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GENERAL INTRODUCTION AND OVERVIEW

1.1 Introduction

In many scientific areas it is of primary interest to describe the dynamics of
a system, that is, how it evolves over time and/or space. In the simple one-
dimensional case the state of a system at any time can be represented by a
function u(¢) which’ values track the evolution of a given phenomenon over
time. It is also possible to consider phenomena evolving in time and space
by using a function u(¢, x) depending on two independent variables.

Thus knowing ¢ and/or z it is possible to evaluate the state of the system
at at a given point in space and/or time. One way to obtain u(-) is taking
measurements at different values of the independent variable(s) and fit the
data in order to estimate a formula for u. This is the point of view exploited in
statistical data analysis. Overparametric regression (smoothing) techniques
are usually applied in this kind of studies.

On the other hand it is clear that such a model would tell us how the
system evolves but is not able to clarify why the system behaves as has been
observed. Therefore we try to formulate mathematical models summarizing
the understanding we seek. Often these models are dynamic equations that
relate the state function to one or more of its derivatives w.r.t. the indepen-
dent variable(s). Such equations are called differential equations (or abbrevi-
ated as DE). Differential equations are common analytic tools in physics and
engineering.

The first approach we have cited has the advantage to make the descrip-
tion of an observed phenomenon really flexible, being able to exploit all the
information provided by the observed measurements. It becomes clear if we
consider the applicability of overparametric smoothing techniques. These
approaches, by the way, do not allow for a physical interpretation of the ob-
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2 Chapter 1. General introduction and overview

served dynamics. On the other hand, the main advantage of a differential
modeling point of view is to highlight the physical determinants of a given
phenomenon but completely ignore what has been observed.

The aim of this work is to present a flexible way to combine the statis-
tical and the dynamic modeling points of view. To reach this goal we com-
bine in a convenient way the flexible data description provided by a semi-
parametric regression analysis and the physical interpretability of dynamics
summarized by differential equations.

1.2 Differential equations

A differential equation is an equation for an unknown state function « that
connects it to some of its derivatives. A distinction is usually made between
ordinary and partial differential equations. An ordinary differential equation
(ODE) describes the relationship between a state function depending on a
unique independent variable and some of its derivatives. On the other hand
a partial differential equation (PDE) relates the state function depending on
more than one independent variables and its partial derivatives. We refer
to the specialized literature about differential equations for a more extensive
description (see Coddington and Levinson, 1984 and Evans, 1998).

Differential equations are usually classified according to three character-
istics: order, functional form and scalar versus systems of DEs. The first
classification is according to the order of the equation. The order is defined
to be the order of the highest derivative in the equation. Another classifica-
tion divides DEs into two groups: linear and nonlinear. An equation is linear
if the formulation relating the derivatives of u is a linear function of the un-
known state function and its derivatives. Nonlinear equations are usually
further subclassified according to the type of nonlinearity. In this work we
mostly deal with linear DEs even if some of the concepts that are illustrated
in the further chapters can be applied to non-linear problems, as we will see.
Another classification distinguish between constant and varying coefficient
DEs according to the fact that the parameters involved in the equation vary
over time/space or ar fixed.

A function u = u(t) is a solution of an ODE on an interval I : a <t <b
if it is differentiable on I and if satisfies it identically for all ¢ € T, when



1.2. Differential equations 3

substituted into the equation:
ul® = f(t,ut))Vtel.

The function u(t) that satisfies the equation above is not unique. The family
of solutions of a DE is usually named ”general solution”. A unique solution
of a differential problem can be found if some conditions are imposed to the
general solution. This is true also for PDEs having a general solution that is
a function of more than one independent variable.

An initial value problem (or compactly IVP) is a problem in which the
differential equation has to be solved taking into account one or more condi-
tions imposed to the state function and/or its derivative(s) at a given (initial)
value of the domain. The initial condition determines the starting state of the
system. This information becomes fundamental when we apply step-based
numerical procedures such as the Runge-Kutta method (Golub and Ortega,
1992). These procedures approximate the state function using the numerical
approximation to u and its derivatives from the previous step. On the other
hand, a boundary value problem (BVP) is a differential problem that has to
be solved taking into account a set of constraints called boundary conditions.
These conditions are imposed at the boundaries of the domain of the solu-
tion.

Analytic solutions of differential equations may exist in a restricted num-
ber of cases. In many circumstances it is necessary to approximate the state
function through some numerical procedure. These methods usually sug-
gest to solve the differential problem substituting the continuous variables
involved in it by some discretized version (see for example Golub and Or-
tega, 1992). Thus the continuum problem represented by the DE is trans-
formed into a discrete problem in a finite set of variables.

In this work we will concentrate on the collocation procedure. Colloca-
tion belongs to the more general class of projection methods. The rationale
behind all those methods is to approximate the solution of a differential prob-
lem by a finite linear combination of basis functions. Conceptually, the solu-
tion is represented as lying in some appropriate functional space and a pro-
jection method attempts to obtain an approximation on a finite-dimensional
subspace defined by basis functions. The projection of the solution onto this
subspace gives the numerical solution. In other words, if we define a basis
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function ¢;(t), a projection method suggests to approximate the state func-
tion and the initial/boundary conditions by a linear combination of the ¢;s:

ult) = cjd;(). (1.1)
J

It is clear that, in order to obtain a numerical solution, we need to determine
the coefficients in equation (1.1). The collocation approach suggests to look
for a vector of coefficients guaranteeing that the numerical solution approxi-
mates the exact one on a grid of values t1, ..., t, not necessarily equally spaced
defined ”collocation points”. The numerical procedure reduces to the solu-
tion of a system of linear equations in the case of linear DE problems. Differ-
ently from explicit multi-step approaches the collocation method attempts to
approximate the state function over the entire domain at once. In the coming
chapters, we will discuss a collocation procedure based on B-splines.

1.3 Data description and dynamic models

In the previous section we introduced the collocation scheme for the numer-
ical solutions of DEs. Consider now a different problem. Suppose to observe
a set of data which signal is compatible with a dynamic system described by
a differential equation. We might know the DE and its coefficients, or just
the DE and be interested in estimating them from the raw observations. Is it
possible to exploit these information to obtain an appropriate description of
the observed measurements?

For example, we may suppose to be interested in summarizing a set of
data showing an oscillatory behavior. This dynamics is described by an or-
dinary differential equation even if our reasoning can be generalized to phe-
nomena evolving in more than one direction.

A possible approach to describe what we observe is to define a suitable
ODE and use its state function. On the other hand we can suppose to ignore
where the measurements come from and so to ignore the differential law
describing them. In this case an appropriate description of the observed data
dynamics could be provided, for example, by a nonlinear regression tool.

In both cases the data dynamics is efficiently separated from the erratic
component and a model describing the dynamic is approximated. Which one
is more appropriate? The statistical approach has the advantage to be really
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flexible. Indeed, as will be also shown in the coming chapters, a smoothing
function is able to summarize the data trend imposing a limited number of
hypotheses on its functional form. A strong disadvantage of this approach is
that the information extracted by smoothing function is hard to interpret.

The state function solving the appropriate second order ODE gives a re-
ally compact and easy to interpret summary of the observed dynamics. If,
for example, our oscilloscope indicates an harmonic behavior with a period
close to 2.1 the phenomenon under consideration could be described solving
the following BVP:

d?y(t
S gy =0

y(min(t)) = by, y(max(t)) = by.

One disadvantage of this approach is its rigidity. The final estimates are
strictly related to the form of the differential problem. Even small changes
of the DE parameters or of the boundary conditions lead to really different
results. This becomes an important issue if we consider that in many cases
we have a vague or incomplete knowledge about a differential model suit-
able to describe the observed dynamics. It becomes clear that a framework
exploiting the flexibility of the statistical approach and the interpretability of
the differential equation formulation would be ideal.

A first attempt could be done defining flexible prescribed conditions as-
sociated to the differential equation. Consider to have a precise idea about
the differential equation describing the measured dynamics but to ignore the
boundary values of the state function. The collocation procedure can be used
to impose ”“soft conditions” on the state function. Those are conditions de-
fined w.r.t. the observed data behavior and that have to hold in a least squares
sense. In this case our problem could be solved estimating, from the raw ob-
servations, boundary conditions providing a numerical solution able to de-
scribe appropriately (in a least squares sense) the observed data. The result
will be a curve describing the exact solution of the DE taking into account the
estimated conditions.

A further generalization is also possible. Consider to know the differ-
ential equation that approximately describes the data behavior. We want to
approximate the state function in such a way to give an appropriate descrip-
tion, in a least squares sense, of what we observe. This goal can be achieved
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through a smoothing approach penalized by the differential operator V (w, t)
we have in mind. This approach is known in the statistical literature as
L-spline smoothing (see for example Schumaker, 1981, Ramsay and Silver-
man, 2005 and many others). Roughness penalized smoothing splines can be
viewed as a special case of L-splines considering a DE solved by a straight
line state function.

We are looking for a function able to balance between a fidelity to the data
criterion (expresses in terms of residual sums of squares) and a collocation

scheme for the solution of the differential equation:

n no 2
min [ly = > 6507 + A D0 > wad” (e, (12)
J J d=0
where w is a vector of parameters defining the differential operator and is
supposed to be known for the moment and the index d indicates the dth order
derivative of the state function involved in the DE. This approach can be seen
as a limit case of soft constrained collocation procedure where the constraint
is represented by a sum of squares minimization criterion. The result in this
case is a curve providing an approximation of the state function solving the
DE.

The smoothing parameter A in (1.2) balances between the goodness of fit
and the fidelity to the DE solution. It represents the relative importance of
the data driven criterion over the numerical one. In principle this parameter
indicates the appropriateness of the hypothesized differential model in de-
scribing the observed measurements. It can be imposed a priori or selected
through an automatic procedure. A high optimal smoothing parameter tes-
tifies the adherence of the observed data to the hypothesized differential dy-
namics. On the other hand, for A — 0 the estimation the estimation procedure
tends to emphasize the role of the residual sum of squares criterion leading
to a rough fitting function. For this reason it is of crucial interest in many case
to select this parameter in an automatic manner exploiting the data informa-
tion. In this work we mainly deal with two smoothing parameter selection
procedure: the mixed model approach proposed by Schall, 1991 and the ro-
bust and computationally efficient L-curve procedure.

Once that the data and the differential equation have been combined fur-
ther developments of this framework are possible. Indeed, it can happen that
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we don’t have a precise knowledge about the differential law governing the
observed measurements. If the considered differential equation has an ana-
lytic solution it is simple to infer the values of the unknown parameters from
the raw data. It is often the case, for example, dealing with linear ODE. A
common approach is to write the solution of the equation as explicit function
of the parameter which are fitted to the data. Generally this leads to a nonlin-
ear regression problem even if the DEs are linear. Also in these simple cases
the application of a collocation procedure results convenient allowing for the
avoidance of nonlinear data fitting.

On the other hand the information provided by the data can also be ex-
ploited in a penalized smoothing framework in order to estimate the un-
known DE parameters. Suppose to observe the harmonic oscillatory dynam-
ics already introduced and to ignore the parameters w defining the differ-
ential operator V(-). The optimization problem to be solved in this case be-
comes:

n 2
min [ly = 3 05(0)es | + A 32D wo (el (13)
J Jj d=0
The unknowns ¢ and w can be estimated jointly or by a generalized cascad-
ing procedure exploiting the hierarchy existing between them (see Cao and
Ramsay, 2007).

In this work we present an alternative P-splines-based two stage ap-
proach for the estimation of the unknown w. We move form the consider-
ation that the state function solving the DE describing the observed data has
to be consistent with the data signal if the differential model is appropriate.
The signal can be separated from the noisy measurements using a P-spline
smoother. The optimal penalized spline coefficients, giving a compact repre-
sentation of the state function, can be multiplied by the set of basis functions
defining the penalty term in (1.3). In this way we an approximation the func-
tions involved in the differential law is obtained. These approximations can
then be used to estimate the vector w through least squares.

The reconstructed DE penalty helps in interpreting the estimated smooth-
ing function. In the hypothetical oscillatory dynamics we are considering we
expect to estimate period approximately equal to 2.1 (this means that the pa-
rameter associated to the state function in the equation has to be close to 9)
and an approximately null damping ratio (the parameter associated to the
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first derivative of u(t) has to be close to zero). On the other hand an high
level of A would prove the appropriateness of the hypothesized differential
law in describing the observed dynamics.

We may also be interested in analyze grouped data series, each driven by
the same differential equation. In these cases the DE parameters can be con-
sidered in a mixed model formulation. The two stage procedure introduced
above can also be applied to estimate mixed differential parameters. It be-
comes convenient in those circumstances in which raw data are grouped in
some way. The grouping factors call for the consideration of the intra class
correlation. Typical examples are represented by the data referred to differ-
ent subjects or collected by repeated measurements over time. In the case of
dynamic systems described by a differential law these considerations call for
the estimation of fixed and random differential parameters.

1.4 Thesis outline

This thesis consists of eight chapters. In chapter 2 the basic building blocks of
our dissertation are introduced. In particular we briefly discuss the concepts
of B-spline, tensor products of B-splines and the penalized spline smoothing

procedure in one and two dimensions.

In chapter 3 we discuss some smoothing parameter selection procedures.
We mostly concentrate on the introduction of a selection criterion based on
the "L-curve”. The applicability of the L-curve framework to smoothing
problems together with a novel and simpler selection criterion based on the
”V-curve” is illustrated. The L-curve procedure has some advantages if com-
pared to the classical ones being computationally more convenient and ro-
bust to serial correlation in the noise component of the data. This approach
suggests to select the A parameter balancing the goodness of fit and the size
of the penalty applied in the estimation procedure. The performance is eval-
uated analyzing simulated and real data examples.

Chapter 4 generalizes the L-curve procedure introducing its two-
dimensional extension: the L-surface. We discuss the applicability of the L-
surface framework to non-isotropic multidimensional smoothing problems
and also propose a novel selection criterion based on the “V-valley”. The L-
surface procedure shares the advantages of its one-dimensional analogous.
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Its efficiency becomes an important issue considering that the computational
effort easily increases analyzing multi-dimensional data. The performances
of the L-surface procedure is evaluated analyzing simulated and real data
examples.

In chapter 5 we introduce another building block useful for the present
dissertation: the B-spline collocation procedure for the solution of differen-
tial equations. We focus on the numerical approximation of state functions
described by linear DEs. In this chapter we consider both ordinary and par-
tial differential equations, discussing the solution of initial and boundary
value problems. A practical application of the B-spline collocation scheme
we present an example based on the solution of the Black and Scholes (Black
and Scholes, 1973) equation for the pricing of European options.

Chapter 6 links numerical analysis of differential problems and data
smoothing. In this chapter we introduce a differential penalized smooth-
ing approach. We focus on one-dimensional data which dynamics is ap-
proximately described by ODEs. The penalty term is defined to be consis-
tent with a collocation representation of the differential problem. We start
considering known differential penalties without taking into account the ini-
tial/boundary conditions. Then we show how known or unknown condi-
tions can introduced in the smoothing problem as “hard constraints”. Then
a P-splines-based two stage procedure is introduced to estimate the optimal
differential parameters to be plugged into the penalty term. We evaluate the
performance of the proposed method considering simulation studies. A real
data analysis of the stomach contraction dynamics is discussed as applicative
example.

In chapter 7 we introduce a different point of view for the ODE parameter
estimation problem treating it as the sum of a fixed and a random (subject-
specific) component. A generalization of the P-splines based two stage pro-
cedure introduced in the previous chapter is proposed for the estimation of
the unknown mixed DE parameters and variance component. In particular
we suggest to exploit the relationship between penalized least squares and
mixed models to obtain an efficient estimation of these unknowns. The vari-
ance components are estimated through the optimization of the smoothing
parameter exploiting its variance ratio interpretation (see Schall, 1991 and
Pawitan, 2001). The performances of the proposed framework are again eval-
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uated through simulation studies. As real data application the stomach con-
traction MRI data introduced in chapter 6 are analyzed.

In chapter 8 we generalize the framework described in chapter 6, dis-
cussing a two-dimensional smoothing approach penalized by partial differ-
ential operators. We first consider the case of known DE parameters. A ten-
sor product P-spline-based two stage approach is then introduced for the
estimation of the differential parameters from the raw observations. The per-
formance is evaluated through simulation studies.

In chapter 9 more advanced topics are treated. We introduce a (symmet-
rically and asymmetrically) weighted penalized least squares approach for
the solution of differential problems with unconventional constraints. We
analyze example related to both ordinary and partial differential equations.
We also discuss a possible generalization of the collocation procedure for the
solution of nonlinear differential problems and delay differential equations.
The penalized smoothing approach discussed in the previous chapter is then
generalized in order to analyze dynamics summarized by these particular
classes of differential problems.

Chapter 10 concludes this thesis discussing the possible future prospec-
tive of our research.



PRELIMINARY TOOLS AND CONCEPTS

This chapter introduces some preliminary concepts that will be useful in our
dissertation. The concepts of B-splines and penalized splines in one and two di-
mensions are introduces.

Keywords: B-splines, tensor products of B-splines, P-splines, tensor products of
P-splines.

2.1 A short excursus on B-splines

Basis splines (or simply B-splines) represent one of the basic building block
for our further discussion. Well known references about this topic are the
work by de Boor, 1978 and Dierckx, 1995.

A B-spline is a piecewise polynomial function defined in a domain
spanned by a set of points called “knots”. The degree of the polynomial
pieces defining the basis function determines its order. A B-spline of degree
p is a piecewise polynomial function built using p + 1 polynomial pieces of
degree p joined at p internal knots. The knots can be equally spaced or not.
In this work we always deal with B-splines defined on a set of equidistant
knots. Taking equidistant knots does not affect our further results and, in our
opinion, is convenient in many applications, as shown by Eilers and Marx
(2010). At joining points the derivatives up to the degree p — 1 of each poly-
nomial piece are continuous. Each basis function takes nonzero values in the
domain spanned by p+ 2 internal knots and overlaps to 2p polynomial pieces
of adjacent bases (except at the boundaries of the domain). At a given knot
point p 4+ 1 B-splines assume nonzero values. A set of 2th order B-splines is
depicted in figure 2.1.

Collecting these piecewise polynomial functions it is possible to define a
basis matrix B: each column of this matrix contains a B-spline. The localness

11
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Figure 2.1: One 3th order B-spline with its polynomial components. The second panel
shown five 3th order B-splines.

of the polynomials defining the bases makes the B matrix really sparse so
that each of its row contains only few nonzero elements. This sparseness is an
important feature making B-splines computationally convenient for function
interpolation and approximation.

Bi(z1) Ba(z1) Bs(z1) By (z1)

Bi(x2) By(wa) Bs(w B, (x2)
B=

Bi(z,) Ba(xy) Bs(xn) ... Bp(zp)

Several algorithms can be adopted to compute the basis spline functions
forming the B matrix. A not convenient way is to evaluate the polynomial
segments forming the basis functions analytically. A more practical approach
is represented by the algorithm proposed by de Boor, 1978. The last alterna-
tive that can be mentioned consists in computing the spline functions using
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differences between truncated power functions (Schumaker, 1981; Eilers and
Marx, 2010).

The B-spline matrix B can be used to interpolate or approximate any un-
known function. Suppose that we want to approximate the values y assumed
by an unknown function f(x) for some values of z. If we denote with B;(z, p)
the value of the jth B-spline at point = we can represent y using a linear com-
bination of B-splines y(z) = >_,¢; B;j(z, p) where ¢; is the jth B-spline coeffi-
cient.

As shown by de Boor (1978), there is a convenient relationship between
the dth derivative of a B-spline of order p and a B-spline of reduced order
p — d. Indeed, if h is the distance between two adjacent knots, the following
relation holds:

>, ADe;Bj(z,p — d)
=" ¢;B\(x,p) = = Jhd , (2.1)

where A@¢; is a dth order difference operator applied to the B-spline coeffi-
cients. So, if we define the dth order difference matrix D(? the dth derivative
basis matrix can be defined as:
B(z,p —d) D@

hd '

A useful issue of B-splines is their direct generalizability to higher di-

B(d) (xvp) =

mensions. Higher dimensional basis matrices can be computed using tensor
products of one dimensional B-splines.

Consider a {z,y} grid of values. If we define the B-splines B, and B,,
the two-dimensional basis matrix is obtained as Kronecker product between
them:

By = B, ® By,

This formulation is valid only for {z,y} values defined on a regular grid. In
the opposite case the two-dimensional basis matrix can be built using row-
wise tensor products B,, = (B, ® 11) ® (1L @ B,).

In analogy with the unidimensional case it is possible to exploit a useful
relationship to compute partial derivatives basis splines:

o+ quy p) (9)
Saryi ZZ% ) B.%), 2.2)



14 Chapter 2. Preliminary tools and concepts

M\
i
i

i

~0-27 / ‘ ‘ \
O
7/%"&,%‘2“&\&\\\

I

0.0

Figure 2.2: A tensor product B Spline.

where ngp ) and Bz(lq) represent the pth and ¢th order derivatives of B, and B,
respectively. Figure 2.2 shows a single tensor product B-spline.

2.2 Penalized splines

P-splines have been introduced by Eilers and Marx (1996) as flexible smooth-
ing procedures combining B-splines and difference penalties. Suppose that a
set of data {z,y}, where z represents the independent (explanatory) vari-
able and y the dependent variable, has been observed. We want to de-
scribe y through an appropriate smooth function. Denote B;(z;p) the value
of the jth B-spline of degree p defined on a domain spanned by equidis-
tant knots (in case of not equally spaced knots our reasoning can be gen-
eralized using divided differences). A curve that fits the data is given by
y(z) = Z?Zl ¢;Bj(z; q) where ¢; (with j = 1, ..., n) are the estimated B-splines
coefficients. Unfortunately this curve, obtained minimizing ||y — Bcl||? w.r.t.
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¢, shows more variation than is justified by the data if the number of spline
functions is too large. To avoid this overfitting tendency it is possible to es-
timate ¢ using a generous number of bases in a penalized regression frame-
work:
¢ = argmin ||y — Be||* + || De]|?, (2.3)
c

where D is a dth order difference penalty matrix and A is a smoothing pa-
rameter. Second or third order difference penalties are suitable in many ap-
plications. A second order difference matrix appears as follows:

1 -2 1 0 0
D=0 1 -2 1 0
0 0 1 -2 1

The optimal spline coefficients follow from (2.3) as:
¢= (BTB+ADTD)"1BTy. (2.4)

The smoothing parameter A controls the trade-off between smoothness
and goodness of fit. For A\ — oo the final estimates tend to be constant while
for A — 0 the smoother tends to interpolate the observations. Figure 2.3
shows how different values of the smoothing parameter influence the esti-
mated smoother (for brevity only four A values are shown). The data were
simulated by adding a Gaussian noise to a sine wave trend (200 observa-
tions). The B-spline matrix has 30 equidistant knots. Cubic B-splines and
second order difference penalties have been used to estimate the smoothing
functions.

A P-spline smoother has some desirable properties. One of them is the
conservation of moments. If we define v, = 2% with integer k, the inner
product yTv;, defines the kth moment of y. A nice property of penalized
splines built using a mth order difference penalty is that, for 0 < k < m, itis
true that y” vy, = 77 v, for each value of \.

