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Continuous-time random walks and traveling fronts
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We present a geometric approach to the problem of propagating fronts into an unstable state, valid for an
arbitrary continuous-time random walk with a Fisher–Kolmogorov-Petrovski-Piskunov growth/reaction rate.
We derive an integral Hamilton-Jacobi type equation for the action functional determining the position of
reaction front and its speed. Our method does not rely on the explicit derivation of a differential equation for
the density of particles. In particular, we obtain anexplicit formula for the propagation speed for the case of
anomalous transport involving non-Markovian random processes.
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Recently there has been considerable effort to find the
at which traveling waves propagate into a linearly unsta
state @1–6#. The main reason for this is that a variety
physical, chemical, and biological phenomena can be
plained in terms of the propagation of local perturbatio
into generically unstable states. Examples include the sp
of epidemics@7#, population dispersion@8,9#, combustion
waves@10#, magnetic fronts@11#, etc. However, most of the
work has focused on finding the traveling wave solution
a given partial differential, integrodifferential, or differenc
equation@12#. A comprehensive review of up-to-date met
ods can be found in Ref.@5#.

It has been found recently@13# that themacroscopicdy-
namics of propagating fronts are dependent on the choic
the underlying random walk model for themesoscopictrans-
port process. Since the dynamics of fronts are not unive
and depend on statistical characteristics of underlyingmeso-
scopicrandom processes, it is an important problem to fi
the universal rules relating both levels of description. Th
aim of this paper is to address this problem.

Most studies involving explicitmesoscopicdescriptions
of particle transport, so far, have concerned systems w
additional simplifying features regarding the random wa
for example, a Markovian character of random proces
and other assumptions~see, for example, the review@4#!.
Recently, a simple non-Markovian model has been con
ered @14#. Here we are interested in exploring the physic
properties of those systems of particles which react and
perse according to a general continuous-time random w
~CTRW! @15,16#. During the last two decades CTRW theo
has been used as a general and physically based approa
quantify transport. It has been applied to semiconduc
@17#, turbulent diffusion @18#, geological materials@19#,
econophysics@20#, and many others~see the review@21#!.
However, it is well known that when dispersal and grow
reaction are coupled processes there may exist trave
wave front solutions. Recent studies have addressed the
ing conditions for pattern formation in CTRW with growth
reaction@22#. In this paper we present a geometric approa
to the problem of propagating waves, derived frommesos-
copicprinciples and valid forarbitrary random walk models.
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Let us introduce themesoscopicconcentrationn(t,x) of
particles performing a continuous random walk. The co
plete description ofmesoscopictransport processes is give
by the joint probability densityF(s,z) of making a jump of
lengthz in the time intervals to s1ds @15#. We assume tha
the local growth rate of these particles Fisher–Kolmogor
Petrovski-Piskunov~Fisher-KPP! type @1,23,24#, that is,

U~«x!n f~n!, max
0<n<1

f ~n!5 f ~0!, f ~1!50, ~1!

where the growth rate parameterU(«x) is a slowly varying
function of the space coordinatex with « being a small pa-
rameter.

The governing equation forn(t,x) can be written in the
form @15,16#

n~ t,x!5C~ t !n~0,x!1E
0

tE
2`

`

F~s,z!n~ t2s,x2z!dzds

1U~«x!E
0

t

C~s!n~ t2s,x! f „n~ t2s,x!…ds, ~2!

whereC(t) is the survival probability that can be written a
follows @15#:

C~ t !512E
0

t

c~s!ds, c~s!5E
2`

`

F~s,z!dz. ~3!

Here c(s) is the waiting time probability density functioin
~PDF! that plays a very important role in what follows. Re
call that*0

t c(s)ds is the probability that at least one jump
made in the interval (0,t). Equation~2! describes the balanc
of particles at the positionx at time t. The first term on the
right-hand side of Eq.~2! represents the number of particle
remaining at their initial positionx up to timet. The second
term gives the number of particles arriving atx up to timet
from positionz and times and the last term is a productio
©2002 The American Physical Society02-1
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term due to growth~1!. To ensure an evolution with th
minimal propagation speed we specify the frontlike init
condition

n~0,x!5H 1, x<0

0, x.0.
~4!

We assume that after a long enough time there exis
traveling wave solution to the integral equation~2! with the
initial condition ~4!. The main problem is to find the rateu at
which this wave propagates. In this paper we develo
Hamilton-Jacobi approach to this problem valid for a gene
CTRW with a Fisher-KPP growth rate~1!. The starting point
for the geometric description of wave propagation is the
perbolic scaling proceduret→t/«, x→x/« and the represen
tation of the rescaled concentrationn«(t,x)5n(t/«,x/«) in
the WKB form

n«~ t,x!5expS 2
G«~ t,x!

