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Stable Non-standard Imprecise Probabilities

Hykel Hosni1? and Franco Montagna2

1 London School of Economics h.hosni@lse.ac.uk
2 Uninversità di Siena montagna@unisi.it

Abstract. Stability arises as the consistency criterion in a betting inter-
pretation for hyperreal imprecise previsions, that is imprecise previsions
(and probabilities) which may take infinitesimal values. The purpose of
this work is to extend the notion of stable coherence introduced in [8]
to conditional hyperreal imprecise probabilities. Our investigation ex-
tends the de Finetti-Walley operational characterisation of (imprecise)
prevision to conditioning on events which are considered “practically
impossible” but not “logically impossible”.

1 Introduction and Motivation

This paper combines, within a logico-algebraic setting, several extensions of the
imprecise probability framework which we aim to generalise so as to represent
infinitesimal imprecise probabilities on fuzzy events.

Imprecise conditional probabilities, as well as imprecise conditional previ-
sions, have been investigated in details by Walley [12] in the case where the
conditioning event ψ is boolean and has non-zero lower probability. There, a
de Finetti-style interpretation of upper and lower probability and of upper and
lower prevision in terms of bets is proposed. In Walley’s approach, the condi-
tional upper prevision, U(x|ψ) of the gamble x given the event ψ is defined to be
a number α such that U(xψ · (x−α)) = 0, where xψ = 1 if ψ is true and xψ = 0
if ψ is false. When the lower probability of ψ is non-zero, there is exactly one
α satisfying the above condition, and hence, the upper conditional prevision is
well-defined. Likewise, the lower conditional prevision of x given ψ is the unique
β such that L(xψ · (x − β)) = 0. However, the uniqueness of α and β is only
guaranteed if the lower probability of ψ is not zero, otherwise, there might be
infinitely many solutions of the above equations.

In terms of bets, the rationality of an assessment of upper probabilities (or
of upper previsions) corresponds to the absence of inadmissible bets, that is, of
bets for which there is an alternative strategy for the gambler which ensures
to him a strictly better payoff whatever the outcome of the experiment will be.
In the case of conditional upper and lower previsions, however, the absence of
inadmissible bets might be due to the fact that the conditioning event has lower
probability zero (remind that when the conditioning event is false the bet is
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invalidated, and hence the payoff of any bet on the conditional event is zero).
So, the presence of events with lower probability zero might force the absence
of inadmissible bets even in non-rational assessments. For instance, if we chose
a point at random on the surface of Earth, and φ denotes the event: the point
belongs to the western hemisphere and ψ denotes the event the point belongs to
the equator, the assessment φ|ψ 7→ 0, ¬φ|ψ 7→ 0 avoids inadmissible bets (in case
the point does not belong to the equator), but is not rational.

The goals of this paper are the following:
(1) To provide for a treatment of conditional upper and lower previsions

when the conditioning event is many-valued and when the conditioning event
has probability zero. For probabilities in the usual sense, this goal has been
pursued in [8].

(2) To model conditional or unconditional bets in which truth values and
betting odds may be non-standard. In particular, to every non-zero event with
probability zero we assign an infinitesimal non-zero probability, so that we may
avoid conditioning events with probability zero. Then taking standard parts we
obtain a probability (or, in the case of many-valued events, a state) in the usual
sense.

(3) The basic idea is the following: we replace the concept of coherence (ab-
sence of inadmissible bets) by a stronger concept, namely, stable coherence. Not
only inadmissible bets are ruled out, but, in addition, the absence of inadmissible
bets is preserved if we modify the assessment by an infinitesimal in such a way
that no lower probability assessments equal to zero are allowed for events which
are not impossible. The main result (Theorem 5) will be that stable coherence
for an assessment of conditional upper probability corresponds to the existence
of a non-standard upper probability which extends the assessment modulo an
infinitesimal and assigns a non-zero lower probability to all non-zero events.

Our main result has important foundational consequences. For stable coher-
ence allows us to distinguish between events which are regarded as practically
impossible and events which are indeed logically impossible. It is well-known
that this subtle but crucial difference can only be captured by so-called regu-
lar probability functions which are characterised by Shimony’s notion of strict
coherence. A companion paper will address this point in full detail.

For reasons of space all proofs are omitted from this version of the paper.