P-splines are easily generalizable to analyze multidimensional data. Sup-
pose to have a dataset represented by a triplet {z,y, Z} where z and y in-
dicate a grid of {z,y} values defining the domain over which the matrix Z
have been observed. Our aim is to efficiently summarize this 2D cloud of
points. To reach this purpose we could use a tensor product of B-splines
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Figure 2.3: Influence of the smoothing parameter on the P-spline smoother.

defined on the = and y directions. This approach would be not appropriate
giving a surface showing an unjustified roughness being influenced by local
noise. To overcome this drawback we can add penalty terms to control for the
smoothness of the estimated surface. Marx and Eilers (2005) suggest to intro-
duce two difference penalties, one for each direction of the grid. The strength
of the penalties defining the smoothness of the final estimates is tuned by a
couple of independent A parameters (non-isotropic smoothing). A simpler
alternative is represented by isotropic smoothing considering A\; = A2 = A.
In case of non-isotropic smoothing the estimation problem becomes:

argmin |[vec(Z) — (B; ® By)c|? + M| Pic||® + Aa|| Pac|?, (2.5)
C

where B, and B, represent the B-splines built on the z and y direction
respectively. For scattered observations the two-dimensional basis matrix
can be built using row-wise tensor products as mentioned above B,, =
(B: ® 11) ©® (1% ® B,). In these cases the observations are represented by
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three {z,y, 2z} vectors of same length. The P, and P, penalty matrices are
defined as follows:

and

where ng) and Déd)

(or By = (B, ® 11) ® (1L ® B,) if we observe scattered observations) then

the solution of the minimization problem in (2.5) is the coefficient matrix:

are two dth order difference matrices. Let B,, = B, ® B,

€= (Bl,Buy + AP P+ X P) Py) ' B vec(Z). (2.6)

Figure2.4 shows a simulated non.isotropic two-dimensional P-spline
smoothing example. The computational effort needed to perform the esti-
mates described above becomes quickly prohibitive as the number of obser-
vations increases. An efficient algorithm (GLAM) has been proposed by Eil-
ers et al. (2006). The cited algorithm have been used in every 2D applications
discussed in this work.



18 Chapter 2. Preliminary tools and concepts

(o
{2
LRSS
LR
R

%
A
’:j" __0 *. i

.

i

At

R
I s i

W "‘:d.?ﬁ'*of.*:t‘,t‘

i
AT At I S
AN
e "f‘"..“‘ :
LG
A 4“*“0‘0‘6'& .’.l. 3
it “éx'ﬁ"_.};ﬂ

Figure 2.4: Multidimensional smoothing of simulated data. The first panel shows the
P-spline smoother obtained for Ay = Xy = 0.01. The second panel shows the smoother
estimated using Ay = 10 and Ao = 31.62.



THE L-CURVE FOR OPTIMAL SMOOTHING

The L-curve, adopted for the selection of the regularization parame-
ter in ill-posed inverse problems, shows a parametric plot of the residuals
vs the penalty. The corner of the L indicates the right amount of regu-
larization. The L-curve is easy to compute and works surprisingly well
also for smoothing data with correlated noise. We present the theoretical
background, an alternative criterion to find the corner automatically, and
applications to real data.

Keywords: Whittaker and P-spline smoothers, L-curve, cross validation.

3.1 Introduction

Penalized regression has a prominent place in modern smoothing. It com-
bines a rich set of basis functions with a roughness penalty, to tune smooth-
ness of the estimated curve. B-splines are a popular choice for the basis func-
tions, but others prefer truncated power functions. The penalty can be de-
rived from classical roughness measures, like the integrated squared second
derivative, or it can be discrete, working directly on the regression coeffi-
cients. An extensive discussion is presented by Eilers and Marx (2010).
P-splines (Eilers and Marx, 1996) combine a B-spline matrix with a
penalty on (higher order) differences of their coefficients. If we have data
on equally spaced positions and go to the limit, we will have a basis function
for each observation and the regression basis will be the identity matrix. This
brings us back to the Whittaker’s smoother (Whittaker, 1922; Eilers, 2003),
which became popular in the econometric literature as the Hodrick-Prescott
filter (Hodrick and Prescott, 1997). It is an attractive smoother, because effec-
tively the basis functions disappear and with just one smoothing parameter
one can move all the way from a straight line fit to essentially reproducing

19
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the data themselves. On the other hand sparse matrix algorithms allow fast
computations.

It is desirable to have an automatic procedure for selecting a value for
the smoothing parameter. In principle many choices are available. The most
straightforward ones are leave-one-out cross-validation (LOO-CV), general-
ized cross-validation (Wahba, 1990) and AIC (Akaike’s Information Crite-
rion) or BIC (Bayesian Information Criterion). It is also possible to exploit
the similarity between penalized regression and mixed models and then the
smoothing parameter becomes a ratio of variances (Schall, 1991; Ruppert,
2003).

The established method for selection of the smoothing parameter have
two things in common: 1) they require the computation of the effective model
dimension, and 2) they are sensitive to serial correlation in the noise around
the trend. The effective dimension is equal to the trace of the smoother ma-
trix, and so inversion of a large matrix is required; for long data series this
is prohibitive. Serial correlation generally leads to under-smoothing. At first
sight this is surprising, but it is not hard to see why it happens. Indeed cross
validation methods assume data with independent noise. If f(:r k) is the esti-
mated value taking into account the leave-out procedure yy, is an observation:

E [(Flaw) = )] = B [(Flan) = f(@i)?] + 0* = 2CoviF(ax). wl,
which shows that the expected squared error for a cross validation term is
equal to the true expected squared error plus the noise variance o minus
two times the covariance between the observed data and the estimates. Even
if this last term is not zero (as in the case of serial dependence in the noise
component) the cross validation misspecifies it to be equal to zero. (see Car-
mack et al. (Carmack et al., 2012)). This leads to a smoothing function that
tends to consider the correlated errors as a part of the wanted signal.

In this chapter we present and alternative approach, based on the L-curve
method for ill-posed inverse problems (Hansen, 1992; Hansen and O’Leary,
1993; Hansen, 2000). The L-curve is a plot of the logarithm of the magni-
tude of the penalty term against the log of the sums of squares of the residu-
als, parameterized by the regularization parameter \. In the case of inverse
problems a very pronounced L-shape is obtained and a good value of the
regularization parameter is found in its corner. As far as we know, the L-
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curve has not been used for smoothing, but it turns out to be very valuable
there. The shape is less pronounced that of an L, but a corner is present and
it can easily be located numerically by following the path parameterized the
smoothing parameter \.

There is no need to compute the effective model dimension, so using the
L-curve makes smoothing of long data series practical. And, very surpris-
ingly, it is not affected by correlated noise as already noticed by Hansen for
Tikhonov regularization applications. This is illustrated in figure 3.1, show-
ing historical data of the price of orange juice (Stock and Watson, 2003), with
very strong serial correlation. For the upper panel the amount of smoothing
was chosen automatically by LOO-CV, while for the lower panel the L-curve
was used. It is quite clear that no meaningful trend can be obtained with
LOO-CV; GCV, AIC and the mixed model approach lead to very similar re-
sults (not shown). On the other hand the trend in the lower panel of the figure
appears to summarize the data well. We have no compelling explanations of
why the L-curve works so well.

Of course, the corner of an L-shaped curve is a special point, but it is
not clear why it marks a good choice of smoothing parameter. The relative
changes of both the penalty and the size of the residuals are small there, and
approximately equal, and apparently that matters. The insensitivity to serial
correlation in the noise is also hard to explain but it is significant that the
L-curve that does not rely on any statistical model. This method shows ex-
cellent performance in practice, so we like to share our experiences with the
statistical community.

Krivobokova and Kauermann (2007) approach smoothing as a mixed
model with correlated noise and present a REML estimation algorithm. We
compare their results with those obtained using the L-curve and find that
the latter performs better and faster (especially when complex covariance
structure are needed to describe the data). It is necessary to clarify that the
evaluations about the computational efficiency of the methods discussed are
obtained considering an high-level programming language such as R and us-
ing its stand alone functions.

This chapter is organized as follows: in section 3.2 we introduce the
smoothing procedures that will be used in our discussion, together with
some standard smoothing selection procedures, section 3.3 describes in more
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Figure 3.1: Whittaker smoother applied to the orange juice dataset (see section 3.5). The
smoothing parameter have been selected by cross validation (upper panel) and by L-curve
procedure (lower panel). In both cases the smoothing parameter was considered in the range
log,(A) € [—4,6].

details the L-curve method, in section3.4 we analyze the shape of the L-curve
through a simulation study verifying how it is influenced by the characteris-
tics of the data, and finally, section 3.5 compares the L-curve with LOO-CV
and REML-based approaches using real data.

3.2  P-splines, Whittaker smoother and Hodrick-Prescott filter

P-splines were proposed by Eilers and Marx (1996). Suppose that a set of data
{z,y}, where x represents the independent (explanatory) variable and y the
dependent variable, has been observed. We want to find a smooth function
that describes y appropriately. Let B;(z;¢) denote the value of the jth B-
spline of degree ¢ defined on a set of equidistant knots (taking equidistant
knots does not affect our further results but, in our opinion, it is generally
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a good idea, see Eilers and Marx, 2010). A curve that fits the data is given
by y(z) = Z?Zl zjBj(x; q) where z; (with j = 1,...,n) are the estimated B-
splines coefficients. Unfortunately this curve, that is obtained minimizing
|y — Bz||? w.r.t. 2, usually shows more variation than is justified by the data.
to avoid this phenomenon it is possible to estimate 2z using a penalized linear

regression approach:
2 = argmin |jy — Bz||* + \||Dz|%, (3.1)
z

where D is a mth order difference penalty matrix and A is the smoothing
parameter that controls the trade-off between smoothness and goodness of
tit. Solving (3.1) for the spline coefficients we get:

Z=(BT"B+ ADTD)"'1BTy. (3.2)

The Whittaker smoother (Whittaker, 1922) can be viewed as a special case
of the P-spline smoother. It arises when the observations are located on an
equally-spaced grid, a knot is placed at each abscissa point, and B = I, the
identity matrix. In the econometric literature this smoother is also known as
the Hodrick-Prescott filter (Hodrick and Prescott, 1997). It was proposed by
Hodrick and Prescott as a tool to separate the cyclical component of a time
series from raw data in order to obtain a smoothed version of the series. The
smoothed time series has the advantage to be less influenced by short term
fluctuations than by long term ones. In their paper Hodrick and Prescott
suggest a A = 1600 as a good choice. Eilers (2003) uses a leave-one-out cress-
validation. Kauermann et al. (2011), work in the other direction, replacing
the H-P filter with a penalized spline smoother.

Popular methods for smoothing parameter selection are: the Akaike In-
formation Criterion, Cross Validation. AIC estimates the predictive log like-
lihood, by correcting the log likelihood of the fitted model (A) by its effective
dimension (E'D): AIC = 2ED — 2A. Following Hastie and Tibshirani (1990)
we can compute the effective dimension as ED = tr[(BT B+ ADTD)~! BT B]
for the P-spline smoother while ED = tr[(I + ADT D)~!] is the effective di-
mension of the Whittaker smoother, and

S (=0

20 = —2n1n 2 Ui AQ‘% ,
0,
i=1 0
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where 6 is the maximum likelihood estimate of . But 6% = >".(y; — 92)?/n,
so the second term of 7 is a constant. Hence the AIC can be written as:

AIC(\) = 2ED + 2n1né. (3.3)

The optimal parameter is the one that minimizes the value of AIC(\). LOO-
CV chooses the value of A that minimizes:

CV(\) = Z [?1’_ hyf] , (3.4)

where h;; is the ith diagonal entry of H = B(BTB + ADTD)~!BT for P-
splines or H = (I + ADT D)~! in case of the Whittaker smoother. Analogous
to CV is the generalized cross validation measure (Wahba, 1990):

GCV()) = i [nyi__E%} 2 : (3.5)

i=1
where ED = tr(H). In analogy with cross validation we select the smoothing
parameter that minimizes GC'V ().

Related to this last method is the Generalize Correlated Cross Validation
procedure proposed by Carmack et al. This method exploits the possibility
to modify the definition of the degrees of freedom to be taken into account
in computing the GCV including the (estimated or a priori known) correla-
tion structure in the noise component. If we denote with C' this correlation
matrix and with S the smoothing matrix this modified GCV approach can be
computed as follows:

n

1 — i
GeCvx Z n L —tr 250 SCST| - (3.6)

3.3 L-curve selection method

The L-curve is a parameterized curve showing the two ingredients of every
regularization or smoothing procedure: the goodness of fit and the rough-
ness of the final estimate. This approach was originally proposed by Hansen
(1992) for the selection of the regularization parameter in ill-posed inverse
problems. Regularization arises both in statistics and inverse problems ap-
plications even if the aim of the latter is slightly different. Indeed, in statis-
tical modeling one posits a true data generating model and aims to estimate
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it, in inverse problems one simply look for a ‘good” approximate solution of
a given equation without taking into account any data generating process.
Also the errors are considered differently. An important parameter for the
solution of inverse problems is the error upper bound level while in statis-
tical applications the error it treated as an exogenous component (see Vogel,
1996).

In this section we study its applicability to statistical models and in par-
ticular we focus on smoothing applications.

3.3.1 The L-curve in ridge regression

Ridge regression is a common regularization tool in statistics. It adds a
penalty term to the standard regression problem to shrink the coefficients:

argmin ||y — X5|* + A|| 8]
B
B=(XTX+A)"'xTy. (3.7)
The strength of the shrinkage depends on A. Define:

{wM); 00} = {lly = XBI% 187} and {w:(A); 6(N)} = {log(w); log(6)}.

The L-curve is a plot of ¢(\) vs. ¢(\), parameterized by A. the name.

Figure 3.2 shows a toy example. A sample of 200 realizations of 50 ex-
planatory variables was drawn from a multivariate normal distribution with
mean vector y; = 1 with high correlation (p € {0.7,0.8,0.9,0.99}). The de-
pendent variable was obtained as a linear combination of the 50 independent
variables plus a random noise y; = cX + N(0, 0.2) (where ¢; is the regression
parameter associated to each independent variable randomly drawn from a
uniform distribution). The shape of the curve is true to its name. It shows a
corner in a region characterized by intermediate values of 1), ¢ and A\. Hansen
suggested to select the regularization parameter that corresponds to the cor-
ner, the point of maximum curvature. The curvature can be computed using;:

Vo' — 'y

(W7 + (SRR

The maximization of k() requires the computation of the first and second

k(\) = (3.8)

derivatives but the computations can be simplified in some cases as will be
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Figure 3.2: Four L-curves obtained for simulated ridge regression examples with differ-
ent degrees of correlation between the explanatory variables. The corner point represents
the point of maximum curvature while the other points represent the points used to draw
the curve. For some points the associated logarithmic value of the parameter is shown
(logy(N) € [0, 5)).

shown in what follows. It is important to notice that that while methods such
as cross validation optimize the smoothing parameter minimizing a measure
of the prevision accuracy, the L-curve suggests to look for the A parameter
that guarantees an optimal compromise between the residual sum of squares
and the amount of penalty.

The L-curve is usually characterized by two components: a vertical and
an horizontal part (consider the fourth panel of figure 3.2). The vertical part
is drawn for small values of the regularization parameter. In this region the
residual sum of squares is small while the amount of penalty tends to be high.
The second component is the horizontal one: it is drawn for increasing values
of the smoothing parameter leading to higher residual sum of squares. This
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flat part of the curve is characterized by a rather constant amount of penalty.
If we think about an ideal L plot we can say that for a constant amount of
penalty we could tune the residual sum of squares along the horizontal part
of the plot. It is an ideal situation but it holds till we reach the corner of the
L. At the corner we obtain the best goodness of fit for the smallest possible
price (smallest penalty).

3.3.2 The L-curve in penalized smoothing

In section 3.2 we briefly introduced the P-spline and the Whittaker
smoothers. Consider a P-spline smoother. Taking z = Ba, the following
quantities can be defined:

{wN); 0N} = {lly — B=* | D=},
and the L-curve is given by:

L= {$(N); 6(A)} = {log(w); log(6) }- (3.9)

The L-curve for a simple smoothing problem is depicted in figure 3.4.
These results were obtained from 200 observations simulated using the fol-
lowing scheme: y = 5sin(z) + N(0,0.5) where z € [0, 27].

The lower panel of figure 3.4 shows the pointwise curvature function and
the Euclidean distance between adjacent points of the L-curve of the upper
panel. We notice that the smoothing parameters selected maximizing the
curvature and minimizing the Euclidean distance between adjacent points
are the same. To understand why it is the case we can look at the L-curve
closely (see figure 3.2 or the second panel of figure 3.4). The density of the
points defining the curve tends to increase moving from the tail to the corner
of the L. We can exploit this characteristic to simplify the selection procedure.

3.3.3 A new selection criterion

The curvature function can be computed using (3.8) per each A\ parameter on
a given grid. If we set ¢ = log(\), the rate of change of the arc length distance
between each point on the curve w.r.t. £ is given by:

2 2
fEE e
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Minimizing it we obtain a good approximation of max{k(\)} when the L-
curve shows a clear convex area (i.e. when there is a corner). This means that
we can simplify the selection procedure. The corner, if it exists, coincides (at
least approximately) with the point satisfying:

min {J(AW ¥ (A¢)2} . (3.11)

The criterion in (3.11) suggests that the best smoothing parameter can be
selected minimizing the Euclidean distance between adjacent points on the
L-curve. The Euclidean distance between these points describes a U-shaped
as shown in the last panel of figure 3.4. Shahrak (2013) already coined the
name U-curve, although with a different definition. To avoid confusion, we
christened our procedure the ”V-curve”.

It is possible to use a more precise criterion based on an algorithm to
compute the gradient V(L) on a really fine grid of smoothing parameter.
Indeed, using the well known equation for the computation of the B-splines
derivatives (de Boor, 1978), we can look for the A satisfying (3.11) on a fine
grid of candidate parameters. The optimal smoothing parameter is then the
A on the this grid that minimizes the magnitude of the gradient.

First of all we can approximate the functions ¢ and ¢ using basis func-
tions. If we define the matrix L = [1) |7, we can estimate a matrix of suitable
B-spline coefficients as follows:

¢ =(B"B+kD"D) ' B'L, (3.12)

where, in analogy with what we already discussed in the previous sections, B
is a B-spline basis matrix, D is a difference penalty matrix and we introduce a
really small regularization parameter k (for instance k = 107%) to ensure the
well-poseness of the problem. Given the B-spline coefficients matrix C itis
possible to estimate the derivatives of ¢ and ¢ w.r.t. £ using a derivative basis
matrix B(¢,p). This matrix can be obtained not only considering the original
grid but also on a finer one. Indeed, in order to obtain B(,p), we need to set
only the extreme values for ¢ being possible to make the grid as fine as we
prefer.

The final estimates of the derivatives are the matrix G = BC. The rows
of this matrix represent the gradient of the L-curve for each value of /: G =
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Figure 3.3: B-spline based gradient computation for the wood data (see first example of
section 3.5.

V¢, (L). The optimal smoothing parameter, the ¢ that minimizes (3.10), is the
one corresponding to the gradient vector with minimum length.

Figure 3.3 shows the results obtained using this procedure for the wood
data (see first example section 3.5). The upper panel shows the squared
components of the gradient vectors for each ¢ value in the normal grid (dot
points) and considering the finer grid (lines). The lower panel shows the dis-
tance function and the optimal smoother parameter selected using the finer
grid of smoothing parameter.

3.4 The shape of the L-curve

Using simulated data we will now show how the characteristics of the data
impact on the shape of the L-curve. Let us start by considering figure 3.6. The
first panel shows the L-curve for a Whittaker smoother applied to data simu-
lated using the following scheme: y = 10% sin(z;)+N(0,1) withz; = 1,..., 27
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Figure 3.4: P-spline smoothing of simulated data using an L-curve approach. The first
panel shows the obtained smoothing function (line) and the second the associated L-curve.
The lower panels show the curvature function and Euclidean distance between adjacent
points of L-curve. The values of these functions are plotted against different values of
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fori = 1,..,200 and ¢; = 2.5,...,—2 for j = 1,...,7. It is clear that the
convex region tends to disappear when the white noise component tends
to be dominant on the trend component. Furthermore the four panels in
the lower part of the figure show how the obtained smoothing functions
change in accordance with the characteristics of the data. The smoothers
seem to reproduce effectively the behavior of the data but we have to spend
some words on the example in the first panel obtained for approximately
white noise data. The estimated A\ parameter was selected using a globally
concave L-curve (see upper plot). The selection procedure suggests a high
smoothing parameter (as we expected). In this and similar circumstances
we suggest to select the smoothing parameter on the L-curve maximizing
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the curvature function. Indeed, even if the results cannot be considered reli-
able because there is not a clear convex region on the L-curve, the curvature
selection criterion suggests a regularization parameter as large as possible
corresponding to an area of the curve with a curvature as close as possi-
ble to be positive. Also the characteristics of the error component influence
the shape of the L-curve. First of all the the variability of the white noise
component plays a role. Figure 3.5 shows that higher the variability is, less
sharp the L-curve appears. These results where obtained using 200 obser-
vation simulated as follows: y = sin(z) + N(0,0;) with z = 1, ...,27 and
o; € {0.01,0.02,0.05,0.1,0.2,0.5,1}. All the smoothing functions shown in
the lower panels seem to efficiently catch the behavior of the data. Figure 3.7
reproduces the distributions of residual mean square errors computed com-
paring the fitted values and the underlying trend component considering
data with random noise showing different standard deviations (we consid-
ered now 1000 simulated observations). As we can notice the mean devia-
tions for each variability level is close to zero even if those with a less variable
noise are smaller.

The L-curve turns out to be particularly useful when smoothing data
with autocorrelated noise. However the shape of the curve depends on the
strength of the serial correlation of the error component. Figure 3.8 shows
some results obtained using the Whittaker smoother on a set of data sim-
ulated as follows: y = 3sin(x;) + AR(1,pj,0 = 1) with z; = 1,...,27 for
i =1,..,200 and p; = 0,...,0.9 for j = 1,...,7 where p indicates the auto-
correlation coefficient. Slightly autocorrelated noise produces really sharp
L-curves while higher degrees of serial correlation reduce the sharpness. In
any case the curves show clear convex areas. The lower part of figure 3.8
shows some smoothing functions associated to some of the L-curves plotted
in the upper part. It is possible to appreciate how well they reproduce the un-
derlying data behavior in each scenario. Furthermore figure 3.9 summarizes
the performances obtained using a larger set of data (1000 observations) sim-
ulated as before. It shows the distributions of the scaled squared deviations
of the estimated smoothing functions from the underlying trend component
for each simulation setting. The mean deviations are all close to zero even
if the variability of the distributions seem to be influenced by the autocor-
relation of the noise. In addition to these considerations we found also that
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Figure 3.5: The first panel shows seven L-curves obtained for a Whittaker smoother es-
timated on data with different variability for the white noise component. The lower panels
show four smoothers obtained considering data simulated using noise components with in-
creasing standard deviations (indicated in the lower legend of each plot). These smoothing
functions were obtained considering log,,(\) € [—2,9]. The trend component was obtained
considering x € [0, 27] and yo = sin(z) for i = 1, ..., 200.
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Figure 3.6: The first panel shows seven L-curves obtained for a Whittaker smoother es-
timated on data with different weights for the signal component while, the lower panels
show four smoothers obtained considering data simulated using different weights for the this
component (indicated in the lower legend of each plot). All these results were obtained con-
sidering log,o(\) € [0, 9].
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Figure 3.7: Distributions of RMSE computed on the estimated values and the underly-
ing trend considering data with noise components characterized by different degrees of vari-
ability. These results were obtained considering log,o(A) € [—2,9] and simulating 1000
observations.

the L-curve seems to be less sharp in smoothing spline regression than in
the applications proposed in the literature (typical example is the ridge re-
gression analysis). In our opinion it does not invalidate the applicability of
the methodology. Indeed we believe that, as long as a convex area is well
distinguishable, the procedure can be considered reliable.

