibrium

PX = Y = X (20)

and thus P = 1. Households sell their labor services inelastically in a competitive market. In equilibrium,
therefore, aggregate employment is equal to the economy�s labor endowment, L, and the wage rate is the
value marginal product of labor

w =

8><>:
"�1
" A K < L

�
1

1��

� 1
�

"�1
" A

�
K
L

��
K � L

�
1

1��

� 1
�

:
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Given our assumption that households save a constant fraction, s, of their income, the market-clearing
condition for the �nal goods market is

(1� s)Y +R+ I = Y:

Using (4), (5) and (19), we can write this relation as

_�+ _K + �K =

8><>: sA [L+m (�)K] K < L
�

1
1��

� 1
�

sAK�L1�� K � L
�

1
1��

� 1
�

: (21)

There are two assets in this economy, physical capital and technology, both accumulated by the �rm. The
resources constraint above ensures that the �ow of saving equals the �ow of total investment. Therefore,
equilibrium of the assets market only requires the additional condition that the �rm be indi¤erent between
allocating resources to R&D or to investment.

Our phase diagram uses two loci. The �rst is the arbitrage locus, along which the �rm is indi¤erent
between allocating resources to investment or R&D, that is, where r� = rK��. The second is the stationarity
locus, along which there is no net investment in either K or � so that the resource constraint (21) is satis�ed
with both _K = 0 and _� = 0.

In general, the constraint (11) may or may not bind. A su¢ cient condition to guarantee that it never
binds along the economy�s adjustment path is L � � (see the Appendix for the proof). The variable �
is restricted to the interval [0; 1]. If we take L to be unskilled labor only and use natural units to count
population (i.e., use the census count), then L � 1 because the smallest possible economy comprises one
person. With that interpretation of L, the unconstrained case would be the only reasonable case. The
situation is less clear when L is taken to be all non-reproducible factors of production. It turns out, however,
that, irrespective of the interpretation of L, the constrained case gives results substantially the same as the
unconstrained case. We therefore relegate the constrained case to the Appendix and restrict attention in the
main text to the "interior," where l < L. To discuss the economy�s dynamics, we need to determine the
arbitrage and stationarity loci. The following propositions, proven in the Appendix, describe the two loci,
and Figures 3 and 4 plot them.

Proposition 2 Arbitrage Locus. Assume L � 1 � �. Then the arbitrage locus in (�;K) space is

K =

(
0 0 � � � ��

1
m0(�)

h
m (�)� �"

A("�1)

i
�� < � � 1 (22)

where �� solves

m (�) =
�"

A ("� 1) :

The locus starts at zero and lies on the �-axis from zero to ��. In the interval (��; 1), the locus is positive
and hump-shaped. The locus crosses the horizontal axis again at exactly � = 1. The locus lies everywhere
in the region

K < L

�
1

1� �

� 1
�

where the interior equilibrium l < L holds.

The arbitrage locus is obtained by setting r� equal to rK � �, substituting the expressions for r� and rK
obtained earlier, and performing algebraic manipulations. The resulting function has negative values for
� < ��, but of course only non-negative values of K are possible. Consequently, the equilibrium locus lies on
the horizontal axis for 0 � � � ��, and K = 0 for � � ��.
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Proposition 3 Stationarity Locus. The equation for the stationarity locus is

K =
L

�
sA �m (�)

: (23)

The locus has an asymptote at 0 < ~� < 1, where ~� solves

�

sA
= m (�) :

For � < ~�, K > 0, and the locus starts at L sA� and goes asymptotically to +1 as � ! ~�. For � > ~�,

K < 0, and the locus starts at �1 and reaches the value �L
�
�
sA � 1

��1
at � = 1.

The equation for the stationarity locus is obtained simply by rearranging the resource constraint (21) under
the stationarity conditions _K = 0 and _� = 0.

The equilibrium loci are shown in Figures 3 and 4, the phase diagrams for the economy. Figure 3 shows
the case where the equilibrium loci do not intersect, and Figure 4 shows the case where they do. In both
Figures, points below the arbitrage locus yield r� < rK � �, so that _� = 0 and _K > 0, whereas all points
above the locus yield r� > rK � �, so that _� > 0 and _K = 0. Points on the locus yield indi¤erence between
investment and R&D so that the economy experiences both _� > 0 and _K > 0. Points below, above, or
on the stationarity locus yield _� + _K > 0, _� + _K < 0, and _� + _K = 0, respectively. We refer to the
two possible cases as "high saving" and "low saving" because, given all other parameters, a su¢ ciently high
saving rate will guarantee that the two equilibrium loci do not intersect whereas a su¢ ciently low saving rate
will guarantee that they do. The balanced growth paths and transitional dynamics are somewhat di¤erent
in the two cases. In the Appendix, we prove that at any time there exist saving rates su¢ ciently high and
low to make each case possible.

2.5.1 Equilibrium Dynamics: High Saving

When the saving rate is su¢ ciently high, the stationarity locus does not intersect the arbitrage locus,
and the situation in Figure 3 prevails. The arbitrage and stationarity loci together divide the phase plane
into three regions, labelled I, II, and III. In region I, the rate of return to R&D is less than the rate of return
to capital, r� < rK � �, gross capital investment I is positive, and R&D is zero. Total asset accumulation is
positive ·( _�+ _K > 0), so I exceeds depreciation �K and K grows with � constant. The dynamic adjustment
paths are vertical lines pointing north. In region II, we still have _� + _K > 0, but now r� > rK � � so that
R&D is positive and gross capital investment is zero. Hence, � grows while K falls because of depreciation.
The resulting dynamic adjustment paths point southeast. Region III is like region II except that total asset
accumulation is negative ( _K + _� < 0), meaning that gross investment I, though positive, is smaller than
depreciation. As in region II, the dynamic adjustment paths point southeast. For the economy�s dynamic
behavior, regions II and III are essentially the same.

