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Introduction

As sanctioned by the IEEE Radar Standard P686/D2 (January 2008),
the term waveform diversity indicates:

Adaptivity of the radar waveform to dynamically optimize the radar per-
formance for the particular scenario and tasks. May also exploit adap-
tiity in other domains, including the antenna radiation pattern (both on
transmit and receive), time domain, frequency domain, coding domain,
and polarization domain.

This paradigm is, undoubtedly, the expression of the revolutionary tech-
nological advances in the radar signal processing field (such as new flex-
ible waveform generators, high speed signal processing hardware, digital
array technology, and so on), which have made attainable the actual
stressing performance requirements; indeed, its basics are in measure-
ment diversity, knowledge-aided processing and design, and transmitter
adaptivity, which only in the last decades have become fully accessible.
The waveform diversity paradigm arises from the insatiable demands
for remote sensing performance that are always present, especially in
military applications. We recall here that increasing complex operat-
ing scenarios call for more and more sophisticated algorithms with the
ability to adapt and diversify dynamically the waveform to the oper-
ating environment: it represents, indeed, the key ingredient to achieve
a significant performance gain with respect to classic radar waveforms.
Nevertheless, this flexibility demands for renewed strategies of modeling
waveform properties and optimizing waveform design.

All these aspects highly justify the interest of the research herein con-
ducted, whose main aim has been to investigate the potentiality offered
by waveform design and waveform diversity. In particular, the essence of
the present work of thesis is the possible application of the Optimization
Theory so as to the devise high performing transmit signal /receive filter
design techniques. Verily, once a certain figure of merit has been cho-

XI



XI1 Introduction

sen and properly described by the mathematical language, and once the
necessary data have been collected, many problems of practical inter-
est in radar field can be modeled in terms of an optimization problem,
where the main purpose is to optimize the system performance under
some constraints imposed by interference, clutter and, more in general,
the operating environment. The optimization theory and its tools are
not unfamiliar to the signal processing community, although only with
the technological growth of the last years they become approachable and
computationally reasonable.
Therefore, the thesis is organized as follows:

e In Chapter 1, a waveform design algorithmn attempting to jointly
optimize the radar detection performance and the region of achiev-
able values for the Doppler estimation accuracy (for a fixed target
Doppler frequency) in the presence of colored Gaussian noise is
proposed, under a constraint on the transmitted energy and on the
degree of similarity with a pre-fixed radar code. Precisely, the re-
sulting waveform design problem can be formulated in terms of a
non-convex multi-objective optimization problem. Thus, a family
of optimal solutions is constructed, through the use of the Pareto-
optimal theory and the introduction of the Pareto weights.

e In Chapter 2, the uncertainty over the prior knowledge of the tar-
get Doppler shift is dealt with. The starting point is the realiza-
tion that many among the algorithms and design techniques in the
open literature optimize the radar signal in correspondence of a
given target frequency, which is actually an unknown parameter:
therefore, even small mismatches between the presumed and the
actual value may result in extremely poor performance. Thus, a
max-min approach is employed, and a robust waveform design al-
gorithm with polynomial computational complexity is proposed to
devise good sub-optimal transmit signals, relying on the Semidef-
inite Programming (SDP) relaxation technique and the theory of
trigonometric polynomials, and assuming colored Gaussian distur-
bance and under a similarity and an energy constraint.

e In Chapter 3, the imposition of a Peak-to-Average power Ratio
(PAR) constraint is investigated, which is appealing also from a
technical point of view, and very reasonable for radar applications.
Specifically, it permits to keep under control the dynamic range of
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the transmitted waveform, which is be a primal issue since linear
amplifiers with a large dynamic range may be difficult to obtain.
Design algorithms maximizing the Signal-to-Noise Ratio (SNR),
for both the cases of a given and an unknown target Doppler fre-
quency, are synthesized, and their phase quantized versions (which
force the waveform phase to lie within a finite alphabet) are de-
vised. All the problems are formulated in terms of non-convex
NP-hard quadratic optimization programs, and thus high-quality
sub-optimal solutions, relying on SDP relaxation and randomiza-
tion as well as on the theory of trigonometric polynomials, are
proposed.

e In Chapter 4, the problem of cognitive transmit signal and receive
filter design for a point-like target embedded in a high reverberat-
ing environment is considered, focusing on phase-only waveforms
sharing either a continuous or a finite alphabet phase (so as to com-
ply with the technological limits of the current radar amplifiers);
moreover, a similarity constraint is enforced, so as to keep under
control the auto-ambiguity properties of the sought transmit code.
In particular, the Signal-to-Interference-plus-Noise Ratio (SINR) is
considered as figure of merit, and an iterative procedure, requiring
the solution fo both a convex and an NP-hard quadratic fractional
problem, is proposed to sequentially improve it. As for the NP-
hard problem, a relaxation and randomization approach is applied
so as to find good-quality sub-optimal solutions.

At the end of each Chapter, some conclusions and possible future tracks
are given.
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Notation

column vector;

i-th element of the column vector a;

i-th column vector;

matrix;

(i, k)-th entry of the matrix A;

transpose operator;

complex conjugate operator (component-wise complex
conjugate if the argument is a matrix or a vector);
transpose conjugate operator;

integer floor operation;

trace of the square matrix argument;

determinant of the square matrix argument;

vector formed by the diagonal elements of

the matrix argument;

diagonal matrix formed by the components of

the vector argument;

minimum eigenvalue of the square matrix argument;
maximum eigenvalue of the square matrix argument;
identity matrix;

matrix with zero entries;

vector with all zeros except 1 in the k-h position;
imaginary unit (i.e., j = /—1);

set of real numbers;

set of complex numbers;
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Notation

R{-}
)

-
arg(-)
O]
E[-]
=

-

real part of the argument;

imaginary part of the argument;
Euclidean norm of the argument vector;
lso norm of the vector argument, defined
as [|alloe = max |z(k)[;

ke(1,...,N)

modulus of a complex number;
argument of a complex number;
Hadamard element-wise product;
expected value operator;

generalized inequality: A > B means that A — B

is an Hermitian positive semidefinite matrix;

generalized inequality: A > B means that A — B

is an Hermitian positive definite matrix.



System Model

In the following, the model for both the transmitted and the received
coded signals is presented, which will be the basic assumption in most
part of the thesis.

It is consider a radar which transmits a coherent burst of pulses, such
as in [1]:
s(t) = aru(t) exp[j (27 fot + ¢)] |

where a; is the transmit signal amplitude, j = v/—1,

N-1

u(t) =Y ali)p(t —iTy),

1=0

is the signal’s complex envelope (see Figurelll), p(¢) is the signature of the
transmitted pulse, T, is the Pulse Repetition Time (PRT), [a(0), a(1), ...,
a(N —1)] € CV is the radar code, C denotes the set of complex num-
bers, fo is the carrier frequency, and ¢ is a random phase. Moreover, the
pulse waveform p(t) is of duration T}, < T, and has unit energy, i.e.

TP
/ Ip(t)2dt = 1.
0

The signal backscattered by a target with a two-way time delay 7 and
received by the radar is

r(t) = et oHDET)y (¢ — 7y i(t) + n(t),

where «, is the complex echo amplitude (accounting for the transmit
amplitude, phase, target reflectivity, and channels propagation effects),
fa is the target Doppler frequency, and the term n(t) + i(t) is overall
additive disturbance due to the interference (it may be clutter or other
source of interference) and thermal noise. This signal is down-converted

1
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wu(t) o)

a(0)
H af 3,)
| ]

Figure 1: Coded pulse train u(t) for N =5 and p(t) with rectangular shape.

to baseband and filtered through a linear system with impulse response
h(t) = p*(—t). Let the filter output be

N—1
v(t) = ae I for Z a(i)ej27rideTXp(t —iT — 7, fq) + w(t),
i=0

where x,(A, f) is the pulse waveform ambiguity function [2], i.e.

+o0 .
o ) = / p(B)p* (B — N> Pap,

—00

and w(t) is the down-converted and filtered disturbance component. The
signal v(t) is sampled at t, = 7+ kT, k = 0,..., N — 1, providing the
observable

%a(k)eﬂ”kfdﬂxp((), fa) +w(te), k=0,...,N—1,

where a = VNa,e 72707 Assuming that the pulse waveform time-
bandwidth product and the expected range of target Doppler frequencies
are such that the single pulse waveform is insensitive to target Doppler
shiftﬁ, namely x,(0, fa) ~ xp(0,0) = 1, it is possible to rewrite the

v(tg) =

'Range straddling losses are neglected; also, the assumption is that there are no
target range ambiguities.

*Notice that this assumption might be restrictive for the cases of very fast moving
targets such as fighters and ballistic missiles.
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samples v(tg) as

%a(k‘)eﬂ””ﬂr tw(ty),  k=0,...,N—1.

Moreover, denoting by ¢ = [a(0),a(1),...,a(N —1)]T the N-dimensional

column vector containing the code elements, p = \/—% [1,ej27r”d,...,

v(ty) =

; T . .
el2m(N _1)”d] the normalized temporal steering vector, vy = f47, the

normalized Doppler frequency, v = [v(tg), v(t1),...,v(txy_1)]", and w =
[w(to), w(t1),...,w(ty—1)]", the following vectorial model for the backscat-
tered signal is obtained [3]

v=acOp+w. (1)

In the following the disturbance w will generally be modeled as a
zero-mean complex circular Gaussian vector with known positive-definite
covariance matrix

Elww'] = M ; (2)

further details will be given in case model (2) no longer subsists.






Chapter 1

Pareto-Optimal Radar
Waveform Design

1.1 Introduction

More and more sophisticated algorithms for radar waveform design
have been recently developed, due to the considerable advances in high
speed signal processing hardware and digital array technology, as well as
the growing interest for better and better radar performances [4], [5].

Some recent studies concerning waveform optimization in the pres-
ence of colored disturbance can be found in [6]. Therein, some algo-
rithms, exploiting the degrees of freedom provided by a possibly rank
deficient clutter covariance matrix, are developed. In [7], a signal design
approach relying on the maximization of the SNR under a similarity
constraint with a given waveform is proposed and assessed. In [IJ], fo-
cusing on the class of linearly coded pulse trains (both in amplitude and
in phase), the authors introduce a code selection algorithm which max-
imizes the detection performance but, at the same time, is capable of
controlling both the region of achievable values for the Doppler estima-
tion accuracy and the degree of similarity with a pre-fixed radar code.
Further algorithms are also available attempting to determine the radar
waveforms optimizing P; under structural constraints (for instance a
phase-only modulation) [8, 9] or possibly for airborne Space Time Adap-
tive Processing (STAP) scenarios [10)].

In this Chapter, the focus is still focus on constrained code optimization,
in the presence of colored Gaussian disturbance, assuming the same sig-

5
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nal model as in [I]. At the design stage, it is proposed a waveform
design algorithm based on the following criterion: joint optimization of
the detection performance and of the region of achievable values for the
Doppler estimation accuracy, under a constraint on the transmitted en-
ergy and on the degree of similarity with a pre-fixed radar code. This
is tantamount to jointly maximizing two quadratic forms, so that the
resulting waveform design problem can be formulated in terms of a non-
convex multi-objective optimization problem. In order to solve it, the
scalarization technique is invoked, where the original vectorial problem
is reduced to a scalar one through the use of the Pareto-optimal the-
ory. Thus, the proposed codes are chosen as Pareto-optimal poz’ntsﬂ of
the previously mentioned multi-objective optimization problem. Pre-
vious applications of the multi-objective optimization theory to radar
waveform design can be found in [I2], [I3], where Multi-Objective Evo-
lutionary Algorithms (MOEA) are applied to approximate the Pareto
optimal set. In the present specific application, it is not necessary to
approximate the Pareto set via MOEA, because the proposed determin-
istic and non-iterative procedure, exploiting scalarization, is capable of
providing the exact Pareto-optimal points.

At the analysis stage, the performance of the new encoding algo-
rithm are assessed in terms of detection performance, region of achiev-
able Doppler estimation accuracy, and ambiguity function, highlighting
the role of the Pareto weight in the optimization. The results show
that it is possible to trade-off the aforementioned performance metrics.
Precisely, detection capabilities can be swaped for desirable properties
of the waveform ambiguity function and/or for an enlarged region of
achievable Doppler estimation accuracies. Furthermore, the trade-off is
ruled by both the similarity constraint and the Pareto weight. Indeed,
this last parameter defines the relative importance of the two objectives
in the optimization problem. Otherwise stated, it represents the cost re-
quired for improving a given objective (namely the CRLB) making worse
the other (namely the detection probability).

Thus, the Chapter is organized as follows. In Section [[.2] resorting
to the system model previously presented, the mathematical formulation
for the performance measures is given. In Section [[3] the code design

LA Pareto-optimal solution of a multi-objective optimization problem is defined as
any solution that can’t be improved with respect to a component without worsening
the others [11].
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problem is formulated, and the algorithm which provides Pareto-optimal
waveforms is presented. In Section [[L4] the performance of the proposed
encoding method are assessed also in comparison with a standard radar
code. Finally, in Section [[L3] the conclusions and outline possible future
research tracks are drawn.

1.2 System Model and Performance Measures

In the following, assuming, for the backscattered signal, the same
model as in (), the focus is on the key performance measures which are
to be optimized or controlled during the selection of the radar code.

1.2.1 Detection Probability

It is well known that the problem of detecting a target in the presence
of observables described by the model (dl) can be formulated in terms of
the following binary hypotheses test

Hy: v=w
(1.1)
H: v=acOp+w

Under the assumption (2)), the Generalized Likelihood Ratio Test (GLRT)
detector over a for (ILT]), which coincides with the optimum test (ac-
cording to the Neyman-Pearson criterion) if the phase of « is uniformly
distributed in [0, 27) |14}, [15], is given by

WM Y cop)? Z a, (1.2)

where G is the detection threshold set according to a desired value
of the false alarm Probability (Pf,). An analytical expression of the
detection Probability (Py), for a given value of Py, is available both for
the cases of nonfluctuating and fluctuating target. In the former case
(NFT)

P;=Q <\/2\a]2(c op)iM~(cop), \/—2lnPfa> : (1.3)
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while, for the case of Rayleigh fluctuating target (RFT) with E [|af*] =

0-[17

lnPfa
P, = , 1.4
I eXp<1+03(c@p)*M_1(c@p)> (14

where Q(+,-) denotes the Marcum @ function of order 1. This expres-
sion shows that, given Py,, Py depends on the radar code, the distur-

bance covariance matrix and the temporal steering vector only through
the SNR [I], defined as:
2 tar—1
al*(coOp)' M~ (c® NFT
SNR:{\ *(c@p) (cop) | (15)

cicop) M (cop) RFT

Moreover, Py is an increasing function of SNR and, as a consequence,
the maximization of P; can be obtained optimizing the SNR over the
radar code.

1.2.2 Doppler Accuracy

The Doppler accuracy is bounded below by CRLB and CRLB-like
techniques which provide lower bounds for the variances of unbiased
estimates. A reliable measurement of the Doppler frequency is very
important in radar signal processing because it is directly related to the
target radial velocity useful to speed the track initiation, to improve the
track accuracy [L6], and to classify the dangerousness of the target; hence
it is clear that it has to be taken in account in the code design operation.
It can be shown that the CRLB for known « is given by [I]:

Y
Acr(fa) = 55— (1.6)
oh' A r—10h
oM 5,
where h = c® p and ¢ = 2@2. Notice that
oh
— =T,cOpOu,
0fa b
with w = [0, j27, ..., j2m (N — 1)]7, so that (IB) can be rewritten as
Acn(fs) = v (17)

T2(copouw) M (copou)
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1.2.3 Similarity Constraint

Designing a code which just optimizes the detection performance does
not provide any kind of control on the shape of the resulting coded wave-
form. Precisely, it can lead to signals with significant modulus variations,
poor range resolution, high peak sidelobe levels, and more in general with
an undesired ambiguity function behavior. These drawbacks can be par-
tially circumvented imposing a further constraint to the sought radar
code. In other words, it is required that the solution to be similar to a
known code cg (with ||co||? = 1), which shares constant modulus, rea-
sonable range resolution and peak sidelobe level. This is tantamount to
imposing that [7]:

lle—col” <e, (1.8)

where the parameter € > 0 rules the size of the similarity region. In
other words, (L8) permits to indirectly control the ambiguity function
of the considered coded pulse train: the smaller e the higher the degree
of similarity between the ambiguity functions of the designed radar code
and of the reference sequence.

