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Abstract

Background: Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to
assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison
increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic
research, especially when taking into account the increasing number of sequenced organisms available, is to make
this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to
speed up the detection of orthologous proteins by using strings of domains to characterize the proteins.

Results: We present two new protein similarity measures, a cosine and a maximal weight matching score based on
domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight
matching similarity measures are compared against curated datasets. The measures show that domain content
similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used
inside porthoDom, the wrapper developed for proteinortho. porthoDommakes use of domain content similarity
measures to group proteins together before searching for orthologs. By using domains instead of amino acid
sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence
comparison.

Conclusion: We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a
concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the
advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho.
The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL
licence 3 at http://www.bornberglab.org/pages/porthoda.
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Background
Bioinformatic programs to detect orthologous pro-
teins have become indispensable in everyday biological
research. These programs allow the classification of pro-
tein sequences sharing evolutionary origins and provide a
better understanding of the evolutionary forces acting on
organisms.
Many algorithms have been developed to predict clus-

ters of orthologous proteins. The algorithms can be
grouped into two families: tools using phylogeny-based
methods [1,2] and tools using pairwise sequence compari-
son and clustering approaches [3-5]. The core component
of these methodologies relies on a time-consuming pair-
wise comparison of sequences and, accordingly, scales
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quadratically with the number of sequences being tested
for orthology. This step can soon become non-permissive
since the number of organisms sequenced is rapidly
increasing.
A solution to reduce the large computational time bur-

den is to decrease the number of pairwise comparisons.
Instead of comparing all proteins against all, proteins
could be clustered together into smaller groups. These
smaller groups correspond to a sub-search space in com-
parison with the huge orthology search space created by
the all-against-all pairwise comparison. However, the cre-
ation of the clusters of proteins should be fast and there-
fore should not rely on amino acid sequence comparisons.
A coarse-grained, biologically relevant description of the
protein should instead be used, for example, one based on
protein domains. Domains correspond to conserved por-
tions of sequences that can be found in different proteins
and in combination with identical or other domains. A

© 2015 Bitard-Feildel et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205408197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bornberglab.org/pages/porthoda
mailto: t.bitard.feildel@uni-muenster.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Bitard-Feildel et al. BMC Bioinformatics  (2015) 16:154 Page 2 of 11

domain can be seen as an extension of François Jacobs’
statement that nature tends to reuse already existingmate-
rial to create novelties [6]. By their arrangement in a spe-
cific combination, domains provide a way for organisms
to create new functions from already existing material.
A domain arrangement is defined as the combination of
domains in a protein and so is composed of at least one
domain. Protein domain modularity makes domains the
unit of proteome evolution [7]. Moreover, since the num-
ber of new domain arrangements increases faster than the
number of new domains detected [8], molecular diver-
sity, similarity and divergence can be described by domain
arrangements (DAs).
Indeed, DA similarity analyses have been successfully

used to study the evolutionary relationship between pro-
teins [7,9,10] from a phylogenetic point of view and have
been used to predict orthologous proteins using phylo-
genetic information [11]. Furthermore, the comparison
of DAs, as linear (RADS [12]) and circular permutations
(RASPODOM [13]), have been proven to enhance the
performance of classical bioinformatic methodologies.
Methods to compare and group proteins based on

the similarity of their DAs have already been proposed
[14-17]. All these methods use a binary representation
for the comparison of two domains, i.e. two domains
are recorded as either being identical or different. Such
a representation lacks flexibility when comparing DAs
with evolutionary divergence in one or several of their
domains. For example a [PBC;Homeobox] DA, with a
PBC domain at the N terminus and a Homeobox domain
at the C terminus, will be considered different from
a [PBC;Homeobox_KN]-DA, even though Homeobox
and Homeobox_KN are two similar homeobox transcrip-
tion factor domains. Moreover, a comparison between
domains and amino acid sequence-based methods to
correctly group proteins into families has shown that a
sequence-based method introduced by Song et al. [18,19]
outperforms domain-based methods [18]. Improvement
in the accuracy of domain-based methods are therefore
needed before using domain-based similarity measures
for orthology prediction.
Here, a new method is proposed using the evolution-

ary information carried by the domain content of pro-
teins and using a domain-domain similarity score in a
continuous space. The continuous similarity scores allow
non-identical domains to be similar, thus removing the
problem of binary similarity measures. Two scores are
introduced to compute the similarity between DAs using
this continuous similarity measure between domains.
First, the scores are evaluated, independently of the

orthology detection method, against manually created
and curated benchmarks: a dataset used by Song et al. [18]
and the OrthoBench protein family dataset [20]. The goal
of this evaluation is to compare the sequence-based score,

which previously outperformed DA-based binary similar-
ity scores, with the similarity measures developed here.
Next, the best DA similarity measure is determined,

then used in combination with an orthology detection
method and evaluated on a test case of 32 arthropod
proteomes.

