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Irreversible thermodynamics of Poisson processes with reaction
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A kinetic model is derived to study the successive movements of particles, described by a Poisson process,
as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic
model. This makes it possible to evaluate the differences between thermodynamical quantities computed
exactly and up to second-order. Such differences determine the range of validity of the second-order approxi-
mation to extended irreversible thermodynamics.@S1063-651X~99!15511-9#
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c

al
e
o

de
to

r,
ro

on
s

pe
in

b
rg
th
th
a
io

m

e
io
he
re

en
f

nsity
ace

y

the
tic

ro-

ar-

So,
I. INTRODUCTION

It is widely known that the movements of organisms su
as animal migration, cell movements etc., can be modeled
a random walk@1#. However, within the last 30 years sever
biological experiments have demonstrated the existenc
significant correlations in the motions of several types
cells @2#. Their successive movements are not mutually in
pendent@3#. Then, a correlated random walk is appropriate
describe the dynamical evolution of the system. Moreove
guarantees a finite speed of diffusion. When particle rep
duction is also considered, the evolution of the system
described by a hyperbolic reaction-diffusion equati
~HRD!. These equations have been applied to some field
biological physics such as human migrations@4#, population
growth@5#, and forest fire models@6#. In this paper we derive
a HRD equation from a different point of view. We develo
a kinetic description for particle movements by assum
that the changes in the velocity of particles are described
a Poisson process. Irreversible thermodynamics eme
naturally by means of the conventional techniques of
kinetic theory of gases. We derive exact expressions for
entropy, entropy flux, and entropy production and these
compared to the corresponding second-order approximat
often used in extended irreversible thermodynamics~EIT!
@7#.

II. KINETIC DERIVATION

In this section we derive the one-dimensional~1D!
reaction-telegraph equation for the particle movement fro
kinetic point of view following the ideas by Othmeret al.
@8#. Although most natural species do not live in on
dimensional environments, the reaction diffusion equat
we will derive is the governing equation for dispersal in t
limit of 2D interfaces with small curvature and may therefo
be viewed as a canonical equation for particle movem
Let f (x,v,t) be the nonequilibrium distribution function o
particles at positionx moving with velocityv at time t. As
usual in kinetic theory, the number density of particles atx at
time t is
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n~x,t !5E f ~x,v,t !dv, ~1!

and the particle flux is

J~x,t !5E v f ~x,v,t !dv. ~2!

Let the contribution to the rate of change off due to
reaction or reproduction be given byr (n)w(v), so that new
particles with a normalized velocity distributionw(v) appear
at a rate depending only onn. Assuming that the velocity
changes can be described by a Poisson process of inte
l, i.e., that the rate at which particles leave a phase sp
volume centered at (x,v) is l f (x,v,t), we have for the net
rate at which particles enter the phase space

2l f 1lE f ~x,v8,t !K~v8→v !dv8,

where the kernelK(v8→v) is the normalized probability of
a change of velocity fromv8 to v. Thus, the corresponding
Boltzmann equation for the distribution function is given b

] f

]t
1v

] f

]x
5Q~ f !, ~3!

whereQ( f ) describes the interaction processes and plays
role of the reactive and elastic collision terms in kine
theory,

Q~ f !5r ~n!w~v !2l f 1lE K~v8→v ! f ~x,v8,t !dv8. ~4!

In order to derive macroscopic transport equations, we p
ceed in the usual way in kinetic theory. Integration Eq.~3!
and use of Eq.~4! yields

]n

]t
1

]J

]x
5r ~n!, ~5!

which is the balance equation for the number density of p
ticles. We assume for simplicity that the speedv0 of particles
is constant and that only direction reversals are allowed.
the diffusion kernel readsK(v8→v)5d(v1v8). Multiply-
ing Eq. ~3! by v and integrating we find that
6168 © 1999 The American Physical Society
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]J

]t
12lJ5r ~n!^v&2

]

]xE v2f ~x,v,t !dv. ~6!

