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1. INTRODUCTION 

1.1. Statement of the Problem 

It is believed that the name of our planet “Earth” is at least 1000 years old. It 

comes from the Old English words 'ertha' and 'eor(th)e' and it is a German/English 

name, which basically means ‘ground’ or ‘soil’. Naming the planet after soil may 

reflect how important soil to our planet and to humans. Human history, religions 

and myths are all talking about the importance of soil or land. For example, the 

Quran (Muslims Holy Book) describes that GOD “Allah” created the first man 

from clay, while the Bible says out of soil, which are both representation for earth. 

Earth is also one of the four classical elements in history of the medieval and Greek 

models. In addition, it is one of the five elements in Hinduism and in the Chinese 

philosophy. Even the ancient Egyptians had a unique god of the Earth named 

“Geb”. It was believed in ancient Egypt that Geb allowed crops to grow and that 

Geb's laughter was earthquakes. This tells us how our ancestors highly valued soil 

and land. On the contrary, in the last few decades humans seemed to have forgotten 

the value of soil and a huge area of soils were destroyed.  

Theoretically, soil is a renewable resource. However, as coarse estimate, ten 

centimeters of fertile soil are created in 2000 years (Jenny, 1941). This means that 

soils we deplete by human activities are gone forever relative to human lifespan; 

thus, one can conclude that soil is not a renewable resource (see Soil Thematic 

Strategy COM 231/2006). It is manifested today that soil is as important as other 

natural resources to human kind, just like the sun, water and air. As a natural 

resource, soil provides an ecological capacity through securing a variety of 

functions including environmental services, raw materials, physical platforms for 

the built environment, fiber and food production, biodiversity pool, landscape and 

heritage. Consequentially, protection and optimum use of the soil resources is a 

serious mission for sustainable development goals. Every year 13 million hectares 

of forests are cut down worldwide (FAO, 2010). In addition, only in Europe, an 

area as large as the city of Berlin is transformed into urban areas every year. The 

projections (Alexandratos & Bruinsma, 2012) reveal that the available arable land 

per earth inhabitant will be reduced by half by 2050. This is probably due to the fact 

that urbanization has taken place at an accelerated rate since the last century. The 
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United Nations suggested that over 50% of the current world population live in the 

urban areas.  

Nowadays, urbanization is one of the major problems facing environment due to 

its several impacts on the environment. One of these impacts is lose of soil due to 

soil sealing by urban settings. So, the increase in soil sealing problem is associated 

with the urbanization growth rate. Soil sealing is covering of the surface of the soil 

with impermeable materials such as stones, asphalt and concrete, as a result of new 

roads, buildings, parking places and other private and public spaces. Recently, the 

impacts of soil sealing became known to the scientific community. Lose of soil 

functions is a very important impact of soil sealing. Biomass production is one of 

the important soil functions and is most likely the first function lost by soil sealing. 

From the beginning of the human civilization, biomass production became a key 

factor for the continuity of civilized life. It is useable as energy source, body cover, 

food, construction material and much other uses. With the growing attention to the 

effects of soil sealing, scientists raced to study the various impacts on different soil 

functions; however, so far there is no solid methodology to estimate the loss in 

biomass production as a soil function lost by soil sealing. Therefore, there is an 

urgent need to develop a novel method to evaluate and quantify the lost biomass 

production by soil sealing. To study a phenomenon such as soil sealing growth and 

its impacts, it is important to understand the history, rates and trends of the 

problem. In order to do so, a land use and land cover change detection analysis is 

considered necessary. In this analysis, a comparison between the past and present 

land use and land cover is conducted to study the quantity and type of change 

during a certain period of time. Land use and land cover change refers to changes 

made to the Earth’s surface through human impact. Historically, humans have made 

many changes arising from the need to exploit resources and through agricultural 

expansion. However, the present rate of Land use and land cover change (e.g. 

transformation from agricultural/forested areas to urban areas) is much greater than 

ever recorded previously, resulting in rapid changes to ecosystems at local to global 

scales. The spatial analysis of land use and land cover change detection comprises 

the use of historical maps to judge against recent maps of land use and land cover. 

The weak point here is the quality of the classification in the old maps which in turn 

will affect the quality of the analysis results. As a result, enhancing the quality of 
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the classification for old land use and land cover maps will enhance the final results 

of the change detection analysis. The recent remote sensing techniques provide a 

great opportunity to improve the classification quality of old maps. Geographic 

object based image analysis (GEOBIA) is a novel remote sensing technique that 

can be used to classify images based on objects characteristics. GEOBIA is a newly 

developed area of Geographic Information Science and remote sensing, in which 

automatic segmentation of images into objects of similar spectral, temporal and 

spatial characteristics of these objects is undertaken. Using GEOBIA technique to 

reclassify old aerial photographs may produce a more coherent classification and 

improve the old land use and land cover map enabling in turn - for instance - a 

better evaluation of soil sealing dynamics. 

For the application of this study, arises the need to find a study area with 

particular specifications. A study area was chosen in Telesina Valley (Valle 

Telesina), located in Benevento in the Campania region of central Italy. The reason 

behind the selection of this region lies in the diversity of land use and land cover 

such as forests, different types of agriculture, pasture and urban settlements. As 

well as, the variety of change types of land use and land cover in the last few 

decades, which vary between deforestation, agriculture intensification and 

extensification, abandonment, afforestation and urbanization. In addition, the area is 

interesting because it represents a case study where agriculture (namely high quality 

viticulture) can potentially compete against urbanization processes. Add to this, the 

area is characterized by the availability of data and information necessary to carry 

out the study because this region has been subject to several of the previous studies. 

1.2. Purpose of the Study 

Then, to summarize the preceding ideas, to study the impact of soil sealing on the 

biomass production there is a need for a fine quality of land use and land cover 

change detection analysis. In order to obtain this quality, it is necessary to improve 

the old classification of land use and land cover areas using one of the most recent 

remote sensing techniques. Consequently, the final results of the change detection 

analysis will be improved and therefore, the quantification of the lost biomass 

production by soil sealing will be improved.  
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Therefore, the study had different objectives, which can be summarized as 

follows: 

 investigate the land use and land cover change in the study area between 

1954 and 2009 as a long term change detection analysis; 

 develop a novel methodology for the classification of old gray scale aerial 

photographs using geographic object based image analysis (GEOBIA) 

technique to generate an improved land use and land cover map of the 

study area for the year 1954; 

 conduct a comparison of the capability of change detection between old 

and improved “GIOBIA” land use and land cover classifications of the 

year 1954 regarding three main change types i.e., afforestation and 

deforestation; agricultural development; and urbanization to study the 

effect of enhancing historical data on the modeling process; 

 introduce a novel land suitability evaluation index; 

 evaluate the amount of lost soil by soil sealing during the period between 

1954 and 2011; and 

 develop a novel GIS based method for modeling soil functions loss by soil 

sealing to quantify the losses in biomass production. 
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2. REVIEW OF THE LITERATURES 

2.1. Long term detection of land use and land cover change 

Land use and land cover change (LULCC) is one of the most notable 

modifications occur on the Earth’s land surface (Lambin et al., 2001). Many studies 

revealed that, in the last few decades landscape transformation rate was increased 

significantly (Antrop, 2005; Ewert et al., 2005). Therefore, studying the factors that 

control these changes and their impacts has become extremely essential for those 

how are involved in defending water resources from non-point pollution (Ripa et 

al., 2006), biodiversity conservation, land use planning, and landscape ecology 

(Etter et al., 2006). Knowing of land cover does not automatically determine the 

land use. So, to understand the changes in the land cover it is important to define 

the land use under investigation (Lambin & Geist, 2001). There are several 

definitions of land cover (Meyer, & Turner, 1994) and land use (Jansen, 2006). 

Land cover is known as ‘‘the observed (bio) physical cover on the earth’s surface’’ 

(Di Gregorio & Jansen, 2000); while land use defines how the people use this part 

of the earth’s surface (Cihlar & Jansen, 2001). 

Satellite remote sensing is the most usable data source for recognition, 

determination, and mapping land use and land cover (LULC) outlines and changes 

because of its accurate georeferencing procedures, digital format suitable for 

computer processing and successive data acquisition, (Jensen, 1996; Lu et al., 2004; 

Chen et al., 2005). Remote sensing and Geographic information systems (GIS) are 

used to create maps of land cover but only serves as one input to land use mapping 

and change detection, which requires a more multi-disciplinary approach to its 

definition, integrating both physical and social sciences. This might include 

interviews with land owners of similar land cover types to determine the types of 

activities that are being undertaken (Ellis & Pontius, 2013). For example, natural 

grasslands and grazing land might have similar spectral signals and although the 

similarity of land covers types, yet they have quite different land uses. 

Consequently, the discipline of land change science has evolved with the need now 

to integrate both the physical and social sciences in understanding the drivers and 

resulting impacts of LULCC (Ellis & Pontius, 2013).  
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2.1.1. Land use and land cover change (LULCC) 

Land use and land cover change (LULCC) refers to changes made to the Earth’s 

surface through human impact. Historically, humans have made many changes 

arising from the need to exploit resources and through agricultural expansion. 

However, the present rate of LULCC is much greater than ever recorded 

previously, with rapid changes to ecosystems occurring at local to global scales 

(Ellis & Pontius, 2013). Land cover consists of the physical and biological cover 

that can be found on the surface of the land. Examples include water bodies, 

vegetation, bare soils and urban areas. The term land use is much more complex 

and additionally includes human activities such as cultivation, livestock grazing and 

managed forests, all of which can modify existing processes on the surface of the 

land such as the hydrology or the biodiversity of species (Di Gregorio & Jansen, 

2000). From the perspective of social scientists or land managers, land use is also 

defined in terms of the socio-economic purpose for which the land is managed, e.g. 

subsistence agriculture vs. large scale commercial farming, land that is rented vs. 

land that is owned, etc. (Anderson et al., 2001).  

Land use change information is very important, especially to urban planners. 

Multi-temporal change analysis may assist the planners in determining spatial 

growth trends. Studies verified the need for assembling and summarizing land use 

data. It also illustrated the need for construction of systematic procedures for 

keeping account of changes (Ross, 1985). Although this is an important aspect of 

urban planning, it is more important aspect from the environmental point of view, 

given that urbanization is causing soil functions losses by sealing this soil with 

impermeable substances. Change detection is valuable for several applications 

associated with land use and land cover changes (LULCC), such as urban sprawl 

and coastal change (Shalaby & Tateishi, 2007), desertification and land degradation 

(Adamo & Crews-Meyer, 2006; Gao & Liu, 2010), landscape changes and shifting 

cultivation (Imbernon, 1999; Serra et al., 2008;Abd El-Kawy et al., 2011), habitat 

and landscape fragmentation (Munroe et al., 2005; Nagendra et al., 2006), change 

of urban landscape pattern (Batisani & Yarnal, 2009; Dewan & Yamaguchi, 2009; 

Long-qian et al., 2009), quarrying activities (Mouflis et al., 2008), and deforestation 

(Schulz et al., 2010; Wyman & Stein, 2010). Land use conversions are defined and 
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classified as the changes in land use class that occurred in a given area and time. 

These classes identify the typology of changes by assigning a land use conversion 

code to each intersection created by the overlay of successive land use maps, 

allowing a thematic representation of the spatial distribution of changes. The 

method is based on the previous generalization of land use categories and offers a 

quantitative and qualitative measure of conversion that occurred in the study area, 

allowing the spatial distribution of land use changes to be reported on a unique map 

(Benini et al., 2010).  

2.2.  Automatic land use and land cover classification using 

GEOBIA technique 

Ecosystem functions can be affected by land use and land cover change 

(LULCC), which is in turn dependent upon the provision, regulation and support of 

cultural ecosystem services. Thus, strategic planning and LULC interventions are 

necessary for ensuring the health and sustainability of an ecosystem. In order to 

make appropriate LULC decisions, accurate assessments of LULCC are needed, in 

particular to identify crucial zones of environmental vulnerability or those which 

provide valuable ecosystem services, e.g. the identification of a zone that is 

essential for the filtering of runoff or the abstraction of potable water in a 

watershed. Another example would be the identification and monitoring of the 

LULCC between certain land cover/land use types, e.g. the change from 

agricultural lands to urban, which can provide an important indication of the social 

and economic drivers that lead to such a change (Van-Camp et al., 2004). Since 

land change detection is highly dependent on the accuracy of the historical data 

input, improving data accuracy is likely to improve the final land change detection 

result (Pipino et al., 2002; Chapman, 2005; Salmons & Dubenion-Smith, 2005). 

Moreover, it was demonstrated  (Fritz et al., 2013) that when comparing even more 

recent global land cover maps, a high amount of spatial disagreement can be found. 

GEOBIA is a newly developed area of Geographic Information Science and 

remote sensing in which automatic segmentation of images into objects of similar 

spectral, temporal and spatial characteristics of these objects is undertaken (Hay & 

Castilla, 2008). GEOBIA is a subset of a larger field referred to as Object Based 



10 
 

Image Analysis (OBIA), which has been the subject of many research studies in the 

last decade (Benz et al., 2004; Blaschke et al., 2000; Blaschke et al., 2004; 

Blaschke & Strobl, 2001; Burnett & Blaschke, 2003; Flanders et al., 2003; Hay et 

al., 2003; Hay & Castilla, 2008; Koch et al., 2003; Lang et al., 2008; Liu et al., 

2006; Navulur, 2007; Schiewe, 2002; Zhang et al., 2005) and which consists of 

numerous procedures including segmentation, classification, feature extraction and 

edge detection processes that have been applied in remote sensing image analysis 

for decades (Aplin et al., 1999; Baltsavias, 2004; Câmara et al., 1996; Haralick, 

1983; Haralick & Shapiro, 1985; Hay et al., 1996; Kettig & Landgrebe, 1976; 

Levine & Nazif, 1985; Lobo et al., 1996; McKeown et al., 1989; Pal & Pal, 1993; 

Ryherd & Woodcock, 1996; Strahler et al., 1986; Wulder, 1998). 

Using GEOBIA technique, we move up from pixel based analysis of remote 

sensing images to object based analysis (Ardila et al., 2012; Hay et al., 2001; Hay 

& Castilla, 2008; Johansen et al., 2011; Marpu et al., 2010) where new 

characteristics are obtained for each object not only from its pixels but also from 

the surrounding objects and sub and super-objects to generate new results or geo-

intelligence (Aubrecht et al., 2008; Benz et al., 2004; Blaschke et al., 2004; 

Blaschke, 2010; Chen & Hay, 2011; Hay & Blaschke, 2010; Jobin et al., 2008; Kim 

et al., 2009; Laliberte et al., 2007; Langanke et al., 2007; Möller et al., 2007; 

Navulur, 2007; Stow et al., 2008; Tiede et al., 2008; Trias-Sanz et al., 2008; van der 

Werff & van der Meer, 2008; Weinke et al., 2008). These advances have also 

occurred as a result of the growing accessibility to very high resolution (VHR) earth 

imagery such as Ikonos and QuickBird (Jacobsen, 2004) and of highly sophisticated 

software such as Definiens eCognition Developer 8 (Neubert et al., 2008). 

The GEOBIA technique consists of two main steps: segmentation and 

classification (Hay& Castilla, 2008, Kim et al., 2009). Segmentation is a clustering 

process meant to cluster homogeneous pixels based on predefined features (such as 

spectral, thematic or spatial values) to obtain homogeneous image objects (or 

segments). A supervised or knowledge-based image classification follows this 

segmentation process to categorize each image object in different classes. Since the 

quality of the segmentation results will affect all subsequent steps in the 

classification process, producing a high quality segmentation process is a basic 
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requirement (Addink et al., 2007; Blaschke, 2003; Dorren et al., 2003; Hofmann et 

al., 2008; Meinel & Neubert, 2004; Singh et al., 2005). Although previous studies 

have attempted to find an optimal segmentation (Feitosa et al., 2006; Kim & 

Madden, 2006; Kim et al., 2008; Wang et al., 2004), there is no method available 

for doing this and therefore the feature thresholds involved in this procedure remain 

highly dependent on trial-and-error (Definiens, 2004; Meinel & Neubert, 2004). 

GEOBIA applications can be found in a range of spatially-related fields including 

forestry (Chen et al., 2012; Kim et al., 2009), natural resource management 

(Johansen et al., 2011; Willhauck, 2000; Whiteside et al., 2011), urban planning 

(Ardila et al., 2011) and change detection (Jensen, 2005, Lizarazo, 2011).  

2.3. Modeling of Soil functions loss (biomass production) by soil 

sealing 

Soil sealing has been cited for its negative impacts on natural resources, 

economic health, and community character (Herold et al., 2001, Wilson et al., 

2003). Urban sprawl was earlier defined by Ewing (1997), where he defined it as a 

form of low density spatial development, single and segregation land uses, always 

characterized by scattered and discontinuous leapfrog expansion. Due to its 

complexity, still there is ongoing discussion on urban sprawl definition and there is 

no truthful and commonly accepted definition and measures (Sutton, 2003; Galster 

et al., 2001; Wolman et al., 2005). Several studies showed that urban sprawl has 

significant negative impacts on natural and semi-natural ecosystems such as social 

isolation and environmental degradation (e.g. Breuste, 1996; Burchell et al., 2002; 

Squires, 2002). Also it was plainly demonstrated that the urban sprawl affects the 

respective site in terms of, say, biodiversity (Löfvenhaft et al., 2002), habitat 

suitability (Hirzel et al., 2002), water balance (Interlandi & Crockett, 2003 ), 

microclimate (Pauleit et al., 2005), or photosynthesis (Imhoff et al., 2000; Haase & 

Nuissl, 2007). According to Burghardt et al., 2004, there are hardly any 

internationally recognized definitions of soil sealing. The European Union (EU) 

revealed that “soil sealing refers to changing the nature of the soil such that it 

behaves as an impermeable medium and describes the covering or sealing of the 

soil surface by impervious materials by, for  example, concrete, metal, glass, tarmac 

and plastic” (EEA  glossary, 2006). Monitoring soil sealing is critical to ecological 
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& sustainable development goals. It provides basic indicators of the urban ecology 

because of its negative effect on the soil water balance, microclimate, flora and 

fauna (destruction of habitats), noise and the urban heating (Giridharan et al., 

2004). Developments in soil sealing are largely determined by spatial planning 

strategies, where unfortunately the effects of irreplaceable soil losses are often not 

sufficiently taken into account (Sulzer et al., 2006). It was demonstrated that, 

(Meinel & Hernig, 2005; Rodríguez & González, 2007) only with a survey of the 

temporal and the local development (monitoring) of the total and partly urban soil 

sealing, one is able to measure and judge the real success of a sustainable 

coordinated land use policy. This has to be done in different spatial resolutions 

independency on the type of problem. They showed that the application of geobasic 

data for determining special data is very useful. Several methods have been 

proposed to characterize land use and land cover at the sub-pixel level, including 

Linear Mixture Models (Lu & Weng, 2004; Verhoeye & De Wulf, 2000), Artificial 

Neural Networks (Paola & Schowengerdt, 1995; Swinnen et al., 2001), Fuzzy 

Classifiers (Zhang & Foody, 1998), Maximum Likelihood Classifiers (Häme et al., 

2001), Hierarchical Linear Unmixing (Newland, 1999), Support Vector Machines 

(Brown et al., 1999) and soil indexes and classifications of sealed soils (Blume, 

1989; Bohl & Roth, 1993). Using IKONOS images, Lackner and Conway (2008) 

were able to automatically delineate and classify land-use polygons in Ontario, 

Canada, within a diverse urban setting. They obtained high overall accuracies for 

six- and ten-class maps, with 90% and 86% accuracy respectively. By using landsat 

images, Rodríguez and González (2007) revealed that of all the band combinations, 

the 4-5-1 is the one that best distinguishes the urban areas, though any combination 

including channels 1 and 5 shows this distinction. Kong et al. (2006) also employed 

an OBIA (object based image analysis) approach to extract urban land-use 

information from a high-resolution image. In another Chinese urban dynamic 

monitoring study in Beijing, An et al. (2007) found the overall accuracy and the 

Kappa Index of Agreement (KIA) to be significantly higher when using OBIA 

methods compared with traditional approaches. In addition, Im et al. (2008) 

compared three different change detection techniques, based on 

object/neighborhood correlation, image analysis and image segmentation, with two 

different per-pixel approaches, and found that object based change classifications 

were superior (KIA up to 90%) compared to the other change detection results 
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(KIA 80 to 85%). Zhou and Troy (2008) presented an object-oriented approach for 

analyzing and characterizing the urban landscape structure at the parcel level, using 

high-resolution digital aerial imagery and LIDAR data for the Baltimore area. They 

incorporated a three-level hierarchy in which objects were classified differently at 

each level. The overall accuracy of the classification was 92.3%, and the overall 

Kappa statistic was 0.89. Automated object based classification of the aerial 

photography proved to be an accurate method to map sealed and green areas at 

garden level scale. The overall accuracy is affected by the level of thematic detail. 