Methods
The methods comprise two parts. The first part describes
the development of the domain-based similarity mea-
sures between proteins. Different measures are tested on
reference classifications of protein families and machine
learning techniques are used for the comparison and the
evaluation of the measures. The second part describes
the implementation of porthoDom, the wrapper around
proteinortho used to produce clusters of ortholgous pro-
teins. The porthoDom and proteinorthomethods are then
evaluated on a real dataset of proteomes and compared
against an external database of orthologous proteins as a
blind validation.

Creation and evaluation of the similarity measures
All the measures developed rely on a pairwise domain
similarity matrix. The similarity matrix between domains
is created based on the direct comparison of domain
models and provides a continuous similarity score.
The different similarity measures are then tested on

three manually created and curated benchmarks and the
results compared between each measure and the Neigh-
bourhoodCorrelation (NC) method [18,19], which has
previously been shown to outperform binary domain-
based scores.
The methods are compared using ROC curves and AUC

scores and subsequently, the best-performing method is
selected to be used as a pre-processing step of the protein
orthology detection method.

Domain similaritymatrix
To improve the comparisons between domains, a domain-
domain similarity matrix was developed. The matrix was
created using domains in Pfam-A [21] version 27.0 (con-
taining 14831 Hidden Markov Models, or HMMs) but
the method can be used with any other HMM database.
The similarity between domains is computed using the
HHsearch tool [22]. Each HMM corresponding to a
domain in the Pfam-A database is aligned against all
the models of the Pfam-A database, resulting in 148312
pairs of aligned HMMs. Furthermore, the probability of
a true positive match is used as a similarity score, as
recommended in [22]. The true positive match value cor-
responds to the probability that two compared models are
homologous or that the sequences share a good struc-
tural alignment. The scores returned by HHsearch range
between [ 0, 100], but 95% of the scores are equal to or
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below 1. To reduce the size of the similarity matrix, only
scores between [ 1, 100] are stored (see Additional file 1).
The matrix is available on the web site alongside the

software.

Cosine similarity (COS)measure
A cosine similarity measure is implemented to compute
the distance between two DAs of any length. The cosine
measure is a similaritymeasure often used for high dimen-
sional spaces. Therefore, the measure is useful in the com-
parison of domain contents, as the number of domains
contained in the Pfam database is higher than our classical
three-dimensional space.
The cosine measure is computed between two vectors x

and y as follows:

cos = x · y
‖ x ‖‖ y ‖ (1)

The cosine similarity between two proteins is calculated
as follows: Let X and Y be two proteins of respective
domain arrangements: ABCC and DBBCE, then DX and
DY correspond to two sets, each one made up of the
unique domains extracted from their respective proteins.
The domain universe set is defined as the union of the two
sets, UXY = DX

⋃
DY . For example, let protein X corre-

spond to the domain set DX = {A;B;C} and protein Y to
DY = {B;C;D;E}. The domain universe set then becomes
UXY = {A;B;C;D;E}.
For each protein, a similarity vector of the size of the

domain universe set is created. In this example, two vec-
tors of length 5 will be created for protein X and protein Y
respectively, noted −→XU and −→YU . The scores at the different
positions i are defined as follows:

−→XUi =
{
1, if UXYi ∈ DX
S(XUi,DX) otherwise (2)

S(XUi,DX) = max(XUi,DXi), ∀DXi ∈ DX (3)

If a domain is present in a protein, the similarity is equal
to 1, otherwise the similarity will be taken as the similarity
value between this domain and the most similar domain
in the corresponding protein.
In the example, let domains A and D be evolutionarily

closely-related domains, (S(A,D) = 0.8), and domain E,
a domain sharing no similarity with any of the domains
of the protein X, (S(A,E) = 0, S(B,E) = 0, S(C,E) =
0). The universe vector of protein X will then be −→XU =
{1.0, 1.0, 1.0, 0.8, 0.0}, where A, B, and C are present inDX ,
D and A are similar and E shares no similarity with the
other domains. The universe vector of protein Y −→YU =
{0.8, 1.0, 1.0, 1.0, 1.0}, where A and D are similar and B,
C, D, E are present in DY These two vectors will lead to
closely related positions in domain space. In consequence,
the cosine similarity between two universe vectors of two
proteins with no domain in common will be 0, and the

cosine similarity between two universe vectors of two pro-
teins with the same domains but different arrangements
will be 1.

