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Abstract

Background: Although a number of risk factors are known to predict mortality within the first years after myocardial
infarction, little is known about interactions between risk factors, whereas these could contribute to accurate
differentiation of patients with higher and lower risk for mortality. This study explored the effect of interactions of risk
factors on all-cause mortality in patients with myocardial infarction based on individual patient data meta-analysis.

Methods: Prospective data for 10,512 patients hospitalized for myocardial infarction were derived from 16
observational studies (MINDMAPS). Baseline measures included a broad set of risk factors for mortality such as
age, sex, heart failure, diabetes, depression, and smoking. All two-way and three-way interactions of these risk
factors were included in Lasso regression analyses to predict time-to-event related all-cause mortality. The effect
of selected interactions was investigated with multilevel Cox regression models.

Results: Lasso regression selected five two-way interactions, of which four included sex. The addition of these
interactions to multilevel Cox models suggested differential risk patterns for males and females. Younger women
(age <50) had a higher risk for all-cause mortality than men in the same age group (HR 0.7 vs. 0.4), while men had a
higher risk than women if they had depression (HR 1.4 vs. 1.1) or a low left ventricular ejection fraction (HR 1.7 vs. 1.3).
Predictive accuracy of the Cox model was better for men than for women (area under the curves: 0.770 vs. 0.754).

Conclusions: Interactions of well-known risk factors for all-cause mortality after myocardial infarction suggested
important sex differences. This study gives rise to a further exploration of prediction models to improve risk
assessment for men and women after myocardial infarction.
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Background
About 8% of patients die within the first months after
myocardial infarction, whereas approximately 30% survive
more than 20 years [1,2]. Several risk assessment instru-
ments have been developed to quantify the risk of mortality
in individual patients, such as the Global Registry of Acute
Coronary Events and Thrombolysis in Myocardial Infarc-
tion risk scores [3-5]. These instruments are based on a set
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of well-known risk factors for mortality such as age, heart
failure, and comorbidity. Unfortunately, interactions of
these risk factors are rarely investigated optimally, while
these could be of relevance in accurately differentiating the
high risk from the low risk patients.
Some interactions of this type have been identified, such

as between sex and age and between sex and left ventricu-
lar ejection fraction (LVEF), in predicting mortality after
myocardial infarction [2,6-8]. These interactions suggested
that mortality after myocardial infarction is higher in
young women than in young men, while poor LVEF was
associated with an increased risk of death, especially in
men. However, previous studies have only investigated
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interactions sporadically and did not perform systematic
searches through all or many interactions in a sufficiently
large dataset to estimate interaction effects reliably. To
discover currently unknown interactions of interest, we
systematically investigated a large set of interactions that
potentially influence prediction of all-cause mortality in
patients with myocardial infarction with a novel combin-
ation of statistical learning methods [9,10].

Methods
Data
Data was retrieved from the MINDMAPS dataset, an
individual patient data meta-analysis dataset that com-
bines information from 16 observational studies on
baseline predictors of subsequent all-cause mortality
among 10,512 patients with myocardial infarction [11].
All 16 studies began with samples of patients hospital-
ized for myocardial infarction according to standardized
diagnostic criteria, of whom survival was assessed during
follow-up. The included studies were performed in nine
different countries: ten studies in Europe (Ireland, Italy,
The Netherlands, Sweden, United Kingdom), four in
North America (Canada, United States of America), one
in Asia (Japan), and one in the Middle East (Iran). For a
detailed description of the review process and study
characteristics, we refer to Meijer et al. [11]. All individual
studies obtained ethical approval and participants provided
written informed consent [11].