The accuracy average of 84% increased to 92% when a simply binary map of 

sealed-unsealed surfaces was produced. The use of elevation information (i.e. 

LIDAR data) is necessary to discriminate low from high vegetation (Kampouraki & 

Gitas, 2009). Alternatively, the urban growth map is a powerful visual and 

quantitative assessment of the kinds of urban growth that have occurred across a 

landscape. Urban growth further can be characterized using a temporal sequence of 

urban growth maps to illustrate urban growth dynamics. Beyond analysis, the 

ability of remote sensing-based information to show changes to a community's 

landscape, at different geographic scales and over time, is a new and unique 

resource for local land use decision makers as they plan the future of their 

communities. 

Development associated with urbanization not only decreases the amount of 

forest area (Macie & Moll, 1989), farmland, woodlots, and open space but also 

breaks up what is left into small chunks that disrupt ecosystems and fragment 

habitats (Maine State Planning Office, 1997; Lassila, 1999). Remote sensing data in 

the form of historical time series is an important data source for the 

parameterization and calibration of urban growth models and an essential condition 

for the prediction of future development and scenario modeling (Herold et al., 

2001). The information about dynamic processes occurring in the pilot area can be 

extrapolated to the surroundings of other cities and especially to municipalities 

which are experiencing similar pressures (Rodríguez & González, 2007). 

2.3.1. Land suitability analysis for wheat production 

The term “Land suitability assessment” refers to the investigation of the 

appropriateness of a certain part of land to a specific type of land use. This 
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assessment involves many factors that directly or indirectly control the ability of 

this part of land to host the land use under investigation. Performing land suitability 

evaluation and generating maps of land suitability for different land use types will 

facilitate to reach sustainable agriculture (Vargahan et al., 2011). An ecosystem 

needs an estimation of quantity and quality of its resources and the suitability of 

these resources for a certain range of land uses in order to assure its future 

sustainability for productivity and biodiversity (kilic et al., 2005). In general, land 

suitability analysis can answer the questions “which” and “where”; which land use 

is to apply under certain conditions and where is the best site to apply this land use. 

Enormous number of studies has been done to assess the land suitability for 

different land uses such as different agriculture crops (Van lanen et al., 1992, 

Jalalian et al., 2008, Zhang et al., 2004, Rabia, 2012a), comparing irrigation 

systems (Landi et al., 2008, Rabia et al., 2013a), trees plantation (Menjiver et al., 

2003), landscape planning and evaluation (Miller et al., 1998) and environmental 

impact assessment (Moreno & Seigel, 1988). 

Land suitability assessment methods can be divided into relative limitation scale 

approach (Simple limitation; limitation regarding number and intensity) and 

parametric approach (Storie; square root) (Sys et al., 1991). Many researchers have 

conducted comparison studies between the different land suitability assessment 

methods (Hopkins, 1977; Anderson, 1987; Steiner, 1983 and 1987, Rabia & 

Terribile, 2013a). Although the outcome of the different land suitability methods 

usually correlated to each other (Ashraf, 2010), the square root parametric method 

commonly gives higher results than the storie method. A study was carried out 

(Vargahan et al., 2011) to compare four land suitability methods (Simple limitation, 

limitation regarding number and intensity, Storie and Square root)  and revealed 

that, square root parametric method is mainly better and more commonly used 

method in qualitative evaluation. However, it was clear from results that the 

predicted values were always lower than the observed, which gives the impression 

that both parametric methods (Storie and Square root) normally underestimates the 

potentiality of investigated land (Vargahan et al., 2011). The study also 

recommended that utilizing the outcome of this method in quantitative evaluation 

gives more realistic results. 
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Wheat is one of the fundamental food crops and is an essential component in food 

industry. It has been used in several studies as a reference crop for land productivity 

evaluation (Ashraf et al., 2010; Dumanski & Onofrei, 1989; Jafarzadeh et al., 

2008). Of the most important factors that affect wheat production are CaCO3, pH, 

organic matter content, topology, texture, drainage, soil depth, EC and altitude 

(Ashraf, 2010; Ashraf, et al., 2010; Mokarram et al., 2010; Mustafa et al., 2011; 

Vargahan et al., 2011). The analytical hierarchy process (AHP), which has been 

proposed by Saaty (1977), has been used through a pairwise comparison technique 

to assign individual parameter’s weights for each factor. Numerous studies have 

documented the (AHP) methodology (Mendoza, 1997; Mendoza & Sprouse, 1989; 

Saaty, 1980 and 1995; Kangas, 1992 and 1993; Peterson et al., 1994; Reynolds & 

Holsten, 1994; Pukkala & Kangas, 1996) and it is not suitable to be discussed in 

this study. Additionally, a number of studies on applications of (AHP) in suitability 

evaluation have been done (Banai-Kashani, 1989; Eastman et al., 1992 and 1993; 

Mustafa et al., 2011; Xiang & Whitley, 1994). AHP depends on Pairwise 

Comparison Matrices to assign weights for every factor controlling the suitability 

analysis. 

2.3.2. Biomass production loss 

The nation destroys its soils, destroys itself (Franklin D. Roosevelt, 1937). When 

soil is sealed with impermeable surfaces it can no longer be used for biomass, food 

and fiber production and therefore its capacity to support ecosystems, habitats, 

biodiversity and crops is affected. Burghardt (2006) and Rabia (2012b) 

demonstrated that sealed areas are still increasing, and it is often the most fertile 

soils which are sealed. Soil presents a large number of functions that are essential 

for human life. In addition to providing biomass, food and raw materials, soil 

performs also various services such as being a habitat host and a gene pool. The soil 

also has the functions of processing, filtering and storage in addition to cultural and 

social functions. Therefore, the soil plays a key role in regulating natural and socio-

economic processes that are necessary for human survival, as the water cycle and 

climate system (Jones et al., 2012). European Commission (EC, 2006) identified 

eight categories of soil threats, which are soil sealing, biodiversity loss, erosion, 
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floods and landslides, salinization, contamination, compaction, and loss of organic 

material. Deteriorated soil quality because of soil sealing can be related with:  

loss of organic matter, which reduces particle aggregation, water holding 

capacity, water infiltration, and increase compaction (Baumgartl, 1998); 

water and wind erosion, increasing the atmospherical dust in dry climatic 

conditions (Pilgrim & Schroeder, 1997);  

increasing of soil hydromorphic condition related with poor drainage problems 

(Wilcke et al., 1999); and  

acidification and other soil chemical modification (Zhu & Carreire, 1999).  

 So, if we assumed that the fertile soils would produce biomass two or three times 

"sometimes more" the unfertile soils, in this way all this biomass production will be 

lost by sealing those soils. Hu et al., 2009, show that the photosynthetic activity of 

vegetation decreased in the urban rural fringe largely, reflecting the dramatic urban 

expansion over the period. On different aspect, the phenological events of flowering 

permitted scientists to study net primary productivity (Badeck et al., 2004; 

Schwartz et al., 2002). Phenology shifts towards earlier springtime flowering in 

urbanized areas compared to surrounding rural areas (Roetzer et al., 2000; Wilby & 

perry, 2006). Earlier springs, longer frost-free seasons (Mitchell & Hulme, 2002; 

Wilby, 2001), and reduced snowfall have affected the dates of emergence, first 

flowering and health of leafing or flowering plants in many parts of the world (e.g., 

Sparks & Smithers, 2002). Cape (2003) also discusses the potential impacts of 

volatile organic compounds (VOCs) on agriculture—specifically on plants grown 

for their flowers. The economic costs of increased allergy problems should also be 

considered. Many of the potential consequences of phenological changes based on 

studies of global climate changes. Their relevance here rests on the assumption that 

urbanization and global climate change are similar (Beckroege 1984;Landsberg 

1981; Ziska et al., 2003) in ways of affecting plant phenology through increasing 

temperature accompanied by elevated CO2 (Neil & Wu, 2006). Changes in 

flowering phenology across an urban landscape have the potential to affect plant 

population dynamics. Early and late flowering have been correlated with decreased 
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seed set (Rathcke & Lacey, 1985; Santandreu & Lloret, 1999). Urbanization effects 

on flowering phenology may become important at the community level, effects on 

other plant species, pollinators, herbivores, secondary consumers and pathogens 

due to changes in flowering phenology must be considered. Urbanization effects on 

flowering phenology may also result in unpredictable changes in ecosystem 

structure because species previously able to coexist due to niche differentiation may 

interact differently (Fitter & Fitter, 2002). 

Because the soil is the basis of various human activities and provides a number of 

valuable ecological services, it has a significant economic value. Various attempts 

have been made by economists to estimate the environmental and agricultural land 

value. The costs of soil sealing can be substantial, both in terms of costs directly to 

users (agriculture), and in terms of indirect costs caused such loss of ecological 

functions of soil. However, not all of these functions are of direct economic or 

social value, and not all are sufficiently investigated. Also, many soil functions may 

be interdependent. So far, there is no firm methodology for the quantification of soil 

functions loss. Therefore, there is a great need that the scientific community gives 

more attention to develop different methods for the evaluation of the different soil 

functions and quantification of the losses due to the diverse soil destroying 

causative factors such as soil sealing. 
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3. MATERIALS AND METHODS 

3.1.  Description of the study area 

The study was carried out in Telesina Valley (Valle Telesina), located in 

Benevento in the Campania region of central Italy (Fig. 1). The area is 

characterized by a diversity of land cover and land use types, including urban 

settlements, forests, pasture and different types of agriculture. Despite the land 

cover and land use change that has occurred during the last century, the study has 

maintained a rich diversity in land use and land cover types. Telesina Valley is a 

traditional area with vineyards producing high quality wines including three with 

DOC designation (Guardiolo, Solopaca and Sannio) (Bonfante et al., 2005). 

 

Fig. 1. The study area of Telesina Valley in Campania Region, southern Italy. 

The landscape has a complex geomorphology and is characterized by an E-W 

elongated graben into which the river Calore flows (Fig. 2) (Magliulo et al., 2007). 

The area includes five different pedo-environments: i) mountains (limestone 

relieves); ii) hills; iii) pediment plains (slope fan of limestone reliefs); iv) ancient 

fluvial terraces; and v) alluvial plains (Fig. 3) (Scaglione et al., 2008). 
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Fig. 2. A sketch of the study area of Telesina Valley representing the digital elevation 

model (elevation in meters above sea level), river network and urban infrastructure. Source: 

the study area profile created in arcScene 10 (ESRI, 2012). 

 

Fig. 3. Land systems of the study area (Telesina Valley). 
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3.2.  Soil sampling and analysis 

As part of the study, a review was carried out to integrate previous study of soil 

maps of Telesina Valley in scale 1:25000 (Terribile et al., 1996) in collaboration 

with the CNR-ISAFoM of Ercolano in Naples. All the soil profiles of the study area 

were described as reported in the "Guide to the Soil Survey - Project UOT" (ISSDS, 

1997). All profiles were sampled for routine analyses. The dissolved samples were 

air-dried and sieved (r <2 mm). The main physicochemical and chemical analyses 

were performed according to the methods of MiRAAF (1992), except 

granulometric analysis of andic soils properties (estimated in advance with the field 

test) that was performed on wet sample with the method of the pipette at pH 9.5 

(Mizota & van Reeuwijk, 1989); the pH was measured in a soil suspension: water 

1:2.5; the organic substance was determined by oxidation with potassium 

dichromate; the cation exchange capacity (CEC) was determined by BaCl2. Some 

extra-routine analyses were also carried out on the soil samples; in particular, 

extractions of iron, aluminum and silicon in oxalate (Feo, Alo, Sio) and in 

dithionite (Fed, Ald, Sid) were carried out according to the method of Schwertmann 

(1964) and MiPAF (2000), respectively. These analyzes were performed, as well as 

for purposes of classification of the different pedo-types. The iron and aluminum 

extracted in oxalate are used as a criterion in the classification of soils (McKeague 

& Day, 1966).  Scarcity of organic matter, however, prevailed in the area of 

interest. The soils were classified according to Soil Taxonomy of the USDA, (Soil 

Survey Staff, 1998). Sixty complete profiles were accomplished to cover the study 

area and to obtain the edaphological data. The profiles were distributed randomly in 

the study area (Carter & Gregorich, 2008). The exact location of each sampling 

point was detected directly in the field with the aid of a GPS; the coordinates of the 

points were subsequently entered into the GIS database in order to pinpoint the 

position of sampling on a point shapfile (Fig. 4).  
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Fig. 4. Representative soil profiles distribution in the study area 

A total of 207 land units were recognized in the study area (Appendix I). Figs 5 

and 6 show the soil map and legend of the study area which reveal that the area is 

characterized by fourteen soil groups (i.e. Hapludands, Udivitrands, Eutrudepts, 

Haplustepts, Calciustepts, Hapludolls, Ustorthents, Melanudands, Ustifluvents, 

Ustivitrands, Vitraquands, Calciustolls, Hapludolls and Haplustalfs) (Terribile et 

al., 1996). Climatic conditions are homogenous over the study area. The digital 

elevation model (DEM) was obtained from the digitalization of topographic maps, 

produced by the Istituto Geografico Militare Italiano at 1:25,000 scale, producing a 

Digital Elevation Model (DEM) having a 20×20 m resolution (IGM, 1954). 
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Fig. 5. Map of soil classes in the study area following the USDA soil taxonomy (Soil 

Survey Staff, 1998). 
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Fig. 6. Soil classes in the study area following the USDA soil taxonomy (Soil Survey 

Staff, 1998). 

Soil_Classes_USDA

Alfic Hapludands

Alfic Haplustands

Alfic Udivitrands

Aquic Eutrudepts

Fluventic Haplustepts

Humic Haplustands

Humic Ustivitrands

Lithic Hapludands

Lithic Hapludands e Typic Hapludands

Lithic Haplustepts e Typic Calciustepts

Typic Calciustepts

Typic Calciustolls

Typic Calciustolls e Lithic Haplustands

Typic Calciustolls e Lthic Haplustepts

Typic Hapludands

Typic Hapludolls

Typic Hapludolls e Alfic Hapludands

Typic Haplustands

Typic Haplustepts e Typic Haplustepts

Typic Haplustolls e Typic Ustorthents

Typic Haprendolls

Typic Melanudands

Typic Melanudands e Lithic Hapludands

Typic Ustifluvents

Typic Ustivitrands

Typic Ustorthents e Typic  Calciustepts

Typic Ustorthents e Typic Calciustepts

Typic Vitraquands

Vertic Calciustepts

Vertic Haplustepts e Typic Ustorthents

Vitrandic Calciustolls

Vitrandic Hapludolls

Vitrandic Haplustalfs e Typic Calciustepts

Vitrandic Haplustolls

Vitrandic Haplustolls e Humic Haplustands

Vitrandic Haplustolls e Typic Calciustolls
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3.3.  Main work frame 

As proposed in the introduction section, the work was divided into three major 

phases. In the first phase, long term detection for land use and land cover change 

was done for the period from 1954 to 2009 in order to understand the history, rates 

and trends of the soil sealing in the study area (Fig. 7). In the second phase, an 

automatic LULC classification of the 1954 aerial photographs using GEOBIA 

technique was conducted. The logical reason behind this phase is the assumption 

that improving the quality of the classification for old land use and land cover maps 

will improve the final results of the change detection analysis. Consequently, the 

quantification of the lost biomass production by soil sealing will be improved. 

Finally, in the third phase, a modeling of soil function loss by soil sealing was made 

to quantify the losses in one of the soil functions i.e., biomass production. In the 

following paragraphs, a detailed description of the methodology is given for each of 

the three phases. 

 

Fig. 7. Main work frame of the study 
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3.3.1.  Long term detection for land use and land cover 

change (1954 – 2009) 

3.3.1.1. Data Sources 

Maps of land use and land cover (LULC) were obtained for Telesina Valley, 

where four LULC maps from the years 1954, 1990, 2000 and 2009 were used in 

this study (Figs. 8, 9, 10 and 11). The first map is a detailed Land cover map 

(nominal scale of 1:100,000) provided by the cartographic office of the “Touring 

Club Italiano” and dating back to 1954, was acquired, georeferenced, digitized and 

clipped as a 1954 LULC map of the study area (CNR & Directorate General of 

Cadastre, 1956-1960). The resolution of the clipped map is dependent on the 

accuracy of the original Touring Club map, which is reflected in the relatively 

coarse legend with only 9 classes and the resulting large areas of individual 

polygons. The LULC maps for 1990 and 2000 were generated from the Corine’s 

LULC classification for Europe (EEA, 2000). Each map has 24 classes and 

therefore contains a more complex and detailed legend. The 2009 map is the most 

recent and detailed map, and is based on the LULC classification adapted from 

corine with 25 classes (SeSIRCA, 2009).  

