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Conical refraction as a tool for polarization metrology
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A method for polarization metrology based on the conical refraction (CR) phenomenon, occurring in biaxial crystals,
is reported. CR transforms an input Gaussian beam into a light ring whose intensity distribution is linked to the
incoming polarization. We present the design of a division-of-amplitude complete polarimeter composed of two
biaxial crystals, whose measurement principle is based on the CR phenomenon. This design corresponds to a static
polarimeter, that is, without mechanical movements or electrical signal addressing. Only one division-of-amplitude
device is required, besides the two biaxial crystals, to completely characterize any state of polarization, including
partially polarized and unpolarized states. In addition, a mathematical model describing the system is included.
Experimental images of the intensity distribution related to different input polarization states are provided. These
intensity patterns are compared with simulated values, proving the potential of polarimeters based on biaxial

crystals. © 2013 Optical Society of America
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Polarimeters are the basic devices to measure the polari-
zation of light (Stokes polarimeters) or characterize the
polarimetric properties of a polarizing sample (Mueller
polarimeters) from radiometric measurements. This
polarimetric information is crucial in a large number of
applications, such as in medicine, to enhance the image
contrast of samples [1]; in material characterization, to
determine their thickness and refraction indices [2]; or
in astronomy, to obtain quantitative information about
stars [3].

Stokes polarimeters determine the state of polarization
(SOP) of the light beam by projecting the studied incident
light over a set of different polarization analyzers, known
as polarization system analyzer (PSA). If the PSA in-
cludes as a minimum four linearly independent polarizing
analyzers (PAs), the SOP is fully determined, constituting
a complete Stokes polarimeter. A visual way to deter-
mine if the instrument is a complete polarimeter is to
represent the set of PAs on the Poincaré sphere [4]. When
the PAs are confined in a plane (i.e., a slide of the
Poincaré sphere), the resulting polarimeter is incom-
plete. On the contrary, if the PSA arrangement confines
a certain volume in the Poincaré sphere, one obtains a
complete polarimeter [5,6].

Many polarimeter architectures have been proposed in
the literature [1-3,5-11]. Roughly, punctual polarimeters
can be classified depending on the acquisition method on
which they are based [12]: time sequential measurements
[5,7], polarization modulation [9], and division of ampli-
tude [10]. As a consequence of the specific acquisition
method applied, each category presents certain limita-
tions in the measurement. For instance, time sequential
polarimeters and polarization modulator based polarim-
eters require mechanical movements of polarizing ele-
ments [11] or electrical addressing to liquid crystal
panels [5,7]. Therefore, errors related to misalignments
or deviations in the phase-voltage look-up table are al-
ways present. In addition, time-sequential polarimeters
may present false polarization effects due to changes
during data acquisition. Finally, division-of-amplitude po-
larimeters divide the studied beam in different subbeams,
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which are simultaneously projected to different polariza-
tion analyzers (in general, four of them).

In this Letter, we present a novel concept to measure
states of polarization based on the mapping that the coni-
cal refraction (CR) phenomenon produces between the
polarization of the input beam and the transverse inten-
sity distribution along the light ring of the output beam
[13]. This concept is adapted into the design of a new
division-of-amplitude polarimeter based on two biaxial
crystals and a single division-of-amplitude device. By us-
ing this alternative, not only are the benefits of amplitude
division polarimeters present but also a large data redun-
dancy is achieved, leading to a reduction of the variance
in the measurements.