Measures
Predictors
The predictors included those considered in previous
studies of risk factors for mortality after myocardial
infarction: severity of the heart disease, general health,
comorbidity, sex, and age [3,5,11]. Severity of heart dis-
ease was indicated by history of myocardial infarction,
LVEF, clinical signs of heart failure (Killip class), and beta-
blocker use. Beta-blocker use was selected as a measure of
cardiovascular medication use because information on this
drug was most often available. History of myocardial
infarction and beta-blocker use were dichotomized into
‘yes’ and ‘no’; LVEF was dichotomized into significant
left ventricular dysfunction present (<40%) and absent
(≥40%); Killip class was dichotomized into no clinical
signs of heart failure (class I) and clinical signs of heart
failure (class II, III, IV) as the four-category scores were
not available in all studies. Measures of general health
were smoking, hyperlipidaemia, and body mass index
(BMI). Smoking was dichotomized into ever (current or
previous) versus never smoking. BMI was categorized
into three classes: low (BMI <20), intermediate (BMI
20–30), and high (BMI >30). Comorbid diabetes mellitus,
depression, and use of antidepressants were also included
as predictors. The latter variables were included because
of evidence from previous meta-analyses that depression
independently predicts all-cause mortality in patients with
coronary disease and myocardial infarction [11,12]. The
level of depression was measured as a total score on either
self-report questionnaires (mostly the Beck Depression
Inventory (BDI), or the Zung Self-rating Depression Scale
(ZSDS)) or standardized structured diagnostic interviews
(such as the Composite International Diagnostic Inter-
view, or the Structured Clinical Interview for DSM Disor-
ders) within three months after myocardial infarction.
For a detailed description of questionnaires used in the
different studies, we refer to Meijer et al. [11]. Total
depression scores were standardized into z-scores within
each study in order to account for the different question-
naires. These depression z-scores were categorized into
three classes: low (z-score in lowest quartile), intermediate
(z-scores in intermediate quartiles), and high (z-score in
highest quartile). Finally, the demographic variables sex
and age were included in the set of predictors. Age was
categorized into low (<50 years), intermediate (50–70
years), and high (>70 years).
The continuous variables depression z-score, BMI, and

age were categorized into three levels to enable the dis-
covery of possible non-linear associations between these
predictors and all-cause mortality. Based on previous
studies, we expected that patients with an extreme low
or high BMI, age, and depression score could potentially
have a higher risk of mortality, as opposed to patients
with an average score on these variables [13] or that
there could be interactions with sex for extreme values
of these variables, but not for average values [6,7].
Categorization of these risk factors into a low, inter-
mediate, and high level enabled tracing such potential
non-linear relationships. The intermediate classes were
taken as reference classes, as they represented the largest
group of patients seen in clinical practice. All logically
possible two-way and three-way interactions of the pre-
dictors were included to enable a systematic data-driven
investigation of interactions.

Outcome
All-cause mortality was chosen as primary outcome;
time-to-event data were used.

Imputation
The extent of missing data varied across studies and some
variables were not assessed in some studies. On average,
18.0% of values were missing. After pooling all studies,
we imputed those values in one data set using the
Multivariate Imputation by Chained Equations algorithm in
R with predictive mean matching for continuous variables
and logistic regression for binary variables (20 iterations, R
package mice, version 2.21) [14]. To account for possible
systematic differences in the individual studies, we included
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the variable ‘study’ as a factor in the imputation. Survival
data of cardiovascular events were included as extra predic-
tors in the imputation to improve the imputation results,
in addition to survival data of all-cause mortality and all
predictors mentioned above [15].

Statistical analyses
Data were randomly divided into an 80% training sample
(n = 8,410) and a 20% validation sample (n = 2,102). The
training sample was used for model discovery with 10-
fold cross-validation, and the independent validation
sample was used to assess the predictive performance of
the models. All analyses were performed in R [16].

Lasso regression analyses to identify interactions
Least Absolute Shrinkage and Selection Operator (Lasso)-
penalized Cox regression was used to trace two-way
and three-way interactions in addition to main effects.
Penalized linear regression methods include a penalty
for model complexity such as the Lasso [9]. This penalty
constrains the sum of the absolute values of the regression
coefficients, consequently shrinking the regression coeffi-
cients and selecting a limited set of predictors. The
method is developed to increase prediction accuracy by
diminishing variance or overfitting (which occurs when
the model follows noise in the data too closely) in situa-
tions with many predictors. These features make Lasso
regression well-suited for a situation like the current one
in which a large set of interactions is analyzed and not all
of them will be related to the outcome [10]. The method
has been used before in other studies to select interactions
in high dimensional analyses of genome-wide association
studies [17].
We used the Lasso implementation for Cox regression