Maximal weightmatching (MWM)measure
MWM is a classic measure of pairwise vertex assignment
in graphmethodology and is based on edge similarity. The
algorithm is used in graph theory to solve optimisation
problems of pairing. Here, the implementation from the
networkx python library is used; for details see [23,24].
The MWM algorithm is used as a method to optimise

the similarity between domains of two different proteins.
The domains of two proteins correspond to the vertices of
the graph. Edges are created between all of the domains of
the protein X and all of the domains of the protein Y. No
edges are allowed between domains of the same protein. A
weight is put on each edge corresponding to the similarity
computed between the two domains linked by the edge.
The weights correspond to the scores from the similarity
matrix. This results in the creation of a bipartite graph.
The MWM algorithm then selects the set of edges with
the maximal total weight, where each node can only be
chosen once. Continuing with the example DAs, DX and
DY , the set of vertices V and the set of edges E correspond
to:

V = {AX ;BX ;CX ;BY ;CY ;DY ;EY } (4)
E = {(AX ,BY ); (AX ,CY ); ...; (CX ,DY ); (CX ,EY )} (5)

A domain of protein X can only be grouped with one
domain of protein Y, so that the set of edges selected by
the MWM algorithm will be:

E′ = {(AX ,DY ); (BX ,BY ); (CX ,CY )} (6)

The final similarity score is then computed as the sum
of the edge weights normalized by the size of the longest
protein set.

Adding domain order to the COS andMWMmeasures
Considering that the order of domains in a protein
is important and contains a strong phylogenetic signal
which indicates protein functional similarity [9,25,26],
domain order information is added to the protein similar-
ity measures.
When only the domain content is compared between

two proteins, the measure will here be referred to as
an order 1 measure (later on abbreviated as O1). The
COS and MWM measures described above correspond
to such O1 measures (COSO1 and MWMO1). Similar-
ity measures with an order of 2 (O2) are introduced
by using pairs of consecutive domains instead of single
domains.
Using the cosine computation example, the set of pairs

considered for protein X is DX = {AB;BC;CC} and the
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set of pairs for protein Y is DY = {DB;BB;BC;CE}. The
domain universe set is then:

UXY = {AB;BC;CC;DB;BB;CE} (7)

The scores at the different positions of the −→XU and −→YU
universe vectors of the two proteins are computed using
the mean similarity between pairs instead of the direct
domain-domain similarity measure:

Sp(AB,DB) = 0.5 × (S(A,D) + S(B,B)) (8)

The mean similarities replace the values in the cosine vec-
tor (equation 2) and the weights on the edges for the
MWMmethod (COSO2 andMWMO2 respectively).

Adding aweight to the COS andMWMmeasures
Next, the effect of a weighting scheme is evaluated for
the COS and MWM measures. The purpose of applying
the weighting scheme is to enhance the weight of highly
similar domains in the computation of the final similar-
ity measure. The scores produced with an O2 parameter
tend to be higher than the scores computed with an O1
parameter. This effect is due to a smaller number of
comparisons in the O2 domain universe set and to the
usage of a mean similarity when pairs of domains are
compared.
If a domain pair AB is compared to the pair AC, and C

and B do not share any similarity, the similarity between
the two pairs will be 0.5 according to equation 8. A mean
similarity of 0.5 with an O1 parameter corresponds to a
direct medium similarity score between domains. There-
fore, the scores computed with anO2 parameter can result
in the grouping of proteins of two different clusters by
creating false links between them. To give more impor-
tance to scores computed between similar pairs with
an O2 parameter, the scores are weighted depending on
the order parameter used. More details are given in the
Additional file 1 regarding the weighting scheme imple-
mentation and its effect on the scores (Additional file 1:
Figure S2).
In total, eight different similarity measures are tested:

COSO1, COSO2, MWMO1 and MWMO2 with and without
a weighting scheme applied.