« D , G«~ t,x!>0, ~5!

where the action functionalG«, describing the logarithmic
asymptotic form of the concentration field, has to be fou
It follows from Eq. ~5! that, as long as the functionG(t,x)
5 lim

«→0
G«(t,x) is positive, the rescaled fieldn«(t,x)→0

as«→0. The boundary of the set whereG(t,x).0 can be
regarded as a reaction front. Therefore, we may argue
the reaction front positionx(t) can be determined from th
equationG„t,x(t)…50. The justification of this procedur
for relatively simple reaction-diffusion systems can be fou
in Refs.@23,24#.

Now we are in a position to derive the equation for t
function G(t,x). Substitution of Eq.~5! into the rescaled
equation forn«(t,x) gives the equation forG«(t,x),

12E
0

t/«E
2`

`

F~s,z!expF2G«~ t2«s,x2«z!1G«~ t,x!

« G
3dzds2U~x!E

0

t/«

C~s!expF2G«~ t2«s,x!1G«~ t,x!

« G
3 f ~e2G«/«!ds50. ~6!

Here we have used the condition that the action functio
G«(t,x)→` as t→0 for x.0. Now let us derive the equa
tion for G(t,x)5 lim

«→0
G«(t,x) by considering the limit«

→0. Since lim
«→0

f „exp(2G«/«)…51 providedG«(t,x).0

it follows from Eq. ~6! that the limiting function

G~ t,x!52 lim
«→0

« ln n«~ t,x! ~7!

obeys the nonlinear integral equation

12E
0

`E
2`

`

F~s,z!e2(]G/]t)se(]G/]x)zdzds2U~x!

3E
0

`F12E
0

s

c~z!dzGe2(]G/]t)sds50, ~8!
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providedG(t,x).0. This equation is the main result of ou
paper. It can be regarded as the generalized Hamilton-Ja
equation for the action functionalG(t,x) determining the
position of a reaction front. Recall that the equati
G„t,x(t)…50 gives the position of the frontx(t) and the
propagation rateu5dx/dt. Until now, no approximations
regarding the random walk have been used; this equatio
exact in the limit «→0 and valid forarbitrary CTRW with
Fisher-KPP growth rates.

Equation~8! can be rewritten in a very useful form in
volving the moment generating function for a CTRW. Let
introduce some new notation, namely, the Hamiltonian fu
tion H and the generalized momentump,

H52
]G

]t
, p5

]G

]x
, ~9!

then by using the definitions of the moment generating fu
tions

F̂~H,p!5E
0

`E
2`

`

F~s,z!e2Hsepxdzds,

ĉ~H !5E
0

`

c~s!e2Hsds. ~10!

Equation~8! can be rewritten as an equation for the Ham
tonian functionH,

12F̂~H,p!2
U~x!

H
@12ĉ~H !#50. ~11!

By combining Eqs.~9! and ~11! we arrive at the Hamilton-
Jacobi type equation written in terms of the moment gen
ating functions of the underlying CTRW,

]G

]t F12F̂S 2
]G

]t
,
]G

]x D G1U~x!F12ĉS 2
]G

]t D G50.

~12!

The solutionG has to be chosen in a such way thatH5
2]G/]t is the root of Eq.~11! with the largest real part. It
should be noted that since the parameters of Eq.~8! do not
involve time explicitly, we can conclude that the correspon
ing Hamiltonian system is conservative, that is,H(p,x)5E .

If the jump length and waiting time are independent ra
dom variables we can write the moment generating funct
F̂(H,p) in the decoupled form

F̂~H,p!5ĉ~H !f̂~p!, ~13!

where

ĉ~H ![*0
`c~s!exp~2Hs!ds,

f̂~p![*2`
` r~z!exp~pz!dz,

andr(z) is the jump PDF.
2-2



a
ti
n

co

on
n

n

al
ing

d

e

n
.

-

-

on

h

e

ps
se
eed
fore
he
oni-

bi-
on
olic

pa-
n-
d

on
pted

-

e-

en

bil-
e
t-
n

RAPID COMMUNICATIONS

CONTINUOUS-TIME RANDOM WALKS . . . PHYSICAL REVIEW E66, 030102~R! ~2002!
We may consider several examples. First, let us look
the classical case when the waiting time pdf is of exponen
form c(t)5t21exp(2t/t) and the jump PDF is Gaussia
r(z)5(sA2p)21exp(2z2/2s2). Then

ĉ~H !5
1

11Ht
, f̂~p!.11s2p2/2, ~14!

and the Hamilton-Jacobi equation takes a classical form
responding to the Fisher-KPP-equation@23,24#

]G

]t
1

s2

t S ]G

]x D 2

1U~x!50, ~15!

while for a generalr(z) we have@13#

]G

]t
1

1

t F E
2`

`

ez(]G/]x)r~z!dz21G1U~x!50. ~16!

