PHYSICAL REVIEW E 69, 031909 (2004
Approximate solution to the speed of spreading viruses
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Recently, it has been shown that the speed of virus infections can be explained by time-delayed reaction-
diffusion[J. Fort and V. Madez, Phys. Rev. Let89, 178101(2002], but no analytical solutions were found.
Here we derive formulas for the front speed, valid in appropriate limits. We also integrate numerically the
evolution equations of the system. There is good agreement with both numerical and experimental speeds.
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I. INTRODUCTION ky kg
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The role of the delay time in the spread of viruses in a e . .
plague has been recently analyétiby considering a delay PargmetetY (the y!eld ) is t.he production of new viruses
time for virus diffusion. It has been shown that the delayPer infected bacterium ark is the rate constant of lysis of
time plays a crucial role in the dynamics of the advancinginfected bacteria. o _
virus front, because it substantially reduces the value for the [n order to find a good quantitative agreement with the
predicted speed as compared to the classical, parabol@xperimental observations, it has been previously shidin
model[2]. In this senses is the time that a virus particle that a better way to model the virus diffusion process is by
spends, from the moment it is adsorbed into a host bactdaking into account the delay time between virus adsorption
rium, to take control of it, replicate its proper genetic mate-and bacteria death and the spreading of the newborn viruses.
rial, reproduce, and kill the cell. We consider a model ofIn practice, it implies that parabolic or classical reaction-
three species, the virus particlg's the host bacteri®, and  diffusion equation must be replaced by its hyperbolic gener-
the infected host bacterlaThere are two reactions involved alization[4,5], where the mentioned delay time appears ex-
in the virus expansion over the bacterial colofy:the ad-  plicitly. Assuming logistic dynamics for the growth process,
sorption process, during which a virus particle couples to ahe equations for our models are
host bacterium through its membrane and the cell becomes
infected andii) the lysis process, at the end of which the cell T
is killed and the virus progeny outbreak takes place. There- E[V]tﬁ[V]t:Deff[V]rr—kl[[V][B]Jr E([V][B])t}
after, (i ) the phages disperse afid) they infect new hosts,

so the process begins again. lgtbe the rate constant of [
adsorption. The virus particle introduces its genetic material +Yko [1]{ 1- [
in the infected bacteria and begins the reproduction. After a
certain delay timer (latent or lag timg, the virus particle is T [1]
completely reproduced and the infected bacterium diges +olH 1= ot | [ 2
sis). t
In this work we obtain an analytic expression for the _
speed of the growth of virus plaques and compare them with [Bli=—ki[V][B], )
the numerical solution of the complete system and with the |
experimental data. Comparison with the classical or nonde- [|]1=k1[V][B]—kz[|]( 1— jus _ (4)
lay time modelg2,3] are not included because it was already [Hm
done in[1].
[1] In these equationis - -] denotes concentration and subindices
Il. THE MODEL [-*J«.[--]t, and[---],, stand for second time derivative,

time derivative, and second spatial derivative in the radial
direction from the plaque center, respectively. In B).Dq¢¢
The process of infection, virus replication, and bacteriumappears instead of the usual diffusion coefficibniThe rea-

death can be summarized by a three species reaction as feln is that the diffusing particles, i.e., viruses, do not move in
lows: a homogeneous continuous medigagar in our cagebut in
the presence of a suspension of ellipsoitisst bacterin

which adsorb them. This is known as hindered diffusion, and

A. Virus spreading dynamics

*Email address: vicente.ortega@uab.es the effective diffusion coefficienD ¢ for this type of diffu-
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1-f az=4y(1+ B8)3k—27B%y*k?
Deff:—fD’ (5)
14— +18By(1+ B8 k[ —1+(—1+By)k]
X
2r _ _ 2
wheref =B, /B .S the ratio of bacteria concentration to its TAHAYT- 14 (— 14 By)n]
maximum possible value andtakes care of the bacterium +4B[—1+(—1+By)k]°. 9)
shape.
Equations(2)—(4) can be written in terms of dimension-  The speed of the wave front can be calculated numerically

less variables B=[B]/By,V=[V]/Bo,| =[11/By,t=k,t, romc=min.oc(\)], wherec(A) is given by Eq(6) asitis
andr=r \k, /D¢ and dimensionless parametets k,r and done in Ref[1], but now we shall try to obtain an approxi-
k=k,By/k,, whereBy is the initial bacterium concentration. mated analytlpal expression for this minimum speed' al-
We look for solutions depending only on new variahker though, for this purpose, we shall make some approxima-

— — . . . tions. On one hand, we defire=k, /k,B ., which implies
—ct wherec>0 is the dimensionless wave front speed

L . . _ 'thatk = ef. As we shall see in detail in the following section,
which is related to dimensional speely c=c/\DeKo. AS  \yhen typical experimental values for the parameters are

usual, we linearize our equations around the unstable steadlseq one observes thatis always a small parameter, i.e.
state  (V],[B],[1])=(0By,0), ie, (,B,I)=(sv,l e<1. This fact allows us to expand the coefficieatsup to
—eg,&)), Wheree=(ey,eg,e)<1. Then solutions to the first order ine, so we get

linearized version of EqR-4) are given bys~exp(—\2)

where, in order to avoid trivial solutions, the following char- ag=—4fye,

acteristic equation must be satisfied: 5
a,;=1+2f[1+ y(—3+58)]e+O(€),

—1+(1+8 5)62)\2+ k(1-pB 'y)-i-l)\

A3+ Go_1c e a,=2(1—pB)+2f[4—3B+y(3+2B-4p)]e+O(?),
c——1)C c —

az=(1—B)?+2f(—1+B)[—1+2B8+ y(—2+2B+B?)]e

- (ﬂ;—jlﬁ -0 ©6) +O(ed). (10)