glmnet in R, which returns a range of more to less exten-
sive regression models dependent on the size of the
Lasso penalty (version 1.9-5) [18,19]. Predictors included
all main effects and 518 two-way and three-way interac-
tions. Standardization of coefficients was not needed as all
predictors were binary (dummy) variables. We selected
the Lasso model that resulted in minimal prediction error
in 10-fold cross-validation in the 80% training sample
(n = 8,410). Prediction error for Cox Lasso models was
measured in terms of partial likelihood deviance [19].
From the Lasso model with least prediction error, we
selected interactions with penalized beta coefficients ≥0.1
or ≤ −0.1 to retain the most relevant parameters.
Consistency of the Lasso results was checked by repeating
the same procedure 100 times in 80% random draws of
the training sample (n = 6,728). The number of times that
specific interactions were selected in those 100 Lasso
regression models with beta-coefficients ≥0.1 or ≤ −0.1
was assessed and compared to the model on the full
training sample (n = 8,410).
Multilevel Cox models
Multivariate multilevel Cox regression analyses were used
to estimate the unpenalized effect sizes of risk factors and
interactions (R-package coxme, version 2.2-3, Breslow ties)
[20]. The proportional hazards assumption for Cox regres-
sion was met [11]. Similar to the study of Meijer et al.
[11], we included the individual studies as separate levels
by adding variable ‘study’ as a random effect in the models.
This was done to account for systematic differences
between studies and thus the expectation that different
effect sizes could be underlying the different studies
[21,22]. The multilevel Cox models were built with data
of the training sample (n = 8,410). First, we studied the
model with main effects only. Subsequently, we checked
the statistical significance of the interactions selected by
the Lasso by including each to the main effects model one
at a time. Stratified analyses were performed to estimate
differences of effect sizes of risk factors for different sub-
groups of the sample in case of significant interactions.

Test model performance in independent validation sample
To account for overfitting, the predictive performance of
the Cox regression model was determined in the independ-
ent 20% validation sample (n = 2,102) and compared to the
performance in the 80% training sample (n = 8,410). Predic-
tion accuracy was measured by assessing the areas under
the receiving operating characteristic-curve (AUC) for pre-
dicting mortality at 3 years after myocardial infarction
(R package survivalROC, version 1.0-3, Kaplan Meier
method) [23]. Bootstrapping was used to calculate confi-
dence intervals of the AUC’s (R package boot, version 1.3-
13, 1,000 bootstrapped samples, percentile bootstrap) [24].

Results
Patient characteristics
Individual patient data from each study were combined,
resulting in a sample of 10,512 patients with myocardial
infarction. Since we used imputation in the current study,
we included 337 subjects, which is more than in the study
of Meijer et al. [11]. The mean age of the sample was 61
(SD 11.9 years), 71% of the patients were male, and the
mean BMI was 27 kg/m2 (Table 1). Concerning the car-
diac disease severity at baseline: 19% of the patients had a
history of myocardial infarction prior to the index episode,
18% showed clinical signs of heart failure (Killip class
II–IV), and 23% had a low LVEF (<40%). On average,
21% of the patients had comorbid diabetes, and 40%
had an elevated depression score as assessed by structured
diagnostic interviews and standard cut-off values on
self-report questionnaires (such as a BDI-1A ≥10, or a
ZSDS ≥40; for a full overview see Meijer et al. [11]).
Patients with elevated depression scores might be over-
represented as some studies have oversampled patients
with depression [11]. Subjects in the highest quartile of



Table 1 Baseline characteristics

Mean (s.d.)/%*

Demographics

Age (years) 61.0 (11.9)

Male 70.9

Heart disease

History of MI 18.8

LVEF <40% 23.0

Killip class II–IV 18.1

Beta-blocker use 72.0

Comorbidity

Diabetes 21.3

Elevated depression score† 39.7

BDI in highest quartile depression z-score‡ 21.0 (7.7)

BDI in intermediate quartiles depression z-score‡ 8.8 (4.3)

BDI in lowest quartile depression z-score‡ 2.3 (2.1)

Antidepressant use 6.5

General health

BMI (kg/m2) 27.0 (5.0)

Smoking (ever) 44.7

Hyperlipidaemia 46.9

BDI, Beck Depression Inventory version; BMI, Body mass index; LVEF, Left
ventricular ejection fraction; MI, Myocardial infarction.
*Means of age, BDI-scores and BMI, percentages otherwise of original data.
Differences in baseline characteristics with respect to Meijer et al. [11] are due
to the fact we included 377 patients more as we used imputation of missing
values for depression.
†Elevated depression score as assessed by structured diagnostic interviews
and standard cut-off values on self-report questionnaires.
‡Mean BDI-1A scores for subjects in highest, intermediate and lowest quartile of
depression z-scores for n = 6,423 subjects in which BDI-1A scores were measured.

