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Improved expressions for performance parameters
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Improved expressions are given for the performance parameters for transverse and axial gains for complex
pupil filters. These expressions can be used to predict the behavior of filters that give a small axial shift in
the focal intensity maximum and also predict the changes in gain for different observation planes. © 2007
Optical Society of America
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Sheppard and Hegedus [1] introduced transverse and
axial gain factors describing the focusing properties
of rotationally symmetric pupil filters or masks in the
paraxial regime. These factors are expressed simply
in terms of the moments of the pupil and avoid the
necessity to calculate the diffracted field of the lens.
The treatment holds for real filters, which includes
the class of amplitude filters, but also the important
class of binary phase-only filters with a phase change
of �. De Juana et al. [2] extended the gain param-
eters to the case of general-phase filters, for the case
when the intensity maximum is shifted only a small
distance from the geometrical focus. Ledesma et al.
[3] introduced an alternative approach for any com-
plex filter, in which the plane of best focus is calcu-
lated first, and generalized gain parameters in the
surroundings of the shifted focus are then calculated.
This approach is much more flexible and is preferable
for many phase filters, as the intensity peaks on the
axis can be situated far from the geometrical focal
plane, with the filter acting like a zone plate. But, un-
fortunately, it does not lead to analytic expressions
for the filter parameters since numerical calculation
of the plane of best focus is needed. Phase-only filters
have advantages when the Strehl ratio is an impor-
tant property (e.g., in astronomy), but for many ap-
plications when efficiency is not important the perfor-
mance of amplitude filters is better, as the relative
strength of the sidelobes is decreased [4,5].

The transverse and axial gains are calculated from
the second derivatives of the transverse or axial in-
tensity variations, normalized by the intensity. To ob-
tain a second derivative to second order, and thus to
get an expression for the gains as a function of axial
position, an expression for intensity accurate to
fourth order must be used. De Juana et al.’s [2] Eq.
(8) for transverse gain is calculated from an expres-
sion containing a third-order term, while their Eq. (9)
for axial gain is calculated from an expansion of in-
tensity to only second order.

In the paraxial Debye regime, the amplitude in the
focal region of a lens is [6]
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where the optical coordinates for cylindrical coordi-
nates r ,z are v= �2�r /��sin �, u= �8�z /��sin2�� /2�,
with � being the semiangle of convergence of the
lens. We obtain for the intensity to fourth order in u
for the case of a complex pupil:
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De Juana et al. [2] include the first five terms of this
expansion in their treatment. Equating to zero the
partial derivative with respect to u on axis, the posi-
tion of the intensity peak uF for small u is approxi-
mately

uF = − 2
Im�I0I1

*�

Re�I0I2
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, �3�

agreeing with de Juana et al. [2]. At the intensity
peak, u=uF, the Strehl ratio is

S = �I0�2 −
uF

2
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to the second order.

We define the axial and transverse gains as
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for �u0 � =1.6), whereas the result from Eq. (9) is cor-
The gains are unity for a plain circular aperture, and
the parabolic width of the focal spot is inversely pro-
portional to the square root of the gain parameter.
We can obtain expressions for the axial and trans-
verse gains as a function of axial position close to the
focal plane to second order in u. Both the second de-
rivative and the intensity vary with axial position,
exhibiting maxima that do not in general occur at ex-
actly the same axial position. Putting u=uF, we find

at the intensity maximum
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which are different from de Juana and co-workers’s
[2] Eqs. (8) and (9). As the gains exhibit approxi-
mately a parabolic behavior with maximum at uF,
terms to order uF

2 should be included to get accurate
expressions for the gains near the peak of the pa-
rabola.