Assuming the velocities of newborn particles to be6v0 ,
with the same probability 1/2,

w~v !5 1
2 d~v1v0!1 1

2 d~v2v0!, ~7!

thus the mean valuêv&50. Defining

f 15 f ~x,1v0 ,t !, f 25 f ~x,2v0 ,t !,

we can rewrite Eq.~1! as n(x,t)5 f 11 f 2 and Eq.~2! as
J(x,t)5v0( f 12 f 2). Therefore,f 1 and f 2 may be written
in terms ofn andJ as

f 15
1

2 S n1
J

v0
D , f 25

1

2 S n2
J

v0
D . ~8!

On the other hand, the equation for the particle flux~6!
may be written as

]J

]t
12lJ52v0

2 ]n

]x
, ~9!

where we have applied that*dv v2f (x,v,t)5v0
2( f 11 f 2)

5v0
2n. Equation ~9! has the form of a Maxwell-Cattane

equation for diffusion processes, namely,t(]J/]t)1J5
2D(]n/]x) @7#, with a flux relaxation timet51/2l and a
diffusion coefficientD5v0

2t. By combining Eqs.~5! and~9!
we obtain a reaction-diffusion equation of the telegraphe
type,

t
]2n

]t2
1@12tr 8~n!#

]n

]t
5D

]2n

]x2
1r ~n!. ~10!

This equation has been also derived in other physical
biophysical contexts such as nonlinear transmission li
~continuum coupled van der Pol oscillators!, branching ran-
dom walks@9#, hyperbolic nerve conduction@10#, and time-
delayed population growth@5,4#.

III. IRREVERSIBLE THERMODYNAMICS

The kinetic-theoretical definition for the entropy dens
is

S~x,t !52kBE f ~x,v,t !ln f ~x,v,t !dv, ~11!

wherekB is the Boltzmann constant. The evolution equati
for the entropy may be derived by multiplying Eq.~3! by ln f
and integrating overv. In this way we obtain

]S

]t
1

]Js

]x
5s@ f #,

with the entropy fluxJs defined as

Js~x,t !52kBE v f ~x,v,t !ln f ~x,v,t !dv, ~12!

and the entropy productions@ f # as
’s

d
s

s@ f #52kBE Q~ f !ln f dv

52kBSE ] f

]t
ln f dv1E v

] f

]x
ln f dv D .

Taking into account Eqs.~7! and ~8! we may write

S~x,t !52kB~ f 1 ln f 11 f 2 ln f 2!, ~13!

Js~x,t !52kBv0~ f 1 ln f 12 f 2 ln f 2!, ~14!

s@ f #52kBr ~n!F11
1

2
ln~ f 1 f 2!G1kBl~ f 12 f 2!lnS f 1

f 2D .

~15!

Equation~13! is the information-theoretic entropy, and i
validity in nonequilibrium has been justified@11#. By using
Eqs. ~13! and ~14! together with Eq.~8! one immediately
finds that

S~n,J!52
kB

2 S n1
J

v0
D lnF1

2 S n1
J

v0
D G

2
kB

2 S n2
J

v0
D lnF1

2 S n2
J

v0
D G ,

~16!

Js~n,J!52
kBv0

2 S n1
J

v0
D lnF1

2 S n1
J

v0
D G

1
kBv0

2 S n2
J

v0
D lnF1

2 S n2
J

v0
D G .

The entropy production is, from Eqs.~8! and ~15!,

s~n,J!5
kBJ

2v0t
lnS n1

J

v0

n2
J

v0

D
2

kB

2
r ~n!H 21 lnF1

4 S n22
J2

v0
2D G J . ~17!

The first term in Eq.~17! is the contribution to the entropy
production arising from diffusion, whereas the second te
is the contribution due to the reactive or reproductive proc
in the system. Equations~16! may be rewritten as

S~n,y!52kBn ln
n

2
2

nkB

2 (
j 51

`
y2 j

j ~2 j 21!
,

~18!

