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Simple expressions for performance parameters of complex
filters, with applications to super-Gaussian phase filters
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To study the three-dimensional (3-D) behavior produced by complex filters, we have extended the expressions
for the axial and the transverse gain to the case in which the best image plane is not near the paraxial
focus. Super-Gaussian phase filters are proposed to control the 3-D image response of an optical system.
Super-Gaussian phase filters depend on several parameters that modify the shape of the phase filter, pro-
ducing tunable control of the 3-D response of the optical system. The filters are capable of producing a
wide range of optical effects: transverse superresolution with high depth of focus, 3-D superresolution, and
transverse apodization with different axial responses. © 2004 Optical Society of America
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The three-dimensional (3-D) response of an optical
system must be very different depending on its
application. A common goal in many optical sys-
tems, for instance, in optical storage,1 is to improve
transverse resolution. Nevertheless, in most cases,
a specific axial behavior is needed. For instance,
in photolithography a high depth of focus (DOF) is
also required. To achieve transverse superresolution,
both in photolithography and in optical storage, very
short wavelengths and high numerical apertures
(NAs) are used. This has two effects: on one side
the optical system must be well corrected (which
is diff icult), and on the other high NA reduces the
DOF (DOF is related to l�NA2). For this reason
different superresolution techniques2,3 have been
proposed as ways to relax the optical system re-
quirements or simply to improve the resolution of an
optical system by providing enough DOF. In other
systems, such as scanning microscopy, transverse
and axial superresolution is desirable to obtain 3-D
images.4,5

There are different methods that have been used
to modify the impulse response of an optical sys-
tem. Annular transmission pupils have been widely
used to improve transverse and (or) axial resolu-
tion.4– 6 Continuously varying amplitude f ilters
have also been investigated to produce transverse
superresolution and (or) high DOF.3,6,7 However, in
recent years, phase-only filters have been studied
to check whether they can improve the performance
of amplitude-only f ilters.1 In one approach, binary
phase filters are used1 to obtain elements that are
easy to produce. In other works continuous phase
filters have been investigated,8,9 but in some cases
although transverse superresolution is obtained it is
produced by very complex phase masks.9 In a recent
study8 a simple continuous phase filter was used to
obtain transverse superresolution.

In this Letter we propose super-Gaussian phase
filters that have a shape that depends on four parame-
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ters. These parameters give us enough degrees of
freedom to modify the whole 3-D image response in a
controlled way. The filters are capable of producing
a wide range of optical effects: they can produce
transverse superresolution that increases the DOF,
3-D superresolution, and even transverse apodization
with different axial responses. To our knowledge the
capability of these phase f ilters has not been studied
in previous works.

The super-Gaussian phase filters that we propose
have a transmission Q�t� � exp�iw�t��, where w�t� is
defined as

w�t� � a exp�2��t 2 t0��V��2a . (1)

Here a is a parameter that controls the global phase
height of the f ilter, t is equal to the square of the radial
coordinate r, t0 is the position of the maximum of the
phase distribution (in coordinate t), V is the width, and
a is the order of the super-Gaussian ring. By chang-
ing the value of V we can get phase profiles that go
from narrow rings (for instance, at V � 0.1) to smooth
profiles that almost cover the entire pupil (for instance,
at V � 1). For a � 1 the phase filter becomes an an-
nular Gaussian ring. In the limit a ! ` the super-
Gaussian ring is identical to an annular phase filter,
but in practice for a � 5 the function is similar to a
ring. The super-Gaussian profiles used here are simi-
lar to the ones proposed in Ref. 7, but now they are
phase profiles, and the variable used is t � r2 for bet-
ter axial predictability.10 Note that the performance
of super-Gaussian phase f ilters is not particularly af-
fected by the choice of the a value.

In Ref. 6 a simple theory of focal behavior was pro-
posed. In that work superresolution factors GT and
GA, for the transverse and axial performance, respec-
tively, were defined for amplitude-only f ilters. These
superresolution factors are a useful tool for filter
design. These factors were generalized by de Juana
et al.8 for phase filters, also working near the paraxial
© 2004 Optical Society of America
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plane. The filters studied here can shift the best
image plane (BIP) away from the BIP without a filter.
In this Letter we generalize the gain parameters for
any complex filter in the surroundings of the shifted
focus.

The method that we propose has the following
steps: f irst we calculate the axial response produced
by the f ilter, second we search for the maximum of the
on-axis intensities, and then we develop up to second
order the superresolution factors around that point.
Note that the second step of the procedure is valid
for an arbitrary shift of focus from the BIP without
a filter; meanwhile the last step is valid in the area
surrounding the shifted focus.

Let us call Q�t� the transmission function of an arbi-
trary pupil. Then, the electromagnetic f ield along the
axis will be

U �0,u� �
Z 1

0
Q�t�exp�iut�2�dt , (2)

where u is the axial coordinate centered at the focal
plane or the BIP without a f ilter. As we mentioned
above, in the case of some phase f ilters this distri-
bution could reach its maximum value in a position
displaced from this plane. We evaluate jU �o, u�2j nu-
merically from Eq. (2) along the axis, and we find the
position umax where the axial intensity is maximum.
Once we have found umax we calculate the superresolv-
ing gains by use of the expansions of the axial and
transverse intensities around this point.

