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Tailoring the depth of focus for optical imaging
systems using a Fourier transform approach
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We show how to tailor the depth of focus for an optical system using pupil functions obtained from a Fourier
transform approach. These complex amplitude and phase pupil functions are encoded onto a single liquid-
crystal spatial light modulator. Experimental results show excellent agreement with theory and indicate the

power of this approach. © 2007 Optical Society of America
OCIS codes: 110.0110, 110.2990, 090.1970, 230.6120, 230.3720.

The transverse and axial imaging capabilities of
optical systems can be improved by using specially
designed pupil functions with such design goals as
superresolution and extended depth of focus. An ex-
tremely powerful approach for studying axial imag-
ing was first introduced by McCutchen,! where the
axial intensity response near the focus is given by the
one-dimensional Fourier transform of the radially
symmetric pupil function expressed in r? coordinates.
The advantage of the Fourier transform formalism is
that it gives some intuitive guidance for the design of
new pupil functions. Although some theoretical re-
sults have been obtained with this formalism,z_4
much of the theoretical effort has gone into numeri-
cal simulations in which various design parameters
are optimized.

Experimental results are surprisingly limited be-
cause of the difficulty in constructing these pupil
functions. Binary phase diffractive optical
elements,”® consisting of annular rings, have been
fabricated and produced good results. Amplitude pu-
pil functions, consisting of polynomial series, have
been encoded™® onto liquid-crystal spatial light
modulators (LCSLMs). More recently, combined am-
plitude and phase pupil functions were reported’ in
an attempt to increase the information encoded on
the pupil function.

In this Letter we directly utilize the Fourier trans-
form approach to generate pupil functions that create
desired depth of focus distributions. Several goals are
pupil functions that create a long uniform (rectangu-
lar) depth of focus, a triangular depth of focus where
the intensity increases to a maximum at the focal
point and then decreases, and finally a dual focus de-
pendence consisting of two separated rectangular re-
gions. These complex (amplitude and phase) pupil
functions are then encoded onto a single LCSLM. In
practice, we must use iterative techniques to over-
come the limitations imposed by the limited number

0146-9592/07/070844-3/$15.00

of pixels on the LCSLM. Experimental results are ex-
tremely good.

Next we outline the theory of these pupil functions.
We assume an axially symmetric lens function ¢(r)
written as the product of a converging lens with focal
length f and a complex pupil function p(r) as ¢(f,r)
=p(r)exp(-ikr?/2f). Using Fresnel diffraction and as-
suming axial symmetry, the scalar electric field at the
origin of the viewing plane (x9=y5=0) located a dis-
tance z=f from the input plane is given by

E(xZ = 0’y2 = O’Z)

i o[e —ikr? ikr?
= —f p(r)exp( )exp( )27Trdr. (1)
Az 0

2f 2z

Here a is the radius of the pupil function. We ignore
constant phase terms and 2=2w/\, where \ is the
wavelength. We define normalized axial coordinates
u=a?/2\z and uy=a?/2\f. We approximate the lead-
ing 1/z term by 1/f (Ref. 10) to simplify the equation.
In practice, this leads to an error of less than 4% that
cannot be seen in the experimental results. Next we
define the variable s=r?/a?-0.5 that varies from —0.5
to +0.5. The integral is now symmetric with respect
to the new origin and can be rewritten as a Fourier
transform integral by extending the limits of integra-
tion to infinity as

E'(u)= fx q(s)exp(—i27qugs)exp(i27us)ds. (2)

Here the pupil function is rewritten in terms of the
new variables as q(s).

Because the Fourier transform of the product of
two functions is the convolution of their Fourier
transforms, we rewrite the integral of Eq. (2) as

E'(u) = du-uy @ Q). 3)
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Consequently the axial electric field E'(u) is pro-
portional to the Fourier transform Q(u) of the pupil
function ¢(s) expressed in s coordinates. For a rect-
angular pupil function, the electric field is a sinc
function in the u direction centered at the focal point
of the lens. As the pupil aperture a decreases, the fo-
cus broadens along the z axis. We can relate the u
and z dimensions by using u—-uy=a?(z-f)/(2\f?).

The initial results using the fast Fourier transform
(FFT) were good, but there were problems (such as
the Gibbs overshoot in the rectangle response func-
tions) because the pupil function is spatially limited
by the size of our LCSLM. Consequently we used an
iterative design procedure 1112 a5 outlined in Fig. 1 to
improve the results. Figure 1(a) shows the desired
output axial response function E’(u) (a rectangle, for
example). We use discrete Fourier transforms having
N;=512 points (or samples) and define the axial re-
sponse function over a limited region of m points
(from u to us). By performing the Fourier transform,
we obtain the complex transmission of the pupil g(s)
as shown in Fig. 1(b). We cannot use this entire dis-
tribution because of the finite size of the LCSLM.
Consequently we truncate the pupil function to N,
=256 points, where the regions outside the pupil
(s1—sy) are made equal to zero as shown in Fig. 1(c).
By inverse Fourier transformation we obtain the
axial distribution @(u) in Fig. 1(d), and we find that
it does not coincide with the desired one because of
the restrictions mentioned above.