3.5 Applications

In this section we would like to test the performances of the L-curve criterion
using real datasets coming from different scientific fields. We compare here
the L-curve procedure with a cross validation approach and with the criterion
proposed by Krivobokova and Kauermann (2007). For this last procedure we
exploit what is shown in the Appendix B of the cited paper based on the use
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Figure 3.8: The first panel shows seven L-curves for a Whittaker smoother estimated on
data with an increasing autocorrelation coefficient for the noise component while, the lower
panels show the smoothing functions associated to four L-curves depicted in the upper panel.
All these results were obtained considering log,,(A\) € [-2,9].
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Figure 3.9: Distributions of the RMSE between estimated values and underlying function
for different autocorrelation coefficients for the noise component of the data. These results
were obtained considering log,o(N\) € [—2, 9] and simulating 1000 observations.

of the R function nlme. This criterion is consistent with the work of Currie and
Durban (Currie and Durban, 2002). The first application that we would like
to show concerns the smoothing of the wood data. This dataset was origi-
nally proposed by Pandit and Wu (Pandit and Wu, 1993). It describes 320
measurements of a block of wood that was subject to grinding. In figure 3.10
the profile height at different distances is drawn. The profile variation fol-
lows a curve determined by the radius of the grinding stone. We can use the
Whittaker smoother to analyze these data and compare the performances of
the L-curve and the cross validation for the smoothing parameter selection.
The fitted curves and the related selection criteria are shown in figure 3.11.
We also compare the Whittaker smoother obtained using the L-curve and the
cross validation selection criterion with the filter suggested by Krivobokova
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Figure 3.10: Profile of a block of wood subject to grinding.

and Kauerman considering both AR(1) and AR(2) correlation structures. In
particular, we use piecewise linear basis function to build the smoother de-
fined on 31 knots. In this case the smoothing procedure built using the L-
curve efficiently reproduces the trend in the data while the filter based on
cross validation does not. On the other hand the third proposed filter (we
will call it K&K filter for brevity up to now) also guarantees satisfactory re-
sults. As second example we analyze the time series of the annual mean sea
level registered by the Dutch station of Delfzijl. This time series considers a
period between 1865 and 2010 without missing values. The annual mean val-
ues are in millimeters. The data can be downloaded from the web repository
http://www.psmsl.org/data and are summarized in figure 3.12.

As in the previous cases the cross validation procedure gives a rough
smoothing function while the Whittaker smoother obtained tuning the
smoothing parameter with the L-curve catches the trend in the data. On
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Figure 3.11: Whittaker smoothing of wood data. The upper panel shows the results ob-
tained selecting the parameter by the L-curve, the cross validation and using a K&K filter
defined using piecewise linear basis functions on 31 knots. The lower panels represent the

L-curve and the cross validation functions and the selected parameters. These results were
obtained considering log,;,(\) € [-2, 8].

the other hand the results obtained considering the strategy suggested by
Krivobokova and Kauerman seems to efficiently reproduce the data behav-
ior using both AR(1) and AR(2) correlation structures. The behavior of the
Euclidean distance between adjacent points (third panel in the lower part of
the figure) shows some local minima. Indeed this dataset gives us the op-
portunity to briefly discuss another important issue related to the P-spline
smoothers. Welham and Thompson (2009) showed the possibility of bi-

modality in the the smoothing parameter log likelihood profile. Figure 3.13
shows that the bimodality of the cross validation profile is reproduced in the
Euclidean distance profile. However the criterion computed on the L-curve

shows a large difference between the two minima while it is not true for the



3.5. Applications 39

Mean sea level
6700 6750 6800 6850 6900 6950
| |

6650

I I I I I I I
1880 1900 1920 1940 1960 1980 2000

Year

Figure 3.12: Annual mean sea level registered in Delfzijl for the period 1865-2010.

cross validation criterion. The last example that we would like to discuss
is the orange juice price data already introduced in section 3.1. The original
dataset contains three time series: the average producer price for frozen or-
ange juice, the producer price index for finished goods and the number of
freezing degree days at the Orlando airport. The orange juice price series
was divided by the overall Producer Price Index for finished goods to adjust
for general price inflation. As we did before, we will concentrate only on
the monthly series of the prices. From figure 3.1 it appeared clear that this
dataset represents a really hard smoothing exercise. We again compare the
L-curve procedure with a cross validation approach and with the criterion
proposed by Krivobokova and Kauerman. Following the cited paper we use
piecewise linear basis functions defined on 63 knots to build the smoother.
In figure 3.14 the results obtained smoothing the orange juice prices time se-
ries with a Whittaker smoother and the K&K procedure are shown together
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Figure 3.13: Whittaker smoothing and K&K filter of mean sea level data. The upper panel
show the results obtained selecting the parameter using the L-curve and the cross validation
(log1o(A) € [0,9]) and the smoothing functions obtained using K&K filters considering an
AR(1) and AR(2) correlation structures. The lower panels reproduce the L-curve, the cross
validation curves and the selected parameters.

with and the cross validation and L-curve profiles. The smoothing parame-
ters selected by these three procedures lead to very different smoothing func-
tions. The cross validation suggests a small A and the result is a rough fitting
function. On the other hand the L-curve suggests a larger parameter and
the estimated Whittaker smoother is able to reproduce the trend behind the
data. The results obtained using the filter proposed by Krivobokova and
Kauerman are not satisfactory suggesting a smoother that completely miss
the data behavior. These last results were obtained considering an AR(1)
correlation structure while, following the computational strategy suggested
in the cited paper, considering an AR(2) correlation structure the R model
crashes. In order to compare the discussed smoothing parameter selection
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Figure 3.14: The upper panel compare the results obtained selecting the \ parameter of a
Whittaker smoother using the cross validation, the REML approach (K&K filter) and the L-
curve method. The lower panels show the cross validation and L-curve profiles and indicate
the selected smoothing parameters. For both selection methods we considered log;,(\) €

[747 6]
Wood data (320) Mean sea level (145) Orange juice (642)
L-curve | 0.640 0.020 0.670 | 0.160 0.002 0.150 | 2.840 0.560 3.110
Cross Validation | 1.140 0.110 1.300 | 0.310 0.010 0.310 | 6.420 1.280 7.050
K&K AR(1) | 0.800 0.010 0.810 | 0.210 0.002 0.210 | 3.010 0.510 5.510
K&K AR(2) | 7.800 0.010 7.630 | 1.120 0.020 1.240 n.a. n.a. n.a.

Table 3.1: Computational times related to each selection procedure used for real data exam-
ples. The user, system and elapsed times are reported for each procedure and example. The

number of observations per each dataset is indicated within brackets.

procedures in terms of computational efficiency table 3.1 shows the comput-

ing times for the real data examples discussed here. The measurements have

been obtained using the R function proc.time().
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3.6 Conclusions

In this chapter we introduced an L-curve procedure for the selection of the
smoothing parameter in a P-splines framework. This approach selects the
smoothing parameter through a direct comparison between the goodness
of fit and the smoothness of the estimates. It was showed that the optimal
smoothing parameter can be selected by locating the point of maximum cur-
vature, i.e. the corner, of the L-curve as was originally argued in the works
of Hansen (Hansen, 1992; Hansen and O’Leary, 1993). We also proposed an
alternative selection procedure based on the minimization of the Euclidean
distance between the adjacent points of the curve: the V-curve criterion.

Using several simulation strategies it has been explained how the shape
of the L-curve is influenced by the underlying characteristics of the data and
how the selection procedure performs.

A comparison between the L-curve and the cross validation approaches
was examined using real data. It was highlighted that, selecting the smooth-
ing parameter with a LOO-CV strategy, can suggest a too small A\ parameter
leading an under-smoothing of the data. This is true especially in the case
of data with a noise component showing serial correlation. In such cases,
on the other hand, the L-curve procedure was found to be a robust selection
procedure.

The same comparison was made to the strategy proposed by
Krivobokova and Kauerman. It was found that the L-curve ensures results
consistent with those obtained using the K&K filter in two well behaved
examples over three. On the other hand it fails in a really extreme cases
(i.e. the orange juice example). We also found that the L-curve procedure
guarantees good results and a relatively lower computational effort in the
analysis of long data series.

Other REML-based approaches have been proposed in the literature.
Currie and Durban (2002) also suggested to use a REML approach in order to
take into account the correlation structure of the data. In their work the au-
thors successfully analyzed the wood dataset modeling the correlation struc-
ture through a AR(2) model showing results really close to what we obtained
in section 3.5. However we believe that our approach, besides being compu-
tationally more convenient, guarantees good performances also in extreme
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situations in which a suitable correlation structure is hard to define (such as
the orange juice price data).

From our discussion in this chapter appears also that the L-curve is a com-
putationally efficient selection procedure if compared with standard proce-
dures. Indeed it does not require the computation of the effective dimension
of the smoother at each step. In addition in some cases it is also possible to
simplify the selection procedure minimizing the Euclidean distance between
adjacent points of the L-curve. This allows to avoid the computation of the
first and second derivatives that appear in the curvature function. These fac-
tors make this procedure computationally faster than those based on a leave-
out or a mixed model framework. This is not a secondary feature especially
in those cases in which the amount of data tends to increase the computa-
tional cost of the entire statistical analysis.

It is necessary to underline that in some cases, the L-curve criterion could
not lead to reliable results. It happens smoothing data that approach to a
pure white noise or when the signal component under the data tends to dis-
appear. As shown in figure 3.15 and in the discussion of section 3.5 in these
cases the L-curve does not show a convex area and selecting the smooth-
ing parameter through the minimization of the Euclidean distances leads to
light smoothing parameters. In these cases the curvature approach has to be
preferred because it tends to suggest a A as close as possible to the optimal
one. For this reason we recommend to use this procedure after a preliminary
(also visual) inspection of the data. The L-curve procedure offers margins for
further research. Indeed, in our opinion, it is not still clear why the corner
contains information about the optimal smoothing parameter and why it is a
robust selection method in the case of data with correlated noise.

Furthermore we believe that the L-curve can also be generalized. Our
future research will concentrate on an L-curve criterion for multivariate
smoothing analyzes and on an L-curve based procedure suitable for expectile
smoothing problems.
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Figure 3.15: Whittaker smoothing of a white noise. The upper panel shows the results
obtained selecting the parameter using the L-curve and the cross validation (logyo(\) €
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Euclidean distance criteria.



THE L-SURFACE FOR NON-ISOTROPIC OPTI-
MAL SMOOTHING

The L-surface is an attractive two-dimensional generalization of the
L-curve procedure for optimal smoothing. However, one has to locate the
point of maximal curvature of the surface, which is not easy. We introduce
a simplified procedure that replaces maximum curvature by a distance to
be minimized.

Keywords: P-splines, L-curve, tensor products, penalties

4.1 Introduction

The L-curve criterion was proposed by Hansen (1992) and Hansen and
O’Leary (1993) for selection of the regularization parameter in ill-conditioned
inverse problems. In chapter 2 we have shown that it is an efficient and ro-
bust method to select the penalty parameter in smoothing applications. The
L-curve does not require the computation of the effective model dimension
and is insensitive to correlated noise.

Here we discuss a generalization, the L-surface, for non-isotropic two-
dimensional smoothing. It is a plot of the logarithm of the residual sum of
squares against the logarithms of the sizes of the penalty terms, parameter-
ized by the smoothing parameters. It appears as a surface with a nook and,
in analogy with the L-curve, the optimal pair of smoothing parameters is
located in the deepest point of the nook. This is the point of maximum Gaus-
sian curvature, as defined in differential geometry. Unfortunately, locating
this point is a non-trivial computational task.

In the nook changes of parameters lead to small displacements on the
L-surface. We compute the surface for a grid of values of the two smooth-
ing parameters. Over this grid we search for the points on the surface that
are closest to each other. If we do this for the L-curve, in the case of one-

45
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dimensional smoothing, a curve with a U-shape is obtained. Shahrak (2013)
already coined the name U-curve, although with a different definition. To
avoid confusion, we christened our procedure the V-valley. We describe it
for two dimensions, but it works as well in one too.

The L-surface shares most of the desirable properties characterizing the
L-curve procedure. First of all it represents a computationally efficient alter-
native to classical selection procedure due to the fact that it does not require
the computation of the effective model dimension. This issue becomes par-
ticularly important if we consider that the computational effort needed for
the estimation of the final fits increases easily considering smoothing prob-
lems in more than one dimension. On the other hand the L-surface seems to
be robust to serial correlation in the data noise component in analogy with
its 1D equivalent.

Figure 4.1 shows the results obtained smoothing simulated data with
with a non isotropic tensor product P-spline procedure (see chapter 1) and
selecting the smoothing parameters by cross validation and the L-surface re-
spectively. It is possible to notice from figure 4.1 that the estimates obtained
selecting the smoothing parameters by cross-validation are quite rough while
the estimated surfaced obtained using the parameters by the L-surface ap-
pears more appropriate. These data count 2500 simulated observations ob-
tained as z;; = sin(x;) + cos(y;) + e. withx € [-3,3] and y € [-3,3]. The
observations have been simulated so that the noise component shows serial
correlation. This correlation has been induced considering as noise compo-
nent a surface fitted through an isotropic tensor product P-spline smoother
with a not too large .

In this chapter we describe the L-surface as a procedure for the selec-
tion of the smoothing parameters in two dimensional problems. In particular
we will consider tensor product P-spline smoothers described by FEilers and
Marx (2003). For all the simulated and real data applications discussed here
the fast GLAM algorithm introduced by Eilers et al. (2006) have been used.

The rest of the chapter is organized as follows: in section 4.2 the L-surface
is introduced highlighting its connections with the L-curve procedure, in sec-
tion 4.3 the novel V-valley strategy for the selection of the optimal pair of
smoothing parameters is briefly introduced, section 4.4 discusses some as-
pects related to the shape of the L-surface taking into account simulated data
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Figure 4.1: Multidimensional smoothing of simulated data. The first panel shows a non
isotropic tensor product P-spline smoother obtained selecting the A\ parameters by cross val-

idation (\; = Ay = 0.01). The second panel shows the smoother obtained selecting the

tuning parameters through the L-surface procedure (A1 = 10 and Xy = 31.62).
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with different characteristics while section 4.5 compares the performances of
the proposed selection procedure with those obtained using the well known
cross validation criterion on the base of simulated and real examples.

4.2 The L-surface

Consider 2D non-isotropic smoothing with tensor product P-splines. We
have data vectors z, y and z, where the latter is the dependent variable. De-
fine the following quantities:

W =log(|lz = BBII*): ¢w = log(I|P:B1%); ¢y = log ([ P,B11%),

B is the tensor product basis, based on z and y and 3 the vector of spline
coefficient; P, and P, are penalty matrices, working on the coefficients in x
and y direction. Although not shown explicitly here, these quantities are pa-
rameterized by A\, and ), (which get chosen value on a 2D grid). Plotting
these quantities in a 3D Cartesian system we obtain points on a surface with
a nook (see figure 4.2, second panel). The profiles of the surface represent
L-curves. Each L-curve shows a corner region and all curves together de-
fine a non-regular grid. The pair of optimal smoothing parameters can be
located looking for the point of maximum curvature in the convex nook of
the surface.

In analogy with the L-curve framework this point can be located max-
imizing a suitable curvature measure (see Belge et al., 1998): the Gaussian
curvature. For 2D applications the Gaussian curvature can be computed as:

_ det(II) LN —M?
~ det(l)  EG-F?°

(4.1)

The quantities /1 and I in (4.1) represent, respectively, the second and the
first fundamental forms. The first fundamental form allows for the compu-
tation the arc length of a curve laying on a surface patch while the second
fundamental form measures the degree of curvature of this curve. The com-
putation of the fundamental forms requires the knowledge (or approxima-
tion) of the Jacobian and Hessian matrices.

A more generic definition of the Gaussian curvature can be useful in an-
alyzes involving more than two dimensions where a L-hypersurface can be
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Figure 4.2: L-surface computed for the simulated data in fiqure 4.1. The right panel shows
the L-surface while the left one depicts a L curve obtained taking log,o(\,) = —2 and vary-
ing log,,(Ay) over the surface.

used to select the optimal tuning parameters. The so called manifold Gaus-
sian curvature is a suitable measure to locate the optimal smoothing param-
eters on a generic L-hypersurface:

Q(L; L)

(n+1) 7
2

ky =

= (4.2)
tr(L)

where L and L represent, respectively, the Jacobian and the Hessian matrices
and the operator Q(L; L) stays for the sum of each element of the Jacobian
times the cofactor of the corresponding element of . Figure 4.2 shows the
L-surface related to the simulated example of figure 4.1.

4.3 The V-valley procedure

From our discussion appears that the location of the optimal pair of smooth-
ing parameters on the L-surface represents a non-easy task from a computa-
tional point of view if it is faced maximizing the Gaussian curvature. On the
other hand, looking carefully at the characteristics of the surface plotted in
the second panel of figure 4.2 a easier criterion can be deduced.

As we already mentioned the profiles of the L-surface represent one di-
mensional L-curves. Each L-curve shows a corner and all together define a
non regular grid of points on the L-surface. The points on this grid become
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Figure 4.3: V-valley computed for the simulated data in figure 4.1. The right panel shows
the V-valley while the left one depicts a V-curve obtained taking log,(\,) = —2 and varying
log,(As) over the surface.

closest in the corner (right panel of figure 4.2). Plotting the distances between
these adjacent points, a V-shaped curve is obtained (left panel of figure 4.3).
All V-curves combined define the ”V-valley” shown in the right panel of fig-
ure 4.3. The optimal pair (A, \,) is located at the bottom of the valley. So
an approximation of the maximum curvature point can be obtained search-
ing for the minimum of (4.3). The V-valley procedure have the advantage
to avoid the tedious and some times demanding computations related to the

numerical estimation of the Jacobian and Gaussian matrices.

DO, Ay) = [ (Va)2 + (Vada)? + (Vady)2 (43)

4.4 The shape of the L-surface

The L-surface depicted in figure 4.2 shows a clear area characterized by a
positive curvature where the optimal smoothing parameters have been lo-
cated. We can investigate, through simulations, how the shape of the L-
surface depends on the characteristics of the data. For all the simulation
showed in this section we used tensor product P-splines built considering
cubic basis functions defined on 20 equally spaced knots and second order
difference penalties in each direction. First of all we evaluate how the L-
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surface shape is related to the variability of the data noise component and,
consequently, how the goodness of the final estimates is influenced. Con-
sider the following simulation settings: z;; = 4(cos(x;) + sin(y;)) + Ni;(0, o)
with o4, € {0.05,0.1,0.35,0.5,0.8,1} and ¢ = j = 1,...,50. Figure 4.4 shows
the projections of the estimated L-surfaces for each o parameter. The red
dots represent the optimal smoothing parameters located using the V-valley
procedure. The shape of these surfaces is clearly influenced by the standard
deviation of the error component. Indeed the area of positive curvature (the
nook) tends to become less evident when the variability of the white noise
component increases. The impact of the noise variability on the final esti-
mates can be evaluated considering figure 4.5. It shows the contours (solid
lines) of the estimated smoothing surfaces obtained for four of the six stan-
dard deviation parameters used in figure 4.4. The estimates are compared
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with the raw data (background of each plot). It appears that, even if the
associated L-surfaces are different, the smoothing surfaces efficiently catch
the data behavior. In order to better evaluate the impact of the variability
of the noise component on the goodness of the final estimates we can use a
bigger simulation and evaluate the distributions of the (log) standardized de-
viations of the estimated surfaces from the simulated data trend. Figure 4.6
shows these distributions obtained for a grid of 10000 noisy points per each
o parameter mentioned above. The mean deviations in figure 4.6 are all close
to zero but the variability of the distributions seems to increase together with
the variability of the noise component.

In analogy with the L-curve method, its multidimensional analogous,
is robust to data with correlated noise (an example has been shown in fig-
ure 4.1). In order to evaluate this feature we can consider a simulated
experiment: generate 2500 observations according to z;; = 4cos(z;) +
4sin(y;) + Eij(pr) where x = y = —3,...,3 and Ej;;(p) represents the noise
term. This noise component has been simulated in such a way to show
serial correlation (in analogy with what we did for the example of fig-
ure 4.1). The correlation structure has been induced considering smooth
surface obtained using a isotropic tensor product P-spline smoother. Here
pr = {0,0.1,0.3,0.5,0.75,0.9} indicates the strength of the penalty imposed
in the smoothing procedure used to obtain the noise component. The pro-
jections of the L-surfaces resulting from these simulations are depicted in
figure 4.7. All the surfaces of figure 4.7 show an area characterized by a clear
nook where the optimal smoothing parameters have been located by a V-
valley procedure (red dots). In addition, the smoothing surfaces in figure 4.8
show how the estimated smoothers reproduce the underlying behavior for
four of the simulated data clouds. In order to evaluate how the goodness
of the final estimates is influenced by the degree of serial correlation in the
noise component, in analogy with what we did before, we can consider a
larger simulation procedure. Figure 4.9 shows the distributions of the stan-
dardized deviations of the final estimates from the underlying data trend for
different degree of serial correlation of the noise component. These boxplots
have been obtained considering a grid of 10000 observations. The standard-
ized mean deviations are all close to zero and the shape of the distributions
is almost equal for each p parameter.
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Figure 4.5: Smoothing surfaces obtained for o, € {0.1,0.5,0.8,1} and selecting the
smoothing parameter using the V-valley procedure.
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Figure 4.6: Distributions of the deviations from the underlying trend for smoothing sur-
faces estimated using data with different variability of the white noise component.
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Figure 4.7: Six L-surfaces obtained for different degrees of serial of the noise component.
The smoothing parameters were selected in a range [—2, 4] for both log(A;) and log ().

The strength of the trend component is another factor that influences the
shape of the L-surface. To evaluate its impact we can analyze data simulated
as : zj; = cx(cos(x;) + sin(y;)) + N;;(0,0.5) where ¢, € {0.01,0.5,1,5,10,20}
and N;;(0,0.5) represents a white noise component (i = j = 1,...,50). The
projected L-surfaces obtained for the data with different ¢, coefficients are
shown in figure 4.10. The effect of the strength of the trend component on the
L-surfaces is quite clear. When the data approach to a white noise the region
of positive curvature tends to disappear leading to unreliable selection of the
smoothing parameters. On the other hand this area becomes more evident
for high trend coefficients. This phenomenon has an impact on the shape of
the estimated smoothing surface. Figure 4.11 shows four smoothing surfaces
obtained for ¢, = [0.5,2, 5, 10].
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Figure 4.8: Contours of the smoothing surfaces obtained for pi, € {0,0.3,0.75,0.9}. The
background of each plot represents the raw data.
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Figure 4.9: Distributions of the deviations from the underlying trend for smoothing sur-
faces estimated using data with different serial correlation of the noise component.
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Figure 4.10: Six L-surfaces obtained for different trend coefficients, ¢, €
{0.01,0.5,1,5,10,20}. The smoothing parameters were selected in a range [—2, 5] for both
log(\y) and log(A,).

cc=05

20

Figure 4.11: Contours of the smoothing surfaces obtained for ¢, € {0.5,2,5,10}. The
background of each plot represents the raw data.
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4.5 Some examples

In this section some application of the L-surface selection procedure are
shown. We consider both simulated and real data examples. As first appli-
cation we consider the de-noise of a simulated image. The left upper panel
of figure 4.12 depicts a a grid of 90 x 90 pixels describing a quarter of circle
to whom a random noise have been added. This example is analogous to the
experiment proposed by Eilers et al. (2006). The height of the simulated sur-
face is indicated by the intensity of the image with a light color indicating a
greater height. The right upper panel of the same figure shows the enhanced
image obtained using a P-spline smoother built on a grid of 22 x 22 tensor
product B-splines and applying third order penalty matrices to both direc-
tions. The optimal smoothing parameters have been selected using the L-
surface criterion: log();) = 1.5 and log(),) = 1.5 (see right panel of the lower
part of the figure obtained considering a log();) = log(\,) € {—1, 3} grid of
possible smoothing parameter). The left lower panel shows the residuals be-
tween the original and the smoothed image. The results obtained selecting
the smoothing parameter by cross validation on the same grid of candidate
As are shown in figure 4.13. The two selection procedures give comparable
results given that the cross validation suggests log(\;) = log(\y) = 1.