2 Algebraic structures for non-standard probability

We build on [8], which can be consulted for further background on MV-algebra
and related structures.3 Specifically, we work in the framework of unital lat-
tice ordered abelian groups, which can be represented as algebras4 of bounded

3 [2] provides a basic introduction and [11] a more advanced treatment, including
states and their relationship with coherence. The basic notions of universal algebras
we use are provided by [1].

4 Algebras will be usually denoted by boldface capital letters (with the exception of
the standard MV-algebra on [0, 1] and the standard PMV+-algebra on [0, 1] which



functions from a set X into a non-standard extension, R∗, of R. Hence, their el-
ements may be interpreted as bounded random variables (also called gambles in
[12]). The set of bounded random variables is closed under sum, subtraction and
under the lattice operations. Since we are interested in extending the framework
of [8] to imprecise conditional prevision and probability, we also need a product
operation. It turns out that appropriate structure is constituted by the c-s-u-f
integral domains.

Definition 1. A commutative strongly unital function integral domain (c-s-u-f
integral domain for short) is an algebra R = (R,+,−,∨,∧, ·, 0, 1) such that:

(i) (R,+,−,∨,∧, 0) is a lattice ordered abelian group and 1 is a strong unit
of this lattice ordered group.

(ii) (R,+,−, ·, 0, 1) is a commutative ring with neutral element 1.
(iii) The identity x+ · (y ∨ z) = (x+ · y) ∨ (x+ · z) holds, where x+ = x ∨ 0.
(iv) The quasi identity: x2 = 0 implies that x = 0 holds.

Remark 1. In [7] it is shown that every c-s-u-f integral domain embeds into an
algebra of the form (R∗fin)H , where R∗ is an ultrapower of the real field, Rfin is

the c-s-u-f domain consisting of all finite elements of R∗, and H is an index set5.
In particular, every c-s-u-f integral domain embeds into the product of totally
ordered integral domains, and this fact justifies the name of these structures.

Let (G, u) be a unital lattice ordered group. We define Γ (G, u) to be the algebra
whose domain is the interval [0, u], with the constant 0 and with the operations
∼ x = u − x and x ⊕ y = (x + y) ∧ u. Moreover if h is a homomorphism of
unital lattice ordered abelian groups (G, u) and (G′, u′) (i.e., a homomorphism of
lattice ordered groups such that h(u) = u′), we define Γ (h) to be the restriction of
h to Γ (G, u). Likewise, given a c-s-u-f integral domain (F, u) and denoting by F−

the underlying lattice ordered abelian group, we define ΓR(F, u) to be Γ (F−, u)
equipped with the restriction of · to Γ (F−, u). Moreover given a homomorphism
h of c-s-u-f integral domains from (F, u) into (F′, u′) we denote by ΓR(h) its
restriction to ΓR(F, u).

Theorem 1. (1) (see [10]). Γ is a functor from the category of unital lattice
ordered abelian groups into the category of MV-algebras. Moreover Γ has an
adjoint Γ−1 such that the pair (Γ, Γ−1) is an equivalence of categories.

(2) (see [7]). ΓR is a functor from the category of c-s-u-f integral domains
into the category of PMV+-algebras. Moreover ΓR has an adjoint Γ−1R such that
the pair (ΓR, Γ

−1
R ) is an equivalence of categories.

Remark 2. Theorem 1 tells us that the algebra of gambles, represented by a uni-
tal lattice ordered abelian group or of a c-s-u-f integral domain, is completely
determined by the algebra of [0, u]-valued gambles, whose elements may be re-
garded as many-valued events. MV and PMV+-algebras provide rich semantics
for the logic of many-valued events.

are denoted by [0, 1]MV and by [0, 1]PMV , respectively) and their domains will be
denoted by the corresponding lightface capital letters.

5 Of course, the embedding sends u, the neutral element for product, in to 1.



Let A be an MV-algebra, and let (G, u) be a lattice ordered unital abelian group
such that Γ (G, u) = A. Let R∗ be an ultrapower of the real field, and let R∗fin
be the set of all finite elements of R∗ and let [0, 1]∗ = Γ (R∗fin, 1).

