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Abstract
This paper discusses an autonomous competitive Lotka-Volterra model in random
environments. The contributions of this paper are as follows. (a) Some sufficient
conditions for partial permanence and extinction on this system are established;
(b) By using some novel techniques, the conditions imposed on permanence and
extinction of one-species are weakened. Finally, a numerical experiment is conducted
to validate the theoretical findings.
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1 Introduction
It is a usual phenomenon for two or more species who live in proximity share the same ba-
sic requirements and compete for resources, habitat, food, or territory. It is therefore very
important to study the competitive models for multi-species. As we know, the well-known
Lotka-Volterra model concerning ecological population modeling has received great at-
tention and has been studied extensively owing to its theoretical and practical significance.
A deterministic, competitive Lotka-Volterra system with n interacting species is described
by the n-dimensional differential equation

dxi(t)
dt

= xi(t)

[
bi –

n∑
j=

aijxj(t)

]
, i = , , . . . , n, (.)

where xi(t) represents the population size of species i at time t, bi is the growth rate of
species i, and aij represents the effect of interspecific (if i �= j) or intraspecific (if i = j)
interaction.

On the other hand, from the biological point of view, population systems in the real
world are inevitably affected by environmental noise. In practice, the growth rates are of-
ten subject to environmental noise. To obtain a more accurate description of such systems,
we usually consider the stochastic perturbation of the growth rate bi by an average value
plus an error term. Then the intrinsic growth rate depending on time becomes

bi → bi + σiḂi(t),
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where Ḃi(t) is a white noise. As a result, system (.) becomes a stochastic Lotka-Volterra
competition system with n interacting components as follows:

dxi(t) = xi(t)

[(
bi –

n∑
j=

aijxj(t)

)
dt + σi dBi(t)

]
, i = , , . . . , n, (.)

where bi, aij, σi are non-negative for i, j = , , . . . , n, and σ 
i will be called the noise intensity

matrix. Throughout this paper we always assume that the following hypothesis holds:

bi > , aii > , aij ≥  (i �= j). (.)

It is therefore necessary to reveal how the noise affects the population systems. As a matter
of fact, stochastic Lotka-Volterra competitive systems have recently been studied by many
authors, for example, [–].

In the study of population systems, permanence and extinction are two important and
interesting topics, respectively meaning that the population system will survive or die out
in the future, which have received much attention (see [–]). Luo and Mao [] revealed
that a large white noise will force the stochastic Lotka-Volterra systems to become extinct
while the population may be persistent under a relatively small white noise. Li and Mao []
investigated a non-autonomous stochastic Lotka-Volterra competitive system, and some
sufficient conditions on stochastic permanence and extinction were obtained. Li et al. []
showed that both stochastic permanence and extinction have close relationships with the
stationary probability distribution of the Markov chain. Tran and Yin [] investigated
stochastic permanence and extinction for stochastic competitive Lotka-Volterra systems
using feedback controls.

However, most of the existing criteria are established for stochastic general Lotka-
Volterra system. Hence, one natural question arises: How to derive some criteria with less
conservatism for stochastic Lotka-Volterra competitive systems? This issue constitutes
the first motivation of this paper.

Moreover, most of the existing criteria are established for total permanence and total
extinction. To the best of our knowledge, partial permanence and partial extinction have
scarcely been investigated, which are very important properties. Is it feasible to obtain
some partial permanence and extinction conditions for stochastic Lotka-Volterra compet-
itive systems? Thus, the second purpose of this paper is to solve this interesting problem.

The rest of the paper is arranged as follows. The main results of this paper are stated
in Sections  and . In Section , some preliminaries, definitions and lemmas are given.
Sufficient conditions on persistence in mean and extinction for one-species are obtained
in Section . Based on these sufficient conditions on one-species, sufficient criteria on
partial permanence and extinction on system (.) are established in Section . Section 
provides some numerical examples to check the effectiveness of the derived results.

2 Notation
Throughout this paper, unless otherwise specified, let (�,F , {Ft}t≥,P) be a complete
probability space with a filtration {Ft}t≥ satisfying the usual conditions (i.e., it is in-
creasing and right continuous, while F contains all P-null sets). Let B(t) = (B

t , . . . , Bm
t ) be

an m-dimensional Brownian motion defined on the probability space. Let Rn
+ = {x ∈ Rn :

xi >  for all  ≤ i ≤ n}.
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Lemma . ([]) Assume that condition (.) holds. Then, for any given initial value
x() ∈ Rn

+, there is a unique solution x(t) to system (.) and the solution will remain in
Rn

+ with probability , namely

P
{

x(t) ∈ Rn
+,∀t ≥ 

}
= .