As second example we analyze the monthly total precipitation (mm) for
April 1948 in the contiguous United States described in a dataset discussed
in Johns et al. (2003). The data and the smoothed precipitation over the
US are showed in figure 4.14. The upper panels of this figure show the
raw data (left panel) and the smoothed data obtained without considering
the boundaries. In the lower panels the smoothed data and the projected
L-surface associated are shown. The smoothed image have been obtained
considering 10 cubic bases on the x and y directions and the penalties were
built using 3th order difference matrices. The optimal smoothing parame-
ter on the L-surface has been selected using the V-valley criterion described
above computed over a grid of candidate parameters defined in the inter-
val log(A;) = log(Ay) € {—1,4}. The selected smoothing parameters were
Az = 0.5 and Ay = —0.5. Figure 4.15 shows the results obtained for the
same data smoothing the raw observations using the A\ parameters selected
by cross validation. As we can see the cross validation surface appears flat
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Figure 4.12: Smoothing of a noisy image using the L-surface smoothing parameter se-
lection criterion. The upper right panel shows the raw data, the left upper panel depicts
the result of the smoothing procedure. In the lower panels the residuals and the projected
L-surface are shown.

suggesting small smoothing parameters (A, = A\, = —1). The cross valida-
tion surface presents a large flat area and there is not a clear minimum. The
overfitting effect produced by the cross validation estimates could be due to
the presence of spatial correlation in the noise component of the raw obser-
vations. The estimated image overfits the raw data. Also in this case the es-
timates have been obtained using tensor products of 10 cubic basis functions
per each direction built on equally spaced knots and third order difference
penalties.

As last example we analyze the well known ethanol data. The data count
88 observations of three variables: concentration of nitrogen oxides (NOx, the
dependent variable), compression ratio of the engine and equivalence ratio
(C and E). Figure 4.16 shows results for the V-valley and for cross-validation.
The cross-validation surface does not show a clear minimum and suggests
small As leading to a wiggly surface. We suspect that this is caused by serial
correlation of the errors, along the E direction. The V-valley shows a clear
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Figure 4.13: Smoothing of a noisy image using the cross validation smoothing parameter
selection criterion. The upper right panel shows the raw data, the left upper panel depicts the
result of the smoothing procedure. In the lower panels the residuals and the cross validation
surface are shown.

minimum and leads to a smooth surface with intuitive appeal.

4.6 Conclusions

We have shown how the concept of the L-curve can be extended to two-
dimensional smoothing with tensor product P-splines. A natural two dimen-
sional generalization of the L-curve is represented by the L-surface. The L-
surface is defined by a set of 1D L-curve computed in the x and y directions.
Each L-curve has a convex area and the points defining them become closer
and in the proximity of the corner. The Euclidean distance between adjacent
points on a single L-curve is described by a V-shaped curve and the single
dimensional optimal smoothing parameter is located at the minimum of the
V-curve.

This combination of L-curves generates the characteristic shape of the L-
surface. The L-surface has a nook in which the right balance between the

residual sum of squares and two penalties is found. This nook corresponds
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Figure 4.14: Smoothing of the monthly total precipitation (mm) for April 1948 in the con-
tiguous United States. These results where obtained using the L-surface smoothing selection
procedure.

to the point of maximum Gaussian curvature. The computation of the point-
wise Gaussian curvature presents some difficulties given that the (approxi-
mated) Jacobian and Hessian matrices related to the components of the L-

surface are required.

Instead of using local curvature to locate the right spot, we suggest to use
a derived measure, based on distance, leading to simple computations. It is
essentially based on the same principle of the V-curve. The distance between
adjacent points defining the L-surface in the 3D Cartesian system becomes
lower when we are in the proximity of the nook. The Euclidean distance
between these points describes a V-shaped surface that can be considered
as a generalization of the one-dimensional V-curve. We christianized this
surface V-valley. The pair of optimal smoothing parameters is located in the
deepest point of the valley.
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Figure 4.15: Smoothing of the monthly total precipitation (mm) for April 1948 in the
contiguous United States. These results where obtained using a cross validation smoothing
selection procedure.

The L-surface seems to be quite insensitive to serial correlation. This ap-
pears clearly from the analysis of the ethanol and US precipitation anomalies
data as well as from the simulation studies presented in this chapter. The L-
surface criterion in general, and the V-valley selection procedure in our par-
ticular case, tends to efficiently separate the trend from the noise component
even if the latter is serially correlated.

It appears that our approach opens the road to smoothing in more di-
mensions, e.g. space and time. More research is needed. A more minimiza-
tion method will be needed then, because brute-force exploration of a three-
dimensional grid of smoothing parameters locating is time-consuming.

There are many opportunities for further research like smoothing of non

Gaussian data and penalty terms defined by vector norms different from L.

As a final remark we emphasize the crucial role of (the size of) penalties.
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Figure 4.16: Smoothing of the ethanol data. Top left: the smooth surface obtained after
selecting the \ parameters on the L-surface (upper right panel) using the V-valley criterion.
The lower left panel shows the smoother estimated using cross validation while the panel on
the left shows the cross validation function computed for the grid of smoothing parameters.
23 Cubic B-splines and third order penalties have been used for each dimension.
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Smoothing methods like kernels and local likelihood do not have an equiva-
lent and so they cannot profit from the L-curve and its extensions.






THE B SPLINE COLLOCATION PROCEDURE

In this chapter we introduce the B-spline collocation procedure. We
treat both ordinary and partial differential problems with initial and
boundary conditions. The collocation scheme is applied to the Black and
Scholes equation for the pricing of European option contracts. The ap-
proximated prices are compared with the analytic solution of the cited dif-
ferential problem to evaluate the performance of the proposed numerical
scheme.

Keywords: Ordinary/partial differential equations, collocation, B-
splines, European option pricing.

5.1 Introduction

Differential equations are powerful tools for describing system’s dynamics.
In many circumstances it is advantageous to have at our disposal a proce-
dure to numerically approximate the solution. This is the case when dealing
with problems that cannot be solved analytically or if we are interested in
inferring the characteristics of a phenomenon which” dynamics is described
by observed data, as introduced in chapter 1.

Several numerical procedures have been proposed in the literature to
solve ordinary and partial differential problems. The main idea of a nu-
merical method is to replace the DE, formulated for one unknown real val-
ued function, by a discrete equation in finitely many unknowns. The dis-
crete problem defines the so called “numerical scheme”. For a complete
overview about the different numerical methods proposed in the literature
a well known reference is Ascher and Petzold (1998).

Here we introduce the collocation method and discuss it in the case of lin-
ear differential problems. The collocation method belongs to the more gen-

65
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eral class of projection methods. The rationale behind all those methods is
to approximate the solution of a differential problem by a finite linear com-
bination of basis functions. If we define a basis function ¢;(t), a projection
method suggests to approximate the state function and the initial /boundary
conditions by a linear combination of the ¢;s:

u(t) = 3 e05(t): (5.1)

It is clear that, in order to obtain an approximation of the solution, we
need a way to determine the coefficients in equation (5.1). The collocation ap-
proach suggests to look for a vector of coefficients that guarantees a solution
satisfying the differential equation on a grid of values ¢, ..., t,, not necessarily
equally spaced. These values define a set of ”“collocation points”.

The selection of optimal collocation points is not straightforward and in-
fluences the appropriateness of the approximated solution. The computa-
tional cost of the collocation method depends on the number of collocation
points. On the other hand, as the number of collocation points increases, we
satisfy the differential equation at more points. A possible solution of this
trade-off is to chose a limited number of collocation points satisfying a cer-
tain optimality criterion. For example, many authors suggest to select them
according to a Gauss-Legendre scheme (de Boor and Swartz, 1973). An alter-
native is to select the collocation points in correspondence of the maximum
value of the basis functions. This leads to the so called “smoothest collocation
procedure”. A comparison between the Gauss-type collocation and this last
strategy found in Botella (2002). In this chapter and in the rest of this work
we don’t discuss this issue and locate the collocation points in such a way to
obtain a relatively dense coverage of the domain.

Our discussion is organized as follows: section 5.2 introduces the B-spline
collocation scheme for the solution of ordinary differential equations consid-
ering both initial and boundary value problems, in section 5.3 we show how
to solve partial differential equations using a collocation scheme built on ten-
sor product B-splines. In section 5.4 the collocation approach is evaluated
solving the Black and Scholes equation for the pricing European options.
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5.2  Collocation solution of ordinary differential equations

To clarify how a B-spline collocation procedure provides a numerical approx-
imation of the state function solving an ordinary differential problem, it is
useful to show some examples. Consider the following first order order IVP:

y =2y, t €{0,2}
y(t=0) =2,

having the following analytic solution:

y*(t) = exp(2t 4 log(2)).

We approximate this solution using a system of 50 B-splines of 3th degree.
Consider t; € {0, 2} with i = 1, ...,200. The differential equation is approxi-
mated in terms of basis splines as follows:

> ¢iBj(tip) =232 ¢iBj(ti, p) = e

(5.2)
s.t. Zj Cij(ti = O) = 2,

where ¢; is the approximation error evaluated on the ith collocation point, B
and B’ represent matrices of B-splines and their derivatives respectively. In
order to obtain a numerical solution of the differential problem we need to
compute the B-spline coefficients c¢; under the constraint represented by the
initial value condition. These coefficients can be computed minimizing 3", €2
(a least squares criterion) solving a linear system with Lagrange multipliers:

vy KT c|
K 0 1|

where V is a (200 x 53) matrix (200 domain points and 50 cubic basis splines

vTo

b | (5.3)

built on equidistant knots) defined as V;; = B;- (ti,p) —2 Bj(t;, p), cis a vector
of B-splines coefficients of length 53, [ is a Lagrange multiplier, K = B;(t; =
0, p) is the (1 x 53) vector of constraints and b = 2 is the imposed initial value
for the state function. Figure 5.1 shows the numerical results obtained for
this IVP and compares them with the analytic solution.
The number of collocation points and their location play a crucial role in
determining the quality of the approximate solution.
The same procedure can be applied to boundary value problems with
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Figure 5.1: B-splines collocation solution of an ordinary IVP. The first panel shows the
analytic and the numerical solution of the IVP. The second panel shows the first derivative,
while the third panel shows the residuals between the analytic and the numerical solutions.
The squared black dot represents the initial value.

mixed conditions. For example, consider the following second order BVP:

y +y +2y=0,t€ {0,27}
y(0) =0, y (27) =1,

with analytic solution y*(t) = exp(—%)(—22.4 sin(gt)). The numerical so-
lution is obtained solving a linear system similar to (5.3) with V;; = B;-/ (t;) +
B;(ti) +2B;(t;) and K = [B(t; = 0) B'(t; = 27)]T. It is shown in figure 5.2.
This last example gives us the possibility to discuss a simple generaliza-
tion of the collocation procedure. Indeed, it is possible to adapt equation (5.3)
to solve systems of differential equations. In many circumstances differential
problems involve systems of equations. Any nth order differential problem
can be expressed in terms of a system of lower order differential equations,
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Figure 5.2: B-splines collocation solution of an ordinary second order BVP. The first panel
shows the analytic and the numerical solution of the differential problem. The second and
third panels show the first and second derivatives respectively, while the fourth panel shows
the residuals between the analytic and the numerical solutions. The squared blacks dot in-
dicate the boundary values. The approximate solution has been obtained using 50 equally
spaced cubic B-splines.

and in many cases it is convenient to deal with lower order derivatives. The

BVP above can be translated in the following system:

Ty = —2x1] — X9 (5.4)

where the change of variables y = 1,y = x has been applied.

In this case the least squares system in (5.3) can be generalized. Each of
the two top equations in (5.4) leads to residuals as in (5.2) that have to be
minimized through leasr squares. One way to compute the optimal spline
coefficients is to define the linear system in terms of Kronecker products. In
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Figure 5.3: B-splines collocation solution of a system of ODEs. The upper panels show the
analytic and the numerical solutions of the differential problems. The lower panels show the
residuals between the analytic and the numerical solutions. The squared blacks dot indicate
the prescribed values. These results have been obtained using 50 cubic B-splines defined on
equally spaced knots selected over 200 collocation points.

this case the components of (5.3) are: Vij =B, ;(ti) — B;(t;) and K = [léj(ti =
0) éj(ti = 271')] with Bj(ti) =0Lb® B ( ), Bj(tl) =L ®B, ( ) Bj(ti) =

0 1
M ® Bj(t;) and M = Ll The analytic and numerical solutions of

this differential problem are shown in figure 5.3.
Our last example is related to the first order differential equation shown
above with the difference that now we consider an integral condition:

y2: y, t €{0,2}
JACLE

r exp(2t). We again reduce the problem to

with solution y*(t) = ﬁ
3 2
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Figure 5.4: B-splines collocation solution of an ODE with integral constraint. The upper
panel shows the analytic and the numerical solutions of the differential problem. The lower
panel shows the residuals between the analytic and the numerical solutions. The shaded areas
indicate the prescribed integration interval and condition. The numerical solution has been
computed using 50 cubic bases built on equally spaced knots selected over 200 domain points.

the solution of a linear system of equations. We only need to define the K
vector in such a way it determines the integral of the B-spline matrix over
the imposed integration interval. The results for this example are depicted in
figure 5.4.

5.3  Collocation solution of partial differential equations

Many PDEs don’t have an analytic solution and a numerical procedure has
to be applied to approximate the unknown state function. On the other hand
numerical procedures can also be useful in those cases where we deal with
observed two-dimensional dynamics and we want to infer their character-
istics from the available measurements. We suggest to generalize the one-
dimensional B-spline collocation method, using tensor product B-splines.
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To clarify this point it is convenient to consider some examples. The first
example we would like to introduce is a first order partial differential equa-

tion describing a diffusion phenomenon:

2uy +uy +3u=0, xr €R, yeRY
1

u(z,0) = 1122
where z, and , are the first derivative of the state function w.r.t. = and y
respectively. According to the collocation framework it is possible to approx-
imate the state function u(z, y) and its partial derivatives using a linear com-
bination of basis functions. Dealing with PDEs we need to choose a grid of
collocation points. We locate them on a regular grid corresponding to the
maxima of the two-dimensional basis functions.

If we define two B-spline matrices B, and Byonz;, i = 1,...,nand y;, j =
1,...,m collocation points located in the x and y directions respectively, the
state function and its derivatives are approximated by:

u = B,C(B,)",
ax = B:::C(By)Ty
iy, = B,C(B,)",

where (' is a matrix of unknown spline coefficients. These coefficients can be
computed through least squares, setting:

SN (B, @By )i+ > (By, ® By )eij +3> > (By, ® Ba,)cij = €5

1
s.t. ZZ yJ—O ®Bxl)02]—mv

%

and minimizing the magnitude of the approximation error » _; > *. e?
For the present IVP the spline coefficients follow from:

vTo
b

vy KT
K 0

C

l

)

where V' = [2B?;]_ ® By, + By, ®B;i +3By, ® By,| is the B-spline approximation
of the differential equation, K = [B,(y; = 0) ® By,] is a constraint matrix, c is
obtained vectorizing the columns of a spline coefficient matrix, [ is a vector of
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Figure 5.5: Analytic and numerical solution of a first order diffusion PDE, the right lower
panel shows the error surface. The approximate solution has been obtained using 20 cubic
B-splines built on equidistant knots selected over 30 domain points in each direction.

1
1+x12
and approximate solution of the cited PDE are shown in figure 5.5 together

Lagrange multipliers and b = is the vector of initial values. The analytic

with the error surface.

A more complex example is represented by a Cauchy problem with mixed

conditions:

Uyy — Uz =1, TER, y €R
u(xr,0) = 22 u,(x,0) = 1,

where u,,, and u,, represent, respectively, the second derivatives of the state
function u(z,y) w.r.t. y and z. This differential problem has analytic solution
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Figure 5.6: Analytic and numerical solution of a second order Cauchy PDE, the right lower
panel shows the error surface. The state function has been approximated using fourth order
basis splines defined on 15 equally spaced knots in each direction.

u*(x,y) = 22 + y + 1.5y%. We now have:

u = B,C(B,)T,
Uy = B,C(B)",
Uyy = B.C(B,)",
Uy = BZC’(By)

The optimal spline coefficients c are computed solving a system of equations
similar to (5.3), with V;; = [B,. ® By, — By, ® B, — 1], K = [B,(y; = 0) ®
By B,(yi = 0) ® By,]", b = [2? 1]7. Figure 5.6 compares the analytic and
numerical solutions.
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5.4 Option pricing through B-spline collocation

To evaluate the performance of the B-spline collocation scheme introduced
in the previous section we propose to solve the Black and Scholes equation
(Black and Scholes, 1973) and compare the approximated and the exact solu-
tions.

The B&S equation is the most famous mathematical pricing model for
European style financial options. Quoting Cox et al. (1979), an option is a
contract that gives the right, but not the obligation, to buy or sell a risky asset
at a predetermined fixed price within a specified period. This contract allows
to bet about the future evolution of the price of the underlying asset. The
underlying can be a financial instrument (a stock for example), a financial
index and also a commodity. Options and other related contracts are often
defined financial “derivatives”. It is because their price is derived from the
market value of the underlying risky asset.

Two different kinds of option contracts are distinguished according to the
right that they give to the holder. A “call” is a contract that gives the right
to buy the underlying asset while a "put” gives the right to sell it. These
characteristics can be summarized in the payoffs function at expiration (ma-
turity) time T associated to these two different contracts. If we indicate with
C(S,T) the payoff of a call at maturity and with P(S,T) the payoff of a put,
the definition above can be summarized as follows:

0 if Sp < E

C(S’T): 1 =
Str—FE if Sy > F,
if >F

P T)=4 0T
E—ST IfST<E,

where with E we indicate the strike price (the predetermined price of the
underlying at expiration time) and St represents its market price at maturity.
The Black and Scholes model moves from the assumption that the dy-
namics of the price of the underlying risky asset follows a geometric Brown-
ian motion in the instantaneous time dt with mean p and standard deviation
o+/dt. Consider a option written on a share. If, in analogy with the previous
notation, we indicate with S the stock price this assumption implies that:

9 0 (uat, odr) (55)
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where dS is the stock price variation at instant dt and ¢(-) indicates a Gaus-
sian probability density function. If St is the stock price at maturity time this
dynamics implies that:

In(St) — In(Sp) ~ ¢ [(u - U;) T, aQT] ,
(5.6)

In(S7) ~ ¢ [m(so) + (u — U;) T, JZT] :

This implies that St follows a log-normal distribution such that E(S7) =
Spexp{uT} and Var(Sy) = S3 exp{2uT }[exp{c?T} — 1]. The dynamic of S
under these assumptions are then described by:

dS = pSdt + oSdz. (5.7)

Let V(S,t) be the value of the derivative contract. Following the defini-
tion of an option contract its price depends on: the maturity date 7" (or better
of the time to maturity ¢t — T'), the risk free interest rate r, the volatility of the
underlying asset o, the strike price £/ and the spot price of the underlying S.
Those variables are all included in the B&S model. Indeed, this model states
that the mathematical law governing the value of the option can be written
as the PDE: )

ov ov 1 5262 oV

E—Hﬂﬁ—i—i 552 =rV. (5.8)

The solution depends on the boundary conditions that define the value
of the derivative contract for extreme values of S and ¢. The boundary condi-
tions are defined to be consistent with the payoff functions. Consider a plain
vanilla (which price does not depends on accessory rights) European call op-
tion written on a stock that does not pay dividends. In this case the boundary
conditions for the differential problem (5.8) are:

C(0,t)=0
C(S,t) =S — Eexp{—r(T —t)} for large S

On the other hand the terminal condition, the boundary condition de-
fined for t = T, can be written as:

C(S,T) = max(S — E,0) = (S — E)*"
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Analogous terminal and boundary conditions hold for a vanilla European
put option. Given those conditions the solution of (5.8), for a call and a put
option respectively is:

C(S,t) = Sp®(dy1) — E exp{—rt}P(ds2)
5.9)
P(S,t) = Eexp{—rt}®(—da) — So®(—d1)

where ®(-) indicates the standard normal cumulative distribution function

and:
iy — In(So/E) + (rta?/2)T
oT ’
dy = dy — oVT.

5.4.1 Pricing a plain vanilla European call option

An European vanilla call option is a contract giving to the owner the right
to buy a share of a specific common stock (whose price is S(¢) at time t) at
a fixed price E at a certain date 7. In the previous introduction we have
defined the Black and Scholes equation for the value C(S,t) of an European
call option on an asset of value of value with a given volatility and interest
rate. As we showed there exists a closed form solution of the B&S equation
for this kind of option contract. It gives us the possibility to test the quality
of the numerical solution achieved through the proposed B-spline collocation
scheme.

As an example, we consider an European vanilla call option with exercise
price E = 100, volatility 0% = 0.32, risk free rate r = 0.1, and exercise time
1 year. The change of variables U(z,7) = +V (Eexp(Lz), k) with 7 = T — ¢,
z € [-1,1],k =27/0%*and L = —r(T —t) leads to the following reformulation
of (5.8): )

?93 = _LQ?)QZ — (k- 1)ngg + kU, (5.10)
with terminal condition U (z, 0*T/2) = max(exp(Lx)—1,0) and the boundary
conditions U(—1,7) = 0,and U(1,7) = exp(L) — exp(—k(To?/2 — 7)).

Following the framework described in the previous sections we compute
the basis matrices B;,, B, B/T'j, Bgi, B’Tj and By, r, = B;; ® By, and the par-
tial derivatives basis matrices U, = By, ®B;i, Upz = B, ®B;Z,, U = B/T]. ® By,
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Figure 5.7: The top panel shows the Numerical and analytic payoffs at maturity. The lower
panel shows the differences between the numerical results and the analytic ones.

This implies that the differential problem can be written stacking the differ-
ential equation and the related conditions in a linear system of equations:

Ur + LUy + (k= 1)L7'U, — kB, - 0

B‘r & Bz(x = _1) C _ 0

B; ® By(z =1) [ l } - el _ e—k(To'z/Q—‘r) ) (5'11)
B, (1 =To*/2) ® B, max(e""1,0)

where [ is a vector of Lagrange multipliers and c is the spline coefficient vec-
tor to be optimized. Figure 5.7 compares the price to maturity of the consid-
ered toy option contract computed through B-spline collocation and the ana-
lytic solution of the B&S model. The approximation error is quite small. Fig-
ure 5.8 shows the numerical and the analytical solutions for different times to
maturity. Also in this case it is possible to notice how close the two solutions
are.
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Figure 5.8: The left panel plots the numerical solution for a European call option (colored
surface) and the B&S price (gray surface) for different times to maturity. The right panel
shows the approximation error contours. These results have been obtained using 15 cubic
basis splines built on equidistant knots selected on the x and T directions.

5.5 Conclusions

In this chapter we introduced the B-spline collocation procedure for the so-
lution of linear ordinary and partial initial/boundary value problems. Collo-
cation is an efficient of one-step numerical procedure. All the discussed ex-
amples were related to differential problems with analytic solutions so that it
was possible to evaluate the quality of the results.

The selection of the number and the location of the collocation points
becomes an issue in many numerical application. The accuracy of the ap-
proximation and the computational cost required by the collocation scheme
depend on these aspects. One way is to choose a modest number of collo-
cation points and locating them according to some optimality condition (for
example following a Gauss-Legendre scheme). An alternative is to select the
collocation points in correspondence of the maximum value of the basis func-
tions. Botella (2002) defines this collocation procedure the “smoothest collo-
cation” scheme and compares it with a Gauss-based one. In this chapter and
in the rest of this work adopt a rather intuitive strategy locating the colloca-
tion points in such a way to obtain a relatively dense coverage of the domain.
The accuracy in terms of error analysis of our choice was not investigated and
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will be part of our future research.

