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1.0 INTRODUCTION  

1.1 Inflammatory bowel disease (IBD) and colorectal cancer (CRC) 

Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are widespread 

intestinal diseases. The link between these two diseases is highlighted by the 

observation that patients with IBD are at increased risk for CRC. The risk is 

related to the duration and anatomic extent of the disease (Ekbom et al., 1990). 

The mortality in patients diagnosed with CRC in the setting of IBD is higher than 

for sporadic CRC (Triantafillidis et al., 2009). IBD, which includes Crohn’s 

disease (CD) and ulcerative colitis (UC), has a high incidence in industrialized 

countries (Hou et al., 2009). IBD was previously considered to be diseases of 

Caucasian patients, but recent studies have documented the increasing burden of 

this disease among non-white populations outside the United States (Cosnes et al., 

2011; Molodecky et al., 2012). The incidence and prevalence of IBD has 

increased in the past 50 years, up to 8–14/100,000 and 120–200/100,000 cases, 

respectively, for UC and 6–15/100,000 and 50–200/100,000 cases, respectively, 

for CD (Cosnes et al., 2011). While CD and UC involve different genetic 

vulnerabilities, pathological abnormalities, and different regions of involvement in 

the intestinal tract, both are characterized by gastrointestinal symptoms such as 

bloody diarrhea, weight loss, and abdominal pain, as well as extra-intestinal 

manifestations such as joint pain, uveitis, and erythema nodosum. IBD can be 

alleviated with medications that induce and maintain remission since a cure 

remains elusive. Steroids, 5-ASA, and biologicals have been a mainstay in its 

treatment (Sewell et al., 2010; Jones et al., 2011). Although these drugs may be 

effective, their long-termuse can induce severe side effects that have detrimental 

impact on life quality of patients (Blonski et al., 2011). Hence, it is required to 
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develop new therapeutic approaches with fewer side effects for the treatment of 

IBD.  

CRC is a major cause of morbidity and mortality in western countries. In 2013, an 

estimated 142,82 new cases of colorectal cancer were diagnosed in the USA, with 

50,830 estimated deaths (Siegel at al., 2013). CRC is thought to arise as the result 

of a series of histopathologic and molecular changes that transform normal 

colonic epithelial cells into a colorectal carcinoma, with aberrant crypt foci (ACF) 

and polyps as intermediate steps in this process (Markowitz at al., 2009). This 

multi-step process spans 10 to 15 years, thereby providing an opportunity for 

prevention (Half et al., 2009). Surgery is the cornerstone for cure in localized 

colorectal cancer (Sargent et al., 2007). Chemotherapy after surgery (adjuvant 

chemotherapy, in high risk stage II and stage III CRC patients) versus surgery 

alone reduced the risk of cancer relapse (Cunningham et al., 2010; Wolpin and 

Meyer, 2008). Drugs used in colorectal cancer chemotherapy include fluorouracil, 

irinotecan, oxaliplatin, angiogenesis inhibitors (i.e. bevacizumab) and epidermal 

growth factor receptor inhibitors (i.e. cetuximab and and panitumumab) (Wolpin 

and Mayer, 2008). Despite many  progresses, and improvement of overall survival 

to nearly 2 years for non-resectable disease, cures for this kind of neoplasia 

remain unsatisfactory (Cunningham et al., 2010). Also, the new chemotherapeutic 

agents (i.e. the biologicals cetuximaband, panitumumab and bevacizumab) have 

not come without a significant cost to the health care system (Wolpin and Meyer, 

2008). 

1.2 Ancient and modern use of plant products: focus on inflammatory bowel 

disease and colorectal cancer 
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Plants have been traditionally used in folk medicine and are actually  practiced in 

industrialized countries where their use is often integrated into conventional 

medicine (Capasso et al. 2003). Throughout human history, plants have formed 

the basis  of traditional medicine systems, with the earliest records, dating from 

around 2600 BC, documenting the uses of approximately  1000 plant-derived 

substances in Mesopotamia (Cragg and Newmann, 2013). Egyptian medicine 

dates from about 2900 B.C., but the best known record is the "Ebers Papyrus" 

dating from 1500 BCE, documenting over 700 drugs, mostly of plant origin 

(Borchardt et al., 2002). The Chinese Materia Medica has been extensively 

documented over the centuries (Huang et al., 1999) with the first  record dating 

from about 1100 B. C. A substantial contribution to the rational development of 

medicinal herbs in Western countries came from Greeks and Romans. 

Dioscorides, the first century Greek physician, who served as a medical doctor in 

the Roman army, accurately recorded  the collection, storage, and use of 

medicinal herbs during his travels with Roman armies, whilst Galen (130–200 

CE.), a prominent Roman (of Greek ethnicity) physician, surgeon and 

philosopher, is well known for his complex prescriptions and formulae used in 

compounding drugs (Cragg and Newman, 2013). During the Middle Age, very 

little progress was made in the development of the subject. The Arabs preserved 

much of the Greco-Roman expertise during the Middle Age and expanded it to 

include the use of their own resources, together with Chinese and Indian herbs 

unknown to the Greco-Roman world. During the 16
th

 and 17
th

 centuries, the era of 

European exploration overseas, many new crude herbs were brought to Europe. In 

the 18
th

 century, Linnaeus made an important contribution to the use of herbal 

remedies, throught the introduction of his new system of naming and classifying 

plants (Samuelsson, 1999). At the beginning of the 20th century, however, when 
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scientific method predominated, ‘modern medicine’ relegated herbal medicines to 

the level of charlatanism. By contrast, today, patients have become enlightened 

consumers and are again embracing herbal remedies. It is estimated  that they are 

now used by approximately 20% of the general population in the USA (Bent,  

2008).  Herbal use is often motivated by dissatisfaction with conventional 

therapies and synthetic drug  side effects, or by a desire to be proactive against a 

disabling disorder.  

Most survey agree that digestive tract ailments cure, including IBD and CRC, is 

one of the most frequent reasons for trying plant medicines. For example, in a 

Canadian survey, 2,847 IBD patients were asked whether they used a form of 

complementary/alternative medicine (CAM). Current or past use of CAM for IBD 

was reported by 47%. Herbal therapies were the most commonly used (41% of 

CAM users). Improvements in sense of well-being, IBD symptoms, and sense of 

control over the disease were the most commonly reported benefits (Hilsden et al., 

2003). Herbal therapies are claimed to exert benefit in managing IBD by different 

mechanisms such as immune system regulation, antioxidant activity, inhibition of 

leukotriene B4, inhibition of nuclear factor-kappa B (NF-kB), and antiplatelet 

activity (Rahimi et al., 2009).  

Plant products are also used by cancer patients, who, being desperate,  may feel 

tempted to use one of the many therapies on offer.  A distinction should be made 

between alleged cures and preventive measures. While none of “natural cures" 

have been shown to do what they promise (Ernst et al., 2009), the use of herbs 

and/or dietary treatments for cancer prevention is an important issue (Capasso et 

al 2003). For example, a recent report from the Shanghai Men's Health Study 

evaluated the association between green tea consumption and CRC risk in a 

population-based prospective cohort study. The analysis included 60,567 Chinese 
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men aged 40-74 years at baseline. During ∼5 years of follow-up, it was found that  

regular green tea consumption (ever drank green tea at least three times per week 

for more than six consecutive months) was associated with reduced risk of CRC, 

with the risk decreasing as the amount of green tea consumption increased. Each 2 

g increment of intake of dry green tea leaves per day (approximately equivalent to 

the amount of tea in a tea bag) was associated with a 12% reduction in risk. 

Overall, the study suggested that regular consumption of green tea may reduces 

CRC risk (Yang et al., 2011). 

In addition to their use as phytotherapeutic agents (i.e. as a mixture of many 

ingredients,  mostly in form of extracts), plants continue to be  a source  for new 

drugs or lead compounds for the synthesis of new drugs. In this regard, neoplastic 

diseases, including CRC, remain one of the greatest health challenges confronting 

humankind, and the search for better drugs, both in terms of efficacy and safety, is 

a global health imperative (Cragg and Newman, 2005). An important example of 

drug used in CRC therapy, which derives from a chemical modification of a plant 

compound, is irinotecan. This anticancer drug is a semi-synthetically derived from 

camptothecin, which is isolated from the Chinese ornamental tree, Camptotheca 

acuminata (Fam. Nyssaceae) (Rahier et al., 2005). Camptothecin (as its sodium 

salt) was advanced to clinical trials by the NCI in the 1970s, but was dropped 

because of severe bladder toxicity (Cragg and Newmann, 2005). Nevertheless, 

extensive research led to the development of more  effective derivatives such as 

irinotecan. 

1.3 Plant compounds evaluated in the present study 

Plant compounds here evaluated for their effect in experimental IBD and colon 

carcinogenesis are: 1) cannabigerol (CBG), a non-psychotropic plant-derived 



6 

 

cannabinoid isolated from the marijuana plant Cannabis sativa; 2) diallyl-sulfide 

(DAS), diallyl disulfide (DADS), contained in Allium sativum; 3) Bromelain,  a 

cysteine protease derived from the stem of the pineapple plant, Ananas comosus 

and boeravinone G, extract from the Ayurvedic plant Boerhaavia diffusa . These 

compounds were selected because a) they are contained in plants traditionally 

used for the treatment of digestive diseases, including IBD and CRC and 2) 

possess pharmacological properties which may predict their possible efficacy in 

intestinal inflammation and cancer. Details of such compounds are reported 

below: 

1.3.1 Cannabigerol (Cannabis sativa) 

The marijuana plant (Fig. 1A) Cannabis sativa has a long medical history 

(Mechoulam et al., 1999). Extracts of Cannabis were indicated for the treatment 

of diarrhea a century ago in the USA, and there are several anecdotal accounts of 

the effective use of Cannabis-based products against IBD (Mechoulam et al., 

1999). Anecdotal reports suggest that IBD patients experience relief by smoking 

marijuana (Izzo et al., 2009; Alhouayek et al., 2012). Recent retrospective 

observational studies, by showing that Cannabis use is common  in patients with 

IBD for symptom relief, have confirmed such reports (Naftali et al., 2011; Lal et 

al., 2011). Also, a pilot prospective study found that treatment with inhaled 

Cannabis improved quality of life in patients with long-standing CD and UC 

(Lahat et al., 2012). In Israel, inhaled Cannabis has been legally registered for 

palliative treatment of both CD and UC.  

The limitation of the therapeutic utility of Cannabis and of one of its major 

components, Δ
9
-tetrahydrocannabinol (Δ

9
-THC), is the occurrence of 

psychoactive effects due to the activation of brain cannabinoid CB1 receptors 
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(Izzo et al., 2009). Therefore, in recent years there is a growing interest into the 

potential therapeutic applications of non-psychotropic phytocannabinoids. One of 

such compounds is cannabigerol (CBG) (Fig. 1B), which was obtained in 1964 by 

Gaoni and Mechoulam when they separated a hexane extract of hashish on Florisil 

(Turner et al., 1980). Relatively few studies have sought to investigate the 

pharmacological actions of this compound (Izzo et al., 2009; Hill et al., 2012). 

CBG was shown to exert antiproliferative (Ligresti et al., 2006), antibacterial 

(Appendino et al., 2008) and anti-glaucoma (Colasanti et al., 1990) actions and to 

antagonise the anti-nausea effect of CBD (Rock et al., 2011). Potential targets of  

CBG actions, which are relevant for IBD, include transient receptor potential 

(TRP) channels (De Petrocellis et al., 2011), cyclooxygenase (COX-1 and COX-

2) enzymes (Ruhaak et al., 2011), as well as cannabinoid receptors (Cascio et al., 

2010). Here, we have investigated the effect of CBG in the murine model of 

colitis induced by dinitrobenzenesulphonic acid (DNBS). 

1.3.2 Diallyl sulfide (DAS) and diallyl disulfide (DADS) (Allium sativum)  

Garlic (Allium sativum L. Fam. Alliaceae), (Fig. 2A) is one of the best-

researched/best-selling herbal remedies and is also commonly used as a food and 

a spice (Borrelli et al., 2007). Garlic has a rich history. It is mentioned in the Bible 

and was used by Hippocrates, Galen, Pliny the Elder, and Dioscorides. It is 

originated from Central Asia, but nowadays it is known only in cultivated form. 

The subterranean garlic bulb consists of 4-20 cloves, each enclosed within a dry, 

white leaf skin (Capasso et al. 2003). Traditionally, garlic has been used for the 

treatment of a number of ailments, including those affecting the digestive tract  

(Block 1985; Chiang et al., 2006). Garlic contains allyl sulfides, including diallyl 

sulfide (DAS) (Fig. 2B), diallyl disulfide (DADS) (Fig. 2C) and other allyl 

polysulfides, which  are the most abundant compounds in garlic oil, accounting  
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Figure 1. (A) Cannabis sativa; (B) cannabigerol 
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Figure 2.  (A) Allium sativum; (B) diallyl sulfide; (C) diallyl disulfide 
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for nearly 94% of the total amount (Calvo-Gomez et al., 2004). The proportion of 

allyl sulfides in garlic oil consists of approximately 4.7–8% DAS and 21.9–40% 

DADS which depends on the extraction conditions (Sheen at al., 1991; Lawson et 

al., 1991). Fresh garlic cloves contain 0.2–0.5% garlic oil in the steam-distilled 

materials (Wang et al., 2012). DAS and DADS exert a wide number of 

pharmacological actions. Relevant for this study, DAS and DADS have been 

reported: 1) to exert antioxidant action, which is relevant in the light of the 

observation that free radicals play an important role in the pathogenesis of IBD 

and CRC (Iciek et al.,  2012); 2) to act as donor of hydrogen sulfide (Gu et al., 

2011), a gaseous mediator which contributes to the maintenance of 

gastrointestinal mucosal defense and repair (Wallace et al., 2010) and 3) to bind 

transient receptor potential (TRP) vanilloid type 1 (TRPV1) and transient receptor 

potential ankyrin type 1 (TRPA1), members of the superfamily of TRP channels 

which are up-regulated in the inflamed gut (Izzo et al. 2012; Holzer et al., 2011).  

Here, we have evaluated the effect of both DAS and DADS in the experimental 

model of IBD induced in the mouse by DNBS. 

1.3.3 Bromelain (Ananas comosus) 

Bromelain is a cysteine protease derived from the stem of the pineapple – named 

for its resemblance to the pine cone - plant, Ananas comosus (Fam. 

Bromeliaceae). Ananas comosus is a tropical plant with edible multiple fruit 

consisting of coalesced berries (Fig. 3).  In the United States, bromelain is sold in 

health stores as a nutritional supplement to promote digestive health and as a 

cleansing agent to improve the texture of the skin and to promote the healing of 

wounds. Bromelain is also commercially available as an anti-inflammatory drug. 

Preclinical and/or clinical studies have reported anti-inflammatory, immunomodu- 
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Figure 3. Ananas comosus 
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-latory, antitumoral and wound healing actions from bromelain (Taussig et al., 

1988; Orsini et al., 2006). Relevant to the present investigation, bromelain has 

been shown to ameliorate experimental colitis in IL-10-deficient mice and to 

decrease secretion of pro-inflammatory cytokines and chemokines in colon 

biopsies from patients with UC and CD (Hale et al., 2005; Onken et al., 2008). 

Although the effects of bromelain on intestinal inflammation and secretion have 

been extensively studied, there is a paucity of reports on the possible effect of 

bromelain on intestinal motility in an inflammatory process. This is an important 

lack of information since it is well known that motility changes play an important 

role in intestinal inflammation and diarrhoea. We have therefore evaluated the 

effect of bromelain on motility changes associated to the administration of the 

irritant croton oil in mice.  