Table 2 Selected main effects and interactions in Lasso
regression analysis

β* Frequency†

Demographics

Age <50 –0.47

Age >70 0.86

Heart disease

History of MI 0.52

LVEF <40% 0.31

Killip class II–IV 0.54

Beta-blocker use –0.53

Comorbidity

Diabetes 0.47

General health

BMI <20 0.20

Selected interactions

Killip class * beta-blocker use 0.26 95/100

Male sex * LVEF <40% 0.14 68/100

Male sex * age <50 –0.18 64/100

Male sex * depression high‡ 0.13 64/100

Male sex * hyperlipidaemia –0.17 61/100

Diabetes * beta-blocker use 0.10 36/100

Killip class * hyperlipidaemia 0.10 34/100

β, Penalized beta-coefficient; BMI, Body mass index; LVEF, Left ventricular ejection
fraction; MI, Myocardial infarction.
*All main effects and interactions with a penalized beta-coefficient ≥0.1
or ≤ –0.1 selected in Lasso regression analysis in the training data (n = 8,410).
†The number of times this interaction was found with a beta-coefficient ≥0.1
or≤ –0.1 in 100 Lasso regression analyses in random 80% samples of the training
data (n = 6,728).
‡Depression high: depression z-score in highest quartile.
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depression z-scores had a mean score on the BDI-1A of
21.0 and 10.7% used antidepressants, as opposed to
4.9% in the group with lower depression z-scores. The
mean follow-up time was 3.6 years (median 3.0 years).
Maximum follow-up time varied across studies between
1.0 and 8.2 years. In total, 14% of the patients died during
follow-up.

Lasso regression: selection of interactions
Eight main effects and seven two-way interactions were
found to be stable predictors of mortality with penalized
beta coefficients ≥0.1 or ≤ −0.1 in Lasso regression analysis
of the full training sample (n = 8,410, Table 2). The main
effects older age (>70 years), a history of myocardial
infarction, and clinical signs of heart failure (Killip class
II–IV) strongly predicted all-cause mortality. Also a poor
LVEF, comorbid diabetes, and a low BMI were associated
with a higher risk of all-cause mortality. Instead, a younger
age (<50 years) and beta-blocker use were protective. Four
of the selected interactions concerned sex, in combination
with a younger age (<50 years), high depression score, low
LVEF (<40%), and hyperlipidaemia. Two of the selected
interactions were a combination of beta-blocker use and
clinical signs of heart failure (Killip class II–IV) or diabetes.
The last interaction consisted of a combination of heart
failure and hyperlipidaemia. No three-way interactions had
sufficiently large effect sizes to be selected.
Five of the selected interactions were observed >50

times in the 100 Lasso analyses on different 80% random
subsamples of the training data which were performed to
check the consistency of the results. These five concerned
the four interactions including sex and the interaction of
beta-blocker use and heart failure (Killip class II–IV). No
other interactions were selected more than 50 times in the
100 Lasso runs (Additional file 1: Table S1). The five inter-
actions that were observed more than 50 times were
selected for inclusion in the multilevel Cox regression
models.

Cox regression: effect of interactions
Nearly all predictors were significantly associated with
all-cause mortality in the unstratified multilevel Cox
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model with main effects only (P values <0.05; Table 3).
Risk factors with the largest effect sizes were an older
age (>70 years), diabetes, and all measures of heart
disease: clinical signs of heart failure, history of myocar-
dial infarction, and a low LVEF (hazard ratio (HR) range
1.6 to 2.8). Less strong, but also significantly predicting
all-cause mortality, were a low BMI (<20 kg/m2), high
depression score, and use of antidepressants (all HRs of
1.3). Significant protective factors were a younger age
(<50 years) and beta-blocker use (HR’s of 0.5 and 0.8,
respectively). Further, a depression score in the lowest
quartile predicted lower mortality (HR 0.9), which indi-
cated that depression scores were linearly associated with
mortality, as opposed to predicting mortality only from a
certain cut-off. Not significantly related to all-cause mor-
tality were sex, smoking, a high BMI (>30 kg/m2), and
hyperlipidaemia. The predictive accuracy of the model in
Table 3 Effect sizes of risk factors in unstratified
multilevel Cox model