1.3 Problem Formulation and Pareto-optimal Code
Design

The idea pursued in this Chapter is to design a radar code which op-
timizes jointly the detection performance and the CRLB on the Doppler
estimation accuracy, under a similarity constraint with a known radar
code ¢y and an energy constraint. Specifically, exploiting the following
relationships

(cop)'M Y cop)=c'Re (1.9)

and
(c@p@u)T M1 (cOPpOu) :cTRlc, (1.10)

where R = M~ ' o (ppT)>k and Ry = M~ ' o (ppT)* ©) (uuT)>k are
positive semidefinite [I7, pag. 1352, A. 77| (in particular, notice that
R is positive definite since ! Rx = (x © p)? M~ (x © p) > 0 for any
x # 0, which is equivalent to  ® p # 0), it appears that Py is an
increasing function of ¢! Re, while the CRLB is a decreasing function of
c'Ric. As a consequence, the joint optimization of the P; and CRLB



10 Chapter 1 Pareto-Optimal Radar Waveform Design

can be formulated in terms of a non-convex multi-objective optimization

problem [I1 pp. 174-187]:
max (c'Re, c'R;c)
C

st. |le—col|? < e (1.11)
le|]? = 1.

assuming the standard component-wise partial ordering in R2.

In the following, radar codes are designed which are Pareto-optimal
solutions to (LII]), through the scalarization technique (this technique is
thoroughly explained in some specific books such as [11], 18], and shortly
summarized in Appendix [Al for reader’s ease and to give self-consistency
to this paper). Precisely, consider the scalarized problem

T a1 [e5)
mCaX ¢ )\max(R)R+ )\maac( l)Rl] ¢
st. Jle—col]* <e ) (1.12)
lel]? =1
a1 a3 . .
where pw—_<y > (0 and Jw— Ay > 0 are the weights. A code c is an

optimal solution of ([LI2]) if and only if it is an optimal solution of

max cQ(v) ¢
c
st. |le—col?<e (1.13)
lel]? =1

where Q(v) = R+yR1, v = g—f% > 0. This claim is evident since

the objective functions of problem (LI2)) and (ILI3)) are proportional and
the constraint sets are the same.

Given ~, an optimal solution to the previous scalarized problem can
be found through the procedure proposed in [7]. Precisely, the Pareto-
optimal point corresponding to v can be constructed according to Algo-
rithm [I1

The parameter v can be interpreted as the weight given to the second
objective (namely, the CRLB) with respect to the first one (namely, the
P,;); otherwise stated, it represents the cost required for improving a
component making worse the other.

A final remark concerns the applicability of the proposed framework
in real scenarios. Evidently, the objective functions require the specifi-
cation of v4; as a consequence, the solution depends on this pre-assigned
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Algorithm 1 Determination of a solution to problem (LI3])

Require: ¢y, ¢, R, Ry, 7;
Ensure: an optimal solution ¢ of problem (LI3));

10:

11:

: let Q(7) £ R+ R,

let ¢ be the unit norm eigenvector corresponding to the greatest
eigenvalue of Q(7);
define & = &€’ arg(cTc()) (where arg(x) defines the argument of x);
if &E(cgé) >1—¢/2 (where R(x) defines the real part of =) then
Copt(7) = &
else if &E(cgé) <1—¢/2 then
let Mnin(Q(7)) and Apaz (Q(7)) be, respectively, the smallest and
the greatest eigenvalue of Q(7);
define:

A 1 .
T (12"

- m = Amaz (Q(7));

P2 (Amaz(Q (1)) =Amin (Q() .
- 12 (p1/2—1) )
cf(-Qu+al) "o ”
_ _ 2 — M
[Cg(—Q(’Y)-H\I) 100]
solve the equation above, via Newton’s method, respect to A, with

m < A< n;
Copt (V) = (1 - %)

- P

[

consider the equation

(-Qm+xI)'eo
et (-Qq+AI) ey’

12: end if
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value. It is thus necessary to provide some guidelines to set 14 in practical
scenarios. To this end, it is important to highlight that:

e a single coded waveform designed for the challenging condition of
slowly moving targets (i.e. v4 ~ 0) can be devised,

e a single coded waveform optimized over an average scenario may be
designed. Specifically, the code might be chosen so as to maximize
the objectives with R replaced by R, = M1 ® (E [pp ])*, where
the expectation operator is over the normalized Doppler frequency.
If this last quantity is modeled as a uniformly distributed random
variable, i.e. vg ~ U (—¢,€), with 0 < € < 1/2, the expectation can
be readily evaluated, leading to

R,=M'ox, (1.14)

sin(7x) )

where X (m,n) = sinc [2¢(m — n)], and sinc(z) = —

1.4 Performance Analysis

In this Section, the quality of the proposed waveform design technique
are investigated. The analysis is conducted in terms of Py, CRLB for
Doppler estimation accuracy, and ambiguity function of the pulse train
modulated with the designed code. Additionally, the Pareto-optimal
curve are provided, i.e.

(1.15)

(where, according to (3] and (7)), Fy and F, rule, respectively, Py
and CRLB. Specifically, they respectively play the role of a normalized
SNR and a normalized inverse CRLB); namely the set of Pareto-optimal
values, obtained through scalarization and varying the relative weight -,
for the considered optimization problem. Finally, the Pareto trade-off
between Py and CRLB, arising through the variation of ~, is explored.

The analysis is developed assuming a disturbance covariance matrix
M with the following structure:

M = Mclutter + 10_2I
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Figure 1.1: Pareto-optimal curves for v €]0,10], ¢ = 0.1 (top-left), e = 0.3 (top-
right), ¢ = 0.7 (bottom-left) and ¢ = 1.9998 (bottom-right), with the polyphase
Barker code of length N = 7 as reference code. The set of achievable values under
the curves is shaded in gray.

where M cutter = p‘m_"‘, with p = 0.9. Moreover, the Py, of the re-
ceiver is fixed to 1079, vy = 0; a NFT is considered, and the reference
code is the generalized Barker sequence of length N = 7 [2| pp. 109-
113] ¢p = [0.3780,0.3780, —0.1072 — 50.3624, —0.0202 — j0.3774, 0.2752 +
70.2591,0.1855 — j0.3293, 0.0057 + j0.3779], properly normalized in order
to obtain a unitary norm vector. Indeed, the choice for this is mainly
because it shares a good ambiguity function. In Figure [[.1] the Pareto-
optimal curve for several values of € is plotter; namely, different degrees
of similarity between the devised and the pre-fixed code are considered,
assuming that 7 ranges in the interval ]0, 10]. This curve is also referred
to as optimal trade-off curve, because it highlights the connection be-
tween the two objectives, I} and F5, emphasizing the role of the weight
7 in the determination of their Pareto-optimal values and the cost paid
for increasing one component with respect to the other. The shaded re-

2Similar results, not reported in the Chapter, have been obtained with a Frank
code. In fact, other similarity codes may exist that, with respect to the analyzed
scenari,o might perform better than the generalized Barker code in terms of P; and/or
CRLB.
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(a) € =1.9998 and v = 1. (b) e=0.3 and v = 1.

,

(c) €=0.1561 and v = 1. (d) € =0.0506 and v = 1.

Figure 1.2: Ambiguity function modulus of the designed code with N =7, T, = 5T),.

gion indicates the set of all the achievable values (Fy, Fy); for example,
intercepting the curve with the vertical line F; = 7 (thus considering a
certain value for Py), it can be observed how small F5 (thus how large the
corresponding CRLB) has to be in order to achieve F; > 7. The same in-
terpretation arises intercepting the curve with an horizontal line Fo = 3
(thus considering a certain value for the CRLB), which makes evident
how small Fy (thus the corresponding Py) has to be in order to achieve
Fy > (. The slope of the optimal trade-off curve at a Pareto-optimal
value shows the local optimal trade-off between the two objectives; steep
slopes lead to large variations of F5 in correspondence of small changes in
[y (this is actually what happens in the lower right region of the curves
in Figure [LT)).

Notice also how a reduction of € (or, equivalently, an increase in the
degree of similarity) leads to worse and worse optimal values for both F}
and F5, namely to lower and lower Pareto-optimal curves. This result
can be explained observing that decreasing e is tantamount to reducing
the size of the feasible set. However, the resulting loss (both in terms
of detection capability and estimation accuracy) is compensated for an
improvement of the coded pulse train ambiguity function, which appears
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Figure 1.3: Ambiguity function modulus of the generalized Barker code ¢g of length
N =7 with T, = 5T},

more and more similar to that of the reference code. This is shown
in Figures [[L2h-d, where the ambiguity function modulus is plotted, for
v = 1 and some values of the similarity parameter e. Comparing them
with the ambiguity function of the code ¢g, plotted in Figure [[3] it
can be easily recognized a greater and greater degree of similarity as e
decreases.

The effects of the similarity parameter € on the detection capability
and the Doppler estimation accuracy are analyzed in Figures [[Zh-b.
Therein, setting v = 0.05, the P; (Figure [[4h) and the normalized
CRLB (CRLB, = T2?CRLB, Figure [4b) versus |a|?> are plotted for
several values of € (e = {0.1,0.3,0.7,1.9998}). In order to compare the
performance of the sought code with that of the similarity sequence, the
P; and CRLB,, obtained through the use of ¢y are evaluated too. As
benchmark code, instead, it is consider the sequence which maximizes
the unconstrained (namely without forcing the similarity constraint) Py
or CRLB , i.e.

P
Chcmank = argmax { e Re / [lel2 =1} | (1.16)

ciﬁfﬁnark = arg max {cTRlc/ HcH2 = 1} . (1.17)

The corresponding P; and CRLB are referred to in the following as
P;’em’hma‘rk and CRLBbPenchmark = Usyally, they are are not obtained in
correspondence of the same code.



16 Chapter 1 Pareto-Optimal Radar Waveform Design
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(a) Ps versus |af® for non-fluctuating (b) CRLB, versus |a|?> for non-
target. fluctuating target.

Figure 1.4: P;, = 1075 N = 7, v = 0.05, and: ¢ = 0.1 (solid-circle curve),
e = 0.3 (dashed curve), ¢ = 0.7 (dotted curve) and ¢ = 1.9998 (solid-down triangle
curve). The curves related to ¢g (solid curve) and Cpenchmark (dash-dotted curve) are
highlighted directly on the figure; notice that the curve for e = 1.9998 overlaps with
the benchmark one (Py vs |af?).

The curves in Figure [[4h show that, decreasing e, worse and worse
P, values are obtained. This behavior can be explained observing that
reducing € is tantamount to reducing the size of the similarity region.
Nevertheless, the quoted P, loss is compensated for an improvement in
the coded pulse train ambiguity function, which is forced to be more
similar to the reference sequence. Different considerations apply to the
curves of Figure [[4b, representing the CRLB behavior for the same
values of € as in Figure [[L4h. In this case, due to the small value of the
relative weight v, the scalarization places almost all the emphasis on the
P, objective, which substantially rules the choice of the optimum code for
the scalarized problem. As a consequence, enlarging the similarity region,
we can find a new code improving P, but such a code can also lead to
a degradation of the CRLB because the two objectives are competing.

Now the effects of the Pareto weight +, on the performance of the de-
signed code, fixing the similarity constraint €, are analyzed. To this end,
in Figure[[.5] the Pareto-optimal curve obtained for e = 0.1561 are plot-
ted, highlighting six different Pareto-optimal values (operating points in
the following), related to six different weights. In Figures [[.6h and [L6b,
the impact of the Pareto weight on the optimization of the detection ca-
pability and Doppler estimation accuracy is studied. Specifically, the P,
and CRLB,, versus |a|? are plotted for the six operating points of Figure
The performance follows the same qualitative behavior explained in
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Figure 1.5: Pareto-optimal curve for ¢ = 0.1561 and v € ]0,10]. Each marker
represents an operative point for a given v; v = 0.05 (circle), v = 0.4 (up-triangle),
~v =1 (right-triangle), v = 3 (square), v = 6.5 (diamond) and v = 10 (star).

Figure [L T} namely, P; and CRLB are both decreasing functions of +.
Finally, it is important to point out that, although tied up to the same
similarity value €, the codes resulting from the optimization problem
([CI3) are clearly affected by the chosen value for the weight . As a
consequence, the corresponding pulse trains will exhibit different ambi-
guity functions as shown in Figures [L7h-d.

1.5 Conclusions

In this Chapter, the radar waveform design, in the presence of colored
Gaussian disturbance, forcing an energy and a similarity constraints,
has been addressed. The considered design criterion has been the joint
constrained optimization of the detection performance and CRLB on
Doppler estimation accuracy. The problem has been formulated in terms
of a non-convex multi-objective optimization problem with two quadratic
constraints. Hence, radar codes been have constructed as Pareto-optimal
points of the aforementioned problem through the scalarization proce-
dure.

At the analysis stage, the performances of the new algorithm have
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been evaluated in terms of detection performance, CRLB for Doppler
estimation accuracy, and ambiguity function. Additionally, the Pareto-
optimal curve has been studied showing the effects of the Pareto weight
on the performance trade-off. Finally, the impact of the similarity con-
straint on the performance, for a given value of the Pareto weight, has
been analyzed.

Possible future research tracks might concern the extension of the
framework to situations where it is necessary to optimize more than two
objectives (performance measures) and/or where it is necessary to force
additional constraints on the structure of the radar waveform.
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20

Pareto-Optimal Radar Waveform Design




Chapter 2

A Doppler Robust Max-Min
Approach to Radar Code
Design

2.1 Introduction

The advent of adaptive radar transmitters, which permit the use
of advanced and flexible pulse shaping techniques, and the significant
achievements in high speed signal processing hardware are paving the
way to the development of very innovative and computational demand-
ing techniques for radar waveform design [4, 19]. The idea is to adapt
and diversify dynamically the transmitted signal to the operating envi-
ronment in order to achieve a performance gain over classic radar wave-
forms |5l 20, 211, 22, 6, [7].

In [, focusing on the class of linearly coded pulse trains (both in am-
plitude and in phase), the authors introduce a code selection algorithm
which maximizes the detection performance but, at the same time, is ca-
pable of controlling both the region of achievable values for the Doppler
estimation accuracy and the degree of similarity with a pre-fixed radar
code. However, since in several practical situations, the radar amplifiers
might work in saturation conditions and hence an amplitude modula-
tion might be difficult to perform, in [§], the authors also consider the
synthesis of constant modulus phase coding schemes for radar coherent
pulse trains. Finally, in [I0], the problem of constrained code optimiza-
tion for radar Space-Time Adaptive Processing (STAP) in the presence

21
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of colored Gaussian disturbance, under two accuracy constraints (on the
temporal and the spatial Doppler frequency) and a similarity constraint,
is addressed.

Many among the previously mentioned algorithms optimize the radar
signal in correspondence of a given target Doppler frequency. Hence,
they can be easily applied to situations where it is required a confirma-
tion of an initial detection in a certain Doppler bin, namely when some
knowledge about the Doppler frequency is available. In other situations,
the Doppler parameter is usually unknown and a practical application
of the techniques can be obtained either tuning the design Doppler to
a challenging condition, dictated by the clutter Power Spectral Density
(PSD) shape, or optimizing the waveform to an average scenario, namely
considering as objective function the average SNR over the possible tar-
get Doppler shifts. The present Chapter moves another step towards the
synthesis of radar waveforms when no prior knowledge about the actual
Doppler is available. Specifically, resorting to the max-min criterion, the
waveform design problem is formulated as the constrained maximization
of the worst case (over the set of possible Doppler frequencies) detection
performance. The constraints considered here are an energy constraint,
imposed by the finite transmission resources, and a similarity constraint,
important to equip the waveform with desirable properties such as small
modulus variations, good range resolution, low peak sidelobe levels, and
more in general with a good ambiguity function. The resulting problem
is a non-convex Quadratically Constrained Quadratic Program (QCQP)
with infinitely many quadratic constraints. This class of QCQP’s, is
known to be NP-hard in general, and as a consequence, finding a global
optimal solution is often very difficult [23]. Hence, the aim is the con-
struction of a good sub-optimal solution for the quoted problem with the
goodness in the sense that the produced solution leads to an high-quality
radar code for the considered robust radar waveform design problem, as
supported also by the simulations in Section 2.4]

The Chapter is organized as follows. In Section 22 the waveform
design problem is formulated according to the max-min criterion, based
on system model ([I)-(2)); in Section 23] the new algorithm for the con-
sidered problem is presented; in Section [2.4] the performance of the pro-
posed technique is analyzed, and numerical results assessing the quality
of the produced sub-optimal solution are provided. Finally, conclusions
are given in Section 25
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2.2 System Model and Waveform Design Prob-
lem

The same signal model as in eq. () is herein considered. The main
goal is to find radar waveforms optimizing the worst case detection per-
formance, under an energy constraint and a similarity constraint with a
given radar code exhibiting a good ambiguity function. In this Section,
the problem is formulated mathematically, showing how the worst case
detection probability can be maximized and the constraints can be en-
forced, under the assumption (2) for the disturbance. With reference to
the case of non-fluctuating targetﬂ, as already shown in eq. (LZ), the
detection probability Py of the GLRT, for a given value of the false alarm
Probability Py, depends on the radar code, the disturbance covariance
matrix, and the temporal steering vector only through the SNR, defined
as in eq. (L4), which is a function of the actual Doppler frequency due
to the dependence of p over vy. Moreover, Py is an increasing function
of SNR and, as a consequence, the maximization of P; can be obtained
maximizing the quadratic form

(cop) M (cop) = (M‘1 ® (ppT)*) c, (2.1)

over the radar code, as already shown in eq. (L8)). It is important to
highlight that M~ ® (pp")* is the Hadamard product of two positive
semidefinite matrices, and hence it is itself positive semidefinite [I7), p.
1352, A.77].