In recent years, studies have shown that bromelain has the capacity to modulate 

key pathways that support malignancy. The anti-cancer activity of bromelain 

consists in the direct impact on cancer cells and their micro-environment, as well 

as in the modulation of immune, inflammatory and haemostatic systems (Maurer, 

2001; Chobotova et al., 2010). Because the actions of bromelain on colon 

carcinogenesis have been not investigated to date, we have evaluated the effect of 

this food component  in a human colorectal carcinoma cell line and its  potential 

chemopreventive effect  in an animal model of colon cancer. 

1.3.4 Boeravinone G (Boerhaavia diffusa) 

Boerhaavia diffusa (Fig. 4A) is a herbaceous member of the Nyctaginaceae family 

which has a long history of use by indigenous and tribal people of India (Dhar et 

al., 1968). In particular, roots and leaves of this plant have been widely used in the 

folk medicine to treat several illnesses including those affecting the 

gastrointestinal tract. Experimental studies have demonstrated that Boerhaavia 
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diffusa preparations  could be effective in the prevention and treatment of 

diseases, including IBD and colon cancer, in which  free radicals are implicated 

(Kapoor et al., 1990; Pari et al., 2004). The main chemical ingredients of this 

plant include alkaloids, flavones and  rotenoids named boeravinones (A to J) 

(Leyon et al., 2005). In our preliminary experiments, we found that among various 

boeravinones, boeravinone G (Fig. 4B) exerted a strong antioxidant effect. We 

have thus evaluated the effect of this boeravinone on ROS production, DNA 

damage and SOD activity in colorectal carcinoma cells. 
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Figure 4. (A) Boerhaavia diffusa ; (B) boeravinone G  
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2.0 AIM 

The aim of the present thesis is to verify the effect of a number of plant-derived 

compounds in experimental models of IBD and colon cancer.  Compounds under 

study included cannabigerol, a non-psychotropic cannabinoid from Cannabis 

sativa,  DAS and DADS, two organosulfur compounds from   Allium sativum, 

bromelain,  a cysteine protease from Ananas comosus and Boeravinone G, a 

rotenoid isolated from the Ayurvedic plant  Boerhaavia diffusa. These compounds 

were selected because they  1) are contained in plants traditionally used for the 

treatment of digestive diseases, including IBD and colorectal cancer and 2) 

possess pharmacological properties which may predict their efficacy in intestinal 

inflammation and cancer. 
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3.0 MATERIALS AND METHODS 

3.1 Drugs and reagents  

CBG [purity by high-performance liquid chromatography (HPLC), 99.0%] was 

kindly supplied by GW Pharmaceuticals (Porton Down, Wiltshire, UK). 

Rimonabant (5-(p-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-

piperidinopyrazole-3-carboxamide hydrochloride) and SR144528 (N-[-1S-endo-

1,3,3-trimethyl-bicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-

methyl benzyl)-pyrazole-3-carboxamide) were a kind gift from Drs 

MadaleineMosse` and Francis Barth (SANOFI Recherche, Montpellier, France). 

Allyl-sulfide (DAS), allyl-disulfide (DADS), bromelain, celecoxib, trypan blue, 

dinitrobenzenesulphonic acid (DNBS), azoxymethane (AOM),  3-amino-7-

dimethylamino-2-methylphenazine hydrochloride [neutral red (NR) solution], 

dithiothreitol (DTT), fura 2-AM, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide], croton oil, myeloperoxidase (MPO) from human 

leucocytes, hydrogen peroxide (H2O2), FeCl2·4H2O, 2′,7′-dichlorfluorescein-

diacetate (H2DCF-DA), lipopolysaccharide (LPS, from Escherichia coli serotype 

O111:B4), thioglycollate medium, cadmium, 2,3-iaminonaphtalene (DAN), 2,6-

di-tert-butyl-4-methylphenol (BHT), fluorescein isothiocyanate (FITC)-

conjugated dextran (molecular mass 3-5 kDa), 5,5-dimethyl-1-pyrroline-N-oxide 

(DMPO), hydrogen peroxide (H2O2), FeCl2·4H2O, trichloroacetic acid (TCA), 

thiobarbituric acid (TBA) and malondialdehyde (MDA) were purchased from 

Sigma (Milan, Italy). AM251, AM630, capsazepine, and GW9662 were obtained 

from Tocris Cookson (Bristol, UK).  

WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4 disulfophenyl)-

2H-tetrazolium, monosodium salt] cell proliferation assay kit was purchased from 
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Cayman Chemical Company (Germany). Monoclonal primary antibodies for 

pERK1/2, ERK2 and phospho-NF-kB p65 were obtained from Santa Cruz 

Laboratories (DBA S.r.l, Italy) while peroxidase-conjugated (HRP) anti-mouse 

IgG antibody was obtained from JacksonImmunoResearch (LiStarFish, Italy). 

Methyl-[
3
H]-thymidine was purchased from PerkinElmer (Monza, Italy). 

Bromelain was proteolytically inactivated in the laboratories of the Department of 

Pharmacy, University of Naples Federico II (by Dr. Giuseppe De Rosa).   N
1
-3-

methylbutyryl-N
4
-6-aminohexanoyl-piperazine (ENMD-1068) was synthesized in 

the laboratories of the Department of Pharmacy, University of Naples Federico II 

(by Dr. Ferdinando Fiorino and Dr. Beatrice Severino). All reagents for cell 

culture and western blot analysis were obtained from Sigma Aldrich S.r.l. (Milan, 

Italy), Amersham Biosciences Inc. (UK), Bio-Rad Laboratories (USA) and 

Microtech S.r.l. (Naples, Italy). All chemicals and reagents employed in this study 

were of analytical grade. CBG was dissolved in ethanol/Tween20/saline (1:1:8; 

for in vivo experiments) or ethanol (for in vitro experiments). DAS and DADS 

were dissolved in corn oil for in vivo experiments or DMEM medium for in vitro 

experiments). Bromelain was dissolved in 0.9% NaCl solution for in vivo 

experiments or in DMEM for in vitro experiments. Celecoxib was dissolved in 

ethanol/Tween20/saline (1:1:8). Rimonabant and SR144528 were dissolved in 

dimethyl sulfoxide (DMSO). DNBS was dissolved in 50% ethanol (200 

µl/mouse). ENMD-1068 was dissolved in DMEM for in vitro experiments or in 

0.9 % NaCl solution for in vivo experiments. The vehicles used to dissolve CBG 

(60 μl/mouse in vivo or 0.01% ethanol in vitro), DAS and DADS (200μl/mouse), 

bromelain (60 μl/mouse) and celecoxib (60 μl/mouse) had no significant effects 

on the responses under study. 

3.2 Animals 
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Male ICR mice weighting 20-22 g (for experiments on tumors and ileitis) or  30–

35 g (for experiments on colitis) were purchased from Harlan Italy (San Pietro al 

Natisone, MI). Mice were housed in polycarbonate cages under a 12-h light/12-h 

dark cycle, temperature 23 ± 2° C and humidity 60%. Animals, used after 1 week 

of acclimation, had free access to water and food except for the 24-h period 

immediately preceding the administration of DNBS. All experiments complied 

with the Italian D.L. no. 116 of 27 January 1992 and associated guidelines in the 

European communities Council Directive of 24 November 1986 (86/609/ECC).  

3.3 Cell culture 

A human colon adenocarcinoma cell line (Caco-2), a conditionally immortalized 

colonic epithelial cell line (Ptk6, from a Ptk6 null mouse), a conditionally 

immortalized mouse duodenal epithelial cell line [Mode-K, by simian virus (SV)-

40 large T gene transfer] and murine peritoneal macrophages were used. Mode-K 

and Ptk6 cells exhibit morphological and phenotypic characteristics of normal 

enterocytes. Caco-2 cells, purchased from the American Type Culture Collection 

(LGC Promochen, Italy), were cultured in  Dulbecco’s Modified Eagle Medium 

(DMEM ) containing 10% Fetal Bovine Serum (FBS), 100 U/ml penicillin, 100 

μg/mL streptomycin, 1 M Hepes [4-(2-Hydroxyethyl)-1-piperazineethanesulfonic 

acid] 2.5 %, non-essential amino acid (NEAA) 1X and 2mM L-glutamine. Caco-2 

cells were used between passages 20 to 50. Ptk6 null colonic epithelial cells (used 

between passages 44 and 50), supplied by Dr R.H. Whitehead at the Ludwig 

Institute for Cancer Research (Melbourne Branch), were cultured in RPMI-1640 

medium (GIBCO) containing 10% FBS, 80 U/ml penicillin and 80 μg/ml 

streptomycin and. Mode-K cells (used between passages 14 and 22), a gift from 

Dirk Haller (Chair for the Biofunctionality of Food, Departments of Food, 
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Nutrition and Medicine, Technical University Munich), were grown in DMEM 

supplemented with 2 mM L-glutamine, 10% FBS, 80 U/ml penicillin and 80 

μg/ml streptomycin. Peritoneal macrophages were obtained from mice as 

previously described by Romano and colleagues (Romano et al., 2013). Briefly, to 

evoke the production of peritoneal exudates rich in macrophages, mice were 

injected intraperitoneally (ip) with 1 ml of 10% sterile thioglycollate medium. 

After 4 days, mice were killed and peritoneal macrophages were collected and 

seeded in appropriate plates for performing in vitro experiments. Peritoneal 

macrophages were cultured in DMEM supplemented with 10% foetal bovine 

serum. Caco-2, Ptk6 and Mode-K cells were routinely maintained in 75 cm
2
 

polystyrene flasks in an incubater at 37 °C, 95% humidity and 5% CO2 

atmosphere. The cells were trypsinized twice a week and the culture medium was 

replaced every 2 days. In all cell lines viability was evaluated by trypan blue 

staining.  

The inflammatory response in peritoneal macrophages was induced by LPS from 

Escherichia coli serotype O111:B4 (1 μg/ml). The acute inflammatory response in 

macrophages required an LPS incubation time of 18 h. The oxidative stress in 

Ptk6 null colonic epithelial cells was induced by Fenton’s reagent (H2O2/Fe
2+

 2 

mM, time of incubation 3 h). For reactive oxygen species (ROS),  lactate 

dehydrogenase leakage and TBARS assay, Caco-2 were led to differentiation, 

(cells were used at post-confluence stage as a model of human enterocytes) while 

for cell vitality (neutral red assay) Caco-2 cells were used under both proliferative 

and differentiated state; preliminary experiments showed that a 5-7-day time of 

incubation was required for Caco-2 cells to undergo differentiation.  

3.4 Induction of experimental colitis and pharmacological treatment 
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Colitis was induced in anesthetized mice by intrarectal administration (4.5-cm 

depth) of 150 mg/kg of DNBS (200 µl/mouse) via a lubricated polyethylene 

catheter (1 mm in diameter)  (Hunter et al., 2005). Mice were sacrificed at 72 h 

post-DNBS, the abdomen was opened by a midline incision and the colon 

removed, isolated from surrounding tissues, opened along the antimesenteric 

border, rinsed, weighed and length measured (in order to determined the colon 

weight/colon length ratio used as an indirect marker of inflammation). For 

biochemistry analysis, tissues were kept at −80°C until use, while for histological 

examination tissues were fixed in 10% formaldehyde. 

The dose of DNBS was selected on the basis of preliminary experiments showing 

a remarkable colonic damage associated to high reproducibility and low mortality 

for the 150 mg/kg dose. The time point of damage evaluation (i.e., 3 days after 

DNBS administration) was chosen because maximal DNBS-induced 

inflammation has been reported in mice after 3 days (Massa et al., 2004). 

Furthermore, previous studies have shown that 3 days after intrarectal DNBS 

administration in mice, the inflammatory response may be modulated by 

administration of cannabinoid drugs such as direct cannabinoid receptor agonists 

or antagonists (Borrelli et al., 2009; Massa et al., 2004). 

In the preventive protocol CBG (1-30 mg/kg) was given intraperitoneally (ip) 

once a day for six consecutive days starting 3 days before DNBS administration, 

while in the curative protocol CBG (1-30 mg/kg, ip) or DAS and DADS (1-10 

mg/kg, orally) was given for two consecutive days starting 24-h after DNBS 

administration. 

3.5 Intestinal permeability  
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Intestinal permeability was examined using a fluorescein isothiocyanate (FITC)-

labeled-dextran method, as described previously (Osanai et al., 2007). Briefly, 2 

days after DNBS administration, mice were gavaged with 600 mg/kg body weight 

of fluorescein isothiocyanate (FITC)-conjugated dextran (molecular mass 3-5 

kDa). One day later, blood was collected by cardiac puncture, and the serum was 

immediately analyzed for FITC-derived fluorescence using a fluorescent 

microplate reader with an excitation–emission wavelengths of 485–520 nm 

(LS55Luminescence Spectrometer, PerkinElmer Instruments). Preliminary 

experiments showed that FITC-dextran was stable after 24 h from its preparation. 

Serial-diluted FITC-dextran was used to generate a standard curve. Intestinal 

permeability was expressed as FITC nM found in the serum. 

3.6 Upper gastrointestinal  transit in the inflamed gut 

Inflammation was induced as previously described (Borrelli et al., 2006; Pol et al., 

1997). Briefly, two doses of croton oil (20 l/mouse) in two consecutive days 

were orally administered to mice and four days after the first administration of 

croton oil, upper gastrointestinal transit of mice was measured. This time was 

selected on the basis of a previous work, (Pol et al., 1997) which reported that 

maximal inflammatory response occurred four days after the first treatment. 

Upper gastrointestinal transit was measured in control and croton oil-treated mice 

by evaluating the intestinal location of rhodamine-B-labelled dextran. Animals 

were given fluorescent-labelled dextran (100 μl of 25 mg/ml stock solution) via a 

gastric tube into the stomach. Twenty minutes after administration, the animals 

were killed by asphyxiation with CO2 and the entire small intestine with its 

content was divided into 10 equal parts as previously reported in detail (Capasso 

et al., 2008). Duplicate aliquots of the cleared supernatant was read in a multi-well 
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fluorescence plate reader (LS55 Luminescence spectrometer; Perkin Elmer 

Instruments, Waltham, MA, USA; excitation 530 ± 5 nm and emission 590 ± 10 

nm) for quantification of the fluorescent signal in each intestinal segment. From 

the distribution of the fluorescent marker along the intestine, we calculated the 

geometric centre (GC) of small intestinal transit as follows: 

GC = P(fraction of fluorescence per segment x segment number), where GC 

ranged from 1 (minimal motility) to 10 (maximal motility).  

Bromelain (1-10 mg/kg) or vehicle (0.9% NaCl solution) was given 

intraperitoneally, 30 minutes before the administration of the fluorescent marker 

to animals. In some experiments, EDNM-1068 (4 mg/kg, dissolved in 0.9% NaCl) 

was given intraperitoneally 30 minutes before the administration of bromelain. 

The dose of EDNM-1068 was selected on the basis of previous works (Kelso et 

al., 2006). In another set of experiments, bromelain  (100–500 mg/kg) was given 

orally 1 hour before the administration of the fluorescent marker.  

3.7 Experimental colon carcinogenesis and pharmacological treatment 

Mice were randomly divided into the following 4 groups (10 animals/group): 

Group 1 (control) was treated with vehicles; group 2 was treated with 

azoxymethane (AOM) plus the vehicle used to dissolve bromelain; group 3 was 

treated with AOM plus bromelain (1 mg/kg) and group 4 was treated with AOM 

plus celecoxib (10 mg/kg). AOM (40 mg/kg in total, ip) was administered, at the 

single dose of 10 mg/kg, at the beginning of the  first, second,  third and fourth 

week. Bromelain and celecoxib were given (ip) every day for the whole duration 

of the experiment starting one week before the first administration of AOM. The 

doses of bromelain and celecoxib were selected on the basis of previous published 

work dealing with the effects of these drugs in subchronic or chronic experiments 

(Beuth et al., 2005; Rahman et al. 2012). All animals were euthanized by 
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asphyxiation with CO2  3 months after the first injection of AOM. Based on our 

laboratory experience, this time (at the dose of AOM used) was associated with 

the occurrence of a significant number of ACF, polyps and tumours (Aviello et 

al., 2012). For aberrant crypt foci (ACF), polyps and tumours determination, the 

colons were rapidly removed after sacrifice, washed with saline, opened 

longitudinally, laid flat on a polystyrene board and fixed with 10% buffered 

formaldehyde solution before staining with 0.2% methylene blue in saline. Colons 

were examined as previously reported
 
(Aviello et al., 2012) using a light 

microscope at 20X magnification (Leica Microsystems, Milan Italy).  