Moreover, if 3>1 is verified, we can simplify Eqs(10)
For simplicity, we have introduced the parameteBs even further to get
=72,y=Y—-1, andé=k+1.
ag=—4fye=ry,
B. Wave front speed a,~1+10fyBe=r,,
In order to avoid nonpositive values for concentrations,
we must impose that the three solutions o Eq. (6) are a,=—2p—8fyp%e=r,,
real, so it must be satisfied that ) 3
az=pB°+2fyB°e=rj. (11

—4C3C,+C2C2+18C,C,C,—4C3—27C2=0, (7 .
13 2 1r2zs T2 8 @ Then Eq.(8) is reduced to

where C,,C,, and C; are the coefficients of second, first, B P E2 o= 12
and zeroth powers aof, respectively. We rewrite condition E (12
(7) in terms ofé=c? and then we get where coefficients; are defined in Eq(11). The condition

critical to the propagation speed is given by E&2) when
equality holds, and then it is easy to show that positive so-
lutions for the speed are

azéd+ayt2+aé+ay=0, (8)
where coefficients; are given by

ag= —4yx o2y ——\F 13
0 YK, Ci1= m, Cr= E, (13

_ _ 2 2 _ _
a;=12y(1+ BO)k =27y k" + 18yk[ —1+(~ 1+ By)«] or, in terms of the dimensional variables,

_ _ 2
oL By el 2\/D 1=f  KBpa Y= 1
C = L
a,=—12y(1+ B5)2k+ 548y k> ! 1+ /X 1+ 7K Bay( Y — 1)f

—188yk[—1+(—1+ By)k] 2D 1-f
Cr= - . (14)
T 1+f/x

—18y(1+Bok[—1+(—1+By)k]

—2(1+ B[~ 1+(—1+By)x]? According to the principle of marginal stability7,8],
from both expressions for the wave front speed, we must
—4[—1+(—1+By)«]3 choose the minimal one. This will be confirmed in Sec. llI
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FIG. 1. Solutions to Eq.12) when equality holds as functions of 0.5 [ . T r T r T . T . T
the bacterial relative concentratidn The selected value for the [ ®)B_ = 10°mI’" ]
speed is the minimal one, i.ec; if f<fy andc, if f>f,. Both [ O e k= 0.70 x 10°ml/min ]
functions are drawn foB ,5,=10'ml™2, k;=0.7x 10" °ml/min, k, 04 k= 1.8 x 10°ml/min ]
=1.39 min !, r=18.4 min, andY =34.5. ]
below by means of numerical integrations of E—(4). It 0% hireee, ]
is easy to show the existence of a critical valud,afamely, g [+ i S ]
fo, such thatc,<c, if f<fyandc,>c, if f>f,. Figurel & 02 i I I \I\g\l ]
shows bottt,; andc, as functions of for typical experimen- i3 RN :
tal values of parameters. Then we can write the minimal " T
speed as follows: 01 i NGy ]
H \0\ 4
( i g ]
, [pif_ T i 1]
H 0.0 " 1 " 1 " 1 " 1 " i
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X f
Cmin= (15

FIG. 2. Curves: speed of the growth of T7 virus plaques on E.
coli as a function of the bacterial relative concentration according to
expressior(15). Symbols: squares and triangles, numerical integra-
tions of Eqs.(2)—(4); open and closed circles, experimental data. In
) ) (a) e=5x10"3 for the dotted line and square symbols ameD.013
wheref, is defined as for the dashed line and triangles. (b) e=0.05 for the dotted line

and square symbols and=0.13 for the dashed line and triangles.
fo=[kiBmad Y=1)]"". (16 For al?caseseyzlz.& ’

if fosf<1,

Ill. COMPARISON TO OBSERVATIONS

We compare in this section the results of Et) with the speed of the frontl5) (lines) and the results from numerical

experimental values for virus T7 which spread in a mediunselutions of the syster®)—(4) (symbols and observe good
containing agar-immobilized E. coli bacteria. We also com-2dreement with the experimental results. In Fig) 2ve take

—10/ -1
pare the new results with numerical integrations performedPmac—10'mi~= for the same values df, as before where

on system(2)—(4). The values of the parameters aBa; ., good agreement with experimental results is also found.
=10"—1Fml %,  k;=(1.29+0.59)x 10 °ml/min, k,
=1.39min!, r=18.4min, Y=34.5, D=4X10 %cn?/s,
and x=1.67. To obtain Eq(15) we have assumed th#
>1 (in fact B=k,7/2=12.8) which basically implies that In the present paper we have found an explicit expression
delay time is large enough, so comparison to nondelay timéor the speed of the growth of virus plaquéks) which is
modes are out of place. The other assumptioe<ssl and  valid only if the parameter values satisfy the specified con-
from the experimental data we have tharanges from 5 ditions, i.e.,e<1 and >1. Moreover, we have performed
%10 % to 0.135. numerical integrations on Eq&)—(4) in order to compare

In Fig. 2@ we have takerB,,=10'mlI"! and the two their results with predictions from E¢15). We can see this
extreme values fok;. We plot the analytic solution for the comparison in Fig. 2 and we note that both approaches are in

IV. DISCUSSION
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