The precise shape of the economy�s dynamic adjustment path depends on where the economy starts.
Figure 3 shows the possibilities. Irrespective of which path the economy follows, it eventually reaches the
� = 1 limit and grows forever. In fact, in our simple model, the economy reaches � = 1 in �nite time
(a property we discuss below), and the aggregate production function becomes Y = X = A (L+K). The
aggregate production function is never AK because the primitive sector always operates in order to make
use of labor L, but it does go asymptotically to AK as K grows without bound.6

6The result that � goes to 1 is dramatically di¤erent from that of Kamien and Schwartz (1968). In their model, � always is
bounded away from 1. Kamien and Schwartz study an atomistic �rm that takes prices as given. In their model, changes in �
never a¤ect any price, resulting in the absence of important feedback channels. In contrast, in our model, all prices are a¤ected
by changes in � through the working of general equilibrium, providing a feedback that keeps R&D going until � reaches its
upper bound of 1.
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Equation (20) implies that the growth rate of Y equals the growth rate of X, which in turn is given by

_X

X
=

Am0 (�)K _�+Am (�) _K

A [L+m (�)K]

=
Am (�)K

A [L+m (�)K]

"
�m0 (�)

m (�)

_�

�
+
_K

K

#

=
Am (�)K

A [L+m (�)K]

"(
ln

"�
1

1� �

� 1
�

#)
_�

�
+
_K

K

#
The path of growth rate is di¢ cult to analyze while � < 1 but is straightforward once � reaches its limit of
1. At that point, the growth rate of X simpli�es to

_X

X

�����
�=1

=
K

L+K

_K

K

The resource constraint (21) also simpli�es to

_K + �K = sA (L+K)

Combining these last two equations yields

_X

X

�����
�=1

= sA� � K

L+K

# sA� � as K !1

Thus, after the economy reaches the boundary � = 1, the growth rate declines over time and tends to the
AK limit as the ratio K grows without bound. The reduced-form aggregate production function (19) no
longer features essentiality of labor because the advanced plant is now AK. Labor is still an input in the
overall production structure, but it no longer holds down the marginal product of capital as the economy
grows. Once � = 1, �rms can fully separate the factors of production, putting all labor in a plant that uses
no capital and putting all capital into another plant that uses no labor. In other words, the economy has
endogenously created a technology (equivalently, a production sector) that uses reproducible inputs only and
thus satis�es the familiar condition for endogenous growth discussed in Rebelo (1991). This result is the
most important of our analysis.

Notice that all these results hold for economies that start exactly at the origin. The reason is that
these primitive economies do have output � because capital is not essential � and therefore can produce
capital according to the accumulation technology (4) and �gure out how to use it according to the research
technology (5). Interestingly, they start by building up knowledge �rst, and only when they have developed
technologies with su¢ cient capital intensity do they start building the capital stock. The reason is that with
low values of both K and � the advanced sector does not generate enough output to overcome depreciation,
making construction of the capital unpro�table.

2.5.2 Equilibrium Dynamics: Low Saving

In Figure 4, the intersection of the equilibrium loci creates the new region IV. The dynamics in regions
I-III are as before. In region IV we have r� < rK � �, and thus no R&D, while total asset accumulation
is negative, _K + _� = I � �K < 0, meaning that net capital investment is negative. The equilibrium path
is vertical with � constant and K falling. The portion of the stationarity locus below the arbitrage locus,
shown as the heavy dashed arc between points x and z in the Figure, is a set of �Solow� steady states in
which the economy does not grow. Recall that there is no exogenous growth in population or technology,
which is why the "Solow" solution has no growth.7

7Readers following the details in the Appendix will note that the same two possibilities of perpetual growth or stagnation
occur when the labor constraint binds. If saving is high enough, perpetual growth emerges. The reason is that agents look into
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2.6 Relation to Other Theories of Factor Substitution

The theory developed here is related to the one version of endogenous growth theory we know that
does not rely on factor augmentation � growth through substitution. The clearest case is that in which the
economy has a CES production function. If the elasticity of substitution is su¢ ciently high, the economy
achieves growth by building capital at a rapid rate and substituting it for labor. The aspect of this theory
that is unsatisfactory is that economic growth is simply a matter of luck: either the economy is endowed with
an high elasticity of substitution su¢ ciently high to support endogenous growth or it isn�t. Furthermore,
as a practical matter, modern industrial economies apparently do not have elasticities of substitution above
the critical level to sustain endogenous growth, yet they have been growing for centuries and show no sign
of slowing down.8 Our theory does not rely on a fortuitous exogenous endowment of a su¢ ciently high
elasticity of substitution. Instead, the necessary elasticity is created through the R&D process: as soon as
the economy has at its disposal both the primitive technology with a = 0 and any advanced technology with
a = � > 0. The economy then operates an overall technology with in�nite elasticity of substitution between
capital and labor; see equation (19).

Several authors have proposed interesting models of economic growth that fundamentally are variations
on the CES-factor substitution theme. Boldrin and Levine (2002), Givon (2006), and Zeira (1998, 2006)
present related models in which the economy successively adopts technologies that are less and less labor-
intensive. Although the models are much more elaborate than the simple CES story, the driving mechanism
is the same: capital is substituted for labor. There is no R&D sector or any other resource-absorbing activity
that produces the technologies to allow the substitution. The economy simply is endowed with the ability
to make the substitution. What seems to be an important element of the history of economic growth and
transition is missing. Our model addresses that limitation.

3 Economic Implications

Our theory has several interesting implications.

3.1 The Big Three

Three aspects of this economy�s dynamics are especially noteworthy: the nature of the origin, the
ultimate form of the production function, and the appearance of the economy at any point on its transition
path.