3.8 Histology and  immunohistochemistry 

Histological and immunochemistry evaluations, performed 3 days after DNBS 

administration, was assessed on a segment of 1 cm of colon located 4 cm above 

the anal canal. After fixation for 24 h in saline 10% formaldehyde, samples were 

dehydrated in graded ethanol and embedded in paraffin. Thereafter, 5-μm sections 

were deparaffinized with xylene, stained with hematoxylin–eosin, and observed in 

a DM 4000 B Leica microscope (Leica Microsystems, Milan, Italy). In the CBG 

experiments, microscopic scoring were performed using a modified version of the 

scoring system reported by D’Argenio and colleagues (D’argenio et al., 2006). 

Briefly, colon was scored considering (1) the submucosal infiltration (0, none; 1, 

mild; 2–3, moderate; 4–5 severe), (2) the crypt abscesses (0, none, 1–2 rare; 3–5, 

diffuse) and (3) the mucosal  erosion (0, absent; 1, focus; 2-3, extended until the 

middle of the visible surface; 4-5, extended until the entire visible surface). For 

immunohistochemical detection of Ki-67 (after CBG treatment), paraffin-

embedded slides were immersed in a Tris/ethylenediaminetetraacetic acid buffer 

(pH 9.0), were heated in a decloaking chamber at 125°C for 3 min and were 

cooled at room temperature for 20 min. After adding 3% hydrogen peroxide, 
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sections were incubated for 10 min. After washing the sections with Tris-buffered 

saline Tween-20 (pH 7.6), they were stained with rabbit monoclonal antibody to 

Ki-67 (Ventana Medical systems, Tucson, Arizona). Briefly, each tissue section 

was incubated with primary antibody to Ki-67 (1:100) for 30 min at room 

temperature. The slides were washed three times with Tris-buffered saline Tween-

20 and were incubated with secondary antibody for 30 min. After, the slides were 

reacted with streptavidin for 20 min and the reaction was visualized by 3,3’-

diaminobenzidine tetrahydrochloride for 5 min. Finaly, the slides were 

counterstained with Mayer’s hematoxylin. The intensity and localization of 

immunoreactivities against the primary antibody used were examined on all 

sections with a microscope (Leica Microsystems, Milan, Italy). In DAS and 

DADS experiments, microscopic analysis were scored considering (i) the 

leucocyte infiltration  (0-3=mucosal, 0-2=submucosal, 0-1=muscolaris), (ii) 

ulcerations (0-2) and (iii) crypt loss in intestinal architecture (0-4). For 

immunostaining assays, colons were cut into 5-µm sections and exposed to 

antibodies for interferon--induced protein 10 (IP-10) chemochine detection. On 

colonic sections (5-μm sections deparaffinized) of animals treated with DAS and 

DADS (10 mg/kg) the expression of IP 10 was evaluated. Following 

deparaffinization, the slides containing colonic sections were washed in 1X PBS 

for three times. Subsequently blocking was performed with a specific blocking 

buffer (serum of the animal corresponding to secondary antibody) for 60 minutes 

at room temperature. Then the slides were incubated with primary antibody anti-

IP 10 (dilution 1:20) overnight at 4°C. After 24 hours three more washes in 1X 

PBS were carried out and slides were incubated for 1-2hours with secondary 

antibodies conjugated to fluorochromes (DAPI 1:200= blueandALEXA1:1000= 
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green). Finally, after cover-glasses application on slides, IP-10 expression was 

examined using a fluorescence-microscope (Leica Microsystems, Germany). 

3.9 Myeloperoxidase (MPO) activity 

Myeloperoxidase (MPO) activity was determined as previously described 

(Goldblum et al., 1985). Full-thickness colons were homogenized in an 

appropriate lysis buffer [0.5% hexadeciltrimethylammonium bromide (HTAB) in 

MOPS 10 Mm] in ratio 50 mg tissue /1 ml  MOPS. The samples were then 

centrifuged for 20 minutes at 15,000 x g at 4 °C. An aliquot of the supernatant 

was then incubated with sodium phosphate buffer (NaPP, pH 5.5) e tetra-methyl-

benzidine 16 mM. After 5 minutes, H2O2 (9.8 M) in NaPP was added  and the 

reaction stopped adding acetic acid. The rate of exchange in absorbance was 

measured by a spectrophotometer at 650 nm. Different dilutions of human MPO 

enzyme of known concentration were used to obtain a standard curve. MPO 

activity was expressed as units (U)/ml. 

3.10 Superoxide dismutase (SOD) 

A modified version of the Kuthan and colleagues method was used to detect 

superoxide dismutase (SOD) activity (Kuthan et al., 1986). For ex vivo 

experiments full-thickness colons from control and DNBS-treated mice (treated or 

not with CBG 30 mg/kg) were homogenized in PBS 1X. Homogenates were 

centrifuged at 25.000×g for 15 min at 4°C. Extraction of Cu-Zn SOD was 

obtained treating the cytosolic lysates with ethanol (1:1) and chloroform (1:0.6) at 

25°C for 15 min. After centrifugation (15.000 x g, 15 min, 4°C), 125 µl of the 

surnatant was incubated (for 20 min) with 613 µl of a reaction mixture containing 

0.12 mM xanthine, 48 mM Na2CO3, 0.094 mM ethylendiaminetetracetic acid 

(EDTA), 60 mg/l BSA, 0.03 mM nitro blue tetrazolium (NBT) and 0.006 U/ml 

xanthine oxidase. Finally, CuCl2 (0.8 mM) was added to stop the reaction. 
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Absorbance readings at 560 nm were recorded using a Beckman DU62 

spectrophotometer. Superoxide radical scavenging capacity of CBG (30 mg/kg) at 

the end of 30 min were expressed as ng SOD/mg tissues contained in the lysates. 

For in vitro experiments, Caco-2 cytosolic extracts were prepared as previously 

described (Aviello et al., 2010). Briefly, after boeravinone G (0.1-1 ng/ml) 

incubation for 24 hours followed by a treatment with H2O2/Fe
2+

 1 mM for 3 hours, 

the medium was removed and cells were washed with ice cold PBS. The cells 

were collected by scraping for 10 min at 4°C with lysis buffer [50mM Tris-HCl 

pH=7.4, 0.25 % sodium deoxycholate, 150mM NaCl, 1mM EGTA, 1mM NaF, 1 

% NP-40, 1mM PMSF, 1mM Na3VO4 containing complete protease inhibitor 

cocktail (Roche Diagnostics, Mannheim, Germany)]. After centrifugation at 

16,200 x g for 15 min at 4°C, the supernatants were collected and protein 

concentration was determined by Bradford method (Bradford et al., 1976). 

Cytosolic lysates were used for the evaluation of SOD activity. Cytosolic lysates 

were incubated at 25 °C for 20 min with a reaction mixture containing 1.2 mM 

xanthine, 0.03 mM nitro blue tetrazolium (NBT), 0.26 U/mL xanthine oxidase. 

Similarly to the ex vivo SOD detection protocol, absorbance readings at 560 nm 

were recorded using a Beckman DU62 spectrophotometer. Superoxide radical-

scavenging capacity of boeravinone G (0.1-1 ng/ml) at the end of 30 min was 

expressed as ng SOD/mg proteins contained in the cell lysates.  

3.11 Immunoblotting  

For ex vivo experiments, full-thickness colons were homogenized in lysis buffer 

(1:2, w/v) containing 0.5 M β-glycerophosphate, 20 mM MgCl2, 10 mM ethylene 

glycol tetraacetic acid, and supplemented with 100 mM DTT and 

protease/phosphatase inhibitors (100 mM dimethylsulfonyl fluoride, 2 mg/ml 

apronitin, 2 mM leupeptin, and 10 mM Na3VO4). Homogenates were centrifuged 
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at 600 × g for 5 min at 4°C; the supernatants were collected and centrifuged at 

16,200 × g for 10 min at 4°C. For in vitro experiments, Caco-2 cytosolic lysates 

treated with bromelain and boeravinone G were obtained as previously described 

(Aviello et al., 2010). Briefly, after bromelain (0.1-10 μg/ml) or after boeravinone 

G (0.1-1 ng/ml) incubation for 24 hours, the medium was removed and cells were 

washed with ice cold PBS. The cells were collected by scraping for 10 min at 4°C 

with lysis buffer [50mM Tris-HCl pH=7.4, 0.25 % sodium deoxycholate, 150mM 

NaCl, 1mM EGTA, 1mM NaF, 1 % NP-40, 1mM PMSF, 1mM Na3VO4 

containing complete protease inhibitor cocktail (Roche Diagnostics, Mannheim, 

Germany)]. After centrifugation at 16,200 x g for 15 min at 4°C, the supernatants 

were collected. Protein concentration was determined by Bio-Rad Protein Assay 

(Bio-Rad, Milan, Italy), using the Bradford method. Lysate aliquots containing 50 

μg of proteins both from colons and Caco-2 cells (treated with bromelain and 

boeravinone G) were subjected to electrophoresis on a sodium dodecyl sulphate 

(SDS) 10% polyacrylamide gel and electrophoretically transferred onto a 

nitrocellulose transfer membrane (Protran, Schleicher&Schuell, Germany). 

Proteins were visualized on the filters by reversible staining with Ponceau-S 

solution (Sigma) and de-stained in PBS containing 0.1% Tween 20. All antibodies 

were used at 1:1000 dilution in milk buffer (5% non-fat dry milk in PBS/Tween 

0.1 %). The immunoblots of homogenates from colons were incubated with 

mouse polyclonal antibodies for cyclooxigenase type 2 (COX-2) (BD Bioscience, 

Belgium) and inducible nitric oxide synthase (iNOS) (Cayman Chemical, USA), 

while  the immunoblots of homogenates from ileum were incubated with a mouse 

polyclonal antibody for protease-activated receptors type 2 (PAR-2, epitope 

specificity within amino acids 37-50) (Santa Cruz Biotechnology, Inc.). The 

lysates from Caco-2 were incubated at 4 °C with mouse monoclonal antibodies for 
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pERK1/2, ERK2 (Santa Cruz, DBA S.r.l, Italy), phosho-Akt and rabbit polyclonal 

antibody for Akt and phospho-NF-kB p65 (Cell Signaling from Euroclone, Milan, 

Italy). Subsequently, the membranes were incubated for 1 hour at room 

temperature with 1:2000-diluition of anti-mouse or anti-rabbit IgG-Horseradish 

peroxidase-conjugated secondary antibody (Amersham Biosciences, UK). After 

washing in PBS/Tween 0.1%, the membranes were analyzed by enhanced 

chemiluminescence’s (ECL; Amersham Biosciences (UK).  The signal was 

visualized using ImageQuant 400 equipped with software ImageQuant Capture 

(GE Healthcare, Milan, Italy) and analysed using Quantity One Software version 

4.6.3. The membranes were probed with an anti β-actin antibody to normalize the 

results, which were expressed as a ratio of densitometric analysis of COX-2/β-

actin, iNOS/β-actin and PAR-2/β-actin  bands. The effect of bromelain and 

boeravinone on the MAP kinase and phosphoinositide 3-kinase activation was 

expressed as ratio of densitometric analysis of pERK1/2/total ERK bands and 

pAkt/Akt and phospho-NF-kB p65/β-actin bands, respectively. 

3.12 Enzyme-linked immunosorbent assay  

Interleukin-1β (IL-1β), interleukin-10 (IL-10) and interferon-gamma (IFN-γ) 

levels in homogenates obtained from full-thickness colonic tissues and  IL-6, IP-

10 and IFN-γ levels in supernatants obtained from Mode-K cells were quantified 

using commercial ELISA kits (Tema Ricerca, S.r.L. Italy; R&D Systems 

Germany, respectively) according to the manufacturer's instructions.  

3.13 Cytotoxicity assay  

Cytotoxicity assays were performed using the NR, MTT and WST-8 assays. For  

NR assay (Aviello et al., 2011), cells were seeded in a 96-well plate [murine 

macrophages at the density of 1×10
5
 cells/ well, Caco-2 at a density of 1x10

4
 

cells/well (under both proliferative and differentiated state), Ptk6 null colonic 
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epithelial cells at a density of 3x10
4
 cells/well] and treated with the compounds 

considered.  After 24-h the cells were washed and 200 μl NR dye solution (50 

μg/ml in DMEM) were added to each well for 3 h at 37°C. After washing in PBS, 

100 μl of 1% acetic acid were added and the absorbency was measured at a 

wavelength (λ) of 540 nm using a multiwell reader (Perkin-Elmer Instruments). 

Treatments were compared with 20 % DMSO and the results are expressed as 

percentage of cell viability. In the MTT assay, as described by Mosmann and 

colleagues (1983), cell respiration was assessed by the mitochondrial dependent 

reduction of MTT to formazan. Caco-2 cells (1x10
4
 cells/well in a 96-well plate in 

a proliferating state) after treatement with the compounds considered, were 

incubated with the MTT solution (0.25 mg/ml) for 1 h at 37 °C.The supernatant 

was removed after treatment and the formed formazan crystals were dissolved in 

DMSO (100 µl/well) at room temperature for 10 min. The absorbance was read at 

the wavelength of 490 nm in a multiwell plate reader (Bio-Rad, Model 550). The 

mean absorbance, taken from cells grown in the absence of the extracts (vehicle 

alone), was taken as 100% cell survival (control). The number of viable cells was 

also measured using a WST-8 assay (NacalaiTesque, Kyoto, Japan). After 24 

hours treatment of  Mode-K cells (seeded at the density of 1x10
5
 cells/well in a 24 

–well plate) with DAS and DADS, 100 microliters of  WST-8 solution was added 

into each well and the cells were incubated for 2 h. The absorbance was measured 

at a test wavelength of 600 nm using a microplate reader (Benchmark, Bio-Rad 

Laboratories, CA). Cell cytotoxicity was evaluated as the ratio of the absorbance 

of the sample to that of the control.  CBG was used at the concentration between 

0.001 and 10 µM. DAS and DADS were used at the concentration between 10 and 

100 µg/ml, while  interferon-γ at the 50 ng/ml concentration. Bromelain was used 
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at the concentration between 1 and 10 μg/ml. Boeravinone G was used at the 

concentration between 0.1 and 1 ng/ml.  

3.14 Lactate dehydrogenase (LDH) leakage assay 

The injury to Caco-2 cells was quantitatively assessed through the measurement 

of lactate dehydrogenase (LDH) levels. Caco-2 cells were seeded in 6-well plates 

at the density of 3.0 x10
6
 and led to differentiation. Differentiated cells were 

treated with vehicle (DMSO 0.1 % v/v) or boeravinone G (0.1-1 ng/ml) for 24 h. 

An aliquot of the medium was removed from the culture plates and then analyzed 

for LDH leakage into the culture media by using a commercial kit (Sigma 

Diagnostics). The total LDH activity was determined after cells were scraped and 

thoroughly disrupted by Ultra Turax for 30 seconds. The percentage of LDH 

leakage was calculated to determine membrane integrity. The LDH leakage was 

expressed as a percentage of the total activity: (activity in the medium)/(activity in 

the medium + activity of the cells) x 100.  

3.15 Nitrites measurement 

Nitrites, stable metabolites of nitric monoxide (NO), were measured in 

macrophages and Mode-K medium as previously described (Aviello et al., 2011). 