Performing the maximization of (2.1]), possibly under some constraints
[1] (for instance accuracy, similarity, and energy constraints), leads to a
code vector which depends on the specific value of the Doppler frequency
present in the definition of p. In order to get a transmit radar waveform
independent of the Doppler frequency, it is proposed here a max-min
approach attempting at maximizing the worst case (over the possible
target Doppler frequencies) SNR. In other words, the following objective
function, to maximize over the radar code, is considered:

min ¢'(M~1 o (pp')*)e.
vqa€0,1]

Adding the similarity constraint with a code ¢q [7], important to confer
desirable properties to the radar waveform, as well as an energy con-

'The conclusions may be easily extended to the case of fluctuating target.
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straint (accounting for the limited transmission power), the following
optimization problem arises:

max min ¢ (M~ ® (pp")*)e, (2.2)
c€Q vye(0,1]

where the set 2 is defined as Q = {c| ||c|| = 1, ||c — co||* < €} with
llco|| = 1, and the parameter € > 0 ruling the size of the similarity region.
Indeed, the smaller e is, the higher the degree of similarity between the
ambiguity functions of the designed radar code and ¢y is.

Before presenting the new algorithm, it is worth to point out the
differences between this optimization problem and those formulated and
solved in [I] and [§]. To this end, observe that the objective function
in [I] and [8] depends on a specific design Doppler value, while in the
present problem the worst case SNR (over the Doppler frequency) is
optimized ([2.2). [I] accounts for a Doppler dependent constraint on the
estimation accuracy of fy, while in the present case, only a similarity
and an energy constraint are considered. [§] accounts for a phase-only
constraint on the devised code, while in this Chapter a general amplitude-
phase coding is considered. In other words, (222 optimizes a robust
objective function with respect to [1] and [§], but the former forces one
less quadratic constraint than the problem in [I], and the constraints
of the problem specified in [8] look very different from those in ([2.2) .
From the optimization theory point of view, the three formulations lead
to different optimization problems:

e that in [I]] is a homogeneous QCQP with three constraints, a global
optimal solution for which can be found in polynomial time (namely
for this problem the SDP relaxation is tight or, equivalently, the
problem shares an hidden convexity);

e that in [§] is an NP-hard QCQP optimization problem due to the
phase-only and the possibly finite alphabet constraint, whose op-
timal solution is approximated using the relaxation and random-
ization approach typical of the max-cut-like problems.

e that in the current Chapter is a QCQP with infinitely many con-
straints, for which we establish a deterministic approximation pro-
cedure, with polynomial time computational complexity, to output
a solution leading to high-quality radar waveforms.
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2.3 Approximate Solution to the Max-Min Op-
timization Problem

The max-min problem (2.2) can be recast as

matx t

c,

st t<pl(M~'©(cch))p, Vg€ [0,1], (2.3)
lle —col|” <,
llef| = 1.

Moreover, elaborating on the similarity constraint, problem (23] can be
equivalently rewritten as

matx t

c,

st t<pl(M~'o(cch))p,  Vrac[0,1], (2.4)
R (cleg) >1—€/2,
llell> =1.

Observing that a rotation of ¢ does not change the first constraint, it is
possible to claim that problem (24) is equivalent to

matx t

c,

st. t<pl(M~'o(ech))p, Vg e[0,1], (2.5)
chcocg;c > O,
llell* =1,

where §. = (1 — ¢/2)?, in the sense that if (¢*,#*) is an optimal solution
of problem (Z3]), then (c*e’? C*TCO,t*) is an optimal solution of ([2Z4]).
Therefore, from now on the focus will be on problem (23).

It can be easily seen that problem (2.5) is a QCQP with infinitely
many constraints. As already highlighted, this class of problems is known
to be NP-hard in general (see [23]) and hence difficult to solve. In other
words, the convex relaxation of the class of QCQP problem may or may
not be tight, in particular, its SDP relaxation may have only optimal
solutions of rank higher than one, or may have optimal solutions of rank
higher than one as well as equal to one. Futher, to retrieve a rank-one
optimal solution of the SDP relaxation problem from an optimal solution
of general rank is usually a non-trivial task. In the following, an approxi-
mation scheme is presented to produce a feasible solution for the problem
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[2.3), based on the techniques of SDP relaxation, SDP representation of
trigonometric polynomials, and a specific rank-one matrix decomposi-
tion. It turns out by the numerical simulations that the algorithm pro-
vides high-quality radar codes for the proposed robust waveform design
problem. Additionally, if the SDP relaxation is tight (namely, the SDP
has always a rank-one optimal solution) than the devised code is also
optimal for the original non-convex problem.
The SDP relaxation of (2.3]) is

néaf t

st t<pl(M~toC*p, Vg € [0,1],
tr (coc(T)C) > O, (2.6)
tr (C) =1,
C>0.

Clearly, the constraint function pf(M ™1 ® C*)p — t is a trigonometric
polynomial [24] of degree N — 1, that is,

N-1
p'(M~'®C*p —t=x(0)—t+2Re (Z :E(k:)e_jk“) ,
k=1
where w = 27, and
1 Nk
_ -1 *Y [ . _
w(k) = & ;(M ©CH(i+ki), k=0,1,....N—1, (27)

with the notation (M ' ® C*)(i + k,4) being the (i + k,7)-th entry of
M~1tocCr

It is known that the nonnegativity constraint of a trigonometric poly-
nomial has an equivalent SDP representation. Specifically, the following
result derived in [25] Theorem 3.1] is quoted here as a lemma.

Lemma 2.3.1. The trigonometric polynomial f(w) = x(0)+ 2R < kN:_ll

x(k:)e_jk“’) is nonnegative over [0, 27|, if and only if there exists an N X
N Hermatian matriz X such that

xz = Widiag(WXWT), X -0, (2.8)

where € = [2(0),...,2(N — 1)]T, W = [wo,...,wy_1] € CM"*N and
wy = [1,e k0 e dM-DKT "} — 0  N—1,60=2x/M, M >
2N — 1.
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It follows by Lemma 23T that SDP (2.6]) is equivalent to the follow-
ing SDP

max ¢
X,C,t
st. WidiagWXW) +te; =,
tr (coehC) > 6., (2.9)
tr (C) =1,
C >0,
X >0,

where x is defined by (2Z7]), W is the same as the one defined in Lemma
23 by taking M = 2N — 1. In order to proceed further it is necessary
to show the following

Lemma 2.3.2. [t holds that SDP problem ([2.9)) is solvabld?.
Proof. See Appendix O

Let (X™*,C*,t*) be an optimal solution of (2.9). It is easily seen that
,t7) 1s an optimal solution o wit
C* t*) i imal soluti f SDP ith

t*= min p' (M~ o (C*)")p. (2.10)
vg€(0,1]

Problem (2.10) is one dimensional optimization problem with sufficiently
smooth objective function, therefore it is possible to apply Newton method
to solve it. Letting

v =arg min p'(M~'® (C*)")p, (2.11)
vq€(0,1]

namely a value of v4 € [0, 1] minimizing the argument and

1 - * . _ *
p* _ [17 ej27r1/d’ o ,EJ(N 1)27r1/d]T

Vi , (2.12)

it follows that
= p (M~ o (C*))p* = tr [(M_l o <p*p*f>*) C*] .

) ) - t
Now if C* is rank-one, namely C* = ¢; ci, then ¢* = ¢;e/28C1C0 and vy
are optimal for the original max-min problem, i.e. the SDP relaxation is

’By saying solvable, it means that the problem is feasible, bounded, and the
optimal value is attained (see [26] page 13]).
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tight. Otherwise, an approximate solution to (2Z:2)) can be provided. To
this end, it is necessary to find a rank-one matrix ccf such that

(o o) )] = [0 ) ) o
= 1 (2.14)

tr(cocgccT) = (COCOC*)— (2.15)

tr(cc’) = tr(C*) =1, (2.16)

as long as C™ is of rank higher than one. If it is possible to find a rank-one
solution ec! satisfying (ZI3)-(ZI0), then the following one-dimensional
search yields a feasible solution of problem (Z.3):

vy = arg min p f(M~' o (ech))p, (2.17)
vq€

with the optimal value

t= min p'(M ® (cc")")p. (2.18)
vq€(0,1]

In other words, (¢, t) is a sub-optimal solution of problem ([Z3]). To find a
rank-one solution of ([ZI3])-(210]), the following rank-one decomposition
theorem [27] is invoked.

Lemma 2.3.3. Suppose that X is an N X N complex Hermitian pos-
itive semidefinite matriz of rank R, and A1, As are two N X N given
Hermitian matrices. Then, there is a rank-one decomposition of X (syn-
thetically denoted as D(X, Ay, A)), X = @, ), such that

tr (XAl) tr (XAQ)

Al =—%
In the present context, it is necessary to perform D (C*, Mo

(p*p*Jf)* — 1, cocg — sI) obtaining C* = Zfil cz-clT, where R = Rank

(C*). Then, it is easily verified that each cz-cj./||ci||2 fori =1,...,R,
fulfills ([2.13)-(2.16). In fact,

e [0 () )] o (070 (97)

t#1)C*] =0, (2.19)

%tr [(cocg — sI) cicﬂ =tr [(cocg - sI) C’*] =0,

(2.20)

miAlazT = and a:TA2 x, = r=1,..., R.
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which imply
tr [(M—l@(p*p*T)*) cief] = el (2.21)

tr [(cocg) cicg]

As a consequence, cic;-r/Hci]F, for i = 1,..., R, complies with (2.13)-
(2I6). Performing the one-dimensional optimization problem (Z.I8])
gives the sub-optimal solutions (¢;/||¢;||, t;), where t; is the optimal value
of problem (ZI8) corresponding to ¢;/||c;||- Take the maximal value of
{t1,...,tr}, say t1, and output (c1/||c1]|,t1) as the sub-optimal solution
(namely the best among the couples (¢;/||eill, ti))-

Summarizing, a sub-optimal solution for problem (Z2) can be sum-
marized as in Algorithm

s)leq? . (2.22)

Algorithm 2 Approximation procedure for the max-min problem (2.2))

Require: ¢y, ¢, M, N,
Ensure: a sub-optimal solution (c*, ) of problem (22);
1: solve SDP (29) finding (X*, C*,t*);
2: solve problem (2.I0) obtaining v}; compute p* like ([2.12));
3: let tr (coc(T)C*) = s, and perform
D <C*, Mo (p*p*T)* —t*1, cocg — sI) getting C* = Zf;l cicZT;
4: let ¢; = ¢i/llcill, i = 1,..., R, and solve problem (2I8) with pa-
rameter ¢;, obtaining the optimal values {¢(1),...,t(R)} and the
optimums {v41,...,Va R}
5: choose ¢; such that ¢(i) = max{t(1),...,t(R)}, say ¢; = c1, and let

ot
¢t =1 8C1% and vl = vg;.

As to the computational complexity of the above algorithm, it is
dictated by the solution of the SDP problem (2.9) ﬁ, which has a worst-

case complexity of O (N 43 ]og %) (see [26]), since the specific rank-one

decomposition involved requires O(N3) operations and the cost of the
one dimensional optimization problenﬂ is very low compared to the cost

3An SDP problem can be efficiently solved in polynomial time through interior
point methods, and the number of iterations necessary to achieve convergence usually
ranges between 10 and 100 (see [11]).

In the later numerical simulation, the Matlab command fminbnd is used.



30 Doppler Robust Max-Min Approach

of the computations in the other steps.

Before concluding, it is interesting to highlight that a possible exten-
sion of the encoding algorithm aimed at optimizing the minimum SNR
(over vg4) in a sub-interval of [0, 1] (or even in the union of more than one
of such sub-intervals) can be easily conceived exploiting [25], Theorem
3.2] in place of [25, Theorem 3.1] to express the nonnegativity of the
trigonometric polynomial in the considered sub-interval.

2.4 Performance Analysis

This Section is devoted to the performance analysis of the proposed
scheme for the robust waveform design. To this end, the assumption
is that the (I, k)-th entry disturbance covariance matrix is given by
M(l,k) = p ™ exp[j2my(1 — k)] + 10p=* + 10-2I(1, k), which is a
structure accounting for the simultaneous presence of sea clutter, land
clutter, and thermal noise. Moreover, the Py, of the GLRT receiver if
fixed to 1075, p; = 0.8, p = 0.9, and v = 0.2. The analysis is conducted
in terms of P, robustness with respect to Doppler shifts, and ambiguity
function of the coded pulse train which results exploiting the proposed
algorithm, i.e.

YO f) = / T u(B (8 — N8
N—-1N-1

- a(l)a*(m)xp[A — (1 — m)T,, f].
=0 m=0

The convex optimization MATLAB toolbox SEIf-DUal-MInimization (Se-
DuMi) [28] is exploited for solving the SDP relaxation. The decompo-
sition D(-,-, ) of the SeDuMi solution is performed using the technique
described in [27]. Finally, the MATLAB toolbox of [2] is used to plot the
ambiguity functions of the coded pulse trains. In the following, the gener-
alized Barker sequence |2, pp. 109-113] of length N = 10 is considered as
similarity code (namely, ¢y = [0.3162,0.3162,0.17244-0.26514, —0.1905+
0.252475, —0.23224-0.21477,0.3084 4-0.06977, 0.3141 4-0.0367 5, —0.2250 —
0.22224,0.29851 + 0.10445, —0.1881 — 0.25424]7).

In Figure 2] the P; of the optimized code (according to the max-
min criterion) versus |a|? is plotted for several values of J., together with
Py of the similarity code for v4 = /. The curves show that increasing d.
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Figure 2.1: P, versus |a|? for non-fluctuating target, P, = 1075, N = 10, vy = v/},
and 6. = {0.1,0.4,0.7,0.9,0.9801,0.9999}. Generalized Barker code (solid curve).
Max-min code (dashed curves).

worse and worse Py values are obtained; this behavior can be explained
observing that the smaller J., the larger e, the larger the size of the
similarity region. However, this detection loss is compensated for an im-
provement of the coded pulse train ambiguity function. This is shown in
Figures 222h2.2d, where such function is plotted assuming rectangular
pulses, T, = 5T},. The plots highlight that the closer d. to 1 the higher
the degree of similarity between the ambiguity functions of the devised
and the pre-fixed code. This is due to the fact that increasing J. is tan-
tamount to reducing the size of the similarity region. In other words, the
devised code is forced to be similar and similar to the pre-fixed one and,
as a consequence, we get similar and similar ambiguity functions. The
last analysis of this Section concerns the robustness of P; with respect to
Doppler shifts. Specifically, in Figure 23] the P; versus vy for the max-
min code and the similarity code ¢g are plotted, assuming |a|? = 23 dB.
Inspection of the curves highlights that, for values of J. < 0.9, P; of the
optimized code exhibits a quite flat behavior with respect to Doppler
frequencies. On the contrary, P, of the similarity code is very sensitive
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Figure 2.2: Ambiguity function modulus of the max-min code with N = 10, T, =
5.

to the Doppler shift and exhibits significant variations. Moreover, for
a wide range of Doppler shifts the max-min code outperforms the simi-
larity sequence. Actually, the smaller d., the wider the Doppler interval
where the max-min code performs better than the similarity code cg.