3.3.1.2. Change Detection Analysis 

As can be observed in Figs. 8, 9, 10 and 11, the four LULC maps, all differ in 

their legend definitions and the number of classes. Land use changes were defined 

and classified as the changes in a land use class that occurred in a given area and 

time. These classes identify the typology of changes by assigning a land use change 

code to each intersection created by the overlay of successive land use maps, 

allowing a thematic representation of the spatial distribution of changes (Abd El-

Kawy et al., 2011). The method is based on the previous generalization of land use 

categories and offers a quantitative and qualitative measure of conversion that 

occurred in the study area, allowing the spatial distribution of land use changes to 

be reported on a unique map. Land use change has been evaluated for three periods: 

from 1954 to 1990, 1990 to 2000 and from 2000 to 2009. 
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Fig. 8. Land use and land cover map of the study area for the year 1954 (CNR & 

Directorate General of Cadastre, 1956-1960). 

 

Fig. 9. Land use and land cover map of the study area for the year 1990 (EEA, 2000). 
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Fig. 10. Land use and land cover map of the study area for the year 2000 (EEA, 2000). 

 

Fig. 11. Land use and land cover map of the study area for the year 2009 (SeSIRCA, 

2009). 
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To detect the land change in the study area during the period from 1954 to 2009, 

possible types of changes that may occur in the study area were determined based 

on the LULC classes from the four maps. Fifteen land use change categories were 

identified (Table 1). Codes were assigned to each new polygon created by the 

intersection (Benini et al., 2010), using a reference matrix that expresses the 

typology of land use change that occurred on the basis of previous and successive 

land use category comparison (Tables 2, 3 and 4). The resulting map represents the 

land use change that occurred in every patch during the period taken into account, 

and spatially identifies what has occurred in the area. Each pair of maps was 

overlaid to generate a set of land change polygons with attribute information from 

both set of classifications in the pair. This information was used together with the 

change matrix to assign each polygon with a change code. Finally, land change 

maps were created for each time period.  

Table1. Possible change classes and change codes in the study area (Benini et al., 2010). 

Change codes Land use change class Description 

Pu Urban persistence Areas where settlements persist during time 

Ui Urban intensification Areas converted to urban 

E Exceptionality Unusual conversion 

P Persistence Areas with no change in land use 

Ai Agrarian intensification 
Areas where agricultural activities substitute 

previous land use 

Ic Intensive conversion 
Agricultural areas where an intensive conversion 

has occurred 

Ec Extensive conversion 
Agricultural areas where an extensive conversion 

has occurred 

R Afforestation 
Areas where other land uses are converted into 

woodland 

D Deforestation Wooded areas converted to other land uses 

Nd Natural dynamic Areas where natural changes occurred 

A Abandonment 
Urban and agricultural areas converted to shrubs 

and rugged areas 

St Stabilization 
Rugged areas that are converted to shrubs or 

grassland 

De Degradation Shrub areas converted to rugged 

Pa Agriculture Persistence 
Areas where agriculture persist during time 

include intensification and extensification 

Pf Forest Persistence Areas where forests persist during time 
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Table 2. Change matrix for LULC changes from 1954 to 1990.  

 

Table 3: Change matrix for LULC changes from 1990 to 2000. 

 

Table 4. Change matrix for LULC changes from 2000 to 2009. 

 

In this study, the focus was on three types of land change for which specific land 

change maps from 1954 to 2009 were created:  

 afforestation and deforestation;  

 agricultural development; and 

 urbanization. 

The land change trends were then examined using a line of best fit to estimate 

potential future land changes in Telesina Valley (Moore & Moffat, 2007).  
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3.3.2.  Automatic land use and land cover classification of 

1954 aerial photographs using GEOBIA technique 

The understanding of land change based on past maps is inherently limited by 

their original classification and the granularity of their legends. Older maps often 

have a less detailed and accurate legends, which results in a map with large 

polygons that in reality contain a mix of classes. Furthermore, different resolutions 

and accuracies associated with different maps used to detect land use change further 

hampers additional model processing, predictions or calculations. Enhancing the 

quality and accuracy of older maps will thus be beneficial to land change detection, 

land use and land cover change modeling and future predictions of land change. In 

this study, GEOBIA technique is applied to old aerial photographs to reclassify the 

land use and land cover of the study area for the year 1954. The objects detected by 

GEOBIA are represented in a type of hierarchy or taxonomy that shows the 

structural relations between the objects (Booch, 1991). GEOBIA is not intended to 

replace humans but is a support tool to produce better classifications in an 

incremental approach (Leckie et al., 1998; Castilla & Hay, 2007). Aerial 

photographs of Telesina Valley were obtained for the year 1954. Using the object-

oriented eCognition software, the LULC of the study area was reclassified. Using 

the eCognition 8.7 software (Trimble, 2012), it was then possible to extract land 

cover data from the aerial photographs using different features such as the tone, 

brightness, border contrast, roundness and many other features available in the 

software. An example of a result produced by the software is shown in Fig. 12. The 

idea was to compare the original 1954 map with the reclassified LULC map to 

determine whether the reclassified map will improve land change estimates. 
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Fig. 12. Screenshot of the GEOBIA classification process using eCognition software 

(Trimble, 2012). 

3.3.2.1. Preprocessing of aerial photographs 

Gray scale erial photographs of 1954 that cover the study area were obtained 

(Fig. 13). The black and white aerial photographs of the study area for the year 

1954, which were part of Volo GAI 1954, were produced by the Italian Air Group 

between 1954 and 1956 under the authority of the Italian Military Geographical 

Institute (IGM).  The format of the original sheets is 24x24 cm or 20x20 cm with an 

average scale of 1: 33,000 and an average altitude of 4800-5500 m (IGM, 1954). 

All the aerial photographs were scanned with high resolution (800 pixel per inch) to 

provide a high quality digital form of the images (Appendix II). 
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Fig. 13. A number of 17 aerial photographs covering the study area. 

The procedure proposed for using the GEOBIA technique for the land use and 

land cover classification consists of six sequential steps: (1) Aerial photographs  

orthorectification; (2) Orthophotos homogenization; (3) Enhanced orthophotos 

cropping and filtering, (4) Object-based approach for images segmentation; (5) 

Photo interpretation and land cover map building, and (6) Map Accuracy 

assessment test. All these six steps are described in the following paragraphs and 

summarized in Fig. 14. 
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Fig. 14. A summary flow chart of all the six steps of the procedure proposed for using 

GEOBIA technique for land use and land cover classification. 

3.3.2.1.1. Step 1: Aerial photographs orthorectification  

 In this step, in order to  make the 1954 aerial photographs  georeferentiated, 

geometrically correct and uniform in scale, a procedure was applied using the 

rectify photo module in ArcGIS 10 software using spline function (ESRI, 2011). 

The orthorectification process of the GAI flight images has been broadly discussed 

in earlier studies (Pelorosso et al., 2007; Pelorosso, 2008). The orthorectification 

process is a procedure used to convert raw remote sensing images to georeferenced 

data. It is based on the acquisition of points that have been selected on the reference 

layer (i.e. Topographic map of 1954) (IGM, 1954) and recognized on the images to 

be orthorectified. The selected points are used in the aerial triangulation algorithms 
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and they are called GCP (Ground Control Points). A number of GCPs between 10 

and 30 points were selected for each aerial photograph. The selected points varied 

between Bridges, road crosses, building corners and small isolated trees. All the 

photographs were assigned to a UTM coordinate system (WGS 1984 UTM, Zone 

33North) and WGS 1984 Datum. The root mean square error (RMSE) index of the 

GCP position has been used to verify the orthorectification process accuracy 

(Weeks, 2011). For each coordinate axis (X, Y), the RMSE was considered 

separately. The RMSE index is an evaluation of the deviation between selected and 

expected position of each GCP and it can be calculated using the Equation (1).   

       
   

  
   

 
                          

Where: 

n:  is the number of GCP used for the orthorectification process 

r:  is “residue” the difference between the real value of the coordinate (X or Y) of 

a point  i  and the value obtained by aerial triangulation.  

At this point all aerial photographs became orthorectified and georeferenced and 

ready to start next step of the image pre-processing (Fig. 15). 
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Fig. 15. A summary diagram of steps 1, 2 and 3 of GEOBIA classification process. 

3.3.2.1.2. Step 2: Orthophotos homogenization 

The evaluation of land cover changes based on remote sensing images without 

homogenization can lead to unrealistic results (Paolini et al., 2006).  The method 

proposed by Seitz et al. (2010) was adapted to present a procedure for the 

homogenization of 1954 aerial photographs in order to overcome the brightness and 

scanning errors (Fig. 15). This method is based on a linear transformation in order 

to soften differences in contrast and tonality between orthophotos. In order to 

achieve images homogeneity, all aerial photographs have been set to the auto tone 

and contrast using geographic imager software (Avenza Systems Inc., 2012). Fig. 

16 shows the differences between adjacent two images prior and after the 

homogenization process. This way all photographs became homogenized and ready 

for the next step.  
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Fig. 16. Homogenization of adjacent orthophotos, left side: original photographs before 

homogenization; right site: homogenized photographs.  

3.3.2.1.3. Step 3: Clipping and filtering of enhanced 

orthophotos 

The aerial photographs are usually obtained in strips creating blocks. In the same 

strip, two successive photos have an overlapping area of 60%. In addition, there is a 

20% overlap between photos from two adjacent strips which means 40% 

cumulative overlap in both sides of the photo. For this reason, the study area can 

fall in different orthoimages with wide overlapping zones. Therefore, a cropping 

process has been conducted over all aerial photographs using geographic imager 

software (Avenza Systems Inc., 2012) taking into account leaving 1 cm of overlap 

from each side to be used later in the mosaicing process (Fig. 15). In addition, 

different filters were developed from the clipped aerial photographs to be used later 

in the segmentation and classification process. This proposed approach may help in 

enhancing both the visualization and the classification procedures capabilities. 

After trying different filters, finally three filters have been found favorable to be 

used in the segmentation and classification process. These filters are ink-out, water 

and find-edges which were created using the geographic imager software (Avenza 

Systems Inc., 2012). Fig. 17 shows an example of an aerial photo with the three 

corresponding filters which are georeferenced same as the original aerial photo. By 

this step, the preprocessing stage has ended and each aerial photograph is 

orthorectified along with three filters and ready for the segmentation and 

classification process. 
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Fig. 17. An aerial photograph (A) with the three corresponding filters, find-edges (B), 

ink-out (C), and water (D). 

3.3.2.1.4. Step 4: Semi-automated Object-based approach 

for images segmentation 

In eCognition software environment, a semi-automated procedure was applied to 

generate the LULC map of the study area for the year 1954. The procedure is based 

on the following two steps: first, applying an automated segmentation, and 

secondly, assigning a class to the extracted polygons by semi-automated photo 

classification (Fig. 18) (Geri et al., 2008). 
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Fig. 18. A summary diagram of steps 4, 5 and 6 of GEOBIA classification process. 

Clipped orthophotos were imported to eCognition software along with the 

corresponding filters to be subjected to the segmentation process. Segmentation 

process was carried out for 1954 aerial photographs individually, in addition to their 

filters, using the algorithms embedded in eCognition Developer 8.7 software 

(Trimble, 2012). The multi-resolution segmentation algorithm was chosen as the 

principal segmentation algorithm that works by achieving a mutual-best-fitting 

approach. This algorithm repeatedly merges pixels and then objects through an 

optimization procedure, which gives preference to certain unions generating a 

minimum level of heterogeneity in the produced objects. The algorithm uses an 

upper threshold of homogeneity to repetitively merge single image objects of one 

pixel in several loops in pairs until it reaches the homogeneity threshold limit.  The 

calculation of homogeneity criterion (σ) (Fig. 19) in eCognition 8.7 is based on 

selecting a scale parameter value and choosing weights to four other criteria (shape, 

color, smoothness and compactness), which are embedded in the algorithm.  
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Fig. 19. Multi-resolution segmentation concept flow diagram. 

The scale defines the maximum standard deviation of the homogeneity criteria for 

the resulting image objects, while the homogeneity criterion defines the 

characteristics of the objects (Trimble, 2012). Assigning different values to these 

segmentation parameters produces different sizes and shapes of image objects. 

Therefore, it is a critical decision to choose these parameters values to acquire the 

maximum accuracy in segmentation. Based on the procedure proposed by Meinel 

and Neubert (2004) and Neubert et al. (2006), the most favorable values of 

segmentation parameters were selected through comparison between manually 

extracted sample polygons and objects derived from different segmentations (Fig. 

20). The optimal segmentation parameters values is a compromise between a 

reduced number of the resulting image objects and a high quality division of the 

surface in land cover classes.  
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Fig. 20. Comparison between a sample polygon (A) and objects derived from different 

segmentations trials (B, C, D and E). 

A visual evaluation was conducted in comparison with the manually extracted 

sample polygons taking into account different criteria as the segmentation of linear 

objects, the overall delineation of different land cover types and the occurrence of 

faulty segmentations. This evaluation was used to provide a decisional support to 

the selection of the optimal parameters values in case of similar segmentation 

results (Gennaretti et al., 2011). Whenever a segmentation was completed with a 

new combination of parameters, its performance was evaluated in relation to the 

former ones. This procedure was carried on until a significant sample of the 

possible parameter combinations was tested and the optimal one could be selected. 

3.3.2.1.5. Step 5: Classification of orthophotos and 

generation of LULC map 

 During this step, a land cover class was given to each polygon obtained by the 

segmentation process. In the 1954 orthophotos, due to their low spatial resolution 

and their monochrome grayscale, it was difficult to detect some cover classes. For 

this reason, generating different filters from each orthophoto were a very useful aid 

for the identification and the classification of deferent objects as road networks, 

buildings and other classes. The legend for land cover classes was adapted from the 

legend of 1954 touring map of Italy (CNR & Directorate General of Cadastre, 

1956-1960) with appropriate changes (Fig.  18). A full record of the process tree 

and the algorithms used in the classification can be found in appendix III (Fig. 21).  
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Fig. 21. A screenshot of the GEOBIA classification process tree. 

3.3.2.1.6. Step 6: Map accuracy assessment 

The quality of spatial data sets is a very broad issue which may depend on 

different characteristics (Worboys, 1998) but frequently, and in this case also, the 

map or classification accuracy is the characteristic of interest. Many map accuracy 

assessment measures can be derived from a confusion matrix (Lark, 1995; Stehman, 

1997). However, many researchers have suggested that measures such as the kappa 

coefficient should be adopted as a standard (e.g., Smits et al., 1999). The 

classification accuracy assessment compiles a spatial comparison between the 

classified point on the map and the real class in the validation point in the field. 

Finally, these classified point and validation points are compiled in a confusion 

matrix. Using this confusion matrix, deferent accuracy assessment percentages can 

be developed (Fig.  18). Overall accuracy (Equation 2) defines how well the 

developed classification map identifies all land cover types on the ground (Foody, 

2002). Producer’s accuracy (Equation 3) expresses how well the map producer 

identified a land cover type on the map from the remote sensing imagery data. 

User’s accuracy (Equation 4) explains how well a person using this map will find 

that land cover type on the ground. Finally, Kappa analysis (Equation 5) measures 

the difference between actual agreement and chance (or random) agreement 
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between the map and validation data on the ground (Congalton, 1991). In order to 

apply the accuracy assessment test to the generated classification map, 292 

validation points were selected randomly in the study area to be used in the 

comparison (Fig. 22). Stereoscopic view was used to validate the classification in 

the selected points. After running the validation procedures, the collected data were 

inserted in the confusion matrix to calculate the percentages of accuracy 

assessment. 
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Where, Observed accuracy (P0) determined by diagonal in error matrix; and 

Chance agreement (Pe) incorporates off diagonal, Sum of Product of row 

and column totals for each class (Foody, 2002). 
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Fig. 22. Random validation points covering the study area. 

3.3.3.  Modeling of Soil functions loss (biomass production) 

by soil sealing 

Biomass production is one of the most important soil functions and losing this 

function for any reason is a contribution to the hunger problem. Until now, from 

literature review, there is no solid methodology to evaluate soil functions loss. In 

this study, a novel methodology for evaluating soil function loss, after soil sealing, 

is proposed (Fig. 23) with respect to biomass production. The proposed 

methodology consists of different sequential stages starting with data collection 

arriving to a quantification of the biomass production loss. The methodology is 

mainly based on conducting a land suitability evaluation for wheat production. 

Then, using the wheat production statistic averages from statistical reports, it is 

possible to assign a production rate for different suitability classes and generate a 

land productivity map for wheat. Wheat crop is used here as a standard 

international land productivity measure and a reference crop for land productivity 
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evaluation (Dumanski & Onofrei, 1989; Jafarzadeh et al., 2008; Ashraf et al., 

2010). However, any other crop is suitable for the proposed method. Next, using the 

generated land productivity map along with soil sealing map (i.e. map of 

urbanization in the study area) we can quantify the lost biomass production due to 

soil sealing. In the next few paragraphs, a detailed explanation of the proposed 

methodology is given.   

 

 

Fig. 23. Proposed scheme for soil function loss evaluation (Biomass production loss by 

soil sealing).  

3.3.3.1. Land suitability analysis for wheat 

Basically, land suitability assessment is a multi-criteria problem, as the analysis is 

a decision/evaluation problem concerning a number of parameters. A presentation 

of the analysis complexity can be shown in (Fig. 24). In general, the land suitability 

problem can be summarized in a generic model as in the following function 

(Equation 6): 
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)x..,…,x,f(x=S n21                     (6) 

where, S is suitability level and x1., x2,…, xn are the factors affecting land 

suitability. 

 

Fig. 24. Diagram of land suitability evaluation Process for wheat production.  

Among the different land suitability assessment methods, this work is interested 

in the parametric methods. The two classical parametric methods (Storie and square 

root) have been used in comparison with the proposed method (Rabia method). The 

land suitability parametric approach can be summarized in six steps as shown in 

Fig. 25, following FAO framework for land evaluation (FAO, 1976) and the 

procedures proposed by Sys et al. (1991). 
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Fig. 25. Flowchart of Parametric approach procedures (Rabia & Terribile, 2013a). 