Mouse peritoneal macrophages (5×10
5
 cells per well seeded in a 24-well plate) 

were incubated with CBG (0.001–1 µM) for 30 min and subsequently with LPS (1 

μg/ml) for 18 h. Mode-K cells (1×10
5
 cells per well seeded in a 24-well plate) 

were incubated with DAS and DADS (50 µg/ml) in the presence of IFN-γ (50 

ng/ml) for 24h.  After reduction of nitrates to nitrites by cadmium, cell 

supernatants were incubated with DAN (50 μg/ml) for 7 min. After stopping the 

reaction with 2.8 N NaOH, nitrite levels were measured using a fluorescent 

microplate reader (LS55Luminescence Spectrometer, PerkinElmer Instruments, 

excitation–emission wavelengths of 365–450 nm). In a subsequent set of 



31 

 

experiments, rimonabant 1 µM, CB1 receptor antagonist) and SR144528 (1 μM, 

CB2 receptor antagonist) were incubated 30 min before CBG (1 µM). 

3.16 Quantitative (real-time) RT-PCR analysis  

Peritoneal macrophages (treated or not with CBG 30 min before LPS) were 

collected in RNA later (Invitrogen, Carlsbad, CA, USA) and homogenized  in 1.0 

ml of Trizol
®
 (Invitrogen). Total RNA was extracted according to the 

manufacturer’s recommendations and further purified and DNA digested by the 

Micro RNA purification system (Invitrogen). Total RNA eluted from spin 

cartridge wasUV-quantified by a Bio-Photometer
®
 (Eppendorf, Santa Clara, CA, 

USA), and purity of RNA samples was evaluated by the RNA-6000-Nano
®
 

microchip assay using a 2100 Bioanalyzer
®

 equipped with a 2100 Expert 

Software
®
 (Agilent, Santa Clara, CA, USA) following the manufacturer’s 

instructions. 

For all samples tested, the RNA integrity number was greater than 8 relative to a 

0–10 scale. One microgram of total RNA, as evaluated by the 2100 Bioanalyzer, 

was reverse transcribed in cDNA by the SuperScript III SuperMix (Invitrogen).  

The reaction mixture was incubated in a termocycler iCycler-iQ5
®

 (Bio-Rad, 

Hercules, CA, USA) for a 5 min at 60°C step, followed by a rapid chilling for 2 

min at 4°C. The protocol was stopped at this step and the reverse transcriptase 

was added to the samples, except the negative controls (–RT). The incubation was 

resumed with two thermal steps: 10 min at 25°C followed by 40 min at 50°C. 

Finally, the reaction was terminated by heating at 95°C for 10 min. Quantitative 

realtime PCR was performed by an iCycler-iQ5
®
 in a 20mL reaction mixture 

containing 1 X SYBR green supermix (Bio-Rad), 10 ng of cDNA (calculated on 

the basis of the retro-transcribed RNA) and 330 nM for each primer. Primer 

sequences and optimum annealing temperature (TaOpt) were designed by the 
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AlleleID software (PremierBiosoft). The amplification profile consisted of an 

initial denaturation of 2 min at 94°C and 40 cycles of 30 s at 94°C, annealing for 

30 s at TaOpt and elongation for 45 s at 68°C. Fluorescence data were collected 

during the elongation step. A final melt-curve data analysis  was also included in 

the thermal protocol. Assays were performed in quadruplicate (maximum Ct of 

replicate samples <0.5), and a standard curve from consecutive fivefold dilutions 

(100 to 0.16 ng) of a cDNA pool representative of all samples was included for 

PCR efficiency determination. Relative normalized expression was evaluated as 

previously described (De Petrocellis et al., 2012). 

Real Time-PCR method was also used to quantifyt IP-10 mRNA on Mode-K cells 

treated with DAS and DADS at concentration of 50 μg/ml. RNA from Mode-K 

cells was extracted using Trizol Reagent (Invitrogen, Karlsruhe, Germany) 

according to the manufacturer's instructions. Extracted RNA was solved in 20 µl 

water containing 0.1% diethyl-pyrocarbonate. RNA concentration and purity 

(A260/A280 ratio) was determined by spectrophotometric analysis (ND-1000 

spectrophotometer, NanoDrop Technologies, Willigton, USA). Reverse 

transcription was performed using 1 µg total RNA. Real-time PCR was performed 

using 1 µl cDNA in a Light CyclerTM system (Roche Diagnostics, Mannheim, 

Germany) as previously described (Ruiz et al., 2005). The amplified product was 

detected by the presence of a ALEXA green fluorescent signal. Melting curve 

analysis was used to document amplicon specificity and crossing points (Cp) were 

determined. Relative induction of gene mRNA expression was calculated 

according to the 2
−ΔΔC 

(Pfaffl et al., 2001) method and normalized to the 

expression of GAPDH (glyceraldehyde 3-phosphate dehydrogenase). Data were 

expressed as fold change against untreated cells.  

3.17 Measurement of [Ca
2+

]i in Caco-2 cells 
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Intracellular calcium measurement was performed using a modified method 

adapted from the procedure described by Jacob and colleagues (Jacob et al., 

2005). Briefly, after washing in PBS (Phosphate Buffered Saline), Caco-2 cells 

were trypsinized with 0.25 % trypsin-EDTA at 37°C for 5 min, centrifuged at 

1000 x g for 3 min, and then re-suspended at the concentration of 55000 cell/ml in 

HEPES buffer  solution (HBS) (composition in mM: NaCl 125, KCl 4, CaCl2 2, 

L-Glutamine 4, Glucose 10, Hepes 30) containing Fura-2AM (10 μM) and ENMD 

1068 (5 mM). After 30 min, some cells were treated with bromelain (1 μg/ml) for 

20 min. After these treatments, cells were centrifuged at 1000 x g for 2 min, and 

then re-suspended in calcium-free HBS. Intracellular calcium levels were 

measured using a fluorescent microplate reader (LS55 Luminescence 

Spectrometer, Perkin-Elmer Instruments, excitation-emission wavelengths of 

343/485 nm). The results are expressed as 343/485 nm ratio.The treatments were 

carried out in triplicate and four independent experiments were performed.  

3.18 
3
H-thymidine incorporation assay 

Cell proliferation was evaluated in colorectal carcinoma cell line Caco-2 using the 

3
H-thymidine incorporation as previously described (Aviello et al., 2010). Briefly, 

Caco-2 cells were seeded in 24-well plates at a density of 1.0x10
4
 in DMEM 

supplemented with 10 % FBS and grown for 24 h. The resulting monolayers were 

washed three times with 200 μl of phosphate buffered saline (PBS) and then 200 

μl of serum-free DMEM was added to each well. After 24 h of serum starvation, 

the cells were washed three times with PBS and incubated with DMEM 

supplemented with 10 % FBS containing bromelain or inactivated bromelain (1-

10 μg/ml) in presence of 
3
H-thymidine (1 µCi/well) for 24 h. Cells were scraped 

in 1 M NaOH and collected in plastic miniature vials (PerkinElmer) filled up with 

liquid for scintillation counting  (UltimaGold
®
 PerkinElmer). Treatments were 
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compared with 300 μM spermine. Cell proliferation was expressed as count per 

minute on μg of protein (CPM/μg protein) of incorporating
 3

H-thymidine cells. 

The treatments were carried out in triplicate and three independent experiments 

were performed. The protein content was quantified using the Bradford method. 

3.19 Intracellular reactive oxygen species (ROS) measurement  

The generation of intracellular reactive oxygen species (ROS) was estimated 

using the fluorescence probe 2′,7′-dichlorfluorescein-diacetate (H2DCF-DA) 

(Borrelli et al., 2009). For the experiments, cells were plated in 96-multiwell black 

plates (Corning, USA) at the density of 3×10
4 

cells/well and 1×10
4
 cells/well for 

Ptk6 and Caco-2 cells, respectively. Ptk6 null colonic epithelial cells were 

incubated for 24 h at 37°C with CBG (0.1-10 µM) while confluent Caco-2 cell 

monolayers were incubated for 24 h at 37 °C with bromelain (1-10 μg/ml) or 

boerhavinone G (0.1-1 ng/ml). After washing, cells were incubated for 1 h with 

200 μl of 100 μM H2DCF-DA in HBSS containing 1% FBS. Finally, cells were 

rinsed and incubated with the Fenton's reagent (H2O2/Fe
2+

 2 mM) for 3 h at 37°C. 

The DCF fluorescence intensity was detected using a fluorescent microplate 

reader (excitation 485 nm and emission 538 nm; Perkin-Elmer Instruments). The 

intracellular ROS levels were expressed as fluorescence intensity (picogreen). 

3.20  Thiobarbituric acid reactive substances (TBARS) assay 

Lipid peroxidation products [thiobarbituric acid reactive substances (TBARS) also 

known as malondialdehyde-equivalents (MDA-equivalents)] from Caco-2 cells 

were measured by the thiobarbituric acid colorimetric assay (Canadanovic et al., 

2005). Briefly, Caco-2 cells were seeded in 6-well plates at the density of 3.0×10
6
 

and led to differentiation. Differentiated cells were treated with  boeravinone G 

(0.1-1 ng/ml corresponding to 0.28-2.8 nM) for 24 h and then washed with PBS 

and incubated with the Fenton’s reagent (H2O2/Fe
2+

 1 mM) for 3 h at 37 °C. The 1 
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mM concentration was selected on the basis of our preliminary experiments, 

which showed submaximal effects of H2O2/Fe
2+

 in this assay (pmol MDA/mg 

protein: control 182.1±17.90, H2O2/Fe
2+

 0.25 mM 182.6±20.68, H2O2/Fe
2+

 0.5 

mM 298.5±17.62, H2O2/Fe
2+

 1 mM 628.5±34.58, H2O2/Fe
2+

 2 mM 985.5±62.5, 

H2O2/Fe
2+

 4 mM 1039±62.3;  n=8. EC50: 0.96±0.07 mM, Emax: 1052±50.37 

%).After incubation, the cells were washed and scraped in ice cold PBS. The cells 

were lysed by six cycles of freezing and thawing in PBS and then centrifuged at 

16200 x g for 10 min at 4°C. Trichloroacetic acid (TCA, 10% w/v) was added  to 

the cellular lysate and, after centrifugation at 16200 x g for 10 min, 0.67% (w/v) 

thiobarbituric acid (TBA) was added to the supernatant and the mixture was 

heated at 80 °C for 30 min. After cooling, MDA-equivalents formation was 

recorded at the wavelength of 532 nm, using a Beckman DU62 

spectrophotometer. A standard curve of MDA was used to quantify the levels of 

MDA-equivalents formed during the experiments, and the results are presented as 

μmol of MDA-equivalents/mg of cellular protein previously determined by the 

Bradford method (Bradford et al., 1976). 

3.21 DNA damage assay (Comet assay) 

The presence of DNA fragmentation was examined by single cell gel 

electrophoresis (Comet assay), as previously described (Aviello et al., 2010). 

Briefly, Caco-2 cells were seeded in the 25 cm
2
 flasks at a density of 4x10

5
 cells 

and incubated with boeravinone G (0.1-1 ng /ml) at 37°C for 24 h. After 

incubation the cells were treated with H2O2 (75μM) for 5 min on ice and then 

centrifuged at 1000 x g for 5 min. This concentration of H2O2 produced a 

submaximal damage of DNA (data not shown). The supernatant was discarded 

and the pellet was mixed with 85 μl of 0.85% low melting point agarose (LMA) in 

PBS. Cells were added to previously prepared gels of 1% normal agarose (NMA). 
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The gels on frosted slides were maintained in lysis solution (2.5 M NaCl, 100 mM 

Na2EDTA, 10 mM Tris and 1% Triton X-100, pH 10) at 4 °C for 1 h, and then 

electrophoresed in an appropriate buffer (300 mM NaOH, 1 mM Na2EDTA, 

pH>12) at 26 V, 300 mA for 20 min. After running, the gels were neutralized in 

0.4 M Tris–HCl, pH 7.5 (3 × 5 min washes) and stained with 20 μl of ethidium 

bromide (2 μg/ml) before scoring. Images were analyzed using a fluorescence 

microscope (Nikon) interfaced with a computer. DNA damage was analyzed and 

quantified by measuring the percent of fluorescence intensity in the tail (tail 

intensity) through the Komet 5.0 image analysis software (Kinetic Imaging). Each 

treatment was carried out in duplicate, and 100 random selected comets from two 

microscope slides were analyzed.  

3.22 Statistical analysis 

Data were expressed as the mean±standard error (SE mean) of n experiments. To 

determine statistical significance, Student’s t test was used for comparing a single 

treatment mean with a control mean, and an one-way analysis of variance 

followed by a Tukey–Kramer multiple comparisons test was used for analysis of 

multiple treatment means.  Values of p<0.05 were considered significant. 
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4.0 RESULTS 

4.1 Cannabigerol (CBG) and intestinal inflammation: in vivo and ex vivo 

studies 

4.1.1 Dinitrobenzene sulfonic acid (DNBS) model of colitis 

4.1.1.1 Colon weight/colon length ratio 

DNBS administration caused a significant increase in colon weight/colon length 

ratio, a simple and reliable marker of intestinal inflammation/damage (Gálvez et 

al., 2000), (Fig. 5A and 5B). CBG (1-30 mg/kg, ip) given before (preventive 

protocol, Fig. 5A) or after (curative protocol, Fig. 5B) the inflammatory insult, 

significantly reduced the effects of DNBS on colon weight/colon length ratio. 

Significant protection was achieved starting from the 1 mg/kg (preventive 

protocol) and 5 mg/kg (curative protocol) doses. In order to confirm the anti-

inflammatory curative activity of CBG, we measured intestinal permeability and 

performed histological analysis, immunohistochemistry and, MPO and SOD 

activities on colonic tissues. The selected CBG dose was 30 mg/kg.  

4.1.1.2 Histological analysis 

Histological evaluations of colonic mucosa of healthy control animals showed 

normal appearance with intact epithelium (Fig. 6A). In the DNBS group, colons 

showed tissue injury which was mainly characterized by necrosis involving the 

full thickness of the mucosa, infiltrations of granulocytes into the 

mucosa/submucosa and oedema of submucosa (Fig. 6B). CBG (30 mg/kg, ip, 

given after the inflammatory insult) reduced the signs of colon injury 

(microscopic score: control, 0.50±0.22; DNBS, 9.0±0.45
#
; CBG 30 mg/kg,  

6.0±0.45*, n=4, 
#
p<0.001 vs control and *p<0.01 vs DNBS alone). In the colon of  
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Figure 5. Dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice. Colon weight/length ratio 

of colons from untreated and DNBS-treated mice in the presence or absence of cannabigerol 

(CBG). Tissues were analyzed 3 days after vehicle or DNBS (150 mg/kg, intrarectally) 

administration. CBG (1-30 mg/kg) was administered (ip) once a day for six consecutive days 

starting 3 days before DNBS (preventive protocol, A) or for two consecutive days starting 24-h 

after the inflammatory insult (curative protocol, B). Bars are mean ± SEM of 12-15 mice for each 

experimental group. 
#
p<0.001 vs control, 

*
p<0.05 and 

**
p<0.01 vs DNBS alone. 

 

(B) 

(A) 
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Figure 6. Histological evaluations of inflamed and non-inflamed colons: effect of cannabigerol 

(30 mg/kg, ip). No histological modification was observed in the mucosa and submucosa of 

control mice (A); mucosal injury induced by dinitrobenzene sulfonic acid administration (B); 

treatment with CBG reduced colon injury by stimulating regeneration of the glands (C). 

Histological analysis was performed 3 days after dinitrobenzene sulfonic acid administration. CBG 

(30 mg/kg) was administered (ip) for two consecutive days starting 24-h after the inflammatory 

insult (curative protocol). Original magnification 200X. The figure is representative of 4 

experiments. 
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CBG (30 mg/kg)-treated animals, the glands were regenerating, the oedema in 

submucosa was reduced, and the erosion area was superficial (Fig. 6C).  

