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Dynamical features of reaction-diffusion fronts in fractals
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The speed of front propagation in fractals is studied by using~i! the reduction of the reaction-transport
equation into a Hamilton-Jacobi equation and~ii ! the local-equilibrium approach. Different equations proposed
for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we
analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and
what is the exact form of this acceleration.
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I. INTRODUCTION

Reaction-diffusion models are based in general on the
tial differential equation

]P~x,t !

]t
5D

]2P~x,t !

]x2
1 f ~P!, ~1!

whereP(x,t) is the density of particles at timet at the posi-
tion x, D is the diffusion coefficient, andf (P) is the growth
~reaction! function. The characteristic wave front solution
that arise from these models make them suitable for m
different applications which cover biological@1# and human
@2# invasions, forest fires@3#, epidemics@4#, tumor growth
@5#, etc.

In spite of this, reaction-diffusion equations are oft
criticized, by arguing that such simple models cannot
count for the complexity of real systems. Specifically, ho
the intricate features of spatial systems must be modele
still a current problem. Some efforts have been made in
last years both to show the need for models able to pre
spatial complexity@6# and propose some possible solutio
@7#. Among these proposals, one of the most attractive
recurrent ones consists of assuming that the spatial struc
exhibit self-similarity properties at a certain range of scal
so fractal scaling formalism may be considered.

In this work, we try to show some of the main concep
involved in adapting reaction-diffusion to self-similar spat
systems. It is well known that the mean-square displacem
of a random walker in a fractal object fulfills the subdiffusiv
behavior@8#

^x2&;t2/dw, ~2!

where dw>2 is the random-walk dimension of the fract
~for dw52 one recovers the classical case!. The main ad-
vances in the field of transport in fractals have been focu
on finding a transport equation for the probability dens
P(x,t) of finding a random walker at timet at a distancex
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from its starting point. At present, it is known that for a
particles starting from the same origin and for sufficien
large times and distances, the following form of the probab
ity density @9,10#

P~x,t !;expF2cS x

t1/dw
D uG , ~3!

u5
dwdmin

dw2dmin
~4!

is valid for a large class of fractals. In Eq.~4!, dmin is the
fractal dimension of the minimum distance between points
the fractal@11#. The classical, Euclidean case corresponds
dw52,dmin51 and, therefore,u52 so that the solution is a
Gaussian.

Transport equations proposed to date have tried to re
duce results~2!–~4! somehow. The first attempt was made
O’Shaugnessy and Procaccia~SP! @12#. They derived from
scaling and renormalization arguments the SP equation

]P

]t
5

1

xdf21

]

]x FD~x!xdf21
]P

]x G , ~5!

wheredf is the geometric fractal dimension of the fracta
D(x)5D* x22dw, and the constantD* is a kind of diffusion
coefficient. The exact solution for this equation is known a
its second moment behaves liket2/dw, in agreement with Eq.
~2!. However, this solution lacks the scaling~3! and~4! pre-
dicted by numerical simulations.

Later on, Giona and Roman~GR! constructed the frac-
tional GR equation@13#

]1/dwP

]t1/dw
52AS ]P

]x
1

k

x
PD , ~6!

wherek5(df21)/2. The exact solution of Eq.~6! is also
known and yields again the behaviort2/dw for the second
moment ofP, Eq. ~2!. However, the exact solution forP and
Eq. ~6! do not recover the Gaussian solution and t
df-dimensional classical diffusion equation, respectively.
©2004 The American Physical Society13-1
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To overcome these difficulties, more recently a gener
zation of the SP equation including a temporal fractio
derivative

]gP

]tg
5

1

xdf21

]

]x FD~x!xdf21
]P

]x G ~7!

has been proposed@14#.
Finally, very recently we have proposed a partial diffe

ential equation@the Campos-Me´ndez-Fort~CMF! equation#
from a stronger physical justification than the previous m
els, which also improves the results obtained by previ
approaches@9#.