The protein domain content similarity measure as a
pre-processing step for orthology
After selecting the best-performing similarity measure,
the measure is implemented in a piece of software built
around proteinortho. In this section, an explanation of the
software implementation and testing is provided.

porthoDom
The newly-developed method, named porthoDom, is
made up of a python wrapper and a C++ program for

proteinortho [4] (version 4.26). The aim of porthoDom is
to use the domain content similarity between proteins to
reduce the initial search space by clustering proteins with
similar domains together. Clusters of proteins with similar
domains form “search sub-spaces”. Orthology detection is
applied to the group of sequences belonging to the same
sub-space.
The python implementation uses the numpy (ver-

sion 1.8.1), and networkx (version 1.8.1) libraries. The
clustering is done using the kmedoids algorithm of
Pycluster (version 1.52) [27].
In detail, the method follows these steps:

• Starting with a list of proteomes, proteins are
annotated by the pfam_scan.pl script and the DAs of
the proteins are extracted. Alternatively, the user can
provide precomputed annotation files of the
proteomes.

• From the list of DAs of all the proteins in all
proteomes, a list of the unique DAs is created. The
pairwise similarity between all the unique DAs is then
computed.

• Unique DAs are clustered using the kmedoids
algorithm, set to look for 100 clusters by default. The
clusters correspond to sub-spaces of the initial
all-against-all protein search space.

• Protein and amino-acid sequences corresponding to
each sub-space are retrieved and processed into new
files and folders onto which proteinortho can be
applied independently.

• Proteinortho is then used on each sub-space, at the
sequence level.

• A classical proteinortho formatted output file is
created by gathering the results of all runs of
proteinortho.

COS01 is the default domain content similarity mea-
sure implemented in porthoDom, but other measures
can be set optionally as a parameter. Default param-
eters of proteinortho can be changed by providing a
configuration file. The wrapper can also start the orthol-
ogy prediction on a precomputed dataset with different
parameters, a useful and conserved original feature of
proteinortho.

Collapsing of domain repeats
In biological datasets, a possible bias in domain content
similarity computation can result from tandem repeti-
tion of domains [28-30]. To evaluate the efficiency of
porthoDom for grouping DAs with repeats, the similar-
ity between DAs can be computed both with tandem
repeats collapsed and with the original DA. A protein
with a DA {A;B;B;C;B;C} becomes {A;B;C;B;C} where
tandem repeats are collapsed.
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Results and discussion
Evaluation of the COS andMWM similarity measures
In the following section, the developed similarity mea-
sures, COS and MWM, are evaluated against the Neigh-
bourhoodCorrelation (NC) method [18,19]. The NC
methodology is based on sequence comparison and has
been shown to provide better protein family classifica-
tion results when compared to a domain-based similarity
measure [18].
Two manually curated datasets are used for evaluation:

a dataset used by Song et al. [18] (later on abbreviated
to SD) and the OrthoBench dataset [20] (OB). The SD
dataset comprises 20 protein families whereas the OB
dataset comprises 69 families. More details on the dataset
can be found in [18,20]. All proteins without DAs are
removed from the SD and OB datasets, respectively 5 out

of 1816 and 57 out of 1695, for easier interpretation of the
comparison between the NC, COS and MWM measures.
Moreover, one of the families in the SD, the kinase family,
is much larger than the other families and due to its size,
can create a classification bias [18,19].
In accordance with previous studies [18,19], the SD

dataset is analysed both with the kinase family (SD+)
and without (SD−). The measures are then evaluated on
both datasets and any potential bias induced by the pres-
ence of the kinase family in the SD+ can be detected by
comparison with the results obtained from SD−.
The COS,MWMandNCmeasures are evaluated on the

SD+, the SD− and the OB datasets using receiver operat-
ing characteristic (ROC) curves and area under the curve
(AUC) scores. The ROC curves and AUC scores are used
to compare the true and false positive rates (TPR and FPR)

Figure 1 ROC curves. ROC curves of the developed COS and MWMmeasures, and of the NC method against the SD− dataset (panel a), the SD+
dataset (panel b) and the OB dataset (panel c). For each panel, the left plots correspond to the full ROC curves and the right plots to a zoomed in
subsection along the x axis. COSO1, COSO2,MWMO1 andMWMO2 are evaluated with weighting (w) or without. The influence of the kinase family in
the SD+ dataset on the sequence similarity based method (NC) is clearly seen in panel b.
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of the COS, MWM and NC similarity measures. These
comparisons aremade using the standard pythonmachine
learning library scikit-learn [31].
Figure 1 displays the ROC curves for the COS and