Lemma . ([]) Assume that condition (.) holds. Then, for any given initial value
x() ∈ Rn

+, the solution xi(t) to system (.) obeys

sup
≤t<+∞

n∑
i=

Exp
i (t) ≤ Kp, i = , . . . , n.

Definition . System (.) is said to be persistent in mean if there exist positive constants
αi, βi such that the solution to system (.) has the following property:

lim sup
t→∞


t

∫ t


xi(s) ds ≤ βi a.s. i = , . . . , n,

lim inf
t→∞


t

∫ t


xi(s) ds ≥ αi a.s. i = , . . . , n.

To proceed with our study, we consider two auxiliary stochastic differential equations⎧⎨
⎩dyi(t) = yi(t)[(bi – aiiyi(t)) dt + σi dBi(t)],

yi() = xi(), i = , . . . , n,
(.)

⎧⎨
⎩dzi(t) = zi(t)[(bi –

∑
j �=i aijyj(t) – aiizi(t)) dt + σi dBi(t)],

zi() = xi(), i = , . . . , n,
(.)

where

y(t) =
(
y(t), . . . , yn(t)

)T , z(t) =
(
z(t), . . . , zn(t)

)T .

Lemma . Assume that condition (.) holds. Let x(t) be a solution to system (.) with
x() ∈ Rn

+, then we have

z(t) ≤ x(t) ≤ y(t),

i.e.,

zi(t) ≤ xi(t) ≤ yi(t), i = , . . . , n.

Proof By the Itô formula, we derive that


xi(t)

=


xi()
exp

[(
σ 

i


– bi

)
t +

∑
j �=i

aij

∫ t


xj(s) ds – σiBi(t)

]

+ aii

∫ t


exp

[(
σ 

i


– bi

)
(t – s) +

∑
j �=i

aij

∫ t

s
xj(ι) dι

– σi
(
Bi(t) – Bi(s)

)]
ds, i = , . . . , n, (.)
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yi(t)

=


xi()
exp

[(
σ 

i


– bi

)
t – σiBi(t)

]
+ aii

∫ t


exp

[(
σ 

i


– bi

)
(t – s)

– σi
(
Bi(t) – Bi(s)

)]
ds, i = , . . . , n, (.)

which means

xi(t) ≤ yi(t), i = , . . . , n. (.)

Applying the Itô formula to equation (.) yields


zi(t)

=


xi()
exp

[(
σ 

i


– bi

)
t +

∑
j �=i

aij

∫ t


yj(s) ds – σiBi(t)

]

+ aii

∫ t


exp

[(
σ 

i


– bi

)
(t – s) +

∑
j �=i

aij

∫ t

s
yi(ι) dι

– σi
(
Bi(t) – Bi(s)

)]
ds, i = , . . . , n. (.)

From the representations of yi(t) and zi(t), and by (.) we have

zi(t) ≤ xi(t), i = , . . . , n. �

3 Persistence in mean and extinction of one-species
3.1 Persistence of one-species
In this section, we investigate persistence in mean and extinction of one-species for sys-
tem (.). Now, let us present some lemmas which are essential to the proof of Theo-
rem ..

Lemma . ([]) Let condition (.) hold. The solution yi(t) to equation (.) has the fol-
lowing property:

lim
t→∞

log yi(t)
t

=
(

bi –
σ 

i


)
∧  a.s.

With the help of Lemma ., we slightly improve Lemma . of [] by weakening hy-
potheses posed on the coefficients of equation (.) as follows.

Lemma . Let condition (.) hold, and assume that bi – σ
i
 > , bj –

σ
j
 ≥  (i �= j) and

bi – σ
i
 –

∑
j �=i

aij
ajj

((bj –
σ

j
 ) ∧ ) > . Then the solution to equation (.) has the prop-

erty

lim
t→∞

log zi(t)
t

=  a.s. (.)

Theorem . Let condition (.) and assumptions in Lemma . hold. Then the solution
to system (.) has the following property:

lim sup
t→∞


t

∫ t


xi(s) ds ≤ 

aii

(
bi –

σ 
i



)
a.s., (.)
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lim inf
t→∞


t

∫ t


xi(s) ds ≥ 

aii

[(
bi –

σ 
i



)
–

∑
j �=i

aij

ajj

((
bj –

σ 
j



)
∧ 

)]
a.s., (.)

which means the species i of system (.) is persistent in mean.

