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Irreversible thermodynamics of Poisson processes with reaction
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A kinetic model is derived to study the successive movements of particles, described by a Poisson process,
as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic
model. This makes it possible to evaluate the differences between thermodynamical quantities computed
exactly and up to second-order. Such differences determine the range of validity of the second-order approxi-
mation to extended irreversible thermodynam[&1063-651X99)15511-9

PACS numbds): 05.70—a, 05.40-a

I. INTRODUCTION
n(x,t)=J f(x,v,t)dv, D

It is widely known that the movements of organisms such . )
as animal migration, cell movements etc., can be modeled b§nd the particle flux is
a random walK1]. However, within the last 30 years several
biological experiments have demonstrated the existence of J(X,t)=f vi(x,v,t)dv. 2
significant correlations in the motions of several types of
cells[2]. Their successive movements are not mutually inde- Let the contribution to the rate of change bfdue to
pendenf3]. Then, a correlated random walk is appropriate toreaction or reproduction be given byn) ¢(v), so that new
describe the dynamical evolution of the system. Moreover, iParticles with a normalized velocity distributiar(v) appear
guarantees a finite speed of diffusion. When particle repro@! @ rate depending only om Assuming that the velocity
duction is also considered, the evolution of the system i£hanges can be described by a Poisson process of intensity
described by a hyperbolic reaction-diffusion equation)" i.e., that the rate at vyhmh particles leave a phase space
(HRD). These equations have been applied to some fields 6@Iume ce_ntered gtx(v) is Af(x,v,1), we have for the net
biological physics such as human migratigd$ population fate at which particles enter the phase space
growth[5], and forest fire models]. In this paper we derive
a HRD equation from a different point of view. We develope —)\fﬂ\f f(x,v',K(v' —=v)dv’,
a kinetic description for particle movements by assuming
that the changes in the velocity of particles are described byhere the kerneK(v’ —v) is the normalized probability of
a Poisson process. Irreversible thermodynamics emergé@change of velocity fronv’ to v. Thus, the corresponding
naturally by means of the conventional techniques of thdoltzmann equation for the distribution function is given by
kinetic theory of gases. We derive exact expressions for the of of
entropy, entropy flux, and entropy production and these are —+v—=0Q(f), 3)
compared to the corresponding second-order approximations Jt X

often used in extended irreversible thermodynamEET)  \yhereQ(f) describes the interaction processes and plays the

[7]. role of the reactive and elastic collision terms in kinetic
theory,
II. KINETIC DERIVATION Q(f):r(nm(v)_)\f_;_)\f K(v' —v)f(x,v',t)dv’. (4

In this section we derive the one-dimensiondlD) ) ] )
reaction-telegraph equation for the particle movement from &1 order to derive macroscopic transport equations, we pro-
kinetic point of view following the ideas by Othmet al. ~ C€€d in the usual way in kinetic theory. Integration E).

[8]. Although most natural species do not live in one-2nd use of Eq(4) yields
dimensional environments, the reaction diffusion equation an  ad
we will derive is the governing equation for dispersal in the EJF PV
limit of 2D interfaces with small curvature and may therefore

be viewed as a canonical equation for particle movemeniwhich is the balance equation for the number density of par-
Let f(x,v,t) be the nonequilibrium distribution function of ticles. We assume for simplicity that the spegdf particles
particles at positionx moving with velocityv at timet. As  is constant and that only direction reversals are allowed. So,
usual in kinetic theory, the number density of particlesat  the diffusion kernel read&(v' —v)=8(v-+v’). Multiply-
timetis ing Eqg. (3) by v and integrating we find that

r(nj, ®
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N ona- af ?f(x,v,t)d 6
= —r(n)(v)—a—X v (x,v,tdv. ©)

Assuming the velocities of newborn particles to ey,
with the same probability 1/2,

@(V)=3 8(V+vo)+ 3 8(v—Vy), 7

thus the mean valués)=0. Defining
fr=f(x,+vo,1),

fm=1(x,—vg,1),

we can rewrite Eq(1) asn(x,t)=f"+f~ and Eq.(2) as
J(x,t)=vo(f*—f7). Therefore,f" andf~ may be written
in terms ofn andJ as

J ) 1

—, f_

Vo 2

1
+—_
f )

J
n__
Vo/

n+

8

On the other hand, the equation for the particle fiéx
may be written as
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o[f]=—kBJ Q(f)Infdv
—kfaflfd f&flfd
=—Kp E ntdv+ V& ntav|.
Taking into account Eqg7) and(8) we may write
S(x,t)=—kg(f* Inf*+f"Inf"), (13
I3(x,t)=—Kgvo(f* Inft—f"Inf"), (19

o[f]=—kgr(n)| 1+ %In(f*f*)

f+
+kB)\(f+—f)In(f—_).
(15
Equation(13) is the information-theoretic entropy, and its
validity in nonequilibrium has been justifigd 1]. By using