HR* 95% CI P

Demographics

Male sex 1.0 (0.9–1.1) 0.86

Age <50 0.5 (0.4–0.6) <0.001

Age >70 2.7 (2.4–3.1) <0.001

Heart disease

History of MI 1.8 (1.5–2.0) <0.001

LVEF <40% 1.6 (1.4–1.8) <0.001

Killip class II–IV 2.1 (1.8–2.3) <0.001

Beta-blocker use 0.8 (0.7–0.9) <0.001

Comorbidity

Diabetes 1.8 (1.6–2.0) <0.001

Depression low† 0.9 (0.7–1.0) 0.04

Depression high† 1.3 (1.1–1.4) <0.001

Antidepressant use 1.3 (1.1–1.6) 0.01

General health

Hyperlipidaemia 0.9 (0.8–1.0) 0.08

Smoking 1.1 (1.0–1.2) 0.22

BMI <20 1.3 (1.0–1.7) 0.03

BMI >30 0.9 (0.8–1.0) 0.09

Predictive accuracy

AUC (general)‡ 0.770 (0.730–0.809)

AUC (male – female)§ 0.770 (0.714–0.825) – 0.754 (0.687–0.816)

AUC, Area under the curve; BMI, Body mass index; 95% CI, 95% Confidence
interval; HR, Hazard ratio; LVEF, Left ventricular ejection fraction; MI,
Myocardial infarction; P, P value.
*HR’s, 95% CI, P values and predictive accuracy for multivariate multilevel Cox
models with main effects only in the training data (n = 8,410).
†Depression low and high: depression z-score in the lowest and
highest quartile.
‡AUC in the validation data (n = 2,102).
§AUC for male patients (n = 1,475) and female patients (n = 627) in the
validation data.
the validation sample was fair (AUC 0.770). As expected,
the model was more accurate in the training sample (AUC
0.812). Because the selected interactions mainly indicated
sex differences, we tested the predictive accuracy of the
model for men and women separately in post-hoc analysis
of the validation data. The model was more accurate for
men (AUC 0.770) than for women (AUC 0.754).
Evaluation of the five selected interactions with multi-

level Cox model showed that some risk factors had
different effect sizes in specific subgroups of patients
with myocardial infarction and indicated sex differences
in particular. Four out of five Lasso-selected interactions
were significant or borderline significant when they were
added to the unstratified multilevel Cox model one at a
time (P values 0.02 to 0.08; Table 4). The only selected,
non-significant interaction was sex in combination with
hyperlipidaemia. The remaining sex-related two-way inter-
actions, which were not selected by Lasso, were also not
significant (P values 0.17 to 0.99). With sex-stratified
analysis, we investigated the differential effect sizes of
risk factors for men and women as suggested by the
sex-related interactions. The interaction between sex
and age <50 years suggested that, for women, a young
age was less protective than for men (HR of 0.7 vs. 0.4,
respectively, as compared to the reference class of 50 to
70 years; Additional file 2: Figure S1). Second, the inter-
action between sex and LVEF <40% suggested that a
low LVEF was a stronger predictor of all-cause mortality
in men (HR 1.7) than in women (HR 1.3; Additional file 3:
Figure S2). Third, the interaction between sex and high
depression score suggested that a high depression score
increased the risk of all-cause mortality in men (HR 1.4),
while it did not for women (HR 1.1; Additional file 4:
Figure S4). Thus, young age, poor LVEF, and high depres-
sion had different effect sizes for men and women, but the
direction of the effects were similar in both sexes (as
opposed to increasing risk for men and decreasing risk for
women or vice versa). A second stratified analysis was
performed to investigate the interaction most often
selected by Lasso, which was between beta-blocker use
and clinical signs of heart failure (Killip class II–IV).
This interaction was significant and suggested that, for
patients without heart failure, beta-blocker use was more
protective than for patients with heart failure (HR’s of 0.7
and 0.9, respectively, P value 0.016; Additional file 5:
Figure S4).

Incidence rates
As most interactions involved sex, we calculated, in post-
hoc analysis, the incidence rates of all-cause mortality in
the 3 years after myocardial infarction among men and
women in relation to age, depression score, and LVEF in
the entire dataset (n = 10,512). In general, women had a
higher risk of dying than men (3-year incidence rates of



Table 4 Sex-stratified multilevel Cox models

Female Male Inter.