Proof Applying the Itô formula to equation (.) yields

log yi(t) = log yi() +
(

bi –
σ 

i


)
t – aii

∫ t


yi(s) ds + σiBi(t). (.)

Then we have

∫ t


yi(s) ds =

(bi – σ
i
 )

aii
t +

σi

aii
Bi(t) –


aii

(
log yi(t) – log yi()

)
. (.)

Dividing both sides of (.) by t yields


t

∫ t


yi(s) ds =


aii

[
log yi()

t
–

log yi(t)
t

+
(

bi –
σ 

i


)
+


t

∫ t


σi dBi(s)

]
. (.)

Note that

lim
t→∞

log yi()
t

= ,

t

∫ t


σi dBi(s) =  a.s.

This implies

lim
t→∞


t

∫ t


yi(s) ds = –


aii

lim
t→∞

log yi(t)
t

+


aii

(
bi –

σ 
i



)
.

By Lemma ., letting t → ∞ on both sides of (.) yields

lim
t→∞


t

∫ t


yj(s) ds =


ajj

((
bj –

σ 
j



)
∨ 

)
a.s. (.)

Combining Lemma . and (.), we can claim that

lim sup
t→∞


t

∫ t


xi(s) ds ≤ lim

t→∞

t

∫ t


yi(s) ds =


aii

(
bi –

σ 
i



)
a.s. (.)

Now we process to show assertion (.). Applying the Itô formula to log zi(t) yields

log zi(t) = log zi() –
∫ t



(
σ 

i


– bi

)
ds – aii

∫ t


zi(s) ds

+
∑
j �=i

∫ t


aijzj(s) ds +

∫ t


σi dBi(s). (.)
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Dividing both sides of (.) by t yields

log zi(t)
t

=
log zi()

t
–


t

∫ t



(
σ 

i


– bi

)
ds –

aii

t

∫ t


zi(s) ds

+

t
∑
j �=i

∫ t


aijyj(s) ds +


t

∫ t


σi dBi(s). (.)

Using Lemma . and the law of strong large number for martingale, we have

lim
t→∞


t

∫ t


σi dBi(s) = , lim

t→∞
log zi(t)

t
=  a.s. (.)

Combining Lemma . and (.), letting t → +∞ on both sides of (.) yields

lim
t→∞


t

∫ t


zi(s) ds =


aii

[(
bi –

σ 
i



)
+

∑
j �=i

lim
t→∞

aij

t

∫ t


yj(s) ds

]

=


aii

[(
bi –

σ 
i



)
–

∑
j �=i

aij

ajj

((
bj –

σ 
j



)
∧ 

)]
> . (.)

Since xi(t) ≥ zi(t), assertion (.) is true. Therefore this theorem is proved. �

Remark . Compared with the existing literature [], the conditions imposed on the
permanence of one-species are weaker.

Applying Lemma . to system (.), we have the following corollary, which coincides
with Theorem . in [].

Corollary . Let condition (.) hold and assume that bi – σ
i
 > , bi – σ

i
 –

∑
j �=i

aij
ajj

(bj –
σ

j
 ) >  for all i = , . . . , n. System (.) is persistent in mean.

3.2 Extinction of one-species
Theorem . Let condition (.) hold and xi(t) be the solution to system (.) with positive
initial value xi(). Then we have the following assertions:

(i) If σ 
i > bi, the solution xi(t) to system (.) has the property that

lim sup
t→∞

log xi(t)
t

≤ bi –
σ 

i


a.s. (.)

That is, the species i of system (.) will become extinct.
(ii) If σ 

i = bi, the solution xi(t) to system (.) has the property that

lim
t→∞ xi(t) =  a.s. (.)

That is, the species i of system (.) still become extinct with probability one.

Proof The proof is rather technical, so we will divide it into two steps. The first step is to
show the exponential extinction of species i when σ 

i > bi. The second step is to show the
extinction in the case of σ 

i = bi.
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Step . Applying the Itô formula to log xi(t) yields

log xi(t) = log xi() +
∫ t



(
bi –

σ 
i



)
ds –

n∑
j=

aij

∫ t


xj(s) ds +

∫ t


σi dBi(s). (.)

Dividing both sides of (.) by t yields

log xi(t)
t

=
log xi()

t
+


t

∫ t



(
bi –

σ 
i



)
ds

–

t

n∑
j=

aij

∫ t


xj(s) ds +


t

∫ t


σi dBi(s). (.)