Our goal is to find the analytical relationship for the spe
of fronts when the above transport equations couple t
reaction process modeled by logistic-KPP~Kolmogorov-
Petrovskii-Piskunov! kinetics. We employ the method of re
duction of the reaction-transport equation to a Hamilto
Jacobi. Also, we are able to derive in some cases the spe
the fronts by using the local-equilibrium~LE! approach@15#
when the spatial correlations are small.

II. SP EQUATION WITH REACTION

First of all we consider that the reaction-diffusion proce
in a fractal is described by the equation for the probabi
density of O’Shaughnessy and Procaccia@Eq. ~5!# coupled to
a KPP kinetic term

]P

]t
5

1

xdf21

]

]x S D* xdf2dw11
]P

]x D1rP~12P!. ~8!

A. Reduction to a Hamilton-Jacobi equation

In order to find the asymptotic speed for the traveli
wave fronts in Eq.~8! we will first make use of Hamilton-
Jacobi dynamics@16#. The starting point is the hyperboli
scaling proceduret→t/«, x→x/«, and the representation o
the rescaled probability density functionP«(x,t)
5P(x/«,t/«) in WKB form

P«~x,t !5expS 2
G«~x,t !

« D , G«~x,t !>0, ~9!

where the action functionalG« has to be found. It follows
from Eq. ~9! that, as long as the functionG(x,t)
5 lim

«→0
G«(x,t) is positive, the rescaled fieldP«(x,t)→0

as«→0. The boundary of the set whereG(x,t).0 can be
regarded as a reaction front. Therefore, we may argue
the reaction front positionx(t) can be determined from th
equationG(x(t),t)50. Substituting Eq.~9! into the rescaled
equation forP«(x,t) we find the equation forG«(x,t)
01661
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2
]G«

]t
52«dw21D* ~df2dw11!xdw11

]G«

]x

1«dw22D* x22dwS ]G«

]x D 2

2«dw21D* x22dw
]2G«

]x2
1r . ~10!

The first and third terms in the right-hand side of Eq.~10!
have the same order of magnitude and in the asymptotic l
(«→0) both terms may be neglected in front of the seco
term, and in consequence the Hamilton-Jacobi for the fr
propagation in a fractal media is

]G

]t
1S «

xD dw22

D* S ]G

]x D 2

1r 50, ~11!

whereG(x,t)5 lim
«→0

G«(x,t). In order to find the solution

for G(x,t) in Eq. ~11! we make use of the Hamilton equa
tions

dx~t!

dt
5

]H

]p~t!
52F «

x~t!G
dw22

D* p~t!,

dp~t!

dt
52

]H

]x~t!
5~dw22!

«dw22

x~t!dw21
D* p~t!2, ~12!

where H[2]G/]t and p(t)[]G/]x(t) and t stands for
the temporal coordinate. The solution of the Hamilton-Jac
equation~29! can be written as

G~x,t !5min
x(•)

H E
0

t

L~x,t!dt: x~0!50, x~ t !5xJ , ~13!

whereL(x,t)5p(t)@dx(t)/dt#2H is the Lagrangian asso
ciated with H. Integrating Eq. ~12!, one has x(t)
5x(t/t)2/dw under the boundary conditionsx(0)50, x(t)
5x, and

L~x,t!5
xdw

t2D* «dw22dw
2

2r

and from Eq.~13!

G~x,t !5
xdw

tD* «dw22dw
2

2rt .

The speed of the front is computed fromG(x,t)50, and
after inverting the hyperbolic scaling one finally has the e
act expression for the speed of the front

v~ t !52F D* r

dw
dw22tdw22G 1/dw

;t (2/dw)21, ~14!

which describes a decelerated front, and we note that
acceleration depends on the parameterdw .
3-2
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B. Local-equilibrium approach

The local-equilibrium hypothesis has been very succes
in thermodynamics~where one assumes a Gibbs equat
with the local values of temperature, pressure, etc.!, radiative
transfer, astrophysics~where one assumes a radiati
emission-absorption equilibrium at the local temperatu!,
etc. Here, we will apply such a heuristic approximation
the problem of front propagation. Equation~8! can be rewrit-
ten as

]P

]t
5

1

xdw21
D* ~df2dw11!

