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The critical value of the reaction rate able to sustain the propagation of an invasive front is obtained for
general non-Markovian biased random walks with reactions. From the Hamilton-Jacobi equation correspond-
ing to the mean field equation we find that the critical reaction rate depends only on the mean waiting time and
on the statistical properties of the jump length probability distribution function and is always underestimated
by the diffusion approximation. If the reaction rate is larger than the jump frequency, invasion always succeeds,
even in the case of maximal bias. Numerical simulations support our analytical predictions.
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Random walk models are frequently used to describe the
movement and dispersal of animals or microorganisms, see,
e.g., Ref. �1� and references therein. Arguably, the simplest
random walk is Brownian motion. The random walk is bi-
ased if jumps in one particular direction are more likely and
a drift in that direction will be observed �2�. Biased random
walks have been used to account for foraging performance in
heterogeneous landscapes �3�, for sensory, physiological, and
cognitive responses in micro-organisms �4�, and for kinesis
and taxis �5�. They have also been considered in other fields
of science, e.g., in studies of imperfections in the source of
randomness �6�, faster file location in P2P networks �7�, in
percolation models for myopic ants �8�, particle diffusion in
disordered solids �9�, and in disorderly fractal structures �10�.

In many applications, transport processes occur together
with reaction processes. In the case that dispersal is simple
Brownian motion, the mean-field evolution equation of the
system is a reaction-diffusion equation. Such equations have
been used in physics, chemistry, and biology to model a wide
variety of phenomena, including the invasion of a linearly
unstable state by a propagating front �1,11,12�. An interesting
question arises when the dispersal is biased in a direction
away from the region occupied by the unstable state. What
are the conditions on the reaction rate and bias that will
result in a stalled front? Or phrased differently, what is the
critical �minimal� value of the reaction rate to sustain front
propagation when the underlying random walk has a bias in
the opposite direction. Our main results are as follows: �i�
The standard diffusion approximation of the transport pro-
cess always provides an inaccurate value for the critical re-
action rate. �ii� If the reaction rate exceeds the jump fre-
quency of the random walk, then the front cannot stall and
will always propagate into the unstable state, independently
of the values of the other statistical parameters of the random
walk.

We choose the initial conditions to be n�0,x�=1 for
x�0 and n�0,x�=0 for x�0, where n�t ,x� is the density of
particles at x at time t. This initial condition describes, for
example, a territory divided into an invaded zone �x�0� and
a noninvaded zone �x�0�, separated by a frontier �at x=0�.
For the reaction process, we choose Fisher-Kolmogorov-

Petrovski-Piskunov �FKPP� kinetics �13�, the standard form
in studies of traveling fronts. If particles or individuals dis-
perse according to an isotropic random walk with FKPP ki-
netics, the above initial condition turns into a front propagat-
ing from left to right, i.e., the invasion starts. Our choice of
initial conditions ensures that the propagation speed of the
front is minimal �14�. Since the particle jumps are isotropic,
the reaction is responsible for the motion of the front from
left to right. It is the reaction process that starts and
maintains a successful invasion. A bias to the left in the
random walk will hinder the invasion. Therefore we expect
that the critical reaction rate is given by a balance between
the factor favoring the invasion �reaction process� and the
factor opposing the invasion �bias in the transport process�.

Our goal is to derive an analytical expression for the criti-
cal reaction rate in terms of the joint probability density
function �pdf� ��t ,x� for the waiting times t and jumps x of
the underlying random walk. The mean field equation for
n�t ,x� can be written in the form �15�

n�t,x� = ��t�n�0,x� + �
0

t �
−�

�

��s,z�n�t − s,x − z�dzds

+ U�
0

t

��s�n�t − s,x��1 − n�t − s,x��ds , �1�

where ��t� is the probability that particles do not move up to
time t and ��t� is the waiting time pdf,

��t� = 1 − �
0

t

��s�ds, ��t� = �
−�

�

��t,x�dx . �2�

The standard diffusion approximation of �1�, i.e., taking the
limit of small jump lengths and small waiting times, yields
the reaction-diffusion-advection equation �tn−c�xn=D�xxn
+Un�1−n� where c= �x� / �t� ,D= �x2� /2�t� , �t�=�0

�t��t�dt,
and �xj�=�−�

� xj��x�dx are the moments of the dispersal ker-
nel ��x�=�0

�dt��x , t�.
We use the Hamilton-Jacobi approach to determine the

propagation speed of the front. To do this, we make use of
the hyperbolic scaling x→x /	, t→ t /	 and represent the
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rescaled density n	�x , t�=n�x /	 , t /	� in the form
n	�x , t�=exp�−G	�x , t� /	� with G	�x , t�
0. As long as
G�x , t�=lim	→0 G	�x , t��0 then n	�x , t�→0 as 	→0. The
boundary of the set where G�x , t��0 can be regarded as the
front position. Substitution of the rescaled density into �1�
and taking the limit 	→0 one finds that the Hamilton-Jacobi
equation for �1� is given by �15�

1 − �̂�H,p� −
U

H
�1 − �̂�H�� = 0. �3�

The moment generating functions �̂�H , p� and �̂�H� are
defined as

�̂�H,p� = �
0

�

ds�
−�

�

��s,z�e−Hsepzdz , �4�

�̂�H� = �
0

�

��s�e−Hsds . �5�

The propagation speed u is obtained from two equations in-
volving H and p �16�,

u =
H

p
,

�H

�p
=

H

p
. �6�

The critical condition, i.e., a stalled front, u=0, is realized if

H�p*�=0 with p*�0. Writing the Laplace transform �̂�H� as

a power series of H, �̂�H�=1− �t�H+¯, and taking the limit

H→0 in �3�, we obtain 1−�̂�0, p�− �t�U*=0. Differentiating
�3� and taking into account that u=0 in �6�, we find that the
critical value of the momentum p is the solution of

d�̂�0, p� /dp=0. This results in the following simple form
for the critical reaction rate:

U* =
1 − �̂�p*�

�t�
, �7�

with p* such that

	d�̂�p�
dp

	
p=p*

= 0,

where �̂�p�=�−�
� epx��x�dx. Note that the critical value U*

depends on the shape of dispersal kernel and on the mean
waiting time �t� only. This implies that two systems with
identical dispersal kernels, different waiting times pdfs, but
the same mean waiting time �t�, will have the same U*. Since
�̂�p��0, the maximum value for U* is 1 / �t�. When U=U*,
front propagation fails. The front speed is 0 due to the op-
posing effects of the reaction and jump processes. If
U�U*, the front moves from left to right. When U�U*,
u�0 and the front moves from right to left. An interesting
way to interpret Eq. �7� is as a “balance” or an “equilibrium”
condition between parameters favorable �left-hand side� and
unfavorable �right-hand side� to the invasion. However, there
is another way to look at this relation. The product �t�U is a
dimensionless quantity, the reaction-diffusion number.
Equation �7� implies that U�U* is equivalent to

NGRD
�t�U+ �̂�p*��1, where we have defined the general-
ized reaction-diffusion number NGRD. If NGRD�1, the front
travels from left to right �u�0�. If NGRD�1, the front travels
from right to left, and if NGRD=1 the front stalls and turns
into a stationary spatial pattern �u=0�. If U is larger than the
maximum possible value of U*, then u�0 and invasion al-
ways succeeds no matter how large the opposing bias in the
transport process. From �7�, max U*=1/ �t�, and we conclude
that if U�1/ �t�, i.e., the reaction rate is larger than the jump
frequency, the front always propagates to the right, com-
pletely independent of the other statistical properties of the
random walk.

We now prove that the diffusion approximation always
underestimates U*�Udif

* �U*�. To do so, it is sufficient to
consider a small bias to the left such that

�
−�

0

��x�dx − �
0

�

��x�dx 
 � �8�

and 0��
1. The normalization condition implies

�
−�

0

��x�dx + �
0

�

��x�dx = 1. �9�

First, we determine the order of magnitude of the moments
of ��x�. For j=1,2 , . . . one can write �xj�
=lim�→���−�

0 xj��x�dx+�0
�xj��x�dx�=lim�→��0

�xj���x�+ �−1� j

���−x��dx. Using the mean value theorem for integrals and
�9�, we find

�x2j� = lim
�→�

�
0

�

x2j���x� + ��− x��dx

= �1
2j lim

�→�
�

0

�

���x� + ��− x��dx = �1
2j � O�1� �10�

and

�x2j−1� = lim
�→�

�
0

�

x2j−1���x� − ��− x��dx

= �2
2j lim

�→�
�

0

�

���x� − ��− x��dx = − �2
2j−1� � O��� ,

�11�

for some �1 and �2 in �0,��. The minus sign in �11� implies
�x2j−1��0 and reflects that the random walk is biased to the
left. As a result we can write

�̂�p� = �
j=0

�
�xj�pj

j!
.

We break off the expansion at order j=3, i.e., a small cor-
rection to the diffusion approximation �order j=2�:

�̂�p� = 1 + p�x� + 1
2 p2�x2� + 1

6 p3�x3� , �12�

and find
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p* =
�x2�
�x3�


− 1 +�1 − 2
�x��x3�
�x2�2 �

� −
�x�
�x2�


1 +
1

2

�x��x3�
�x2�2 � + O��4� , �13�

where we have made use of �10� and �11� to compute the
series expansion. Inserting �13� into �12� and expanding
according to �10� and �11�, we obtain

�̂�p*� = 1 −
1

2

�x�2

�x2�
−

1

6

�x�3�x3�
�x2�3 .