HR* 95% CI P HR* 95% CI P P†

Demographics

Age <50 0.7 (0.4–1.1) 0.087 0.4 (0.3–0.6) <0.001 0.076‡

Age >70 2.5 (2.0–3.1) <0.001 2.9 (2.5–3.3) <0.001 0.17

Heart disease

History of MI 1.8 (1.4–2.3) <0.001 1.7 (1.5–2.0) <0.001 0.99

LVEF <40% 1.3 (1.1–1.6) 0.018 1.7 (1.5–2.0) <0.001 0.018‡

Killip class II–IV 2.1 (1.7–2.6) <0.001 2.1 (1.8–2.4) <0.001 0.41

Beta-blocker use 0.7 (0.6–0.9) 0.001 0.8 (0.7–0.9) 0.001 0.72

Comorbidity

Diabetes 1.8 (1.4–2.2) <0.001 1.7 (1.5–2.0) <0.001 0.89

Depression low 0.8 (0.6–1.1) 0.27 0.9 (0.7–1.0) 0.13 0.67

Depression high 1.1 (0.9–1.4) 0.41 1.4 (1.2–1.6) <0.001 0.054‡

Antidepressant use 1.2 (0.8–1.6) 0.37 1.3 (1.1–1.7) 0.017 0.36

General health

Hyperlipidaemia 1.0 (0.8–1.2) 1.0 0.8 (0.7–1.0) 0.037 0.26‡

Smoking 0.9 (0.7–1.2) 0.54 1.2 (1.0–1.4) 0.068 0.48

BMI <20 1.4 (1.0–2.1) 0.071 1.3 (0.9–1.8) 0.14 0.91

BMI >30 0.9 (0.7–1.1) 0.33 0.9 (0.7–1.1) 0.19 0.64

BMI, Body mass index; CI, Confidence interval; HR, Hazard ratio; Inter., Interaction; LVEF, Left ventricular ejection fraction; MI, Myocardial infarction; P, P value.
*HR’s, CI’s and P values for sex-stratified multivariate multilevel Cox models in the training data (n = 8,410).
†P value of two-way interactions between sex and all other risk factors based on addition of the interaction to the unstratified multilevel Cox model (such as in
Table 3) one at the time.
‡P value of the sex-related interactions selected by Lasso.

van Loo et al. BMC Medicine  (2014) 12:242 Page 6 of 9
17.0% vs. 12.0%). Nevertheless, men were more at risk of
dying than women in the presence of certain combina-
tions of risk factors. Most notable, the 3-year incidence
rate of mortality for men was 65% when they were older
than 70 years and had a high depression score and a low
LVEF as compared to 55% for women with the same risk
profile. Differences in 3-year incidence rates of all-cause
mortality were more pronounced in men (min. 2% – max.
65%), than in women (min. 4% – max. 55%; Figure 1).

Discussion
With a systematic data-driven search through all pos-
sible two-way and three-way interactions of risk factors
Figure 1 Incidence rates of all-cause mortality in relation to sex, age,
fraction. * Depression high: depression z-score in the highest quartile. Depr
for all-cause mortality after myocardial infarction, we
found that some risk factors act differently in men and
women. A high depression score was associated with
increased mortality risk in men, but not in women. In
addition, for women, a younger age was less protective
than for men; LVEF <40% was more strongly predicting
mortality in men than in women. Another main finding
was that, in patients without heart failure, beta-blocker
use was more protective than expected.
These results are limited in several ways. First, the data

came from studies carried out between 1985 and 2006.
As the group of patients and treatment of myocardial
infarction are changing over time (more older patients,
LVEF, and depression. Abbreviation: LVEF, left ventricular ejection
ession intermed./low: depression z-score in the lower three quartiles.
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more female patients, and more comorbidity) [1,25,26],
we should be cautious in generalizing the results to
current patients with myocardial infarction. Indeed, repli-
cation is needed with newer data. Second, we could not
include all relevant predictors, such as blood pressure,
heart rate, waist circumference, kidney function, electro-
cardiogram findings, or educational attainment, marital
status, and socioeconomic status, in our analyses as these
data were not available in all studies [3-5,27,28]. Inclusion
of such measures could have led to more precise risk
assessment and possibly lead to other interaction patterns.
Within the context of these limitations, this is the first