Using the law of strong large number for martingales, we can claim that

lim
t→∞


t

∫ t


σi dBi(s) =  a.s.

Letting t → ∞ yields

lim sup
t→∞

log xi(t)
t

≤ bi –
σ 

i


a.s.

Step . Now, let us finally show assertion (.). Decompose the sample space into three
mutually exclusive events as follows:

�i =
{
ω : lim sup

t→∞
xi(t) ≥ lim inf

t→∞ xi(t) = γi > 
}

;

�i =
{
ω : lim sup

t→∞
xi(t) > lim inf

t→∞ xi(t) = 
}

;

�i =
{
ω : lim

t→∞ xi(t) = 
}

.

When σ 
i = bi, equation (.) has the following form:

log xi(t)
t

=
log xi()

t
–


t

n∑
j=

aij

∫ t


xi(s) ds +


t

∫ t


σi dBi(s). (.)

Furthermore, we decompose the sample space into the following two mutually exclusive
events according to the convergence of

∫ ∞
 xi(s) ds:

Ei =
{
ω :

∫ ∞


xi(s) ds < ∞

}
, Ei =

{
ω :

∫ ∞


xi(s) ds = ∞

}
. (.)

The proof of limt→∞ xi(t) =  a.s. is equivalent to showing Ei ⊂ �i, Ei ⊂ �i a.s. The
strategy of the proof is as follows.

	 First, by using the techniques proposed in [], we show that Ei ⊂ �i. It is sufficient to
show P(Ei ∩ �i) =  and P(Ei ∩ �i) = .

	 Second, using some novel techniques, we prove that P(Ei ∩�i) =  and P(Ei ∩�i) = ,
which means Ei ⊂ �i a.s.
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Now we realize this strategy as follows.
Case . Let us now show Ei ⊂ �i. Clearly, xi(t) ∈ C(R+, R) a.s. It is straightforward to

see from Ei that lim inft→∞ xi(t) =  a.s. Therefore, we have obtained that P(Ei ∩�i) = .
Now we only need to prove that P(Ei ∩ �i) = . We prove it by contradiction.

If P(Ei ∩ �i) > , there exists a number ε >  such that

P(J ∩ Ei) ≥ ε, (.)

where J = {lim supt→∞ xi(t) > ε}. Let us now define a sequence of stopping times

τ = inf
{

t ≥  : xi(t) ≥ ε
}

, τk = inf
{

t ≥ τk– : xi(t) ≤ ε
}

,

τk+ = inf
{

t ≥ τk : xi(t) ≥ ε
}

, k = , , . . . .

From Ei, we also have E(IEi

∫ ∞
 xi(s) ds) < ∞, then we compute it

E
(

IEi

∫ ∞


xi(s) ds

)
≥

∞∑
k=

E
[

I{τk–<∞,τk<∞}∩Ei

∫ τk

τk–

xi(s) ds
]

≥ ε

∞∑
k=

E
[
I{τk–<∞}∩Ei (τk – τk–)

]
,

where IA is the indicator function for all sets A. Since τk < ∞ whenever τk– < ∞, by the
above formula, so we have

ε

∞∑
k=

E
[
I{τk–<∞}∩Ei (τk– – τk)

]
< ∞. (.)

On the other hand, integrating equation (.) from  to t yields

xi(t) = xi() +
∫ t


xi(s)

(
bi –

n∑
j=

aijxj(s)

)
ds +

∫ t


σixi(s) dBi(s). (.)

A simple computation shows that

E

[
x

i (s) ·
(

bi –
n∑

j=

aijxj(s)

)]

≤ 


E
(
x

i (s)
)

+



E

[(
bi –

n∑
j=

aijxj(s)

)]

≤ 


E
(
x

i (s)
)

+



E

(
b

i + b
i

n∑
j=

a
ijx


j (s) +

n∑
j=

a
ijx


j (s)

)

≤ 


K +



(
b

i + b
i

n∑
j=

a
ijK +

n∑
j=

a
ijK

)

=: M
i ,
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and

E
(
σ 

i · x
i (s)

)
= σ 

i · E
(
x

i (s)
) ≤ σ 

i · K =: N
i ,

where K and K are defined in Lemma .. Using the Hölder inequality and Burkholder-
Davis-Gundy inequality (see []), we compute