As practical application we have shown how to solve the Black and Sc-
holes differential problem for pricing European options using a B-spline col-
location procedure. A plain vanilla call option has been considered. The
numerical approximation of the price to maturity has been compared with
the analytic solution of the B&S model. The same comparison has been per-
formed computing the price of an analogous option contracts with different
times to maturity. In all the cases the price approximated by collocation has
been found really close to the price computed using the analytic solution of
the differential problem.

Further generalizations of the collocation scheme are possible and will be
illustrated in the coming chapters. We will show, for example, that it is possi-
ble to define a collocation procedure able to take into account inequality con-
straints imposed on the state function or on one (or more) of its derivative(s).
Analogously, using a B-spline collocation procedure, it is possible to approx-
imate state functions imposing irregularities on its domain or codomain. Fi-
nally, the collocation approach is flexible enough to be adopted to approx-
imate the solution of different classes of differential problems such as time
varying parameter, non linear and delayed equations.



DIFFERENTIAL PENALIZED SMOOTHING

Smoothing procedures driven by differential equations have gained
popularity in the last few years. These methods combine basis functions
and differential operators in a penalized estimation setting. The results of
the analysis are interpretable in relation to the dynamics described by the
differential law taken into account. In this chapter we show an approach
for functional smoothing able to take into account not only the differen-
tial operator but also initial/boundary conditions. We also propose a two-
stage procedure based on P-splines for the estimation of the unknown DE
parameters.

Keywords: B-splines, collocation method, P-splines, Ordinary Differen-
tial Equations, generalized conditions.

6.1 Introduction

Penalized smoothing techniques have a prominent place in modern over-
parametric regression analysis. The penalty term determines the character-
istics of the final fit, balancing between smoothness and fidelity to the data
of the estimated curves. In this chapter we formulate a penalized smoothing
problem based on B-spline functions guaranteeing a certain degree of flexi-
bility to the final estimates.

Different definitions of the penalty term have been proposed in the liter-
ature. Smoothing splines are based on a penalty term representing the inte-
grated second derivative of the final fit. On the other hand penalized splines
(P-splines), introduced by Eilers and Marx in 1996, define a penalty term ob-
tained as differences between the spline coefficients.

More general penalties are possible. L-spline smoothing techniques con-
sider penalty terms combining the derivatives of the final estimates defining

81
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a differential operator. The idea is to smooth the raw data penalizing the least
squares problem taking into account a model for the underlying dynamics.
Examples of this kind of approach have been discussed by Schumaker (1981),
Ramsay and Silverman (2005), Welham et al. (2006), Wood et al. (2008) and
many others. In this framework the observed data can be viewed as a sort
of generalized conditions applied to a numerical scheme for the numerical
solution of a differential equation.

This approximation is obtained by balancing between two conflicting
aims: the fidelity to the data (measured by the residual sum of squares) and
the fidelity to the approximate solution of the differential problem behind
them (obtained integrating the differential operator included in the penalty):

min [y o(t, )|+ A [ [L(a(t,),w)dr,

where c is the vector of of basis coefficients determining the smoothing func-
tion, L(x(t,c),w) is a differential operator that depends on the differential
parameters vector w and A is a smoothing parameter determining the em-
phasis given to the numerical scheme in the estimation procedure.

In practical applications the parameters w have to be estimated from the
available observations. A possibility is to estimate them minimizing a joint
penalized log-likelihood. The penalized minimization problem can be sim-
plified, exploiting the hierarchy existing between the unknowns and consid-
ering the basis coefficients as nuisance parameters, leading to the so called
"generalized profiling technique” proposed by Cao and Ramsay (2007).

In this chapter we propose to estimate the unknown DE parameters using
a P-spline-based two-stage approach moving from the consideration that, if
the differential problem represents a good description of the observed mea-
surements, the signal has to be consistent with the state function.

This chapter is organized as follows: in section 6.2 the differential pe-
nalized smoothing approach is introduced in the case of known differential
operators. We also discuss the introduction of known and unknown ini-
tial/boundary conditions defining the differential problem clarifying the role
of Lagrange multipliers in the estimation procedure. In section 6.3 we focus
on the role of the smoothing parameter introducing an EM-based algorithm
(see Schall, 1991) for its optimization. In section 6.4 we deal with smooth-
ing problems driven by unknown linear differential operators introducing



6.2. Smoothing with ordinary differential penalties 83

a P-spline-based two-stage approach to estimate the unknown DE parame-
ters. The performance of this procedure is evaluated through two simulation
studies. Finally, in section 6.5, a real data example is analyzed.

6.2 Smoothing with ordinary differential penalties

Suppose we observe a set of noisy data described, at least approximatively,
by a differential model and have an idea about the ODE describing the dy-
namic underlying the observations What happens if our knowledge about
the differential equation describing the observed dynamics is not precise or
even not correct? In this case the solution of the differential problem would
provide an inadequate description of the observed measurements. It is pos-
sible to overcome this problem forcing the solution of the DE we have in
mind to give an appropriate description of the data. This can be achieved
using a smoothing approach penalized by a differential operator approxi-
mated using a collocation scheme. If we define @(t) = > B;(t)¢; the ap-
proximated state function computed using a B-spline collocation procedure
and V(w,t) = >0 > im0 wdéj(.d)ﬁj the approximated differential operator, our

estimation problem is summarized by:

n nom
min [ly = > Bie |2 + A1 Y D waByV e, (6.1)
J J d=0

where ) is a smoothing parameter balancing between the residual sum of
squares and the collocation approximation of the observed dynamics, c is a
vector of unknown spline coefficients, w is a vector of m DE parameters that
we consider, for the moment, known (m indicates the order of the differential
operator that we consider to be linear in this chapter).

In the formulation above we used the breve accent to distinguish two
sets of points on which the basis functions are evaluated. The B-splines in-
volved in the penalty term are evaluated on an ”enlarged” set of IV collo-
cation points. On the other hand the basis functions in B are evaluated at
observed domain points. This definition of the penalty term is convenient
in those cases a moderate number of observations is available providing a
more precise definition of the collocation solution of the hypothesized differ-
ential problem. This issue is particularly relevant when we are interested in
estimating the DE parameters from the data, as we discuss later.
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To illustrate how the spline coefficients are computed, we present some
examples assuming to know the DE parameters. The first simulated example
is represented by the data depicted in the first panel of figure 6.1 (squared
gray dots). This plot shows 200 observations y;(t) generated adding a Gaus-
sian noise to the solution of the following differential problem:

y =2y, t € {0,2}
y(t=10)=2.

The optimal spline coefficients can be estimated solving;:
(BTB+AVTV)e = BTy,

with V = B' — 2B'. The optimal A\ parameter has been selected using an
EM-type procedure (see section 6.3). The large optimal smoothing parameter
testifies the appropriateness of the imposed collocation scheme in describing
the observed dynamics.

In the previous example the initial value condition has not been consid-
ered in the smoothing procedure. Lagrange multipliers offer an easy way to
include this kind of “hard constraints” in the penalized smoothing problem.
Figure 6.2 shows a set of 200 data points simulated adding a Gaussian noise
to the analytic solution of the following second order BVP:

y +y +2y=0, te{0,2r}
y(0) =0, y (27) = 1.

The estimation problem can be summarized as follows:
n N
i _ a2 3" L B B Ve |2
HlCIIlHy ZBJCJH "‘)‘”Z(B] + Bj + 2B;)¢]|”,
j j

stu(t=0)=0,7a (t=2mr) =1

-

where V = B" + B' 4+ 2B, K = [B(t = 0) B'(t = 2n)]", ¢ is a vector of spline
coefficients, [ is a vector of Lagrange multipliers and b is a vector of boundary

The optimal spline coefficients follow from:

BT
) Y1, 6.2)

BTB+\VTv KT
K 0
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Figure 6.1: Smoothing with known differential penalties. The data have been simulated
taking into account a linear first order ODE. The upper panels shows the raw data and the es-
timated smoothing function while the lower panel shows the residuals between the smoother
and the solution of the differential problem. The estimates have been obtained using the pe-
nalized smoothing approach introduced in equation (6.1) using cubic B-spline functions built
on 50 equally spaced knots. The bases included in the penalty term have been evaluated on a
set of 500 points.

values. The Lagrange multipliers can be interpreted as the shadow price that
the smoothing procedure has to pay to respect these hard constraints. For
this reason we expect small Lagrange multipliers if the imposed conditions
are consistent with the data dynamics.

It is also possible to introduce unknown prescribed conditions and es-
timate them from the available data. The procedure is analogous to what
we have described in (6.2) with the difference that now the vector b is un-
known. The optimal differential conditions are inferred from the observed
measurements exploiting a least squares procedure. Using the same notation
introduced above, we define Q = VTV + KTK and B(z)Q 'MT = G. The
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Figure 6.2: Smoothing with known differential penalties and boundary conditions. The
data have been simulated taking into account a linear second order ODE. The upper panels
shows the raw data and the estimated smoothing function while the lower panel shows the
residuals between the smoother and the solution of the differential problem. These estimates
have been obtained considering 50 cubic spline functions built on equally spaced knots. The
bases involved in the penalty term have been evaluated on a grid of 500 domain points.

optimal prescribed values follow from:
(GTG)b = GTy.

Once that these values have been estimated they can be plugged in (6.2) to
find the spline coefficients minimizing the constrained penalized smoothing
problem.

Figure 6.3 shows the results obtained smoothing a series of data described
by the system of ODEs:

/

aclz = —x1 — 0.529
s.t. 1‘1(0) = 0, 132(0) =2
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Figure 6.3: Smoothing with known differential penalties and unknown boundary condi-
tions. The data have been simulated taking into account a system of linear ODEs. The upper
panels shows the raw data and the estimated smoothing function, the second plot compares
the analytic first derivative of the state function with the approximated one and, finally, the
lowest panel shows the residuals between the smoother and the solution of the differential
problem. These estimates have been obtained considering a set of 50 cubic basis functions
built on equally spaced knots. The initial values have been estimated equal to 0.022 and
1.965 respectively.
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The high value of the optimal smoothing parameter (selected again through
an EM-type algorithm) testifies that the differential problem penalizing the
smoothing procedure is appropriate to describe the observed dynamics. The
same aspect can be evaluated considering the residuals between the analytic
solution and the smoothing function plotted in the lowest panel of the figure.

6.3 The role of the smoothing parameter

The smoothing parameter A plays a crucial role in the evaluation of the ap-
propriateness of the differential operator included in the penalty term. This
parameter sets the balance between to the data and the fidelity to the DE.

For A — oo fidelity to the DE becomes all-important and the data provide
only generalized boundary conditions. On the other hand when A — 0 we
get a B-spline fit which may lead to trouble because support might be missing

for some basis functions.

It is attractive to use the data to set an appropriate value of \. In principle,
all the automatic selection criteria introduced in chapter 3 can be used. Here
we introduce a different procedure based on an EM-type algorithm that will
be crucial for the mixed model framework we will present in the next chapter.

This algorithm was originally proposed by Schall (1991) as an iterative
estimation procedure for mixed effects and dispersion components in gener-
alized linear models with random effects (mixed models). This approach
moves from the formal equivalence between penalized least squares and
mixed models (we will discuss this topic in more details in the next chap-
ter). The same equivalence can be exploited to select the optimal smoothing

parameter.

The optimization algorithm consists of two alternating steps. In the first
step the optimal spline coefficients are estimated considering a given value of
. In a second step the variance components of the errors (¢2) and the penalty
variance (07) are estimated. Then the value of the smoothing parameter is
updated taking it equal to the ratio between the current estimates of these
variances: A = o2/ 012,. The procedure is iterated until convergence of the

smoothing parameter.

The two variance components are functions of the effective model dimen-
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Figure 6.4: smoothing data described by a linear first order ODE (exponential growth).
Each plot shows the results obtained for different DE parameters. In the legend of each panel
the optimal smoothing parameter is indicated.

sion ED = tr[B(BTB 4+ AVTV)~1BT]:

(6.3)

Figure 6.4 clarifies the impact of the parameters of the DE on the optimal
value of A selected through an EM-algorithm. If the penalty is close to the DE
the optimal ) is large; otherwise it is small.

6.4 Smoothing with unknown differential penalties

It is possible to estimate the unknown DE parameters. A common approach
is to write the (analytic or numerical) solution of the equation as explicit func-
tion of the unknown parameters to be estimated from the data. This generally
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leads to a nonlinear regression problem even if the DE is linear. An alter-
native approach is to incorporate the differential equation as a penalty in a
smoothing framework as suggested by Ramsay and Silverman (2005). The
optimal DE parameters and smoothing coefficients are then estimated min-
imizing the penalized joint log-likelihood. A more convenient estimation
procedure exploiting a generalized profiling likelihood criterion has been
proposed by Cao and Ramsay (2007). Here we propose a two-stage P-spline-
based estimation of the unknown DE parameters.

We start from the consideration that the state function solving the DE
describing the observed will be consistent with the data signal if the DE is
appropriate. First the signal is extracted from the noisy measurements using
a P-spline smoother. The optimal amount of smoothing is determined by the
EM-algorithm. The estimated spline coefficients are then used to estimate the
parameter vector w through least squares.

Once the differential parameters have been estimated we define the
penalty term V and use it to estimate the optimal spline coefficients:

¢=(BT"B+\VTV)"1BTy. (6.4)

Figure 6.5 shows an example based on 200 observations generated taking
into account the analytic solution of following the system of first order ODEs:

SU,1 = I3
33/2 = =21 — %.1'2
.771(0) = 0; :BQ(O) =2.

6.4.1 Simulations

We propose two simulation studies related to a first and a second order DE.
We want to evaluate the influence of the sample size, the number of subjects
and the variance of the noise component on the estimates.

The first order differential problem that we take into account is:

This IVP has analytic solution y*(t) = 2exp(—x). We perform our simula-
tions for 4 different sample sizes: N = {20, 50, 100, 200} and 4 noise standard
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Figure 6.5: Smoothing with penalty defined by a system of ODEs. The upper panel shows
the raw data and the estimates while the lower panel shows the residuals between the esti-
mated smoother and the analytic solution. The estimates have been computed considering 50
B-splines of fourth degree defined on a set of equally spaced knots. The bases used to define
the penalty have been evaluated over 500 points.

deviations € ~ N(0,0; = {0.05,0.1,0.2,0.3}). An example is shown in fig-
ure 6.6.

Table 6.1 shows the bias, standard deviation and RMSE of the estimates
estimated for 100 replications of the experiment per each sample size and
noise standard deviation. The bias of the estimates tends to decrease when
the sample size increases for different values of 0. The same is true for the
STDs and the RMSEs. On the other hand it is clear that, for a given sam-
ple size, increasing the variability of the noise components the quality of the
estimates tends to decrease.

We simulate now different data sets described by a second order BVP
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Figure 6.6: Smoothing with soft constraints defined by a first order ODE with different
sample sizes. The data have been simulated taking o = 0.1.

N =20 N =50
Truew =1 BIAS STD RMSE BIAS STD RMSE

o =0.05 -0.060 0.025 0.065 -0.051 0.028 0.058

o =0.10 -0.066 0.043 0.078  -0.062 0.028 0.068

0 =020 -0.065 0.090 0.111  -0.068 0.061 0.091

o =030 -0.060 0.146 0.158 -0.076 0.090 0.117
N =100 N =200

Truew =1 BIAS STD RMSE BIAS STD RMSE

o =0.05 -0.040 0.029 0.049 -0.020 0.018 0.027
o =0.10 -0.061 0.029 0.068 -0.058 0.027 0.064
o0 =020 -0.062 0.041 0.075  -0.065 0.032 0.072
oc=0.30 -0.064 0.055 0.084 -0.063 0.047 0.078

Table 6.1: Bias, standard deviations and root mean squared errors of the estimates of the
unknown DE parameters of a first order differential problem.
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Figure 6.7: Smoothing with soft constraints defined by a second order order ODE with
different sample sizes.

(harmonic oscillatory system):

y// + gy _ O
y(0) =0, y(5) =1.

Figure 6.7 shows the estimates obtained generating noisy data of 4 sample
sizes from the analytic solution of this BVP: y*(¢) = sin(3t)/sin(15). The er-
ror component was considered normally distributed with standard deviation
equal to 0.1.

For the simulations we used the same settings discussed in the previ-
ous example and the same number of replications. The results are shown
in table 6.2. An increasing sample size tends to guarantee more precise, less
variable and more robust estimates. Also the amount of variability of the
error component has an impact on the quality of the final estimates. As we
expected, for a given sample size the robustness, the variability and the pre-
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cision of the final estimates improve if the variability of the noise decreases.

N =20 N =50
True BIAS STD RMSE BIAS STD RMSE

=005 wi=9 0077 0.107 0.132  0.060 0.107 0.122
we =0 0.026 0.074 0.079  0.035 0.053 0.064

c=01 w1 =9 0124 0.210 0243  0.091 0.174 0.195
we =0 0.051 0.108 0.119  0.060 0.084 0.104

c=02 w; =9 0158 0.337 0.371  0.076 0.284 0.293
we =0 0115 0.189 0221 0.124 0.137 0.185

c=03 w =9 -0.069 0.464 0.467  0.064 0.393 0.396
we =0 0.165 0.211 0.267  0.130 0.191 0.231

N =100 N =200
True BIAS STD RMSE BIAS STD RMSE

0c=005 w; =9 0.056 0.102 0.116  0.058 0.083 0.101
wz =0 0.027 0.050 0.056  0.030 0.051 0.059

c=01 w1 =9 0.087 0.152 0.175  0.089 0.123 0.152
wz =0 0.049 0.068 0.084  0.089 0.075 0.086

c0=02 w=9 0129 0.253 0.283  0.091 0.229 0.245
wy =0 0.102 0.136 0.169  0.077 0.116 0.139

c=03 wi=9 0066 0.289 0295 0.138 0.242 0.277
wz =0 0107 0.152 0.186  0.115 0.134 0.176

Table 6.2: Bias, standard deviations and root mean squared errors of the estimates of the
unknown DE parameters of a second order differential problem.

6.5 Application: stomach contractions

As application of our methodology we propose an example motivated by the
analysis of the stomach contraction dynamics during digestion. The entire
dataset counts 241 . jpeg images forming a video of the stomach movements
during digestion. Figure 6.8 shows four MRIs sampled from the whole set of
images. Our aim is to estimate a model that approximately describes this dy-
namic. We will analyze the data related to a single slice even if our analysis
could be repeated for each available profile. The raw data are presented in
figure 6.9 showing ten noisy series. The lengths of cross-sections were mea-
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sured at 10 positions along the stomach, at each point in time. This gives 10
time series of 300 measurements showing a rather oscillatory behavior. We
take into account the dynamics described by the linear second order ODE:

Y+ wiy + way = 0.

This model is really simple but gives us the possibility to evaluate two impor-
tant characteristics of the observed data: the period (7) of the oscillations and
the damping factor (E ) associated to them. These characteristics are defined
by the free response of the system, defined by the DE. It is a damped cosine
function. The period is two times the distance between zero crossings. The
damping is the ratio of two peaks separated by one period. The period of os-
cillation is the smallest interval of time in which an oscillating system returns
to the sate it was at a time arbitrarily chosen. If the amplitude of the oscilla-
tions decreases in time the system is defined “damped”. Damping effects are
usually induced by frictional forces and are measured by the damping ratio.
The damping ratio is the dimensionless measure describing how oscillations
decay after that a source of disturbance is applied. These quantities can be
expressed in terms of the DE parameters (w; and ws) and are computed as

~ /1 =~ w2
= 2 _— = .
T T U)Q7 C 2,/w1

The solid lines in figure 6.9 depict the final estimates obtained using the

follows:

penalized smoothing procedure described above. The optimal smoothing
parameters have been selected through an EM-type algorithm. The estimated
DE coefficients and the smoothing parameters per each curve are shown in
table 6.3 and in the legends of each panel of figure 6.9.

From table 6.3 we deduce some information about the models that have
been estimated per each profile. The optimal A parameters are high for few
waves showing a large period and are relatively small for the rest of the
cases. Small smoothing parameters indicate low congruence of the data with
the imposed differential penalty. This seems reasonable looking at the data.
It is evident from the smoothing curves that the oscillatory behavior of the
data presents an asymmetric pattern: the peaks are sharper than the valleys.
This asymmetry is not consistent with the linear differential model used as
penalty in the smoothing procedure. Probably a nonlinear equation would
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Figure 6.8: Four abdominal MRIs.

be more appropriate to describe the dynamics governing the raw data. On
the other hand the estimated periods and damping factors seem consistent
with what we observe from the measurements. The period is on average
around 36 and reaches its maximum for those waves showing a roughly con-
stant signal (see, for example the first wave on the third row of figure 6.9).
On the other hand, the estimated period is smaller for those waves showing
a more frequent oscillatory behavior. It is the case, for example, of the first
and second waves on the first row of figure 6.9 for which the estimated peri-
ods (around 26.7) seem appropriate to describe the observed dynamics. The
estimated damping factor is always close to zero and it is consistent with the
behavior of the data.
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Figure 6.9: Smoothing of 10 stomach profiles. The black lines represent the estimates
obtained with the procedure described above. The estimated DE coefficients, the smoothing
parameters and the Lagrange multipliers are shown in the legend of each plot. The estimates
have been obtained using 100 fourth order B-splines built on equally spaced knots. The bases
defining the penalty term have been evaluated over 500 domain points.

Wave @1 7_/172 A % C
1 0.055 0.001 8.7 26.7  0.001
2 0.055 -0.001 17.2 26.7 -0.002
3 0.024 0.012 2475 404 0.037
4 0.031 0.015 2663 355 0.043
5 0.012 0.015 11539 575 0.069
6 0.023  0.001 31.1 41.3 -0.001
7 0.026  0.020 327 391 0.061
8 0.042 0.004 121.6  30.6 0.010
9 0.044 0.005 111.6 299 0.011
10 0.035  0.005 31.0 33.5 0.013

Table 6.3: Estimated DE components and optimal X for each stomach wave.
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6.6 Conclusions

In this chapter we introduced an ODE-based penalized smoothing approach
using a linear combination of basis spline functions for the approximation
of the state function in analogy with a B-spline collocation scheme. Penal-
izing the smoothing procedure by a linear differential operator we imposed
consistency between the estimated smoothing function and the state function
approximating the solution of the ODE-based penalty.

A smoothing parameter ()\) regulates the fidelity of the final estimates
to the DE. This parameter, if selected using an automatic procedure, can be
interpreted as a data-based measure of the appropriateness of the differen-
tial operator penalty. We suggested to select this parameter through an EM-
type algorithm exploiting the mixed model interpretation of penalized least
squares.

Initially we have supposed to know exactly the form of the DE governing
the observed dynamics. This is an unrealistic hypothesis in real data anal-
yses. For this reason we introduced a two-stage P-spline-based procedure
to estimate the unknown DE parameters, parameters following these steps:
1) smooth the raw data using a P-spline smoother able to separate the data
trend from the noise component, 2) estimate the unknown DE parameters
from the fitted curve through least squares. This simplifies, in our opinion,
the estimation task separating the computation of the DE parameters from
the data smoothing problem. The performances of this approach have been
evaluated through simulations.

We also analyzed a real data example based on a set of time series describ-
ing the contraction movements of a stomach cross-section extracted from
MRI images. A second order linear differential model has been proposed
to describe this dynamics. The estimated differential parameters seem con-
sistent with the data evidence even if the proposed linear differential model
appears too simple to describe the observed asymmetric oscillatory behav-
ior. A nonlinear differential equation should give more appropriate results
but we did not evaluate yet the possibility to generalize our approach to non-
linear differential equations.