In the Solow and Cass models, the origin is an unstable steady state: an economy starting exactly at
the origin stays there and one needs a positive initial endowment of capital to get the transition going. In
contrast, in our model the origin is not a steady state: an economy starting exactly at the origin moves away
from it. What allows this novel behavior is that output is positive, rather than zero, because production
of intermediate goods is linear in labor. Consequently, saving is positive and investment occurs. Investing
in capital alone would be pointless if � stays at zero, while inventing technologies with positive � would be
equally pointless if capital does not accumulate. Interestingly, because of depreciation it is optimal to invest
only in � early on and start building up the capital stock only when capital intensity is su¢ ciently high.
This kind of behavior at the origin seems realistic, at least if one accepts the notion that humans arose from
other animals that did not build capital or do R&D. In other words, humans started with nothing except
their labor and, through their own e¤orts, moved away from that state. The image we have in mind is the
insightful ape in the �rst act of the movie 2001: A Space Odyssey, who has no capital but discovers the

the future and see that, even if the current (binding) capital/labor ratio is less than 1 and as a result a current increase in �
reduces current output, the future return to increasing � now makes it worthwhile to do so. Eventually, the economy passes
out of the constrained region and back into the unconstrained region, where the self-reinforcing e¤ects of increases in K and �
drive the economy to perpetual growth.

8See Chapter 1 of Barro and Sala-i-Martin (2003) for a discussion of the theory of growth through the CES function and
Pereira (2003) for a discussion of the evidence.
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use of tools. The di¤erence between the movie and our theory is that in our theory, instead of getting his
inspiration exogenously from the Monolith, the ape �gures out how to use tools with his own wits.

This behavior at the origin is an interesting result in itself but it also has strong implications for the the-
ory of economic development because the transition from the most primitive technology to industrialization
does not require exogenous forces to start the transition. Most existing models of economic transition (e.g.,
Goodfriend and McDermott 1995, Hansen and Prescott 2002, Lucas 2002) jump-start the process by endow-
ing the economy with two production technologies, one primitive and one advanced. They then characterize
the reallocation of resources from one to the other. Galor and Weil (2000) avoid the exogenous endowment
of primitive and advanced technologies, constructing a model with only one technology augmented by en-
dogenous technical progress and human capital. However, their model requires an initial period of costless
technological advance to kick the economy out of its primitive state and start the transition. These models
o¤er many useful insights, but they leave unanswered the question of where the advanced technology, or the
initial advance in technology, comes from. It seems unrealistic to suppose that humans always had at their
disposal all the technologies they would ever use, or that the Monolith got the process going. It seems more
realistic to treat the production technology itself as an endogenous variable that evolves in response to the
e¤ort that people expend on improving it. Indeed, Solow (1994) has remarked:

�I think that the real value of endogenous growth theory will emerge from its attempt to model
the endogenous component of technological progress as an integral part of the theory of economic
growth.�

The model presented above has that very characteristic. Advanced technologies are generated endogenously
by the economy through devotion of resources to research and development. No exogenous progress ever
occurs. No exogenous spark is required to ignite the �re of discovery.

The second noteworthy aspect of our economy�s dynamics is the behavior at the other end of the transition
path, the form of the production function that it ultimately attains. Under some conditions (e.g., a low saving
rate) the economy reaches a steady state with � < 1. Locally, this is a standard Solow economy with no
population growth, no technical progress, and so no economic growth. If conditions di¤er, however, the
economy reaches the � = 1 limit in �nite time. Thereafter, growth continues perpetually and the economy
becomes asymptotically AK as the ratio L=K shrinks to zero. The AK technology is the outcome of an
endogenous process of technological change. To put it in more general terms, an economy with constant
returns to the reproducible factors and thus perpetual endogenous growth is a possible outcome of the growth
process itself. This outcome stands in sharp contrast to Solow�s (1994) doubts about endogenous growth
theory:

�The conclusion has to be that [the constant returns] version of the endogenous-growth model
is very un-robust. It cannot survive without exactly constant returns to capital. But you would
have to believe in the tooth fairy to expect that kind of luck.�

In fact, no tooth fairy is required for the economy to achieve constant returns to capital and the perpetual
endogenous growth that �ows from it. Constant returns to capital not only can but inevitably will emerge
from an economy that starts with diminishing returns or even no returns at all to capital, provided that
the saving rate is su¢ ciently high. Whether the possibility for perpetual growth is realized thus depends on
human choice, not supernatural intervention.

The third noteworthy aspect of our economy�s dynamics is the implication it has for what would be
seen by an observer with the conventional view that Cobb-Douglas factor intensities are constant. At any
transition point on any dynamic adjustment path, a snapshot of the economy would suggest an inability
to sustain endogenous growth. The economy would have a Cobb-Douglas technology with constant TFP,
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a value of � between 0 and 1, and diminishing returns to the reproducible factor. Even if the economy is
guaranteed to attain asymptotically the AK structure supporting perpetual endogenous growth, an observer
who imposes the standard hypothesis of constant factor intensities will estimate a production technology
that cannot sustain endogenous growth. He would agree with Solow (1994) - to quote him yet again:

�If [the constant returns version of new growth theory] found strong support in empirical material,
one would have to reconsider and perhaps try to �nd some convincing reason why Nature has no
choice but to present us with constant returns to capital. On the whole, however, the empirical
evidence appears to be less than not strong; if anything, it goes the other way.�

The observer�s view would be incorrect because the maintained joint hypothesis is incorrect: capital�s in-
tensity � is not constant. In particular, the non-reproducible factor L becomes increasingly inessential as
technological progress continues. Increasing emphasis is placed on the reproducible factor K, and as a result
endogenous growth is sustainable. Empirical evidence suggests that factor intensities have been changing in
ways consistent with our theory. See, for example, Blanchard (1997, 1998), Bound and Johnson (1995), and
Krueger (1999), discussed brie�y below.