]P

]x
1

1

xdw22
D*

]2P

]x2

1rP~12P!. ~15!

This equation has the form

]P

]t
5D~x!

]2P

]x2
2V~x!

]P

]x
1rP~12P!, ~16!

which is an advection-reaction-diffusion equation in a m
dium moving at speedV(x). For homogeneous values ofD
andV, the speed of fronts is obviously

v52ArD 1V, ~17!

which is nothing but Fisher’s speed 2ArD ~which holds for
an observer attached to the moving medium!, as seen by an
observer moving with speed2V. This resultv52ArD 1V
may be also derived by using the linearization and va
tional techniques in Ref.@17#. We propose that, if inhomo
geneities are sufficiently smooth, this equation should h
locally, so that we obtain the local-equilibrium prediction

vLE.2ArD ~x!1V~x!, ~18!

which for Eq.~15! yields

vLE5
dx

dt
.2

ArD *

x(dw22)/2
2

D* ~df2dw11!

xdw21
. ~19!

Note that if one takes the hyperbolic scalingx→x/«, t
→t/« with «→0 in Eq. ~19!, one observes that the secon
term on the right-hand side~rhs! of ~19! is negligible, com-
pared to the first one, and Eq.~19! can be written as

dx

dt
.2

ArD *

x(dw22)/2
for x,t→`,

which may be integrated to yieldx(t)5@dwArD * t#2/dw,
where we have assumed the initial conditionx(0)50. Fi-
nally, the speed may be obtained as

vLE5
dx

dt
.2F D* r

~dwt !dw22G 1/dw

;t (2/dw)21 for t→`,

~20!

which coincides with Eq.~14!. The asymptotic speed doe
not depend on the fractal dimensiondf , which could be
01661
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something surprising at first sight. In order to further explo
this point, we have solved numerically Eq.~8!, under the
initial condition P(x,0)51 for x,0 and P(x,0)50 for x
.0, for two very different values ofdf and we have ob-
served, as we show in Fig. 1, that the speed depends we
on df only at the very initial transient and loses this depe
dence as time grows. Moreover, in Fig. 1 we compare
speed given in Eq.~14! or ~20! with the speed obtained from
Eq. ~19!. To do this we must first solve Eq.~19!. Under
x(0)50 we obtain

t5
y

dwArD *
1

~df2dw11!

2dwr
lnS 12

2yAr /D*

df2dw11D , ~21!

where x5y2/dw. In Fig. 1 we have solved numerically th
transcendent equation~21! and evaluateddx/dt to obtain the
speed. Note that the effect ofdf @which appears in Eq.~21!
but not in Eq.~20!# on the asymptotic speed of the front
inappreciable. This shows that it is justified to neglect t
second term in the rhs of Eq.~19!, as done above.

III. GR EQUATION WITH REACTION

In this section we study the speed of fronts for the fra
tional advection equation GR~6! with reaction

]1/dwP

]t1/dw
52AS ]P

]x
1

k

x
PD1rP~12P!, ~22!

where

FIG. 1. Comparison between numerical results for the spee
fronts of Eq. ~8! for df51 and for df50.01 and the analytica
results from the HJ method given in Eq.~14! ~solid line! and the
numerical result for the LE method obtained from Eq.~21! with
df51. All magnitudes are dimensionless. We observe a very g
agrement between analytical and numerical solutions in
asymptotic regime. It is clear thatdf does not affect the value of th
speed for large times. We have takenD* 5r 51 anddw52.32.
3-3
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]1/dwP

]t1/dw
5

1

GS 12
1

dw
D

]

]tE0

t P~x,t8!