To test these expressions we considered a circular
aperture with a pupil function exp�iu0�2 /2�, corre-
sponding to a simple defocus. According to an exact
treatment, the Strehl ratio and gains at the intensity
peak should be independent of the value of u0. The
exact expression for the intensity is 
sin��u
−u0� /4� / ��u−u0� /4��2, which exhibits only a shift due
to defocus. Figure 1(a) shows the axial gain factor GA,
calculated by using the fourth-order expansion in in-
tensity, compared with those calculated by using a
third- or second-order expansion for the case when
u0=1, corresponding to a phase shift of 0.5 rad at the
edge of the pupil. The exact behavior is also shown. It
is seen that the using the full fourth-order expression
gives the correct value of unity at the focus position
u=1, whereas the second-order approximation gives
a gain factor of 0.95. Keeping terms in intensity to
third order gives a gain factor of 1.05. The fourth-
order expansion gives a good prediction of the behav-
ior as a function of u. We see that the fourth order
and exact expressions show a gain factor that de-
creases with distance from the focus, whereas the
second-order approximation shows an increase in
gain factor. Figure 1(b) shows the behavior for u=u0,
corresponding to the true focus. For the second-order
treatment, the axial gain factor at the focus is sub-
stantially in error even for small values of u0 (�10%
rect to within 1% for �u0 � �1.6. In the fourth-order
approximation, the variation in axial gain with u0 ex-
hibits a flat, quartic behavior for small u0. The third-
order expansion is actually no more accurate than
the second-order expansion for small u0, the differ-
ence being the sign of the error.

Figure 2 shows analogous results for the trans-
verse gain. Figure 2(a) shows the behavior with axial
position of the transverse gain for u0=1. Again the
third-order treatment is no more accurate than the
second-order treatment at the axial position of maxi-

Fig. 1. (a) Axial gain factors GA along the axis calculated
from a fourth-order expansion of intensity with a defocus
filter u0=1. The exact behavior and that predicted using
second- and third-order expansions are also shown. (b)
Axial gain factors GA at u=u0 corresponding to the true fo-
cus position calculated from Eq. (6) (fourth order). The ex-
act behavior and that predicted using second- and third-

order expansions are also shown.
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mum intensity. The transverse gain predicted by the
fourth-order theory is independent of u. Figure 2(b)
shows the transverse gain factor at u=u0 from Eq.
(10). Again we see that the third-order approximation
gives errors even for small values of u0. It gives little
improvement over the second-order theory, giving
only a sign change in the error for small u0. In both
cases, the error is 5% for approximately u0=1.6. The
fourth-order theory gives a transverse gain indepen-
dent of u0, agreeing with the exact behavior.

Next we consider further the axial variation in
gains for the case of a pupil that is real (but not nec-
essarily positive). We obtain
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which reduce to the known forms for u=0. For a uni-
form circular pupil, I =1/ �n+1�, and

Fig. 2. (a) Transverse gain factors GT along the axis cal-
culated from a fourth-order expansion of intensity with a
defocus filter u0=1. The behavior predicted using second-
and third-order expansions is also shown. (b) Axial gain
factors GT at u=u0 corresponding to the true focus position
calculated from Eq. (7) (fourth order). The behavior pre-
dicted using second- and third-order expansions is also
shown.
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to the fourth order, and the gains can be calculated
directly from this expression. The axial gain GA�u�
predicted by Eq. (10) is correct to 1% for �u � �2,
whereas retaining only second-order terms results in
an error as large as 20%. We find that GT�u�=1, in-
dependent of u. This corresponds to the tubular focal
spot described by Born and Wolf [6]. Defining a pa-
rameter F as

F =
I1�I0I2 − I1

2�
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the condition F�1 ensures that the transverse reso-
lution is maintained over the range where the inten-
sity is appreciable. For confocal imaging, where the
point-spread function of a single lens is squared, the
parameter F is equal to 2, consistent with the pres-
ence of an optical sectioning property.

Improved expressions have been given for the gain
factors of phase filters, valid for small axial displace-
ments of the true focus from the geometrical focus.
The allowed axial displacements are larger than
those for the expressions due to de Juana [2], �u0 �
�1.6 instead of �u0 � �0.4 for approximately 1% accu-
racy. These expressions have been validated for the
particular case of a phase mask that produces a small
axial shift of the focal intensity. The method fails
completely, however, if an inflection point in axial in-
tensity occurs between the intensity peak and the
geometrical focus ��u0 � �5�, so that if the intensity
peak is distant from the geometrical focal plane, the
approach of [3] is necessary.
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