First step of the parametric approach comprise collecting the fieldwork data and 

judgments from literatures and experts opinions needed for the later evaluation 

steps. In this stage, the parameters or factors that affect the land use under 

investigation should be defined. The number of the considered factors has to be 

reduced to a strict minimum to avoid repetition of related characteristics in the 

calculation, which will lead to a reduction in value of the final suitability index (Sys 

et al., 1991). Previous studies suggested that the number of the factors should range 

between seven and nine to achieve truthful results (Ashraf, 2010; Mokarram et al., 

2010; Mustafa et al., 2011; Rezaei et al., 2010). Nine parameters have been named 

in this work to study land suitability for wheat production. These parameters are 

soil organic carbon, CaCO3, pH, drainage, texture, EC, slope, altitude and soil depth 

(Ashraf, 2010; Ashraf et al., 2010; Mokarram et al., 2010; Mustafa et al., 2011; 

Vargahan et la., 2011). Full record of the soil analysis for these parameters in the 

study area can be found in appendix IV. In the second step, rating tables for each 

factor are to be prepared where each table has some values of a factor and the 

corresponding ratings for these values (usually range from 0 to 100). If the feature 
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is highly suitable, a rating of 100 is to be assigned and if it is not suitable, a 

minimal rating will be assigned to that feature. In this study the rating tables were 

adapted from the tables prepared by Sys et al. (1993). These tables will be used in 

the third stage to specify ratings for individual parameters in all the sampling sites 

in the study area. In this step, researchers usually rate the parameters based on the 

situation of study area, experts’ suggestions and review of literatures (Ashraf, 

2010).  

The following step is to calculate weights for different factors in order to use 

these weights in the later stages. The analytical hierarchy process (AHP) has been 

used commonly in Multi Criteria Decision Making (MCDM) or Multi Criteria 

Evaluation (MCE) (Mustafa et al., 2011). Several studies have documented the 

(AHP) methodology (Mendoza & Sprouse, 1989; Mendoza, 1997; Saaty, 1980; 

Saaty, 1995; Kangas, 1992; Kangas, 1993; Peterson et al., 1994; Reynolds & 

Holsten, 1994; Pukkala & Kangas, 1996) and it is not suitable to be portrayed in 

this study. On the other hand, a number of researches on applications of (AHP) in 

suitability evaluation have been done (Mustafa, 2011; Banai-Kashani, 1989; 

Eastman et al., 1992; Eastman et al., 1993; Xiang & Whitley, 1994). AHP depends 

on Pairwise Comparison Matrices to assign weights for every factor controlling the 

suitability analysis.  These matrices compare different parameters to each other and 

give values (weights) according to their relative importance. These values range 

from 1 to 9, where 1 means that the two parameters being compared have the same 

impact and 9 reveals that one parameter is particularly more important than the 

other (Saaty & Vargas, 2001). Finally, the weight of each factor is calculated based 

on the values given to this factor in comparison to all other factors (Table 5). The 

land suitability index will be calculated based on ratings of all factors using one of 

the equations explained later. 
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Table 5. Pairwise comparison matrix of wheat land suitability (Saaty, 1977). 
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CaCO3 1 2 3 4 5 6 7 8 9 0.264 

Organic 

carbon 0.500 1 2 3 4 5 6 7 8 0.213 

pH 0.333 0.5000 1 2 3 4 5 6 7 0.167 

Texture 0.250 0.3333 0.500 1 2 3 4 5 6 0.126 

Depth 0.200 0.2500 0.333 0.500 1 2 3 4 5 0.091 

Drainage 0.167 0.2000 0.250 0.333 0.500 1 2 3 4 0.062 

EC 0.143 0.1667 0.200 0.250 0.333 0.5000 1 2 3 0.039 

Slope 0.125 0.1429 0.167 0.200 0.250 0.3333 0.5000 1 2 0.022 

Altitude 0.111 0.1250 0.143 0.167 0.200 0.2500 0.3333 0.500 1 0.011 

To calculate the final land suitability score for each land unit, one of the 

suitability indices shall be used. In this study three parametric indices have been 

used to calculate the final land suitability scores. These indices are Storie, square 

root (Equations 7 and 8 respectively) (Sys et al., 1991) and Rabia (Equation 9) 

(Rabia & Terribile, 2013a). In the following paragraphs the equations of the three 

indices are shown.  

 Storie equation 

,……*
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*

100
*

100

B
  *A=Si

C

      (7) 

where, Si is suitability index, A is the rating value for texture parameter and B, C, 

D are  the rating values for other parameters. 

 Square root  equation 
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A
*R=Si min

C

  (8) 
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where, Si is suitability index, Rmin is the minimum rating value of the parameters, 

and A, B, C are the remaining rating values for other parameters 

 Rabia equation 

The proposed method is a parametric approach developed to enhance the land 

suitability analysis process and to overcome the limitations of classical methods 

(Rabia and Terribile, 2013a).  

……*
100

*
100

B
*

100

A
*W=Si max

C

 (9) 

where, Si is suitability index, Wmax is the rating value of the parameter that has 

maximum weight and A , B, C are  the remaining rating values of other parameters. 

Following the procedure proposed by Sys et al. (1991) the suitability ratings will 

be divided into five classes (S1: highly suitable, S2: moderately suitable, S3: 

marginally suitable, N1 marginally not suitable and N2: permanently unsuitable). 

For each suitability class, a range of suitability index is defined (Table 6). If an 

association of two different classes in the same land unit exists, it will be 

demonstrated by a slash between the simples of the classes (e.g. “S2/N1” means 

association of classes S2 and N1). Finally, by assigning a land suitability class or an 

association of classes for each land unit, we can generate the land suitability map of 

the study area for wheat growth.   
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Table 6. Land suitability classes and the corresponding ranges of suitability index. 

Suitability Class 
Suitability Index 

(SI) 

Class S1: 

Highly suitable 
>75 

Class S2:  

Moderately suitable 
50-75 

Class S3:  

Marginally suitable 
25-50 

Class N1:  

marginally not suitable 
10-25 

Class N2:  

Permanently unsuitable 
<10 

3.3.3.2. Evaluation of biomass production loss 

After generating the land suitability map for wheat production, we can use it as a 

base map to develop a wheat productivity map. This step involves using wheat 

production statistical data from literature to assign a wheat productivity rate for 

each land suitability class. The database of ISTAT was used for this purpose to get 

rates of wheat productivity in the study area (ISTAT, 2012). Table (7) shows the 

different wheat productivity rates assigned to different land suitability classes. For 

the class N2, zero production rate has been assigned as it is permanently unsuitable 

for wheat production. 
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Table. 7.  Wheat Production rate (Metric Ton hectare
-1

) and the corresponding Land 

suitability classes (ISTAT, 2012). 

Assigned Wheat Production rate 
Wheat Production rate 

(Metric Ton Hectare
-1

) 

suitability 

class 

Max production in 5 years 4.2 S1 

5yrs max/5yrs average 3.93 S2 

5 years average 3.66 S3 

Min production in 5 years 3.21 N1 

No production 0 N2 

Now, for each land unit a wheat production rate was assigned based on the 

corresponding land suitability class. Later, the wheat productivity map was 

generated and overlaid on the soil sealing map to evaluate the lost biomass 

production by soil sealing in Metric Ton per year.  The soil sealing map used for 

this study is the urbanization map of 2011 for the study area. Finally, this 

productivity map can be used also as a decision supporting system to predict the 

biomass production lost for future urbanization plans.  
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4. RESULTS AND DISCUSSION 

As suggested before, in previous sections, the work was divided into three main 

themes. The first one is concerning the detection of the land use and land cover 

changes during the period between 1954 and 2009. This work was based on old 

land use and land cover maps and that is why the quality of results is strictly related 

to the quality of old maps. Therefore, the second theme was a proposal to use the 

novel approach; GEOBIA technique in classifying the 1954 aerial photographs to 

generate an enhanced LULC map of the year 1954. Then, the last theme was the 

evaluation of the impact on soil functions caused by one of the important land use 

changes. In this theme an evaluation of soil sealing impact on the biomass 

production loss was conducted as one of the soil functions lost by soil sealing. In 

the next paragraphs, the results of the three themes will be presented and discussed 

sequentially.  

4.1. Long term detection of land use and land cover change  

(1954 – 2009) 

Although land use and land cover change detection is a mature subject of study 

now, monitoring the land change is still important for recourses management. This 

is due to the changing state of food and fiber demands, biodiversity, global climate, 

and other critical environmental/ecosystem services (Hansen and Loveland, 2012). 

As a result of the availability of the consecutive data, developing advanced method 

of processing and the increasing actions for protecting the environment from sever 

changes, researchers will have to be continuously active in monitoring land use and 

land cover change. Therefore, this study was conducted to detect the land use and 

land cover change in Telesina valley and to understand the change trends and 

motives. By perusal of the four LULC maps of the study area for the years 1954, 

1990, 2000 and 2009 which were presented in Figs. 8, 9, 10 and 11, it is clear that 

the land covers of southern and the far northern parts of the study area are 

dominated by Forests and Pasture.  On the contrary, the middle part of the study 

area is subjected to different agriculture land uses such as Vineyards, Olive trees 

plantation, orchids and annual agriculture crops (SOILCONSWEB, 2012). After 

running the land use and land cover change detection analysis, three maps were 



58 
 

generated for land change during the periods 1954-1990, 1990-2000 and 2000-

2009. These maps show the actual land change for all of the classes under 

investigation. Figs. 26, 27 and 28 shows the land change maps during the three 

periods from 1954 to 2009. The change codes presented in maps’ legends are the 

change codes suggested in Table 1. In view of all three change maps, it is clear that 

the change code that stands for the largest area representation in the three time 

periods from 1954 to 2009 is Agriculture Persistence (Pa) (Fichera et al., 2012). In 

these areas, agriculture land use continued without any change including intensive 

and extensive agriculture land uses. Forest persistence (Pf) is the second dominant 

change code in the study area during the three time periods form 1954 to 2009.  In 

this case the forest area remained untouched during the time periods under 

investigation. Additionally, in the first time period from 1954 to 1990, only thirteen 

change types have been found while the change types stabilization (St) and 

degradation (De) didn’t appear in this interval. On the other hand, in the second 

time period from 1990 to 2000, only nine change types appeared in the study area 

while six change types were absent. The missing change types in this time period 

are stabilization (St), degradation (De), exceptionality (E), agriculture 

intensification (Ai), abandonment (A) and agriculture extensive conversion (Ec). 

This shows that during the time period from 1990 to 2000 there was only slight 

LULC change as urban intensification (Ui) whilst the rest of the study area were 

represented by persistence change types such as agriculture persistence (Pa), forest 

persistence (Pf), persistence (P) and urban persistence (Pu). This is likely to be 

related to the fact that the compared LULC maps in this case are the corine LULC 

maps for the years 1990 and 2000 which have exactly the same legends, unlike the 

other maps which have different legends (EEA, 2000). Finally, in the third time 

period from 2000 to 2009, all fifteen change types were present with large 

afforestation (R) and deforestation (D) activities.  

Special attention has been given to three important land change types in the study 

area and will be discussed in more details in the next paragraphs. These land change 

types were:  

 afforestation and deforestation; 

 agricultural development; 

 urbanization. 
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Fig. 26. Land change map during the period 1954 – 1990. 

 

Fig. 27. Land change map during the period 1990 – 2000. 
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Fig. 28. Land change map during the period 2000 – 2009. 

 

4.1.1. Afforestation and deforestation 

Forests and woodland are scattered in the study area but are more close to the 

borders. Deforestation and afforestation changes during the three time periods are 

represented spatially in Fig. 29 and by total area in hectares in Fig. 29. Results 

show that the afforested area was larger than the deforested area during the first 

time period (1954-1990), where the net afforestation was 43.4 % greater than the 

initial forest area in 1954 (Piussi & Pettenella, 2000; Falcucci et al., 2007). During 

the second time period (1990-2000), the afforestation and deforestation were 

stabilized and there was generally no or little change. A surprising change was 

found in the last time period (2000-2009) where the deforestation process became 

larger and the total forest area was reduced by 9.7% (Fig. 30) (Rudel, 1998).  

Deforestation was clear only in the southern part of the study area while the 

afforestation process was still taking place in the northern and eastern parts of 

Telesina valley. Spatial analysis of the deforestation process showed that the 

deforested areas changed into various land uses. The largest deforested areas were 
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converted to Olive groves, vineyards, pasture, grazing meadows, areas with sparse 

vegetation, bushes and shrubs (Rudel et al., 2005).   

 

Fig. 29. Map of deforestation and afforestation changes from 1954 to 2009. 

 

 

Fig. 30. Forest total area development in hectares from 1954 to 2009. 

3611.7 

5181.7 

5181.7 

4895.4 

0.0 

1000.0 

2000.0 

3000.0 

4000.0 

5000.0 

6000.0 

1950 1960 1970 1980 1990 2000 2010 2020 

Forest Area (ha) 



62 
 

4.1.2. Agriculture development 

Fig. 31 shows the agricultural changes during the three time periods (1954-2009). 

The results show little agricultural intensification during the last ten years in the 

northern and eastern part of the study area. Most of the agricultural area remained 

persistent to any changes while some areas in the northern part of the study area 

encountered an intensive agricultural change. Moreover, some areas in the centre 

and southern parts experienced extensive agricultural changes (MacDonald et al., 

2000; Falcucci et al., 2007). 

Fig. 32 illustrates the total agricultural area in hectares during the three time 

periods. It shows that the total agricultural area had reduced by 6% during the first 

period (1954-1990), 1% during the second period (1990-2000) and 3.5% during the 

third period (2000-2009). Approximately 1200 hectares of agricultural land have 

been lost during the period from 1954 to 2009. Spatial analysis for the lost 

agriculture areas revealed that these areas have changed mainly to different land use 

types such as urban areas (Verzandvoort et al., 2009), pasture, grazing meadows, 

grasslands, bushes and shrubs.   

 

Fig. 31. Map of agriculture changes from 1954 to 2009. 
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Fig. 32. Total agriculture area development in hectares from 1954 to 2009. 

4.1.3. Urbanization 

Urbanization is one of the major causes of agricultural land loss (Brook & Davila, 

2000; Verzandvoort, et al., 2009).  Fig. 33 represents urban change in the study area 

during the three time periods (1954-2009). Evidence of urbanization can clearly be 

seen in the middle and southern parts of the study area during the last two decades 

(Astengo, 1982; Ferrario, 2009). The development includes expansion of old urban 

areas such as in the southern part and the emergence of new urban areas such as 

those found in the western part during the second time period (1990-2000). In 

addition to the emergence of small to medium urban units scattered across the study 

area, the main urban development during the third time period (2000-2009) was a 

result of the main road connecting the eastern and western parts of the study area.  
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Fig. 33.   Map of urbanization change from 1954 to 2009. 

Fig. 34 depicts the total growth in urban area in hectares from 1954 to 2009. It 

shows that the urbanization has continued to grow over the last few decades. The 

urban area increased more than four times during this time period (1954-2009) 

(Migliozzi et al., 2010). These data revealed one of the problems occurring in the 

region, i.e. soil sealing and soil loss due to urbanization (Rabia, 2012b). Spatial 

analysis for urbanized areas revealed that the urbanized areas were originally 

different land uses. These urbanized lands had originally diverse land cover and 

land use such as complex cropping systems, olive groves, fruit orchards, forests and 

intensive farming (Fichera et al., 2012).  
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Fig. 34. Total urban area development in hectares from 1954 to 2009. 

4.1.4. Analysis of 50 years reciprocal change 

Using spatial analysis of the LULC change maps, it was possible to develop a 

model to shows the interaction between different land uses during the period from 

1954 to 2009. Since this work is interested in the development of the urban, 

agriculture and forest areas, the model was built based on three main compartments 

to show the main land uses and all other land uses were compiled in one 

compartment (Fig. 35). The analysis showed that the change was mutual between 

the different land use and land cover types. As can be seen from the model, 24% of 

the final forest area in 2009 came from agriculture lands while 21.4% came from 

other land uses. On the other hand, agriculture land received 2.2% contribution 

from the forest lands and 3 % from other land uses. The increase in final urban area 

in 2009 was mainly on agriculture lands as 62.4% of the final urban area came 

directly from different agriculture land uses while 11.6 and 4.6% came from forests 

and other land uses respectively (Fichera et al., 2012). Unexpected result was found 

as the model shows that certain part of the urban area was changed to both forest 

and agriculture use. This result can be explained as the urban area has been 

delineated in the 1954 map of LULC in big polygons exaggerating the real area of 

urban settlements (CNR & Directorate General of Cadastre, 1956-1960).   
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Fig. 35. The reciprocal changes in percentages between different land uses from 1954 to 

2009. 

4.2. Automatic land use and land cover classification of the 1954 

aerial photographs using GEOBIA technique 

Since land change detection is highly dependent on the accuracy of the historical 

input data, improving data accuracy is likely to improve the final results of land 

change detection (Chapman, 2005; Salmons & Dubenion-Smith, 2005; Pipino et al., 

2002). Therefore, the second part of this work was concerned with improving the 

historical data in order to improve the final land change detection results. As 

mentioned previously (section 3.3.2), old aerial photograph have been reclassified 

using a novel image processing technique named GEOBIA in order to enhance the 

1954 LULC classification of the study area. The process involves many procedures 

and steps until the final LULC map is generated. In the following sections, results 

of the different procedures will be discussed in details.  
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4.2.1. Orthorectification of aerial photographs 

As a first pre-processing step, orthorectification is a very crucial stage in the 

classification of aerial photographs. By applying RMSE calculation (Equation 1) 

for GCPs positioning, the accuracy of the orthorectification process of 1954 aerial 

photographs was verified. The RMSE in all orthophotos never exceeded 1 m. The 

orthophotos obtained have quite satisfactory rectification results if considering the 

scale of the original photos. In addition, they are basically in line with the results of 

other studies, which used aerial photographs of the same year (Rocchini et al., 

2006). 

4.2.2. Homogenization, clipping and filtering of orthophotos 

Homogenization, clipping and filtering are the next stage of orthophotos pre-

processing and they were very essential for the classification enhancement. 

Homogenization process was very important later in the classification procedure as 

the spectral signal of images was a key tool for the land uses recognition and any 

deviation in the object spectral signal would lead to misclassification (Gennaretti et 

al., 2011). As the segmentation and classification algorithms work on all the image 

area, reducing the image size to the minimum will reduce the processing time and 

cost. Clipping process was found to be extremely significant to reduce the image 

processing time to less than half (Erickson et al., 2006). Filtering process was found 

to be highly effective in enhancing both the visual and spectral signals of the gray 

scale aerial photographs. Many different filters were tested to check their validity 

for the classification process. Finally, three filters were chosen as the most suitable 

for enhancing the gray scale aerial photographs. These filters are ink-out, water and 

find-edges (Fig. 17). Ink-out filter emphasizes the dark and light pixels, which help 

in separating the different tone levels in the image. Water filter stretches the 

spectral signal of the image, which assists in the image spectral homogenization. 

Lastly, find-edges filter helps in sharpening the edges of objects, which will support 

the recognition of these objects in the segmentation and classification processes.  