Further generalizations are possible. First of all, it is possible to allow for
mixed effect DE parameters (we will discuss this topic in the next chapter).
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This generalization is useful when the available observations are grouped
according to some factor. On the other hand, it is possible to extend the pro-
posed procedure to smooth data representing system dynamics evolving in
more than one dimension combining tensor product smoothing splines and

partial differential penalties.






DIFFERENTIAL OPERATOR PENALTIES WITH
MIXED PARAMETERS

Smoothing techniques able to take into account the dynamics of sys-
tems described by differential problems have been proposed in the literature
by many authors. Most of these approaches consider the unknown differ-
ential parameters as fixed effects. In many applications it is interesting to
study the relationship between measurements grouped according to one or
more factors. This leads to a mixed model formulation. In this chapter we
propose an ODE-based penalized smoothing spline approach to analyze
the measurements of dynamic systems described by differential equations
with mixed parameters.

Keywords: Penalized least squares, smoothing splines, random effects,
differential problems.

7.1 Introduction

Differential equations (DEs) are powerful tools for describing dynamic sys-
tems. In practical applications the values of their parameters have to be es-
timated from observed data. The common approach is to write the solution
of the equation as an explicit function of the parameters and fit them to the
data. Generally this leads to a nonlinear regression problem even if the DEs
are linear. If no explicit solution is available a similar approach can be used
based on numerical solution of the DE.

An alternative is to incorporate the differential equation as a penalty in
a smoothing framework (Ramsay and Silverman, 2005). In this case a joint
penalized log-likelihood has to be minimized in order to estimate a smooth
version of the raw data together with the unknown DE parameters. The pe-
nalized minimization problem can be simplified exploiting the hierarchy ex-
isting between the unknowns and considering the basis coefficients as nui-

101
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sance parameters. This leads to the so called generalized profiling technique
proposed by Cao and Ramsay (2007). In the previous chapter we have pro-
posed an alternative P-spline-based two stage procedure.

In many data analyses the data are grouped in some way. Typical ex-
amples are measurements on different subjects or collected repeatedly over
time. A mixed model is a natural way to analyze grouped data. In the case
of dynamic systems it would be a mixed model for the DE parameters.

A classical procedure for the estimation of a random and a fixed com-
ponent of the DE parameters involves a nonlinear mixed model approach.
Given the analytic or numerical solution of the DE, the related parameters
can be estimated using nonlinear mixed models. This is the rationale behind
many well known software packages like NONMEM and MONOLIX.

An alternative is a semiparametric approach including the DE in a
smoothing framework as a penalty term. The mixed DE parameters are then
estimated minimizing the penalized joint log-likelihood or a restricted likeli-
hood function. A generalized profiling approach to solve this estimation task
has been proposed by Wang et al. (2012).

In this chapter we extend our discussion about differential penalized
smoothing allowing for a mixed model formulation of the differential pa-
rameters. We propose to adopt a P-spline-based two-stage procedure for the
estimation of the fixed and random components, exploiting the link between
penalized regression and mixed model framework, in order to estimate the
residual and random effects variance components (Pawitan, 2001).

This chapter is organized as follows: in section 7.2 the relationship be-
tween penalized least squares and mixed models is reviewed; in section 7.3
we introduce the two-stage procedure for the estimation of mixed DE param-
eters analyzing a simulated example; in section 7.4 two simulation studies are
discussed in order to evaluate the performance of our proposals while in sec-
tion 7.6 our approach is used to analyze the stomach MRI data introduced in
the previous chapter.
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7.2  Penalized least squares and mixed models

A linear mixed model is commonly summarized using the following func-

tional form:
y=XB+ Zb+ e, with e ~ N(0,02), bNN(O,ag), (7.1)

where y is the n-dimensional response vector, X is a n x m model matrix for
the m-dimensional fixed effect vector 5 and Z is a n x k model matrix for
the k-dimensional random effect vector b. The vector € represents a Gaussian
noise component having zero mean and constant variance 2. The random
coefficients are also supposed to be normally distributed but with their own
variance o7 and zero mean.

One way to introduce this last hypothesis in the regression framework is
through penalized least squares. The requirement of b coefficients consistent
with a Gaussian probability law introduces a restriction on their codomain.
These coefficients are defined in | — oo, oo[ but values around the mean (zero)
are supposed to be more probable than extreme values (in module). Combin-
ing the log-likelihoods of the measurement vector y and the random effect b
and dropping the terms not involving the mean parameters 5 and b we ob-
tain:

log(L) = —ﬁ > (yij — Biwi; — bjzij)* — = b b. (7.2)
ij
Given 0'52 and O'g, the estimates of b and 3 are the minimizers of the penalized
sum of squares:

> (yij — Biwij — bjzij)* + AbTb,
ij
where A = 02 /0?.

The joint log-likelihood based on the observations y and the random ef-

fects b considering unknown variance components is given by:

log(L) = —gloglocl| — 5(y — XB — Zb)"(021) " (y — X B — Zb)

. (7.3)
—2log(o}) — ﬁbTb.
The estimates of 5 and b are the solution of:
XTX X'z B XTy
= ; (7.4)
AD. GEVANADY | b ZTy




104 Chapter 7. Differential operator penalties with mixed parameters

with A = —Zé The random effects are estimated solving the following equa-
b
tion:

(ZTZ + Mo = Z"(y — XB). (7.5)

The variance component are estimated optimizing the A\ parameter
through an EM-type algorithm. For a given value of the shrinkage param-
eter \g the effective model dimension ED can be computed evaluating the
trace of the hat matrix (Hastie and Tibshirani (1990) and chapter 3), then the
noise variance follows from:

s lly—X8—zb)?
n—ED

m

while the variance of the random effects is equal to:

bTh
o

= 5D
Using these values we compute a new \ parameter as the ratio of the two
variance components leading to a new value of the model effective dimen-
sion. The variance components minimizing (7.3) are estimated iterating these

steps until convergence as we shown in chapter 6 (Pawitan, 2001).

7.3 Two stage estimate of mixed DE parameters

Suppose we observe a set of n noisy measurements taken over k subjects with
a nonlinear subject-specific trend appropriately described by the state func-
tion solving a certain differential equation with a known form but unknown
parameters.

To clarify the problem settings we consider the example shown in fig-
ure 7.1. This figure depicts 100 measurements taken over 10 “subjects”. The
data have been simulated considering the following first order differential
problem:

% +(B+b)y(t) =0, t €[0,2]

y(0) =2,

The DE parameters are the sum of a fixed (population shared) effect 5 and a
random (subject-specific) effect (b;) ~ N(0, Io?) with o7 = 0.01. In the simu-
lation a multivariate Gaussian noise with zero mean and a constant variance
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equal to 0.07 has been added to the numerical solution of the differential
model. The fixed effects have been considered equal to 5; = 1.

Our aim is to estimate the unknown fixed and random DE parameters
starting from the subject specific measurements. We propose a two-stage
approach to get these estimates. We suggest to proceed as follows: 1) fit a P-
spline smoother for each subject specific measurement set such that to sepa-
rate the trend component from the random noise, 2) use the estimated penal-
ized spline coefficients to approximate the state function and its derivatives.
The unknown mixed DE and the variance components are estimated through
a linear mixed model approach. These estimates can be conveniently ob-
tained exploiting the relationship between LMM and penalized least squares
discussed above.

For the example that we are considering the linear model to be estimated
is:

y=XB+Zb+e, e~ N(0,6°1), b~ N(0,021),

with y a (1000 x 1) vector of § estimated over all the subjects, X a (1000 x 1)
matrix containing 7 estimated for each subject and Z a (1000 x 10) block diag-
onal matrix with each block representing the approximated subject-specific

~

Yy

Zy 0 -+ 0
0 Zy -+ 0
0 oo oo Zm

The fixed and random effects are estimated solving:

1-

The estimates of the random coefficients depend on the value of the shrink-

XTx XxXTz
77X 777 4+ \I

XTy
ZTy

age parameter. In the mean time this parameter is used to estimate the vari-
ance of the random effect. These unknowns are estimated together optimiz-
ing the value of X\ through an EM-algorithm in analogy with what we dis-
cussed in the previous section. On the other hand the error variance cannot
be estimated in this step given that we are using a smooth version of the data
to approximate the DE parameters. This variance component is obtained in
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Figure 7.1: Simulated data driven by a first order ODE with random period and damp-
ing parameters. The left panels show the subject specific profiles separately while the right
panel shows the entire dataset (100 measurements over 10 subjects). The gray dots in the
left panels show the subject-specific observations and the solid lines represent the data trend
extracted penalizing a smoothing procedure by approximating the differential through a col-
location scheme. The right panel shows the entire dataset and the subject-specific smoothing
functions. In the legend of the right plot the estimates of the fixed effect and of the variance
components are listed.
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a second moment when we smooth the raw data taking into account the es-
timated differential operator.

Indeed, once the fixed and random DE parameters have been estimated,
we include the (linear) differential operator in a penalized smoothing frame-
work in order to obtain subject-specific smooth curves (solid lines in fig-
ure 7.1):

min [ly — Bal| + ||V (w)al|? (7.6)

where B is a B-spline matrix, o is a vector of spline coefficients to be es-
timated, § is a smoothing parameter and V (w) is a (linear) differential op-
erator defined by a (linear) combination (with coefficients w; = 3 4+ b;) of
basis spline matrices evaluated on an enlarged set of collocation points (anal-
ogously to what we discussed in chapter 6). The smoothing parameter § reg-
ulates the balancing between the goodness of fit criterion and the adherence
of the smoothing function to the numerical solution of the differential prob-
lem. On the other hand it represents the ratio between the noise variability
and the variability of the penalty term ||V (w)a|/? and so, optimizing it, we
estimate o2. The results are in table 7.1. The estimates are close to the true

ones.

True Estimated B+0b; B +6;'
0.945  0.930

8 1.000 0.986 0971  0.960
0.787 0.742

1.026  0.993

0989 0971

oe 0.070 0.074 0.967 0.947
0912  0.889

0.957  0.927

1.106 1.081

oy 0.100 0.106 0.805  0.802

Table 7.1: Estimates obtained for the example shown in figure 7.1.

74 Simulations

We propose two simulation studies related to a first and a second order DE.
We want to evaluate the influence of the sample size, the number of subjects
and the variance of the noise component on the estimates.
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Consider the ODE introduced in the previous section:

W b =0, e 0,2

y(0) = 2,

having the analytic solution y* = 2exp((8 + b;)t). We simulate subject-
specific measurements and add a noise with o, = 0.07. The random effects
are drawn from a Gaussian distribution with zero mean and standard devi-
ation o, = 0.1. We take into account n = {20, 50, 100,200} measurements
recorded over m = {10, 20} and a fixed effect equal to 3 = 1. See figure 7.1
for a typical result.

Table 7.2 summarizes the results based on 100 replications. According to

n = 20 n = 50
True BIAS STD RMSE  BIAS STD RMSE
m=10 pg=1 -0.0667  0.0298  0.0730 -0.0582  0.0303  0.0655

o, =0.1 -0.0035 0.0040 0.0053 -0.0018 0.0042  0.0046
o =0.07 0.0005 0.0017  0.0018 0.0006  0.0013  0.0014

n = 100 n = 200
True BIAS STD RMSE  BIAS STD RMSE
=1 -0.0589  0.0292  0.0656 -0.0356  0.0318  0.0477

op =0.1 -0.0042  0.0039  0.0057  0.0005 0.0044  0.0044
oe =0.07  0.0002 0.0025  0.0028  0.0001 0.0006  0.0006

n = 20 n = 50
True BIAS STD RMSE  BIAS STD RMSE
m=20 p=1 -0.0711 0.0201 0.0738 -0.0637 0.0198  0.0666

o, =01 -0.0025 0.0029 0.0038 -0.0018 0.0028  0.0033
oc =0.07 0.0005 0.0019  0.0020 0.0005  0.0011  0.0012

n =100 n = 200
True BIAS STD RMSE  BIAS STD RMSE
=1 -0.0630  0.0238  0.0673 -0.0349  0.0201  0.0402

op, =0.1 -0.0036  0.0031  0.0047 -0.0004 0.0029  0.0029
oe =0.07  0.0004 0.0027  0.0028  0.0002 0.0005  0.0005

Table 7.2: Bias, standard deviations and RMSE of the estimated fixed effect and variance
components obtained over 100 replicates of an experiment based on a first order DE with
random parameters. The data have been generated considering different sample sizes and
different numbers of subjects. These results have been obtained considering B splines built
on 20 knots for each sample size. The bases included in the penalty terms have been evaluated
over a set of 500 collocation points.

the results shown in table 7.2 the quality of the estimates seems to improve
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if we consider a larger sample size per each subject and, for a given sample
size, if we consider a larger number of subjects. The fixed effect seems to be
slightly underestimated. The bias of the estimated variance components ap-
pears really small and tends to decrease when the sample size or the number
of subjects considered increases. The associated standard deviations and root
mean square errors show the same behavior.

In order to evaluate the impact of the variability of the noise component
on the final estimates we consider the results summarized in table 7.3. These
results have been obtained considering n = 50 observations simulated for
m = {10, 20} subjects and adding a Gaussian noise with o, € {0.07,0.1,0.15}
to the solution of the DE. As we expected, the quality of the estimates tends
to decrease increasing the variability of the simulated noise component even
if this effect seems negligible. Also the variability of the estimates tends to
be higher when the variability of the noise component increases but these
increments are moderate.

m = 10 m = 20
True BIAS STD RMSE BIAS STD RMSE

B=1 -0.0582 0.0303 0.0655 -0.0614 0.0287 0.0677
o, =0.1 -0.0018 0.0042 0.0046 -0.0028  0.0041  0.0049
oe=0.07 6.0e-04 0.0013 0.0014 9.0e-04 0.0018 0.0020

m = 10 m = 20
True BIAS STD RMSE BIAS STD RMSE
B8=1 -0.0637 0.0198  0.0666 -0.0672 0.0190  0.0698

op =0.1 -0.0018  0.0028  0.0033 -0.0023  0.0028  0.0036
oe=0.1 5.0e-04 0.0011 0.0012 5.0e-04 0.0019 0.0020

m = 10 m = 20
True BIAS STD RMSE BIAS STD RMSE
s=1 -0.0724 0.0340 0.0799  -0.0679 0.0207  0.0710

op, =0.1 -0.0023  0.0036  0.0043 -5.0e-04 0.0027 0.0033
o.=0.15 -3.0e-04 0.0042 0.0042 3.0e-04 0.0053 0.0053

Table 7.3: Bias, standard deviations and RMSE of the estimated fixed effect and variance
components obtained over 100 replicates of an experiment based on a first order DE with
random parameters. The data have been generated considering different degrees of variability
of the noise component and 50 observations measured for m = {10, 20} subjects.

A similar simulation study can be used to evaluate the performance of
the proposed procedure dealing with a set of grouped data described by the
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second order ODE:
d? d
S (Bu b)) T+ (Br+ bag)y(t) =0, € [0,

y(O) =0, y(5) =1,

where 3; and [ are the fixed effects and b;, b2 are the random DE pa-
rameters. For the simulations we set 51 = 0.5, f2 = 0.5 and {b1 ;,b2,;} ~
MVN((0,0),0, = diag(0.1,0.1)) and solve each DE numerically through
a B-spline collocation procedure. A noise ¢ ~ N(0,0 = 0.1) is added to
the approximated solution. To investigate the performance of the proposed
P-spline-based two stage-approach we generate different data sets consid-
ering various sample sizes and numbers of subject-specific dynamics. In
analogy with what we did for the first order example above, we consider
n = {20, 50, 100, 200} measurements taken over m = {10, 20} subjects.

A possible data configuration is shown in figure 7.2. Table 7.4 summa-
rizes the results based on 100 replications. Taking constant the number of
subjects considered in the analysis the quality of the estimates tends to in-
crease when the number of measurements per subject increases. This can be
evaluated looking at the behavior of bias, standard deviation and RMSE of
the final estimates. On the other hand, if more subjects are included, for a
given number of subject-specific measurements, we obtain better estimates
of the variance components.

It is interesting to evaluate how the noise component influences the es-
timates. We simulate n = 50 observations measured over m = {10,20}
subjects using consider the same values for the fixed effects, {b1,b2} ~
MV N((0,0), 0, = diag(0.1,0.1)) and repeat this simulations for e ~ N (0,0 =
{0.1,0.15,0.2}). Table 7.5 summarizes the results obtained for 100 replica-
tions. The bias of the final estimates tends to increase if the noise components
is more variable even if this effect is not so evident. The variability and the
root mean squared errors of the estimates show a similar behavior. On the
other hand, the estimated values seem consistent to the simulated ones for
each level of o..
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n =20 n = 50
True BIAS STD RMSE BIAS STD RMSE

m=10 fp; =05 -0.0185 0.0368 0.0410 -0.0205 0.0325  0.0383
B2=0.5 -0.0138 0.0341 0.0366 -0.0184 0.0295  0.0347
oy, =01 -0.0016 0.0044 0.0047 -0.0013 0.0049  0.0050
oy, = 0.1 -0.0025 0.0037 0.0044 -0.0011 0.0059  0.0060
oe=0.1 0.0019 0.0045 0.0049  0.0003 0.0022  0.0022
n = 100 n = 200
True BIAS STD RMSE BIAS STD RMSE

f1 =05 -0.0237 0.0335 0.0409 -0.0063 0.0341  0.0345
B2=05 -0.0230 0.0319 0.0392 -0.0025 0.0348  0.0347
oy, =01 -0.0011 0.0048 0.0049 -0.0014 0.0043  0.0046
op, =0.1 -0.0013 0.0045 0.0047 -0.0012 0.0039  0.0041
oce=0.1 -0.0001 0.0014 0.0014 1.2e-05 0.0011  0.0011

n = 20 n = 50
True BIAS STD RMSE BIAS STD RMSE

m=20 ;=05 -0.0216 0.0225 0.0311 -0.0235 0.0218  0.0320
B2=05 -0.0063 0.0224 0.0232 -0.0131 0.0244  0.0276
oy, =0.1 -0.0007 0.0034 0.0035 9.5e-05 0.0035  0.0035
oy, =0.1 -0.0017 0.0031 0.0035 -0.0014 0.0029  0.0032
o =0.1 0.0026 0.0081  0.0085 0.00010  0.0022  0.0022
n = 100 n = 200
True BIAS STD RMSE BIAS STD RMSE

B =05 -0.0214 0.0217 0.0305 -0.0088 0.0199  0.0217
B2=05 -0.0227 0.0202 0.0304 -0.0084 0.0218  0.0232
oy, =01 -0.0009 0.0030 0.0031 -0.0007 0.0036  0.0036
op, =0.1 -0.0008 0.0026 0.0028 -5.2e-05 0.0036 0.0036
o.=0.1 -0.0002  0.0015 0.0015 -5.6e-05  0.0009  0.0009

Table 7.4: Bias, standard deviations and RMSE of the estimated fixed effect and variance
components obtained over 100 replicates of an experiment based on a second order DE with
random parameters. The data have been generated considering different sample sizes and
different number of subjects.
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Figure 7.2: Simulated data driven by a second order ODE with random period and damp-
ing parameters. The left panels show the subject specific profile separately while the right
panel shows all the data together.

7.5 Areal data example

As real data example we consider the MRI data already discussed in chapter
6. The whole dataset counts 241 . jpeg MRI scans of the abdominal region
forming a video of the stomach contractions during digestion. The lengths of
cross-sections were measured at 10 positions along the stomach, at each point
in time. This gives 10 time series of 300 measurements showing a rather
oscillatory behavior. We take into account the dynamics described by the

second order ODE:
&y dy
dt? dt

where $3; and b; indicate the fixed and random effects respectively and e; rep-

+ (B1 +b1j) = + (B2 + baj)y(t) = 5,

resents a subject-specific driving force. As we mentioned in chapter 6, this
equation describes a (damped) oscillatory behavior. Allowing for mixed DE
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m = 10 m = 20
True BIAS STD RMSE BIAS STD RMSE
61 =0.5 -0.0205 0.0325 0.0383 -0.0235 0.0218  0.0320
B2 =0.5 -0.0184 0.0295 0.0347 -0.0131 0.0244  0.0276
oy, =0.1 -0.0013 0.0049 0.0050 9.5e-05 0.0035  0.0035
op, = 0.1 -0.0011 0.0059  0.0060 -0.0014 0.0029  0.0032
. =0.1 0.0003 0.0022  0.0022 0.00010 0.0022  0.0022

m = 10 m = 20
True BIAS STD RMSE BIAS STD RMSE
61 =0.5 -0.0280  0.0328  0.0430 -0.0243 0.0234  0.0336
B2 =0.5 -0.0368  0.0331 0.0494 -0.0354 0.0227  0.0420
oy, =0.1 -0.0015 0.0042 0.0045 -0.0008 0.0036  0.0037
op, = 0.1 -0.0011 0.0048 0.0050 9.1e-06 0.0041 0.0040
oo =0.15 -0.0003 0.0045 0.0045 -0.0002 0.0042  0.0042

m = 10 m = 20
True BIAS STD RMSE BIAS STD RMSE
£1=0.5 -0.0306  0.0328 0.0447 -0.0271 0.0212  0.0344
B2 = 0.5 -0.0667  0.0406  0.0780 -0.0546 0.0290 0.0617
oy, =0.1 -0.0012 0.0048 0.0049 -0.0005 0.0034  0.0035
op, = 0.1  0.0037 0.0098 0.0104 0.0024 0.0058  0.0073
. =0.2 -0.0003  0.0092  0.0092  0.0003 0.0079  0.0079

Table 7.5: Bias, standard deviations and RMSE of the estimated fixed effect and variance
components obtained over 100 replicates of an experiment based on a second order DE with
random parameters. The data have been generated considering different degrees of variability

of the noise component and 50 observations measured over m = {10, 20} subjects.

parameters gives us the possibility to estimate “population-shared” param-

eters (i.e. the parameters that describe the average dynamics over the entire

area we are considering) and “profile-specific” parameters summarizing the

contractions over small parts of the considered region. In particular we are

interested in estimating the population and the profile-specific periods and

damping ratios (we have already introduced these indexes in chapter 6):

~ _ 1 ~ __ 1
T = 2T, /5—2 T = 2m, /7@2%2&)

(=

B2
2v/B1

~

G =

(B2+b2,5)

24/(B1+b1,5)

The fitted smoothers are shown in figure 7.3. These results have been

obtained using 100 basis functions of fourth degree built on equally spaced

knots. The bases used to build the differential operator penalty have been

evaluated over a grid of 500 collocation points. Each panel of the plot shows
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Figure 7.3: Smoothing of 10 MRI stomach profiles considering random differential pa-
rameters. The final estimates (solid lines) have been obtained considering spline smoothers
penalized by a damped oscillation DE.

the estimated optimal smoothing parameter and the estimated DE parame-
ters wy = B1 + b1 ; and wa = P2 + b j. These results are also summarized in
table 7.6.