We say that R∗ is (G, u)-amenable if for all g ∈ G, if g 6= 0, then there is
a homomorphism h from G into R∗fin, considered as a lattice ordered abelian
group, such that h(u) = 1 and h(g) 6= 0. We say that [0, 1]∗ is A-amenable if for
all a ∈ A, if a 6= 0, then there is a homomorphism h from A into [0, 1]∗, such
that h(u) = 1 and h(g) 6= 0.

Lemma 1. Let (G, u) be a unital lattice ordered abelian group, let R∗ be an
ultrapower of R and [0, 1]∗ = Γ (R∗, 1) = Γ (R∗fin, 1). Then [0, 1]∗ is Γ (G, u)-
amenable iff R∗ is (G, u)-amenable.

In [8], the following result is shown:

Proposition 1. For every MV-algebra A, an A-amenable ultrapower [0, 1]∗, of
[0, 1] exists.

It follows:

Corollary 1. For each unital lattice ordered abelian group (G, u), a (G, u)-
amenable ultrapower R∗ of R exists.

In the sequel, we will need MV-algebras with product or c-s-u-f domains in
order to treat conditional probability in an algebraic setting. Moreover we need
to treat probabilities in terms of bets in such a way that zero probabilities will be
replaced by infinitesimal probabilities. We would like to have a richer structure
in which not only MV-operations or lattice ordered group operations, but also
product and hyperreal numbers are present. The construction presented in the
next lines provides for such structures.

Definition 2. Let (R∗fin, 1) be (G, u)-amenable, let H be the set of all homo-
morphisms from (G, u) into (R∗fin, 1), and let Φ be defined, for all g ∈ G, by

Φ(g) = (h(g) : h ∈ H). By Π(G, u,R∗fin), we denote the subalgebra of (R∗fin)H

(with respect to the lattice ordered group operations and to product in R∗fin) gen-
erated by Φ(G) and by the elements of R∗fin, thought of as constant maps from
H into R∗ (in the sequel, by abuse of language, we denote by α the function
from H into R∗fin which is constantly equal to α).

Likewise, if A is an MV-algebra and [0, 1]∗ is an ultrapower of [0, 1]MV which
is A-amenable, if H is the set of all homomorphisms from A into [0, 1]∗ and Φ
is defined, for all a ∈ A by Φ(a) = (h(a) : h ∈ H), then Π(A, [0, 1]∗) denotes the
subalgebra of ([0, 1]∗)H generated by [0, 1]∗ and by Φ(A).

It can be proved that both (G, u) and R∗fin are embeddable into Π(G, u,R∗fin)
and both A and [0, 1]∗ are embeddable in Π(A, [0, 1]∗), see [8].

Lemma 2. Π(G, u,R∗fin) = Γ−1(Π(Γ (G, u), [0, 1]∗)).



3 Fuzzy imprecise probabilities over the hyperreals

We are now in a position to introduce the notion of fuzzy imprecise hyperpre-
visions, which, as usual, lead in a special case, to probabilities. We will focus
on upper hyper previsions and probabilities (lower notions will be obtained as
usual). Naturally enough, our first step requires us to extend propositional val-
uations to the hyperreals.

Definition 3. Let (G, u) be a unital lattice ordered abelian group and suppose
that R∗ is (G, u) amenable. Let A = Γ (G, u) and [0, 1]∗ = ΓR(R∗fin, 1), A∗ =
Π(A, [0, 1]∗), G∗ = Π(G, u,R∗fin). A hypervaluation on G∗ (resp., on A∗) is
a homomorphism v∗ from G∗ into R∗fin (resp., from A∗ into [0, 1]∗) such that
for every α ∈ R∗fin (resp., in [0, 1]∗), v∗(α∗) = α. A hyperprevision on (G, u)
is a function P ∗ from G∗ into R∗fin such that for all α,∈ R∗fin and x, y ∈ G∗,
the following conditions hold:

(1) P ∗(α∗x) = αP ∗(x).
(2) if x ≥ y, then P ∗(x) ≥ P ∗(y).
(3) P ∗(x+ y) = P ∗(x) + P ∗(y).
(4) P ∗(u) = 1.
(5) There are hypervaluations v, w such that v(x) ≤ P ∗(x) ≤ w(x).