Visually overlapping the different filters on the original gray scale image in a 

Red-Green-Blue composition (RGB) augmented the vision quality of the images 

and consequently the capabilities of classifiers. Different RGB compositions were 



68 
 

examined and the most valuable were selected to be used in the classification. Fig. 

36 shows three false color RGB compositions in addition to the original gray scale 

image. The first RGB composition consists of the three layers i.e., find-edges filter, 

original image layer and ink-out filter, consecutively (Fig. 36-b). This composition 

gives a false color image, in which dark pixels such as trees and green cover appear 

in dark red color. In addition, wet soil, water courses and fields with low agriculture 

cover appear in middle to dark reddish color. Bare agriculture fields, roads and bare 

soils appear in light pink or white color. This composition was helpful in 

distinguishing the green cover such as trees and agriculture fields in addition to 

single trees such as olive trees. The second RGB composition is made up of the 

three layers i.e., water filter, original image layer and ink-out filter, consecutively 

(Fig. 36-c). This composition gives a false color image with a true color impression, 

in which the object color is close to the object’s real color in the environment. Trees 

and green cover appear in green color, roads and bare soils appear in white color 

and finally wet soils and water courses appear in degrees of gray color. Lastly, the 

third RGB composition is made up of the three layers: ink-out filter, water filter and 

original image layer (Fig. 36-d). This composition gives a false color image in 

which objects with elevation appear in bright green and non-elevated objects appear 

in greenish yellow. This composition was helpful to distinguish the elevated objects 

such as trees and urban building. The 3D impression in this RGB composition is 

possibly a reason of placing the ink-out filter as a first layer in the composition. 

However, more work need to be done on this composition to understand this effect.   



69 
 

 

Fig. 36. A comparison between the original aerial photograph and different RGB compositions:  

a) the original aerial photograph; b) Composition: find-edges filter; original image layer and ink-out 

filter; c) Composition: water filter; original image layer and ink-out filter; and d) Composition: ink-

out filter, Water filter and original image layer.    

4.2.3. Semi-automated object based approach for images segmentation 

The multi-resolution segmentation algorithm was selected as the main 

segmentation algorithm through the entire classification process. Fig. 37 shows a 

comparison test for the four homogeneity criteria (shape, color, smoothness and 

compactness). A multi-resolution segmentation process with the same scale of 90 

was applied four times with different weights for shape and compactness criteria to 

study the effect of deferent weights on the final segmentation results. The weight of 

0.5 means equal magnitude to both the criteria under investigation. For example, if 

the shape weight is 0.5 means that equal importance has been given to both shape 

and color criteria. The same is in case of the compactness and smoothness criteria. 

In Fig. 37-a, multi-resolution segmentation was applied with scale of 90 with 0.5 

weight for shape criterion and 0.2 weight for compactness criterion. Fig. 37-b 

shows the objects generated by a multi-resolution segmentation that has a scale of 

90 with 0.2 weight for shape criterion and 0.5 weight for compactness criterion. On 

the contrary, Fig. 37-c represents the objects that resulted from a multi-resolution 

segmentation has a scale of 90 with 0.5 weight for shape criterion and 0.8 weight 
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for compactness criterion. Finally, Fig. 37-d demonstrates the objects generated by 

a multi-resolution segmentation has a scale of 90 with 0.8 weight for shape criterion 

and 0.5 weight for compactness criterion. In Fig. 37-a, more importance has been 

given to the smoothness criterion and less to compactness criterion. It is clear from 

the segmentation results that giving high value to the smoothness criterion created 

objects close to a square outline as represented with black forms in Fig. 37-a. The 

“zig zag” effect in the objects (Fig. 37-a) is likely to be a result of the high weight 

assigned to smoothness, which tries to create objects with smooth borders within 

the shape criterion (Trimble, 2012). Results obtained when more importance was 

given to the compactness criterion and less to smoothness criterion (Fig. 37-c) were 

quite contrary to the above observation. In this case more compact and circular like 

objects were created and the “zig zag” effect was not as much prominent as in the 

previous case. This result is important in choosing the suitable weights for 

compactness and smoothness criteria during the segmentation process. For 

example, if the targeted objects have circular shapes such as tree crowns or pivot 

plantations, higher weight should be given to the compactness criterion. In contrast, 

if the targeted objects have square like shapes such as urban buildings or regular 

agriculture fields, higher weight should be given to the smoothness criterion. On the 

other hand, In Fig. 37-b, extra importance has been given to the color criterion 

(spectral signal) and less to shape criterion. The opposite situation can be seen in 

Fig. 37-d, where extra importance has been given to the shape criterion and less to 

color criterion (spectral signal). It is obvious from the segmentation results that 

giving high value to the color criterion created smaller objects compared to that 

generated with high value to the shape criterion even when using the same scale 

parameter value (Figs. 37-b and 37-d). It is apparent that increasing the weight of 

the shape criterion created objects with better shapes; however, the color 

homogeneity within the objects is rather low. In addition, the “zig zag” effect was 

much higher when the weight of the color criterion was high. This can be explained 

by the fact that the segmentation algorithm in this case tries to assemble too much 

pixels or small objects with regards to their color homogeneity regardless of the 

final object shape (Rabia & Terribile, 2013b).  
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Fig. 37. Comparison between multi-resolution segmentation algorithms with the same value for 

scale parameter and different weights of shape and compactness: a) shape 0.5 and compactness 0.2; 

b) shape 0.2 and compactness 0.5; and c) shape 0.5 and compactness 0.8, (D) shape 0.8 and 

compactness 0.5. 

All the potential combinations of segmentation Parameters were tested and the 

most favorable parameters values were selected. Upper part of Table 8 shows the 

segmentation parameters values for the different classes. Regarding the scale 

parameter, a scale of 90 has been chosen as the optimal scale for all the 

segmentation processes except for the urbanization class, which was 60. Similarly, 

the weight assigned to the shape criterion was 0.7 in all the segmentation processes 

except for the urbanization class, which was assigned weight of 0.2. On the other 

hand, for the compactness criterion, the suitable weight was 0.3 in most of the 

classes except for the classes Olives, Vineyards, Mixed Olives-Vineyards and 

urbanization for which the weight 0.5 was more suitable. These parameters values 

are in part similar to the values used by a study, where the 1954 aerial photographs 

were used to classify the historical land cover (Gennaretti et al., 2011). Gennaretti 

et al. (2011) suggested that, the segmentation of the 1954 aerial photographs needed 

a small scale parameter (40 versus 90 in the case under investigation) and a larger 

weight for the shape criterion (0.7 similar to the case under investigation). The 
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reason behind this proposal is that the initial grayscale aerial photographs had a low 

spectral resolution. So, in the object homogeneity criterion calculation, the shape 

criterion was given more importance with respect to the homogeneity of spectral 

signature. In the study under investigation the situation is different due to the 

generated filters and the different RGB compositions that were created. These RGB 

compositions made it possible to generate larger polygons with a complex shape 

without losing the association between land cover homogeneity and extracted 

objects or causing a faulty segmentation. 

4.2.4. Orthophotos classification and generation of LULC map 

After the segmentation process, the classification phase was carried out. Ten land 

use and land cover classes were recognized during the classification progression 

and Table (8) gives an idea about these classes. Successive approach was followed 

during the classification as the different classes were classified in a sequential 

order.  

Table 8. Legend of land cover classes generated with GEOBIA technique and the 

corresponding Corine classes.  

Class order Class name Included CORINE classes 

1 Urban 1.1; 1.2; 1.3 and 1.4 

2 Water bodies 5.1 

3 Tree lines - 

4 Woodland 3.1 

5 Pasture 2.3 

6 Bare soil 3.3 

7 Agriculture fields 2.1 and 2.2.2 

8 Olives 2.2.3 

9 Vineyards 2.2.1 

10 Mixed vine-olives 2.4.2 

A simplification of the classification flow chart is displayed in Fig. 38. The flow 

chart clarifies the order and the concept for each LULC class starting with Urban 

class until the Vineyards class, which was the last classified land use during the 

process. Each class has a unique perceptive feature or more in addition to the shared 

features in between the different classes.  
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Fig. 38. A simplification flow chart for the classification procedures. 

Table (9) shows the different features and their values that were used for the 

recognition of classes during the classification process. The full registry of the 

classification process tree and all the algorithms used is found in appendix III. To 

classify the urbanization class, the LULC map of 1954 (CNR & Directorate General 

of Cadastre, 1956-1960) was used as a guiding layer to recognize the urban objects. 

In addition, a brightness threshold of 80 was assigned to exclude object with 

brightness values less than 80, even if they overlapped with the urban class in the 

1954 LULC map. Urban misclassifications were found in the old LULC map of 

1954, so this brightness threshold was used to remove the misclassified objects in 

the new classification. Urbanization class was difficult to classify even with RGB 

compositions due to the similarity of the features between urban and bare soil 

objects. River Calore and river Titerno are the main Water Bodies, which flow from 

east to west in the southern and northern parts of the study area, respectively. 

However, there is also a small lake called Telese (Lago di Telese) which is close to 

river Calore. Again, the LULC map of 1954 (CNR & Directorate General of 

Cadastre, 1956-1960) was used to assist the recognition of the water bodies objects. 
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To distinguish between the objects of water class and other classes, two features 

thresholds were used. One of these thresholds was brightness (>=179) and the other 

one was intensity HSI transformation (>=0.85). The intensity HSI transformation 

was made of the original layer of aerial photographs and was found to be helpful in 

the classification of water bodies. This could be explained due to the existence of 

bright objects surrounding the water bodies (river beds), which usually appear 

bright because of undeveloped soils and low organic matter content. Tree lines class 

is an innovative class for this study, where it found that tree lines on borders of 

agriculture fields or rivers cover a significant part of the study area. This class was 

found to have a maximum spectral reflectance of 80 of the original aerial 

photograph layer. Since the tree lines have usually a high contrast to the 

neighboring objects, this feature was used for its classification. A threshold (<=-

340) of contrast to neighbor pixels in the original aerial photograph layer was 

assigned to the tree line class in order to separate it from other classes. The 

woodland class was classified after tree lines class. Although the woodland objects 

have similar spectral features as tree lines objects, they usually have larger extent 

and different shape index. Contrary to urban objects, woodland objects were given 

a brightness threshold of 80, to exclude object with brightness more than 80 from 

woodland class. Moreover, since woodland objects typically have circular shapes, a 

low threshold (<=0.4) of rectangular fit feature was allocated to classify woodland 

objects. The two features involved in the classification of pasture objects were 

spectral reflectance of the original aerial photograph layer (>=120) and the standard 

deviation value of the find-edges filter (<=48). The standard deviation value of the 

find-edges filter was used here because pasture objects have uniform patterns and 

so it will have low standard deviation values for the find-edges filter layer 

compared to objects of other classes. Regarding the bare soil class, since the 

conflicting classes such as urbanization and rivers classes are already classified, the 

recognition of bare soil objects was rather easy seeing that only brightness feature 

(>=199) was used for bare soil objects classification. Concerning the agriculture 

fields class, the standard deviation value of the water filter layer (<=37) was used to 

discriminate it from the other classes such as olives and vineyards. To distinguish 

between olives and vineyards classes, a sub-level layer was segmented with a 

smaller scale (5), higher weight to the shape criterion (0.8) and equal compactness 
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and smoothness criteria (0.5). This layer was created in order to delineate single 

olive trees, which will be used to classify olives class in the upper layer.  

Table 9. Different parameters and their values used for the recognition of classes in the 

classification process. 
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Polygons 
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(1- color) 

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.2 0.7 
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Brightness 
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>= 
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Mean original   
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    <= 80 
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HSI 
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“original layer” 

            >= 10       
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>= 

0.5     

A feature calculates the relative area of the candidate sub objects with value of 

>=0.5 was used to classify olives class. This mains that, if the area of the small 
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candidate sub objects in the lower layer is more than half the area of the big object 

in the upper layer, this object will be classified as olives class object. As expected, 

vineyards class was the most difficult to be classified. This is why more features 

were used in the recognition of vineyards objects. The vineyards object 

characterized by high standard deviation due to the high contrast in the spectral 

signal between the vine lines and the soil in between. So, the standard deviation 

feature in several layers was used to classify the vineyards class such as standard 

deviation value of original layer (>=10), standard deviation value of find-edges 

filter (>=48), standard deviation value of ink-out filter (>=59) and standard 

deviation difference to super-objects of original layer (-19:-5). Finally, the mixed 

fields of olive trees and vineyards were grouped in one class named mixed vine-

olives.  

Based on the foregoing step, the entire objects of all aerial photographs were 

classified in one of the mentioned classes. To generate the final LULC map, the 

classified tiles were exported to a GIS environment (ArcGIS software; ESRI, 2011) 

in a polygon shapfile form and then went through mosaicing process to form one 

polygon layer with all classes (Fig. 39). Looking to the generated LULC map, few 

mosaicing errors can be seen. These errors could be explained by the low spectral 

homogeneity between the different aerial photographs, which consequently affect 

the classification process (Gennaretti et al., 2011). More work need to be done on 

this area in order to reduce the error percentage. 
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Fig. 39. The LULC map of 1954 generated with GEOBIA technique.  

4.2.5. Map accuracy assessment 

A classified map remains just a beautiful image until it goes through an accuracy 

assessment. In the real time LULC classification, usually the map validation is done 

through a spatial comparison between the classified point on the map and the real 

class in the validation point in the field. Since this study was to classify old aerial 

photographs, the real class validation in the field was an inappropriate method. So, 

stereoscopic view was used in order to validate the classification in the selected 

points. As proposed (in section 3.3.2.1.6), a number of 292 validation points was 

generated and validated. Then, the confusion matrix was developed and the 

different accuracy indices were calculated (Table 10). The calculated overall map 

accuracy is 77%. Although the overall map accuracy is below the general target of 

85% (Thomlinson et al., 1999), several studies discussed classifications with overall 

accuracies lower than this general target and have a bigger range in the accuracy, 

with which the individual classes was classified (e.g., Ung et al., 2000; DeGloria et 
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al., 2000). The producer’s accuracy states how well the map producer recognized a 

land cover type on the map from the remote sensing imagery data. Table 10 shows 

that the highest producer’s accuracy was for pasture class (94%) while the lowest 

was for the vineyards class (44%). Classes such as woodland, bare soil has high 

producer’s accuracy more than 85%. The kappa coefficient (or kappa statistic) 

(Cohen, 1960), is the most frequently used statistic measure. It reflects the 

difference between actual agreement and the agreement expected by chance. A 

kappa of 0 indicates agreement equivalent to chance, whereas a kappa of 1 indicates 

perfect agreement (Viera & Garret, 2005). Kappa analysis for the results gave a 

value of 0.73 which means that there is 73% better agreement than by chance alone. 

This value of kappa represents a moderate to strong agreement (Congalton, 2004). 

 Table 10. The confusion matrix of the accuracy assessment analysis.  
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17 
  

3 
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Agriculture 

Fields  
4 4 47 1 12 1 2 
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Tree Lines 
   

1 12 2 
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16 4.07 75 
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1 
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4 
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 Totals 25 41 25 55 20 41 8 62 9 6 292 
  

Producer’s 

Accuracy (%) 
88  73  68  85  60  44  88  92  100  100  Overall Accuracy = 77 % 
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4.2.6. Change detection comparison between old and improved 

“GIOBIA” LULC classifications of the year 1954 

The northern part of the study area was chosen as a pilot area for extensive study 

for the comparison between the old LULC classification map and the improved 

GEOBIA classification of LULC for the year 1954. This part of the study area was 

chosen based of the fact that all LULC classes and also all land change types are 

represented in it. Also, this area of the map did not experience any of the mosaicing 

problems, so that it will not affect the results of the comparison. Fig. 40 shows the 

improved land change detection for agricultural development in total area. It shows 

that the agricultural area was overestimated in the old LULC map of 1954. The 

figure demonstrates that the total agricultural area was reduced by 6% during the 

first period (1954-1990) when considering the original data and only by 3% during 

the same period when considering the improved data (Jongman, 2004). This result 

shows that 50% of the detected change using the original data was misclassified 

compared with the improved classification of aerial photographs. Using the same 

approach as previously, Fig. 40 shows also a simplified development model for the 

total agricultural area. The objective here is not to predict or simulate the future 

land change, but to show the effect of improving historical data on the modeling 

processes taking into account that LULC change depends on a variety of factors, 

which can stop or start at any time. It is clear from the results in Fig. 40 that 

changing or improving any of the data curve points will affect the final predicted 

values. Following the data curve for the agricultural development using the 

improved data results, it is evident that the total agricultural area in 2030 will be 

larger than that obtained using the original data.  
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Fig. 40. Modeling of original and improved curves of total agriculture area (ha). 

In the case of urban areas, using the GEOBIA technique, the new total urban area 

has been calculated for the year 1954. Fig. 41 shows the original and improved data 

curves for the total urban area. The results show that the urban area was 

underestimated in the old LULC map of 1954. It is clear from Fig. 41 that changing 

or improving any of the points along the curve will change the curve’s trend and 

shape and consequently will affect the predicted values.  This leads to an important 

finding of this research that modeling results are greatly correlated to the historical 

input data accuracy, and that changing or improving the data accuracy will improve 

the final modeling results (Chapman, 2005; Pipino et al., 2002; Salmons & 

Dubenion-Smith, 2005). 
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Fig. 41. Comparison of original and improved data of total urban area. 

Table 11 shows the total areas in the urban, agriculture and forest classes in both 

the original and the improved classifications. The table shows that the total urban 

area was underestimated and the agricultural area was overestimated in the old 

classification. This reveals that the classification errors may be a result of the poor 

data quality. In the case of forests, the results show that the values were similar for 

both the original and improved classifications.  

Table 11. Urban, agriculture and forest total area in both original and improved 

cases. 

Classification type Urban – ha Agriculture – ha Forest – ha 

Old Classification 6,85 903,33 69,50 

GEOBIA Classification 17,12 879,82 69,54 

However, when considering the differences spatially (Fig. 42), it becomes clear 

that there are huge errors in the old classification in case of forest class. Fig. 42 

shows that the GEOBIA technique was able to perfectly detect forests and 
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woodlands from aerial photographs while the old classification polygons were 

wrongly placed in non-forest areas.  

 

Fig. 42. Spatial distribution of forest polygons for old and GEOBIA classifications (Old 

classification in yellow and GEOBIA Classification in red).  

The reasons behind why the original map was classified incorrectly, in particular 

in the forest domain, require further investigation. The political or socio-economic 

motivations behind the classification may have influenced the result. In line with 

this result, a study was carried out to compare census data versus remote sensing 

data (APAT, 2005), showed that the inconsistency with cartographic data was 

apparent. This inconsistency was attributed due to the methodology and aim of 
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production of the two sets of data. In this study, results showed that the data from 

the Italian National Statistics Institute (ISTAT) show that, on a national level, there 

was a remarkable decrease in meadowland (-17.2%) and wooded areas (-16.9%), in 

the period 1990–2000. On the contrary, the remote sensing data from CORINE 

CLC2000 and CLC1990 showed that, at a national level in Italy, there were a 

decrease in areas of meadows and natural pastures (Code CLC 3.2.1.) of 2.07%, 

and a general increase in wooded areas (Code CLC 3.1) of 1.07%.   