A numerical analysis, aimed at assessing the quality of the solution
produced by the new algorithm, is now proposed. Specifically, the nor-
malized gap A4 between the optimal value of the SDP problem and t;
is evaluated, i.e. Ay = t*t:tl . Observing the second row of Table 1] it
is possible to see that, for the considered values of the parameters, the
devised algorithm provides high-quality solutions. Notice that, for all
the simulated d. > 0.7 or 0.15 < 6. < 0.4, it even outputs the optimal
solution to the max-min problem (i.e. the SDP relaxation problem has

always a rank-one optimal solution).
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Figure 2.3: P, versus vg for |a|?> = 23 dB, non-fluctuating target, N = 10, and
de = {0.1,0.4,0.7,0.9,0.9801, 0.9999}. Generalized Barker code (solid curves), Max-
min code (dash curves).

2.5 Conclusions

In the present Chapter, a max-min algorithm for radar waveform
design, in the presence of colored Gaussian disturbance, and forcing en-
ergy and similarity constraints, has been proposed and analyzed. The
waveform synthesis has been formulated as a non-convex quadratic opti-
mization problem with infinitely many quadratic constraints. Through a
clever technique, exploiting SDP relaxation techniques and some results
from the theory of nonnegative trigonometric polynomials, a procedure
capable of providing an high-quality waveform from an optimal solu-
tion of the SDP relaxation has been devised. The technique is based
on a suitable rank-one decomposition and its implementation requires a
polynomial computational complexity. At the analysis stage, the perfor-
mance of the new algorithm in terms of detection performance, ambigu-
ity function and robustness of P; with respect to Doppler shifts, have
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Table 2.1: A, for N = 10, several values of d., and Generalized Barker code as
similarity sequence.

5. | 04 | 045 | 047 | 05 | 053 | 0.55
A, [0.22% [ 1.39% | 1.89% | 2.69% | 3.56% | 4.08%
5. | 057 | 06 | 063 | 0.65 | 067 | //
A, |[454% | 5.16% | 5.67% | 5.16% | 2.75% | ]/

™

been evaluated. The effect of the similarity parameter has been studied.
Precisely, if there are sufficient degrees of freedom for the optimization
problem, namely the similarity parameter is not close to 1, then the
max-min algorithm is capable of ensuring a very robust detection per-
formance with respect to target Doppler shifts. Moreover, this robust
behavior can be traded off with ambiguity function peculiarities.



Chapter 3

Design of Optimized Radar
Codes with a Peak to Average
Power Ratio Constraint

3.1 Introduction

Modern digital technology and adaptive transmitters now give the
ability to generate high-accuracy, sophisticated, broad-bandwidth radar
waveforms, dynamically adaptable to and optimized for a range of dif-
ferent tasks (detection, tracking, target recognition, etc.) potentially on
a pulse-by-pulse and channel-by-channel basis. For instance, a modern
multifunction phased array radar can adapt the waveform, dwell time,
and update interval according to the nature of the surrounding clutter
environment, the Signal to Noise Ratio (SNR), and the particular target
(the most likely type of target, the threat that it may represent, and the
degree to which it is manoeuvering, etc.). This is essentially the subject
of waveform diversity [4] [19] 5], 29] 30], namely a new flexibility and dy-
namic adaptation which demands new ways of characterizing waveform
properties and optimizing waveform design.

The possibility of modulating adaptively the radar signal depending
on the surrounding environment and on the expected target characteris-
tics has lead to the concept of matched-illumination [31], 20, 21|, which
determines the optimized transmission waveform and the corresponding
receiver response through the maximization of SNR. This concept is also
thoroughly investigated in [22], with reference to a Gaussian point-like

35
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target and stationary Gaussian clutter, showing that the optimum al-
location procedure places the signal energy in the noise band having
minimum power. Recent studies concerning waveform optimization in
the presence of colored disturbance can be found in [7], where a signal
design approach relying on the maximization of the SNR under a simi-
larity constraint with a given waveform is proposed and assessed. In [1],
focusing on the class of linearly coded pulse trains (both in amplitude
and in phase), the authors introduce a code selection algorithm which
maximizes the detection performance and, at the same time, is capable
of controlling both the region of achievable values for the Doppler esti-
mation accuracy and the degree of similarity with a pre-fixed radar code.
In [10] and [32], the approach is extended to account for a Space-Time
Adaptive Processing and an unknown target Doppler frequency respec-
tively. However, since in several practical situations, the radar amplifiers
might work in saturation conditions and hence an amplitude modulation
might be difficult to perform, in [§], the authors also consider the syn-
thesis of constant modulus (unimodular) phase coding schemes for radar
coherent pulse trains.

In this Chapter, a new waveform design approach relying on the max-
imization of the detection performance under a more general constraint
than unimodularity is intriduced. Specifically, waveforms are designed
with a bounded transmitted Peak-to-Average power Ratio (PAR). This
constraint is very reasonable for radar applications and includes, as a spe-
cial case, the phase only modulation condition. Indeed, it has also been
imposed in [33] for the synthesis of waveforms with stopband and correla-
tion constraints. Actually, controlling the PAR permits to constrain the
excursions of the squared code elements around their mean value. This
also allows to keep under control the dynamic range of the transmitted
waveform which is an important practical issue (for the current tech-
nology) because high PAR values necessitate a linear amplifier having a
large dynamic range and this may be difficult to accommodate. Finally,
the PAR control is also a crucial task in OFDM (Orthogonal Frequency-
Division Multiplexing) systems and the interested reader might refer to
[34] and references therein where this issue is addressed.

Firstly, the focus is on the selection of the radar waveform optimizing
the SNR in correspondence of a given expected target Doppler frequency,
under a PAR and an energy constraint (Algorithm [B]). Notice that this
problem is of practical importance when it is required a confirmation of
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an initial detection in a certain Doppler bin, namely when some knowl-
edge about the Doppler frequency is available. Besides, when the Doppler
parameter is unknown, the practical application of Algorithm Bl can be
obtained either tuning the design Doppler to a challenging condition, dic-
tated by the clutter Power Spectral Density (PSD) shape, or optimizing
the waveform to an average scenario. This is tantamount to considering
as objective function the average SNR over the possible target Doppler
shifts.

Afterward, the technique is made robust with respect to the received
target target Doppler frequency resorting to a max-min approach (Al-
gorithm M)). Otherwise stated, the worst case (over the target Doppler)
SNR is optimized under the same constraints as in the previous problem.
Since Algorithms Bl and @ do not impose any condition on the waveform
phase (i.e. the waveform phase can range within the continuous interval
[0,27)), their phase quantized versions (Algorithms Bl and [B respectively)
are devise too, which force the waveform phase to belong to a finite al-
phabet.

All the problems are formulated in terms of non-convex quadratic
optimization problems with a finite (cases of Algorithms Bl and [l or an
infinite (cases of Algorithms @ and [6) number of quadratic constraints.
These problems are proved to be NP-hard and, hence, design techniques,
relying on Semidefinite Programming (SDP) relaxation and randomiza-
tiond as well as on the theory of trigonometric polynomials [25], are
introduced, which approximate the optimal solution with a polynomial
time computational complexity. For Algorithms [B] and Bl an analytical
expression of the approximation bound which quantifies the quality of
the obtained waveforms is provided.

At the analysis stage, the performance of the new technique are
assessed in terms of detection probability achievable by the Neyman-
Pearson receiver and robust behavior of the detection performance with
respect to the target Doppler frequency. The results show that the new
algorithms trade off detection performance and SNR robustness with
small desirable values of the PAR as well as (Algorithms [B and [ with
the number of quantization levels used to represent the waveform phase.

The Chapter is organized as follows. In Section B.2] under the as-

!SDP relaxation and randomization techniques have also been used in other signal
processing fields. For instance, in maximum likelihood multiuser detection [35] and
transmit beamforming [36].
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sumptions of the system model ([l)-(2), the formulation of the waveform
design problems is presented; in Sections B.3H3.6] solution algorithms for
the considered problems are devised; in Section B.7] the performance of
the new waveform design techniques are analyzed, providing numerical
results aimed at assessing their quality. Finally, conclusions are given in
Section [3.8]

3.2 System Model and Formulation of the Prob-
lems

The focus is on a monostatic radar transmitting a linearly encoded
pulse train and consider the signal model of eq. () [I], with the only
difference that p = [1,e/2™a . e/27(N=Dva|T

The main goal is to find codes optimizing the SNR (either in the
matched case, namely in correspondence of a given normalized target
Doppler frequency, or in the worst normalized Doppler case), under a
constraint on the transmitted energy, namely ||c||?> = N, and forcing an
upper bound to the PAR, i.e.

_max _[e(q)]”

i=1,....N N2
PAR = Lllel? - i:%{fi.?fN‘c(Z)’ ) (3.1)

where ¢ = [¢(1),...,c¢(N)]T € CN. Evidently, a bound on the PAR is
tantamount to imposing a more general constraint than the phase-only
condition, which can be obtained letting PAR=1.

In the following, the waveform design problems are formulated math-
ematically, showing how the matched or worst case SNR can be optimized
and the constraints can be enforced, under the assumption of eq. (2)) for
the disturbance vector w. First of all, focusing (without loss of general-
ity) on the case of non-fluctuating target, the SNR can be again defined
as in eq. (L8). Hence, for a given normalized target Doppler v, the
Waveform Design Problem (WDP) can be formulated in terms of the
following complex quadratic optimization program

max cRe
st. PAR= max |c(i)]* <~ (3.2)

i=1,...,

lef? = N
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(PAR constrained WDP) where 1 < v < N rules the maximum allow-
able PAR. The resulting waveform optimizes the radar performance in
correspondence of the specific design Doppler. From a practical point of
view, this is of interest during the confirmation process, i.e. when it is re-
quired to confirm an initial detection in a certain Doppler bin (obtained
using a possibly standard non-optimized waveform) so as to improve the
quality of detection. Alternatively, the practical application of the crite-
rion can be obtained either tuning the design Doppler to a challenging
condition, dictated by the clutter Power Spectral Density (PSD) shape
(i.e. design Doppler in correspondence of the PSD peak), or optimizing
the waveform to an average scenario.

If the target Doppler is not a-priori known, it makes sense to consider
the waveform optimizing the worst case SNR. By doing so, it is possible
to get a single transmitted signal capable of ensuring a robust behavior of
the detection performance with respect to the actual Doppler frequency.
This criterion leads to the following Robust PAR constrained WDP

max min ¢ Re
c vq€[0,1]
st.  PAR = max |e(i)]* <7, (3.3)

i=1,...,N
2
lel]* = N.
Since problems ([32) and ([33]) do not impose any condition on the wave-
form phase (i.e. the waveform phase can range within the continuous
interval [0,2m)), it is of interest to consider also their phase quantized

versions, forcing the waveform phase to belong to a finite set. This ob-
servation leads to PAR constrained and phase quantized WDP

max c/Re
c
s.t.  PAR = max le(@)> <~

i=1,...,N (34)
arg (c(i)) € {0, ;2m, ..., M2or} i=1,..., N
lell> = N

(where the number of quantization levels M is an integer such that M >
2) and robust PAR constrained and phased quantized WDP:

max min ¢ Re
c Vd6[071}

2
s.t.  PAR izrlll?cN\c(z)] <9, (3.5)

arg (c(i)) € {0, ;2m, ..., Mor} i=1,... N
lel* = N



40 PAR-Constrained Radar Codes

which respectively refer to the case of known and unknown normalized
target Doppler.

Before proceeding with the design of solution techniques for ([3.2)),
B3), B4), and [B.3), it is worth to address the differences between
them and the optimization problems formulated and solved in some of
the previous works:

1. the problem in [I] is a non-convex homogeneous Quadratically Con-
strained Quadratic Programming (QCQP) with three constraints,
the strong duality holds for the problem, and a polynomial-time
algorithm is established based on a suitable rank-one decomposi-
tion;

2. the problem in [I0] is a non-convex homogeneous QCQP with four
constraints for which strong duality does not hold in general. Nev-
ertheless, the authors have shown how to construct an optimal so-
lution in polynomial-time, provided only that the SDP relaxation
of the original problem gives an optimal solution with rank not
equal to two;

3. the problem in [§] is an NP-hard QCQP optimization problem due
to the phase-only and the possibly finite alphabet constraint, whose
optimal solution is approximated using the relaxation and random-
ization approach typical of the boolean Quadratic Programming

(QP) problems;

4. the problem in [32] is a QCQP with infinitely many constraints,
for which the authors establish a deterministic approximation pro-
cedure, with polynomial time computational complexity, to output
a solution leading to high-quality radar waveforms.

In this Chapter, new randomized approximation algorithms for the WDP
(B2) and its phase-quantized version (3.4]) are established, respectively.
Due to the PAR constraint considered in (3.2)), which is quite different in
nature from the constraint (the similarity constraint under the infinite
norm) in the optimization problem considered in [§], the approximation
procedures for ([B.2) and (B.4) must be re-designed and the mathemati-
cal analysis for the approximation bounds has to be re-assessed. For the
robust PAR constrained WDPs (B3] and ([B.3]), respective randomized
approximation algorithms will be proposed, in contrast to the determin-
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istic approximation algorithm built in [32], according to some convex
optimization techniques and the new randomization procedures.

3.3 PAR Constrained WDP

Problem ([32]) can be equivalently reformulated as

max ¢ Re

c
st. (i) <w,i=1,...,N (3.6)
lef? = N.

Notice that when « = 1, a feasible point for ([B.6]) has the property that
|c(i)| = 1 Vi, and thus the norm constraint ||c/|> = N is redundant, i.e.,

(B6) reduces to

max ¢ Re

C

st. Je(@)?<1,i=1,...,N. (3.7)
Problem ([B.1) has been proven NP-hard in HZZIE (see related works [38],
[39], [40]) and approximation algorithms for ([B.7)) are established in [37]
(see [41] also). An interesting application for ([B.7) with all parameters
and design variable being real-valued can be found with reference to
blind Maximum-Likelihood (ML) detection of Orthogonal Space-Time
Block Codes (OSTBCs) with unknown Channel State Information (CSI)
in Multiple-Input-Multiple-Output (MIMO) transmissions [42].

In this Section, problem (3.0]) is considered with v > 1, which means
that the norm constraint does not vanish. Clearly, problem (B.6) is a
non-convex QCQP with multiple constraintd’. It is possible to claim
that problem (3.6) with ~ greater than one is NP-hard by a reduction
from an even partition problem which is known to be NP-complete.

% Indeed, problem B is equivalent to (7)) with all the inequality constraints
becoming equality constraints, due to the fact that the maximal value of a convex
function is attained only at the boundary of a convex region. In other words, replacing
the inequality constraints in (X)) into equality ones, neither the optimal value nor
the optimal solution set of problem ([B.7)) would be changed. It has been shown in [37]
that the problem (37) with all equality constraints is NP-hard, thus problem (371 is
NP-hard, as it stands now.

3For a QCQP, non-convexity does not imply that it is hard to solve; it turns out
that, if the number of constraints is not too high, the QCQP can be solved efficiently;
in other words, the SDP relaxation of it is tight. See [27], [43].
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Proposition 3.3.1. The radar code design problem ([B.6) is NP-hard
with parameters R > 0 and v > 1.

Proof. See Appendix [C] O

Due to Proposition B3.1], the radar code design problem (B.6]) is un-
likely to admit a polynomial time solution method (which means (3.0]) is
computational intractable in general). Thus, efforts will be made in the
following toward the design of an approximation algorithm for (B.0]).

3.3.1 Approximation algorithm via semidefinite program-
ming relaxation and randomization

To get an approximate solution (alternatively termed as a suboptimal
solution) of (B.6]), consider its SDP relaxation:

max tr (RC
tr (C)=N
Cc*>o.

Evidently, problem (B8] with the additional rank constraint Rank (C) =
1 is equivalent to (B.6]). It follows from the strong duality theorem [26],
Theorem 1.7.1] of SDP that ([B.8)) is solvabld], since the SDP B3) is
feasible (for example, I is a feasible point) and its dual is strictly feasible:

min HO)N +7 POARRIC)

st. R—SN t()E; —t(0)I <0 (3.9)
t(i)>0,i=1,...,N

where E; stands for the N x N matrix with the ¢i-th entry being one
and all other entries being zero. In practice, an optimal solution of (B.8])
can be obtained using public solvers (such as cvx [44] and SeDuMi [2§]).