Js~n,y!52kBnv0S 11 ln
n

2D y1
nkBv0

2 (
j 51

`
y2 j 11

j ~2 j 11!
,

where y5J/(nv0). Let us now introduce the densityr
5nm, where m is the mass of the particles; the speci
volume isy51/r. Then, the specific entropys is given by
s5S/r and the specific internal energyu is given by u

5U/r, whereU is defined asU5* 1
2 mv2f dv5 1

2 mv0
2n. One

can derive an extended Gibbs equation for this system no
from Eq. ~18! that the specific entropy is a function ofu,y
and the fluxJ, i.e.,
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ds5S ]s

]uDdu1S ]s

]y Ddy1S ]s

]JDdJ,

where ]s/]u5(]S/]v0)/(nmv0). The temperatureT is
given by

T215S ]s

]uD5
kB

mv0
2 (

j 51

`
y2 j

2 j 21
,

where we have made use of Eq.~18!. The first term on the
right-hand sides of Eqs.~18! gives the local-equilibrium ex-
pressions for the entropy and entropy flux, respectively. T
last terms are higher-order corrections. Consequently,
have shown in a natural way, without need of any therm
dynamical assumption, that the local-equilibrium hypothe
breaks down for the systems under consideration. Moreo
we have obtained expressions for the thermodynamical q
tities that hold for any value of the fluxJ, not only for small
ones. On the other hand, the series above are convergen
y<1, which corresponds to the constraintJ<nv0 on the
value of the particle fluxJ in order to have nondivergen
expressions for the entropy and the entropy flux. This c
straint onJ is fulfilled in the kinetic model presented in Se
II since J5v0( f 12 f 2), n5 f 11 f 2 and both f 1 and f 2

must be positive in order to have physical meaning. T
constraintJ<nv0 also bounds the possible values of the e
tropy and entropy flux,

S~n,J!>2kBn ln n, Js~n,y!<2kBJ ln n.

The last term in these inequalities corresponds toy51. In
this extreme nonequilibrium state, the entropy is minimu
This corresponds to the state of maximum order~all particles
are in the same state!, as it was to be expected intuitively. O
the other hand, truncating the power series in Eq.~18! up to
second order we find for the entropy

S~n,J!'2nkB ln
n

2
2

kBJ2

2nv0
2

, ~19!

which is a good approximation forJ!nv0. Equation~19! is
the second-order expression for the entropy of diffusive s
tems, as usually found in works on extended irreversi
thermodynamics~EIT! @7#. The exact and second-order e
pressions for the corrections to the local-equilibrium entro
are

Sneq
ex ~n,y!52

nkB

2
@~11y!ln~11y!1~12y!ln~12y!#,

Sneq
(2) ~n,y!52 1

2 nkBy2.

The relative errorDSneq may be computed,

DSneq5USneq
(2) ~n,y!2Sneq

ex ~n,y!

Sneq
ex ~n,y!

U . ~20!

We have plotted this quantity versus parametery in Fig. 1,
where one may appreciate that it reaches its maximum v
in the limit y→1. This maximum value may be compute
easily to yield 121/(2 ln 2) or about 28%.
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A. Reactive process

If we only consider the reactive process, that is if there
no diffusion flux (J50), the entropy production is due onl
to particle reaction or reproduction,

s rep5s~n,J50!52kBr ~n!S 11 ln
n

2D .

This will be negative when the term in brackets becom
positive, that is forn.2/e, provided that for particle genera
tion r (n).0. This corresponds to the fact that the syste
composed by the particles is not isolated. Up to this po
we have only taken into account that new particles can
pear, but if we want to analyze the entropy production rate
the whole system, we must certainly take into account
source of particles, e.g., the presence of particles of a dif
ent speciesB that may react according toB1B→A1A,
where particlesA are those considered up to now. The d
tribution function f B of particlesB will satisfy an equation
identical to Eq.~3!, with the only difference that the firs
term in Eq.~4! will be negative, i.e.,2r (nA)w(vA), because
the removal of a particle of speciesB implies the appearanc
of a particle of speciesA. HerenA5n02nB , wheren0 is the
total number density of particles of the whole system. It
simple to repeat the previous analysis for speciesB instead of
A. This yields the same entropy production rate as abo
which has been computed for particlesA and is