3.2 Other Implications

The theory has obvious implications for the dynamics of the income shares of non-reproducible factors.
Our variable L represents all reproducible factors, and that variable�s share of national income is given by

wL

Y
=

AL

A [L+m (�)K]

=
1

L+m (�) KL

Because AL is constant and Y rises monotonically, the model predicts that the income shares of non-
reproducible factors will fall over time. Good data on income shares are not readily available for most
non-reproducible factors, but what data are available suggest that the model�s prediction agrees with the
facts. Consider three types of non-reproducible factors: unskilled labor, land, and energy. (I) Unskilled labor.
Bound and Johnson (1995) and Krueger (1999) present evidence that unskilled labor�s income share of the
US economy has been falling. Krueger reports that the share was down to 6 percent by the mid-1990s. At
the same time, the income share of skilled labor has been rising (e.g., Blanchard, 1997, 1998). Recall that
our variable K is broadly de�ned and includes human capital. An increase in � therefore tends to increase
skilled labor�s income share. (II) Land. The return on land is di¢ cult to measure because much of it comes
as capital gains, which are not included in national income accounts. Nevertheless, estimates of land�s share
in aggregate income are available. Land�s income share in England was about 25% in 1600 (Clark, 2001), but
by 2000 it had dropped to about 0.1% (Bar and Leukhina, 2006).9 We can get a di¤erent, indirect measure
of land�s income share by looking at agriculture data. Land is a major factor of agricultural production
but is of negligible importance in manufacturing and service production. Indeed, land is always included
in agricultural production functions but always omitted from an industrial economy�s aggregate production
function. Consequently, as an economy shifts emphasis from agriculture to manufacturing and service, land�s
income share falls. Such a shift is evident in the data. In the US, for example, the National Income and
Product Accounts show that agriculture accounted for 8.92% of Net National Product in 1929 but only 0.59%
in 2005. Similarly, Weil (2005, table 3.1) shows that the share of wealth in the form of agricultural land in
the United Kingdom fell from 64% in 1688 to 3% in 1958. (III) Energy. Data from the Energy Information
Administration (U.S. Department of Energy) and NIPA show that total real expenditures on energy in the
US grew over the period 1990-2001 at a rate of about 1.5% per year, whereas real GDP grew at an annual
rate of about 2.8%. These two �gures indicate an accumulated drop of about 15% in energy expenditures as

9The 2000 estimate is based on data from the UK National Statistics, kindly provided to us by Oksana Leukhina.
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a share of GDP even over a period marked by unusually large (and likely to be partly reversed) increases in
energy prices. Data for longer periods are not readily available, but data for related variables suggest similar
drops. For example, energy use relative to GDP in the U.S. fell from 19,566 BTU per real dollar of GDP in
1949 to 9,041 BTU per real dollar in 2005.

The theory has the unusual characteristic that neither imperfect competition in the output market nor
externalities are necessary for R&D to take place. The model has been cast in terms of monopolistic
competition, but examination of the solution shows that imperfect competition of that type is not necessary
for R&D to occur. The important relations are the two equilibrium loci given by equations (22) and (23). The
elasticity of substitution " is the indicator of the �rm�s price-setting power. Larger values of " indicate less
pricing power, with no price-setting power when " =1. The arbitrage locus is well de�ned for any admissible
value of ", including in�nity, and the stationarity locus is independent of ". Consequently, everything we have
derived is valid for the price-taking case. Note also that there are no externalities in this model. The model
thus delivers the possibility of self-sustaining endogenous growth without either of the usual conditions of
endogenous growth theory. The important element is that the fruits of R&D are excludable. Even in the
price-taking case, �rms will conduct R&D. The �rm�s goal is to deliver the maximum possible present value
of dividends to its shareholders. The dividends consist of the return to capital. The investment division�s
part in maximizing present value is to provide the �rm with the most e¢ cient production technology possible.
It has two tools at its disposal: increasing the capital stock and increasing the capital intensity. Each costs
one unit of �nal goods, so the investment division splits its budget between its two activities in whatever
way maximizes productive e¢ ciency. No price-setting power is necessary to make R&D worthwhile.10

The characteristics of the transition to the balanced growth path (possibly just a steady state) depend
on the economy�s starting point, and it is not clear what should be considered the right starting point for
humanity. Apparently, initial � was at or near zero. Animals produce income without capital, indicating
that capital cannot be essential for them. In terms of our model, their � and K both are zero. Early man
would have started with the same production function. (Remember the ape in 2001.) Nature, however,
apparently has endowed the world with a small amount of physical capital. Sticks and stones are available
for the taking virtually everywhere. All that is needed is the knowledge to use them. (Again remember
the ape in 2001.) In addition, at the point where children become adults and members of the economic
community, they have a fair amount of human capital in the form of language, learned practices, and social
skills. Let us consider the possibility, then, that there is a positive minimum amount of total capital Kmin.
In that case, the dynamic adjustment paths in the Figures must be changed to point straight rightward in
those parts of regions II and III lying below the minimum K. Instead of initially moving along the �-axis
from the origin, the economy would move along the horizontal line K = Kmin. As in Figure 3, increases in
� initially would have no e¤ect on income, which corresponds to the facts of human history, emphasized
by Lucas (2002, Chapter 5). Thus even this very simple variation of the theory is capable of producing an
adjustment path that resembles the path actually taken by humanity. It would be interesting to see what
implications would emerge from a model that extended the theory to include a distinction between physical
and human capital and that introduced endogenous demography.