For the axial response we consider a second-order
expansion of Eq. (2) around umax:

U �0,u� �
Z 1

0
Q�t�exp�iumaxt�2� �1 1 �it�2� �u 2 umax�

2 �t2�8� �u 2 umax�2�dt . (3)

We define the nth moments of the pupil around
umax as

In0 �
Z 1

0
Q�t�tnexp�iumaxt�2�dt . (4)

To calculate the intensity along the axis we take into
account only the terms up to second order in u0 �
u 2 umax. In this case the axial intensity is approxi-
mated as

I �0,u0� � jI00j2 2 Im�I00�I10�u0 1 �1�4�

3 �jI10j2 2 Re�I00I20���u02, (5)

where � indicates the conjugate operation. For the
transverse response we evaluate the point-spread func-
tion at the plane corresponding to umax and expand to
second order the transverse response as a function of
the transverse coordinate v, i.e.,
U �v,umax� �
Z 1

0
Q�t� �1 2 �1�4�v2t�exp�iumaxt�dt .

(6)

Then, the transverse intensity can be expressed as

I �v,umax� � jI00j2 2 �1�2�Re�I00I10��v2. (7)

We call u0 the value of u0 that corresponds to the center
of the parabola defined by Eq. (5), i.e.,

u0 � 2 Im�I00�I10���jI10 j2 2 Re�I00I20��� . (8)

Note that u0 is measured from the BIP centered at
umax, so its values will be very close to zero for most
functions that represent the axial response of an opti-
cal system.

Taking into account expressions (5) and (7) and
Eq. (8), we generalize the expressions for the axial
and transverse superresolution factors, GA and GT ,
respectively, introduced by Sheppard and Hegedus6

for amplitude filters and by de Juana et al.8 for phase
filters. The superresolution factors around umax
result in

GA � 12
Re�I0 0I20�� 2 jI10j2

jI00j2 2 �1�2�u0 Im�I00�I10�
, (9)

GT � 2 Re�I00I10���jI00 j2. (10)

Also we can generalize the Strehl ratio S as

S � jI00j2 2 u0 Im�I00�I10� . (11)

One can obtain diverse responses by varying the pa-
rameters involved in the super-Gaussian function of
Eq. (1). As examples, we show how transverse super-
resolving f ilters can be obtained in two cases in which
the axial gain is very different. We choose a f irst set
of parameters, a � 3, V � 0.1, and a � 2, and we cal-
culate the axial and the transverse gain as a function
of t0. The results are shown in Fig. 1(a). The dotted
line shows the unitary gain. From this figure it can
be observed that the axial gain is symmetrical with

Fig. 1. (a) Axial and transverse gain versus t0 for a �
3, V � 0.1, and a � 2. (b) Phase transmission for filters
with distributions centered at t0 � 0.2 and t0 � 0.4.
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Fig. 2. (a), (c) Axial intensities for t0 � 0.2 and t0 � 0.4,
respectively. (b) Transverse intensity for t0 � 0.2, umax �
2, S � 0.49, GT � 1.2, and GA � 0.7. (d) Transverse in-
tensity for t0 � 0.4, umax � 0.5, S � 0.44, GT � 1.1, and
GA � 1.4.

respect to t0 � 0.5 and the transverse gain is antisym-
metrical with respect to the same point.

Moreover, we can observe that in the case of
t0 , 0.5 the transverse gain is higher than 1, which
implies that the f ilter acts as a transverse super-
resolving f ilter. On the contrary, if t0 . 0.5, the
transverse gain is less than 1 and the filter acts as
a transverse apodizing f ilter. In both cases we can
choose positions for t0 for which the filter acts as
either a superresolving or an apodizing axial filter.
We have selected two values of t0 that illustrate
cases in which the transverse response corresponds
to a transverse superresolving f ilter while the ax-
ial response is associated with an axial apodizing
filter �t0 � 0.2� or an axial superresolving filter
�t0 � 0.4�. The phase functions of these filters are
represented in Fig. 1(b). The axial and transverse
intensities are shown in Fig. 2. Figures 2(a) and 2(c)
show the axial intensities for t0 � 0.2 and t0 � 0.4.
The maximum values of each distribution result in
umax�t0 � 0.2� � 1.99 and umax�t0 � 0.4� � 0.51. Fig-
ures 2(b) and 2(d) show the transverse intensities, i.e.,
the point-spread functions. In all cases the dashed
curves indicate the response for the pupil without
a f ilter. The Strehl ratio is S � 0.49 for Fig. 2(b)
and S � 0.44 for Fig. 2(d). We remark that both
filters produce a good transverse response. They
produce transverse superresolution with high Strehl
values and low sidelobes.

In this Letter we have derived the superresolving
gains around shifted focus umax that properly describe
the transverse and axial responses of an optical system
with a complex transmission function. The examples
presented here show that super-Gaussian phase f il-
ters with different parameters allow us to obtain a
wide range of responses, from superresolving to apodiz-
ing f ilters in either the axial or the transverse direc-
tion. The addition of these filters to optical systems
can modify their behavior in terms of image formation.
We show that the f ilters can be designed to get the de-
sired feature.
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