Egs. (13) and (14) together with Eq.(8) one immediately
finds that

Sn.J) kB( N J )I 1 N J
nJ)=——|n+—|Ins|n+—
0J N 207n (9) 2 Vo 2 Vo
- =—y2—,
at 0 9x kB( J ) 1 J
——|n——]Infz{n——]],
where we have applied thgtdv v2f(x,v,t)=v3(f"T+f") 2 Vo/ 12 Vo
=v3n. Equation(9) has the form of a Maxwell-Cattaneo Koy 3 1 ] (16)
equation for diffusion processes, namekydJd/dt) +J= (n,J) BZO +—1]In E(n+—
—D(an/dx) [7], with a flux relaxation timer=1/2\ and a Vo Vo
diffusion coefficientD =v37. By combining Eqs(5) and(9) KgVo J 1 J
we obtain a reaction-diffusion equation of the telegrapher’s + | vo In 5( n— ™
type!
The entropy production is, from Eq&) and (15),
=D . o) )
T—> —7r'(n)]—=—=D—=+r(n).
at? g gx? n+—
3 k J Vo
This equation has been also derived in other physical and o(n.d)= 2voT : J
biophysical contexts such as nonlinear transmission lines ”_V_O
(continuum coupled van der Pol oscillatprbranching ran-
dom walks[9], hyperbolic nerve conductioi0], and time- Kg 1 J2
delayed population growtfb,4]. —?r(n) 2+In 2 n2—? . (17
0

IIl. IRREVERSIBLE THERMODYNAMICS

The kinetic-theoretical definition for the entropy density

is

S(x,t)= —kBJ f(x,v,t)Inf(x,v,t)dv, (11

wherekg is the Boltzmann constant. The evolution equation

for the entropy may be derived by multiplying E&) by Inf
and integrating ovev. In this way we obtain

SN ¢
e ali]

with the entropy fluxJ® defined as
JS(X,t)Z—ka vi(x,v,t)Inf(x,v,t)dv, (12

and the entropy productiom[ f] as

The first term in Eq(17) is the contribution to the entropy
production arising from diffusion, whereas the second term
is the contribution due to the reactive or reproductive process
in the system. Equationd 6) may be rewritten as

n nkyg — Y2
S(n'Y)—_an InE_T El J(ZJ 1)
. (18
J5(n,y)=—k 1+Ino kBV > v
(n,y)=—kgnvy nsly =112j+1)°

where y=J/(nvg). Let us now introduce the density
=nm, wherem is the mass of the particles; the specific
volume isv=1/p. Then, the specific entropyis given by
s=S/p and the specific internal energy is given by u
=U/p, whereU is defined as) = [ mv?fdv=2mv3n. One

can derive an extended Gibbs equation for this system noting

from Eq. (18) that the specific entropy is a function ofv
and the fluxJ, i.e.,
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q asd+&sd+&sdJ W71 T
5= au) 94 5y dvH 53 )9 ! AS ]
neq |
where ds/du=(dS/dvg)/(nmvy). The temperatureT is 06 ~—----- Ac 4
given by )
o0 2i /’
T E)zﬁ R ne i
ul mvii=i2j-1’ S
where we have made use of Ed8). The first term on the 02k
right-hand sides of Eq$18) gives the local-equilibrium ex- '
pressions for the entropy and entropy flux, respectively. The -
last terms are higher-order corrections. Consequently, we .
have shown in a natural way, without need of any thermo- 0-%_0 0.2 0.4 0.6 0.8 1.0
dynamical assumption, that the local-equilibrium hypothesis Y

breaks down for the systems under consideration. Moreover, FIG. 1. Comparative plot of the dimensionless relative differ-
we have obtained expressions for the thermodynamical quance between the second-order and the exact results for the entropy
tities that hold for any value of the fluk not only for small ~ S[solid line, Eq.(20)] and entropy production rate [dashed line,
ones. On the other hand, the series above are convergent fef- (23)] vs the dimensionless parameter J/(nvo).

y=<1, which corresponds to the constraii&nv, on the

value of the particle fluxJ in order to have nondivergent A. Reactive process

expressions for the entropy and the entropy flux. This con- it \ve only consider the reactive process, that is if there is
straint onJ is fulfilled in the kinetic model presented in Sec. ¢ giffusion flux (3=0), the entropy production is due only

I sinceJ=vo_(_f+—_f‘), n=f"+f" and b_Othf+ and ™ {5 particle reaction or reproduction,
must be positive in order to have physical meaning. The

constraintJ<nv, also bounds the possible values of the en-
tropy and entropy flux, Trep= 0(N,J=0)=—Kkgr(n)

1|n
+n§.