A critical issue for the economy�s path is whether the ratio sA=� is su¢ ciently high to guarantee that the
equilibrium loci do not intersect. That ratio can be increased either by raising sA or by reducing �. In our
model, s, A and � are exogenous constants, but in reality all three can vary. The saving rate obviously would
be endogenous in a complete model of household choice. We have treated it as constant for tractability, not
for realism. Similarly, we have taken total factor productivity A to be constant when in fact �rms should
be able to change it as well as � through R&D. Even the depreciation rate need be constant. Indeed, in
reality it seems to fall. Automobiles require less maintenance now than they did two or three decades ago,
and solid-state electronics break down far less often than their vacuum tube predecessors. In other words,
still another dimension of technical progress is control of the depreciation rate. Making the saving rate, total
factor productivity, or the depreciation rate endogenous is well beyond the scope of the present paper, but
doing so would be an interesting area for further research.
10Excludability means that the market is not contestable and so is not competitive in the usual sense. Boldrin and Levine�s

(2005) examination of the necessary conditions for innovation depends on the same mechanism and so has the same element of
non-competitive behavior.
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Our theory o¤ers new perspectives on two aspects of technical change that have been much disucssed
in the literature: factor-bias and induction of technical progress. Factor-bias is the change in factors�
relative rates of return caused by technical progress, and induced technical progress is progress that arises
in response to an increase in the quantity of one of the factors. Virtually all the literature on factor-bias and
induction, like the growth literature, is restricted to factor-augmenting technical change, ignoring factor-
eliminating progress.11 It is straightforward to see that factor-eliminating progress is biased toward capital
and is induced by increases in capital. Intermediate output is given by equation (19). When the labor
constraint is not binding, the marginal products of K and L are m (a)A and A, respectively, and their
ratio m (�) is monotonically increasing in �. When the labor constraint binds, the marginal products of K
and L are �AK��1L1�� and (1� �)AK�L��, and their ratio � (1� �) (K=L)�1 again is monotonically
increasing in �. In both cases, then, technical progress is biased toward capital. Also, an increase inK always
makes higher � desirable. The marginal product of � is Am0 (�)K when the labor constraint binds and is
AK�L(1��) ln (K=L). Both are always positive functions of K because m0 (�) > 0 for all � and K=L > 1

whenever the labor constraint binds because the constraint boundary is given by K=L = (1� �)�(1=�) > 1
so that ln (K=L) > 0 in the constrained region. Factor-eliminating progress satis�es what Acemoglu (2006)
de�nes as strong relative equilibrium bias, which means that the increase in � induced by an increase in K
is su¢ ciently large to raise the marginal return to K even though the quantity of K has increased, which in
itself drives down the marginal return to K.12

In our theory, the economy reaches the � = 1 limit in �nite time. This is because we posited an R&D
technology that is independent of the level of �; see (5). If we posited that changing � becomes in�nitely
costly as � approaches 1 by writing

_� = R (1� �)

as in Zuleta (2006), then the economy would reach the � = 1 limit only asymptotically. Nothing of substance,
however, would change in our story. Our economy already reaches the AK structure only asymptotically.
Slowing the transition to � = 1 (in fact, arbitrarily preventing � from ever getting to 1) complicates the
analysis without adding any insight. It is not obvious, moreover, why the productivity of R&D resources
should be equal to 1� �. Interpreting � as knowledge, such a speci�cation implies that knowledge accumu-
lation reduces research productivity �a strange idea to say the least! Suppose instead there are positive but
diminishing returns to knowledge. Then one could write

_� = R � f (�) ; f 0 (�) > 0; f 00 (�) < 0; lim�!1f
0 (�) = 0.

This speci�cation, too, would complicate the analysis without changing anything of substance. Alternatively,
one could write

_� = f (R;�) ;

where f (�; �) is a standard neoclassical production function. Again, nothing of substance would change at
the cost of a vastly more complicated model. The reason why playing around with the speci�c way in which
� enters the R&D technology makes no substantive di¤erence is that our story requires that � becomes
arbitrarily close to 1, a �nite value. We thus do not need assumptions that allow it to grow forever. We
chose to work with a speci�cation where � becomes exactly 1 in �nite time because it simpli�es the analysis
drastically.

4 Conclusion

We have proposed a theory of endogenous technical progress that alters factor intensity. As we have
seen, the theory can deliver perpetual economic growth without any sort of factor augmenting technical
change. In particular, under some parameter settings, the AK model is the endogenous asymptotic limit
of the economy. In that case, growth occurs along entire the transition path as well as in the limit. The

11See Acemoglu (2002) for a recent review.
12Acemoglu�s discussion is restricted to a static economy with only factor-augmenting progress, but his concepts carry over

directly to our dynamic economy with eliminating progress.
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perpetual growth path always is feasible. It always is possible for society to choose a saving rate that will
put the economy on it. The theory also o¤ers a totally endogenous explanation for the transition from the
primitive state at the dawn of mankind to a modern post-industrial economy. The explanation relies in no
way on exogenous technical change, scale e¤ects, or endowments of alternative technologies. Human progress
is entirely the result of human activity and human choices. Neither the Monolith nor the Tooth Fairy is
required.

Our theory has an important implication for the time path of the price of non-reproducible factors of
production. If the economy gets on a path that leads to the AK model, then the non-reproducible factors
become asymptotically unimportant, meaning that their prices eventually go to zero. This result is in line
with Julian Simon�s well known remark:

"Our supplies of natural resources are not �nite in any economic sense. Nor does past experience
give reason to expect natural resources to become more scarce. Rather, if history is any guide,
natural resources will progressively become less costly, hence less scarce, and will constitute a
smaller proportion of our expenses in future years."

If we think of unskilled labor as a non-reproducible factor, our theory has important implications for income
distribution dynamics. Assuming that the economy starts at or near the origin, unskilled labor�s share
drops along the adjustment path. Unskilled labor�s share never disappears, but it does go asymptotically
to zero. This outcome is similar to what already has happened to land�s income share in industrialized
economies. It does not mean that unskilled labor will have no income. It is unskilled labor�s share of income
that falls, not its absolute level of income. Unskilled labor always is productive, so it always earns income.
Furthermore, skilled labor�s income share rises because human capital, which is subsumed under our broadly
de�ned "capital," earns an increasing share of the growing national income.