Let C* be an optimal solution of ([B.8]). The main goal is to extract a
rank-one feasible solution of (3.8)) with mathematically provable quality
from C*, which may or may not be of rank-one. Notice that if Rank C*
happens to be one, then the radar code design problem (3.0) is optimally
solved and the SDP relaxation is tight.

‘By saying solvable, it means that the problem is feasible, bounded, and the
optimal value is attained (see [26] page 13]).
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However, often, it is not the case that Rank C”* is one, which means
that the SDP relaxation (B.8) is not tight for (8.0). Therefore, the de-
sign of a suitable procedure to construct in polynomial time a suboptimal
solution of problem (B.0]) is a compromising must. The idea of a Gaus-
sian randomization procedure to produce an approximate solution to an
NP-hard optimization problem comes from the seminal work [45] by Goe-
mans and Williamson where the authors proposed a randomized approxi-
mation algorithm for the NP-hard max-cut problem, with the approxima-
tion bound 0.87856, via the SDP relaxation technique. Since then, a large
number of NP-hard optimization problems have been solved by the ap-
proximation method of SDP-relaxation-plus-randomization, importantly
with theoretically assured approximation bound. For an overview of it
from a perspective of signal processing, the reader is invited to refer to
the magazine paper [43]. Using the idea (mainly from [45] and [46] and
references therein), a Gaussian randomization procedure is presented so
as to obtain an approximate solution of problem (B.6]), based on the
optimal solution C* of the SDP relaxation problem (B.8). The quoted
procedure requires the definition of a suitable “ad hoc” covariance matrix
of the Gaussian distribution to be adopted in the randomization step.
The basic criterion for selecting such a covariance matrix is that the
entire randomization procedure has to lead to a feasible solution of the
original problem with probability one and it has also to provide math-
ematical tractability in assessing the quality of the resulting solution.
According to this guideline, denote by

d = /diag(C"), (3.10)

and by d~
(d"); :{ L@, ifd@) >0,y oy (3.11)

Additionally, let
D = Diag(d), D~ = Diag(d "), (3.12)

and observe that, from (I0)-3I12),

(D~D)(i, ) :{ (1) i Zggig i=1,...,N.  (3.13)
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Hence, the entries of the matrix
C"=C*+(I-D D) (3.14)
comply with

~ C*(i,k), ifi#k
C*(i,k) =< C*(i,i), if C*(i,i)>0 . (3.15)
1, if C*(i,4) =0

By the construction of é*, it is possible to see that the diagonal
elements C” are positive and that C*(i,i) = 1 provided that C*(i,4)
vanishes. Exploiting the above definitions and observations, further im-
portant properties about C” follow:

Proposition 3.3.2. Let C* be a positive semidefinite matriz and d, d—,

D, D~, C” be defined as BI0)-@ID), BID), respectively. Then, the
=~k
matriz D™ C D™ enjoys the following properties:

(i) D-C*D™ = 0;
(ii) the diagonal elements of D~ C D™ are one.
Proof. See Appendix [DI O

This proposition indicates that D~C"D~ can be a suitable choice
for the covariance matrix of a Gaussian distribution to be adopted in the
randomized approximation algorithm. Indeed, suppose to take a Gaus-
sian random vector & from the distribution Ne(0, D~ C”D™): then cach
component of & is with zero mean and unit variance (according to (ii)
of Proposition B.3.2)), i.e., the vector £ enjoys dependent standard com-
plex Gaussian random components. It can be seen that with probability
one, (1/C*(1, 1)%, ce \/C*(N,N)%) is feasible for the PAR con-
strained WDP ([3.2]). Additionally, such a construction of the covariance
D~C" D~ shares some advantages in mathematically assessing the qual-
ity of a randomized approximation algorithm (as it can be seen in the
next sub-section). Based on these observations, in order to produce an
approximate solution (i.e., a suboptimal solution, or a feasible solution)
of (B.6), the following randomization procedure (in Algorithm [3) is pro-
posed.

It is worth to remark that in practice the randomization steps 3
and 4 can be repeated many times, in order to obtain a solution with
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Algorithm 3 Gaussian randomization procedure for radar code design

problem (B.6])

Require: R, ~v;
Ensure: a randomized approximate solution ¢ of (B.6);
1: solve the SDP (B.8) finding C*;
2: define d, d~, D, D™ according to (B.10)-(B.12);
3: draw a random vector & € CV from the complex normal distribution
Nc(0,D~(C*+ (I — D™ D))D™);
1: let (i) = /C*(i,i)e? 8@ j=1,... N.

better quality. As it can be directly seen, the computational cost of
Algorithm [Bis dominated by solving SDP (B.8]) which has a complexity
of O(N351og(1/€)) [43], given a solution accuracy € > 0.

3.3.2 Approximation bound

The approximation bound of an approximation algorithm is a mea-
sure characterizing the quality of the algorithm. For a randomized ap-
proximation algorithm solving a maximization (minimization) problem,
an approximation boundd R € (0,1] (R € [1,+00)) means that for all
instances of the problem, the algorithm always delivers a feasible solu-
tion whose expected objective functional value is at least (at most) R
times the optimal value. Such an algorithm is usually called random-
ized R-approximation algorithm. More precisely, let v(-) be the optimal
value of an instance of a given maximization (minimization) problem (-),
then a feasible solution z produced by a randomized R-approximation
algorithm, complies with

E[the objective function evaluated at z] > Ru(-)

(E[the objective function evaluated at z] < Rw(-) for minimization prob-
lem). It is clear that an algorithm produces a better approximation (for
either maximization problem or minimization problem), if the approxi-
mation bound is closer to 1. The aim of this subsection is to establish an
approximation bound for Algorithm Bl Toward this end, a result proved
in [37, Section 3.3, pp. 884] is invoked:

°It is also termed as performance guarantee, or worst case ratio in the open
literature.
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Lemma 3.3.3. Let Z be a positive semidefinite matriz with all one di-
agonal elements and z be a randomized vector generated setting z(i) =
el 2e€@) i =1 ... N, where € ~ Nc(0,Z). Then,

Ezzl|=F(z)="2z+T f: ((2R))° ZTozWeozr-1z
A COLCESY =1

(3.16)
where (A)*) denotes the Hadamard product of k copies of A.
Besides, from Proposition B.3.2] it follows

Proposition 3.3.4. Let C”™ be a positive semidefinite matriz and d, d~,
D, D, C” be defined as GI0)-B12), BIE), respectively. Then,

DD C'D™)D =C*.
Proof. See Appendix [El O

Capitalizing Lemma [3.3.3] and Proposition B.3.4] the proposition be-
low is obtained showing that the randomized Algorithm [3] has the ap-
proximation abound 7.

Proposition 3.3.5. Let ¢ be the randomized solution output by Algo-
rithm[3. Then,

Elc'Re] = tr (R(DF(D~C*D~)D)) > %tr (RC*) > %v((BII))
_ (3.17)
where C is defined in BI4) and the function F(-) is defined in (BI0).

Proof. See Appendix [E]l O

Before concluding, it is important to remark that problem (B.6) is
equivalent to the real-valued quadratic program:

max [’u,T ,UT] R(R) —S(R) :| [ u :|
u,v %(R) %(R) v
st u(@i)?+v@)?<y,i=1,...,N

S (u(@)? +0(i)?) = N
where u = R(c) and v = (¢). The approximation bound for the

approximation algorithm solving a real-valued quadratic program like
in (BI8)) but without any special structure of the positive semidefinite

(3.18)
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matrix appearing in the objective function, obtained in [46], is %(m

0.6366), instead of 7 (= 0.7854). It is easy to see that complex quadratic
program (3.0) is a structured real quadratic program (BI8); in other
words, the matrix appearing in the objective function of (BI8) has the

structure

R(R) —S(R)

S(R) R(R) |’
rather than a general (2IV) x (2N) positive semidefinite matrix. As a
consequence, the complex quadratic program (B.6]) is equivalent to a
subclass of real quadratic programs, and it is reasonable that it shares a

tighter approximation bound. Indeed, this phenomenon happens also in
related literature as for instance in [37], [38] and [27].

3.4 Robust PAR Constrained WDP

Problem (B3] can be equivalently expressed as

matx t

c,

st ¢ <pI(M™1 o (ech))p, Vg € [0,1] (3.19)
) <7 i=1,....N
lefl* = N.

The conventional SDP relaxation of (B.10) is

néaf t

st. t<pl (Mo (C))p, Vg € [0, 1]
Cli,i)<~,i=1,...,N (3.20)
tr (C)=N
C - 0.

Problem (320) includes the infinitely many quadratic constraints ¢ <
p (Mo (C)*)p, Yy € [0,1]. However, it can be proved that they can
be transformed into a finite number convex constraints, resorting to the
SDP representation of nonnegative trigonometric polynomials [25]. To
this end, first observe that

N—-1
PI(M ™o (C))p—t=u(0) —t +2R (Z a:(k;)e_jk“> :

k=1
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where w = 27, and

N—k
2(k) =Y (M © (C)")(i + k,i), k=0,1,...,N—1.  (3.21)
=1

Hence, the following theorem, proved in [25] Theorem 3.1| and quoted
here as a lemma, is exploited.

Lemma 3.4.1. The trigonometric polynomial f(w) = x(0) + 2R (>,
N_lx(k:)e_jk“’) is nonnegative over [0, 27|, if and only if there exists an
N x N Hermitian matriz X > 0 such that

x = Widiag(W XWT), (3.22)

where © = [2(0),..., (N — 1|7, W = [wy,...,wn_1] € CXVN w;, =
[1,e7k0 . e d(=DkOT | —0, .. N—1,0=2r/L, L>2N —1.

The above Lemma implies that (8.20) can be recast equivalently as
the following SDP:

max t
C,X,t
st. WidiagWXW?) +te; =
Cliyi)<~,i=1,...,N (3.23)
tr (C) =N
C-0,X>0

where @ is defined by [B2I) and W is the same as the one defined in
Lemma 34Tl by taking L = 2N — 1.

Proposition 3.4.2. It holds that SDP problem ([B3.23)) is solvable.
Proof. See Appendix [Gl O

Let (C*, X™*,t*) be an optimal solution of ([3.20). Feasible solutions
¢k, k=1,..., K (K will be referred to as the number of randomizations),
of (B3) are generated using C* in a way similar to Algorithm Bl Then
pick ¢, say ¢, such that the objective function value ¢(1) is maximal
over all

t(k) = m[iéal]pT(M ® (ere) I, k=1,... K. (3.24)
vq€|0,
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The minimization problems ([B.24]) are one dimensional optimization prob-
lem. It is seen that each problem in ([B.24)) is equivalent to an SDP. In
fact, for each k, it follows that

t(k) =max s st.p'(M® (ckc};)*)p > s, Vg € [0,1]. (3.25)

It follows from Lemma B:41] that problem (3.23]) is equivalent to

t(k) = max s
X1,s
st. Widiag WX W) + se; = a;, (3.26)
X, >0,seR

where the [-th element of @y is similar to that defined in (Z2I)), i.e.,

N—I
o) =D (M O (epel))(i+1,4),  1=0,1,....N—1 (327
i=1
Algorithm M summarizes the procedure to generate an approximate
solution of (B3)).

Algorithm 4 Gaussian randomization procedure for the code design

problem (B.3])

Require: M, ~;
Ensure: a randomized approximate solution ¢ of (B.3);
1: solve the SDP (B23) finding C*;
2: define d, d~, D, D™ according to (B.10)-(B.12);
3: draw random vectors &, € CV from the complex normal distribution
Nc(0,D~(C*+(I—-D D)D), k=1,...,K;
4: let (i) = /C*(i,0)ed@e&®) j =1 .. N k=1,... K;

5: compute

t(k) = min p (M ® (cxcl)*)p,
(k) = min pH(M© (exe)")p
by solving SDP (B20), k =1,..., K;
6: pick the maximal value over {t(1),...,t(K)}, say (1), and output
C1.

It is worth to remark that the complexity of the algorithm is domi-
nated by the computation required for solving SDPs ([B.23]) and (B:20).
Lastly, notice that an alternative way to numerically solve the one di-
mensional problems is to perform one dimension search since each of
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the problems has sufficiently smooth objective function and compact
feasible interval. In the numerical simulation, we shall use the Matlab
(©command fminbnd to perform it.

3.5 PAR Constrained and Phase Quantized WDP

In this section, the synthesis of an approximation algorithm for (3.4))
has been considered, equivalently reformulated as:

max ¢ Re
C
arg (c(i)) € {0, 42m, ..., X2ox} i=1,... N
[e]* = N.

Clearly, when M goes to infinity, ([3.28]) becomes (B.6). The claim is that
problem ([B.28) is also NP-hard, as shown below.

Proposition 3.5.1. The phase quantized code design problem [B.28) is
NP-hard with parameters R > 0 and v > 1.

Proof. See Appendix [H O

Due to the hardness of problem (B.28]), similar to Algorithm [3 it
is proposed a randomized approximation algorithm based on the SDP
relaxation technique (as explained in Algorithm []). Notice that the SDP
relaxation problem for (B.28]) is (B.8]) as well.

Notice that, using the related idea in [46], the approximation algo-
rithm is applicable to the following quadratic program:

max ¢ Re

s.t.arg(c(i)) € {0, ﬁij’,‘ LMoY i=1,.. N (3.30)
le()I?,... le(N)P]" e F

where F C Rf is a closed convex set. In this case, the convex relaxation
of (B30) is
max tr (RC)
s.t.  diag(C) e F (3.31)
C*>0

which can be solved efficiently due to the convexity of the problem. As to
the approximation bound for Algorithm [ Lemma 3.3 of [37] is quoted
as the following lemma.
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Algorithm 5 Gaussian randomization procedure for radar code design
problem ([B28])

Require: R, v, M,
Ensure: a randomized approximate solution ¢ of (8.28));
1: solve the SDP (B.8) finding C*;
2: define d, d~, D, D™ according to (B.10)-(B.12);
3: draw a random vector & € CV from the complex normal distribution
Nc(0,D~(C* + (I — D_D))D_)'
4: let ¢(i) = \/C*(4,9)u(&(7)), i =1,..., N. where u(x) is defined as

1, if arg(z) € (0,27 ;)

€2 ar if arg(z) € 247,27 %)
p(x) =< . . (3.29)

ejzw%, if arg(z) € 2riL=L 2m)

Lemma 3.5.2. Let Z be a positive semidefinite matriz with all diagonal
elements being one, z be a randomized vector generated setting z(i) =
(@), i =1,...,N, where & ~ N¢(0, Z), and the rounding function
w(x) is defined according to (329). Then,

2 M?2sin?2 &

Elz21 = 2R(Z) for M =2, and E[zz'] = %Z for M > 3.
7r 7T
(3.32)

Resorting to the above lemma, it can be obtained the following result
concerning the approximation bound.

Proposition 3.5.3. Let ¢ be the randomized solution obtained through
Algorithm 3. Then,

E[c'Rc] > R(M) x tr (RC*) > R(M) x v([B2R)) (3.33)
where
ROD = { T yar=2 3.34

Proof. The proof is based on Propositions B:3.21 B.3.4], and Lemma [3.5.2)
It is completely similar to the proof of Proposition B.3.5 and, thus, it is
omitted here. O
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In words, Algorithm [ is a randomized R(M )-approximation algo-
rithm for (B28), where some examples of R(M) are R(4) = 0.6366,
R(8) = 0.7458, R(16) = 0.7754, R(32) = 0.7829, R(64) = 0.7848,
R(128) = 0.7852.

3.6 Robust PAR Constrained and Phase Quan-
tized WDP

In this Section, the main goal is to solve problem (3.3]), which can be
equivalently written as

matx t

st. t<pl(M'o (cch))p, Yy €[0,1]
le()2<~,i=1,...,N (3.35)
arg (c(i)) € {0, 42m, ..., X2ox} i=1,... N
lef* = N.

It is verified that (3:20]) is an SDP relaxation of ([8.33]). Let (C*, X*,t*)
be an optimal solution of ([B:20). Based on C*, approximate solutions
of (B3] are constructed, and then the one with the best performance is
selected. Algorithm [6l summarizes the procedure to generate an approx-
imate solution of (B.5]).

Notice that, although there is not an analytical approximation bound,
the numerical simulations indicate that such an approximate scheme
leads to high quality radar waveforms, also with a moderate sample size
K. This point will be better elicited in the section addressing numerical
results.