~ t2t8!1/dw
dt8

5
1

GS 12
1

dw
D

]

]tE0

t

z21/dwP~x,t2z!dz ~23!

and z5t2t8. As in the preceding section we first take th
asymptotic limit for large space and time by employing t
hyperbolic scaling. The left-hand side of Eq.~6! is

]1/dwP«

]t1/dw
5

«

GS 12
1

dw
D E0

t/«

z21/dw
]

]t
P«~x,t2«z!dz

5
«

GS 12
1

dw
D E0

t/«

z21/dwS ]P«

]t
2

]2P«

]t2
«z1••• D ,

whereP«(x,0)50 for x.0, and making use of Eq.~9! one
finds

]1/dwP«

]t1/dw
5

2~] tG
«!e2G«/«

GS 12
1

dw
D E

0

t/«

z21/dwez] tG
«
dz1O~«!.

The right-hand side of Eq.~6! is transformed into

2AS «
]P«

]x
1«

k

x
P«D1rP«~12P«!

5A
]G«

]x
e2G«/«1re2G«/«1O~«!.

Taking «→0 one gets the Hamilton-Jacobi equation

S 2
]G

]t D 1/dw

5A
]G

]x
1r .

From the Hamilton equations one has the Lagrangian

L~x,t !5
x

Atdw
F ~dw21!S x

Atdw
D 1/(dw21)

2dwr G ,
and the speed of the front will be

v5AdwS rdw

dw21D dw21

,

which is time independent.

IV. FRACTIONAL SP EQUATION WITH REACTION

Another equation proposed is the fractional version of
SP equation~7! which with reaction takes the form
01661
e

]gP

]tg
5

1

xdf21

]

]x FD* xdf2dw11
]P

]x G1rP~12P!, ~24!

where the fractional time derivative is defined as@14#

]gP

]tg
5

1

G~12g!

]

]tE0

t P~x,t8!

~ t2t8!g
dt8.

Taking the hyperbolic scaling and Eq.~9! in the limit «→0
one finds the Hamilton-Jacobi equation

S 2
]G

]t D g

5D* x22dw«dw22S ]G

]x D 2

1r .

From the Hamilton equations one obtainsp(t)
5Bx(t)211dw/2 and

x~t!dw/2

dw/2
5

2D* B

g
«dw22~r 1D* «dw22B2!(1/g)21t,

~25!

whereB is an integration constant to be determined from
conditionx(t5t)5x, and therefore

xdw/2

dw/2
5

2D* B

g
«dw22~r 1D* «dw22B2!(1/g)21t.

On the other hand, the Lagrangian function is

L~x,t !5~r 1D* «dw22B2!2111/gF S 2

g
21DD* «dw22B22r G .

From G(x,t)50 we have

D* «dw22B25
rg

22g
,

and inserting this into Eq.~25! one has

xdw/25dwAD* /g« (dw22)/2S r

22g D (22g)/2g

2(12g)/gt,

and takingdx/dt the speed is

v~ t !52F22(12g)/g

g S r

22g D (22g)/g D*

~dwt !dw22G 1/dw

;t (2/dw)21

~26!

once the hyperbolic scaling is inverted. Note that forg51,
Eq. ~14! is recovered. However, the scaling law for the spe
of the front in time is the same as forg51 in Eq.~20! so that
the fractional derivative, although affecting the mean-squ
displacement, does not affect this scaling law.
3-4
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V. CMF EQUATION WITH REACTION

We start from the CMF equation

]P

]t
5

4D0

dw
2 xdf21

]

]x F S x

t1/dw
D dw2u

xdf2dw11
]P

]x G1rP~12P!,

~27!

which has been derived very recently@9#.

A. Reduction to a Hamilton-Jacobi equation

After taking into account the hyperbolic scaling and t
field G«(x,t)52« ln P(x/«,t/«) one has from Eq.~27!