E
[
I{τk–<∞}∩Ei sup

≤t≤T

∣∣xi(τk– + t) – xi(τk–)
∣∣

]

≤ E

[
I{τk–<∞}∩Ei sup

≤t≤T

∣∣∣∣∣
∫ τk–+t

τk–

(
xi(s) ·

(
bi –

n∑
j=

aijxj(s)

))
ds

∣∣∣∣∣
]

+ E
[

I{τk–<∞}∩Ei sup
≤t≤T

∣∣∣∣
∫ τk–+t

τk–

(
σi · xi(s)

)
dBi(s)

∣∣∣∣
]

≤ TE

[
I{τk–<∞}∩Ei

∫ τk–+T

τk–

(
x

i (s) ·
(

bi –
n∑

j=

aijxj(s)

))
(s) ds

]

+ E
[

I{τk–<∞}∩Ei

∫ τk–+T

τk–

(
σ 

i · x
i (s)

)
ds

]

≤ T
(
M

i + N
i
)
. (.)

Furthermore, we choose T = T(ε) >  sufficiently small for

T
(
M

i + N
i
) ≤ ε.

It then follows from (.) that

P
({τk– < ∞} ∩ {Hk ∩ Ei}

) ≤ (T + )T(M
i + N

i )
ε ≤ ε, (.)

where

Hk =
{

sup
≤t≤T

∣∣xi(τk– + t) – xi(τk–)
∣∣ ≥ ε

}
, k = , , . . . , n.

Recalling the fact that τk < ∞, for k = , , . . . , whenever ω ∈ J, we further compute

P
({τk– < ∞} ∩ {

Hc
k ∩ Ei

})
= P

({τk– < ∞} ∩ Ei
)

– P
({τk– < ∞} ∩ {Hk ∩ Ei}

)
≥ ε – ε = ε.

If ω ∈ {τk– < ∞} ∩ {Hc
k ∩ Ei}, note that

τk(ω) – τk–(ω) ≥ T . (.)
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We derive from (.) and (.) that

∞ > ε

∞∑
k=

E
[
I{τk–<∞}∩Ei (τk – τk–)

]

≥ ε

∞∑
k=

E
[
I{τk–<∞}∩{Hc

k∩Ei}(τk– – τk)
]

≥ εT
∞∑

k=

P
({τk– < ∞} ∩ {

Hc
k ∩ Ei

})

≥ εT
∞∑

k=

ε = ∞, (.)

which is a contraction. So that P(Ei ∩ �i) =  holds. Therefore, we obtain that Ei ⊂ �i.
Case . Now, we turn to prove that Ei ⊂ �i a.s. It is sufficient to show P(Ei ∩ �i) = 

and P(Ei ∩ �i) = . We prove it by contradiction.
If P(Ei ∩ �i) >  holds, for any ω ∈ Ei ∩ �i, ε ∈ (, γi

 ), there exists T = (ε,ω) such
that

xi(t) > γi – ε >
γi


∀t > T a.s.

It then follows from (.) that


t

∫ t


xi(s) ds =


t

∫ T


xi(s) ds +


t

∫ t

T
xi(s) ds ≥ 

t

∫ T


xi(s) ds +

t – T
t

γi


a.s.

Letting t → ∞, we obtain that

lim inf
t→∞


t

∫ t


xi(s) ds >

γi


>  a.s.

This implies

lim sup
t→∞

log xi(t)
t

≤ –
n∑

j=

aij
γi


<  a.s.,

which contradicts the definition of Ei and �i. So P(Ei ∩ �i) =  must hold.
Now we process to show P(Ei ∩ �i) >  is false. For this purpose, we need more nota-

tions as follows:

�ε
t (i) :=

{
 ≤ s ≤ t : xi(s) ≥ ε

}
, δε

t (i) :=
m(�ε

t (i))
t

,

δε(i) := lim inf
t→∞ δε

t i, �ε(i) :=
{
ω ∈ Ei ∩ �i : δε(i) > 

}
,

where m(�ε
t (i)) indicates the length of �ε

t (i). It is easy to see that �(i) = Ei ∩�i. For any
ε < ε, simple computations show that

�
ε
t (i) ⊃ �

ε
t (i), m

(
�

ε
t (i)

) ≥ m
(
�

ε
t (i)

)
,

δ
ε
t (i) =

m(�ε
t )(i)
t

≥ δ
ε
t (i) =

m(�ε
t )(i)
t

,
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which implies

δε (i) ≤ δε (i), �ε (i) ⊂ �ε (i) ∀ε < ε.