S(n,J)=—kgninn, J%n,y)<—kgJInn.
This will be negative when the term in brackets becomes
The last term in these inequalities correspondytol. In positive, that is fon>2/e, provided that for particle genera-
this extreme nonequilibrium state, the entropy is minimum.tion r(n)>0_ This Corresponds to the fact that the System
This corresponds to the state of maximum or@rparticles  composed by the particles is not isolated. Up to this point,
are in the same stateas it was to be expected intuitively. On we have on|y taken into account that new partides can ap-
the other hand, truncating the power series in @) up to  pear, but if we want to analyze the entropy production rate of

second order we find for the entropy the whole system, we must certainly take into account the
5 source of particles, e.g., the presence of particles of a differ-
kgJ ent speciesB that may react according tB+B—A+A,

S(n,J)m—nkBInE—z— (19

3
V2

2 where particleA are those considered up to now. The dis-

tribution functionfg of particlesB will satisfy an equation
which is a good approximation far<nv,. Equation(19) is  identical to Eq.(3), with the only difference that the first
the second-order expression for the entropy of diffusive systerm in Eq.(4) will be negative, i.e.;-r(n,) ¢(va), because
tems, as usually found in works on extended irreversiblghe removal of a particle of speci@implies the appearance
thermodynamicgEIT) [7]. The exact and second-order ex- of a particle of specied. Heren,=ny—ng, wheren, is the
pressions for the corrections to the local-equilibrium entropytotal number density of particles of the whole system. It is
are simple to repeat the previous analysis for speBigsstead of

A. This yields the same entropy production rate as above,

nk which has been computed for particlésand is
SEdny) =~ S [(L+Y)IN(L+y) + (1=y)in(1-y)], b °

Na
Sgi)q(n,y): — 1 nkgy?. oa(n,J=0)= —kBr(nA)( 1+In 7),

The relative errol S, may be computed,
Si{n.y) = St n.y)|

ASneq= - : (20
Sy |

We have plotted this quantity versus parametén Fig. 1, og(n,J=0)= +kBr(nA)<1+In %)
where one may appreciate that it reaches its maximum value

in the limit y—1. This maximum value may be computed

easily to yield - 1/(2 In 2) or about 28%. By adding both contributions we find out the total entropy

with the only difference that the reaction rate for spe@as
equal and opposite to that for specikes
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production rate due to the reactive process, dict second-order corrections to be negligible for experimen-
tally accessible values af [12]. On the other hand, at this
moment we think that the simple model presented here has
no direct, sensible physical applicatignote that we have
considered particles moving in a 1-dim spac&hus the
and according to the second laweac(n,J=0)=0, which  main interest of our model is conceptual. However, in bio-
implies thatr(n)=0 if, and only if,ng>n,. Thisis as it  physical applications our model could be valuable: for ex-
should be, since an isolated reacting system wighn, will ~ ample, the diffusion of birds along a coast is essentially a 1D
evolve according toB+B—A+A, i.e., r(na)>0, until  system in which all particles move at about the same speed
chemical equilibrium (4= ng) is reached, and at this point [13], as assumed here. In these experiments, birds are re-
the direct and reverse reactions will balance each otheeased from a given space point and the value of the reduced
[r(ny)=0]. flux is y=1 when the first birds reach a point located some
distance away13]. For such a value of, exact results differ

B. Diffusive process substantially from lower-order approximatiofsee Fig. 1
Moreover, in the application mentioned the experimental
data are inconsistent with classical diffusion, and although it
has been noted that the finite velocity of propagation is an

n
o-,eact(n,J=O)=oA(n,J=O)+(rB(n,J=O)=kBr(nA)Inn—B,
A

For simplicity, we will here consider a single spedies.,
the first term in Eq(17)],

J important cause behind this disagreeméb8], a better
Kol n+v— nka y2 mod_el qloes not seem to ha_lve been p_resented. A detailed
ogire(n,d) = ——In L ~__>0. (21) application of our model to this problem is the plan of future
2voT ne J T =12)-1 work. A 2D version of Eq(10) has been applied to human
Vo population expansions, a case for which its predictions agree
quite well with observation$4]. We would like to stress
The second-order approach=1) corresponds to that, in contrast to the derivation presented in Réf, Eq.
kgJ? (10) is exact in the simple model here reported.
2) _
"‘(’izf_ﬁ’ (22 IV. CONCLUSIONS
where we have recalled thEI=v§7- (see Sec. )l We note From the usual definitions of the entropy and entropy flux

that Udi”>agzigf_ We are interested now in computing the in kinetic theory, we have built up a thermodynamical study

difference between the exact expression for the entropy prd2f @ Simple nonequilibrium system. Previous work has some-
duction (21) and the second-order approximati(2®), times focused on second-order approximatipfis although
terms up to fourth order have been computéd]. Here we

ox  Nyks [1+y @) nks , have been able to develop an exact approach by considering
Udiff:?m 11—y G TH A a simple model. Comparison of the exact results to those
corresponding to the second-order description has been per-

so the relative error is formed: the exact relative errors for the entropy and entropy

production rate have been computed. The results are not at
all incompatible with EIT; instead, they are embedded in its

(23)  framework. They are valid arbitrarily far away from equilib-
rium.

ex _ (2)
Tdift — Oqiff
o=|—"7""T—

ex
Tqiff

This magnitude reaches a maximum value equal to 1 in the
limit y—1, as shown in Fig 1. For sufficiently small values
of the particle flux, the second-order approach is reasonably We wish to express our gratitude to Professor J. Casas-
good. ForJ=nvy/2, the error of the second-order result is Vazquez for his interest in this work. It has been partially
already of about 10%. The usefulness of any exact moddlinded by the DGICYT of the Ministry of Education and
depends, of course, on the situation analyzed. Estimates pr€ulture under Grant No. PB 96-0451.F).
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