3.7 Performance Analysis

This Section is devoted to the performance analysis of the proposed
waveform design techniques in correspondence of different values for the
design parameters (namely, the PAR constraint 7, the number of ran-
domizations K, the number of phase quantization levels M, etc.). To
this end, a disturbance covariance matrix M, accounting for both clutter
and thermal noise, with the following structure is assumed:

N¢
M = Z/Bip(Vd,i)p(Vd,i)T + B, I

i=1
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Algorithm 6 Gaussian randomization procedure for radar code design

problem (B.3])
Require: M, ~, M,
Ensure: a randomized approximate solution ¢ of (B.5);
1: solve the SDP (B23) finding C*;
2: define d, d~, D, D™ according to (B.10)-(B.12);
3: draw random vectors &, € CV from the complex normal distribution
Nc(0,D~(C*+(I—-D D)D), k=1,...,K;

4: let (1) = VC*(4, ) (&(7)), i = 1,...,N, k = 1,..., K, where
w(z) is defined in (3:29);
5: compute

t(k) = min p'(M © (exe})")p,
vqa€0,1]
by solving SDP B20), k =1,..., K;
6: pick the maximal value over {¢t(1),...,¢(K)}, say t(1), and output
C1.

where the number of discrete clutter scatterers N, = 10, their strength
Bi=pB=10% v, =(i—1)/2,i=1,...,10, and 3, = 1072.

The analysis is conducted in terms of P; of the GLRT receiver [I]] (or
equivalently the standard matched filter with pre-whitening, followed
by squared modulus operation and threshold comparison) for a pre-
scribed target normalized Doppler frequency 7y (design parameter for
Algorithms Bl and [l), and robustness of the detection capabilities with
respect to Doppler shifts for a fixed a:

Putoms) = Q (2lael Rizmye. TP ).
1 1

Pd,T’Ob:Pd(avljd)v Vg = — a = a,

57 LR 57
where @ (-,-) is the Marcum @ function [47], assuming a false alarm
probability Py, = 1076, Additionally, due to the randomization pro-
cedures involved into Algorithms Bl6l the aforementioned performance
metrics have been averaged over 500 independent trials. It is important
to highlight that, for Algorithms Bland B Py o, = Py(&, vq) is the detec-
tion performance obtained when the code is designed for the given vy,
while the actual target and the receiver steering vectors are matched to
the same Doppler v,.
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Figure 3.1: P, versus |oz|2 for Pro = 1075 g = 01, N = 10 and v €
{1,1.3,1.6,1.9,2.2,2.5}. Algorithm [B]- PAR constrained code.

In Figure B the P;, achieved using the code devised according
to Algorithm [, versus |a|?, in plotted, for N = 10, some values of v
(precisely, v € {1,1.3,1.6,1.9,2.2,2.5}), and 74 = 0.1. The curves high-
light that greater and greater PAR parameters lead to better and better
Py values. Such behaviour was indeed expected, because increasing -y
(namely, imposing a less restrictive PAR constraint on the devised code)
is tantamount to increasing the size of the feasible set of the problem.
However, it is also evident that, after a threshold value for v, depending
on the maximum eigenvalue of the covariance matrix M, no additional
performance improvements can be observed. This phenomenon has a
clear analytical interpretation. In fact, for v greater than the threshold
value, the PAR constraint becomes inactive and an optimal solution to
B2) coincides with an optimal solution to

max ¢ Re

c 3.36
s.t. |le||* = N. (3.36)
In other words, the optimal waveform is proportional to the eigenvector
of R corresponding to the maximum eigenvalue.

The robustness of Algorithms Bl and @ with respect to target Doppler
shifts is studied in Figure 321 Therein, the Py ., versus the actual vy is
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Figure 3.2: P, versus vg for Py, = 107°, |a|> = 0 dB, 7q = 0.1, K = 10, N = 10,
and v € {1,1.3,1.6,1.9,2.2}. Algorithm 1 - PAR constrained code (solid curves).
Algorithm [ - Robust PAR constrained code (dashed curves).

plotted for the PAR constrained (Algorithm [B]) and the Robust PAR con-
strained (Algorithm H) codes, assuming N = 10, K = 10, |a|? = 0 dB,
and v = {1,1.3,1.6,1.9,2.2}. The nominal target Doppler for Algorithm
Blis set to vy = 0.1, while Algorithm [l does not require this information.
Inspection of the curves shows that Algorithm [B] outperforms Algorithm
[ when the actual target Doppler is sufficiently close to the nominal
one. However, in the presence of significant Doppler mismatches, Py o
of Algorithm [3] exhibits a significant deterioration, approaching values
very close to zero. Besides, the transition from the Doppler interval with
close to 1 detection rates to the undetectability region is quite sharp.
On the contrary, the performance curves of Algorithm M show a quite
flat shape with respect to Doppler variations, outperforming Algorithm
Blfor a wide range of Doppler shifts. This feature is far more evident as -y
increases, leading (for the considered values of the parameters) to codes
with greater and greater detection capabilities, due to the less restrictive
constraints enforced in the optimization problem.

In Figure B3], the impact of the number of randomizations K on the
detection performance of Algorithm [@lis analyzed. Specifically, the worst
case Py versus |a|? is plotted for N = 10, v = 1.3, and several values of K
(K € {1,5,10,25}). It is easy to notice a performance improvement as K
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Figure 3.3: Worst case Py versus |a|*> for P;, = 107%, v = 1.3, N = 10, and
K € {1,5,10,25} randomizations. Algorithm []- Robust PAR constrained code.

increases. This behavior can be explained based on Step 6 of Algorithm
[ which selects the code ensuring the best performance among all the
K randomization experiments. It is also worth pointing out that, for a
quite moderate number of randomizations, K = 5,10, the performance
can be considered satisfactory, in the sense that an additional increase
in K does not lead to additional sensible improvements in P,.

In Figures B4 and B3] the same analysis developed in Figures B
and (for Algorithms [ and ), with reference to the performance
of Algorithms Bl and Bl has been conducted. Precisely, in Figure B.4]
the P; of the code designed according to Algorithm [l versus |a|? is
plotted for N = 10, vy = 0.1, some values of the PAR parameter v €
{1,1.3,1.6,1.9,2.2}, and M = 4 levels for the phase quantization. As
in Figure B increasing v leads to better and better detection levels.
In Figure B.5] the Py ,ps versus the actual v4 for the PAR constrained
Phase quantized (Algorithm [B]) and the Robust PAR constrained Phase
quantized (Algorithm [6) codes are plotted, assuming N = 10, K = 10,
@] =0dB, M =4 and v € {1,1.3,1.6,1.9,2.2}. The nominal target
Doppler for Algorithm B]is set to 7y = 0.1, while Algorithm @] does not
require this information. Analyzing the curves, the same considerations
as in Figure can be repeated.
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6 by =01, M = 4, N = 10, and

v € {1,1.3,1.6,1.9,2.2}. Algorithm [fl- PAR constrained Phase quantized code.
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Figure 3.5: P; versus vq for Prq = 1075, |64|2 =0dB, vy =01, K =10, M =
4, N = 10, and v € {1,1.3,1.6,1.9,2.2}. Algorithm [f] - PAR constrained Phase
quantized code (dashed-dotted curves). Algorithm[6l- Robust PAR constrained Phase
quantized code (dashed x-marked curves).



58 PAR-Constrained Radar Codes
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Figure 3.6: P, versus |a|*> for Py, = 107%, 7y = 0.1, M = 4, K = 10, N = 10.
Algorithm B]- PAR constrained code (solid line). Approximation Bound of Algorithm
(dashed o-marked curve). Algorithm [f] - PAR constrained Phase quantized code
(dashed-dotted line). Approximation Bound of Algorithm (] (dotted x-marked curve).

The focus is now on Algorithms Bl and B and the corresponding
approximation bounds. In Figures B.6] assuming N = 10, vy = 0.1,
K =10, and M = 4, the performance of Algorithms [ and [B] are com-
pared with the P; curves obtained exploiting their approximation bounds
defined by [BI7) and [B33]) respectively (i.e. using (BI7) or (B33) in
the first argument of the Marcum Q function in place of the respective
quadratic form). Each subplot refers to a specific value of the PAR pa-
rameter . The plots highlight that Algorithm [ performs better than
Algorithm [, which quantizes the phase of the transmitted waveform on
four different levels. The performance loss of the latter with respect to
the former is kept within 1 dB, for P; = 0.9, and is quite acceptable
considering also the less demanding hardware implementation of a phase
quantized waveform. It is also interesting to observe that the P; curves
obtained using the approximation bound provide a quite good approxi-
mation of the actual detection performance, for all the considered values
of the parameter v and for both the considered algorithms. As a matter
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Figure 3.7: P versus |a|® for Pr, = 107°%, 7y = 0.1, v = 1.3, K = 10, and
M € {2,4,8,16}. Algorithm [Bl - PAR constrained Phase quantized code (dashed-
dotted lines). Algorithm [3] - PAR constrained code (o-marked curve). Notice that
the curve of Algorithm [B] overlaps with that referring to Algorithm [l for M = 8 and
M = 16.

of fact, the lower bound approximation is at most 2 dB far from the true
P, curve.

In the last part of this Section, the effects of the number of quan-
tization levels are investigate. Specifically, in Figure B7, the P; versus
|a|? is plotted for 7y = 0.1, K = 10, v = 1.3, and several values of M
(M € {2,4,8,16}). As expected, increasing the number of quantization
levels, leads to better and better performances until M < 8. Then, a
saturation effect is experienced and the performance obtained by the
phase quantized Algorithm [B] ends up coincident with that provided by
Algorithm [ which, as already pointed out, assumes code elements with
phases ranging in a continuous interval.

Finally, before concluding this section, in Table 3] the average CPU
time required to solve the SDP problem (3.8]) (and (3.23])), which is the
most computational expensive step of Algorithms B and [l (Algorithms @]
and [6]), are provided. All the experiments were conducted on a desktop
computer equipped with a Intel Core 2 Quad Q9400 CPU (2.66 GHz).
The results highlight that the computational time is quite modest and
acceptable for all the considered values of v. Nevertheless, it is also worth
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Table 3.1: Average CPU time in seconds required to solve problems ([3.8) and (3.23).

vy 1 1.3 1.6 1.9 2.5
SDP ([3.8) | 0.083 | 0.104 | 0.097 | 0.085 | 0.086
SDP ([3.23) | 0.097 | 0.143 | 0.158 | 0.128 | 0.112

pointing out that the waveform design must not necessary be performed
on-line. It can be also implemented off-line producing a waveform library
[30] and then during the operation a waveform from the library is selected
for that particular scenario.

3.8 Conclusions

In this Chapter, radar waveform design in the presence of colored
Gaussian disturbance under a PAR and an energy constraint has been
considered. First of all, the focus has been on the selection of the radar
signal optimizing the SNR in correspondence of a given expected target
Doppler frequency (Algorithm [B]). Then, through a max-min approach,
a robust version (with respect to the received Doppler) of the aforemen-
tioned technique has been devised (Algorithm M), optimizing the worst
case SNR under the same constraints as in the previous problem. Since
Algorithms Bland @ do not impose any condition on the waveform phase,
introduced their phase quantized versions (Algorithms [l and [6] respec-
tively) have been introduced, forcing the waveform phase to belong to
a finite alphabet. Actually, this is a quite nice feature for a practical
implementation of the techniques. All the problems have been formu-
lated in terms of non-convex quadratic optimization programs with a
finite (Algorithm Bl and Bl) or an infinite (Algorithm H and [B) number
of quadratic constraints. The NP-hard nature of the problems has been
proved and, hence, design techniques have been introduced, relying on
Semidefinite Programming (SDP) relaxation and randomization as well
as on the theory of trigonometric polynomials, which provide high quality
sub-optimal solutions with a polynomial time computational complexity.

At the analysis stage, the performance of the devised algorithms have
been evaluated, considering both the detection probability achieved by
the Neyman-Pearson detector, as well as the robustness with respect
to target Doppler shifts. Additionally, the effects of the possible phase
quantization have been studied, showing the trade off existing between
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the number of quantization levels and some simplicity in circuitry im-
plementation.

Possible future research tracks might concern the generalization of
the waveform design problem so as to account for an additional similar-
ity constraint with a known code sequence. This new approach will pave
the way to a joint control of both the PAR and the waveform ambiguity
function. Unfortunately, the additional constraint cannot be easily han-
dled and the design of a solution method to the resulting optimization
problems is still an open issue.
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Chapter 4

Cognitive Design of the
Receive Filter and
Transmitted Phase Code 1n

Reverberating Environment

4.1 Introduction

The problem of radar waveform diversity and receiver optimization
has been addressed over and over during the last few decades, due to
the increasing performance requirements in terms of target localization
and tracking accuracy, range-Doppler resolution, mainlobe clutter rejec-
tion and low sidelobe signal and/or filter design. The growth in terms
of technology, such as new computing architectures, high speed and Off
The Shelf (OTS) processors, and digital arbitrary waveform generators,
had made possible to perform very complex and effective signal process-
ing [51L Ch. 6, 11, 25|, leading the path to the recent cognitive paradigm
(see [52], [53], [54], and [55]), which states indeed a new success fron-
tier for radar signal processing. Its main innovation concerns the smart
use of some a-priori information and previous radar experiences about
the operating environment (as for instance location of electromagnetic
interferences, reflectivity characteristic of the environment, weather con-
ditions and discrete clutter).

Two principal research modalities, exploiting the waveform diversity to
improve the radar performances, have emerged. The first is focused on

63
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the signal-independent interference and well models, but is not limited
to, radar environments where the main contribution to the disturbance
is represented by thermal noise, and/or intentional interference (Jam-
mers), and/or unintentional emissions by information sources, and/or
terrain scattering due to signals from other radar platforms (hot clut-
ter), 7,856, [57]. The latter assumes a reverberant environment, namely
a signal-dependent clutter scenario, with disturbances produced by radar
reflections from terrain or non-threatening targets in the surveillance vol-
ume. For a point-like target embedded in signal-dependent clutter, opti-
mization of the transmit signal and receive filter to maximize the Signal
to Interference plus Noise Ratio (SINR) has been accomplished, assum-
ing both an energy constraint [58] and a dynamic range constraints [59],
on the transmitted waveform. Implementation errors [59], amplitude
and phase modulation limitations [60], and quantization error effects
[61], have also been considered, modifying the procedure of [58]. In [62],
a cognitive approach for the design of the transmit signal (amplitude-
phase modulated pulse train) and receive filter, accounting for a sim-
ilarity between the transmitted sequence and a prescribed radar code,
has been devised. In [63], innovative algorithms for optimizing the mean-
square error of a target backscattering estimate in the presence of signal-
dependent clutter, have been derived. Either a constant-modulus or a
low Peak to Average power Ratio (PAR) constraint has been enforced on
the transmitted waveform. For a zero-Doppler Gaussian point target in
the presence of signal-dependent Gaussian clutter, modeled as the out-
put of a stochastic Linear-Time-Invariant (LTI) filter with a stationary
Gaussian shaped impulse respounse, analytic approaches to optimizing the
energy-constrained transmit signal spectrum while maximizing detection
performance have been introduced [22].

In this Chapter, the joint optimization of the transmit signal and
receive filter for a radar system which operates in a highly reverberant
environment is addressed, focusing on both continuous and finite alpha-
bet phase codes. Specifically, the assumption is that the radar system can
predict the actual scattering environment, using a dynamic environmen-
tal database, including a geographical information system, meteorologi-
cal data, site specific clutter maps [64], and some electromagnetic reflec-
tivity and spectral clutter models. Thus, exploiting the aforementioned
information and considering as figure of merit the Signal-to-Interference
plus Noise Ratio (SINR), a suitable radar phase code and receive filter
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are devised, under a similarity constraint between the sought waveform
and a reference code [7], [8]. The devised constrained optimization pro-
cedure sequentially improves the SINR. Each iteration requires the so-
lution of both a convex problem and an NP-hard optimization problem.
As to the NP-hard quadratic fractional optimization problem, the relax-
ation and randomization approach [§] is invoked in order to find a good
quality solution. The resulting computational complexity is linear with
the number of iterations and trials in the randomized procedure, and
polynomial with the receive filter length. The performance of the new
algorithm is analyzed in a homogeneous clutter environment, showing
that interesting SINR improvements can be obtained jointly optimizing
the transmitter and the receiver.