A hyperstate on A∗ is a map S∗ from A∗) into [0, 1]∗ such that, for all
α ∈ [0, 1]∗ and for all x, y ∈ A∗, the following conditions hold:

(a) S∗(u) = 1

(b) S∗(α∗ · x) = α · S∗(x)

(c) if x� y = 0, then S∗(x⊕ y) = S∗(x) + S∗(y)

(d) there are hypervaluations v, w such that v(x) ≤ S∗(x) ≤ w(x).

Definition 4. An upper hyperprevision is a function U∗ on G∗ which satisfies
(2), (4), (5), with P ∗ replaced by U∗, and

(1)’ U∗(α∗x) = αU∗(x), provided that α ≥ 0.
(3)’ U∗(x+ y) ≤ U∗(x) + U∗(y).
(6) U∗(x+ α) = U∗(x) + α.

An upper hyperstate on A∗ is a function U∗0 from A∗ into [0, 1]∗ such that,
for all x, y ∈ A∗ and for all α ∈ [0, 1]∗, the following conditions hold:

(i) U∗0 (u) = 1.

(ii) If x ≤ y, then U∗0 (x) ≤ U∗0 (y).

(iii) U∗0 (α · x) = α · U∗0 (x) and if α� x = 0, then U∗0 (x⊕ α) = U∗0 (x) + α.

(iv) U∗0 (x⊕ y) ≤ U∗0 (x)⊕ U∗0 (y).

(v) U∗0 (x⊕ α) = U∗0 (a) + α whenever x� α = 0.
(vi) There are hypervaluations v, w such that v(x) ≤ U∗0 (x) ≤ w(x).



Remark 3. (1) A valuation on a lattice ordered abelian group G∗ (resp., on A∗)
is a homomorphism v from G∗ into R (resp., from A into [0, 1]PMV ) such that
v(α) = α for every standard real α. Moreover, a prevision on G∗ is a map into
R which satisfies (2), (3) and (4), as well as (1) for all standard α and (5) with
hypervaluations replaced by valuations. Likewise, a state on A∗ is a map into
[0, 1] which satisfies (a) and (c), as well as (b) for all standard α and (d) with
hypervaluations replaced by valuations.

Moreover, an upper prevision on G∗ is a map into R which satisfies (2), (4)
and (3)’, as well as (1)’ and (6) for all standard α and (5) with hypervaluations
replaced by valuations. Finally, an upper hyperstate on A∗ is a map into [0, 1]
which satisfies (i), (ii) and (iv), as well as (iii) and (v) for all standard α and
(vi) with hypervaluations replaced by valuations.

Hence, hypervaluations, hyperprevisions, hyperstates, upper hypeprevisions
and upper hyperstates are natural non-standard generalizations of valuations,
previsions, states, upper previsions and upper states, respectively.

(2) The restriction to A∗ of a hyperprevision P ∗ (resp., an upper hyperprevi-
sion U∗) on G∗, is a hyperstate (resp., an upper hyperstate). Moreover, a hyper-
state S∗ (resp, a hyper upper state U∗0 ) on A∗ has a unique extension P ∗ (resp.,
U∗) to a hyper prevision (resp., to a hyper upper prevision) on G∗. Indeed, given
a ∈ G∗, there are positive integers M,N such that 0 ≤ a+N

M ≤ u. So, a+NM ∈ A∗,

and it suffices to define P ∗(a) = M ·S∗(a+NM )−N , and U∗(a) = M ·U∗0 (a+NM )−N .
Note that in [5] it is shown that the definition does not depend on the choice of
the integers M and N such that a+N

M ∈ A.
(3) Let U∗0 be an upper hyperstate on A∗ and U∗ be the unique upper hyper-

prevision on G∗ extending U∗0 . Then for all x ∈ A∗, the upper hyperprobability,
U∗0 (x), of x, is a number α such that the upper hyperprevision, U∗(x−α) of the
gamble x − α, is 0. Indeed, U∗(x − α) = U∗(x) − α (because α is a constant),
and hence, U∗0 (x) = U∗(x) = α iff U∗(x − α) = 0. This means that the upper
hyperprevision of a gamble x is a number α such that the upper hyperprevision
of the payoff of the gambler when he bets 1 with betting odd α, namely x− α,
is 0.