4.1.1.3 Immunohistochemical detection of Ki-67 

The curative action of CBG was further confirmed by immunohistochemistry. In 

normal colonic mucosa, the predominant area of cell proliferation is localized to 

the lower of the crypts as revealed by Ki-67 distribution (Fig. 7A). In the colon 

from DNBS-treated mice, total necrosis with Ki-67 immunoreactivity on 

inflammatory cells and in a few remaining surface elements was observed (Fig. 

7B). CBG (30 mg/kg, ip, given after the inflammatory insult) partially 

counteracted the effect of DNBS on cell proliferation, its mitotic activity being 

restricted to the lower half of the mucosa (i.e. the mature superficial cells were not 

in a proliferative state) (Fig. 7C). 

4.1.1.4 Intestinal permeability 

FITC-conjugated dextran presence (an index of membrane integrity) was not 

detected in the serum of healthy control animals. The administration of DNBS 

induced FITC-conjugated dextran appearance in the serum. CBG treatment (30 

mg/kg) completely abolished  DNBS-induced increased intestinal permeability 

(Fig. 8).   

4.1.1.5  Myeloperoxidase (MPO) activity 

DNBS-induced colitis was associated with significantly increased neutrophilic 

infiltration, as evaluated by MPO (Fig. 9). CBG, given after the inflammatory 

insult, at the dose of 30 mg/kg (curative protocol), counteracted DNBS-induced 

increase in MPO activity (Fig. 9). 
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Figure 7. Different patterns of Ki-67 immunoreactivity in the colonic mucosa of control mice (A), 

dinitrobenzene sulfonic acid -treated mice (B) and mice treated with dinitrobenzene sulfonic acid 

plus cannabigerol (C). (A) Ki-67 immunopositive cells were localised to the lower part of the 

crypts. (B) Ki-67 immunopositive cells were observed on inflammatory cells. (C) Ki-67 

immunopositive cells were observed only in the expanded basal zone. Cannabigerol (30 mg/kg) 

was administered (ip) for two consecutive days starting 24-h after the inflammatory insult 

(curative protocol). The figure is representative of 4 experiments. 
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Figure 8. Effect on intestinal permeability in the colonic mucosa of control mice, dinitrobenzene 

sulfonic acid (DNBS)-treated mice and mice treated with DNBS plus cannabigerol (CBG). CBG 

(30 mg/kg) was administered (ip) for two consecutive days starting 24-h after the inflammatory 

insult (curative protocol). 
#
p<0.001 vs control and 

***
p<0.001 vs DNBS alone; n=5 mice.  
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Figure 9. Inhibitory effect of cannabigerol (CBG) on myeloperoxidase (MPO, a marker of 

intestinal inflammation) activity in dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice. 

Tissues were analysed 3 days after vehicle or DNBS (150 mg/kg, intrarectally) administration. 

CBG (30 mg/kg) was administered (ip) for two consecutive days starting 24-h after the 

inflammatory insult (curative protocol). Bars are mean ± SEM of 5 mice for each experimental 

group. 
#
p<0.001 vs control and 

***
p<0.001 vs DNBS alone. 
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4.1.1.6 Inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2) 

expression 

Densitometric analysis indicated a significant increase in the expression of both 

iNOS and COX-2 in the inflamed colons (Fig. 10). CBG (30 mg/kg, ip, curative 

protocol) reduced iNOS (Fig. 10A), but not COX-2 (Fig. 10B) over-expression 

induced by DNBS. 

4.1.1.7 Interleukin-1β (IL-1β), interleukin-10 (IL-10)  and interferon-γ (IFN- 

γ) levels 

The levels of IL-1β and IFN- γ were significantly increased by DNBS (Fig. 11A 

and 11B). By contrast, IL-10 production significantly decreased in the colon from 

DNBS-treated mice (Fig. 11C). Treatment with CBG (30 mg/kg, ip, curative 

protocol) counteracted the changes in IL-1β, IL-10 and IFN- γ levels observed in 

the inflamed  colons (Fig. 11A, 11B and 11C). 

4.1.1.8 Superoxide dismutase (SOD) activity  

DNBS produced a significant decrease in SOD activity. CBG, at the dose of 30 

mg/kg (curative protocol), counteracted DNBS-induced reduction in SOD activity 

(Fig. 12). 

4.2 Cannabigerol (CBG) and intestinal inflammation: in vitro studies 

4.2.1 Studies in macrophages 

4.2.1.1 Nitrites measurement in macrophages  

LPS (1 µg/ml for 18 h) administration caused a significant increase in nitrite 

production (Fig. 13A). A pre-treatment with CBG (0.001-1 µM, 30 min before 

LPS) caused a significant reduction in nitrite production (Fig. 13A). The 

inhibitory effect of CBG (1 µM) on nitrite production in LPS-treated macrophages 

was accompanied by decrease of iNOS protein with no significant changes in its 

transcriptional levels (i.e. of iNOS mRNA) (Fig. 13B and 13C). CBG  (up to 1  
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Figure 10.  Inducible nitric oxide synthase (iNOS) (A) and cyclooxygenase-2 (COX-2) (B) 

expression in colonic tissues of animals treated or not with dinitrobenzene sulfonic acid (DNBS): 

effect of cannabigerol (CBG). Measurements were performed 3 days after DNBS (150 mg/kg, 

intrarectally) administration. CBG (30 mg/kg) was administered (ip) for two consecutive days 

starting 24-h after the inflammatory insult (curative protocol). Results are means ± SEM of 3-4  

experiments. 
*
p<0.05 and 

#
p<0.001 vs control; 

***
p<0.001 vs DNBS alone.  
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Figure 11. Effect of cannabigerol (CBG) on interleukin-1β (IL-1β) (A), interferon-γ (IFN-γ) (B) 

and interleukin-10 (IL-10) (C) levels in mouse colons treated with dinitrobenzene sulfonic acid 

(DNBS). Measurements were performed 3 days after DNBS (150 mg/kg, intrarectally) 

administration. CBG (30 mg/kg) was administered (ip) for two consecutive days starting 24-h after 

the inflammatory insult (curative protocol). Results (expressed as picograms per ml of proteic 

extract) are mean ± SEM of 3-4 experiments. 
#
p<0.01-0.001 vs control, 

*
p<0.05 and 

**
p<0.01 vs 

DNBS alone. 
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Figure 12. Cannabigerol (CBG) counteracted superoxide dismutase (SOD, an enzyme that 

catalyzes the conversion of superoxide into hydrogen peroxide and oxygen) activity in 

dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice. Tissues were analysed 3 days after 

vehicle or DNBS (150 mg/kg, intrarectally) administration. CBG (30 mg/kg) was administered (ip) 

for two consecutive days starting 24-h after the inflammatory insult (curative protocol). Bars are 

mean ± SEM of 5 mice for each experimental group. 
#
p<0.001 vs control and 

***
p<0.001 vs DNBS 

alone.  
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Figure 13. Effect of cannabigerol (CBG) on nitrite levels (A) in the cell medium of murine 

peritoneal macrophages incubated with lipopolysaccharide (LPS, 1 μg/ml) for 18 h. CBG (0.001–1 

μM) was added to the cell media 30 min before LPS challenge. Results, expressed as nitrite 

concentration (nM), are mean±SEM of four experiments (in triplicates). Figures 13B and 13C  

show the effect of CBG (1 µM) on inducible nitric oxide synthase (iNOS) expression in cell 

lysates, evaluated by western blot analysis (B, n=5) or RT-PCR (C, n=4), respectively. 
#
p<0.001 vs 

control; 
*
p<0.05, 

**
p<0.01 and 

***
p<0.001 vs LPS alone. 
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µM) had no significant cytotoxic effect on peritoneal macrophages after a 24-h 

exposure (data not shown). Moreover CBG, at concentrations used, did not 

modify per se basal nitrite levels in peritoneal macrophages (data not shown). 

Because CBG can inhibit endocannabinoid metabolism and hence indirectly 

activate cannabinoid receptors (De Petrocellis et al., 2011), in another set of 

experiments we verified if CBG effect on nitrite production was sensitive to 

selective CB1 and CB2 receptor antagonists. We found that rimonabant (0.1 µM, 

CB1 receptor antagonist) did not modify the inhibitory effect of CBG (1 µM) (Fig. 

14A). By contrast, SR144528 (0.1 µM, CB2 receptor antagonist) enhanced the 

inhibitory effect of CBG (1 µM) on nitrite production (Fig. 14B).  

4.2.1.2 CB1 and CB2 mRNA expression in macrophages 

A challenge with LPS (1 µg/ml for 18 h) caused up-regulation of CB1 receptors 

and down-regulation of CB2 receptors (Fig. 15A and 15B). CBG (1 µM)  did not 

modify cannabinoid CB1 and CB2 receptors mRNA expression both in control and 

in LPS-treated macrophages (Fig. 15A and 15B).  

4.2.2 Reactive oxygen species (ROS) production in intestinal epithelial cells 

The exposure of Ptk6 null colonic epithelial cells to H2O2/Fe
2+

 (2 mM) produced a 

significant increase in ROS formation (Fig. 16). A pre-treatment for 24 h with 

CBG (0.1-10 µM) reduced ROS formation as measured by the inhibition of DCF 

fluorescence intensity. The effect was significant starting from the concentration 

of 1 µM (Fig. 16). CBG  (up to 10 µM) had no significant cytotoxic effect on 

colonic epithelial cells after a 24-h exposure (data not shown). 
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Figure 14. Effect of cannabigerol (CBG, 1 μM)  alone or in presence of the cannabinoid CB1 

receptor antagonist rimonabant (Rim, 0.1 μM) (A) or the cannabinoid CB2 receptor antagonist 

SR144528 (0.1 μM) (B) on nitrite levels in the cell medium of murine peritoneal macrophages 

incubated with lipopolysaccharide (LPS, 1 μg/ml) for 18 h. The antagonists were added to the cell 

media 30 min before CBG exposure. LPS was incubated 30 min after CBG. Results are 

means±SEM of three experiments (in triplicates). 
#
p<0.001 vs control; 

*
p<0.05 and 

***
p<0.001  vs 

LPS alone; 
°
p<0.001 vs LPS+CBG. 
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Figure 15. Relative mRNA expression of cannabinoid CB1 receptor (A) and cannabinoid CB2 

receptor (B) in cell lysates from macrophages incubated or not with lipopolysaccharide (LPS, 1 

μg/ml) for 18 h. Cannabigerol (CBG, 1 μM) was added alone to the cell media or 30 min before 

LPS challenge. Data were analyzed by GENEX software for group wise comparisons and 

statistical analysis. Results are means±SEM of four experiments. 
#
p<0.001 vs control.  
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Figure 16. Reactive oxygen species (ROS) production produced by Fenton's reagent (2 mM 

H2O2/Fe
2+

) in Ptk6 null colonic epithelial cells after 24-h exposure to cannabigerol (CBG, 0.1-10 

µM). Results are mean ± SEM of five experiments. 
#
p<0.001 vs control, 

*
p<0.05 and 

**
p<0.01 vs 

H2O2/Fe
2+

alone. 
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4.3 Diallyl sulfide (DAS)/diallyl disulfide (DADS) and intestinal 

inflammation: in vivo and ex vivo studies 

4.3.1 Dinitrobenzene sulfonic acid (DNBS) model of colitis 

4.3.1.1 Animal body weight and colon weight/colon length ratio 

Three days after intracolonic administration of DNBS (150 mg/kg, intrarectally), a 

significant body weight loss was observed (Fig. 17). The treatment of animals 

with DAS and DADS, at the doses of 1–10 mg/kg (orally), significantly reduced 

DNBS-induced effects on body weight (Fig. 17).  

DNBS administration caused a significant increase in colon weight/colon length 

ratio (Fig. 18) which is suggestive of intestinal inflammation/damage. DAS and 

DADS (1 and 10 mg/kg) significantly reduced the increase in colon weight/colon 

length ratio induced by DNBS (Fig. 18).  

4.3.1.2 Histological analysis 

No histological modification was observed in control mice (Fig. 19A). 

Microscopic damage induced by DNBS administration was characterized by 

leucocyte infiltration (into mucosa, submucosa and muscolaris), crypts loss and 

ulceration (Fig. 19B). A treatment with DAS and DADS (both at the 10 mg/kg 

dose) significantly reduced  the histological damage (Fig. 19C and 19D). 

4.3.1.3 Immunohistochemical detection of interferon-γ induced protein 10 

(IP-10)  

The curative action of diallyl sulfide (DAS) and diallyl disulfide (DADS)  was 

further confirmed by immunohistochemistry. Immunostaining showed that 

colonic inflammation induced by DNBS increased IP-10 levels, compared to 

control animals. DAS and DADS at dose of 10 mg/kg decreased DNBS-induced 

up-regulation of IP-10 levels (Fig. 20). 
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Figure 17. Dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice. Effect of diallyl sulfide 

(DAS) and diallyl disulfide (DADS) (1–10 mg/kg, orally) on body weight variation induced by 

DNBS, (150 mg/kg, intrarectally). Changes in mice body weight were monitoring every day for 

the whole duration of the experiment (starting from colitis induction). Bars are mean ± SEM of 8-

10 mice for each experimental group. 
#
p<0.001 vs Ctrl;  

*
p<0.05, 

**
p<0.01 and 

***
p<0.001 vs 

DNBS alone. 
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Figure 18. Dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice. Colon weight/colon 

length ratio of colons from untreated and DNBS-treated mice in the presence or absence of diallyl 

sulfide (DAS) or diallyl disulfide (DADS) (1-10 mg/kg, orally). Tissues were analyzed 3 days 

after vehicle or DNBS (150 mg/kg, intrarectally) administration. DAS and DADS were 

administrated orally once a day for two consecutive days starting 24-h after the inflammatory 

insult. Bars are mean ± SEM of 8-10 mice for each experimental group   
#
p<0.001 vs control; 

**
p<0.01 and 

***
p<0.001 vs DNBS alone. 
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Figure 19. Histological evaluations of inflamed and non-inflamed colons: effect of diallyl sulfide 

(DAS) and diallyl disulfide (DADS) (10 mg/kg, orally). No histological modification was 

observed in the mucosa and submucosa of control mice (A); mucosal injury induced by 

dinitrobenzene sulfonic acid (DNBS) (B); DNBS plus DAS (C); DNBS plus DADS (D). DAS and 

DADS were administrated orally once a day for two consecutive days starting 24-h after the 

inflammatory insult. Histological analysis was performed 3 days after DNBS administration. 

Original magnification 200X. The figure is representative of 6 experiments. 
#
p<0.001 vs control, 

*p<0.05 vs DNBS alone.  
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Figure 20. Interferon-γ induced protein 10 (IP-10) levels (green) in colonic mucosa of mice 

untreated (A); treated with: dinitrobenzene sulfonic acid (DNBS) (B); diallyl sulfide plus DNBS 

(C); diallyl disulfide plus DNBS (D). Diallyl sulfide and diallyl disulfide were administrated orally 

once a day for two consecutive days starting 24-h after the inflammatory insult. 