It is easy to observe from the continuity of probability that

P
(
�ε(i)

) → P
(
�(i)

)
= P(E ∩ �) as ε → .

If P(Ei ∩ �i) > , there exists ε >  such that P(Dε) > . For any ω ∈ �ε(i), simple com-
putations show that


t

∫ t


xi(s) ds =


t

∫
�ε

t (i)
xi(s) ds +


t

∫
[,t]\�ε

t

xi(s) ds ≥ 
t

∫
�ε

t (i)
xi(s) ds a.s.

By letting t → ∞, we have

lim inf
t→∞


t

∫ t


xi(s) ds ≥ lim inf

t→∞

t

∫
�ε

t

xi(s) ds ≥ δε(i)ε a.s. (.)

Substituting (.) into (.), we obtain that

lim sup
t→∞

log xi(t)
t

≤ –
n∑

j=

aijδ
ε(i)ε <  a.s.

This contradicts the definition of Ei and �i. It yields the desired assertion P(Ei ∩�i) = 
immediately. Combining the fact Ei ⊂ �i, P(Ei ∩ �i) =  and P(Ei ∩ �i) = , we can
claim that

lim
t→∞ xi(t) =  a.s.

The proof is completed. �

Remark . In comparison with [] and [], we point out that species i is still extinct
when σ 

i = bi by using some novel stochastic analysis techniques.

Corollary . Let condition (.) hold and x(t) be a solution to system (.) with positive
initial value x(). Assume that there exists an integer m,  ≤ m < n, such that

σ 
i > bi, i = , . . . , m, (.)

σ 
i = bi, i = m + , . . . , n. (.)

Then we have the following assertions:
(i) For all i = , . . . , n, the solution xi(t) to system (.) has the property that

lim
t→∞

log xi(t)
t

= bi –
σ 

i


a.s. i = , . . . , m. (.)



Dong et al. Advances in Difference Equations  (2015) 2015:266 Page 12 of 17

(ii) For all i = m + , . . . , n, the solution xi(t) to system (.) has the property that

lim
t→∞

log xi(t)
t

=  a.s. i = m + , . . . , n. (.)

Proof By virtue of Theorem ., for all σ 
i > bi, i = , . . . , m, we obtain that

lim sup
t→∞

log xi(t)
t

≤ bi –
σ 

i


a.s. i = , . . . , m.

This shows that for any εi ∈ (, σ
i
 – bi) there is a positive random variable T(εi) such that

xi(t) ≤ exp

{(
bi –

σ 
i



)
t + εit

}
∀t > T(εi), a.s. i = , . . . , m,

which means∫ ∞


xi(s) ds < ∞ a.s. i = , . . . , m.

Then letting t → ∞ on both sides of (.) yields

lim
t→∞

log xi(t)
t

= bi –
σ 

i


a.s. i = , . . . , m,

which is the required assertion (.).
Now we process to show assertion (.). By utilizing Theorem . and conditions (.),

we derive

lim
t→∞ xi(t) =  a.s. i = m + , . . . , n.

This implies

lim
t→∞


t

∫ t


xi(s) ds =  a.s. i = m + , . . . , n. (.)

By the law of strong large numbers for martingales and (.), letting t → ∞ on both sides
of (.) yields

lim
t→∞

log xi(t)
t

=  a.s. i = m + , . . . , n.

The proof is completed. �

4 Partial permanence and extinction
Now in this section we present conditions for system (.) to be partially permanent and
extinct. To proceed with our study, we consider the following auxiliary stochastic equa-
tion:⎧⎨

⎩dΦi(t) = Φi(t)(bi –
∑m

j= aijΦj(t)) dt + σiΦi(t) dBi(t),

Φi() = xi(), i = , . . . , m.
(.)
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Theorem . Let condition (.) hold. Assume that there exists an integer m,  ≤ m < n,
such that

bi >
σ 

i


, aii –
m∑
j �=i

aji > ,

bi –
σ 

i


–
m∑

k �=i

aik

akk

(
bk –

σ 
k



)
> , i = , . . . , m,

(.)

bi <
σ 

i


, i = m + , . . . , n. (.)

Then we have the following assertions:
(i) For all i = , . . . , m, the solution x(t) to system (.) has the property that

lim sup
t→∞


t

∫ t


xi(s) ds ≤ 

aii

(
bi –

σ 
i



)
a.s. i = , . . . , m. (.)

lim inf
t→∞


t

∫ t


xi(s) ds

≥ 
aii

[(
bi –

σ 
i



)
–

m∑
k �=i

aik

akk

(
bk –

σ 
k



)]
a.s. i = , . . . , m. (.)