The estimated periods and damping ratios seem consistent with the ob-
served data. The fixed periodic effect has been found approximately equal to
32.8 while a fixed damping effect equal to 0.012 has been estimated. The esti-
mated variance components are all rather small. The profile damping factors
are close to zero while the profile-specific periods tend to be higher for pro-
files with flat behaviors. The optimal smoothing parameters (6) are higher for
flat dynamics and smaller for more oscillatory ones testifying a rather small
adhesion of the smoothing curves to the differential equation supposed to
describe the data. This is reasonable if we look carefully at the data behav-
ior. The estimated peaks appear asymmetric and this is not consistent with
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Wave b1 ba w1 w2 5 2 QAJ

B1 = 0.0367

1 0.0147 -2.0e-04 0.0514 0.0043 6.626 27.69 0.0096
B2 = 0.0046 2 0.0079  -0.0003 0.0446 0.0042 1344 29.73 0.0100

3 -0.0349 1.70e-6 0.0017 0.0046 6326 152.1 0.0555
T = 32.7986 4 -0.0342  1.44e-6 0.0024 0.0046 53.65 126.6 0.0462

5 -0.0347 -1.25e.6 0.0019 0.0046 1579.7 140.8 0.0513
¢ =0.0120 6 -0.0165 -6.0e-05 0.0202 0.0045 39.31 44.21 0.0159

7 -0.0127  0.0004 0.0239 0.0049 2197 40.59 0.0160
5’? = 0.2439 8 0.0042 2.0e-05 0.0409 0.0046 76.02 31.03 0.0113

9 0.0065 1.0e-05 0.0432 0.0046 67.76 30.21 0.0110
(;\gl = 0.0004 10 -0.0031 6.0e-05 0.0336 0.0046 2295 3428 0.0127
o7, = 2.0c — 6

Table 7.6: Estimated period m and dumping ratio ¢ for each profile. The table lists the
estimated values of the DE parameters 81 + by and 2 + by as well as the optimal smoothing
parameters .

the linear second order differential law used to build the penalty term of the
smoothing procedure. Probably it could be possible to obtain higher smooth-
ing parameters and a more appropriate description of the observed dynamics
using a nonlinear differential law.

7.6 Conclusions

In this chapter we have discussed a generalization of the framework intro-
duced in chapter 6. A smoothing procedure driven by differential operators
with mixed parameters and a two-stage estimation procedure have been in-
troduced. In the first step the relationship between the raw data and the state
function is summarized through a P-spline smoother. In the second step the
estimated spline coefficients are used to reconstruct the differential operator
linking the derivatives and the state function in such a way to consider the
unknown differential parameters as the sum of fixed and random effects. The
linear differential operator estimated in this last step is then introduced as a
penalty term in a smoothing procedure.

Even if a more common mixed model estimation procedures (i.e. ML or
REML) can easily be included in our procedure, we proposed to exploit the
the link between penalized regression and mixed models. The formal equiv-
alence between these regression techniques allows for a practical estimation
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and interpretation of the variance of the random effects. Indeed we suggest to
estimate this variance component optimizing the shrinkage parameter \ bal-
ancing between the residual sum of squares criterion and the distributional
hypothesis formulated on the random parameter(s) (induced by a penalty
term).

The variance of the noise component is estimated using the estimated
subject-specific differential operators as penalty term in a smoothing proce-
dure. This value is obtained optimizing the smoothing parameter (§) balanc-
ing between the fidelity of the final estimates to the data and to a collocation
scheme. This smoothing parameter has also another convenient interpreta-
tion clarifying the appropriateness of the hypothesized ODE in describing
the data dynamics.

The performance of the proposed procedure has been evaluated consid-
ering both simulated and real data. A simulation studies based on first and
second order differential problems have been discussed. Through simula-
tions we have evaluated the influence of the data characteristics on the es-
timates obtained using the two stage procedure. We have found that, in-
creasing the number of measurements available for each subject and/or the
number of considered subjects, the bias, the standard deviation and the root
mean squared errors of the estimated fixed effects and variance components
tend to decrease. On the other we found that, even if a moderate number of
observations and subjects is available, the quality of the estimates obtained
using the proposed procedure is quite high.

We also discussed a real data example, stomach contractions during di-
gestion. In this case we used a linear second order differential equation with
mixed parameters to investigate the global and profile-specific contraction
characteristics. The estimated DE parameters have been found consistent
with the observed data behavior. On the other hand rather small optimal
smoothing parameters have been found using an EM-type procedure. This
is probably due to the fact that the considered linear DE is not appropriate to
describe the asymmetric oscillations characterizing the observed data behav-
ior.

One of the major limitation of our discussion lies in the fact that only lin-
ear differential problems have been considered. From a theoretical point of
view the two stage procedure for the estimation of the unknown DE param-
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eters can be easily adapted in order to deal with nonlinear mixed effect mod-
els. The definition of a nonlinear differential operator penalty can be obtained
adopting some linearization strategy of the differential problem. Smoothing
procedures penalized by nonlinear differential operators will represent one

of the major topic of our future research.






DIFFERENTIAL PENALIZED SMOOTHING IN
TWO DIMENSIONS

Partial differential equations (PDEs) are common tools to describe dy-
namic systems evolving in more than one dimension. In real data applica-
tions the parameters of suitable differential models are usually unknown
and need to be estimated from the available measurements of a given phe-
nomenon. In this chapter we propose a two-dimensional smoothing ap-
proach including a partial differential penalty for the analysis of two-
dimensional data approximatively described by PDEs. We also propose
a P-spline-based two-stage procedure for the estimation of the unknown
DE parameters.

Keywords: Partial differential equations, tensor product B-spline collo-
cation, tensor product P-splines, penalized smoothing.

8.1 Introduction

Partial differential equations (PDEs) are commonly used to describe dynamic
systems evolving in more than one dimension. In many circumstances, it is
difficult to have a precise knowledge of the differential law governing an ob-
served dynamics. Fortunately many two-dimensional phenomena that are
described, at least approximately, by partial differential equations can be
measured. For this reason it is convenient to combine the observed infor-
mation with the theoretical behavior of the phenomenon.

In this chapter we propose a differential operator smoothing procedure
for the analysis of data which dynamic is well described by a partial differen-
tial equations. We follow the framework defined by Ramsay and Silverman
(2005) based on the definition of a penalized smoothing procedure involving
B-spline functions. We suggest to include a penalty term in the smoothing
framework approximated by a tensor product B-spline collocation scheme.

119
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As we already discussed for ODEs, it is not realistic to hypothesize a per-
fect knowledge of the differential law governing the observed dynamic and
it becomes necessary to reconstruct this mathematical model using the avail-
able observations. We propose to estimate the unknown parameters defining
the differential penalty term, using a two-stage approach based on tensor
product P-splines. In a first step the two-dimensional data trend is sepa-
rated from the noise of the observed measurements through a suitable non-
isotropic smoother. Then the optimal spline coefficients estimated in the first
step are used to approximate the functions defining the PDE and to estimate
the best differential parameters through least squares. Once the differential
operator has been reconstructed it is used as penalty in the smoothing proce-
dure. The balance between the fidelity to the data and to the approximated
solution of the PDE is tuned by a smoothing parameter.

This chapter is organized as follows: section 8.2 introduces the PDE-based
penalized smoothing approach considering known differential operators, in
section 8.3 we abandon the unrealistic hypothesis of knowledge of the differ-
ential law and introduce a two-stage procedure for the estimation of the un-
known DE parameters while in section 8.4 the performance of the proposed
procedure is evaluated through simulations.

8.2 PDE-based penalized smoothing

Suppose we observe a set of data (z) which dynamics is well described by a
partial differential equation. What happens if our knowledge about the dif-
ferential equation describing the observed dynamic is not precise or even not
correct? In this case the solution of the differential problem would provide an
inadequate description of the observed measurements. Unfortunately, this is
not a remote eventuality given that small changes of the parameters or of
the conditions defining the differential problem can lead to really different

numerical solutions

It is possible to overcome this problem forcing the solution of the DE
we have in mind to give an appropriate description of the data. This
can be achieved using a smoothing approach penalized by a differential
operator consistent with a collocation scheme. If we define as u(x,y) =
>0 2.7 (By; ® By,)cij the approximated two-dimensional state function
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computed using a tensor product B-spline collocation procedure and, as
‘V/ﬂay(w) =>7 Z;ﬂ (ZI;:O Z;n:o qup(él(/?) ® Bg))cij)/ the B-spline approxi-
mation of the partial differential operator defined in consistency with a col-

location scheme, our estimation problem is summarized by:

m
min|z — (B, @ Bo)e|? + Al Y wyp(BY @ B, 81)
p,q=0
where z is a vector of n observations in two-dimensions, A is a smoothing pa-
rameter balancing between the residual sum of squares and the collocation
approximation of the observed dynamics, c is a vector of unknown spline co-
efficients, w is a vector of DE parameters that we consider, for the moment,
known (and m indicates the order of the differential operator that we con-
sider to be linear in this chapter).

In (8.1) we used the breve accent to distinguish two grids of points on
which the basis functions are evaluated in analogy with the notation used in
chapter 6. The B-splines involved in the penalty term are computed over a
dense grid of N x M collocation points. On the other hand the basis func-
tions in (B, ® B, ) are evaluated at observed domain points. It is a convenient
choice in those cases a moderate number of observations is available provid-
ing a more precise definition of the collocation solution of the hypothesized
partial differential problem. This issue is particularly relevant in those cir-
cumstances in which we are interested in estimating the DE parameters from
the raw data as we will see later.

To illustrate how to estimate the optimal spline coefficients satisfying (8.1)
we propose a simple example. Figure 8.1 shows the two-dimensional cloud
of 625 measurements (squared dots) and the smoothing surface describing
the first order PDE diffusion equation introduced above. The estimation

problem is summarized by:
min ||z = (By @ By)e|® + A[(By @ By) +wi(By @ By) + wa(By ® By)le”
The optimal spline coefficients are the solution of:

(BTB+ AVTV)e= Bz,

with B = (By; ® B,,) and V = 2B, ® By, + B, ® B,, + 3B,, ® B.].
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Figure 8.1: Smoothing data driven by a PDE with known parameters. The upper left panel
shows the raw observations and the smoothing surface while the upper right panel shows
the residual surface between the smoother and the state function solving the PDE. The lower
panel compares the contours of the smoothing function (black lines) with the contour of the
solution of the PDE (red lines) while the panel background represents the observed data. The
smoothing surface has been estimated using cubic B-splines built on 15 equally spaced knots
defined in both x and y directions. The basis matrices used to define the differential penalties
have been evaluated over a finer grid of 10* points.



8.2. PDE-based penalized smoothing 123

Figure 8.2: Smoothing data driven by a second order PDE with known parameters. The
upper left panel shows the raw observations and the smoothing surface while the upper right
panel shows the residual surface between the smoother and the state function solving the
PDE. The lower panel compares the contours of the smoothing function (black lines) with
the contour of the solution of the PDE (red lines) while the panel background represents
the observed data. The smoothing surface has been estimated using cubic B-splines built
on 20 equally spaced knots defined in each direction. The basis matrices used to define the
differential penalty have been evaluated over a grid of 10* points.

A more complex example is described by the following second order
Cauchy problem with mixed conditions:

Uyy — Uzz = 1, forz e R, y €R
u(x,0) = 2%, u,(r,0) = 1.

Figure 8.2 shows the raw data (gray dots in the upper right panel) and the
estimated smoothing surface obtained for a cloud of 900 observations simu-
lated adding a small noise to the numerical solution of the differential prob-

lem.
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8.3 Two-dimensional smoothing with unknown partial
differential penalties

In many applications we have only a vague idea about the differential
law that could approximate a set of measurements describing a given phe-
nomenon. A possibility consists in reconstructing the mathematical law we
have in mind using the available observations.

This problem leads to the estimation of the unknown parameters defining
the PDE. A possible approach consists in writing the analytic or numerical
solution of the equation as explicit function of the unknown parameters esti-
mated from the data. This generally leads to a nonlinear regression problem
even if the PDE is linear. An alternative approach is to incorporate the partial
differential equation as a penalty in a smoothing framework as suggested by
Ramsay (2002) and Wood et al. (2008). This second approach is the one we
follow here suggesting a tensor product P-spline-based two-stage procedure
for the estimation of the unknown DE parameters.

We want to approximate the observed measurements in such a way the
final estimates are consistent with the solution of the PDE. To reach this goal
we need to estimate its unknown parameters. Our estimation problem can
be summarized as follows:

min |2 — (By ® Bo)e|® + A Vel?, (8.2)

where By ® B, = B is a tensor product basis matrix, c is a vector of spline
coefficients, A is a smoothing parameter controlling the amount of penalty
applied to the least squares criterion, V is the B-spline approximation of a
(linear) partial differential operator defined using a collocation scheme. This
operator depends on the vector of weights w.

The unknown DE parameters can be estimated through a two-stage pro-
cedure. In analogy with what we discussed in chapter 6, we move from the
consideration that the approximated state function implied in the PDE in the
penalty term has to be consistent with the signal behind the observations
if the differential model we have in mind is appropriate. This signal can
be extracted from the noisy measurements using a tensor product P-spline.
This smoother has to be able to separate the signal from the noise compo-
nent of the raw observations. A possibility is to select the couple of optimal
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smoothing parameter through an automatic procedure. The optimal spline
coefficients defining the two-dimensional smoother provide a compact rep-
resentation of the state function. Multiplying these coefficients by the basis
matrices defining V we obtain an approximation of the functions involved
in the differential law. Once these functions have been approximated the pa-
rameter vector w can be estimated using least squares.

The smoothing parameter in (8.2) plays a crucial role. It regulates the rel-
ative importance of the residual sum of squares criterion over the collocation
solution of the differential equation in determining the shape of the final fit.
For A — 0 the smoothing surface tends to be rough given that the estimation
procedure is driven exclusively by a residual sum of squares. On the other
hand, for A — oo the estimated surface tends to mimic the numerical solution
of the differential equation included in the penalty term.

Given the estimated differential parameters, it is possible to define the
penalty term V and estimate the optimal spline coefficients:

¢= BB+ \VTV)'BT, (8.3)

The optimal smoothing parameter A can be selected using an automatic pro-
cedure. In the examples shown in this chapter we use an EM-type approach.

Figure 8.3 shows an example of the results obtained using the described
approach. The top panels show the estimated smoother and the residuals
between the fitting surface and the analytic solution of the differential prob-
lem while the lower panel shows a contour representation of the data and the
smoothing function. The data have been generated taking into account the
following PDE:

Uyy — 4y = 0, VzeR, y e RT

u(x,0) = exp(—2?), uy(z,0) = 0.

The observations (squared dots in the left upper panel of figure 8.3) have
been simulated adding a Gaussian noise to the approximated solution of this
differential problem computed over z; € [-3,3], y; € [0,2]. The DE parame-
ter has been estimated equal to w = —4.067.
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Figure 8.3: Smoothing data driven by a PDE with unknown parameters. The smoothing
sutface has been estimated considering 20 forth order basis splines defined on equally spaced
knots in each direction. The penalty bases have been evaluated over a grid of 10* points.

8.4 Simulations

We are interested in evaluating how the sample size and the variability of the
data noise influence the estimates obtained using the procedure described
above. As first example we generate a set of data taking into account the

solution of a first order PDE:

Up +uy =2, z =y € [-2,2]

u(x,0) = 2°.

We simulate 100 data clouds as follows: z;; = u*(xj,y;) + €;(0,0¢) with
i =j € {10,15,20,25}, 0. € {0.5,1,1.5,2}, and estimate the bias, the stan-
dard errors and the root mean square errors of the computed DE parameters.
A possible data configuration obtained for o. = 1 is shown in figure 8.4. Ta-
ble 8.1 lists the results for the described simulation study. From the results
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Figure 8.4: Smoothing data driven by a first order PDE with unknown parameters. Each
panel describes the smoothing surface obtained for different sample sizes. The estimates have
been performed considering cubic B-splines built on 10 equally spaced knots selected on both
x and y directions.
it is possible to notice that the quality of the estimates tends to be lower if
lower sample sizes are considered. Indeed, for larger sample sizes the bias,
the standard deviation and the root mean square errors tend to be smaller
taking constant the variability of the noise component. On the other hand,
for a given sample size, the quality of the estimates tends to decrease if we
consider a higher noise variability.

A similar simulation study can be conducted taking into account a more
complex PDE:

Uy — Upe = 1, T =y € [-2,2]
u(r,0) = 22, uy(x,0) = 1.

We simulate 100 series of data: z;; = u*(z;,y;) + €;(0,0.) withi = j €
{10,15,20,25}, o € {0.5,1,1.5,2}, and estimate the bias, the standard errors
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1=75=10 1=73=15
Truew =1 BIAS STD  RMSE BIAS STD  RMSE

oe =05 0.0019 0.0232 0.0232 -0.0023 0.0170 0.0171
oe=1 -0.0114 0.0568 0.0577 -0.0125 0.0394 0.0412
oe =15 -0.0255 0.0669 0.0712 -0.0055 0.0475 0.0476

Oce =2 -0.0455 0.1039 0.1130 -0.0090 0.0755  0.0757

i=j =20 i=j=25
Truew=1| BIAS STD RMSE BIAS STD RMSE

oe =05 -2.0e-04 0.0138 0.0137 0.0018 0.0122 0.0123
oe=1 0.0031  0.0307 0.0307 0.0040 0.0274 0.0276
oe=15 -0.0073  0.0439 0.0443 -9.0e-04 0.0383 0.0381

Oce =2 -0.0172  0.0549 0.0573  0.0025 0.0545 0.0543

Table 8.1: Bias, standard deviation and RMSE of the DE parameter estimated for a first
order partial differential problem.

and the root mean square errors of the computed DE parameters. A possible
data configuration obtained considering 0. = 1 is shown in figure 8.5. Ta-
ble 8.2 summarizes the results obtained for the described experiment. Again
the quality of the estimates seems to be higher for larger sample sizes and
to decrease if we consider more variable noise components for each sample

size.

8.5 Conclusions

In this chapter we have introduced a PDE-based penalized smoothing ap-
proach for the analysis of two-dimensional data which dynamics is approxi-
mately described by a partial differential law. Our approach involves a com-
bination of tensor product basis spline functions for the approximation of
the differential penalty in analogy with a tensor product B-spline collocation
scheme.

In presence of unknown PDE parameters we adopt a two stage estima-
tion procedure: 1) smooth the raw data using a P-spline smoother able to
remove the noise, 2) estimate the DE parameters through least squares. This
simplification separates the computation of the DE parameters from the data
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Figure 8.5: Smoothing data driven by a second order PDE with unknown parameters.
Each panel describes the smoothing surface obtained for different sample sizes. These results
have been obtained considering 15 fourth order B-splines for each direction built on equally
spaced knots.

smoothing problem. The performance of this approach has been evaluated
with simulated and real data.

Further generalizations of the discussed procedure are possible. An open
question is the inclusion of nonlinear partial differential penalties with un-
known parameters. The two stage procedure for the estimation of the un-
known DE parameters can be easily adapted in order to consider non linear
models. On the other hand a penalty term built considering a non linear dif-
ferential operator can be included in the smoothing procedure only adopting
some linearization strategy of the differential problem.



130 Chapter 8. Differential penalized smoothing in two dimensions

Truew = —1 | BIAS STD RMSE BIAS STD  RMSE

oe =05 0.0863 0.0252 0.0899 0.067  0.021  0.0702
oe=1 0.0894 0.0506 0.1026 0.0599 0.0451 0.0748
oe=15 0.0680 0.0685 0.0963 0.0572 0.0668 0.0877

Oc =2 0.0576 0.1143 0.1275 0.0491 0.0873  0.0998

1=75=20 1=7=25
Truew = —1 | BIAS STD RMSE BIAS STD  RMSE

oe =0.5 0.0529 0.0182 0.0559 0.0433 0.015 0.0458
oe=1 0.0489 0.0361 0.0607 0.0401 0.031 0.0505
oe=15 0.0412 0.0518 0.0660 0.0399 0.0407 0.0569

Oe =2 0.0480 0.0741 0.0880 0.0440 0.0632 0.0767

Table 8.2: Bias, standard deviation and RMSE of the DE parameter estimated for a second
order partial differential problem.



GENERALIZATIONS OF COLLOCATION BASED
PROCEDURES

In this chapter we briefly discuss some generalizations of the frame-
work introduced in the previous chapters. The following sections present
a sort of overview of the state of our art in analyzing more complex dy-
namics. In particular, we extend the collocation scheme for the solution of
differential problems involving some kind of nonlinearity. We deal with
differential problems involving inequality conditions, delay differential
equations (DDEs) and nonlinear DEs. We also introduce a DDE-based
penalized smoothing procedure.

Keywords: Inequality conditions, asymmetric least squares, delay differ-
ential equations, nonlinear ODE, DDE-based penalized smoothing.

9.1 Introduction

The B-spline collocation approach is flexible enough to allow for the solution
of several classes of differential problems. In the previous chapters we fo-
cused on linear ordinary and differential equations. Here we concentrate on
more complicated problems: ODE with inequality constraints, delay differ-
ential equations (DDE) and nonlinear ODEs.

Inequality constraints can be included in the collocation scheme with
asymmetrically weighted penalties. In particular, in this chapter, we deal
with constraints limiting the codomain of the state function and with mono-
tonicity constraints.

Delay differential equations or difference differential equations (DDEs)
have been introduced in the previous century in the field of automatic con-
trol. Any system with a feedback control involves time delays. A time delay
arises because a finite time is required to sense information and then to react
to it. In this chapter we evaluate the appropriateness of the B-spline colloca-
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132 Chapter 9. Generalizations of collocation based procedures

tion scheme for solving this kind of differential equations. We also introduce
a DDE-based smoothing procedure to analyze data described by delayed dy-
namics.

Furthermore, the B-spline collocation scheme can also be applied to non-
linear differential equations. In particular we focus on ordinary differential
equations. In order to solve a nonlinear problem through collocation some
iterative linearization of the differential operator is needed. In this chapter,
we suggest to use a Newton-type linearization method.

This chapter is organized as follows: in section 9.2 we introduce a B-spline
collocation scheme for the solution of ordinary and partial DEs with uncon-
ventional conditions through weighted least squares. In section 9.5 the the-
oretical aspects about are briefly introduced and a simple problem is solved.
In section 9.4 we deal with nonlinear ODEs. In section 9.5 we introduce a
DDE-based penalized smoothing procedure for the analysis of data driven
by delay dynamics.

9.2 B-spline collocation solution of differential equations with
unconventional conditions

Suppose we are interested in obtaining a numerical solution for a given dif-
ferential equation with a set of inequality constraints. An example is the
second order harmonic oscillation problem described by:

y +9y=0,tel0,5]
y(1) =0, y(5) =1,
y(t) = —L.

This problem does not have an analytic solution and the inequality constraint
makes it nonlinear. A possible strategy is to face the problem without the last
constraint and impose that the inequality holds in a least square sense. In
other words it is possible to impose this constraint to the state function using
asymmetrically penalized least squares. The penalty controls for violations
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of the inequality condition. The estimation problem is:

> ch;-/(ti,p) +9>;¢Bj(ti,p) = ¢

>.¢Biti=1)=0

>.¢Biti=5)=1

(30 ¢ Bj(ti) + 1)
where ¢; is is the approximation error evaluated on the ith collocation point
and the last condition have been imposed using asymmetrically weighted
least squares. The optimal spline coefficients follow from:

VT(0 + diag(Ry))
b

, 91

V'V + BTR,B KT c
K 0 l

where V;; = B;'(ti, p) +9 Bj(t;, p) is the approximated differential operator,
K =[B(t; =0) B(t; = 5)]" and R isa weighting matrix that, in our example,
assigns weight 0 where Bc > —1 and weight k otherwise. In our formula-
tion k represents an asymmetric constraining factor. This penalty term only
works where the inequality constraint is violated. A direct solution for ¢ does
not exist, but a simple iteration scheme is possible. For a given vector Bc it is
trivial to compute the weights looking at those estimated values violating the
inequality condition. Then the asymmetrically penalized least squares prob-
lem is solved again and the weights are updated. The iterative procedure
goes on until convergence (usually, after few iterations no more estimated
values violate the condition). In figure 9.1 the results for the example already
introduced are shown. The estimates have been obtained using 50 equally
spaced cubic splines. The asymmetric weights (k) have been set equal to 10%.