study performing a systematic search through a variety
of interactions of risk factors for all-cause mortality after
myocardial infarction using a large multi-study inter-
national sample. We applied statistical learning techniques
to prevent overfitting, and tested the prediction of the
identified model in an independent validation sample.
Furthermore, selected interactions were clinically relevant
as they indicated the importance of sex in differentiating
patients with high and low risk for all-cause mortality after
myocardial infarction.
Some interactions that were identified were congruent

with previous studies, while others represented novel as-
sociations. Certain interactions, including sex, have been
reported before such as the interaction between sex and
age indicating that young women are at higher risk of
all-cause mortality than young men [6,7,29]. Likewise,
the interaction between sex and LVEF – suggesting that
a low LVEF is a more important risk factor for men
than for women – was consistent with findings in patients
with myocardial infarction [8] and heart failure [30]. Two
studies that focused on the interaction between sex and
depression did not find substantial sex differences with
regard to depression as opposed to our study, but the
former studies included a relatively low number of women
(n = 283 and n = 155, respectively) and used major cardiac
events or cardiac mortality as outcome measures rather
than all-cause mortality [8,31]. Finally, it has been previ-
ously shown that beta-blocker use is more protective after
myocardial infarction in the absence of clinical signs of
heart failure (Killip class I) than in the presence of these
signs (Killip classes II–III) [32], which is in agreement
with the findings in this study.
Our study demonstrates the potential importance of

interactions in risk assessment in medicine. If interaction
effects are not taken into account, statistical models will
return an average estimate of the effect of risk factors in
the entire patient population (e.g., depression increases
risk of all-cause mortality). Instead, interactions allow
for possible differences within the patient population
and show that a risk factor might have a different effect
in the presence of another risk factor (e.g., depression
increases risk of all-cause mortality in men but not in
women). In our study, interactions repeatedly suggested
sex differences. Although baseline differences between
men and women with myocardial infarction are declining,
there are still substantial dissimilarities. Men have a higher
risk of myocardial infarction, but women have a higher
risk of death following myocardial infarction. Women
presenting with myocardial infarction are generally older,
have more comorbidities such as diabetes, hypertension,
and heart failure, increasing the risk of all-cause mortality
as compared to men [2,33-35]. All these differences could
explain why different risk factors might differentially pre-
dict all-cause mortality for men and women.
The results reported here suggest three broad classes

of extensions in further research. First, follow-up studies
could focus on additional interactions of interest in order
to obtain more specific risk assessment for subgroups of
patients with myocardial infarction. The investigated set
of interactions in this study was not comprehensive.
Moreover, as Lasso tends to leave out correlated interac-
tions, there could be interactions of interest that we did
not identify in this study such as diabetes and depression
[36], smoking and sex [8], and LVEF and Killip class [37].
In addition, it would be worth looking at interactions
including other well-known risk factors of all-cause mor-
tality after myocardial infarction such as cardiac arrest at
admission, family history, and anxiety disorders [5,38,39].
Second, more research is needed to identify mechanisms
underlying the identified interactions. For instance, why is
depression more strongly related to all-cause mortality in
men than in women? A study in one of the datasets
included in MINDMAPS found that part of this inter-
action effect can be explained by the fact that men with
depression are more likely to have a poor LVEF than
women with depression [40]. Depression reflected more
severe heart disease in men but not in women, which
partly explains why depressed men are more at risk for
all-cause mortality than depressed women. Other con-
founders could underlie the remaining interaction effect
between sex and depression found in this study after
controlling for severity of heart disease. Thus, the inter-
pretation of interactions should be done in the context of
possible confounders. The finding that smoking did not
have a significant main effect in this study should also be
seen in this light. In addition to a broad set of important
risk factors, such as history of myocardial infarction, heart
failure, age, and comorbidity, smoking did not significantly
predict all-cause mortality risk, but this does not imply
that smoking on itself does not increase risk of all-cause
mortality after myocardial infarction.
Finally, the interactions including sex lead to doubt on

the performance of general risk assessment instruments
for both sexes: are they equally accurate for men and
women? Future studies could explore if different prediction
algorithms for men and women would increase prediction
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accuracy, and if this benefit would outweigh the complexity
for clinical practice of working with two different instru-
ments instead of one.

Conclusions
Interactions might increase understanding and prediction
of all-cause mortality after myocardial infarction. Our key
finding was that marked sex differences exist, indicating
that future research is warranted in order to improve risk
assessment for both men and women with myocardial
infarction.
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