In CR [13-21], when a focused input Gaussian beam
propagates along the optic axis of a biaxial crystal, it
is transformed into a light ring, as shown in Fig. 1(a). This
light ring is most sharply resolved at the focal plane. The
radius of the CR ring, R, can be obtained from the prod-
uct of the crystal’s length, L, and its conicity, «; that is,
Ry = La. The conicity of the crystal depends on the
principal refractive indices of the crystal through

\/ (n% - n?)(n% - n3)/4n ng [15]. One interesting pe-
culiarity of the CR light ring is that it splits into two con-
centric bright rings separated by a dark (Poggendorff)
ring under conditions of R, > w,, where w, is the waist
radius of the focused input beam. Additionally, w, is also
the width of each of these rings.

a =

Fig. 1. CR light ring for (a) a circularly polarized input beam
and (b) a horizontal linearly polarized input beam. Orange
double arrows show the polarization distribution at each point
of the CR ring.
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One of the most interesting features of the CR effect is
the polarization distribution along the ring. Each point of
the light ring is linearly polarized, with the polarization
plane rotating along the ring so that every pair of diago-
nally opposite points has orthogonal polarizations [see
orange double arrows in Fig. 1(a)]. In other words, at a
certain point of the CR ring, given by its azimuthal
angle ¢, the plane of the electric field, ®, will be

+
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where ¢ is the orientation of the plane of optic axes of
the biaxial crystal [16]. Therefore, the biaxial crystal proj-
ects the input beam into an infinite number of linearly
polarized states. This is the fundamental physical prop-
erty on which our polarimeter is based. If the input beam
is circularly polarized or unpolarized, the azimuthal in-
tensity along the ring is constant [Fig. 1(a)]. In contrast,
for linearly polarized input beams the light ring possesses
a point of null intensity and a maximum intensity point
placed diagonally opposite to the first one [Fig. 1(b)].
By considering all the optical features of the CR phe-
nomenon explained just above, we propose the design of
a polarimeter based on two biaxial crystals, sketched
in Fig. 2. The studied light beam (Sy,), by means of a
division-of-amplitude device, is split in two subbeams
that are analyzed separately by two different PA arms.
Both biaxial crystals were cut with one of the optic axes
perpendicular to the slab faces. In both arms, lens 1 fo-
cuses the beam, which passes along the optical axis of
the biaxial crystal, forming the CR ring at its focal plane
(plane P). Lens 2 images the CR ring into the CCD cam-
era, with a certain magnification. Thus, the intensity dis-
tribution acquired by the cameras will depend on the
incident SOP (S;,). Concerning the first arm, the obtained
intensity pattern can be understood as the result of pro-
jecting the incident beam over a set of linear polarizers
arranged in a circle. The orientation of the transmission
axis of those polarizers is rotated (from 0° to 180°) over
the complete circle [see Fig. 1(a)]. In order to obtain ellip-
ticity information, we need the second arm, which in-
cludes a quarter wave plate (QWP) before the biaxial
crystal. In this way, the intensity pattern in the plane P
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Fig. 2. Proposed setup of the polarimeter based on two biaxial
crystals. The incident light beam is divided into two arms for
separate analysis.
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for the second arm can be understood as the result of
projecting the incident beam over a QWP and then over
the set of rotated polarizers arranged in a circle.

By using the Mueller matrices of a QWP and a rotated
linear polarizer [22], we can calculate the expressions of
the PAs of both arms. These PAs will be expressed as a
function of ¢, the angular position at the ring. Finally, the
intensity distribution measured by the two cameras will
be the projection of the incident Stokes vector (S;,) over
these PAs:

1 .
ICCD1((P)=§(1 cosg sing 0)-(Sy S; Sy S3)T,
)

1 .
ICCD2(§0):§(1 cosgp 0 sing)-(Sy S; Sy S3)T,
3)

where we have fixed the orientation of the QWP at 0° for
convenience, although any other angle would have led to
a complete polarimeter. In addition, these expressions
can be rewritten as a function of the total intensity
(Sp), the degree of polarization (DoP) [4], the azimuth
(a), and the ellipticity (¢) of the incident SOP

Icopi(e) = % {1 + DoP - cos 28|:2COS2 (g - a) - 1]}

@
Ioepe(p) = % + %'So[cos 2¢ cos 2a cos @ + sin 2¢ sin ¢).
)

Note that Eq. (4) describes the intensity distribution
along the ring due to the CR phenomenon for any input
SOP. This equation is a generalization of the equations
presented in [16], describing the particular cases of
linearly and circularly fully polarized states.