(4) Given an upper hyperprevision U∗, its corresponding lower hyperprevision
is L∗(x) = −U∗(−x). Likewise, if U∗0 is an upper hyperstate, its corresponding
lower hyperstate is given by L∗0(x) = 1− U∗0 (¬x).

(5) If U∗ is an upper hypeprevision, then U∗(x) = U∗(x + y − y) ≤ U∗(x +
y) +U∗(−y), and hence, U∗(x) +L∗(y) ≤ U∗(x+ y) ≤ U∗(x) +U∗(y). Likewise,
if U∗0 is an upper hyperstate and L∗0 is its corresponding lower hyperstate and if
x� y = 0, then U∗0 (x) + L∗0(y) ≤ U∗0 (x⊕ y) ≤ U∗0 (x) + U∗0 (y).

We now present a betting interpretation of hyper upper previsions, which will
lead to the appropriate notion of coherence. We begin by recalling a character-
isation of coherence as avoiding inadmissible bets given in [6] (the terminology
“bad bet” was used there.)

Definition 5. Let (G, u) be a unital lattice ordered abelian group, and let Λ =
x1 7→ α1, . . . , xn 7→ αn be an assessment of upper previsions on the bounded



random variables x1, . . . , xn ∈ G. The associated betting game is as follows:
the gambler can bet only non-negative numbers λ1, . . . , λn on x1, . . . , xn, and
the payoff for the bookmaker corresponding to the valuation v on (G, u) will be∑n
i=1 λi · (αi − v(xi)).
Let W be a set of valuations on (G, u). An inadmissible W bet is a bet µi ≥ 0

on xi (for some i ≤ n) such that there is a system of non-negative bets λ1, . . . , λn
which guarantees a better payoff to the gambler, independently of the valuation
v ∈W , that is, for every valuation v ∈W ,

∑n
j=1 λj ·(v(xj)−αj) > µi·(v(xi)−αi).

An inadmissible bet is an inadmissible W bet, where W is the set of all valuations
on (G, u).

The assessment Λ is said to be W coherent if it excludes inadmissible W -bets,
and coherent if it excludes inadmissible bets.

In [6] it is shown that an assessment of upper probability avoids inadmissible
bets iff it can be extended to an upper prevision. The result was shown first,
although in a different setting, by Walley in [12].

In [6] it is also shown that given gambles x1, . . . , xm and given an upper
prevision U , for i = 1, . . . ,m there is a prevision Pi such that Pi(xi) = U(xi) and
Pi(x) ≤ U(x) for every gamble x. Moreover, as shown in [11], there are valuations
vi,j and non-negative reals λj,i, i = 1, . . . ,m+ 1, j = 1, . . . ,m such that for j =

1, . . . ,m,
∑m+1
i=1 λi,j = 1 and for h, j = 1, . . . ,m, sj(xh) =

∑m+1
i=1 λi,jvi,j(xh). In

other words, we can assume that each Pi is a convex combination of valuations.
Hence, coherence for upper previsions is equivalent to the following condition:

Theorem 2. Let Λ = x1 7→ α1, . . . , xm 7→ αm be an assessment as in Definition
5. Then Λ is coherent (i.e., avoids inadmissible bets) iff there are valuations vi,j :
j = 1, . . . ,m, i = 1, . . . ,m+1 and non-negative real numbers λi,j : j = 1, . . . ,m,

i = 1, . . . ,m + 1, such that, letting for j = 1, . . . ,m, Pj(x) =
∑m+1
i=1 λi,jvi,j(x),

the following conditions hold:
(i) For j = 1, . . . ,m,

∑m+1
i=1 λi,j = 1.

(ii) For j = 1, . . . ,m, Pi(xj) ≤ αj.
(iii) Pi(xi) = αi.

In words, Λ avoids inadmissible bets iff there are m convex combinations,
P1, . . . , Pm, of valuations, such that for j = 1, . . . ,m, αj = max{Ph(xj) : h =
1, . . . ,m}.