The theory suggests several lines for future research, both theoretical and empirical. An obvious extension
would be to include both factor-augmenting and intensity-altering technical change. Empirical evidence
suggests that both occur, so a complete theory would accommodate both. We have initial exploration along
these lines, and the theory seems tractable and interesting. Another interesting theoretical development
would be to make either saving or depreciation endogenous. Endogenous saving would be parallel to moving
from the Solow model to the Cass model. It is non-trivial because of the increase in the dimensionality
of the system and the fact that saving would behave continuously rather than in a bang-bang manner.13

Presumably, introducing endogenous depreciation would face similar di¢ culties.

On the empirical side, our theory suggests that factor intensities should change over time. In general, our
theory allows imperfect competition, so factor intensities are not the same as factor shares. If one is willing
to assume that factor shares estimated from national income account data provide reasonable estimates of
factor intensities, then the time series evidence on the behavior of factor shares is consistent with our theory�s
predictions. Factor shares change over time, and the shares of non-reproducible factors have been falling.
Time variation in factor intensities has an implication for measurement of Total Factor Productivity. Hall
and Jones (1999), for example, use a Cobb-Douglas production function to estimate TFP for a large set of
countries. They �nd that cross-country di¤erences in TFP are of paramount importance in explaining cross-
country di¤erences in economic performance. In arriving at their estimates, they make the usual assumption
that countries have the same capital intensities of 1/3. Gollin (2002), however, has shown that capital
shares di¤er substantially across countries, ranging from 0.17 to 0.66, which suggests that capital intensities
similarly di¤er across countries.14 Hall and Jones�s estimates strongly suggest that technology di¤erences

13Zuleta (2006) examines endogenous saving, but he restricts attention to a model in which investments in physical capital
K can be instantaneously converted into production knowledge � and vice versa.
14Gollin�s �gures do not distinguish between skilled and unskilled labor, whereas our theory treats skill as a type of capital.

For our purposes the correct measure of labor income share would be the share paid to unskilled labor only. We know of no
cross-country data on the income share of unskilled labor. Nonetheless, Gollin�s �gures do suggest considerable cross-country
variation in factors�income shares.
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are important in explaining cross-country di¤erences, but Gollin�s estimates suggest, in conformity with our
theory, that it may not be appropriate to summarize all di¤erences in technology by di¤erences in TFP. It
would be useful to re-calculate estimates of TFP across countries using Gollin�s factor share estimates. It
then would be possible to get some idea of how much of the variation in cross-country economic performance
depends on di¤erences in TFP and how much depends on di¤erences in factor intensities.
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5 Appendix

5.1 The function m (�)

The function
m (�) = � (1� �)

1��
�

has derivatives:

m0 (�) = m (�)
1

�2
ln

1

1� � > 0;

m00 (�) = m (�)
1

�2

�
1

�
ln

1

1� �

�
1

�
ln

1

1� � +
�

1� �

��
> 0:

Moreover, we can write:

m (�) = � exp

"
n
ln (1� �)

�
1��

#
;

m0 (�) =
� ln (1� �)

�
exp

"
ln (1� �)

�
1��

#
:

We then have that:

lim
�!0;1

ln (1� �)
�
1��

= lim
�!0;1

� 1
1��
1

(1��)2
= lim

�!0;1
(�� 1) ;

lim
�!0;1

� ln (1� �)
�

= lim
�!0;1

1

1� �:

Hence:

m (0) = 0 � exp (�1) = 0;
m (1) = 1 � exp (0) = 1;
m0 (0) = 1 � exp (�1) = e�1;

m0 (1) = +1 � exp (0) = +1:

5.2 The �rm�s necessary conditions for optimization

The necessary conditions are:
@H

@ 
= I � �K; (24)

@H

@�
= R; (25)

_ = �@H
@K

+ r = � @�

@K
� rK + � + r ; (26)

_� = �@H
@�

+ r� = �@�
@�

+ r�; (27)

@H

@I
= �1 +  + !1 = 0; (28)

@H

@R
= �1 + �+ !2 = 0; (29)

lim
t!1

 tKte
��rtt = 0; (30)
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lim
t!1

�t�te
��rtt = 0: (31)

To obtain the returns to capital and R&D, we substitute the values  = � = 1 and _ = _� = 0 into equations
(26) and (27), and note that the investment division takes l, K and L as given in �. This gives us

r = rK � �;

where rK is given by (13), and

r = r� �
@�

@�
:

5.3 Labor-Constraint Boundary

The boundary between the region wherethe labor constraint does and does not bind is given by

K = L

�
1

1� �

� 1
�

The boundary�s slope is
dK

d�
= K

h
��1 (1� �)�1 + ��2 ln (1� �)

i
The two terms in brackets are of opposite sign, but plotting the slope shows that it is positive over the entire
domain � 2 [0; 1], indicating that the boundary is increasing everywhere over that domain. Application of
L�Hopital�s Rule shows that the boundary intersects the K-axis at K = eL and goes to in�nity as � ! 1.
The slope of the boundary is eL=2 at � = 0.

5.4 Arbitrage Locus and Proof of Proposition 2

We derive the properties of the arbitrage locus under general conditions, obtaining Proposition 2 as part
of the derivation. Use (6), (13), (16), and (18) to write:

rK =

8><>:
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�
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� 1
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;
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� 1
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1

1��

� 1
�

:

Substitute these expressions into the equation for asset market equilibrium, r� = rK � �, and solve for K in
terms of � to obtain the equation for the arbitrage locus. Consider the unconstrained and constrained cases
in turn.