That is, for each i = , . . . , m, the species i of system (.) is persistent in mean;
(ii) For all i = m + , . . . , n, the solution x(t) to system (.) has the property that

lim sup
t→∞

log xi(t)
t

≤ bi –
σ 

i


–
m∑
j=

aij

ajj

[(
bj –

σ 
j



)

–
m∑

k �=j

ajk

akk

(
bk –

σ 
k



)]
a.s. i = m + , . . . , n. (.)

That is, for each i = m + , . . . , n, the species i will become extinct.

Proof We will divide the proof into two steps. The first step is to show the permanence of
the top m species of system (.). The second step is to show the extinction for the bottom
n – m species of system (.).

Step . Applying the Itô formula to (.) yields

d logΦi(t) =

(
bi –

σ 
i


–

m∑
j=

aijΦj(t)

)
dt + σi dBi(t), i = , . . . , m. (.)

Simple computations show that

d
(
log xi(t) – logΦi(t)

)
= –

m∑
j=

aij
(
xj(t) – Φj(t)

)
dt

–
n∑

l=m+

ailxl(t) dt, i = , . . . , m. (.)
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Applying the Itô formula to V (t) =
∑m

i= | log xi(t) – logΦi(t)| yields

D+V (t) =
m∑

i=

sgn
(
xi(t) – Φi(t)

) · [d log xi(t) – d logΦi(t)
]

= –
m∑

i=

sgn
(
xi(t) – Φi(t)

) ·
[ m∑

j=

aij
(
xj(t) – Φj(t)

)
+

n∑
l=m+

ailxl(t)

]
dt

≤ –
m∑

i=

aii
∣∣xi(t) – Φi(t)

∣∣dt +
m∑

i=

m∑
j �=i

aij
∣∣xj(t) – Φj(t)

∣∣dt +
m∑

i=

n∑
l=m+

ailxl(t) dt

= –
m∑

i=

aii
∣∣xi(t) – Φi(t)

∣∣dt +
m∑
j=

m∑
i�=j

aji
∣∣xi(t) – Φi(t)

∣∣dt +
m∑

i=

n∑
l=m+

ailxl(t) dt

= –
m∑

i=

aii
∣∣xi(t) – Φi(t)

∣∣dt +
m∑

i=

m∑
j �=i

aji
∣∣xi(t) – Φi(t)

∣∣dt +
m∑

i=

n∑
l=m+

ailxl(t) dt

≤ –
m∑

i=

(
aii –

m∑
j �=i

aji

)∣∣xi(t) – Φi(t)
∣∣dt +

m∑
i=

n∑
l=m+

ailxl(t) dt.

Hence we get

D+V (t) ≤ –μ

m∑
i=

∣∣xi(t) – Φi(t)
∣∣dt +

n∑
l=m+

θlxl(t) dt, i = , . . . , m, (.)

where μ = min≤i≤m(aii –
∑m

j �=i aji) > , θl =
∑m

i= ail ≥ . We therefore have

V (t) + μ

∫ t



m∑
i=

∣∣xi(s) – Φi(s)
∣∣ds

≤ V () +
n∑

l=m+

θl

∫ t


xl(s) ds, i = , . . . , m. (.)

Letting t → ∞ on both sides of (.) yields

∫ ∞



∣∣xi(s) – Φi(s)
∣∣ds ≤

∫ ∞



m∑
i=

∣∣xi(s) – Φi(s)
∣∣ds

≤ 
μ

[
V () +

n∑
l=m+

θl

∫ ∞


xl(s) ds

]
. (.)

By Theorem . and condition (.), we have

∫ ∞


xl(s) ds < +∞ a.s. l = m + , . . . , n. (.)

Substituting (.) into (.) yields

∫ ∞



∣∣xi(s) – Φi(s)
∣∣ds < +∞ a.s. i = , . . . , m. (.)
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By virtue of the similar techniques proposed in Step  of Theorem ., we have

lim
t→∞

∣∣xi(t) – Φi(t)
∣∣ =  a.s. i = , . . . , m. (.)