4.3. Modeling of soil functions loss (biomass production) by soil 

sealing 

The reason behind attempting to improve the old classification of LULC using 

GEOBIA technique on aerial photographs was to enhance the land change 

detection, which consequentially will help to advance studying the land change 

impacts on the environment and this is rather important also for evaluating the 

effect of soil sealing on soils. Therefore, the next step was to study the effect of 

urbanization or soil sealing as one of the most important land changes on the soil 

functions (Wilcke et al., 1998; 1999; Ge et al., 2000; De Kimpe & Morel, 2000; 

Kaminski & Landsberger, 2000). Biomass production was chosen in this study as 

one of the lost soil functions by the effect of soil sealing actions. A land suitability 

analysis for wheat production was done to evaluate the appropriateness of the study 

area for growing wheat. This was followed by modeling of wheat productivity 

based on production statistical data of wheat, which was provided by ISTAT 

(ISTAT, 2012). Finally the productivity map of the study area was developed. In 

depth presentation of the results will be demonstrated in the next paragraphs. 

4.3.1. Spatial distribution of soil properties 

Before starting the suitability analysis, a spatial distribution for the soil 

parameters was done. In order to develop a land suitability index, some criterions 

need to be prepared typically from soil parameters (Mustafa et al., 2011). Different 

soil parameters of all the study area land units, which were used for generating soil 

properties variability maps are present in Appendix IV. These maps were used later 

to generate the land suitability map for wheat production. The important soil 
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parameters are discussed here beneath.  

4.3.1.1. Calcium carbonate (CaCO3) 

High concentrations of calcium carbonate (CaCO3) in the soil affect directly and 

indirectly the plant growth. It reduces the availability of some soil nutrients because 

of the increase in soil pH (Helyar & Anderson, 1974). That is why it is very 

important to take into account the CaCO3 concentrations in the soil while 

evaluating land suitability for agriculture crops. The spatial variability of CaCO3 in 

soils of the study area is given in Fig. 43. The spatial analysis shows that high 

concentrations of CaCO3 can be found in correspondence with the actual river flood 

plain. This can be explained by the high concentrations of CaCO3 in the river water 

which accumulate in soils of the rivers valleys (Bonfante et al., 2011). Generally 

speaking, the study area has low to moderate concentrations of CaCO3 except for 

soils close to rivers beds.  

 

Fig. 43. Spatial variability representation of CaCO3 (%) concentrations in the study area.   
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4.3.1.2. Soil Organic carbon (OC) 

Soil organic carbon (OC) is representation of the soil organic matter (OM) as high 

concentrations of organic carbon is an indication of high concentrations of organic 

matter (Jimenez & Garcia, 1992). It helps to improve soil structure and drainage by 

inducing soil aggregation (Six et al., 2002).  Secondly, nutrients and elements can 

be adsorbed by the organic matter exchange complexes and this may prevent 

leaching or losing these elements to the ground water and it works as reservoir of 

plant nutrients. Finally, organic matter is also an important source of nutrients when 

it decomposes (Six et al., 1999). In the study area, high concentrations of OC exist 

in southern, northern and northern eastern parts while the rest of the study area has 

low OC concentrations (Fig. 44). Land units with high OC concentrations generally 

correspond to woodlands and forests in the study area.  

 

Fig. 44. Spatial variability representation of soil organic carbon (%) concentrations in 

the study area. 

4.3.1.3. Soil reaction (pH) 

Soil pH is very important factor in soil suitability evaluation for agriculture 
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development as it affects the solubility and thus the availability of nutrition 

elements in the soil (Rabia, 2012c). In the study area the maximum pH was 8.6 

while the minimum was 6.4 (Fig. 45). The spatial analysis shows that the soil tends 

to be more sub-alkaline in the Middle Eastern part of the study area while only the 

Southern part is acidic and the rest of the study area is close to neutral pH.  

 

 

Fig. 45. Spatial variability representation of soil pHw in the study area.   

4.3.1.4. Soil Texture 

Texture of the soil is one of the key parameters of soil. Soil texture class designates 

most of the physical characteristics of the soil (Bardgett, 2005). In the study area 

almost all texture classes appeared. In Fig. 46, the spatial variability of the soil 

texture ratings can be found. The ratings are based on wheat’s soil texture 

preference.    
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Fig. 46. Spatial variability representation of soil texture ratings in the study area.   

4.3.1.5.  Maximum soil depth 

Soil depth is a sign of the available depth for plant roots. This factor is strongly 

correlated to the plant under investigation as it determines if the soil is suitable for 

this plant roots or not. Fig. 47 shows the spatial distribution of the soil maximum 

profile depth. The soil depth in the study area ranged between 25 cm up to more 

than 170 cm. The shallow soil depth can be explained usually due to the existence 

of bedrocks close to the surface (Rabia et al., 2013b).  
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Fig. 47. Spatial variability representation of soil’s maximum profile in the study area.   

4.3.1.6. Soil Drainage 

Soil drainage is a function of many factors such as soil texture, organic matter 

content, soil depth and ground water level (Bardgett, 2005). Consequently, the soil 

drainage situation is an important factor affecting the land suitability for agriculture 

crops (Zhang et al., 2004). In the study area, low drainage class was found in 

eastern and northern eastern parts of the study area (Fig. 48). These land units are 

also characterized by shallow profile depth, which may explain the low drainage 

characteristics.   
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Fig. 48. Spatial variability representation of soil drainage classes in the study area.   

4.3.1.7. Soil Electrical conductivity (EC) 

Electrical conductivity (EC) indicates the capacity of a substance to conduct 

electrical current. It is directly linked to the concentration of salts dissolved in the 

soil water, and consequently to the Total Dissolved Solids (TDS) (Rabia, 2012d). 

These salts dissolve into negatively and positively charged ions, and both conduct 

the electricity in the solution. High EC value implies that the soil is salt affected, 

which consequentially affect plant growth (Moukhtar & El-Hakim, 2004). Spatial 

variability of the EC values in the study area (Fig. 49) shows that generally most of 

land units in the study area are salt free except for few land units in the middle of 

the study area.   
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Fig. 49. Spatial variability representation of soil EC (dS m
-1

) concentrations in the study 

area.   

4.3.1.8. Surface Slope 

Slope is a demonstration of the topography of a land unit. Surface slope is one of 

the key elements for land suitability analysis for agriculture crops. As land units 

with high slope (more than 30 degrees), is not suitable for agriculture uses 

(Mokarram et al., 2010). Surface slope in the study area varies between flat surfaces 

with 0° slope up to very steep surfaces with more than 30° slope (Fig. 50). These 

land units with steep slopes subsequently are not suitable for wheat production.   
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Fig. 50. Spatial variability representation of surface slope in the study area.   

4.3.1.9. Altitude 

Altitude factor is a depiction for the climatic situation of the land unit. As the 

altitude will give an idea on the temperature and also wind frequency. This is 

important since some agriculture crops are not suitable on high altitudes and some 

others are not suitable on low altitudes due to temperature obstructions (Oram, 

1989). In the study area, the altitude ranges between 38 m up to almost 1200 m 

above sea level (Fig. 51). This huge difference gives an indication of the climatic 

differences between the land units in low and high altitudes. For wheat plant 

growth, high altitudes are not preferable. Therefore land units with high altitudes 

are most likely to be unsuitable for wheat plantation (Cao & Moss, 1989).  
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Fig. 51. Spatial variability representation of land units’ altitude in the study area.   

4.3.2. Land suitability analysis for wheat production 

Based on the previously discussed soil parameters, land suitability analysis for 

wheat production has been conducted. Table 12 shows land suitability index values 

and the corresponding classes that were obtained by the three parametric equations; 

Storie, Square root and Rabia (Equations 7, 8 and 9). The table only shows the first 

12 land units and the other parts of the table were omitted for ease of data display. 

The full record of the suitability index values and corresponding classes for all the 

land units in the study area can be found in Appendix V. In all the land units of the 

study area, land suitability index was higher in case of Rabia method than the Storie 

and Square root methods. It was also observed that the suitability index of Square 

root method was always higher than that of Storie method (Vargahan et al., 2011). 

Correlation analysis revealed a high correlation between all the three methods 

(more than 0.95 in all cases).  

Regarding land suitability classes, it was clear from results that classes that have 

been acquired by Rabia method were larger to that of Storie and Square root 

methods, which had similar classes for the same land unit (e.g. units 1, 2, 3, 4, 5, 9 
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and 10). The situation was different in units 6 and 7, where the classification results 

were different in all the three methods. Also, in units 8 and 11 the land suitability 

classes were the same in both Square root and Rabia methods. In few cases, like in 

unit 12, the three methods have produced the same land suitability classification 

although the suitability index is higher in Rabia method than Square root and the 

later is higher than Storie methods (Khordebin and Landi, 2011). 

Table 12. Land suitability index and corresponding class for the three parametric 

methods (Storie, Square root, Rabia)*. 
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1 13.32 N1 23.09 N1 36.50 S3 

2 28.81 S3 41.58 S3 53.68 S2 

3 11.10 N1 21.07 N1 33.32 S3 

4 29.75 S3 42.25 S3 54.55 S2 

5 11.39 N1 21.34 N1 33.75 S3 

6 6.53 N2 16.16 N1 25.55 S3 

7 7.51 N2 17.33 N1 25.27 S3 

8 35.47 S3 53.27 S2 54.91 S2 

9 4.69 N2 9.69 N2 19.98 N1 

10 14.00 N1 23.67 N1 34.50 S3 

11 22.64 N1 36.86 S3 47.59 S3 

12 28.63 S3 41.45 S3 49.33 S3 

*Only a subset of land units. The full set can be found in Appendix V. 

 Probably, this can be explained from the observation that in Storie equation the 

controlling factor, represented with “A” simple in Equation 7, is directly affected 

by the other factors in the equation as a result of the multiplication process (Sys et 

al., 1991). While in Square root equation, the limiting factor theory is applied. This 

limiting factor is the one that has the minimum rating in all factors affecting 

suitability, represented with “Rmin” simple in Equation 8, without regarding its 

weight or impact on the suitability of a certain land use. This may lead, in some 

cases, that the factor with the minimum rating may also have a minimum weight. 

This possibly leads to a misleading results indicating unreal situation. On the other 

hand, in the proposed Equation “Rabia method”, the controlling factor is the one 

that has highest weight or impact on the land suitability index value, represented by 
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“Wmax” simple in Equation 9. In this way, the final suitability index value was 

based principally on the factor that has the maximum influence on land use 

suitability but also with regard to the other factors. So, in Rabia equation, the value 

of suitability index in addition to the suitability class should be more representative 

of the real situation, which makes this equation superior to the Storie and Square 

root equations (Rabia & Terribile, 2013a). 

Table 13 shows the total area for suitability classes in the three parametric 

methods. The dominant class with largest area in Storie method is class N2 

followed by class N1. While in both Square root and Rabia methods, the leading 

classes were S3 followed by N2. Conversely, the lowest class area was the 

association between N1/N2 in both Storie and square root methods and the 

association between S2/N2 in Rabia method. Results showed that applying Rabia 

method gave less unsuitable classes and more suitable classes in terms of total area.  

Table 13. Total area of land suitability classes for wheat growth using the three 

parametric methods (Storie, Square root, Rabia). 

Suitability Class 
Class Area (ha) 

Storie Square Root Rabia 

S1 0 0 0 

S1/S2 0 0 0 

S2 0 803.32 1300.27 

S3 2098.66 5563.58 7346.59 

S2/S3 0 877.28 2032.03 

S2/N1 0 579.12 0 

S2/N2 0 0 504.17 

S3/N1 2619.79 1597.58 1222.09 

S3/N2 1226.00 1004.43 523.71 

N1 4981.80 4180.68 2324.84 

N2 8699.36 4996.17 4872.17 

N1/N2 500.26 523.71 0 

Total Area 20125.87 20125.87 20125.87 

Figs. 52, 53 and 54 shows land suitability maps of the three parametric methods 

(Storie, square root and Rabia). It illustrates the spatial distribution of suitability 

classes over the study area. It can be noticed from the land suitability maps that the 
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northern and southern parts are generally unsuitable for wheat production in all the 

three parametric methods. This can be attributed to the high altitude in these land 

units (i.e. as proposed in section 4.3.1.9). 

Regarding the land suitability classes of Storie method (Fig. 52), only few land 

units were suitable for wheat production (i.e. approximately 11% of the study area). 

This could be due to the fact that Storie equation is just a simple multiplication of 

all the factors ratings involved in the analysis. This requires that all the factors 

ratings are above zero or higher to classify the land unit as suitable for wheat 

production (Mustafa et al., 2011). Since this is not the case in most of the land units 

in the study area, that is why Storie method gave lower classification in all land 

units as compared to the other two parametric methods (Ashraf et al., 2010). In case 

of square root method, more land units (i.e. approximately 36% of the study area) 

were evaluated as suitable for wheat production (Fig. 53). However, in case of 

Rabia method, the total area of suitable land units for wheat production was 

approximately 53% of the study area (Fig. 54). On the other hand, data analysis has 

stated that the limiting factors for wheat production in the study area are soil 

organic matter content, Topology and pH (Rezaei et al., 2010; Mustafa et al., 2011) 

 

Fig. 52. Land suitability map for wheat production produced by Storie method. 
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Fig. 53. Land suitability map for wheat production produced by square root method. 

 

Fig. 54. Land suitability map for wheat production produced by Rabia method. 
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4.3.3. Evaluation of biomass production loss 

Once the land suitability analysis was completed and suitability maps were 

developed, it was possible to move to the next step, which is modeling the biomass 

production loss as a soil function lost by soil sealing. As proposed (in section 

3.3.3.2), the ISTAT database was used to extract the wheat productivity rates 

(Table 7), which was used later to generate the wheat productivity map (Fig. 55). In 

order to facilitate data display, only the results of land suitability analysis based on 

Rabia method was used to generate final wheat productivity map. Wheat 

productivity rates in the study area ranged between zero productions (i.e. in case of 

permanently unsuitable land units) and 3.93 metric tons ha
-1

 (i.e. in case of 

moderately suitable land units). The spatial analysis shows that the northern and 

southern parts of the study area give zero productivity of wheat. In these areas the 

limitation for wheat production is the high altitude, which is an indicator of 

unfavorable weather conditions (Cao & Moss, 1989). Also there are a few land 

units in the middle part of the study area with zero production, but in this case, the 

high soil pH (alkaline) values are the limiting factor for wheat production  (Mustafa 

et al., 2011). Most of the study area gives high potential wheat productivity over of 

3 metric tons per hectare except for some land units in the western part of the study 

area, where the potential wheat productivity is almost 2 metric tons per hectare. The 

land units in the western part have low wheat productivity since they suffer from 

high electrical conductivity (EC) and low total carbon content, which reduces the 

wheat growth rates. In general, it is possible to say that the study area is highly 

productive in terms of wheat production. So, in case it happened that all the study 

area has been cultivated with wheat, the total potential wheat production will be 

53,323.39 Metric tons per year. For sure, this number is just the expected wheat 

productivity through the modeling process and it does not represent the real 

situation in the study area.  
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Fig. 55. Wheat productivity map in metric tons per hectare as a biomass production index 

for the study area. 

In order to study the lost biomass production by soil sealing in the study area, the 

soil sealing maps of 1954, 1990, 2000, 2009 and 2011 was overlaid on the wheat 

productivity map (Fig. 55) and then intersection processes was done to calculate the 

lost biomass production by soil sealing over time. A summary of the final results of 

the lost biomass production and the corresponding sealed soil can be found in Fig. 

56. It is clear from the results that biomass production losses increased significantly 

and progressively over time. The biomass production loss increased more than 7 

folds from approximately 790 metric tons in 1954 up to 5797 metric tons in 2011. 

Regarding the total area sealed by urbanization activities, the area of soil sealing 

also increased more than 7 folds from 1954 to 2011. This gives an indication about 

the high correlation (0.99) between the soil sealing inverts and the biomass 

production decrease with almost equal rate.  
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Fig. 56. Total lost biomass production by soil sealing in Telesina Valley (Metric 

Tons wheat/ year) during the period 1954 to 2011. 
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5. Summary and Conclusions 

Land use and land cover change analysis is now a mature area of study but it is 

still important to monitor these changes and their subsequent impacts on ecosystem 

functions. The rate of Land use and land cover change is much larger than ever 

recorded previously, with quick changes to ecosystems taking place at local to 

global scales. The functions of an ecosystem can be significantly impacted by 

changes in land use and land cover, which in turn critically affect the provision, 

regulation and supporting services of the ecosystem. Therefore, land use land cover 

change interventions and strategic planning can contribute to the health and 

sustainability of an ecosystem and its land use in the future. In order to make 

appropriate land cover and land use decisions, accurate assessments of change are 

needed. The health and sustainability of an ecosystem is critically connected to land 

use and land covers interventions and Strategic planning. Precise estimations of 

Land use and land cover change are needed in order to identify crucial zones of 

environmental vulnerability or those which provide valuable ecosystem services. 

Given that land change detection is greatly dependent on the accuracy of the 

historical input data, improving historical data accuracy is likely to improve the 

final land change detection result. In an ecosystem, there is need to establish the 

quantity and quality of resources and their suitability for a certain range of land 

uses in order to assure its future productivity and sustainability of biodiversity. 

Land suitability evaluation is an important process for assessing the value and 

proficiency of the land and helps in planning for future sustainability of land 

resources. Accurate assessment methods give better results and consequently 

facilitate establishment of improved management plans.  

Soil presents a large number of functions that are essential for human life. In 

addition to providing biomass, food and raw materials, soil performs also various 

services such as being a habitat host and a gene pool. The soil also has the functions 

of processing, filtering and storage in addition to cultural and social functions. 

Therefore, the soil plays a key role in regulating natural and socio-economic 

processes that are necessary for human survival, as the water cycle and climate 

system. One of the most critical threats to the soils and, in general, the ecosystem, is 

soil sealing. Soil sealing is the result of new roads, buildings and parking places but 
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also other private and public space, and it involves covering of the soil surface with 

impermeable materials such as stone and concrete. Urbanization and soil sealing are 

still growing rapidly, even more than the population growth rate in some cases. Due 

to this hasty soil sealing process, more fertile soils are being sealed and getting out 

of the agriculture and food production systems.  That is why the soil scientific 

community as well as the environmental scientists should give more attention to 

soil losses and try to face this problem. 