MWM measures, with or without weighting, and the NC
score. When evaluating the COS, MWM and NC mea-
sures against the SD− (Figure 1a), the three measures give
similar results. The O1 and O2 parameters with or with-
out weighting also produce comparable results. However,
for equivalent FPR, the TPR of the ROC curves is slightly
lower for all similarity measures (Figure 1b) for the SD+.
The TPR over FPR reduction is far more pronounced for
the NC measure than for the COS and MWM measures.
The reduction in TPR over FPR for the SD+ compared to
the SD− for all of the measures can be explained by the
presence of the kinase family in SD+ as the overall TPRs
and FPRs are strongly influenced by the TPR and FPR of
the kinase family. Similarly to the SD− dataset, theO1 and
O2 parameters with or without weighting do not produce
different results for the SD+ dataset.
The ROC curves of the COS, MWM and NC mea-

sures against the OB dataset (Figure 1c) are similar to the
curves of the SD+ dataset. In the OB dataset, the TPR
over FPR curves of the NC measure are far lower than the
other measures. A slightly higher TPR over FPR can be
detected in this dataset for the COS and MWMmeasures
with a weight parameter, with a stronger TPR over FPR
difference between the COS measures with and without
weight.
An example in which domain-based similarity scores

are more efficient at grouping proteins of the same
family than sequence-based similarity scores is pre-
sented in Figure 2. The sequences of two proteins,
ENSRNOP00000052209 and ENSRNOP00000052216,
belonging to the PLUNC family from the OB dataset
are compared. PLUNC proteins (a member of the bac-
tericidal permeability-increasing (BPI)-like proteins) are
involved in defence against bacteria and are well-known
for their fast evolution and low sequence similarity [32].
The sequence-based NC measure has difficulty correctly
retrieving the members of the PLUNC family due to
their low sequence similarity. However, the proteins of
the PLUNC family are only composed of two domains
(PF01273, PF02886). The proteins of the family can
be made of one or both of these domains. The PLUNC
proteins are clearly classified as member of the same fam-
ily by the COS and MWM methods with high similarity
scores.
A comparison of the different measures is also per-

formed based on AUC scores. The AUC scores are com-
puted from the TPR and FPR of the different measures.
Table 1 summarizes the performances of the COS, MWM
and NC measures on the three different datasets (SD+,
SD−, OB).

Figure 2 Dotplot with domain visualisation of two proteins
belonging to the PLUNC family (ENSRNOP00000052209 and
ENSRNOP00000052216). The shadowed areas correspond to the
sequence identity between the two sequences. Although they share
the exact same DA, their sequence similarity is very low (20.8%). Run
with the needle program of the EMBOSS package [35]. Dotplot was
produced with the DoMosaics software [36].

The COS and MWM measures outperform the NC
method for SD+ and OB in terms of AUC scores. The
AUC scores from SD− are similar for all measures tested,
but are slightly better for NC. The AUC score of the NC
measure from SD+ is lower than the AUC scores of the

Table 1 AUC scores for all methods against the SD−, the
SD+ and the OB datasets

Method AUC (SD−) AUC (SD+) AUC (OB)

NC 0.993 0.844 0.919

COSO1 0.979 0.987 0.994

COSO2 0.971 0.978 0.992

COSO1 w 0.98 0.987 0.996

COSO2 w 0.971 0.973 0.996

MWMO1 0.98 0.982 0.996

MWMO2 0.972 0.974 0.996

MWMO1 w 0.98 0.981 0.996

MWMO2 w 0.972 0.969 0.997

The AUC scores are computed from the TPR and FPR of the different measures.
The scores reflect the quality of the COS, MWM and NCmeasures for protein
family classification. An AUC score of 1 corresponds to a perfect classification of
the dataset. All methods produce a very good AUC score, a small general
advantage can be observed for the methods using an order 1 parameter. Cosine
methods have better performances on the SD+ dataset and the MWMmethods
perform generally better on the SD− dataset and on the OB dataset. Using the
weighted version of the COS or MWMmeasure only improves the performance
on the OB dataset.
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COS and MWM measure and confirm that the NC clas-
sification is more sensitive to the presence of the kinase
family in SD+.
AUC scores are similar between the different COS and

MWM measures. When COS and MWM are compared
with the same order and weighting scheme, the MWM
measures perform better on the SD− dataset than the
COS measures. However, the opposite can be seen for the
SD+ dataset where the COS measures have higher AUC
scores than the MWMmeasures.
On the OB dataset, MWM and COS measures produce

very similar AUC scores, slightly higher in general for the
MWMmeasures.
The COSO1 and MWMO1 measures perform as well

or better than the COSO2 and MWMO2 measures on
all datasets. Moreover, the weighting scheme slightly
increases the performance of the COS and MWM mea-
sures on the OB dataset.
As the COS and MWM produce highly similar results,

in order to select one domain content similarity measure,
the complexity of both measures are compared. MWM
has a complexity of O(V 2E), with V being the number
of vertices and E the number of edges, whilst the COS
measure has a linear complexity. Therefore, the computa-
tional complexity of the COS measure is lower than that
of MWM. Based on these results, the COS algorithm is
chosen for the preprocessing stage of proteinortho.