Now let us consider a long-tailed~Levy! waiting time
distributionc(t) with the Laplace transform@16#

ĉ~H !5
1

11~Ht!g
, 0,g<1. ~17!

In this case we have a class of CTRW that are n
Markovian and lead to slow anomalous diffusion. The de
sity c(t) behaves liket2(g11) for larget, and its expectation
diverges when 0,g<1. If the moment generating functio
for the jump PDF isf̂(p).11s2p2/2, then Eq.~12! takes
the form of the anomalous Hamilton-Jacobi equation

S 2
]G

]t
t D g

2U~x!tS 2
]G

]t
t D g21

2
s2

2 S ]G

]x D 2

50.

~18!

In a similar fashion one can write the time-fraction
Hamilton-Jacobi equation for the case in which the wait
densityc(t) is stable with the index of stabilityg. The cor-
responding Laplace transform isĉ(H)5exp@2(Ht)g# @15#.
The solution of all the Hamilton-Jacobi equations~12!, ~15!,
~18! can be written as

G~ t,x!5min
x(•)

H E
0

t

L„x8~s!…ds:x~0!5x,x~ t !50J , ~19!

where L(q)5maxp@pq2H(p)# is the Lagrangian associate
with H.

When the growth rateU is independent of the coordinat
x,G(t,x) corresponds to the action of a free particle2Et
1px. The propagation rateu can then be found@5,13# from
three equations: Eq.~11! and

u5
]H

]p
, pu5H~p!. ~20!

It turns out that for the long-tailed waiting time distributio
~17! the propagation rateu can be found exactly. From Eq
~18! we obtain the momentump in terms of the Hamiltonian
03010
t
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-
-

p5 f (H), where f (H)5@2t(H2U)(Ht)g21#1/2s21. This,
together with Eq.~20!, gives the equation forH, namely, 1
5Hd ln f(H)/dH, the solution of which isH5U(32g)(2
2g)21. From Eq.~20! we readily obtain an explicit expres
sion for u,

u5
s

tA2
~Ut!12(g/2)~32g!(32g)/2~22g!211g/2. ~21!

For the caseg51, Eq. ~21! is in agreement with the corre
sponding classical expressionu52(DU)1/2, where D
5s2/t is the diffusion coefficient. In the absence of reacti
(U50), the mean squared displacement~MSD! of particles
grows astg so that the physical meaning of the exponentg is
clear; for a fixed time, the MSD grows monotonically wit
g. It means that the intensity of transport increases withg.
One can think ofg as a measure of the tail length of th
waiting time distributionc(t) ~17!. When the waiting time
PDF has a long tail it is expected that the mean rate of jum
is lower. That is, waiting time PDF with a long tail decrea
the rate of the spread of the particles and therefore the sp
of the front, because some particles have long rests be
starting the following jump. As a result, the speed of t
front, when reaction is present, should also be a monot
cally increasing function ofg, that is,du/dg.0. This physi-
cal condition, applied to Eq.~21!, yields U,Umax5t21(2
2g)/(32g) and therefore the reaction rate cannot be ar
trarily large. The meaning of this condition on the reacti
rate is the same that one can obtained for the hyperb
reaction-diffusion equations~see, for example, Refs.@3–6#!.
Moreover,

u,umax5AD

t
A32g

2
.

It should be noted that, in general, the rate of the pro
gationu depends on the explicit behavior of the initial co
dition n(0,x) asx→` @1#. In this paper we have considere
only the frontlike initial condition~4! for which formulas
~20! gives the lower boundary of possible propagati
speeds. The Hamilton-Jacobi technique can be easily ado
to the nonzero initial conditions of the formn«(0,x)
5exp@2G0(x)/«# (x>0) for which an infinite set of propa
gation speeds might exist.

In summary, a Hamilton-Jacobi type equation which d
scribes themacroscopicdynamics of fronts forarbitrary
CTRW with growth/reaction of Fisher-KPP type has be
derived in terms of themesoscopicproperties of the motion
of the particles. These properties are related to the proba
ity density functions of jump length and waiting times. W
have derived anexactexpression for the speed of propaga
ing fronts for anomalous transport involving non-Markovia
2-3
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random processes. We have shown, in this case, that t
exists an upper bound for themacroscopicparameters, such
as the reaction rateU and the speed of the frontu, which
depend on themesoscopicparameterg.
c
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