Immunohistological analysis was performed 3 days after DNBS administration. DAPI (blue) is 

index of intracellular nuclei orientation. The figure is representative of 4 experiments. 
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4.4 Diallyl sulfide (DAS) and diallyl disulfide (DADS) in intestinal 

inflammation: in vitro studies 

4.4.1 Experiments in murine intestinal epithelial (Mode-K) cells 

4.4.1.1 Diallyl sulfide (DAS) and diallyl disulfide (DADS): cytotoxicity in 

Mode-K cells  

The effect of DAS and DADS on cell viability, using the WST-8 assay, was 

evaluated in the Mode-K cell line. DAS and DADS alone, or in combination with 

IFN- (50 ng/ml) did not affect Mode-K cell viability after 24-h exposure (% of 

cell viability ± SEM in Mode-K cells: control 99.73 ± 2.041; DAS 5µg/ml 93.72 ± 

3.88; DAS 10 µg/ml 96.17±3.83; DAS 20 µg/ml 93.37±6.17; DAS 30 µg/ml 

108.03±8.35; DAS 50 µg/ml 99.45±6.20; DAS 75µg/ml 92.50±6.98; DAS 100 

µg/ml 95.56 ± 4.02; DMSO (20 % v/v), used as positive control, significantly (p< 

0.001) reduced Mode-K cell viability: (% of cell viability ± SEM:  control 99.73 ± 

2.041; DMSO 8.77 ± 1.126; n=3. Control 100.05 ± 3.55; DADS 5µg/ml 118.89 ± 

4.69; DADS 10 µg/ml 98.84±8.78; DADS 20 µg/ml 100.82±8.5; DADS 30 µg/ml 

115.68±9.79; DADS 50 µg/ml 105.99±11.77; DADS 75 µg/ml  90.28±8.18; 

DADS 100 µg/ml 97.88±10.91; DMSO (20 % v/v) significantly (p<0.001) 

reduced Mode-K cell viability: (% of cell viability ± SEM:  control 100.05 ± 3.55; 

DMSO 9.2± 0.88; n=3. Control 90.25 ± 1.51; IFN- (50 ng/ml) 84.5 ±2.66; DAS 

50 µg/ml plus IFN- (50 ng/ml) 86.12±1.41; DADS 50 µg/ml plus IFN- (50 

ng/ml) 96.18±2.57; n=3). 

4.4.1.2 Diallyl sulfide (DAS) and diallyl disulfide (DADS):  interferon-γ 

induced protein 10 (IP-10) and interleukin-6 (IL-6) levels in Mode-K cells. 

The treatment with IFN-γ (50 µg/ml) induced a significant increase in  IP-10 

levels in Mode-K cells (Fig. 21A and 21B). DADS, but not DAS, at the  
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Figure 21. Effect of diallyl sulfide (DAS) and diallyl disulfide (DADS) (50 μg/ml) on interferon-γ 

induced protein 10 (IP-10) (A, B) and interleukin-6 (IL-6) (C, D) levels in the cell medium of 

Mode-K cells incubated with interferon-γ (IFN-γ, 50 ng/ml) for 24 h. Results (expressed as 

nanograms or picograms per ml of proteic extract) are mean ± SEM of 3-4 experiments. 
#
p<0.01-

0.001 vs control, 
**

p<0.01 and 
***

p<0.001 vs IFN-γ alone. 
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concentration of 50 g/ml,  reduced significantly IP 10 levels increased by IFN-γ 

(Fig. 24A and 24B). Similarly, DADS (50 g/ml), but not DAS, was able to 

reduce significantly IFN-γ-induced IL-6 levels production (Fig. 21C and 21D). 

DAS and DADS (50 µg/ml) did not modify per se basal levels of IP-10 and IL-6 

in Mode-K cells (data not shown). 

4.4.1.3 Interferon-γ induced protein 10 (IP-10) mRNA expression in Mode-K 

cells 

DADS (50 g/ml), but not DAS (50 µg/ml), reduced the expression of IP-10 

mRNA induced by IFN-γ in Mode-K cells (Fig. 22). 

4.4.1.4 Nitrites measurement in Mode-K cells 

IFN-γ (50 ng/ml for 24 h) administration caused a significant increase in nitrite 

production (Fig. 23). A treatment with DAS (50 µg/ml),  but not with DADS (50 

µg/ml) caused a significant reduction in nitrite production. DAS and DADS (50 

µg/ml) did not modify per se basal nitrite levels in Mode-K cells (data not 

shown). 

4.5  Bromelain and intestinal inflammation 

4.5.1 Upper gastrointestinal transit in the inflamed gut  

Bromelain, administered intraperitoneally, at the dose ranging from 1 to 10 

mg/kg, reduced significantly and in a dose-dependent manner the intestinal transit, 

both in control mice and in animals with the experimental inflammation induced 

by croton oil (Fig. 24A and 24B). By contrast, bromelain, given orally (100-500 

mg/kg) was inactive  in control animals (GC: control 5.0 ± 0.26; bromelain 100 

mg/kg
 
4.9 ± 0.12; bromelain 250 mg/kg 5.2 ± 0.24; bromelain 500 mg/kg 4.8 ± 

0.18; n=10-12 animals for each experimental group), but it reversed the increase 

in motility induced by croton oil (Fig. 25). The inhibitory effect of bromelain (500 

mg/kg orally) was reverted by the PAR-2 receptor antagonist ENMD-1068 (4  
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Figure 22. Effect of diallyl sulfide (DAS) and diallyl disulfide (DADS) (50 μg/ml) on the relative 

mRNA expression of interferon-γ induced protein 10 (IP-10) in cell lysates from Mode-K cells 

incubated with interferon-γ (IFN-γ, 50 ng/ml) for 24 h. Results are means±SEM of 3 experiments. 
#
p<0.001 vs control,

***
p<0.001 vs IFN-γ alone.   
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Figure 23. Effect of diallyl sulfide (DAS) and diallyl disulfide (DADS) (50 μg/ml) on nitrite 

levels in the cell medium of Mode-K cells incubated with interferon- γ (IFN-γ, 50 ng/ml) for 24 h. 

Results are means±SEM of three experiments (in triplicates). 
#
p<0.001 vs control; 

*
p<0.05 vs IFN-

γ alone. 
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Figure 24. Effect of intraperitoneally injected bromelain (1–10 mg/kg) on intestinal transit in 

physiological (A) and (B) inflammatory conditions [croton oil (CO)-treated mice]. Transit was 

expressed as the geometric center of the distribution of a fluorescent marker along the small 

intestine (see Materials and Methods section). Bars represent the mean ± SEM of 10–12 animals 

for each experimental group. 
*p < 0.05; 

** p< 0.01 and 
*** p< 0.001 vs control. 

a p< 0.01 vs control; 
bp< 0.05, 

cp< 0.01 and 
dp< 0.001 vs CO alone. 
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Figure 25. Effect of orally administered bromelain (100–500 mg/kg) on intestinal transit in croton 

oil (CO)-treated mice. Transit was expressed as the geometric center of the distribution of a 

fluorescent marker along the small intestine (see Materials and Methods section). Bars represent 

the mean ± SEM of 10–12 animals. 
ap< 0.01 vs control; 

bp< 0.05 vs CO alone.  
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mg/kg, ip) [GC: control 5.2 ± 0.22; croton oil 6.7 ± 0.33
a
; croton oil + bromelain 

5.3 ± 0.35
b
; croton oil + bromelain + ENMD-1068 8.1 ± 0.18

c
. 

a
p< 0.01 vs 

control, 
b
p< 0.05 vs CO, and 

c
p<0.001 vs croton oil + bromelain; n=8 mice for 

each experimental group]. ENMD-1068 alone did not significantly affect transit in 

croton oil-treated mice (data not shown). 

4.5.2 Protease-activated receptor type 2 (PAR-2) expression in the inflamed 

intestine 

Western blot analysis revealed the expression of PAR-2 in ileal tissues of healthy 

and croton oil-treated animals (Fig. 26). However, the densitometric analysis 

indicated a significant decrease in the expression of PAR-2 in the inflamed gut 

(Fig. 26).  

4.5.3 Effect of bromelain on intracellular calcium levels in Caco-2 cells 

Bromelain (1 μg/ml) (p<0.01) increased [Ca
2+

]i in Caco-2 cells and this effect was 

significantly (p<0.05) reduced by the PAR-2 antagonist ENMD-1068 (5 mM) 

(Fig. 27). Bromelain and ENMD-1068, at the concentrations used in this assay, 

did not affect cell viability in Caco-2 cells (data not shown). 

4.6 Bromelain and colon carcinogenesis in vivo 

The carcinogenic agent AOM given alone induced the appearance of ACF, polyps  

and tumours (Fig. 28). Bromelain (1 mg/kg) significantly reduced the total 

number of ACF/mouse, the number of ACF with four or more crypts (Fig. 28A 

and 28B) and the number of tumors/mouse, and completely prevented the 

formation of polyps (Fig. 28C and 28D). Celecoxib (10 mg/kg), used as a 

reference drug, was also able to reduce the total number of ACF/mouse, the 

number of ACF with four or more crypts, the number of tumours and the number 

of polyps (Fig. 28A, 28B, 28C and 28D).   
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Figure 26. Protease-activated receptor type 2 (PAR-2) expression in ileum of control (vehicle) and 

croton oil (40 μl/mouse)-treated mice (see Materials and Methods for details). Bars represent the 

mean ± SEM of three experiments. 
a
p< 0.05 vs control. 
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Figure 27. Effect of bromelain (BR) (1 μg/ ml) alone and in the presence of ENMD-1068 

(5 mmol L
−1

) on intracellular calcium concentration ([Ca
2+

]i) in Caco-2 cells. Bars represent the 

mean ± SEM of four experiments. 
a
p< 0.01 vs control; 

b
p< 0.05 vs BR. 
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Figure 28. Effect of Bromelain (BR, 1 mg/kg) on the formation of aberrant crypt foci (ACF, A), 

ACF with four or more crypts (B), polyps (C) and tumours (D) induced by the carcinogenic 

substance azoxymethane (AOM) in the mouse colon. AOM (40 mg/kg in total, intraperitoneally) 

was administered, at the single dose of 10 mg/kg, at the beginning of the first, second, third and 

fourth week. BR was administered (intraperitoneally) three times a week for the whole duration of 

the experiment (starting from 1 week before the first administration of AOM). Data represent 

mean ± SEM of 10 animals 
*
p<0.05 and 

**
p<0.01 vs AOM alone. 
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4.7 Bromelain and colon carcinogenesis in colorectal carcinoma (Caco-2) cells  

4.7.1 Cytotoxicity assay   

The exposure of non-differentiated and differentiated Caco-2 cells to bromelain 

(BR), at the concentration ranging from 0.1 to 10 µM, did not affect cell viability 

after 24-h exposure (% of cell viability ± SEM in non-differentiated Caco-2 cells: 

control 100.9 ± 1.3; BR 0.1 µM 98.6 ± 2.3; BR 0.3 µM 94.93 ± 3.5; BR 1 µM 

99.2 ± 4.2; BR 3 µM 100.0 ± 2.7; BR 10 µM 102.1 ± 4.1; n=3. % of cell viability 

± SEM in differentiated Caco-2 cells: control 101.4 ± 1.3; BR 0.1 µM 100.1 ± 0.5; 

BR 0.3 µM 99.8 ± 1.7; BR 1 µM 101.0 ± 2.5; BR 3 µM 100.8 ± 2.0; BR 10 µM 

102.9 ± 1.7; n=3.). DMSO (20 % v/v), used as positive control, significantly 

(p<0.001) reduced Caco-2 cell viability (% of cell viability ± SEM in not 

differentiated Caco-2 cells: control 100.9 ± 1.3; DMSO 34.5 ± 4.3; n=3. % of cell 

viability ± SEM in differentiated Caco-2 cells: control 101.4 ± 1.3; DMSO 28.3 ± 

2.5; n=3).  

4.7.2 Cell proliferation 

Both bromelain and proteolytically inactive bromelain, significantly and in 

concentration depended manner, reduced the 
3
H-thymidine incorporation in 

proliferating Caco-2 cells (Fig. 29A and 29B). The anti-proliferative effect was 

significant starting from the 3 µg/ml and 1 µg/ml concentration for bromelain and 

inactivated bromelain, respectively (Fig. 29A and 29B). 

4.7.3 MAP kinase and phospho-Akt expression  

The possible molecular mechanism of bromelain on cell proliferation was 

investigated by studying its effect on the mitogen-activated protein kinases 

(MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signalling pathways. The 

MAPK pathway involves two closely related kinases, known as extracellular- 
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Figure 29. Antiproliferative effect of bromelain (1-10 μg/ml) (A) and inactivated bromelain (1-10 

μg/ml) (B) in colorectal carcinoma (Caco-2) cells. Each bar represents the mean ± S.E.M. of three 

independent experiments. 
*
p<0.05, 

**
p<0.01 and 

***
p<0.001 vs control.  
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signal-related kinase 1 (ERK1, p44) and 2 (ERK2, p42) that come from 

dimerization of total cytosolic ERK. Bromelain (1-10 µg/ml) significantly  and in 

concentration depended manner reduced the expression of phosphorylated ERK1 

(pERK1) and ERK2 (pERK2) (Fig. 30A and 30B). The effect was significant 

starting from the 3 µg/ml concentration. Similarly, the expression of 

phosphoinositide 3-kinase was significantly reduced by bromelain (1-10 µg/ml) 

(Fig. 31).  

4.7.4 Intracellular ROS levels 

Hydrogen peroxide in the presence of iron (II) ions (Fenton’s reagent, 2 mM), 

induced an oxidative stress in Caco-2 cells, resulting in an increased production of 

intracellular ROS (Fig. 32). Pre-incubation of Caco-2 cells for 24 hours with 

bromelain (1-10 μg/ml) reduced the production of cytosolic ROS levels induced 

by 2 mM H2O2/Fe
2+ 

(Fig. 32). The effect was significant at the concentration of 10 

μg/ml (Fig. 32).  

4.8 Boeravinone G: antioxidant and genoprotective activities in Caco-2 cells 

4.8.1 Cytotoxicity assay 

Boeravinone G (0.1-1 ng/ml) did not affect Caco-2 cell survival (% cell survival: 

control 100±0, boeravinone G 0.1 ng/ml 97.2±4.21, boeravinone G 0.3 ng/ml 

100.3±2.62, boeravinone G 1 ng/ml 99.7±3.69, n=6) nor it produce any increase 

in the release of LDH from Caco-2 cell line (% LDH leakage: control 11.5±0.51, 

boeravinone G 0.1 ng/ml 9.8±0.39, boeravinone G 0.3 ng/ml 10.4±0.46, 

boeravinone G 1 ng/ml 10.8±0.55, n=6).  

4.8.2 Lipid peroxidation 

Boeravinone G (0.1-1 ng/ml) significantly and in a concentration-related manner  

reduced H2O2/Fe
2+ 

1mM-induced TBARS formation in Caco-2 cells (Fig. 33). 
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Figure 30. Phosphorylated ERK1 (pERK1) (A) and ERK2 (pERK2) (B) expression (MAP-kinase 

activation) in Caco-2 cells after 24 hours of bromelain (1-10 μg/ml) incubation. The insert shows a 

representative example of Western blot analysis.
 *
p< 0.001 versus control, n=3, mean ± S.E.M. 
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Figure 31. Phospho-Akt expression after 24 hours exposure with bromelain (1-10 μg/ml) in 

colorectal carcinoma (Caco-2) cells. The insert shows a  representative example of  Western blot 

analysis. *p< 0.05 and ***p<0.001 versus control, n=3, mean ± S.E.M. 
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Figure 32. Effect of  bromelain (1-10 μg/ml) on Fenton’s reagent (H2O2/Fe
2+

 2 mM)-induced 

reactive species (ROS) production in colorectal carcinoma (Caco-2) cells. Effect observed in 

differentiated  Caco-2 cells after 24-hours bromelain exposure. Data represent mean ± S.E.M. of 6 

experiments. 
#
p<0.001 vs control; ***p<0.001 vs H2O2/Fe

2+
 alone.  
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Figure 33. Effect of boeravinone G (0.1–1 ng/ml) on Fenton's reagent (H2O2/Fe
2+

 1 mM)-induced 

malondialdehyde-equivalents (MDA-equivalents) production. Effect observed in differentiated 

Caco-2 cells after 24-hour boeravinone G exposure. Data represent mean ± SEM of 6 experiments. 
#
p<0.001 vs control and 

***
p<0.001 vs H2O2/Fe

2+
 alone. 
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Boeravinone G given alone (i.e. in absence of H2O2/Fe
2+ 

treatment), at all 

concentrations used, did not modify the TBARS levels (pmol MDA/mg protein: 

control 168.5±21.35, boeravinone G 0.1 ng/ml 175.8±13.54, boeravinone G 0.3 

ng/ml 173.3±17.21, boeravinone G 1 ng/ml 171.8±14.16; n=6) 

4.8.3 Intracellular ROS  

Boeravinone G (0.1-1 ng/ml), concentration-dependently, reduced the formation 

of ROS induced by H2O2/Fe
2+

 2mM in Caco-2 cells (Fig. 34).  Boeravinone G 

(0.1-1 ng/ml), given alone (i.e. in absence of H2O2/Fe
2+ 

treatment), did not affect 

the formation of ROS (Fluorescence intensity: control 2.45±0.09, boeravinone G 

0.1 ng/ml 2.45±0.14, boeravinone G 0.3 ng/ml 2.36±0.17, boeravinone G 1 ng/ml 

2.42±0. 09; n=6). 