To improve the results, we impose additional re-
strictions. In the region (z;—us) we restore the origi-
nally designed magnitude of the axial distribution.
The axial phase distribution is used as a degree of
freedom. Outside this region the magnitude is trun-
cated if it exceeds a given percent (5% for this ex-
ample) of the maximum magnitude in the region
(u1—ug). Then a new axial distribution is obtained.
We continued the process until the mean square er-
ror was 0.01 (in the case of the double rectangle, we
were limited to a value of 0.1). Typically this required
about 1000 iterations. However, because of the effi-
ciency of the FFT algorithm, this typically required a
few seconds.

After this procedure is completed, the pupil func-
tion g(s) must be rescaled to the radial coordinates as
p(r). This rescaling spreads the central radial portion
and compresses the outer parts. This compression
can create problems because fast oscillations in the
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Fig. 1. Iterative filter design.
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Fig. 2. Amplitude and phase distributions for functions
that give an axial response: (a), (b) rectangle having 9

points; (c¢), (d) two 9-point rectangles separated by 21
points.

pupil function are difficult to encode onto the limited
pixel structure of the LCSLM.

To demonstrate this approach, we designed several
pupil functions. Figure 2 shows the amplitude and
phase for pupil functions p(r) that yield a rectangular
[Figs. 2(a) and 2(b)] and two-separated-rectangle
[Figs. 2(c) and 2(d)] axial response functions. Using
the simple Fourier transform relation between the
widths of the rectangle and sinc functions, the axial
distance in z coordinates is related to the number of
samples in the rectangle function as

L = (2m\f2N,)/(N1a?). (4)

The experlmental setup is similar to that reported
earlier.® Linearly polarized light from an argon laser
is spatially filtered, expanded, and collimated. The
pupil functions are encoded onto a parallel-aligned
nematic LCSLM manufactured by Seiko Epson with
640 %480 plxels having dimensions of 42 um on a
1.3 in. dlsplay Each pixel acts as an electrically
controllable phase plate where the total phase shift
exceeds 27 rad as a function of gray level at the ar-
gon laser wavelength of 514.5 nm. The light is fo-
cused by a 38.1cm focal length Space Optics Re-
search Labs lens. Because the focal spot size from the
lens is extremely small, we magnify it with a 20X mi-
croscope objective lens. We fix the distance between
the microscope objective and the detector, and by
shifting the assembly (objective plus CCD camera)
along the axis, we measure the peak intensity in the
transverse plane at different axial distances.

Our LCSLM is easily capable of encoding the phase
information. Amplitude information is then encoded
onto this phase-only medium by spatially modulating
the phase pattern with the amphtude portion of the
pupil function.* As the phase depth increases, the in-
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tensity diffracted into the first order increases, while
the zero-order intensity decreases. We first multiply
the pupil function with a linear phase grating having
a period d =6 pixels. Now the total phase is the sum
of the pupil phase term with the grating phase. Fi-
nally, we multiply this phase pattern by the magni-
tude of the pupil function so that the total phase is
given by exp{i|p(r)|[4(r) +2mx/d]}. Here the phase is
in the range [-, 7], and the amplitude is defined in
the range [0=|p(r)| =1].

Experimental results are shown in Fig. 3. Figure
3(a) shows the axial intensity distribution for a clear
pupil having a radius of 10 mm. The depth of focus
measured between the minima of the sinc-squared
intensity distribution is 2.8 mm, in excellent agree-
ment with theory. Figures 3(b)-3(d) show the axial
distributions for a series of pupil functions having
initial lengths of m=9, 21, 41 points in the Fourier
transform program. The depth of focus now increases
up to 30 mm. Next we designed a pupil function to

produce an electric field that varied axially as \E and
a triangular intensity distribution with a length
equivalent to 41 points. Figure 3(e) shows the experi-
mental triangular intensity distribution. Finally, Fig.
3(f) shows the output where we programmed two
rectangle functions having widths of 15 points sepa-
rated by 25 points. Experimental error is about 10%,
caused by fluctuations in the laser intensity and vi-
brations.

There are several limitations with this approach.
The transmission efficiency of these pupil functions is
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Fig. 3. Axial intensity response (arbitrary units) obtained
for (a) uniform pupil, (b) 9 point rectangle, (c) 21 point rect-
angle, (d) 41 point rectangle, (e) triangle, (f) two 15 point
rectangles separated by 25 points.

reduced because the complex pupils absorb some of
the incident light. There are also difficulties in imple-
menting the pupil function designs. As the length of
the distribution in the v domain decreases, the infor-
mation available for the pupil decreases—we have
fewer sidelobes to encode. This causes low pass filter-
ing of the output response. On the other hand, as the
u domain length increases, the number of sidelobes
increases. Now it is much more difficult to encode the
rapidly varying pupil function (particularly when it
is rewritten into the r domain) with the limited num-
ber of pixels.

Nevertheless, the experimental results are excel-
lent and agree well with the predictions of Eq. (4).
For the case of Fig. 3(c), we have extended the depth
of focus by a factor of over 20 compared with the
original open pupil. This approach shows the power
of the Fourier transform formalism and shows that
these kinds of complicated pupil functions can be eas-
ily constructed with a single LCSLM to obtain a de-
sired axial response of an optical system.
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