sA~n,J50!52kBr ~nA!S 11 ln
nA

2 D ,

with the only difference that the reaction rate for speciesB is
equal and opposite to that for speciesA,

sB~n,J50!51kBr ~nA!S 11 ln
nB

2 D .

By adding both contributions we find out the total entro

FIG. 1. Comparative plot of the dimensionless relative diffe
ence between the second-order and the exact results for the en
S @solid line, Eq.~20!# and entropy production rates @dashed line,
Eq. ~23!# vs the dimensionless parametery5J/(nv0).
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production rate due to the reactive process,

s react~n,J50!5sA~n,J50!1sB~n,J50!5kBr ~nA!ln
nB

nA
,

and according to the second laws react(n,J50)>0, which
implies thatr (nA)>0 if, and only if, nB.nA . This is as it
should be, since an isolated reacting system withnB.nA will
evolve according toB1B→A1A, i.e., r (nA).0, until
chemical equilibrium (nA5nB) is reached, and at this poin
the direct and reverse reactions will balance each o
@r (nA)50#.

B. Diffusive process

For simplicity, we will here consider a single species@i.e.,
the first term in Eq.~17!#,

sdi f f~n,J!5
kBJ

2v0t
lnS n1

J

v0

n2
J

v0

D 5
nkB

t (
j 51

`
y2 j

2 j 21
>0. ~21!

The second-order approach (j 51) corresponds to

sdi f f
(2) 5

kBJ2

nD
, ~22!

where we have recalled thatD5v0
2t ~see Sec. II!. We note

that sdi f f.sdi f f
(2) . We are interested now in computing th

difference between the exact expression for the entropy
duction ~21! and the second-order approximation~22!,

sdi f f
ex 5

nykB

2t
lnS 11y

12yD , sdi f f
(2) 5

nkB

t
y2,

so the relative error is

Ds5Usdi f f
ex 2sdi f f

(2)

sdi f f
ex U . ~23!

This magnitude reaches a maximum value equal to 1 in
limit y→1, as shown in Fig 1. For sufficiently small value
of the particle flux, the second-order approach is reason
good. ForJ5nv0/2, the error of the second-order result
already of about 10%. The usefulness of any exact mo
depends, of course, on the situation analyzed. Estimates
of
.

er

o-

e

ly

el
re-

dict second-order corrections to be negligible for experim
tally accessible values ofJ @12#. On the other hand, at thi
moment we think that the simple model presented here
no direct, sensible physical application~note that we have
considered particles moving in a 1-dim space!. Thus the
main interest of our model is conceptual. However, in b
physical applications our model could be valuable: for e
ample, the diffusion of birds along a coast is essentially a
system in which all particles move at about the same sp
@13#, as assumed here. In these experiments, birds are
leased from a given space point and the value of the redu
flux is y'1 when the first birds reach a point located som
distance away@13#. For such a value ofy, exact results differ
substantially from lower-order approximations~see Fig. 1!.
Moreover, in the application mentioned the experimen
data are inconsistent with classical diffusion, and althoug
has been noted that the finite velocity of propagation is
important cause behind this disagreement@13#, a better
model does not seem to have been presented. A deta
application of our model to this problem is the plan of futu
work. A 2D version of Eq.~10! has been applied to huma
population expansions, a case for which its predictions ag
quite well with observations@4#. We would like to stress
that, in contrast to the derivation presented in Ref.@4#, Eq.
~10! is exact in the simple model here reported.

IV. CONCLUSIONS

From the usual definitions of the entropy and entropy fl
in kinetic theory, we have built up a thermodynamical stu
of a simple nonequilibrium system. Previous work has som
times focused on second-order approximations@7#, although
terms up to fourth order have been computed@14#. Here we
have been able to develop an exact approach by conside
a simple model. Comparison of the exact results to th
corresponding to the second-order description has been
formed: the exact relative errors for the entropy and entro
production rate have been computed. The results are n
all incompatible with EIT; instead, they are embedded in
framework. They are valid arbitrarily far away from equilib
rium.
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