The result above6 may be extended to non-standard assessments, to hypervalu-
ations and to upper hyper previsions. First of all, we consider a (G, u)-amenable
ultrapower, R∗, of R, and we set G∗ = Π(G, u,R∗fin). Then we consider a hy-
perassessment Λ := x1 7→ α1, . . . , xn 7→ αn with x1, . . . , xn ∈ G∗. Let W be a
set of hypervaluations. We say that Λ is W -coherent if it rules out inadmissible
W -bets, that is, for i = 1, . . . , n and for every λ, λ1, . . . , λn ≥ 0, there is a hy-
pervaluation v∗ ∈ W such that λ · (v∗(xi) − αi) ≥

∑n+1
j=1 λj · (v∗(xj) − αj). We

6 Our coherence criterion resembles very closely a number of similarly-minded gener-
alisations of de Finetti’s own notion of coherence, among others that of [3].



say that Λ is R∗-coherent if it is W -coherent, where W is the set of all hyperval-
uations on G∗, and that Λ is coherent if it is R◦-coherent for some ultrapower,
R◦, of R∗. Similar definitions can be given for assessments of upper hyperprob-
ability on algebras of the form A∗ = Π(A, [0, 1]∗) (in this case, hypervaluations
are homomorphisms from A∗ into [0, 1]∗ which preserve the elements of [0, 1]∗,
and (upper) hyperprevisions must be replaced by (upper) hyperstates).

Recall that there is a bijection between upper hyperprevisions on G∗ =
Π(G, u,R∗fin) and upper hyperstates on A∗ΓR(Π(G, u,R∗fin)): the restriction
to A∗ of an upper hyperprevision is an upper hyperstate, and every upper hy-
perstate on A∗ has a unique extension to an upper hyperprevision U∗ on G∗.

By a similar argument, there is a bijection between coherent assessments
on G∗ and coherent assessments on A∗. Indeed, clearly, a coherent assessment
on A∗ is also a coherent assessment on G∗. Conversely, given any assessment
Λ =: x1 7→ α1, . . . , xk 7→ αk on G∗, there are integers Mi, Ni, with Mi > 0,
such that 0 ≤ xi+Ni

Mi
≤ u. Now let ai = xi+Ni

Mi
, and let Λ0 be the assessment:

Λ0 =: a1 7→ α1+N1

M1
, . . . , ak 7→ αk+Nk

Mk
on A∗. Then Λ avoids inadmissible bets iff

Λ0 avoids inadmissible bets, and Λ can be extended to an upper hyperprevision
U∗ iff Λ0 extends to its restriction U∗0 to A∗, which is an upper hyperstate
on A∗. Hence, in the sequel we will often identify upper hyperprevisions on G∗

with their restriction to A∗, and the assessment Λ on G∗ with its corresponding
assessment Λ0 on A∗.

Theorem 3. Let Λ = x1 7→ α1, . . . , xm 7→ αm be a hyperassessment on an
algebra of the form G∗ (hence, αi ∈ R∗fin). Then the following are equivalent:

(1) Λ is coherent.

(2) There is an upper hyperprevision U∗ s.t. for i = 1, . . . ,m, U∗(xi) = αi.

(3) There are hypervaluations v∗i,j : j = 1, . . . ,m, i = 1, . . . ,m+ 1 and non-
negative hyperreal numbers (possibly, in an ultrapower of R∗) λi,j : j = 1, . . . ,m,

i = 1, . . . ,m+ 1, such that, letting for j = 1, . . . ,m, P ∗j (x) =
∑m+1
i=1 λi,jv

∗
i,j(x),

the following conditions hold:
(i) For j = 1, . . . ,m,

∑m+1
i=1 λi,j = 1.

(ii) For j = 1, . . . ,m, P ∗i (xj) ≤ αj.
(iii) P ∗i (xi) = αi.

We express this fact saying that Λ is the supremum of m convex combinations
of m+ 1 hypervaluations

We conclude this section with a result that, up to infinitesimals, a coherent
assessment can be extended by a faithful upper hyperprevision (an upper hyper-
prevision U∗ is faithful if U∗(x) = 1 implies x = 1, or equivalently if L∗(x) = 0
implies x = 0, where L∗(x) = 1 − U∗(¬x) is the lower prevision associated to
U∗).

Theorem 4. For every coherent assessment a1 7→ α1, . . . , an 7→ αn of upper
previsions on (G, u) there is a faithful upper hyperprevision U∗ on G∗ such that
for i = 1, . . . , n, U∗(ai)− αi is infinitesimal.