]G«

]t
2

4D0

dw
2

«a11t (u/dw)21x2u11~df112u!
]G«

]x

1
4D0

dw
2

«at (u/dw)21x2u12S ]G«

]x D 2

5
4D0

dw
2

«a11t (u/dw)21x2u12
]2G«

]x2
2r 1re2G«/«,

~28!

where

a5uS 12
1

dw
D21.

The first term in the left-hand side~lhs! of Eq. ~28! and the
second term in the rhs of Eq.~28! are O(«0). The second
term in the lhs and the first term in the rhs of Eq.~28! are
O(«a11) while the third term in the lhs isO(«a). For frac-
tals dmin>1, so thatu>dw /(dw21) or a.0. Therefore, in
the limit «→0 one has G(x,t)5 lim

«→0
G«(x,t),

lim
«→0

f (e2G«/«)50, providedG«(x,t).0 and

O~«a11!!O~«a!!O~«0!.

By keeping the terms up toO(«a), one has

]G

]t
1

4D0

dw
2

«2(u/dw)1u21t (u/dw)21x2u12S ]G

]x D 2

1r 50.

~29!

Equation~29! is the Hamilton-Jacobi equation for the pro
lem ~27! and may be solved by using Hamilton’s equation

dx~t!

dt
5

]H

]p~t!
5

8D0

dw
2

«2(u/dw)1u21t (u/dw)21x~t!2u12p~t!,
01661
dp~t!

dt
52

]H

]x~t!

52
4D0

dw
2 ~22u!«2(u/dw)1u21t (u/dw)21

3x~t!2u11p2~t!. ~30!

Integrating Eq.~30!, one hasx(t)5x(t/t)2/dw under the
boundary conditionsx(0)50,x(t)5x, and

L~x,t!5
1

4D0
« (u/dw)2u11xut (u/dw)21t2(2u/dw)2r .

Finally, from Eq.~13! we obtain

G~x,t !5
dw« (u/dw)2u11xut2(u/dw)

4D0u
2rt . ~31!

If one inverts the hyperbolic scaling in Eq.~31!, by taking
x→«x and t→«t, one has

G~x,t !5S dwxut2(u/dw)

4D0u
2rt D «.

The speed of the front is computed fromG(x,t)50, and
after inverting the hyperbolic scaling one finally has

vHJ~ t !5
dx

dt
5S 1

u
1

1

dw
D S u

dw
D 1/u

~4rD 0!1/ut (1/dw)2111/u

;t (1/dmin)21. ~32!

It is important to note that the scaling law in Eq.~32! does
not depend ondf anddw but only ondmin

B. Local-equilibrium approach

Following the same method as in previous sections,
find for Eq. ~27!

vLE5
4AD0r

dw

x2(u/2)11

t (1/2)2(u/2dw)
2

4D0

dw
2 ~df2u11!

x2u11

t12u/dw
,

~33!

which leads us to the front speed

vLE5S 1

u
1

1

dw
D S 4

11
dw

u
D 2/u

~rD 0!1/ut (1/dw)2111/u

;t (1/dmin)21 for t→`. ~34!

It is interesting to note that although the LE prediction~34!
has the same scaling law as the HJ result~32!, the factor is
different unlessdw52dmin . However, we have checked nu
merically that for the typical ranges ofdw ~from 2 to 4) and
dmin ~from 1 to 2) in fractals, the differences between t
two models are negligible~see Fig. 2!.
3-5
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VI. DISCUSSION

After all the mathematical formalism, the main conclusi
we obtain is that, despite all these equations seeking to
scribe the features of transport on fractals, the characteri
of the fronts predicted in the four cases shown are cle
different. First of all, we should note that a diffusion equ
tion on fractals must agree with the results~2!–~4!. We have
shown@9# previously that equation CMF is the only one th
can exactly reproduce them, so we expect that the fro
predicted by this equation correspond to the real case.