In the unconstrained region, we have

K =
1

m0 (�)

�
m (�)� �"

A ("� 1)

�
The expression in brackets can be positive or negative, depending on parameters magnitudes and the value
of �. However, K cannot be negative, so for any � for which the bracketed expression is negative, the
arbitrage locus must lie on the horizontal axis (i.e., K is constrained to be zero). Let �� be the value for
which m (�) = �"= [A ("� 1)]. If �"= [A ("� 1)] � 1, then �� � 1, the bracketed expression is non-positive
for all feasible values of � 2 [0; 1], and the entire arbitrage locus lies on the horizontal axis. In that case, all
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dynamic adjustment paths lead to K = 0, and the economy always degenerates to a primitive state of having
no capital and using only the primitive production function X = AL. Such a case does not correspond to
human history, so we rule it out by assuming that �"= [A ("� 1)] < 1. Then there exists an �� 2 (0; 1) such
that m (�) = �"= [A ("� 1)]. For � � ��, the arbitrage locus lies on the horizontal axis, and for � � ��,
K = [m (�)� �"= fA ("� 1)g] =m0 (�). We thus have the �nal equation for the unconstrained arbitrage
locus:

K =

(
0 0 � � � ��

1
m0(�)

h
m (�)� �"

A("�1)

i
�� < � � 1

which is the equation given in Proposition 2. At � = 1, we have K = 0 because m (1) = 1 and m0 (1) =1.

The slope of the unconstrained arbitrage locus is (after some algebra)

dK

d�
= 1� 1

m (�)

�
1 +

�2

(1� �) ln (1� �)

� �
m (�)� �"

A ("� 1)

�
At � = �� the slope is 1, and at � = 1 it is �1. The slope therefore changes sign between �� and 1. We
have not been able to derive analytically how many times the slope changes sign (although it clearly must be
an odd number), but plots of the arbitrage locus for various parameter values always show a single turning
point. The arbitrage locus thus is hump-shaped as stated in Proposition 2 and shown in Figures 3 and 4.

In the constrained region, we obtain an expression for the arbitrage locus that we cannot solve in closed
form for K: �

K

L

���1 �
��K ln K

L

�
=

�"

A ("� 1)
The slope is even more complicated:

dK

d�
=

� (1� �)K�1 + (�+ L) ln KL

1 + � ln KL �K
�
K
L

�1�� �
ln KL

�2
These expressions give little information about the shape of the constrained arbitrage locus, so we turn to a
graphical analysis.

Note that at � = 0 the equation for the constrained arbitrage locus simpli�es to �L ln (K=L) =
�"= [A ("� 1)], which can be rearranged as

K = L exp

�
� �"

LA ("� 1)

�
< L

Recall that the constraint boundary starts at K = eL > L and the unconstrained arbitrage locus starts at
K = 0. Consequently, the constrained arbitrage locus starts below the constraint boundary and above the
unconstrained arbitrage locus. At � = 1, constrained arbitrage locus equation simpli�es to 1�K ln (K=L) =
�"= [A ("� 1)], or equivalently

K ln
K

L
= 1� �"

A ("� 1)
> 0

) 1 <
K

L
<1

() L < K <1

This last result implies two things: (1) the locus has an overall upward trend because it starts at a value of
K less than L and ends at a value greater than L, and (2) the constrained locus intersects the vertical line
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� = 1 at a �nite value. There are three possibilities for the relation among the constrained arbitrage locus,
the unconstrained arbitrage locus, and the constraint boundary. First, the constrained arbitrage locus can
lie everywhere below the constraint boundary and everywhere above the unconstrained locus as shown in the
bottom panel of Figure 5. Second, the three loci could be mutually tangent at a single point, as shown in the
middle panel of Figure 5. Third, the loci could intersect as shown in the top panel of Figure 5. That is the
case where the labor constraint binds in a meaningful way over part of the ��K space. To the left of the �rst
intersection point, both the unconstrained and constrained arbitrage loci lie below the constraint boundary.
That means the constrained locus cannot be e¤ective because it cannot pertain in the unconstrained region
(which is the region below the constraint boundary). The same is true to the right of the second intersection
point. Between those two points, both loci lie above the constraint boundary, i.e., in the constrained region.
In that region, the unconstrained locus cannot be e¤ective. The e¤ective equilibrium locus therefore is the
heavy curve that is the union of the relevant segments of the unconstrained and constrained loci: �rst a
segment of the unconstrained locus below the constraint boundary, then a segment of the constrained locus
above the boundary, and �nally another segment of the unconstrained locus below the boundary. It should
be clear from this discussion that the two equilibrium loci must intersect the constraint boundary at common
points. Anything else leads to contradictions with the meaning of an equilibrium locus.

From the foregoing, we see that the e¤ective arbitrage locus will consist of only the unconstrained locus
if the latter lies everywhere below the constraint boundary, as in the bottom panel of Figure 5. For that to
happen, we require that, for all �,

L
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� 1
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>
1
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which we can rearrange as"
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A su¢ cient condition for this inequality to hold is
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Then, L > � is su¢ cient for (32) to hold, as remarked in the main text.