Evaluation of protein orthology detection
Next, a direct application of the domain content similarity
measure to protein orthology detection is presented with
an evaluation of the predicted orthologous groups of pro-
teins. Proteomes of 32 arthropods were downloaded from
the Ensembl Metazoan website, version 20 (Additional
file 1: Table S1). The arthropod proteomes constitute a
good test case due to the density of the clade and their
annotation qualities.
PfamA-27.0 with the pfam_scan.pl annotation pipeline

is used to assign domains to the protein sequences.
Protein orthologous detections are performed on the
arthropod dataset using the porthoDom and proteinortho
software.
The quality evaluation of the orthology prediction is

accomplished by comparisons of the protein orthology
predictions with an external dataset used as a reference,
OrthoDB (version 5). As the detection of orthologous pro-
teins is not a trivial task, different methodologies will
often lead to different results, so the comparisons of pro-
teinortho and porthoDom to an external reference allow
the methodologies to be evaluated strictly on their general
behaviour.
Predicted groups of orthologous proteins produced by

proteinortho and porthoDom (abbreviated as PGOP for
predicted group of orthologous proteins), are compared

to the groups of orthologous proteins in the OrthoDB
dataset (abbreviated as RGOP for reference group of
orthologous proteins).
A PGOP can be classified into five non-overlapping cat-

egories, depending on the relationship between the PGOP
and the RGOP (see Additional file 1: Figure S2). The five
categories are:

• a superset: a PGOP is a superset compared to an
RGOP if all the proteins of an RGOP are present in
the PGOP and some of proteins of the PGOP are not
present in the RGOP.

• a subset: a PGOP is a subset compared to an RGOP if
the proteins of the PGOP are all present in the RGOP
but some other proteins of the RGOP are not in the
PGOP.

• identical: a PGOP is identical to an RGOP.
• absent: a PGOP cluster is absent compared to the list

of RGOP clusters if no proteins of the PGOP cluster
are found in the RGOPs.

• new: a PGOP cluster is new compared to the list of
RGOP clusters if the PGOP cluster is composed of
parts of several RGOPs.

The influence of the following porthoDom parameters
on these categories are evaluated: a domain content sim-
ilarity cut-off (0.5, 0.7), domain content similarity order
(O1, O2) and collapsing or not collapsing of domain
repeats. Proteinortho is used with the default parame-
ters in both porthoDom and the standalone version. The
results of the proteinortho and porthoDom predictions
are evaluated against the reference dataset and against
each other.
The comparison of the Proteinortho and porthoDom

results against the reference dataset for the domain con-
tent similarity cut-off of 0.5 are presented in Figure 3;
results for the domain content similarity cut-off 0.7 can be
found in Additional file 1: Figure S3. All combinations of
porthoDom parameters clearly show similar trends in the
proportion of the five different categories. This result is
similar to the ROC and AUC analyses in which the change
of parameters also had little influence on the results and
always produced good classification scores. The robust-
ness of the score is likely an effect of the pairwise domain
scoring stored in the domain-domain similarity matrix.
The numbers of clusters in each category are provided

in Table 2. The total numbers of protein clusters com-
pared to the reference dataset are similar between pro-
teinortho and porthoDom. The proportion of clusters that
are subsets of the reference is equivalent between the
two methodologies. The biggest difference comes from
the number of identical and superset groups. Superset
clusters tend to be more numerous for the porthoDom
results than for proteinortho and the number of identical
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Figure 3 Results of comparisons between porthoDom or proteinortho against the OrthoDB database. Different parameters are used for the
domain content similarity step of porthoDom and the default parameters of proteinortho are used for both methods. The parameters are: a domain
content similarity cut-off of 0.5, a domain content similarity of O1 corresponding to single domain comparisons, or O2 corresponding to the
comparison of pairs of domains, and an option collapsing or not of tandem domain repeats. The different parameters have little influence on
porthoDom due to the robustness of the domain content similarity method.