One may wonder why fronts on fractals should be acc
erated. To answer this we need to introduce in our discus
the ‘‘chemical distance’’l @11#, which is defined as the shor
est path between two points belonging to the fractal~Fig. 3!.

FIG. 3. Sierpinski gasket as an example of random walk o
fractal. The bold lines show the difference between the Euclid
distancer and the ‘‘chemical distance’’l between two points of the
fractal s ands8 ~note thatl>r for any couple of points!.

FIG. 2. Comparison between numerical results for the spee
fronts of Eq. ~27! and the analytical results from the HJ meth
given in Eq.~32! ~solid line! and the numerical result for the LE
method obtained from Eq.~34! with df51. All magnitudes are
dimensionless. There is good agrement between analytical and
merical solutions in the asymptotic regime. We have takenD* 5r
51 anddw52.32, dmin51.1.
01661
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Usually, random walks~or diffusion! on a fractal is described
as follows. A particle at points ~see Fig. 3! can jump to every
one of its first neighbors with the same probability. At th
next time step, it may again jump to the new first neighb
with the same probability, and so on. We can see that
possible points reached after two jumps forward have
common that their chemical distance to the origins is the
same~but not their Euclidean distance!. Hence, we see tha
transport on fractals take place through the chemical dista
space and in this space the fractal fronts are expecte
show constant speed, as in homogeneous media.

Nevertheless, we are usually interested in the results
the Euclidean space, so we need the well-known relations
betweenr and l @11#,

l;r dmin, ~35!

where the conditiondmin>1 comes directly from the fac
that l is always greater thanr, as seen in Fig. 3. From thi
expression we can conclude that, assuming that fronts
vance at a constant speed in the chemical distance sp
they cannot do so in the Euclidean space. Moreover, we
serve that this behavior is due to the parameterdmin ~in the
nonfractal case we havedmin51, so the behavior in both
spaces will then be the same!; it agrees with the CMF equa
tion ~27!, which predicts an acceleration dependence only
dmin @see Eq.~32! or ~34!#, while the other equations ana
lyzed ~Secs. II, III, and IV! do not take into account this
essential parameter.

In fact, the form of the time exponent in Eqs.~32! and
~34! can be justified. We may definel f r andr f r as the chemi-
cal and Euclidean distances of the wave front position,
spectively. As the front speed is constant in the chem
distance space, we can assume thatl f r grows linearly witht.
This relation, in addition to Eq.~35!, leads to

r f r;t1/dmin, ~36!

and the time dependence expected for the fronts in the
clidean space is then

v;
r f r

t
;t (1/dmin)21, ~37!

in agreement with the acceleration predicted by the C
equation@Eq. ~32! or ~34!#. This result, which had been a
ready predicted for the speed of propagation of fronts
percolation clusters@18#, should be valid for all those trans
port processes on fractals which, as it happens in most ca
take place through the chemical distance space~as in Fig. 3!.

In conclusion, we have shown that the CMF equation
only describes the features of diffusion on fractals better t
previous ones@9#, but it also predicts some essential featur
of the propagative processes on those heterogeneous m
i.e., the speed and acceleration of the wave fronts deri
when a reaction~logistic! process, widely used in biophysic
@19#, is considered. In consequence, we think that CM
equation is the best analytical approach proposed to date
description of transport on fractals.

a
n
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One of the main results presented here is the wave f
speed~32!, which shows that the acceleration is determin
by the parameterdmin , as argued theoretically above. It
interesting to note that this parameter is not the same as
responsible for anomalous diffusion, namely,dw @see Eq.
~2!#, contrary to what one could expect. We think that
exhaustive analysis of the meaning of the parameterdw ,
s

01661
nt
d

at

which has been traditionally defined just from Eq.~2!, is still
needed. This and many other questions which have not b
explained theoretically yet@18# show very clearly that there
is still a lot of work to do on fractal dynamics. Althoug
theoretical research on fractals decreased after a boom in
early 1980s, we consider that efforts in this field, as the o
presented here, are still strongly useful.
A
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