4.8.4 DNA damage (Comet assay) 

Exposure of the Caco-2 cells to H2O2 (75 μM) produced a significant  DNA 

damage (Fig. 35), expressed as comet tail intensity. Boeravinone G (0.1-1 ng/ml) 

significantly and in a concentration dependent manner reduced the DNA damage 

induced by H2O2 (Fig. 35). Consistent with the TBARS assay, a significant 

inhibitory effect was achieved for the 0.1-1 ng/ml boeravinone G concentrations. 

Boeravinone G (0.1-1 ng/ml) did not produce DNA damage detected by the 

Comet assay in Caco-2 cells not treated with  H2O2 (% tail intensity: control 

5.37±0.26, boeravinone G 0.1 ng/ml 5.29±0.19, boeravinone G 0.3 ng/ml 

5.21±0.22, boeravinone G 1 ng/ml 5.32±0.25; n=4). These results are suggestive 

of a lack of genotoxic effect. 

4.8.5 Superoxide dismutase (SOD) activity 

Boeravinone G (0.1-1 ng/ml), used alone (i.e. in absence of H2O2/Fe
2+ 

treatment), 

did not modify the activity of SOD in Caco-2 cells [SOD activity (ng/mg protein): 

control 17.7±0.64, boeravinone G 0.1 ng/ml 18.02±0.90, boeravinone G 0.3 ng/ml  
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Figure 34. Effect of boeravinone G (0.1–1 ng/ml) on Fenton's reagent (H2O2/Fe
2+

 2 mM)-induced 

reactive species (ROS) production. Effect observed in differentiated Caco-2 cells after 24-hour 

boeravinone G exposure. Data represent mean ± SEM of 6 experiments. 
#
p<0.001 vs control 

(vehicle); 
*
p<0.05, 

**
p<0.01 and 

***
p<0.001 vs H2O2/Fe

2+
 alone. 
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Figure 35. Effect of boeravinone G (BG, 0.1–1 ng/ml) on DNA damage. DNA damage (tail 

intensity) was detected by the Comet assay in Caco-2 cells exposed to 75 µM H2O2 for 5 min in 

absence or presence of boeravinone G. a = control; b = H2O2 75 µM; c = H2O2 75 µM+BG 0.1 

ng/ml; d = H2O2 75 µM+BG 0.3 ng/ml; e = H2O2 75 µM+BG 1 ng/ml. Data represent mean ± 

SEM of 4 experiments. 
#
p<0.001 vs control and 

***
p<0.001 vs H2O2 alone. 
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17.86±0.96, boeravinone G 1 ng/ml 17.2±0.79; n=6]. However, twenty four hours 

exposure of Caco-2 cells to H2O2/Fe
2+

 (1mM) produced a significant decrease in 

SOD activity which was concentration-dependently counteracted by boeravinone 

G (Fig. 36).  Interestingly, at the 1 ng/ml concentration of boeravinone G, SOD 

was significantly increased compared to control. 

4.8.6 Phosphorylated ERK1 (pERK1/2) and phospho- nuclear-factor kappa B 

(NF-kB) p65 expressions 

Fenton’s reagent (H2O2/Fe
2+

 1 mM) elicited a significant increase in the levels of 

phosphorylated ERK1 (pERK1), ERK2 (pERK2) and NF-kB p65 (Fig. 37 and 

38). Boeravinone G (at 0.3 and 1 ng/ml) significantly reduced the levels of 

pERK1 and phospho-NF-kB p65 (Fig. 37A). Surprisingly, at the lower 

concentration of boheravinone G tested (i.e., 0.1 ng/ml), an increased level of both 

pERK1 and phospho-NF-kB p65 was observed (Fig. 37A and 38). By contrast, 

boeravinone G, at all the concentration evaluated (0.1-1 ng/ml), did not affect 

H2O2/Fe
2+

-induced pERK2 up-regulation (Fig. 37B).     
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Figure 36. Effect of boeravinone G (0.1–1 ng/ml) on superoxide dismutase (SOD) activity. SOD 

activity was evaluated in Caco-2 cells exposed to Fenton's reagent (H2O2/Fe
2+

 1 mM) without or 

with boeravinone G (0.1–1 ng/ml). Data represent mean ± SEM of 4 experiments. 
#
p<0.001 vs 

control (vehicle); 
*
p<0.05 and 

***
p<0.001 vs H2O2/Fe

2+
 alone; 

°
p<0.05 vs control. 
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Figure 37. Effect of boeravinone G (0.1–1 ng/ml) on pERK1 (A) and pERK2 (B) expression. 

Quantitative analysis and representative western blot analysis of pERK1 and pERK2 in Caco-2 

cells exposed to Fenton's reagent (H2O2/Fe
2+

 1 mM) without or with boeravinone G (0.1–1 ng/ml). 

The results were normalized with anti-ERK2 (pERK1/2/ERK2). 
#
p<0.01 vs control; ***p<0.001 vs 

H2O2/Fe
2+

 alone 
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Figure 38. Effect of boeravinone G (0.1–1 ng/ml) on phospho-NF-kB p65 expression. 

Quantitative analysis and representative western blot analysis of phospho-NF-kB p65 in Caco-2 

cells exposed to Fenton's reagent (H2O2/Fe
2+

 1 mM) without or with boeravinone G (0.1–1 ng/ml). 

The results were normalized with anti-βactin antibodies. 
#
p<0.001 vs control; 

*
p<0.05 and 

***
p<0.001 vs H2O2/Fe

2+
 alone. 
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5.0 DISCUSSION 

Inflammatory bowel disease and colorectal cancer are widespread diseases which 

affect millions of persons worldwide. Despite the progress in pharmacotherapy, 

preventive measures and cures are still unsatisfactory. Thus, there is an urgent 

need for safe and effective therapeutics. In the present study we have evaluated a 

number of compounds in experimental models of IBD and CRC. These include 

cannabigerol, a non-psychotropic cannabinoid from Cannabis sativa,  DAS and 

DADS, two organosulfur compounds from  Allium sativum, bromelain,  a cysteine 

protease from Ananas comosus and Boeravinone G, a rotenoid isolated from the 

Ayurvedic plant  Boerhaavia diffusa. A detailed discussion of the results obtained 

for each compound is reported below. 

5.1 Cannabigerol  

Anecdotal and scientific evidence suggests that Cannabis use may relieve the 

symptoms of patients with IBD (Naftali et al., 2011; Lahat at al., 2012; Leyon et 

al., 2005). The effects of  Δ
9
-THC and CBD, i.e. the best studied among Cannabis 

ingredients, on experimental models of IBD has been previously documented  

(Borrelli et al., 2009; Jamontt et al. 2010). We have here demonstrated that  CBG 

exerts preventive and curative effects in the DNBS model of colitis. In vitro, CBG 

attenuates both nitrite production in macrophages and ROS production in 

intestinal epithelial cells. 

We have found that CBG reduced colon weight/colon length ratio of the inflamed 

colonic tissue, which is considered a reliable and sensitive indicator of the 

severity and extent of the inflammatory response (Gálvez al., 2000). CBG was 

effective when given both before and after the inflammatory insult, suggesting a 

preventive and a curative (therapeutic) beneficial effect. Significant protective 

effects were achieved starting from the 1 mg/kg dose  (preventive protocol) and 5 



84 

 

mg/kg (curative protocol). Maximal efficacy was achieved with the 1 mg/kg dose 

and the 30 mg/kg dose in the preventive and in the curative protocol, respectively.  

Because the main goal in IBD is to cure rather than to prevent, we performed 

further studies (histological analysis, immunoistochemistry, neutrophil 

infiltration, intestinal membrane integrity as well as cytokines and enzymes assay) 

by evaluating the effect of CBG (given after the inflammatory insult., i.e. as a 

curative treatment) and at the most effective dose of 30 mg/kg. Thus, histological 

examination showed that CBG 30 mg/kg reduced the signs of colon injury; 

specifically, in the colon of CBG-treated animals, the glands were regenerating, 

the oedema in submucosa was reduced and the infiltration of granulocytes into the 

mucosa and submucosa was reduced. The curative effect of CBG was further 

demonstrated by its capacity to  abrogated the increase in intestinal permeability 

induced by DNBS treatment. Furthermore, immunohistochemical analysis 

demonstrated that CBG limited the colonic diffusion of Ki-67, a useful marker for 

the evaluation of dysplasia in ulcerative colitis (Andersen et al., 1998).We also  

measured some cytokines which are known to be involved in IBD (Madsen et al., 

2002), namely IL-10  (an anti-inflammatory cytokine) as well as  IL-1β and IFN-γ 

(two pro-inflammatory cytokines) (Strober et al., 2011; Barbara et al., 2000; Ito et 

al., 2006) We found that CBG counteracted the colonic variations of the three 

cytokines induced by DNBS, thus suggesting the possible involvement of these 

molecules in CBG-mediated intestinal anti-inflammatory effects. Finally, we 

demonstrated that CBG counteracted the increase in the expression of iNOS 

(induced by DNBS), a key enzymes involved in the pathogenesis of IBD (Kolios 

et al., 2004). Because we have shown that CBG inhibits iNOS expression in the 

inflamed intestine and considering that activated macrophages, which express 
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iNOS, play a major  role in IBD (Palmer et al., 1988), we evaluated the effect of 

CBG on nitric oxide production in these cells.  

Stimulation of murine macrophages by LPS results in the increased expression of 

iNOS, enzyme which  catalyses the formation of large amounts of  NO from the 

aminoacid  L-arginine (Moncada et al., 1997).  CBG reduced the expression of 

iNOS and the levels of nitrites, the stable metabolites of  NO, with a maximal 

inhibitory effect achieved at  the 0.1 and 1 µM concentrations. These 

concentrations can be easily reached in the plasma after in vivo administration of 

the phytocannabinoid, since it has been demonstrated that ip administration of 

CBG (120 mg/kg) yields a peak plasma value of 373 µM (Deiana et al., 2012).  

Because CBG is a weak cannabinoid (CB1 and CB2) receptors partial agonist and 

also inhibits the reuptake of endocannabinoids (Cascio et al., 2010; De Petrocellis 

et al., 2011; Pollastro et al., 2011), we investigated the possible role of these 

receptors by evaluating: 1) the effect of selective CB1 and CB2 receptor 

antagonists on CBG-induced inhibition of nitrite production induced by LPS, and 

2) possible alterations in cannabinoid receptors mRNA produced by CBG in LPS-

challenged macrophages. Surprisingly, we observed that the inhibitory effect of 

CBG was further increased by a selective CB2 receptor antagonist (i.e. 

SR144528), at concentrations that, however, were inactive per se. These results, 

whilst demonstrating that exogenous activation of CB2 reduces NO formation in 

macrophages, negate the possibility that CBG acts via this mechanism, and 

instead suggest that an endogenous CB2 tone may exist, which may couple 

negatively to the CBG signalling pathway and counteract CBG inhibition of 

nitrite production. Also, we cannot rule out the possibility the CBG and the CB2 

receptor antagonist SR144528, which exerts anti-inflammatory effects in some 

experimental conditions (Pollastro et al., 2011) may act in an additive/synergistic 
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way to reduce nitrite production.  When we verified if CBG changed the 

expression of CB1 and CB2 receptors, as it is the case for the phytocannabinoid 

cannabichromene (Izzo et al.,  2012), we found that CBG did not modify the 

effect of LPS on cannabinoid receptors.  

Finally, we  explored the possibility that CBG could protect the intestinal mucosa 

by reducing oxidative stress. The impairment of antioxidant defence of intestinal 

epithelial cells leading to oxidative stress is a critical event in the development of 

inflammation in the gut (Xavier et al., 2007). We measured SOD activity, an 

important antioxidant defence in the gut (Watterlot et al., 2010) and ROS 

production, a major tissue-destructive force contributing significantly to the 

pathogenesis of IBD (Kruidenier et al., 2002). We found here that CBG restored 

the decreased  SOD activity induced by DNBS administration in colonic tissues as 

well as reduced ROS production induced by Fenton’s reagent in mouse intestinal 

epithelial cells.  

In summary, our study demonstrated that CBG exerts beneficial actions in the 

DNBS model of colitis in mice. The effect of CBG was associated to modulation 

of intestinal cytokine levels and down-regulation of intestinal iNOS expression. 

Studies on peritoneal macrophages suggest that CBG inhibits iNOS-derived nitric 

oxide production. Also, CBG protects  intestinal epithelial cells exposed to 

oxidative stress. Both the antioxidant action and the inhibitory action on iNOS-

derived NO production   might contribute to the  protective action of CBG 

observed in vivo. 

5.2 Bromelain 

We have here evaluated the effect of bromelain in a model of intestinal 

dysfunction associated to intestinal inflammation as well as in an experimental 

model of colon cancer. Previous investigators have shown that bromelain 
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decreases colonic inflammation in experimental models of colitis and decreases 

the secretion of pro-inflammatory cytokines and chemokines in human colon 

biopsies obtained from patients with IBD (Onken et al., 2008; Hale et al., 2005). 

Since the effect, of bromelain on intestinal inflammation are well-established,  we 

investigated here its effect on motility in a mouse model of intestinal 

inflammation. We used the irritant compound croton oil, which has been 

extensively studied to induce hypermotility  associated to inflammation in mice 

(Borrelli  et al., 2006;  Capasso et al., 2001; Pol  et al., 1997). We found that 

bromelain was more potent in reducing transit in the model of intestinal 

inflammation induced by croton oil than in healthy animals.  Also, bromelain was 

more active after ip than after oral administration. This is not surprising since 

bromelain is a proteolytic enzyme that is mostly destroyed by gastric acid. We 

also found that the inhibitory effect of bromelain on intestinal transit, was reverted 

by ENMD-1068,  a  PAR-2 receptor antagonist.  It is very unlikely that the higher 

potency of bromelain in the inflamed gut is due to PAR-2 hyper-expression 

because we found, in accordance to other studies (Sato et al., 2006), a down-

regulation of such receptor in the inflamed intestine. Further studies are needed to 

verify if the decreased PAR-2 protein expression is due to proteolysis or to 

changes in mRNA expression. Because the effect of bromelain in vivo was 

counteracted by a PAR-2 antagonist, we investigated the possibility that this  

cysteine protease might directly activate such receptors. Because activation of 

PAR-2 results in an  increase in [Ca
2+

]i, we performed further experiments in 

order to evaluated the effect of bromelain on [Ca
2+

]i. We found that bromelain 

increased [Ca
2+

] in Caco-2 cells (one of the assays to evaluate PAR-2 activation) 

and this effect was reduced by the selective PAR-2 antagonist ENMD-1068. 

Collectively, such results suggest that bromelina activates PAR-2. In support to 
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these conclusions, others have recently shown that bromelain, as well as other 

cysteine proteases such as ficin and papain, activates PAR-2 receptors as 

determined by [Ca
2+

] mobilization in  HeLa cells (Reddy et al., 2010).  