clusters is higher for proteinortho than for porthoDom.
porthoDom creates a higher percentage of new clusters
than proteinortho but also finds a lower number of absent
clusters for all combinations of porthoDom parameters.
Varying porthoDom parameters only has a small influ-

ence on the results. The COSO2 domain content similarity
used in porthoDom is more stringent than the COSO1
similarity. The small decrease in the proportion of identi-
cal, subset and superset clusters with the COSO2 reflects
the stringency of the choice of domain order parame-
ter. All combinations of porthoDom parameters used are
robust to the presence of repeats and repeat collapsing
does not alter the proportions of clusters in each of the
classification categories.
Identical, superset and subset clusters are the most

important classes for the comparisons between PGOP
and RGOP. These three classes reflect similar clusters

between the prediction and the reference. Interestingly,
porthoDom and proteinortho give a comparable total
proportion of the three classes.
A direct comparison between the clusters computed by

porthoDom and by proteinortho is provided in Additional
file 1: Figure S5 (here PGOP refers to the porthoDom
classification, and RGOP refers to the porteinortho clas-
sification). The comparison shows that the majority of
clusters are identical between predictions. The influence
of masking repeats can be seen in the number of subsets
created. Masking domain repeats increases the number of
clusters found by both porthoDom and proteinortho and
lowers the number of subset clusters.
Finally, a different number of initial clusters specified for

the k-medoids algorithm are tested: 10, 100, 500 and 1000,
in combination with a domain content similarity cut-off
of 0.5, a domain order parameter of O1 and no repeat

Table 2 Number and percentage of clusters in the different evaluation groups for proteinortho and porthoDom

Method Proteinortho PorthoDom PorthoDom PorthoDom PorthoDom

(O1, norepeat) (O1, repeat) (O2, norepeat) (O2, repeat)

Superset (%) 5442 (26.13) 5311 (28.53) 5274 (28.26) 5172 (27.58) 5161 (27.4)

Subset (%) 2639 (12.67) 2054 (11.03) 2077 (11.13) 2104 (11.22) 2171 (11.52)

Identical (%) 1945 (9.34) 1311 (7.04) 1333 (7.14) 1351 (7.21) 1328 (7.05)

New (%) 7419 (35.62) 7396 (39.73) 7445 (39.89) 7580 (40.43) 7622 (40.45)

Absent (%) 3383 (16.24) 2545 (13.67) 2536 (13.59) 2543 (13.56) 2559 (13.58)

The domain content similarity cut-off of porthoDomwas set to 0.5 and different combination of parameters affecting order (O1, O2) and repeats (with or without)
were tested.
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collapsing. The number of initial clusters based on domain
content can strongly influence the program run-time and
the results of the prediction. If too few clusters are set,
the gain in run-time will be negligible. However, if a high
number of initial clusters are created, the search sub-
spaces will be numerous, resulting in a decrease in compu-
tational time but potentially also in accuracy. Additional
file 1: Figure S6 compares the time and the classification
of clusters created by different initialization parameters
against proteinortho.
The comparison shows that setting the initial number

of k-medoids from 10 to 1000 decreases the run-time
(4 times faster). However, the number of identical clusters
between porthoDom and proteinortho is reduced from
13255 to 11102 (k = 1000 and k = 10 respectively, 2153
fewer cluster). The decrease in the number of identical
clusters is accompanied by an increase in the number of
superset, subset, new and absent clusters.
Currently, no automatic method is implemented to set

the initial number of k-medoids but a reasonable num-
ber seems to be one twentieth of the number of unique
domain arrangements present in the dataset.
Despite the differences coming from the direct compar-

ison of the results, the comparisons against an external
dataset give similar predictions. The orthology prediction
power of porthoDom and proteinortho can therefore be
considered as equivalent.
The porthoDom wrapper is designed to be similar to

proteinortho. Once the pairwise sequence comparison
is generated, it can be reused with different parameters
without again calling the full pipeline. A time comparison
is performed on a full pipeline run between porthoDom
and proteinortho. It is first important to note however,
that porthoDom requires an extra step compared to pro-
teinortho: the domain assignment using the Pfam annota-
tion script.
Table 3 summarizes the time needed for three different

runs of proteinortho and porthoDom with and without
pfam_scan.pl. The porthoDomwrapper, in its full version,
is 2.5 times faster than proteinortho and 5.7 times faster
without the pfam_scan.pl preprocessing. After domain
assignment, the time needed to complete a porthoDom