4 Conditional imprecise non-standard probabilities

[9] gives the following betting interpretation of conditional probability: when
the conditioning event ψ is many-valued, we assume that betting on φ|ψ is like
betting on φ with the proviso that only a part of the bet proportional to the
truth value v(ψ) of ψ will be valid. Hence, the gambler’s payoff corresponding to
the bet λ in a conditional bet on φ|ψ is λv(ψ)(v(φ)−α), where α is the betting
odd. If λ = 1, and if we identify any formula with its truth value, the payoff
is expressed by ψ(φ − α). Hence, the upper conditional probability of φ given
ψ is obtained by imposing the upper prevision of the payoff to be zero. That
is, the upper conditional probability U∗0 (φ|ψ) of φ given ψ must be a number α
such that U∗(ψ(φ−α)) = 0, where U∗ is the unique upper hyperprevision which
extends U∗0 .

A desirable condition is that for a given hyper upper probability U∗0 there is a
unique α such that U∗0 (ψ(φ− α)) = 0. Clearly one cannot expect this condition
to hold when for instance U∗0 (ψ) = 0. Indeed, the random variable φ − α is
bounded (it takes values in [−1, 1]), and hence for any choice of α ∈ [0, 1],
−ψ ≤ ψ(φ− α) ≤ ψ, and
0 = −U∗(ψ) ≤ U∗(−ψ) ≤ U∗(ψ(φ− α)) ≤ U∗(ψ) = 0.
This equality holds independently of α, and hence we are in the bad situation

where any α might serve as an upper probability of φ|ψ. We will see that such
an inadmissible situation is avoided when U∗0 (¬ψ) < 1, or equivalently, when the
lower prevision L∗0(ψ) is strictly positive.

Lemma 3. Suppose L∗0(ψ) > 0. Then there is at most one α such that U∗(ψ(φ−
α)) = 0.

The argument used to prove the lemma shows that if L∗0(ψ) = L∗(ψ) > 0,
then the upper conditional probability U∗0 (φ|ψ), if it exists, can be uniquely
recovered from the (unconditional) upper hyperstate U∗0 . In the standard case,
such a conditional upper probability is shown to exist by a continuity argument,
while it is not clear whether it exists in the non-standard case (we have shown
uniqueness, not existence). However, for a given finite assessment we will prove
that such a conditional upper probability exists, in a sense which will be made
precise in Theorem 5 below. Before discussing it, we introduce completeness.

Definition 6. An assessment of conditional upper probability is said to be com-
plete if for any betting odd φ|ψ 7→ α on a conditional event φ|ψ, it also contains
a betting odd ¬ψi 7→ βi on the negation of the conditioning event ψ.

A complete assessment Λ : φi|ψi 7→ αi, ¬ψi 7→ βi, i = 1, . . . , n of conditional
upper probability is said to be stably coherent if there is a hyperassessment

Λ′ : φi|ψi 7→ α′i, ¬ψi 7→ β′i, i = 1, . . . , n

which avoids inadmissible bets, differs from Λ by an infinitesimal and such that,
for every i, β′i < 1.



The requirement of a betting odd β on the negation of the conditioning event
and not on the conditioning event itself may look strange. However, imposing
a betting odd for the upper hyperprevision of the negation of ψ is the same
as imposing the betting odd 1 − β for the lower hyperprevision of ψ. So, in a
complete assessment we really impose conditions on the lower prevision of the
conditioning event.

Stable coherence is the consistency criterion for conditional hyper upper prob-
abilities: when the probability assigned to the conditioning events is 0, it is quite
possible that any assignment to conditional events avoids inadmissible bets. Now
stable coherence says that inadmissible bets are also avoided if the bookmaker
changes the lower probabilities of the conditioning events by an infinitesimal so
that a positive number is assigned to them. Our main theorem shows that stable
coherence corresponds to faithful upper hyperprevisions.

Theorem 5. Let Λ : φi|ψi 7→ αi, ¬ψi 7→ βi, i = 1, . . . , n be an assessment of
conditional upper probability. Then Λ is stably coherent if there is a faithful
hyper upper prevision U∗ s.t. for i = 1, . . . , n, U∗(¬ψi))− βi is an infinitesimal,
and U∗(ψi(φi − α′i)) = 0 for some α′i such that αi − α′i is infinitesimal.
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