As the condition for the critical reaction rate is
�t�U*=1− �̂�p*�, one has for the diffusion approximation

�t�Udif
* =

1

2

�x�2

�x2�
, �14�

and finally

�t�U* − �t�Udif
* =

1

6

�x�3�x3�
�x2�3 � 0. �15�

The last inequality results from the fact that the odd mo-
ments are negative. In conclusion, U*�Udif

* , i.e., the diffu-
sion approach always underestimates the critical reaction
rate.

We illustrate our theoretical results by considering a
simple dispersal kernel ��x� with an effective drift from
right to left. There are two simple ways to introduce
such a drift: �i� the probability of a jump to the left is
greater than the probability of the same jump to the
right or �ii� jumps to the right and left have the same
probability but are of different length. Consider first a Dirac-
delta kernel, i.e., a dispersal kernel with fix jump length,
��x�=q��x−a�+ �1−q���x+a� ,0�q�1/2. Using �7� and
�14�, we obtain

�t�U* = 1 − 2�q�1 − q�, �t�Udif
* = 1

2 �1 − 2q�2. �16�

If ��x�= 1
2��x−aR�+ 1

2��x−aL�, then

�t�U* = 1 −
1

2
�y−y/�1+y� + y1/�1+y��, �t�Udif

* =
�1 − y�2

4�1 + y2�
,

�17�

where 0�y=aR /aL�1. Next we consider an exponential
distribution with different statistical characteristics for x
0
and x�0. Let ��x� be qe−x/a /a for x
0 and �1−q�ex/a /a for
x�0. Then,

�t�U* = 1 −
�1 − 2q�2

2 − 4�q�1 − q�
, �t�Udif

* =
1

4
�1 − 2q�2.

�18�

If ��x� is e−x/aR / �aR+aL� for x
0 and ex/aL / �aR+aL� for
x�0 then,

�t�U* = 
1 − y

1 + y
�2

, �t�Udif
* =

�1 − y�2

4�1 − y + y2�
. �19�

To check our analytical results, we have performed simu-
lations that mimic the dispersal-reaction processes micro-
scopically and have found, for every biased form of ��x�
considered above, the critical value U* at which wave
propagation stalls. In our simulations �17�, we consider a 1D
lattice where dispersal and reaction processes take place
starting from steplike initial conditions. Instead of studying
the evolution of a large number of individual particles,
as is usually done, we consider a continuous density of par-
ticles n�t ,x� for every cell in the lattice. For the case
��x�=q��x−a�+ �1−q���x+a� dispersal works in this way: a
fraction q of the density n�t ,x� in a certain cell goes to the
cell at x+a and a fraction 1−q goes to the cell at x−a �for
nondiscrete forms of ��x� we discretize the corresponding

FIG. 1. The dimensionless critical reaction rate, calculated analytically �solid lines�, obtained numerically �open circles�, and using the
diffusion approximation �dashed lines�, is plotted versus the dimensionless parameters q or y.
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function�. After that, the reaction function is applied to each
cell in the lattice. We also take the time between successive
steps in this scheme equal to �t�. The computation time re-
quired is significantly reduced in comparison with methods
based on the evolution of individual particles. However, the
rules imply that our simulations are deterministic, and they
do not account for effects due to the discreteness of particles,
such as cutoff effects �18�. In consequence, we stress that our
method is really appropriate for comparison with mesoscopic
models as those presented here. A more extensive study of
this issue has been conducted recently by two of the authors
�17�. Figure 1 shows that the numerical simulations �open
circles� are in excellent agreement with the analytical predic-
tions �solid curves� given in �16�–�19� for Dirac-delta and
exponential kernels. Moreover, the dashed curves correspond
to the diffusion approximation and lie below the solid curves,
in agreement with the general result given in Eq. �15�.

In summary, we have employed reaction-continuous-time
random walks as a mesoscopic framework to study the op-
posing effects of biased random walks and logistic reactions
on front propagation. From the Hamilton-Jacobi equation for
the mean field equation we have found a relation that allows
us to compute analytically the critical reaction rate U*. A
main result is that U* depends on the dispersal kernel and on

the mean waiting time only, i.e., U* does not depend on the
shape of the waiting-time pdf. In particular, we have shown
that if the reaction rate is larger than the jump frequency, the
invasion front never fails, independent of the shape of the
waiting-time pdf, even if the dispersal kernel is maximally
biased. A second important result is that the diffusion ap-
proximation always underestimates U*. Numerical simula-
tions show excellent agreement with the analytical results.
Propagating fronts are observed in numerous fields. Concrete
examples are fronts in solid fuel combustion �19�, reaction
fronts in polymerization systems �20�, front propagation in
chemical systems with applied electric fields �21,22�, chemo-
tactic waves in amoeba �23�, spread of populations through
river networks �24�, invasion of foreign species �25�, spread
of diseases such as rabies �26� or foot-and-mouth disease
�27�, fronts in cardiac tissue �28�, and the invasion of glio-
mas, a highly malignant brain tumor �29,30�. Conditions that
result in a stalled front are of crucial importance in these
applications.
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