The PAs of both arms are plotted upon the Poincaré
sphere in Fig. 3. If the orientation of the QWP is rotated
an angle 6, the curve of the PAs represented upon the
Poincaré sphere corresponding to arm 2 will be rotated
20 over the S3 axis. Note that by using only a single arm,
the PAs draw a plane in the Poincaré sphere, and conse-
quently, they constitute an incomplete polarimeter. In
particular, the PAs from arm 1 (red line in Fig. 3) do not
have information about S3, and the ones from arm 2 (blue
line) do not measure the S2 component. However, when
we consider the whole system, the polarimeter is com-
plete because the PAs represented upon the sphere are
enclosing a certain volume.

In general, different quality indicators are used to
evaluate the propagation of noise to the measurement in
polarimeters, as, for instance, the condition number (CN)
[23] or the equally weighted variance (EWV) [5,6] indica-
tors. The CN (a metric widely used in polarimeter design)
calculated for the arrangement of our PAs is equal to
2.00, a value very close to the theoretical minimum of
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Fig. 3. PAs represented upon the Poincaré sphere. The red
line corresponds to the linear detection arm and the blue line
to the elliptical detection arm (assuming that the QWP is at 0°).

1.73 for polarimeters. The EWYV indicator is also calcu-
lated for our proposed configuration. From simulations,
we observe that the EWV value depends on the number
of PAs used in the Stokes measurement [5]: the larger the
number of PAs used, the smaller the EWV value obtained.
For the case of 360 PAs per arm, that is, 720 in total, the
EWV is 0.0153. This value is much smaller than the one
reported in [5] for 100 PAs (0.1).

To show and prove the measurement principle of the
polarimeter design proposed above, we have experimen-
tally implemented the two arms of Fig. 2 and analyzed
different input SOPs. In the experimental implementa-
tion, the input light is obtained from a 640 nm diode laser
coupled to a monomode fiber. The two biaxial crystals
used in the setup were cut from a monoclinic centrosym-
metric KGd(WOy), crystal. Their polished entrances
(cross section 6 mm x 4 mm) have parallelism with less
than 10 arc sec, and they are perpendicular to one of the
two optic crystal axes within a 1.5 mrad misalignment
angle. Their lengths, L = 23.38 mm (measured with
precision of less than 100 nm), and their conicity,
a = 17 mrad, provide a CR ring of radius Ry, = 397 pm.

Figure 4 shows the two experimental images acquired
by the two cameras when seven particular SOPs illumi-
nate the system. The used SOPs are linearly polarized
light at 0°, 90°, 45°, and 135°, right- and left-handed cir-
cularly polarized light, and unpolarized light. The first
row of Fig. 4 corresponds to the first camera, that is, pro-
jecting over linear polarization analyzers. Thus, when
this camera analyzes a linear SOP [Figs. 4(a)-4(d)],
the intensity patterns consist of broken rings with a
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Fig. 4. Experimental images acquired by cameras of (a)—(g)
arm 1, and (h)—(n) arm 2 when illuminating with linearly polar-
ized light at (a) and (h) 0°, at (b) and (i) 90°, at (c) and (j) 45°,
at (d) and (k) 135° with circularly polarized light (e) and
(D) right-handed and (f) and (m) left-handed and with (g) and
(n) unpolarized light.

maximum and a null of intensity in diametrically opposite
positions in the ring. This broken ring rotates as we
rotate the azimuth of the analyzed SOP, as it is described
in Eq. (4). As explained above, circularly polarized light
and unpolarized light [Figs. 4(e)—4(g)] result in a ring of
constant intensity. In the second row of Fig. 4, the inten-
sity distributions differ from the first row because of the
presence of the QWP. When illuminating with 0° or 90°
linear SOPs, the polarization is not modified by the QWP
(oriented at 0°), and for this reason, the intensity distri-
butions [Figs. 4(h) and 4(i)] are identical to the ones ac-
quired by the first camera. In addition, unpolarized light
remains unpolarized after the QWP, so that a uniform
ring is visualized in Fig. 4(n). Finally, when projecting the
linear SOPs at 45°, 135° and right-handed and left-handed
circular SOPs over the QWP, they are respectively trans-
formed to left-handed and right-handed circular SOPs
and linear SOPs at 45° and 135°. Then, by taking into
account the actual SOP impinging the biaxial crystal,
and considering the effect of the crystal over these SOPs
as explained above, we understand the intensity distribu-
tion of Figs. 4(j)—4(m).