The Chapter is organized as follows. In Section 2] we describe
the system model is described, which slightly differs from the one in
eq.s M2l In Section 3] the constrained optimization problems for the
design of (either continuous or finite alphabet) radar phase codes and the
receive filters is formulated. Additionally, two sequential optimization
procedures are introduced, so as to obtain high quality solutions to these
problems. In Section[4.4], the performance of the proposed algorithms are
assessed. Finally, in Section 3] conclusions are drawn out and possible
future research tracks are discussed.

4.2 System Model

The model herein considered is slightly different from the one pre-
sented in eq.s M2 since the clutter disturbance and the thermal noise
terms will be explicitly separated. The focus is still on a monostatic radar
system that transmits a coherent burst of IV pulses. The waveform at the
receiver end is down-converted to baseband, undergoes a pulse matched
filtering operation, and then is sampled. The N-dimensional column
vector v = [v(1),v(2),...,v(N)] € CV of the observations, from the
range-azimuth cell under test, can be expressed as

v=oarcOp(vy,)+i+n, (4.1)

with ¢ = [¢(1),¢(2),...,c¢(N)]T € CN the radar code, ar a complex
parameter accounting for the target response, p(vg,) = [1,e2™ar
/2 (N=Dvar T V4, the normalized target Doppler frequency, i € C the

vector of clutter samples, and n € CV the vector of noise samples.



66 Cognitive Radar Design

The clutter vector ¢ is modeled as the superposition of returns from
different uncorrelated scatterers, each from the (r,7)—th range-azimuth

bin, namely:
Ne—1L—-1

1= Z Z a(m-)JT, <C © p(Vd(m.))) , (4.2)
r=0 =0
where N. < N is the number of range ring that interfere with the
range-azimuth bin of interest (0,0), L is the number of discrete azimuth
sectors, ;) and Vd, . are, respectively, the echo and the normalized
Doppler frequency of the scatterer in the range-azimuth bin (r,7); fur-
thermore, Vr € {0,...,N — 1}

1 i l-m=r 9
Jr(l7m)_{0 if l—m;ér (lam)€{17"’7N}7

where J, = JL_ denotes the shift matrix. As to the statistical charac-
terization of the noise vector n, it is still assumed that it is zero-mean
and white, i.e.:

En]=0, E [nnT] =02l

Now, consider the statistical characterization of the clutter vector . As
previously stated, the scatterers are assumed to be uncorrelated; more-
over, for each scatterer, denote by U(2m') =E Ua(m-)ﬂ, assume that the
expected value of its complex amplitude is zero, i.e. E [a(m-)] = 0,
and that its normalized Doppler frequency, statistically independent of

Q(r,7), 18 uniformly distributed around a mean Doppler frequency Vi 1y

ie. Vd( ) ™ u (Dd(r,i) — E(TT’”, Vdg s T e(gi)>. As a consequence, we have:
E[i] = 0 and
Ne—1L—1
Si(e) =E i) = Y 3 0F I, Tle, (r) T, (4.3)
r=0 i=0
where

T'(c, (r,i)) = Diag(c)®,." Diag(c)',
and, V (I,m)e{1,...,N}?,

) sin[me(l—m)]

q,l?d _ (527Dg(l-m )
€ (l,m) € [7T€(l — m)]

!Notice that model ([@2)) refers to the general case of range ambiguous clutter. It
reduces to the range unambiguous scenario letting N. = 1.
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A relevant scenario, which can be described and modeled according to
[@3), is now described (see also [62]). Let assume that, for any (r,7)
range-azimuth bin, the Radar Cross Section (RCS) aém) of the scatterer
is predicted through the interaction between a digital terrain map, such
as the National Land Cover Data (NLCD) and RCS clutter modeld?.
Whenever a(()M) has been estimated, according to the previous informa-
tion, we can evaluate a(zm.) as

o2 = oy VK |G (8:) 7,

where K. is a constant accounting for the channel propagation effects,
such as the free space two-way path loss and additional system losses
(radar equation), 6; is the azimuth angle of the bin (r,7), and G () is
the one-way antenna gain for the angle 6.

4.3 Problem Formulation and Design Issues

The present Section deals with the design of a suitable radar code
and receive filter maximizing the SINR, under some constraints on the
shape of the code. Specifically, assuming that the vector of observations
v is filtered through w, the SINR at the output of the filte can be
written as:
oz’ [w (¢ © p(va,))
w'E; () w + oy |w]|®

SINR = (4.4)
where |aT|2|'wT(c®p(VdT))‘2 is the useful energy at the output of the
filter, while o2|lw||?> and w!X; (c)w represent, respectively, the noise
and the clutter energy at the filter output. Notice that the clutter en-
ergy wiX; (¢) w functionally depends both on the receive processing w
and the transmitted waveform through X; (¢) (namely it is a quartic
polynomial in variables w and ¢). This observation represents the main
difference between a signal-dependent and a signal-independent environ-
ment where the output clutter energy is only a function of w, being a
homogeneous quadratic form in that variable.

To develop the proposed SINR optimization algorithm, the following
technical Lemma B.31] (whose proof is given in [62]) has been used, so
as to provide an alternative expression to the SINR:

2Otherwise, it could be estimated exploiting feedbacks from previous scans.
30bviously, the implicit assumption is that w # 0.
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Lemma 4.3.1. An equivalent expression of the SINR is given by:

lar [T (w* © p(vay) |

SINR = " (4.5)
c'®; (w) c* + o |lw|?
where:
Ne—1 L—1 vy
0, (w) = > ot Diag(J _,w")®. ;) Diag(J _,w)+
r=1 =0
L-1

0%, Diag(w") ", Diag(w).

€(0,4)

o

=

As to the shape of the code, the focus is on both continuous al-
phabet phase codes, i.e. |c(k)] = 1,k = 1,..., N, and finite alphabet
phase code, namely c(k) € {1,e/27/M _ e2r(M=1)/M\ L — 1 N,
Furthermore, a similarity constraint [7, [§] is enforced, namely

||C_CO||OO Séy (46)

where the parameter § > 0 governs the size of the similarity region and
co is a prefixed phase code. By doing so, it is required the solution
to be similar to a known code c¢g, which shares some nice properties
such as reasonable range-Doppler resolution and peak sidelobe level. In
other words, imposing (f.0) is tantamount to indirectly controlling the
ambiguity function of the considered coded pulse train: the smaller § the
higher the degree of similarity between the ambiguity functions of the
devised radar code and c¢y.

Summarizing, the joint design of the radar code and receive filter
can be formulated in terms of the following constrained optimization
problems:

2
lar|?|w! (e © p(var)) |
max - ST
) B WS Qw0 w] W
st.  Je(k)|=1,k=1,...,N
le = colloo <6

for a continuous alphabet phase code;
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jar*w’ (c © p(va,)) |
i) ew W (c)w+onl|w|?
st c(k) e {1,e2/M [ ei2n(M-1)/MY e — 1 N,
e —collo <6

(4.8)
for a discrete alphabet phase code.

Problems P¢ and P are non-convex optimization problems, since the
objective function is a non-convex function and the constraints |c(k)|> =
1,k=1,...,N,and c(k) € {l,eﬂ”/M,..., ej2”(M_1)/M},l<: =1,...,N,
define non-convex sets. The technique adopted to find a good quality
solution for P¢ and P? is based on a sequential optimization procedure.
The idea is to iteratively improve the SINR. Specifically, given w1,
it will be searched an admissible radar code ¢™ at step n improving
the SINR corresponding to the receive filter w1 and the transmitted
signal ¢!, Whenever ¢ is found, the signal will be fixed and a new
search, now for the adaptive filter w(™ improving the SINR correspond-
ing to the radar code ¢ and the receive filter w1 will start, and
so on. Otherwise stated, w™ and ¢(™ are used as starting point at step
n + 1. To trigger the procedure, the optimal receive filter w® to an
admissible code ¢ is considered.

From an analytical point of view, w(™ is an optimal solution to the
optimization problem:

o jor |’ (e © plusr)) [
w max

(4.9)
v s () w ol

As shown in [62], Pw™ is solvable and a closed form optimal solution
w(™ can be found for any feasible ¢(™). Specifically, an optimal solution
to Py ™ is given by:

) (Ei (c(")) +onI ) B (c("’ © p(VdT)) w10)

(36 <) ™ @ o)

from which it is evident the influence of ¢ and the steering vector

w™
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p(va,) on w™, Furthermore, ¢™ is given by:

2

n—1)F
¢ = argmax oz w™ " (c O p(vay)) |

cefer=b e} (0w + o2 D)

where ¢™®) is a good solution of problem 773(") if the focus is on P¢, and

(n)

a good solution of problem Pg if the focus is on P9, respectively given

by:
[}
s \04¢p]2|w("_1)T (c®p(vay)) ‘2
n—1)1 n— n—
pem )e w IS (w4 opllw™TVP L (g1
st. Je(k)=1,k=1,...,N,
le = colloc <0
[}
21, (n—1)1 2
o Jr Pl (e plu)|
o ) f w TS (@ w4 o w2
Pe s, c(k) € {1,e027/M | ei2r(M-1)/MY - (4.12)
k=1,...,N,

le = collo <0

Making use of [62, Proposition 2.1|, the following Proposition E:3:2 holds
true:

Proposition 4.3.2. Let {(c("),w("))} be a sequence of points obtained
through the proposed sequential optimization procedure, either for the
continuous or the discrete alphabet cases; let SINR™ be the SINR value
corresponding to the point (c(”),w(”)) at the n—th iteration. Then:

o the sequence SINR™ is a monotonic mcereasing sequence;
e the sequence SINR™ converges to a finite value SINR*;

e starting from the sequence {(c("),w("))}, it is possible to con-

struct another sequence {(é("/), 'w("/)> }, that converges to a feasi-

ble point (&*,w*) of problems P¢ or P, such that the SINR eval-
uated in (¢, w") is equal to SINR*.
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Figure 4.1: Block diagram of the proposed transmit-receive optimization procedure,
for both the continuous phase code case and the discrete phase code case.

Observe that, from a practical point of view, the proposed optimiza-
tion procedure requires a condition to stop the iterations; to this end, an
iteration gain constraint can be forced, namely |[SINR(™ — SINR(™ V| <
¢, where ( is the desired gain. In Figure 1] a pictorial representation
of the proposed joint optimization procedure of the receive filter and the
transmit phase code is given (in particular, the symbol P refers to
either problem 773(") for the continuous phase code case or to problem

Pg(n) for the discrete phase code case). The next Subsections will be de-

voted to the study of the optimization problems 733(”) and Pg(n) required
for implementing the proposed sequential optimization procedures.

4.3.1 Radar Code Optimization: Solution of the Problem
4.11]

An algorithm to find in polynomial time a good quality solution to
the NP-hard problem P¢™ is now described. Using Lemma 31 P
can be equivalently recast as the following problem P;:

2

‘CT <w(n—1)* o) p(VdT)>
max
Py c CT®i (,w(n—l)) c* +J121||w(n_1)||2

st.  Je(k)|=1,k=1,...,N
le = colloo <0

, (4.13)
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This is a non-convex fractional quadratic problem. Notice that, since
le(k)| = |co(k)| =1, k=1,..., N, the similarity constraint
k) —co(k)] <6
pemax [e(k) = eo(k)] <
can be equivalently written as R [c¢*(k)co(k)] > 1—6%/2fork=1,...,N,
which is tantamount to imposing arg (c¢(k)) € [vk, 7k + d¢], where v =
arg (co(k)) — arccos(l — 6%/2) and 0. = 2arccos (1 —02/2) for k =
., N, [8]. Thus, problem ([{I3) is equivalent to:

. ‘CT (w("—l)* @p(udT)) ?
X

Pl O (wh ) et o2 w2 L (414)
st. Je(k)=1,k=1,...,N
arg (s(k)) € [ye, v +6c), k=1,...,N

Observe that problem Pj, even in the simpler formulation corre-
sponding to € = 2, is generally NP-hard, consequently one cannot find
polynomial time algorithms for computing its optimal solutions. Hence,
the focus is on approximation techniques, thus a relaxation and ran-
domization based algorithm is proposed, which provides a randomized
feasible solution to (AI4]). To this end, assume that

S = (w<"—1> ® p(VdT)*) (w<"—1> ® p(ydT)*)T , (4.15)

and )
— @ (™D & 012
M=o, (w ) + 22w VL. (4.16)

The relaxed version of problem Pj, obtained neglecting the similarity
constraint, namely the conditions arg (s(k)) € [vk, vk + 9., k=1,..., N,
is given by the following fractional quadratic problem Py;

‘CT (fw("—l)* ® p(VdT))

/" max
Pl c CT@i w(n—l)) C*+0_722||w(n—1)||2 s (417)

st. |e(k)=1,k=1,...,N

which is equivalent to

2

i tr (SX)
X,c ( )

i
P1 st.  X(kk)=1,k=1,...,N

(4.18)
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The SDP relaxation [26] of problem P}’ obtained dropping the rank-
one constraint X = ecf, is:

i tr (SX)

X tr(MX) (4.19)

st.  X(kk)=1,k=1,...,N :
X*>0

In order to solve the fractional problem ([I9]), following the guidelines
of [65], it suffices to solve the equivalent SDP problem:

max tr (SX)
X(k,k)=u
X>=0,u>0

Indeed, both problems (£I9]) and (£20)) are solvable and have equal op-
timal value; in fact, if (X , a) is an optimal solution of (L20), then it can

be shown straightforward that X /4 is an optimal solution of [@I9); also,
if X solves (@IJ), then (X/tr (MX),1/tr (MX)) solves ({20)). Thus,
following the same approach as in [8, pp. 8-9], a randomized feasible so-
lution ¢® to problem 773(”) can be computed using Algorithm [, where
H indicates the number of randomizations involved in the procedure.

Notice that the H randomizations involved into steps 3-6 are meant
to improve the approximation quality; in fact the randomized feasible
solution yielding the largest objective value will be chosen as the ap-
proximate solution. As to the computational complexity connected with
the implementation of the algorithm, the solution of the SDP relaxation
requires O(N3?) floating point operations (ﬂops)ﬂ whereas each random-
ization involves O(N?) flops [35]. It follows that, for a modest number
of randomizations, the most relevant contribution to the computational
complexity is connected with the SDP solution.

4.3.2 Radar Code optimization: Solution of the Problem
4,12

At the current state of the art, most radar systems use phase coded
waveforms, where the phases are taken from a finite and regularly spaced

“Herein, the Landau notation O(n) is used; hence, an algorithm is O(n) if its
implementation requires a number of flops proportional to n [66].
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Algorithm 7 Radar Phase Code Optimization

Require: M, S, H,{~;},0..

Ensure: A randomized approximate solution ¢® to 773(");
1: Let (X™*,u*) be an optimal solution to problem (@.20).

A

2: Denote by X = X*/u*.

3: Generate random vectors (§), € CV, h =1,..., H, from the complex
normal distribution N¢(0,Y) where Y = X ® y,yl, where y, =
[e_j'yl’ .. ,e_]’YN:IT

4: Let (s(k))n = yi(k)o((&(k))n), k= 1,...,N, h = 1,..., H, where

‘arg(:c)é
o(z) =¢e 2 % zeC.
5: Compute
s
(W)= 22 h=1...H
c, Mcy,

6: Pick the maximal value over {t(1),...,t(H)}, say t(1), and output
) =
C =C1.

alphabet. As a consequence, in this Subsection, an algorithm to find in

(n) is de-

polynomial time good solutions to the NP-hard problem 7P¢
scribed.