Next, we investigated the effect of bromelain in experimental colon 

carcinogenesis. Several animal and human studies indicates that bromelain might 

have some anticancer activity (Maurer et al., 2001; Pavan al., 2012), but its 

possible chemopreventive action against gastrointestinal tumours has been not 

explored to date. Because previous investigators have shown the efficacy of IP-

administered bromelain in experimental cancer (Beuth et al., 2005; Chobotova et 

al. 2010) and because most proteins administered orally without enteric protection 

are hydrolysed by gastric acid and/or proteinases, we have used the ip route of 

administration. We have here shown that bromelain (1 mg/kg) prevented the 

formation of preneoplastic lesions, polyps and tumours induced in the mouse 

colon by the administration of the carcinogenic agent AOM. The 1 mg/kg 

bromelain dose in mice is about 30-40 fold lower than the documented lethal dose 

of bromelain after ip administration (Maurer et al., 2001) 

In order to investigate bromelain mode of action, we performed experiments in 

colorectal carcinoma Caco-2 cells. Previous investigators have shown that 

bromelain exerted antiproliferative effects in different tumour cell lines, including 

gastric carcinoma cells, glioblastoma cells, ovarian cancer cells and breast cancer 

cells (Maurer et al., 2001; Pavant al., 2012). In the present study we have shown 

that bromelain, at non-cytotoxic concentrations, reduced cell proliferation in 

Caco-2 cells. Because the proteolytic action has been supposed to be responsible 

of many of its pharmacological activities (Maurer et al., 2001; Pavant al., 2012), 

we analyzed the effect of inactivated bromelain on Caco-2 cell proliferation. We 

found that the antiproliferative action of bromelain was not related to its 



89 

 

proteolytic activity, since proteolytically inactive bromelain also exerted 

antiproliferative actions.  

In order to further investigate the action of bromelain, we analyzed two pathways 

which are essential in the regulation of tumoural cell growth, i.e. phosphoinositide 

3-kinase (PI3K)/Akt and MAP kinase pathways (Weigelt et al. 2012; Efferth et 

al., 2012). Our results showed that bromelain  down-regulated Akt, ERK1 and 

ERK2 phosphorylation in Caco-2 cells suggesting a possible involvement of such 

pathways in the bromelain action. Specifically, bromelain seems to promote 

apoptotic cell death in tumoural cells and to reduce cell proliferation of tumoural 

cells by inhibiting AKT and ERK1/2 phosphorylation, respectively. Our results are 

in agreement with previous observations which reported an inhibitory effect of 

bromelain on the activity of cell survival regulators such as Akt and ERK (Kalra 

et al., 2008; Mynott et al., 1999).  

We also evaluated the effect of bromelain on oxidative stress, which represent a  

critical event in the development of gastrointestinal tumours (Birben et al., 2012).  

In conclusion, we have shown that bromelain inhibits intestinal hypermotility due 

to an inflammatory stimulus as well as  exerts chemopreventive actions against 

colon carcinogenesis in vivo and antiproliferative actions in colorectal carcinoma 

cells. The effect of bromelain on intestinal motility could be due to its ability to 

activate PAR-2, as revealed by its ability to increase [Ca
2+

]i – in a PAR-2 

antagonist-sensitive manner – in intestinal epithelial cells.  The antitumoural 

action of bromelain could be related to  inhibition of tumoural cell proliferation as 

well as to stimulation of apoptotic processes  by blocking the MAP kinase and 

(PI3K)/Akt signaling.  

5.3 Diallyl sulfide (DAS) and diallyl disulfide (DADS)  
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DAS and DADS, two garlic-derived organosulfur compounds  have been 

previously reported to exert anti-inflammatory effects (Lee et al., 2009; 

Kalayarasan et al., 2009; Woo et al., 2007). Moreover, DADS has been reported 

to prevent the intestinal damage induced by endotoxin in rats (Chiang et al., 

2006). Here, we report that DAS and DADS exert curative effects in the DNBS 

model of colitis and also reduce the levels of cytokines and chemokines induced 

by IFN-γ in isolated intestinal epithelial cells. 

We have found that DAS and DADS, administered orally after the administration 

of the inflammatory stimulus, reduced the decrease in body weight associated to 

DNBS administration, thus suggesting a beneficial effect of these compounds on 

the overall mice health. The curative effects of DAS and DADS was further 

demonstrated by their ability to  reduce colon weight/colon length ratio of the 

inflamed colonic tissue, a simple and  reliable indicator of intestinal inflammation. 

Significant effects were achieved starting from the 1 mg/kg dose for both 

compounds. Notably, the doses of DAS and DADS able to exert curative effects 

(1 mg/kg corresponding to 0.007 mmol/kg) is lower than the dose previously 

shown to prevent the  intestinal damage induced by endotoxin (0.025 mmol/kg) 

(Chiang et al., 2006). Because the most effective dose of DAS and DADS was the 

10 mg/kg dose, we performed histological and immunohistochemical analyses  

using colons of mice  treated with the 10 mg/kg dose. Histological examination 

showed that both DAS and DADS reduced the signs of colon injury; specifically, 

in the colon of DAS- or DADS- treated animals, the glands were regenerating and 

the oedema in mucosa and submucosa was reduced. A further demonstration of 

the beneficial effect of DAS and DADS comes from the  immunohistochemical 

analysis, which showed a reduced colonic diffusion of IP-10 (a member of the 

CXC chemokine family) in the inflamed gut  of animals treated with DAS or 
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DADS. It has been reported that the expression of IP-10 is elevated in patients 

with ulcerative colitis, suggesting its possible use as a marker for ulcerative colitis 

severity (Banks et al., 2003). Furthermore, the importance of IP-10 as a pro-

inflammatory mediator in IBD has been also demonstrated by experimental 

studies reporting the ability of anti-IP-10 antibodies to decrease inflammation in 

several experimental models of colitis (Hyun et al., 2005; Suzuki et al., 2007).  

In order to further investigate the effect of DAS and DADS on intestinal 

inflammation, we performed some experiments in intestinal epithelial (Mode-K) 

cells activated by IFN-γ. Intestinal epithelial cells are crucial for maintaining 

intestinal homeostasis (Artis, 2008) and failure to control inflammatory processes 

at the epithelial cell level may critically contribute to ulcerative colitis 

pathogenesis. Intestinal epithelial cells react on bacterial as well as immune-

derived pro-inflammatory signals by secreting cytokines and chemokines like IL-

6 and IP-10 to activate and attract Th1-immune cells and phagocytic cells to the 

site of infection (Hoermannsperger et al., 2009). We have observed that 

stimulation of Mode-K cells with IFN-γ resulted in increased levels of IP-10 and 

IL-6. DADS (but not DAS), at the concentration of 50 µM, reduced the levels of 

IP10 and IL-6. The inhibitory effect of DADS on IFN-γ-induced IP-10 levels was 

associated to down-regulation of IP-10 mRNA. The lack of efficacy of DAS to 

reduce IP10 and IL-6 levels remain to be investigated. By contrast, DAS (but not 

DADS) was able to reduce  IFN-γ-stimulated nitrite production. The lack of effect 

of DADS on nitrite production is in accordance with other studies reporting no 

significant effect of DADS on endotoxin-induced nitrite levels in the rat intestinal 

mucosa (Chiang et al., 2006).  

In conclusion, we have shown that orally-administered  garlic-derived DAS or 

DADS exerts therapeutic actions in the DNBS model of IBD, as revealed by 
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macroscopic evaluation, histology and immunohistochemistry. In intestinal 

epithelial cells, DADS reduced IP-10 and IL-6 levels, while DAS inhibited IFN- 

γ-stimulated nitrite production. 

5.4 Boeravinone G 

We have found that boeravinone G, among a number of rotenoids  extracted from 

Boerhaavia diffusa, possesses remarkable antioxidant properties in intestinal 

epithelial cells.   These results are potentially relevant because free radicals have 

been implicated in the aetiology of various human gastrointestinal disorders such 

as IBD and CRC (Willcox et al., 2004; Sachidanandam, 2005; Dryden et al., 

2005; Bickers and  Athar, 2006; Rahman et al. 2006). Further, we showed that 

boeravinone G protected the DNA from an oxidative insult, which is of  interest 

because DNA damage  is a crucial step in carcinogenesis and oxidatively-derived 

DNA lesions have been observed in many tumours (Hart et al., 2012). 

Using the Caco-2 cell line and H2O2 as a free radical generator, we evaluated the 

effect of boeravinone G on lipid peroxidation (assessed as MDA-equivalents) and 

ROS production.  Lipid peroxidation is a complex process occurring in biological 

membranes that contain oxidation-susceptible polyunsaturated fatty acids, and 

leading to the production of lipid hydroperoxides and their metabolites 

(Ramasarma, 2012). The cytosolic levels of malondialdehyde and its reactive 

equivalents are adequate indicators of lipid peroxidation. In the present study, we  

have demonstrated that boeravinone G reduced the TBARS levels and ROS 

formation generated by the Fenton’s reagent.  Importantly, the antioxidant activity 

of boeravinone G occurred at nanomolar concentrations, while other well known 

antioxidant compounds, such as vitamins C and E exert antioxidant activity in the 

micromolar range (Esterbauer and Cheeseman, 1990; Rego, 1999). We also 
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evaluated the potential genoprotective effect of boeravinone G on ROS-induced 

DNA damage. It is well known that ROS damages DNA, which appears to 

represent the major target involved in mutagenesis, carcinogenesis and aging cell 

responses (Anderson and Phillips, 1999; Nakabeppu et al., 2006).  DNA damage, 

induced by using H2O2,  was evaluated by the Comet assay, which is a very 

sensitive method for the evaluation of genotoxic/genoprotective effects (Karihtala 

et al., 2007). Our experiments showed that boeravinone G was able to reduce 

H2O2-induced DNA damage. We thus hypothesise that  the protective action of 

boeravinone G, assessed by the TBARS and the ROS assays (see above), could be 

related to its ability to protect DNA from an oxidative insult . 

In order to investigate the potential targets involved in the boeravinone G 

antioxidant/genoprotective action, we have analyzed the effect of this plant 

ingredient on an antioxidant defence enzyme (SOD) and on two signal 

transduction pathways (MAP kinase and NF-kB) that play a pivotal role in the 

oxidative stress-induced gastrointestinal disorders (Collins et al. 2004; Kim et al., 

2005). SOD is one of the most effective intracellular enzymatic antioxidants and it 

acts catalyzing the dismutation of superoxide into oxygen and hydrogen peroxide. 

According to previous work (Valko et al., 2006; Liu et al., 2005), we have shown 

a significant decrease in SOD activity in intestinal epithelial cells treated with 

H2O2/Fe
2+

. Boeravinone G counteracted the decreased SOD activity thus 

suggesting a stimulatory effect of this compound on the defence mechanisms of 

the cells. 

When the  generation of ROS exceeds the capability of the cellular defence 

systems, several signalling protein kinases and transcription regulatory factors are 

activated (Collins et al. 2004; Kim et al., 2005; Goldstone et al., 2006).
 
Indeed, 

oxidative stress leads to activation of extracellular-signal-related kinases (ERKs) 
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(Conde de la Rosa et al., 2006; Aikawa et al., 1997), which are members of the 

mitogen-activated protein kinase (MAPK) family, and nuclear factor kB (NF-kB) 

(Kulich et al., 2003). We have observed that boeravinone G, at the concentrations 

of 0.3 and 1 ng/ml, counteracted the increased ERK phosphorylation induced by 

H2O2/Fe
2+

-exposure. Surprisingly, the effect of boeravinone G on the ERK 

phosphorilation was significant only for the 44-kDa isoform pERK1 (and not for 

the pERK2 isoform) suggesting a selectivity of action. A differential role for the 

two kinases in cell signalling has been previously documented (Kefaloyianni et 

al., 2006). The down-regulation in ERK phosphorylation after boeravinone G 

exposure is consistent with the observed effect of this compound on SOD activity. 

Indeed, it is well known the strictly correlation existing between Cu-Zn SOD 

enhancement and ERKs phosphorilation inhibition (Vantaggiato et al., 2006). 

Similarly, we have found an increase in phosphorylated NF-kB p65 levels in 

differentiated Caco-2 cells during the oxidative stress and such increase was 

counteracted by boeravinone G, thus suggesting an involvement of this pathway 

in the boeravinone G antioxidant activity. 

Since boeravinones belong to the chemical class of rotenoids, widely used as 

botanical insecticides and generally characterized by high toxicity  (Shi et al., 

2004), we carried out additional experiments to ensure that boeravinone G, at the 

concentrations used in our experiments, did not exert any toxic effects. 

Cytotoxicity was assessed quantitatively by both MTT and LDH assays. We 

observed no decrease in the cell viability and no increase of LDH release when 

Caco-2 cells were incubated in the presence of boeravinone G. Moreover, the lack 

of boeravinone G toxicity has also been demonstrated by the Comet assay since 

the rotenoid, administered  alone (i.e. in absence of damage induced by H2O2) did 
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not affect DNA integrity. Collectively, these results suggest that boeravinone G 

was neither cytotoxic nor genotoxic in Caco-2 cells.  

In conclusion, we have shown that  boeravinone G exerts potent 

antioxidant/genoprotective actions. The genoprotective effect of boeravinone G 

was associated to up-regulation of  pERK1 and NF-kB levels. In the light of the 

importance of antioxidant/genoprotective activity in the treatment or prevention of 

gut disorders, such as IBD and colon cancer, these results can be regarded as the 

initial step for a future in vivo evaluation using well-established animal models of 

IBD and CRC. 

6.0 CONCLUSIONS 

Plants have a long history of use in the treatment of gastrointestinal diseases, 

including  IBD and CRC.  Our study further supports the concept that the plant 

kingdom may by a source of novel compounds with potential therapeutic activity 

in such widespread diseases. Specifically, we have shown that: 

1. Cannabigerol (CBG), a  non psychotropic  cannabinoid extracted from the 

marijuana plant Cannabis sativa,  exerts therapeutic actions in the model of 

murine colitis induced by DNBS. The effect of CBG was associated to 

modulation of intestinal cytokine levels and down-regulation of intestinal iNOS 

expression, the latter result confirmed in  isolated peritoneal macrophages. Also, 

CBG protects  intestinal epithelial cells exposed to oxidative stress. Both the  

inhibitory action on iNOS and its antioxidant action   might contribute to the  

protective action of CBG. 

2. Diallyl sulfide (DAS) and diallyl disulfide (DADS), from Allium sativum,  exert 

beneficial  actions in the DNBS model of IBD. Both compounds reduced 

inflammation and damage, as revealed by gross evaluation, histology and 

immunohistochemistry. In intestinal epithelial cells, DADS reduced IP-10 and IL-
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6 levels, while DAS inhibited IFN-γ-stimulated nitrite production. Such activities 

may help to explain the protective action of these garlic derived ingredients in 

experimental IBD. 

3. Bromelain, a cysteine protease derived from the stem of pineapple (Ananas 

comosus), normalises intestinal hypermotility in the inflamed gut and exerts 

chemopreventive actions in an experimental model of colon carcinogenesis.  The 

effect of bromelain on intestinal motility could be due to its ability to activate the 

PAR-2.  On the other hand, its antitumoural action  could be related to the  

stimulation of apoptotic processes  via blockade of  MAP kinase and (PI3K)/Akt 

signaling. 

4. Boeravinone G, a rotenoid isolated from the Ayurvedic plant  Boerhaavia 

diffusa, exerts  potent antioxidant and genoprotective actions. The genoprotective 

effect of boeravinone G was associated to up-regulation of  pERK1 and NF-kB 

expression. These promising in vitro results will be confirmed in vivo in 

experimental models of IBD and colon carcinogenesis. 

Overall, our study not only unravel new interesting pharmacologically active plant 

compounds for specific gastrointestinal diseases, but opens the possibility to 

translate such preclinical results to possible future clinical trials. 
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