Based on the foregoing, a study was conducted to evaluation the losses in soil 

functions due to soil sealing actions. The work was divided into three major 

objectives. The first objective was to perform long term detection for land use and 

land cover change for the period from 1954 to 2009 in order to understand the 

history, rates and trends of the soil sealing in the study area. Then, the second 

objective was to develop a novel method for automatic LULC classification of the 

1954 aerial photographs using geographic object based image analysis (GEOBIA) 

technique. The reason behind this objective is the assumption that improving the 

quality of the classification for old land use and land cover maps will improve the 

final results of the change detection analysis. Consequently, the quantification of 

the lost biomass production by soil sealing will be improved. Finally, the third 

objective, was to carry out a modeling of soil function loss by soil sealing to 

quantify the losses in one of the soil functions i.e., biomass production. The study 

area was chosen in Telesina Valley (Valle Telesina), located in Benevento in the 

Campania region of central Italy.  

To fulfill the first objective, four maps of land use and land cover (LULC) were 

obtained for Telesina Valley from the years 1954, 1990, 2000 and 2009. Land use 

and land cover change analysis was performed using the four maps and finally three 

change maps were created. Land use changes were defined and classified as the 

changes in a land use class that occurred in a given area and time. These classes 

identify the typology of changes by assigning a land use change code to each 

intersection created by the overlay of successive land use maps, allowing a thematic 

representation of the spatial distribution of changes. The results showed that, in the 

first time period from 1954 to 1990, only thirteen change types have been found 

while the change types stabilization and degradation didn’t appear in this interval. 
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In contrast, in the second time period from 1990 to 2000, only nine change types 

appeared in the study area while six change types were absent. The missing change 

types in this time period are stabilization, degradation, exceptionality, agriculture 

intensification, abandonment and agriculture extensive conversion. This shows that 

during the time period from 1990 to 2000 there was only slight LULC change as 

urban intensification whilst the rest of the study area were represented by 

persistence change types such as agriculture persistence, forest persistence, 

persistence and urban persistence. This is likely to be related to the fact that the 

compared LULC maps in this case are the corine LULC maps for the years 1990 

and 2000 which have exactly the same legends, unlike the other maps which have 

different legends. Finally, in the third time period from 2000 to 2009, all fifteen 

change types were present with large afforestation and deforestation activities. The 

study focused on three important land changes types, deforestation, agriculture 

development and urbanization. The results demonstrated that the forest area has 

increased in the last fifty years although that the deforestation process was greater 

than afforestation in the last thirty years. On the contrary, Agriculture area has 

decreased greatly in the same period. The total agricultural area reduced by 6% 

during the first period (1954-1990), 1% during the second period (1990-2000) and 

3.5% during the third period (2000-2009). Approximately 1200 hectares of 

agricultural land have been lost during the period from 1954 to 2009.On the other 

hand; urbanization had a progressive trend during the last five decades. The urban 

area increased more than four times during this time period (1954-2009). It can be 

concluded that urbanization in the study area is an ongoing problem that requires 

active management strategies for controlling the quantity and the direction of the 

sprawl in the future. These data revealed one of the problems occurring in the 

region, i.e. soil sealing and soil loss due to urbanization. 

Regarding the second objective of the study, using the object-oriented eCognition 

software, the LULC of the study area for the year 1954 was reclassified using aerial 

photographs and GEOBIA technique. It was possible to extract land cover data 

from the aerial photographs using different features such as the tone, brightness, 

border contrast, roundness and many other features available in the software. Then, 

the idea was to compare the original 1954 map with the reclassified LULC map to 

determine whether the reclassified map will improve land change estimates. The 
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results showed that, visually overlapping the different filters on the original gray 

scale image in a Red-Green-Blue composition (RGB) augmented the vision quality 

of the images and consequently the capabilities of classifiers. The multi-resolution 

segmentation algorithm was selected as the main segmentation algorithm through 

the entire classification process. Regarding the scale parameter, a scale of 90 has 

been chosen as the optimal scale for all the segmentation processes except for the 

urbanization class, which was 60. Similarly, the weight assigned to the shape 

criterion was 0.7 in all the segmentation processes except for the urbanization class, 

which was assigned weight of 0.2. On the other hand, for the compactness criterion, 

the suitable weight was 0.3 in most of the classes except for the classes Olives, 

Vineyards, Mixed Olives-Vineyards and urbanization for which the weight 0.5 was 

more suitable. Ten land use and land cover classes were recognized during the 

classification progression which are urban, water bodies, tree lines, woodland, 

pasture, bare soil, agriculture fields, olives, vineyards and mixed vine-olives. 

Different features and values were used for the recognition of classes during the 

classification process. To generate the final LULC map, the classified tiles were 

exported to a GIS environment in a polygon shapfile form and then went through 

mosaicing process to form one polygon layer with all classes. The calculated 

overall map accuracy is 77% with a kappa value of 0.73 which are both within 

ranges of fair accuracy. The producer’s accuracy states how well the map producer 

recognized a land cover type on the map from the remote sensing imagery data. 

Results show that the highest producer’s accuracy was for pasture class (94%) 

while the lowest was for the vineyards class (44%). Comparing the old and the 

improved (GEOBIA) maps of LULC shows that, regarding the agricultural area, 

50% of the detected change using the original data was misclassified compared 

with the improved classification of aerial photographs. The results revealed that the 

urban area was underestimated in the old LULC map of 1954. This leads to an 

important finding of this research that modeling results are greatly correlated to the 

historical input data accuracy, and that changing or improving the data accuracy 

will improve the final modeling results. 

The reason behind attempting to improve the old classification of LULC using 

GEOBIA technique on aerial photographs was to enhance the land change 

detection, which consequentially will help to advance studying the land change 
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impacts on the environment and this is rather important also for evaluating the 

effect of soil sealing on soils. Finally, regarding the third study objective, a novel 

methodology was proposed consists of different sequential stages starting with data 

collection arriving to a quantification of the biomass production loss by soil sealing. 

The methodology is mainly based on conducting a land suitability evaluation for 

wheat production. Then, using the wheat production statistic averages from 

statistical reports, it is possible to assign a production rate for different suitability 

classes and generate a land productivity map for wheat. Wheat crop is used here as 

a standard international land productivity measure and a reference crop for land 

productivity evaluation. However, any other crop is suitable for the proposed 

method. Next, using the generated land productivity map along with soil sealing 

map (i.e. map of urbanization in the study area) it is possible to quantify the lost 

biomass production due to soil sealing. A new parametric concept “equation” of 

land suitability evaluation was proposed to improve results of land suitability 

evaluation. Land suitability assessment for wheat production was conducted in 

order to compare results of the suggest method with classical parametric methods. 

Organic matter, CaCO3, pH, Slope, texture, drainage, depth, EC and altitude were 

recognized as factors affecting land suitability for wheat production in the study 

area. Comparing results of the three parametric methods (Storie, Square root, 

Rabia) used showed that the proposed equation gave higher suitability index values 

than classical methods. Great correlation has been found between results of the 

three methods. Organic matter, topology and pH were found to be the limiting 

factors for wheat production in the study area. Generally, the proposed equation 

may improve land suitability assessment process and gives better realistic results. 

Results showed that in all the land units in the study area, land suitability index was 

higher in case of Rabia method. However, correlation analysis exposed a high 

correlation between all the three methods. This can be explained that, the value of 

final suitability index of the equation was based principally on the factor that has 

the maximum influence on land use suitability with regard to the other factors. So, 

in Rabia equation, the value of suitability index in addition to the suitability class is 

likely to be more representative of the real situation, which makes this equation 

superior to the Storie and Square root equations. Regarding the land suitability 

classes of Storie method, only few land units were suitable for wheat production 

(i.e. approximately 11% of the study area). In case of square root method, more 
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land units (i.e. approximately 36% of the study area) were evaluated as suitable for 

wheat production. However, in case of Rabia method, the total area of suitable land 

units for wheat production was approximately 53% of the study area. It is clear 

from the results that biomass production losses increased significantly and 

progressively over time. The biomass production loss increased more than 7 folds 

from approximately 790 metric tons in 1954 up to 5797 metric tons in 2011. 

Regarding the total area sealed by urbanization activities, the area of soil sealing 

also increased more than 7 folds from 1954 to 2011. This gives an indication about 

the high correlation (0.99) between the soil sealing inverts and the biomass 

production decrease with almost equal rate. 
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Land systems and sub-systems of study area and the associated soil 

classes 
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Consociazione dei suoli 

Pera Tonda 
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Vitrandic Calciustolls 
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Typic Calciustolls 
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APPENDIX II 
Aerial photographs of the study area 
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APPENDIX III 
Process tree and the algorithms used in the GEOBIA classification  
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Classes: 
    0_Bare_Soil 

    0_InBoundary 

        and (min) 

            [0-35]: Width 

            Threshold: Border to 4_Roods > 0 Pxl 

            Threshold: Density <= 1.5  

            Threshold: Rel. border to 4_Roods >= 0.41  

    0_Temp_Classes 

    black 

        and (min) 

            [0-87]: Brightness 

    Classification 

    Dark_gray 

    Gray 

    Olives_candidates 

    TreeLine_Candidate 

        and (min) 

            [0-80]: Mean original 

            Threshold: Contrast to neighbor pixels original (1) <= -340  

    vineyard candidate 

        and (min) 

            [-19--5]: StdDev diff. to super-object original (1) 

    White 

        and (min) 

            and (*) 

                [194-255]: Brightness 

                Threshold: Mean water > 30  

    1_WoodLand 

    2_Pasture 

    3_TreeLines 

        and (min) 

            Standard nearest neighbor (generated) 

    4_Roods 

        and (min) 

            Standard nearest neighbor (generated) 

    5_river 

    6_Urbans 

        and (min) 

            Standard nearest neighbor (generated) 

    7_Mixed_Vine_olive 

        and (min) 

            Standard nearest neighbor (generated) 

    8_Olives 

        and (min) 

            Standard nearest neighbor (generated) 

    9_Agric_fields 

        and (min) 

            Standard nearest neighbor (generated) 

    22_Vine_ 
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        and (min) 

            Standard nearest neighbor (generated) 

 

Process: Main: 
    do 

         Preprocessing&Urbans 

          chessboard segmentation: on main : chess board: 99999 creating 

'Class_Level' 

          chessboard segmentation: on main with Num. of overlap: Studyarea = 1  at  

Class_Level: chess board: 99999 

          assign class: with Num. of overlap: Studyarea = 1  at  Class_Level: 

0_InBoundary 

          assign class: on main 0_InBoundary with Num. of overlap: urbans = 1  at  

Class_Level: 6_Urbans 

          multiresolution segmentation: on main 6_Urbans at  Class_Level: 60 

[shape:0.2 compct.:0.5] 

         Refine_Urbans 

          assign class: 6_Urbans with Brightness <= 80  at  Class_Level: 

0_InBoundary 

         Rivers 

         chessboard segmentation: on main 0_InBoundary at  Class_Level: chess 

board: 99999 

         assign class: 0_InBoundary with Num. of overlap: Rivers = 1  at  

Class_Level: 5_river 

         multiresolution segmentation: 0_InBoundary at  Class_Level: 50 [shape:0.7 

compct.:0.3] 

         assign class: on main White with HSI Transformation 

Intensity(R=original,G=original,B=original) >= 0.85  and Width 

>= 90 Pxl at  New Level60spec: 5_river 

         find enclosed by class: on main 0_InBoundary, 6_Urbans at  Class_level: 

enclosed by 5_river: 5_river + 

         Refine rivers 

          multiresolution segmentation: on main 0_InBoundary at  Class_Level: 90 

[shape:0.7 compct.:0.3] 

          spectral difference segmentation: on main 0_InBoundary at  Class_Level: 

spectral difference 10 

          assign class: on main 0_InBoundary with Brightness >= 179  and Rel. border 

to 5_river >= 0.4  at  Class_Level: 5_river 

          merge region: on main 5_river at  Class_Level: merge region 

          assign class: 5_river with Area <= 260210 Pxl at  Class_Level: 

0_InBoundary 

         Woodlands 

          classification: on main 0_InBoundary at  Class_Level: black 

          merge region: on main black at  Class_Level: merge region 

          assign class: on main black with Area <= 260500 Pxl at  Class_Level: 

0_InBoundary 

          assign class: on main black with Rectangular Fit <= 0.4  at  Class_Level: 

0_InBoundary 

          assign class: black at  Class_Level: 1_WoodLand 

         Tree Lines 
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           classification: on main 0_InBoundary at  Class_Level: TreeLine_Candidate 

           merge region: on main TreeLine_Candidate at  Class_Level: merge region 

           assign class: on main TreeLine_Candidate with Area <= 5000 Pxl at  

Class_Level: 0_InBoundary 

           assign class: on main TreeLine_Candidate at  Class_Level: 3_TreeLines 

         Bare Soil 

           assign class: on main 0_InBoundary with Brightness >= 199  at  

Class_Level: 0_Bare_Soil 

         Classi_agri_fields 

          assign class: on main 0_InBoundary with Standard deviation water <= 37  at  

Class_Level: 9_Agric_fields 

           find enclosed by class: on main 0_Bare_Soil, 0_InBoundary with Area <= 

5000 Pxl at  Class_Level: enclosed by 9_Agric_fields: 

9_Agric_fields + 

           merge region: on main 9_Agric_fields at  Class_Level: merge region 

           assign class: on main 9_Agric_fields with Area <= 5000 Pxl at  Class_Level: 

0_InBoundary 

         Vineyard & Olives 

          multiresolution segmentation: on main 0_InBoundary at  Class_Level: 40 

[shape:0.5 compct.:0.5] creating 'New Level20' 

          assign class: on main with Existence of super objects 0_InBoundary (1) = 1  

at  New Level20: 0_InBoundary 

          multiresolution segmentation: on main 0_InBoundary at  New Level20: 20 

[shape:0.8 compct.:0.5] 

          multiresolution segmentation: on main 0_InBoundary at  New Level20: 5 

[shape:0.8 compct.:0.5] 

          assign class: on main 0_InBoundary with Mean original <= 120  at  New 

Level20: Dark_gray 

          assign class: on main Dark_gray with Area >= 500 Pxl at  New Level20: 

0_InBoundary 

          classification: on main Dark_gray, Gray at  New Level20: Olives_candidates 

          assign class: on main 0_InBoundary with Rel. area of sub objects 

Olives_candidates (1) >= 0.5  at  Class_Level: 8_Olives 

          classification: on main 0_InBoundary at  New Level20: vineyard candidate 

          merge region: on main vineyard candidate at  New Level20: merge region 

          assign class: on main vineyard candidate with Area < 5000 Pxl at  New 

Level20: 0_InBoundary 

          multiresolution segmentation: on main vineyard candidate at  New Level20: 

90 [shape:0.6 compct.:0.5] 

          assign class: vineyard candidate with Standard deviation original <= 10  at  

New Level20: 0_InBoundary 

          assign class: vineyard candidate with Standard deviation inkout <= 59  at  

New Level20: Gray 

          multiresolution segmentation: on main 0_InBoundary at  Class_Level: 90 

[shape:0.7 compct.:0.5] 

          assign class: 0_InBoundary with Existence of sub objects vineyard candidate 

(1) = 1  at  Class_Level: 22_Vine_ 

          merge region: 22_Vine_ at  Class_Level: merge region 

          find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

22_Vine_: 22_Vine_ + 
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           merge region: 22_Vine_ at  Class_Level: merge region 

           assign class: 22_Vine_ with Area < 5000 Pxl at  Class_Level: 0_InBoundary 

         finall_refinments 

              do 

          assign class: 0_InBoundary with Existence of sub objects Olives_candidates 

(1) = 1  and Rel. border to 8_Olives >= 0.15  at  Class_Level: 

8_Olives 

           merge region: 8_Olives at  Class_Level: merge region 

              assign class: 0_InBoundary at  Class_Level: 7_Mixed_Vine_olive 

              merge region: 7_Mixed_Vine_olive at  Class_Level: merge region 

              assign class: 7_Mixed_Vine_olive with Area <= 5000 Pxl at  Class_Level: 

0_InBoundary 

              assign class: 22_Vine_ with Standard deviation findedges <= 45  at  

Class_Level: 7_Mixed_Vine_olive 

              merge region: 7_Mixed_Vine_olive at  Class_Level: merge region 

              find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

5_river: 5_river + 

              find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

1_WoodLand: 1_WoodLand + 

              find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

3_TreeLines: 3_TreeLines + 

              find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

0_Bare_Soil: 0_Bare_Soil + 

              find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

9_Agric_fields: 9_Agric_fields + 

              find enclosed by class: 0_InBoundary, 8_Olives, 22_Vine_ at  

Class_Level: enclosed by 7_Mixed_Vine_olive: 

7_Mixed_Vine_olive + 

              find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

8_Olives: 8_Olives + 

              find enclosed by class: 0_InBoundary at  Class_Level: enclosed by 

22_Vine_: 22_Vine_ + 

              merge region: 6_Urbans at  Class_Level: merge region 

              merge region: 5_river at  Class_Level: merge region 

              merge region: 1_WoodLand at  Class_Level: merge region 

              merge region: 3_TreeLines at  Class_Level: merge region 

              merge region: 0_Bare_Soil at  Class_Level: merge region 

              merge region: 8_Olives at  Class_Level: merge region 

              merge region: 22_Vine_ at  Class_Level: merge region 

              merge region: 7_Mixed_Vine_olive at  Class_Level: merge region 

              find enclosed by class: 0_InBoundary, 7_Mixed_Vine_olive, 8_Olives, 

22_Vine_ with Area <= 10000 Pxl at  Class_Level: enclosed by 

9_Agric_fields: 9_Agric_fields + 

              merge region: 9_Agric_fields at  Class_Level: merge region 

              assign class: 0_InBoundary with Rel. border to 9_Agric_fields >= 0  at  

Class_Level: 9_Agric_fields 

              assign class: 0_Bare_Soil, 8_Olives, 22_Vine_ with Rel. border to 

9_Agric_fields >= 0.2  and Area <= 6000 Pxl at  Class_Level: 

9_Agric_fields 

              merge region: 9_Agric_fields at  Class_Level: merge region 
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              assign class: 0_Bare_Soil, 9_Agric_fields with Area <= 8000 Pxl and Rel. 