When condition (.) is satisfied, by applying Corollary . to system (.), we have

lim sup
t→∞


t

∫ t


Φi(s) ds ≤ 

aii

(
bi –

σ 
i



)
a.s. i = , . . . , m,

lim inf
t→∞


t

∫ t


Φi(s) ds ≥ 

aii

[(
bi –

σ 
i



)
–

m∑
k �=i

aik

akk

(
bk –

σ 
k



)]
a.s. i = , . . . , m.

A simple computation shows that

lim sup
t→∞


t

∫ t


xi(s) ds ≤ lim sup

t→∞

t

∫ t



(
xi(s) – Φi(s)

)
ds + lim sup

t→∞

t

∫ t


Φi(s) ds

≤ 
aii

(
bi –

σ 
i



)
a.s. i = , . . . , m, (.)

lim inf
t→∞


t

∫ t


xi(s) ds

≥ lim inf
t→∞


t

∫ t



(
xi(s) – Φi(s)

)
ds + lim inf

t→∞

t

∫ t


Φi(s) ds

≥ 
aii

[(
bi –

σ 
i



)
–

m∑
k �=i

aik

akk

(
bk –

σ 
k



)]
a.s. i = , . . . , m. (.)

Therefore, we obtain that xi(t) is persistent in mean, for all i = , . . . , m.
Step . For all i = m + , . . . , n, applying Itô to log xi(t) yields

log xi(t)
t

=
log xi()

t
+


t

∫ t



(
bi –

σ 
i



)
ds –

m∑
j=

aij

t

∫ t


xj(s) ds

–
n∑

l=m+

ail

t

∫ t


xl(s) ds +


t

∫ t


σi dBi(s), i = m + , . . . , n. (.)

It follows from (.) that

lim inf
t→∞


t

m∑
j=

aij

∫ t


xj(s) ds

≥
m∑
j=

aij

ajj

[(
bj –

σ 
j



)
–

m∑
k �=j

ajk

akk

(
bk –

σ 
k



)]
a.s. j = , . . . , m.

By letting t → ∞ on both sides of (.) yields. We can conclude that

lim sup
t→∞

log xi(t)
t

≤ bi –
σ 

i


–
m∑
j=

aij

ajj

[(
bj –

σ 
j



)

–
m∑

k �=j

ajk

akk

(
bk –

σ 
k



)]
a.s. i = m + , . . . , n.



Dong et al. Advances in Difference Equations  (2015) 2015:266 Page 16 of 17

Finally, we can get xi(t) will become extinct for all i = m + , . . . , n. The proof is com-
pleted. �

5 Numerical simulations
In this paper, we have discussed the persistence in mean and extinction of system (.).
Moreover, sufficient conditions have been established in Theorems ., . and .. Thus,
in this section, we give out the numerical experiment for the case n =  as follows to sup-
port to our results.

⎧⎨
⎩dx(t) = x(t)[(. – .x(t) – .x(t)) dt + σ dB(t)],

dx(t) = x(t)[(. – .x(t) – .x(t)) dt + σ dB(t)].
(.)

The existence and uniqueness of the solution follows from Lemma .. We consider the
solution with initial data x() = ., x() = .. By Matlab software, we simulate the so-
lution to system (.) with different values of σ and σ.

In Figure , σ = ., σ =
√

.. By Theorems ., . and ., species  is persistent in
mean and species  is extinct with zero exponential extinction rate.

In Figure , σ = ., σ = .. By the conditions of Corollary ., all of the species are
persistent in mean.

In Figure , σ =
√

., σ = .. By Corollary ., species  is extinct with zero exponential
extinction rate and species  is exponentially extinct.

Figure 1 The solution of system (5.1) with
σ1 = 0.03, σ2 =

√
2.2. The blue line represents

species 1, while the green line represents species 2.

Figure 2 The solution of system (5.1) with
σ1 = 0.03, σ2 = 0.04. The blue line represents
species 1, while the green line represents species 2.

Figure 3 The solution of system (5.1) with
σ1 =

√
1.8, σ2 = 1.7. The blue line represents

species 1, while the green line represents species 2.
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6 Conclusions
This paper is devoted to partial permanence and extinction on a stochastic Lotka-Volterra
competitive model. Firstly, by using some novel techniques, we established some weaker
sufficient conditions on the persistence in mean and extinction for one-species. Secondly,
based on these sufficient conditions for one-species and some stochastic analysis tech-
niques, sufficient criteria for ensuring the partial permanence and extinction of the pop-
ulations of the n different species in the ecosystem have been obtained. Finally, numerical
experiment is provided to illustrate the effectiveness of our results.
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