Table 3 Running time inminutes of proteinortho and
porthoDomwith and porthoDomwithout pfam_scan.pl
for the domain annotation

Name Proteinortho PorthoDom PorthoDom

(with pfam_scan.pl) (no pfam_scan.pl)

Run 1 1587 627 279

Run 2 1588 649 272

Run 3 1588 623 269

Mean 1587.6 633 273.3

run is taken up by the proteinortho clustering on the sub-
spaces of proteins with similar domain contents. Comput-
ing the pairwise similarity between all the DAs (approx.
24000 ) and clustering them takes around 20 minutes; the
remaining time corresponds to data processing.
The reduction of the computational time is a clear

consequence of the replacement of the all-against-all pro-
tein comparisons by sub-space searching for orthologs.
Even with the speed progress made on the recent
HMMER3 package [33], the hmmscan software used by
the pfam_scan.pl script for the domain detection step is
a bottleneck in terms of computational time, requiring
around 300 minutes to assign domains to a total of 32
arthropod proteomes on a 64 core computer. However,
as domain annotation is now a very common analysis
in comparative genomics, many proteomes already have
precomputed annotations. Therefore, it is expected that
in most cases the porthoDom package will provide a
significant time advantage.

Conclusion
Orthologous protein detection is a crucial bioinformatic
methodology for a wide range of analyses. Most methods
for protein orthology detection use a pairwise Blast [34]
all-against-all comparison of the proteins belonging to two
or more organism to detect orthologs. The amount of
time needed for the all-against-all comparison is a clas-
sic bottleneck in the area of comparative genomics. To
reduce time requirements, the protein search space can
be reduced using a domain content similarity measure as
a preprocessing step. Instead of computing a full pairwise
all-against-all comparison, sub-groups of sequences are
clustered according to their domain content similarity val-
ues, and pairwise comparisons are subsequently restricted
to all proteins within a cluster against each other.
In this paper, two new such measures of protein similar-

ity are presented based on a cosine distance and amaximal
weight matching algorithm. The measures use domain
contents of proteins and a new continuous similarity score
between domains to compare proteins against each other.
The accuracy of the two measures has been benchmarked
on curated datasets and both show an ability to efficiently
group proteins from the same family together.
The cosine measure, due to its better performance and

its lower complexity, is chosen to be combined with
the orthologous protein detection tool, proteinortho, in
a method named porthoDom. It is also important to
note that the developed methodology could in theory
be combined with any other sequence-based orthologous
proteins detection tool, such as OrthoMCL [3].
The crucial parameter of porthoDom appears to be

the number of initial domain-based clusters creating the
search sub-spaces. Too high a number of initial clusters
will result in the creation of too many search sub-spaces,
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leading to fast predictions but very different results com-
pared to a normal proteinortho analysis. As proteinortho
orthology predictions are based on the E-value similar-
ity between protein sequences from a Blast comparison,
too many initial clusters will lead to too few cluster mem-
bers and can impact the resulting E-values. In contrast,
too few initial clusters will give orthology predictions sim-
ilar to the predictions of proteinortho alone but without a
significant increase in speed.
Direct comparison of the two methods shows that the

majority of clusters created by porthoDom are identical to
the clusters created by proteinortho. porthoDom also cre-
ates clusters that are subsets of proteinortho. This result
seems to be the consequence of the proteins grouped by
domain content; if a protein is not placed in the correct
cluster during the domain-based step, the resulting clus-
ters based on sequence similarity will be smaller. However,
porthoDom and proteinortho results are similar when
compared using an external reference database of orthol-
ogous proteins. These results emphasize that protein
orthology detection is not a trivial task and that differ-
ent software often produces different results. Therefore,
the clustering results created by both methods should be
considered equivalent.
porthoDom should be seen as a new class of method for

orthology detection, using both domain and amino-acid
sequence similarities to create groups of orthologous pro-
teins. Moreover, the pre-filtering step based on domain
content similarity speeds up orthology detection by a
factor ranging from 2.5 to 5.7.
A drawback of the method is that not every protein

may be assigned a domain and, consequently, many pro-
teins may not be amenable to further processing. In the
arthropod dataset, proteins with an annotated domain
represent 65% of the total number of proteins. Nonethe-
less, the number of known domains is increasing and
therefore reducing the number of proteins without anno-
tation, as well as improving the annotation of existing
proteins.
Our ever-increasing knowledge of domains should pos-

itively affect the precision and efficiency of domain-based
orthology detection methods.
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