border to 8_Olives >= 0.2  at  Class_Level: 8_Olives 

              merge region: 8_Olives at  Class_Level: merge region 

              assign class: 0_InBoundary with Rel. border to 7_Mixed_Vine_olive > 0  

at  Class_Level: 7_Mixed_Vine_olive 

              merge region: 7_Mixed_Vine_olive at  Class_Level: merge region 

              assign class: 0_InBoundary with Rel. border to 0_Bare_Soil > 0  at  

Class_Level: 0_Bare_Soil 

              merge region: 0_Bare_Soil at  Class_Level: merge region 

              assign class: 0_InBoundary with Rel. border to 22_Vine_ > 0  at  

Class_Level: 22_Vine_ 

              merge region: 22_Vine_ at  Class_Level: merge region 

              find enclosed by class: 8_Olives with Area <= 8000 Pxl at  Class_Level: 

enclosed by 0_Bare_Soil: 0_Bare_Soil + 

              find enclosed by class: 8_Olives with Area <= 8000 Pxl at  Class_Level: 

enclosed by 22_Vine_: 22_Vine_ + 

              assign class: 8_Olives with Area <= 8000 Pxl and Rel. border to 

7_Mixed_Vine_olive > 0  at  Class_Level: 7_Mixed_Vine_olive 

              merge region: 0_Bare_Soil at  Class_Level: merge region 

              merge region: 22_Vine_ at  Class_Level: merge region 

              merge region: 7_Mixed_Vine_olive at  Class_Level: merge region 
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APPENDIX IV 

Analysis of soil samples of the study area 
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6 LAC1 8.26 0.89 5.22 4.62 120.00 85.00 0.00 3.00 12.08 132.07 

7 POC1 8.19 0.83 17.48 0.00 120.00 74.00 0.00 3.00 1.03 54.72 

8 CDA1 7.24 0.08 7.07 0.00 116.00 68.75 0.00 2.00 14.99 154.50 

9 SIM1 7.23 0.61 6.19 0.00 140.00 94.00 0.00 3.00 5.49 236.85 

17 BOC1 7.40 0.56 5.89 0.00 105.00 68.75 0.00 3.00 13.78 71.00 

18 LAT1 7.22 0.76 11.20 0.00 121.00 84.25 0.00 3.00 2.36 52.84 

24 TIT1 7.30 0.58 28.40 0.00 25.00 75.00 0.00 1.00 0.91 174.79 

30 MAG1 7.08 0.79 0.00 0.00 50.00 60.00 0.00 3.00 31.37 99.77 

32 IMP1 7.10 0.61 0.60 0.00 20.00 75.00 0.00 3.00 1.63 68.62 

33 PET1 7.07 1.49 0.00 4.89 115.00 81.80 0.00 3.00 0.64 70.02 

34 SLR1 8.34 0.47 18.09 7.54 130.00 82.75 0.00 3.00 0.00 40.47 

35 CAL1 8.26 0.62 27.42 0.00 141.00 68.55 0.00 3.00 3.82 38.71 

36 AIC1 8.04 0.94 34.20 4.45 51.00 87.55 0.00 3.00 7.46 223.69 

37 SPE1 7.28 0.54 0.00 7.85 100.00 78.00 0.00 3.00 1.74 75.43 

41 ACS1 7.86 0.71 2.35 6.37 140.00 83.75 0.00 3.00 12.73 249.32 

44 LCH1 8.02 0.38 34.76 6.44 100.00 88.00 0.00 4.00 12.40 146.00 

45 PEL1 6.93 0.93 1.81 0.00 60.00 60.00 1.00 6.00 0.64 54.28 

47 ADD1 6.81 1.39 0.00 0.00 80.00 60.00 0.00 3.00 0.84 186.81 

50 COD1 7.77 0.51 16.45 5.57 120.00 90.70 0.00 3.00 3.66 140.88 

52 COD1 8.19 0.06 3.18 8.43 120.00 80.00 0.00 3.00 0.57 155.58 

53 PTR1 8.20 1.69 36.72 7.85 30.00 100.00 0.00 3.00 5.33 237.40 

55 COC1 7.30 1.47 7.90 0.00 25.00 60.00 0.00 2.00 15.56 191.20 

56 CAP1 6.82 0.85 0.10 0.00 110.00 68.05 0.00 3.00 1.30 204.14 

58 CER1 7.95 0.91 8.23 10.16 103.00 90.00 0.00 2.00 5.94 145.41 

59 CRU1 7.14 1.26 0.53 0.00 116.00 65.70 0.00 3.00 2.92 77.00 

64 PEZ1 7.17 0.95 0.16 0.00 100.00 75.00 0.00 3.00 6.14 109.55 

66 SOL1 7.28 1.76 10.59 0.00 130.00 75.00 0.00 2.00 7.46 204.17 

67 CAS1 7.60 0.28 5.35 3.73 100.00 97.00 0.00 4.00 9.06 352.79 

68 CES1 8.51 0.50 19.80 7.80 140.00 99.50 0.00 0.00 12.56 220.91 

69 CHI1 7.72 0.53 17.67 25.55 140.00 88.00 0.00 5.00 9.93 260.51 

70 CAN1 8.45 0.30 20.80 15.44 130.00 95.00 0.00 4.00 12.75 233.92 

72 TAS1 8.03 0.68 5.26 7.41 110.00 81.35 0.00 0.00 2.54 84.73 

73 MON1 8.05 0.12 0.16 10.40 124.00 81.60 0.00 3.00 3.69 130.96 

75 LMP1 6.54 1.38 0.00 3.27 120.00 85.91 0.00 3.00 5.94 1075.60 

77 CPS1 6.53 8.42 0.00 4.52 40.00 80.00 3.00 3.00 9.68 1195.96 

78 MOR1 7.58 4.83 0.00 7.30 30.00 60.00 0.00 3.00 6.67 1198.80 

79 SES1 6.35 1.42 0.00 2.72 75.00 73.07 0.00 3.00 15.10 1155.03 

83 LAM1 8.70 0.65 8.54 7.73 46.00 80.00 0.00 0.00 14.80 202.78 

84 PTR1 8.03 0.47 12.39 7.22 130.00 83.75 0.00 0.00 1.43 165.70 

85 MAP1 8.38 0.75 11.67 8.29 105.00 92.00 0.00 0.00 8.90 202.04 

87 PEN1 8.60 1.23 17.06 8.33 75.00 88.00 0.00 0.00 9.37 386.71 
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89 PAO1 8.33 1.22 14.44 9.08 130.00 97.50 0.00 0.00 5.94 189.71 

91 MAM1 7.83 0.36 30.31 2.61 100.00 97.00 0.00 0.00 5.19 167.33 

95 MAM1 8.42 0.40 6.15 6.98 85.00 95.59 0.00 0.00 16.37 120.56 

96 VIV1 8.13 0.48 24.30 6.28 170.00 95.00 0.00 0.00 10.26 159.77 

98 TOI1 7.19 0.61 19.85 0.00 130.00 100.00 0.00 0.00 9.52 238.31 

100 LAR1 6.90 1.79 0.82 0.00 45.00 80.00 0.00 0.00 14.04 210.67 

101 TOR1 6.81 1.76 0.74 0.00 35.00 60.00 0.00 0.00 27.81 836.26 

103 VAO1 6.63 1.89 0.00 0.00 100.00 87.20 0.00 0.00 24.81 683.01 

104 SAZ1 6.75 1.15 0.05 0.00 120.00 60.00 0.00 0.00 15.64 669.35 

106 ZEP1 7.20 0.39 5.84 0.00 90.00 70.33 7.00 0.00 14.58 561.40 

107 SER1 7.27 1.49 5.84 0.00 30.00 62.00 7.00 0.00 11.09 558.11 

108 FAR1 7.40 0.55 7.70 0.00 32.00 60.00 0.00 0.00 11.58 774.38 

109 SEG1 7.35 1.67 17.81 0.00 80.00 95.00 0.00 0.00 8.77 814.20 

111 FSS1 7.17 1.56 0.00 0.00 105.00 94.00 0.00 0.00 2.50 631.74 

112 CAM1 7.32 2.14 42.64 0.00 70.00 72.50 2.00 0.00 10.14 511.26 

113 FOM1 7.30 4.89 15.55 0.00 60.00 92.50 0.00 0.00 1.87 603.63 

114 TOV1 7.35 1.36 18.04 0.00 121.00 64.67 0.00 0.00 8.74 103.71 

115 CMP1 7.03 6.12 0.00 0.00 103.00 84.60 1.00 0.00 34.40 1142.25 
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APPENDIX V 
Suitability index values and corresponding classes for all the study area land units  
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Unit 

No. 
Land Unit ID 

Storie 

Suitability Class 

Square Root 

Suitability Class 

Rabia 

Suitability Class 

0 FAR1 N2 N1 S3 

1 SES1 N2 N2 N2 

2 CPS1/MOR1 N2 N2 N2 

3 CAM1 N1 S3 S3 

4 SEG1 N1 N1 S3 

5 SES1 N2 N2 N2 

6 FAR1 N2 N1 S3 

7 MOR1/SES1 N2 N2 N2 

8 MOR2 N2 N2 N2 

9 MOR1/SES1 N2 N2 N2 

10 SAZ1 N1 N1 S3 

11 SEG1 N1 N1 S3 

12 SOL1 S3 S2 S2 

13 SEG1 N1 N1 S3 

14 CER1 N2 N1 S3 

15 FOM1 S3 S3 S2 

16 FOM1/FSS1 S3 S3 S2/S3 

17 TIT1 N1 S3 S3 

18 SER1/ZEP1 N1 S3/N1 S3 

19 CAM1 N1 S3 S3 

20 ADD1 N1 S3 S3 

21 FOM1 S3 S3 S2 

22 SER1/ZEP1 N1 S3/N1 S3 

23 POC1 N1 S3 S3 

24 CAP1 N1 S3 S3 

25 SES1 N2 N2 N2 

26 FAR1 N2 N1 S3 

27 MOR1/SES1 N2 N2 N2 

28 CAM1 N1 S3 S3 

29 SEG1 N1 N1 S3 

30 CAN1 N2 N2 N2 
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31 COC1/SIM1 S3/N1 S3 S2/S3 

32 PTR1/SER1 N1 N1/S3 S3 

33 FOM1 S3 S3 S2 

34 CES1/TOI1 N2/S3 N2/S3 N2/S2 

35 CAP1 N1 S3 S3 

36 CAS1/LAM1 N2 N1/N2 S3/N2 

37 COC1/SIM1 S3/N1 S3 S2/S3 

38 CES1/TOI1 N2/S3 N2/S3 N2/S2 

39 SES1 N2 N2 N2 

40 CAN1 N2 N2 N2 

41 PEN1 N2 N2 N2 

42 CAN1 N2 N2 N2 

43 PEN1 N2 N2 N2 

44 SOL1 S3 S2 S2 

45 PEN1 N2 N2 N2 

46 VIV1 N1 N1 S3 

47 PTR1/LAR1 N1/S3 N1/S2 S3/S2 

48 CAN1 N2 N2 N2 

49 CAN1 N2 N2 N2 

50 CES1/TOI1 N2/S3 N2/S3 N2/S2 

51 CAN1 N2 N2 N2 

52 PEN1 N2 N2 N2 

53 MAG1/PET1 N2/S3 N1/S3 N1/S3 

54 PEN1 N2 N2 N2 

55 MAG1 N2 N1 N1 

56 MAG1/PET1 N2/S3 N1/S3 N1/S3 

57 MAG1/PET1 N2/S3 N1/S3 N1/S3 

58 MAG1/PET1 N2/S3 N1/S3 N1/S3 

59 PEN1 N2 N2 N2 

60 LAC1/TOV1 N1/S3 S3/S2 S3/S2 

61 VIV1 N1 N1 S3 

62 PTR1/LAR1 N1/S3 N1/S2 S3/S2 

63 PEN1 N2 N2 N2 
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64 PEN1 N2 N2 N2 

65 PEL1 N2 N1 N1 

66 CES1/TOI1 N2/S3 N2/S3 N2/S2 

67 PEN1 N2 N2 N2 

68 COD1 N2 N1 S3 

69 SOL1 S3 S2 S2 

70 MAG1/PET1 N2/S3 N1/S3 N1/S3 

71 MAG1/PET1 N2/S3 N1/S3 N1/S3 

72 MAG1/PET1 N2/S3 N1/S3 N1/S3 

73 MAG1/PET1 N2/S3 N1/S3 N1/S3 

74 MAG1 N2 N1 N1 

75 CDA1/MON1 N1/N2 S3/N2 S3/N1 

76 CDA1/MON1 N1/N2 S3/N2 S3/N1 

77 PAO1 N1 N1 S3 

78 MAG1/PET1 N2/S3 N1/S3 N1/S3 

79 CAS1/LAM1 N2 N1/N2 S3/N2 

80 MAG1/PET1 N2/S3 N1/S3 N1/S3 

81 PAO1 N1 N1 S3 

82 PEN1 N2 N2 N2 

83 PAO1 N1 N1 S3 

84 CDA1/MON1 N1/N2 S3/N2 S3/N1 

85 CDA1/MON1 N1/N2 S3/N2 S3/N1 

86 CDA1/MON1 N1/N2 S3/N2 S3/N1 

87 PAO1 N1 N1 S3 

88 PEN1 N2 N2 N2 

89 CDA1/MON1 N1/N2 S3/N2 S3/N1 

90 PAO1 N1 N1 S3 

91 CAS1/LAM1 N2 N1/N2 S3/N2 

92 CDA1/MON1 N1/N2 S3/N2 S3/N1 

93 PTR1/LAR1 N1/S3 N1/S2 S3/S2 

94 CDA1/MON1 N1/N2 S3/N2 S3/N1 

95 PEN1 N2 N2 N2 

96 SPE1 N2 N1 N1 



180 
 

97 CDA1/MON1 N1/N2 S3/N2 S3/N1 

98 MAG1/PET1 N2/S3 N1/S3 N1/S3 

99 CDA1/MON1 N1/N2 S3/N2 S3/N1 

100 CDA1/MON1 N1/N2 S3/N2 S3/N1 

101 BOC1 N1 N1 S3 

102 MAM1 N2 N1 N1 

103 COD1 N2 N1 S3 

104 CDA1/MON1 N1/N2 S3/N2 S3/N1 

105 CES1/TOI1 N2/S3 N2/S3 N2/S2 

106 CDA1/MON1 N1/N2 S3/N2 S3/N1 

107 CDA1/MON1 N1/N2 S3/N2 S3/N1 

108 TAS1 N1 S3 S3 

109 PEN1 N2 N2 N2 

110 LAC1/TOV1 N1/S3 S3/S2 S3/S2 

111 LAC1/TOV1 N1/S3 S3/S2 S3/S2 

112 CDA1/MON1 N1/N2 S3/N2 S3/N1 

113 CDA1/MON1 N1/N2 S3/N2 S3/N1 

114 CDA1/MON1 N1/N2 S3/N2 S3/N1 

115 MAP1/MAV1 N2 N1 N1 

116 CDA1/MON1 N1/N2 S3/N2 S3/N1 

117 LAC1/TOV1 N1/S3 S3/S2 S3/S2 

118 CAL1 N1 S3 S3 

119 POC1 N1 S3 S3 

120 SLR1 N2 N1 N1 

121 LAT1 S3 S3 S2 

122 SLR1 N2 N1 N1 

123 CDA1/MON1 N1/N2 S3/N2 S3/N1 

124 POC1 N1 S3 S3 

125 POC1 N1 S3 S3 

126 SLR1 N2 N1 N1 

127 BOC1 N1 N1 S3 

128 CDA1/MON1 N1/N2 S3/N2 S3/N1 

129 CDA1/MON1 N1/N2 S3/N2 S3/N1 
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130 SLR1 N2 N1 N1 

131 POC1 N1 S3 S3 

132 CDA1/MON1 N1/N2 S3/N2 S3/N1 

133 PET1 S3 S3 S3 

134 SLR1 N2 N1 N1 

135 SLR1 N2 N1 N1 

136 POC1 N1 S3 S3 

137 PET1 S3 S3 S3 

138 POC1 N1 S3 S3 

139 CRU1/IMP1 S3/N1 S3 S3 

140 CAS1/LAM1 N2 N1/N2 S3/N2 

141 POC1 N1 S3 S3 

142 CDA1/MON1 N1/N2 S3/N2 S3/N1 

143 SLR1 N2 N1 N1 

144 SLR1 N2 N1 N1 

145 POC1 N1 S3 S3 

146 SLR1 N2 N1 N1 

147 POC1 N1 S3 S3 

148 POC1 N1 S3 S3 

149 CAL1 N1 S3 S3 

150 POC1 N1 S3 S3 

151 SLR1 N2 N1 N1 

152 SLR1 N2 N1 N1 

153 POC1 N1 S3 S3 

154 POC1 N1 S3 S3 

155 PEZ1 N1 S3 S3 

156 POC1 N1 S3 S3 

157 SLR1 N2 N1 N1 

158 SLR1 N2 N1 N1 

159 PEZ1 N1 S3 S3 

160 SLR1 N2 N1 N1 

161 PEZ1 N1 S3 S3 

162 PET1 S3 S3 S3 
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163 SOL1 S3 S2 S2 

164 MOR1/SES1 N2 N2 N2 

165 PET1 S3 S3 S3 

166 MOR2 N2 N2 N2 

167 POC1 N1 S3 S3 

168 SES1 N2 N2 N2 

169 POC1 N1 S3 S3 

170 SLR1 N2 N1 N1 

171 MOR1/SES1 N2 N2 N2 

172 SLR1 N2 N1 N1 

173 CER1 N2 N1 S3 

174 MOR2 N2 N2 N2 

175 MOR1/SES1 N2 N2 N2 

176 POC1 N1 S3 S3 

177 CPS1/MOR1 N2 N2 N2 

178 SES1 N2 N2 N2 

179 TOR1 N2 N2 N1 

180 SAZ1 N1 N1 S3 

181 VAO1 N1 S3 S3 

182 SES1 N2 N2 N2 

183 MOR2 N2 N2 N2 

184 CAL1 N1 S3 S3 

185 CPS1/MOR1 N2 N2 N2 

186 SLR1 N2 N1 N1 

187 CPS1/MOR1 
N2 N2 N2 

188 TOR1 
N2 N2 N1 

189 MOR2 
N2 N2 N2 

190 MOR1/SES1 
N2 N2 N2 

191 MOR1/SES1 
N2 N2 N2 

192 SLR1 
N2 N1 N1 

193 CPS1/MOR1 
N2 N2 N2 

194 SES1 
N2 N2 N2 

195 CPS1/MOR1 
N2 N2 N2 
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196 MOR2 
N2 N2 N2 

197 SAZ1 
N1 N1 S3 

198 LMP1 
N2 N2 N2 

199 MOR1/SES1 
N2 N2 N2 

200 CMP1 
N2 N2 N2 

201 SES1 
N2 N2 N2 

202 SES1 
N2 N2 N2 

203 CPS1/MOR1 
N2 N2 N2 

204 CPS1/MOR1 
N2 N2 N2 

205 CPS1/MOR1 
N2 N2 N2 

206 CPS1/MOR1 
N2 N2 N2 

207 CPS1/MOR1 
N2 N2 N2 

 

 

 