5.5 Stationarity Locus and Proof of Proposition 3

Stationarity requires _� = 0 and _K = 0. Substituting these into the resource constraint, given by
equation (21), and solving for K in terms of � yields the following unconstrained and constrained equations
for the stationarity locus:

K =
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Consider the unconstrained case �rst. let ~� be the value of � that solvesm (�) = �= (sA). The stationarity
locus is asymptotic to ~�. The �rst and second derivatives of the unconstrained locus are

dK

d�
= L
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sA
�m (�)

��2
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> 0 8�

d2K
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2
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2
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)
> 0 8� < ~�

< 0 8� > ~�

We are interested in the stationarity locus only over the domain � 2 [0; 1]. If �= (sA) < 1, then ~� < 1 as
well, and the stationarity locus has two branches. The left branch starts at K = L sA� at � = 0 and then
goes asymptotically to in�nity as � ! ~�. The right branch then starts at �1 immediately to the right
of ~� and rises to L

�
�
sA � 1

��1
< 0 at � = 1. The lower panel of Figure 6 shows the general shape of the

unconstrained stationarity locus. The right branch of the locus is of no interest because it lies in the part
of the plane where capital is negative. It is ignored henceforth. The upper panel of Figure 6 shows various
possible con�gurations of the left branch of the unconstrained stationarity locus. If �= (sA) < e, the locus lies
everywhere above the constraint boundary. If e < �= (sA) < 1, the locus intersects the constraint boundary
once. Using the equations for the stationarity locus and the constraint boundary, some algebra shows that

value of � at which the intersection occurs is that which solves (1� �)�
1��
� = sA=�. If �= (sA) = 1, the

locus goes asymptotically to the vertical line � = 1. Finally, if �= (sA) > 1, the locus intersects the vertical
line � = 1 at a �nite value of K.

The constrained stationarity locus starts at the same point as the unconstrained locus. That is, at � = 0
the value of K on the two loci are the same, namely, (sA=�)L. As � ! 1, the behavior of the constrained
locus depends on the size of sA=�:

K

8<: !1 if sA=� > 1
= L if sA=� = 1
! 0 if sA=� < 1

The �rst derivative of constrained stationarity locus equation is
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As �! 1, the slope goes to in�nity if sA=� > 1, equals zero if sA=� = 1, and requires analysis of the second
derivative if sA=� < 1. The second derivative is
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This expression is positive if sA=� > 1, is zero if sA=� = 1, and changes sign as � increases if sA=� < 1. If
e�2 < sA=� < 1, the second derivative is negative at � = 0 and positive at � = 1. If sA=� < e�2, the second
derivative is positive for all values of �. Whenever sA=� > 1, the constrained stationarity locus intersects
the constraint boundary once. The point of intersection is found by equating the expressions for the two
curves, and the result is

sA

�
=

�
1

1� �

� 1��
�
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which gives the value of � at which the intersection occurs. For � 2 (0; 1), the right side is greater than
1 and less than e. Thus if sA=� 2 [1; e], there is an intersection. If sA=� > e, the constrained stationarity
locus lies everywhere above the constraint boundary. If sA=� < 1, the constrained stationarity locus lies
everywhere below the constraint boundary. The lower panel of Figure 7 shows various possible con�gurations
of the constrained stationarity locus.

Whenever �= (sA) < 1, the unconstrained stationarity locus crosses the constraint boundary at some
�̂ 2 (0; 1) and lies in the constrained region for values of � > �̂. Therefore, to the right of �̂ the uncon-
strained locus is irrelevant. Some algebra shows that the constrained stationarity locus crosses the constraint
boundary at the same point that the unconstrained locus crosses, namely, �̂. However, the two stationarity
loci have at least one other crossing at a value of � between 0 and �̂. One way to see this result is to note
that the slope of the constrained locus is less than the slope of the unconstrained locus at both � = 0 and
� = �̂, implying at least one crossing between those two values of �. The upper panel of Figure 7 shows the
relation between the three curves. In that panel, the e¤ective stationarity locus is the heavy curve consisting
of the part of the unconstrained stationarity locus for � < �̂ and the constrained stationarity locus for � > �̂.

Collecting these results gives us the following equation for the e¤ective stationarity locus:

K =

8>>>>><>>>>>:

L

( �
sA )

1
1��

sA
� � e

L

( �
sA )

1
1��

0 � � � �̂

L
�
sA�m(�)

�̂ � � � 1

9=; e > sA
� � 1

L
�
sA�m(�)

1 > sA
�

In the main text, we have restricted attention to the case where the stationarity locus lies everywhere
above the arbitrage locus, so we have not bothered to show there the constrained part of the stationarity
locus.

Finally, we note that there always exists a value of the saving rate s su¢ ciently high to guarantee that the
stationarity locus lies above the arbitrage locus and a value of s su¢ ciently low that the two loci intersect.
Recall that �� is the value of � at which the unconstrained arbitrage locus �rst crosses into the positive
quadrant, and ~� is the asymptote of the unconstrained stationarity locus. If the asymptote is to the left of
��, the two loci cannot intersect. The value of ~� latter depends on the saving rate s, so we want to see if
there is a saving rate such that ~� < ��. From earlier de�nitions we have that �� is the value of � for which
m (�) = "�= [("� 1)A] and ~� is the value for which m (�) = �= (sA). Then note that

m (~�) =
�

sA

=
1

s

"� 1
"

"

"� 1
�

A

=
1

s

"� 1
"

m (��)

Choosing s > ("� 1) =" then guarantees that ~� < �� because m (�) is increasing in �. Such a choice of s
always is possible because ("� 1) =" < 1.

5.6 Transversality conditions: investment division

After the economy reaches the � = 1 limit, the interest rate is constant and equal to the net marginal
product of capital, r = "�1

" A � �. We assume "�1
" A � � > 0 to guarantee r > 0. Asymptotically, capital

grows at rate sA� �. Also,  = 1 for all t. We thus have

lim
t!1

 tKte
��rtt = lim

t!1
K0e

(sA��)te�(
"�1
" A��)t = 0:
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This surely holds for sA � �. For sA > �, it holds if 1=" < 1 � s and fails to hold if 1=" � 1 � s. We thus
must impose an upper bound on the monopoly pro�t ratio 1=". Also, � = 1 and � = 1 yield

lim
t!1

�t�te
��rtt = lim

t!1
e�(

"�1
" A��)t = 0:

If the economy reaches a �Solow�steady state with constant capital and � < 1, the transversality conditions
(30) and (31) are surely satis�ed.
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