Asymmetrically weighted least squares can also be applied to restrict the
codomain of the state function (or one of its derivatives) when solving partial
differential equations. Suppose we know that the state function is equal to
zero over a certain region. This irregularity of the solution codomain can be
viewed as an additional constraint. As an example suppose to be interested
in solving the following problem:

Uz +uy =2, x € [—10,10], y € [-10, 10]
u(z,0) = 22,

u(z,y) =0, for (z,y) € [-10,—2].
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Figure 9.1: Numerical solution of a second order BVP with inequality constraints. The
gray dashed line indicates the unconstrained analytic solution, the dotted line indicates the
constraint, the full line shows the constrained numerical solution together with the boundary
conditions (squared points).

From the definition of the problem it appears that the codomain of the
state function has a jump at the boundaries delimited by —10 < z < —2 and
—10 <y < —2. The approximate solution can be computed solving:

>3 By, @ Byeij+ Y (B, ® By)eij — 2 =e;;
% J % J

33U =0)® B =
Z Z —10,-2]) ® By(z; € [~10,—2])cij = 0.

SM\H

where e¢; is is the approximation error. This problem can be solved using a
system of equations analogous to (9.2) defining a weighting matrix R that
assumes value 0 if (z,y) # [—10,—2] and one otherwise. The results are
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Figure 9.2: Numerical solution of a first order PDE with a "jump” in the codomain. The
upper panels show the numerical solution surface obtained using the irregular domain and
the contours of the solution computed over the reqular domain. The lower panel shows the
contour of the solution computed over the irreqular domain. These results obtained using 10
cubic basis spline functions defined on equidistant knots for both x and y.
presented in figure 9.2.

A more complex problem can also be faced using a similar approach. Sup-
pose to have an inequality condition restricting the codomain of the state
function. In particular we can, for example, be interested in forcing the state

function to be positive:
Up +uy =2, x € [-2,2], y € [-2,2]
u(z,0) = 22,
u(z,y) > 0.
The unconstrained solution is u*(z,y) = 2y + (z — y)?. We again can ap-

proximate the inequality constrained state function using asymmetrically
weighted penalized least squares. In analogy with what we saw for the ODE



136 Chapter 9. Generalizations of collocation based procedures

Figure 9.3: Numerical solution of a first order PDE with a positivity constraint. The
estimates have been obtained using 15 equally spaced cubic splines defined on the x and
y directions. The asymmetric weights (k) have been set equal to 10*. This figure shows
the approximated state function (red surface) and the unconstrained analytic solution (gray
surface).

example above, the optimal spline coefficients follow from:

VT(0 + diag(Ry))

582

VIV + BTR.B KT c|
K 0 1|

where V' = [B;j ®By,+ By, ®B;i —2] is the approximated differential operator
and B = By ® B,, Ry, is a weighting matrix that, in our example, assigns
weight 0 to those estimates for which Bc > 0 and weight k otherwise. Again,
k represents an asymmetric constraining factor. In figure 9.3 the results for
this example are depicted.
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9.3 B-spline collocation solution of delay differential equations

In this section we introduce differential problems the delay differential equa-
tions. Here we provide a really brief introduction of the topic and refer to
specialized references for a more detailed description (Erneux, 2009).

Delay differential equations or difference differential equations (DDEs)
have been introduced in the previous century in the field of automatic con-
trol. Any system involving a feedback control involves time delays. A time
delay arises because a finite time is required to sense information and then
react to it. DDEs have properties that distinguish them completely form the
conventional ordinary or partial differential equations.

First of all a time-dependent solution of a DDE is not determined by its
initial state at a given moment but, instead, the solution profile on an interval
with length equal to the delay A (or time lag) has to be provided. Usually
this interval is antecedent to the initial point and for this reason the solution
profile on it is often named "history”. Analytic solutions can be found only
in really simple cases. The method of steps is an elementary procedure that
can be used to solve some DDEs analytically. This method is based on the
solution of successive DEs on subintervals of the domain defined taking steps
of length h.

To clarify this aspect we show an example:

% =—y(t—h)
y(t) =1, for —h <t <0,

with h = 1 and yo = 1. We first solve this problem for the interval ¢ € [0, 1]

obtaining % = —1 which we solve using y(0) = 1. The solutionisy =1 —¢
for t € [0,1]. Now we take one step ahead taking ¢ € [1,2[ and solving
% = —1 + (t — 1) with initial condition computed at ¢ = 1 that is y(1) = 0.
Theisy = —(t — 1) + 0.5(t — 1)2. We can then move to the next interval

[2,3[], and so on. This procedure can, in principle, be continued as far as
desired although the calculations quickly become tedious and complex for
non-straightforward equations.

A collocation scheme, involving B-splines or other kind of bases, repre-
sents a convenient numerical procedure to solve DDEs. The approximation
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Figure 9.4: Numerical solution of a first order DDE. These results have been obtained
using 100 quadratic basis spline functions defined on equally spaced knots and on a domain
spanned by 200 time points.

of the delayed functions requires only the computation of shifted bases and
the same set of coefficients.

Now we show how to solve this problem with a B-spline collocation
scheme on the domain ¢ € [0, 10]. We have to solve:

7 )l

with Vi; = Bj(t;) + B;(t; — k), K = Bj(t; € [-1,0[) and b = y(t € [k, 0]).
The solution is depicted in figure 9.4. It is clear that the state function solving

vTo

I 9.2)

this first order DDE has an oscillatory behavior and a discontinuity in its
first derivative for ¢t € [—1,0[. Oscillatory behavior and discontinuous state
functions are typical for this kind of problems.



9.4. Nonlinear ODEs 139

9.4 Nonlinear ODEs

The B-spline collocation scheme can also be used to solve nonlinear ODEs.
In this section we develop a linearized algorithm based on Taylor series. An
example is the following second order ODE:

0.01y" +32 =1, t€[0,1]
y'(0) =y(1) =1.

Suppose we start with an initial guess (i = 0) of the state function, y; = t* — 1
a parabola (making 4 = 0). Interpolating the values of y; we estimate an
initial vector of spline coefficients c;. We use these coefficients to approximate
Ji+1 = >_; Bj(t)cj;. This initial approximation of the state function is used
to define the linearized differential operator V = w;, 1 B(t) + 0.01B" (t) with
w;ir1 = 2911 (the first derivative of the nonlinear term in the DE). The next
optimal spline coefficients c;; are computed solving the following problem
using least squares:

> wipaBj(t)cjip1 + 3 0.01B" (t)cjipn = 47 — 1
i

Z Bj(t =0)cjiy1 =0
J

> Byt = Dejin =0,

J

that leads to the following system:

B'(t=0) 0
wi+1B(t) + 0.0lB”(t) Cit+1 = ]]3 -1 1. (9.3)
B(t=1) 0

Once the new spline coefficients have been computed we can start again the
procedure. The iterative procedure stops when some convergence criterion
is reached (typically when t max(|g; — 9;i+1]) is lower than a tolerance level).
Figure 9.5 shows the approximated solution obtained for this BVP. The algo-
rithm converges in n = 8 steps with a maximum absolute difference between
the state function approximated in the previous (seventh) iteration less then
1077,
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Figure 9.5: Numerical solution of a second order nonlinear BVP. These results have been
obtained using cubic basis spline functions built on 50 equally spaced knots selected over 200
collocation points.

Figure 9.6 shows the solution of a logistic differential equation.

y (t) —y(t) +y(t)* =0, t € [-6,6]
y(0) = 0.5.

In the first panel of this figure we compere the approximated state function
m (squared dots)
showing the successive steps computed using a Newton’s approach (dashed

black lines).

(solid green line) with the analytic solution y* =

9.5 Smoothing with delay differential penalties

In this section we introduce a DE-based penalized smoothing approach for
the analysis of delayed dynamic systems. The estimation problem is analo-
gous to what we already discussed in the previous chapters of this work.
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Figure 9.6: Numerical solution of the logistic differential equation. These results have been
obtained using an initial guess yo = —t (dashed red line) and using cubic B-spline functions
built on 100 equally spaced knots selected over 200 t points. The algorithm converges after
19 iterations reaching a maximum absolute difference with the estimation in the previous
iteration less than 10=°. The lower panel of the figure shows the residuals between the
approximated and the analytic state function solving this nonlinear DE.

As an example suppose to observe a set of data which dynamics is appro-
priately described by the delay differential equation introduced in section .
A possible way to describe the observe dynamics is to find a smooth func-
tion that efficiently reproduces the data trend and that is consistent with the
solution of the DDE we have in mind. Consider the data represented by the
gray dots in figure 9.7 (upper panel). We solve the following minimization
problem:

minlly — > Bie;|* + A Y Bj(t) +wB;(t — 1), (94)
J J

In the formulation above we used the breve accent to distinguish two
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sets of points on which the basis functions are evaluated. The B-splines in-
volved in the penalty term are evaluated on an ”enlarged” set of IV collo-
cation points. On the other hand the basis functions in B are evaluated at
observed domain points. This definition of the penalty term is convenient in
those cases where a moderate number of observations is available.

The parameter w is estimated using two-stage approach. In the first stage
we smooth the observations using a P-spline with an appropriate amount of
penalty. Then, the optimal penalized coefficients can be used to approximate
the functions included in the differential penalty of (9.4). Once these approx-
imated functions are obtained the optimal DE parameter can be computed
using least squares.

It is possible to notice that the DDE-based penalized smoothing estimates
are really close to the collocation approximation of the state function (see
also lower panel of figure 9.7). The optimal DE parameter has been found
approximately equal to 1 (i.e. the value that we used to simulate the data). A
valuable feature is the reproduction of the discontinuity at ¢ = 0.

9.6 Conclusions

In this chapter we have introduced some topics that will be part of our future
research.

Our discussion started with possible generalizations of the B-spline col-
location scheme. First of all we have shown how to approximate the state
function solving differential problems with nonconventional differential con-
ditions. These conditions also have application in DE-based data smoothing.
We could be interested, for example, in monotone smoothing applications or
in smoothing data observed over irregular domains.

Then we introduced a collocation scheme for the solution of delayed dif-
ferential equations which are common in many scientific fields studying dy-
namic systems with feedbacks.

Furthermore we introduced a DDE-based penalized spline approach for
the analysis of observed phenomenon driven by delayed evolutions. In case
delayed dynamics, possible discontinuities in the state function call for a flex-
ible smoothing approaches.

Finally, the collocation scheme has been adopted for the solution of non-
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Figure 9.7: Numerical solution of a first order DDE. The data have been simulated from
the numerical solution of the delay differential equation discussed in section 9.5 computed for
200 time values and adding a Gaussian noise with null mean and standard deviation equal to
0.1. The lower panel shows the simulated data (gray dots), the estimated smoothing function
(black line) and the collocation solution (dashed red line). In the legend of the first plot the
estimated DE parameter, the optimal X parameter and the related model effective dimension
are listed. The lower panel of the figure depicts the differences between the smoothing function
and the numerical solution od the DDE. These estimates have been obtained using quadratic
basis splines built on a generous number of knots (200). The B-splines matrices involved in
the penalty term have been evaluated over 500 collocation points. The red dashed line depicts
the collocation solution of the DDE.
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linear ODEs using an iterative linearization scheme.



CONCLUDING COMMENTS

The aim of this thesis is to introduce advanced methods for of complex
smoothing problems. We mainly treat two aspects: the selection of the opti-
mal weight of the roughness penalty and the definition of differential opera-
tor penalty terms. Here we review shortly the topics treated in the previous
chapters and introduce the directions of our future research.

With respect to the first topic, in chapter 3, we introduce the L-curve
smoothing parameter selection procedure. It selects the smoothing parame-
ter through a direct comparison between the goodness of fit and the smooth-
ness of the estimates. The optimal smoothing parameter can be selected by
locating the point of maximum curvature, i.e. the corner, of the L-curve as
was originally argued in the works of Hansen (Hansen, 1992; Hansen and
O’Leary, 1993). We also propose an alternative selection procedure based on
the minimization of the Euclidean distance between the adjacent points of
the curve: the V-curve criterion.

In chapter 4, the L-curve procedure is generalized to select the optimal
amount of penalty in two-dimensional non-isotropic tensor product P-spline
smoothing. A natural two dimensional generalization of the L-curve is rep-
resented by the L-surface, defined by a set of 1D L-curve computed in the =
and y directions. Each L-curve has a convex region and the points defining
them become closer to each other in the proximity of the corner. The Eu-
clidean distance between adjacent points on a single L-curve is described by
a V-shaped curve and the single dimensional optimal smoothing parameter
is located at the minimum of the V-curve.

In the next chapter we concentrate on smoothing procedures that use dif-
ferential operator penalties. In particular we move from the introduction of
a B-spline collocation procedure for ordinary and partial differential equa-
tions. As practical application we show how to solve the Black and Scholes
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differential equation for pricing European options using a B-spline colloca-
tion procedure.

In chapter 5, the B-spline collocation scheme an be adopted to define
smoothing procedures penalized by ordinary and partial differential opera-
tors. In our approach the penalty term involves a combination of basis spline
functions for the approximation of the differential operator in analogy with a
B-spline collocation scheme. Penalizing the smoothing procedure by a linear
differential operator consistency between the estimated smoothing function
and the state function approximating the solution of the DE-based penalty.
Our aim can be viewed in terms of generalized differential conditions. We
look for a solution of the DE such to optimally describe the observed data
in a least squares sense. On the other hand conventional initial /boundary
conditions as well as integral conditions can be included in the estimation
procedure through Lagrange multipliers.

A smoothing parameter regulates the fidelity of the final estimates to the
approximated state function. This parameter, if selected using an automatic
procedure, can be interpreted as a data-based measure of the appropriate-
ness of the differential operator penalty. In particular we suggested to select
this parameter through an EM-type algorithm exploiting the mixed model
interpretation of penalized least squares.

In presence of unknown DE parameters we adopt a two stage estima-
tion procedure: 1) smooth the raw data using a P-spline smoother able to
remove the noise, 2) estimate the DE parameters through least squares. This
simplification separates the computation of the DE parameters from the data
smoothing problem. The performance of this approach has been evaluated
with simulated and real data.

In many applications, the data are grouped with respect to some factor.
This leads to dynamic systems described by DEs with similar parameters. In
chapter 7, our DE-based penalized smoothing approach has been generalized
to take into account mixed DE parameters in one dimensional applications.
In order to estimate the mixed effect model defining the DE hypothesized to
govern the observed data we combine the two-stage P-spline-based proce-
dure with a ridge regression framework. In this way we exploit the link be-
tween penalized regression and mixed models (Pawitan, 2001). This allows a
practical estimation and interpretation of the variance components. In mixed
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models two variance parameters occur: one for the observation noise and
one related to the random effects. Both can be estimated from the marginal
likelihood, using an EM algorithm.

In the last chapter we introduce some topics that will be part of our future
research. We consider possible generalizations of the B-spline collocation
scheme. We show how to approximate the state function solving differen-
tial problems with inequality and shape constraints. An example is forcing
the numerical solution to be nonnegative or convex. Then we generalize the
B-spline collocation framework for the solution of nonlinear ODEs and de-
lay differential equations (DDEs) introducing also a DDE-based smoothing
procedure based on the same framework illustrated for the smoothing of dy-
namic systems data described by ODEs and PDEs.

10.1 Further research

Our further research will develop in two directions and can be summarized
as follows:

o The first challenge we will face is related to the definition of a formal
statistical framework for the L-curve smoothing parameter selection
procedure. Indeed, deeper studies on the non-statistical foundations
and interpretation of this selection procedure are needed. First of all it
is of primary interest to give a formal explanation of its robustness to
correlated noise. On the other hand we believe that a generalization of
the L-curve (for one and two dimensional applications) for smoothing
problems with non Gaussian data and penalty terms defined by vector
norms different from the Euclidean one. Our future research will also
concentrate on an L-curve criterion for adaptive smoothing problems
and on L-curve suitable for expectile smoothing problems.

e A second line of research will be related to the B-spline collocation
scheme. In particular we believe that the identification of the optimal
collocation points can represent an important issue in many applica-
tions, especially dealing with observed data. Indeed, the accuracy of
the approximation and the computational cost required by the colloca-
tion scheme depend also on this aspect. In this work we adopt a rather
intuitive strategy locating the collocation points on a dense grid cover-
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Chapter 10. Concluding comments

ing of the domain. The accuracy in terms of error analysis of our choice

was not investigated but it will be part of our future research.

We will also focus on nonlinear DE-based penalized smoothing proce-
dure. The requirement for linear differential penalties represents a big
limitation for the applicability of the procedures presented in this the-
sis. A quasi-linearization Newton-type approach looks promising. The
introduction of a nonlinear DE-based penalized smoothing approach
could represent an opportunity for a more appropriate description of
the MRI-based stomach contractions analysis proposed in chapters 6
and 7 of this thesis.

In chapter 9 we proposed a DDE-based smoothing procedure show-
ing a two-stage P-spline based procedure for the estimation of the un-
known DDE parameters. We implicitly supposed to know the size of
the delay h. In man application A is unknown and has to be estimated
from the data. The study of an appropriate procedure to estimate the
delay parameter will also be part of our further research.

In this thesis, we supposed to observe data with exogenous source of
noise. We did not deal with those circumstances in which the model
errors are part of the dynamics. In this case modeling errors are intro-
duced by systematic noise characterizing the differential model. This
consideration leads to the definition of stochastic differential based
penalties in the smoothing settings. The differential operator penaliz-
ing the smoothing procedure would represent the system noise in these

cases.

Finally, an obvious subject would be to combine the L-curve procedure
and differential operator penalties in a smoothing setting.



FORMAL DISCUSSION ABOUT THE SHAPE OF
THE L-CURVE

It is possible to show some analytical results about the shape of the L-curve.
These results can be useful to understand why, for well behaved curves, we
can simplify the selection procedure avoiding the computation of the cur-
vature. In particular it is possible to show that the L-curve has a negative
first derivative and that it has a convex region if some condition on the first
derivative of its components hold. We also show that if a convex area ex-
ists the point of maximum curvature is well approximated minimizing the
Euclidean distance between adjacent points on the curve.

In order to keep the mathematics as simple as possible let consider the
Whittaker smoother even if our further reasoning can be generalized to other
smoothing procedures. In this case z) = (I + AD? D)~!y represents the vec-
tor of regularized fitted values (from this moment we will omit the hat and
the subscript symbols in order to simplify the notation). Plugging z, in the
expressions for w(A) and 0(\) we get:

wA) = |ly— (I +AP)"'y?
0(\) = DI+ AP) "yl
where P = DT D.
For our discussion it is necessary do determine the first derivative of z

with respect to \. We can compute this derivative using implicit differentia-

tion as follows:

y = (I+AP)z

dz
= (I+\P)-=+P
0 (+)\)d)\+z
dz
— = —(I+\P)'Pz.
) (I +A\P) z

Let H = (I + AP)~! and differentiate w and § with respect to \:
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do - (dw\"dz
dx— \dz/) dx
dz
= 92y—TZZ2
(y—2)" o5
= 2(zTPz—:THPz)
= 2[T(I - H)PZ]
= 22TPHPz, (A1)

o (do\"dz
d\x dz) dA
rdz

d\
= —2TPTHP, (A.2)

= (2P2)

and, given that PT = P, it is easy to notice that:

dw df
I _)\ﬁ’ (A.3)
From (A.3) we deduce that 6 is a decreasing function of w. Considering
relation (A.3) we can analyze the convexity of the curve:

dwdr—_
d\ df
o 1
do A
20 d (1
W T dw 1)
/1) dx
= (v o
- (8’
d
= 2\ PTHP:) . (A4)

Equation (A.4) shows that the curve in normal scale is a convex function.
As we said before the L-curve is defined in log-log scale. Let define the fol-
lowing quantities:

Y = log(w); ¢ = log(0),
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Using logarithmic derivatives we obtain:

dw _ diww—l, @ _ diea—l
dx dxT T dh odx
Adopting the notation 1’ = % and ¢ = % we can write down the cur-
vature function as: . Y
Vo —v 9
()% + (¢)2)%2

The curvature function tells us something about the convexity of the curve.

k(\) = (A.5)

A convex part of the curve is characterized by a positive curvature. We are
now considering the curve defined by {/(\); ¢(\)}. We can reparameterize
this curve using {1; ¢(¢)} which has curvature function equal to:
29
2
() = L (A.6)

@]

This reparameterized curve has the same shape of the parametric one.

Hence it has a positive curvature when the numerator of (A.6) is positive.
Let start considering the denominator. The right part of the denominator of
(A.6) can be written as follows:

a _ 1
dw A
do 1w
dp A0
ly — 2|, 4 S
S L Ad | et A7
|Dz||? AR (A7)

Equation (A.5) clarifies that the curvature function can also be negative
under some conditions. These can be evaluated considering the second deriva-
tive of ¢ w.r.t. ¢ (i.e. using the curvature definition in (A.6)):

d*¢ dy dy
s __ &y _ & A
a? - dy . Ydw (A8)

where v = 1. We can now compute j—z taking into account the equation for
y:

dy 1 w [dA do
— = — = —=|—0+ — A.
dw A0 \202 [dwe * d)\)\] ’ (A9)
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but we know that fg = *X and d)‘ =07 dA ~\. So we can write equation (A.9)
as follows: p ) Ldx
Y w
— == == |-—=-1 A.l
dw N0 262 [ Ado ] (A-10)
The numerator of the curvature function (A.6) is then equal to:
¢ dd  [(do\ [ 1d\
— =" — ——— 1. A1l
a2 dw+<dw> { Xdo ] A

The L-curve procedure suggests to locate the optimal smoothing param-
eter in the point of maximum curvature. For this reason it is convenient to
find a condition for which %‘2 assumes positive values. Given that gi’) <0,
in order to have a positive curvature the following inequality has to hold:

dp\* [ 1dx d¢
(cw) [_Mkb_l] T W

do [ 1dA
ey <
1dA dip
_1dx —dp + dg
Ndo ~ do
%w:>w—w. (A12)

Differentiating both sides of (A.12) w.r.t. X and considering that ¢ and ¢

td)\

are in log scale and that 5§ = dlog()\) we get the final relation (considering

log(\) = 0):

ap  d
1> === (A.13)

This condition can be verified numerically. Consider as examples two
cases showed above. In particular we take a case in which a clear corner is
present and another in which the convex region of the L-curve is not pro-
nounced. The first case is given by the example in figure 3. Figure A.1 shows
the curvature function related with this example. The smaller segments un-
der this curve show the positive curvature points found using (A.13). The
second panel of figure A.1 plots the numerator of the curvature function and
the vertical lines indicate the points of positive curvature found applying the
criterion in (A.13). On the other hand figure A.2 shows the results obtained
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considering the mean sea level example (in this example there was not a clear
corner in the L-curve). In both cases the criterion in (A.13) selects correctly
all the points of positive curvature (and positive numerator of the curvature
function) even if the L-curve does not show a really clear convex area (as in
the second example).

Relation (A.13) tells us also something else. Indeed it says that in the area
of positive curvature the rate of change of the numerator of k£ w.r.t. A is slower
than the rate of change for the denominator. To understand this we refer now
to the first definition of the curvature function in equation (A.5). Given that
the curvature is independent from the parameterizations, the numerator of
(A.5) has to be positive when the numerator of (A.6) is positive. The denom-
inator of (A.5) is equal to ((¢')% 4 (¢')?)%/%. Remembering that j—f < 0, from
equation (A.13), we know that the denominator of (A.5) has to be between 0
and 1 in a convex area of the L-curve. This means that both % and —% have
to be between 0 and 1 in that area and that if square them we get smaller
values.

It is also possible to notice that the denominator of (A.5) is strictly related
to our simplified selection criterion based on the Euclidean distance between
adjacent points on the curve. Extending the previous reasoning to this quan-
tity it appears clear why this minimization procedure leads to a maximum

curvature point for well-behaved L-curves.
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Figure A.1: Curvature function and numerator of the curvature function for the example
in figure 2. In the second panel the horizontal line indicates the zero abscissa level.
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Figure A.2: Curvature function and numerator of the curvature function for the mean sea

level example. In the second panel the horizontal line indicates the zero abscissa level.
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