By analyzing the data from these experimental images,
we have extracted the intensity profile along the rings,
plotted in red points in Fig. 5. Moreover, we have in-
cluded in a blue continuous line the simulated intensity
profiles by using Eqgs. (2) and (3). We observe good agree-
ment between experimental and simulated intensity
profiles.

Note that if only the linear arm is used, there is not
distinction between unpolarized light and right and left
circularly polarized light [see Figs. 5(e)-5(g)]. In the
same way, the elliptical arm cannot distinguish between
linearly polarized light at 45°, 135°, and unpolarized light
[see Figs. 5(j), 5(k), and 5(1n)]. Nevertheless, by using the
two intensity profiles corresponding to both arms, we are
able to distinguish each SOP, including unpolarized
light beams.

Thus, the results given in Figs. 4 and 5 constitute an
experimental proof of the capability of the presented
design to perform polarimetric measurements, as the
whole polarimetric content of any input SOP can be de-
termined. In fact, by applying a data reduction procedure
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Fig. 5. Simulated intensity profile in the continuous blue line
and experimental intensity profile in the red spots, as a function
of ¢, the position along the ring of (a)-(g) arm 1 and (h)-(n)
arm 2; when illuminating with linearly polarized light at (a) and
(h) 0°, at (b) and (i) 90° at (c) and (j) 45° and at (d) and
(k) 135°, with circularly polarized light (e) and (1) right-handed
and (f) and (m) left-handed and with (g) and (n) unpolarized
light.



[14] to the two intensity profiles obtained (arm 1 and 2), a
quantitative estimation of any input SOP can be achieved.

In conclusion, this work presents a new concept for
Stokes vector metrology by means of analyzing the
characteristic intensity pattern associated with the CR
phenomenon occurring in biaxial crystals. This idea is
developed by proposing the design of a division-of-
amplitude complete and punctual Stokes polarimeter
based on two biaxial crystals. The setup requires two
cameras to acquire the intensity distribution along the
CR light rings. Although other punctual polarimeters only
require one radiometer [5,8], this drawback is compen-
sated by the strengths of the biaxial crystal based polar-
imeter, namely no electrical addressing is needed
[asliquid crystal based polarimeters], eliminating system-
atic errors related to the liquid crystal calibration; static
measurements (no moving elements), avoiding misalign-
ment errors; quasi-real-time measurements (only limited
by the acquisition and computational time); large data re-
dundancy, leading to a significant reduction of the vari-
ance; and ability to characterize any SOP, including
partially polarized or unpolarized light. All these features
make the instrument very useful for practical applica-
tions in polarimetry.

However, since the CR phenomenon is very sensitive
to the incidence angle, the necessity of performing a very
accurate alignment is expected. Additionally, an experi-
mental calibration of the PAs is strongly recommended in
order to take into account possible polarization defects
of the elements in the setup [12]. For instance, some
differences with the theoretical configuration may be
introduced in the experimental implementation due to
polarization effects related to the division-of-amplitude
device used in the setup, or due to experimental devia-
tions of the QWP retardance value. In a future study,
we will provide a thorough description of the implemen-
tation, calibration, and measurement analysis related to a
particular polarimeter architecture including two biaxial
crystals. In addition, it could be very interesting to extend
this proposal to any wavelength where the biaxial crys-
tals are transparent, expanding the range of applicability
of the discussed polarimeter to spectral regions such as
the infrared or ultraviolet.
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