Firstly, assume that ¢y(k) € {1,ej2”ﬁ, . ,eﬂ’r%},k =1,...,N, and]
M > 2. Then, using Lemma E3.T], Pgl(") can be equivalently rewritten
in terms of the following problem Ps:

‘CT <w("—1)* ® p(VdT)) |2
max T (n—1) * 2 (n—1)12
Pl ¢ O (w ) et o2 w Y| - (21

st. celk) e {1,ej2”ﬁ,...,ejz’r%}, k=1,...,N
e —colloc <6

This is a non-convex fractional quadratic problem. Notice that, account-

. M1 2
ing for {c(k),co(k)} € {1,612’Tﬁ,..., eﬂwMMl} , k=1,... N, the
constraint i I[{laxN] le(k) — co(k)| <0, k=1,...,N, can be equivalently
€ll,...,

written as R [c*(k)co(k)] > 1 — §2/2 for k = 1,..., N, which in turn

®Notice that, for M = 2 and § < 2, the optimal solution to problem [@ZI)) is the

. . N
trivial one, i.e. c* 2 ¢
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amounts to enforcing

5. Bk . Br+1 . Bp+dg—1
c(k) € {&?* 2 PN L I w

|2

where

Br = [M arg(so(k))/(2m)] — [[M arccos(1 — 6°/2)]/(2r)]

depends on ¢y(k) and 4,

5§ 12 Maeeet=t s e i, 2)
¢ M §=2

depends only on ¢ [§].
Thus, problem ([4.2])) is equivalent to:

‘CT (w(”—l)* @p(l/dT)) |2
max
Pyl O (wh V) e+ o fw D) C(422)

s.t. arg (C(lﬁ)) S % [/Bkw@k + 17"'75k+5d_ 1]7
(b)) =1, k=1, N.

Observe that problem P}, even in the simpler formulation corresponding
to € = 2, is generally NP-hard, consequently one cannot find polynomial
time algorithms for computing its optimal solutions. As a consequence,
in the following, the focus is on approximation techniques, and a relax-
ation and randomization based algorithm is proposed, which provides a
randomized feasible solution of ([#.22). Thus, using S and M defined
respectively in ([{I5) and ([4I0), resorting to the same relaxation proce-

dure as in ([@I7)-(@20), and following the same steps as in [8, pp. 13-14],
)

a randomized feasible solution ¢™® to problem Pg(n can be computed
using Algorithm

As for Algorithm [ the H randomizations involved into steps 3-6 are
meant to improve the approximation quality; moreover, the computa-
tional complexity is mostly related to the solution of the SDP problem
(O(N35) flops). Finally, also with reference to the finite alphabet case,
a modest number of randomizations is sufficient to ensure satisfactory

performances.
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Algorithm 8 Radar Quantized Phase Code Optimization
Require: M, S, H, {;}, M, 64.
Ensure: A randomized approximate solution ¢® of Pg(n);

1: Let (X, u*) be an optimal solution to problem (Z.20).
2: Denote by X = X*/u*.

3: Generate a random vector (§), € CV, h =1,...,H, from the com-

plex normal distribution Ng(0, W) where W = X © ydy:;, with
—j2z3 — 22BN T
yo=leIHH IR

4: Let (s(k))n, = yi(k)u((€(k)n), k=1,...,N, h=1,..., H, where

1, if arg(z) € [0, Zw% ;
el a1 if arg(x) € [2%%,2%%);

5: Compute
c;rLSch
CILMCh

t(h) = L h=1... H.

6: Pick the maximal value over {t(1),...,¢(H)}, say (1), and output
) =
C =C1.

4.3.3 Transmit-Receive System Design: Optimization Pro-
cedure

In this Subsection, the proposed sequential optimization procedures
for the receive filter and the radar code are summarized and schematized
respectively as Algorithm [A for the continuous alphabet case and Algo-
rithm [0l for the finite alphabet case. To trigger the recursion, an initial
radar code ¢(©, from which we obtain the optimal receive filter w(®, is
required; a natural choice is obviously 0 = ¢.

The computational complexity, connected with the implementation
of both Algorithm [0 and Algorithm [[0] depends on the number of it-
erations N as well as on and the complexity involved in each iteration.
Precisely, the overall complexity is linear with respect to N, while each
iteration includes the computation of the inverse of 3; (co) + 021 and
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Algorithm 9 Transmit-Receive System Design for Continuous Alphabet
Phase Codes

Require: {U(T,i)} > {Dd(r,i) ) E(r,i)} yOns> €Oy Vdrs H,o,¢.
Ensure: A solution (¢*,w*) of P°.

1: Set n =0, e = ¢,
-1
) . (Zileo) +onl)  (co©p(vay))
— . -
|(Zi (co) + 20 ™% (e0 © p(vay )
and SINR(™ = SINR.
2: do
3:n:=n+1;
4: Construct the matrices )

Q; (w("_l))* + o2|lw™ V|2I, and the parameters {v}, 0.

Find a good quality solution ¢™*) to problem 772("), through the use
of Algorithm [7
Set

1)t 2
c™ = argmax |ozT|2|'w( Y (cop(var))]|

ce{c(n=1 c<*>}w n=1)! > (C) w1 + g%|’w("—1) ”2

7: Construct the matrix X; (c(”)).
8: Solve problem Py ™ finding an optimal receive filter

10:
11:

(Zi ( (")) + UfLI)_1 (c(") @p(VdT))

(2 (e) +2) ™ (e 0 ptan) [

and the value of the SINR for the pair (c("), w(”)).
Let SINR(™ = SINR.

until |SINR ") — SINR™ V| < ¢.

Output ¢* = ¢™ and w* = w™.

w™ —
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Algorithm 10 Transmit-Receive System Design for Finite Alphabet
Phase Codes

Require: {U(T,i) }7{Dd(r,i) ) €(ryi) } 7037007VdT 7H757C7M'

Ensure: A solution (c*,w*) of P

1: Set n =0, ™ = ¢,
-1
) (Zilco) +onl)  (co©p(vay))
N -1/2 2
H (Zi (co) + agI) / (co® p(ydT))H
and SINR(™ = SINR.
2: do
3 n:=n+1;

4: Construct the matrices

10:
11:

S = (w"Vopy)) (w(”_l)@p(z/dT)*)Jr and M =
Q; (w(”_l))* + o2|lw™ V|21, and the parameters {8;}, dq.

(n)

Find a good solution of problem Pg , through the use of Algorithm

)
Set

1)t P
¢ = argmax ‘aTﬂw Y (CQP(VdT)”

cefetn.e w5 (€) D + 02w

1)H2

Construct the matrix 33; (c(")).
Solve problem Py ™ finding an optimal receive filter

(2 () +020) ™ (e @ play))

(2 (c) +ta) ™ (e 0 pta)

and the value of the SINR for the pair (c("),w(")).

Let SINR(™ = SINR.
until [SINR™ — SINR™ V| < ¢.
Output ¢* = ¢™ and w* = w™.

w® —

27
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the complexity effort of Algorithm [ and Algorithm [ respectively. The
former is in the order of O(N?3) [66]. The latter, for a modest number of
randomizations, is connected with the SDP solution, i.e. O(N3) [62].

4.4 Performance Analysis

In this Section, the performance analysis of the proposed algorithm
for the joint optimization of the radar code and the receive filter s pre-
sented. An L-band radar is considered, whose operating frequency is
fo = 1.4 GHz, and exploiting a broadside array with IV, = 21 elements
pointing in the range-azimuth bin of interest (0,0). Specifically, a uni-
formly weighted linear array with uniform spacing equal to d = \/2 is
considered. Consequently, the radiation pattern is given by:

1 sin <Nag cos(0)>
GO) =1 Na gin (g cos(@))
10°? if m<f<2rm

it 0<0<m

The focus is on a scenario with a homogeneous range-azimuth clutter
where the number of range rings that interfere with the range-azimuth
bin of interest (0,0) is N. = 2 and the number of azimuth cells in each
ring is L = 100. Moreover, the pulse train length is set to N = 20
and, as similarity code ¢y, the N-dimensional generalized Barker code
and its M-quantized versio are set for Algorithm [ and Algorithm
Cogn:Alg4, respectively. With reference to the continuous phase case, it
is worth to remark that the choice for this similarity code is mainly due to
its autocorrelation properties, namely its minimal peak-to-sidelobe ratio
excluding the outermost sidelobe. The description of generalized Barker
codes can be found in [67] and [68], also for other values of N. The exit

5Specifically, given the code ¢, its M-quantized version ¢? is constructed as
(k) = p(c(k)), k=1,..., N, where the non-linearity fi(z) is defined by

1, if arg(z) € [0, 2m5)
(&) 2 if arg(z) € 2m;,2m2)
fi(z) =

el Mﬁl, if arg(z) € [2r24-L, 2m)
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Figure 4.2: Algorithm 3 - SINR behavior for § = [0.1,0.4,1,1.5,1.7,2].

condition implemented to stop the procedure assumes ¢ = 107>, namely:
ISINR(™ — SINR™D| < 107°.

The randomizations for both Algorithms [7] and B have been set to H =
100.

As to the parameters of the uniform clutter, the assumption is that
724 K, = CNRK, = 30 dB, a mean Doppler frequency 74 = 0, and
Dnoppler uncertainty 5 = 0.35 for each range-azimuth bin. Additionally,

a target with Signal to Noise Ratio |O;L2|2 = SNR = 10 dB and normalized
Doppler frequency vy, = —0.4 is supgosed to be on the scene.

The analysis is conducted in terms of the attainable SINR, in corre-
spondence of the devised transmit code and receive filter, as well as the
shape of the related auto- and cross-ambiguity functionslj.

In Figure 2] the SINR behavior, averaged over 100 independent tri-
als of Algorithm [0 is plotted versus the number of iterations, for different
values of the similarity parameter §. As expected, increasing ¢, the opti-
mal value of the SINR improves since the feasible set of the optimization
problem becomes larger and larger. Actually, performance gains up to
22 dB, with respect to step zero of the procedure, corresponding to the
traditional adaptation on receive side only, can be observed for § = 2. Of

"The MATLAB@ toolbox SeDuMi [Z8] for solving the SDP relaxation, and the
MATLAB®© toolbox of [70] for plotting the ambiguity functions of the coded pulse
trains, have been exploited.
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(b) Algorithm [@- ¢* for 6=0.1.

1220

(c) Algorithm [0 - ¢* for é=1. (d) Algorithm [ - ¢* for §=2.

Figure 4.3: Algorithm[@l- Ambiguity Function modulus of the radar codes, assuming
T, = 3T,

course, this is just a potential value and in real conditions smaller gains
could be experienced due to some inaccuracies in the available informa-
tion. Also, observe that the number of iterations, required to achieve
convergence, increases as well.

In Figures 43| the ambiguity functior of a synthesized code ¢*, to-
gether with that of the reference code ¢y, is plotted for two different sizes
of the similarity region. Indeed, an opposite behavior with respect to Fig-
ure[4.2] can be observed. Precisely, increasing J, the set of feasible points
becomes larger and larger, and better and better SINR performances
are swapped for worse and worse ambiguity behaviors. Notice that the
ambiguity function allows to visually represent the similarity between

8A coherent pulse train with ideal rectangular pulses of width T}, and pulse rep-
etition time 7). is considered.
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the reference code and the devised one. Moreover, it has also a certain
relevance for the following reason: in order to update the site specific
clutter maps, as well as to dynamically estimate other clutter parame-
ters and account for a full cognitive implementation, a parallel receiving
processing branch, exploiting a conventional pulse train matched filter,
could be adopted. It is thus of paramount importance the availability
of a signal sharing good range-Doppler resolution and ambiguity proper-
ties. By doing so, effective real-time estimates of the clutter parameters
with a low computational cost can be obtained.

In Figures £.4] the frequency behavior of the radar code and the
receive filter, corresponding to 6 = 2, and for different values of the
iteration number (n = [0, 5, 20, 50]), is analyzed.
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Figure 4.4: Algorithm [01- Cross-Ambiguity Function, in dB, of the radar code and
receive filter.

Precisely, the contour map of the (slow-time) cross-ambiguity func-
tion is plotted,

g™ (m,vy) = ‘w(”” (Jm <c(”) @p(yd)>> ‘2 (4.23)

where m is the delay-lag and v, is the Doppler frequency of the incoming
signal, which also allows to visualize the systems response to ambiguous
ranges. For a given value of m, it gives the Doppler response to a clut-
ter patch located m PRI away from the one of interest. As forced by
the design procedure, the cross-ambiguity function is equal to one at
(m,vgq) = (0,—0.4), which is the range-Doppler position of the nominal
target. Moreover, lower and lower values of g(™ (m, vg) can be observed
in the strip 0 <m < 2, —0,35 < vy < 0.35 as the iteration step n grows
up. Interestingly, this performance trend reflects the capability of the
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Figure 4.5: Algorithm [I0]- SINR behavior for 6 = [0.1,0.4,1,1.5,1.7,2], M = 16.

proposed joint transmit-receive optimization procedure to sequentially
refine the shape of the cross-ambiguity function in order to get better
and better clutter suppression levels.

In Figure 3] the SINR behavior, averaged over 100 independent
trials of Algorithm [I0] is plotted versus the number of iterations, for
different values of the similarity parameter ¢, and for M = 16. The
same considerations as for the analysis conducted in Figure L2 hold true;
indeed, increasing ¢, better and better SINR values are experienced,
due to the enlargement of the feasible set. Performance gains up to
approximatively 12 dB, with respect to step zero of our procedure can
be observed for § = 2.

In Figures B0l the ambiguity function of a synthesized code ¢*, to-
gether with that of the reference quantized code ¢, is plotted for three
different sizes of the similarity region, assuming M = 16. Again, an
opposite trend with respect to Figure is observed, which reflects how
6 rules the trade-off between SINR performance and ambiguity behav-
ior. Precisely, increasing d, the set of feasible points becomes larger and
larger, and better and better SINR performances are swapped for worse
and worse ambiguity shapes.
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In Figure 7] the impact of the number of quantization level on the
devised code is considered, for a fixed similarity parameter 6 = 2. As
expected, the achieved average SINR increases as the number of levels in-
volved into the quantization procedure increases. Indeed, the greater the
cardinality of the alphabet, the higher the degrees of freedom available
in the choice of the radar code.

4.5 Conclusions

In this Chapter, the problem of cognitive constant envelope transmit
signal and receive filter joint optimization in a signal-dependent clut-
ter environment has been considered. Iterative algorithms have been
devised, trying to optimize the SINR while accounting for a similar-
ity constraint on the transmitted sequence. At each step, the proposed
procedures require the solution of both convex and NP-hard problems.
In order to find a good quality solution to the latter, relaxation and
randomization techniques have been invoked. At the analysis stage,the
performance of the proposed algorithms have been assessed in terms of
average SINR (versus the number of iterations), ambiguity function of
the resulting phase code, and cross-ambiguity function of the transmit
signal and receive filter pair. Furthermore, with reference to the finite
alphabet case, the impact of the quantization level on the system per-
formance have been analyzed. The results have highlighted that, in the
presence of a perfect a-priori knowledge, with a modest number of trials,
significant SINR gains (up to 22 dB foe the continuous alphabet case, or
12 dB with M = 16 for the quantized alphabet case, respectively) can be
obtained jointly optimizing the transmitter and receiver. Possible future
research tracks might concern the study of further constraints on the
receive filter, so as to keep under control other key parameters such as
the Integrated-to-Sidelobe Level or the Peak-to-Sidelobe Level. finally,
it is of primary concern to study the impact of an imperfect a-priori
knowledge, due to different error sources, on the potential performance
gain.
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Appendix A

Multi-Objective Optimization
Problems

A multi-objective optimization problemEl presents a vector-valued ob-
jective function and can be written in the form

min fo(e)

€T

st filx) <0, Vi=1,...,m, (A.1)

hi(x) =0, Vi=1,...,p

where € R" is the optimization variable, f;(x),7=1,...,m and h;(x),
1 = 1,...,p denote respectively the i-th inequality constraint and the
i-th equality constraint function, fo(x) : * € R™ — R? is the vector-
valued objective function whose ¢ components Fy(x), ..., F,(x) can be

interpreted as ¢ different scalar objectives, each of which we would like
to minimizd9.

If  and y are both feasible, we say that x is at least as good as
y according the i-th objective if F;(x) < Fj(y), while x is better than
y (or x beats y) according the i-th objective if Fj(x) < F;(y); so, if
Fi(x) < Fi(y) for i = 1,...,q and, for al least one j, Fj(x) < F;(y), we
say that & dominates y.
A point x* is defined optimal only if it complies with

Fi(x") < F(y), i=1....q

'The material in this sub-section is taken from [TI} pp. 174-187].
2The material of this Appendix is taken from [T, pp. 174-187]
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for every feasible y; otherwise stated, * has to be simultaneously opti-
mal for each of the scalar problems

min  Fj(x)
€T

sk, filx) <0 Vi=1,...,m,
hi(x) =0, Vi=1,...,p
for j = 1,...,q. In the presence of an optimal point, the objectives are

said noncompeting, since no compromises have to be made among them:
each objective is as small as it could be made, even if the others were
ignored.
However, the set of achievable values for problem (A1) does not always
present a minimum element, and thus the problem itself has not an
optimal point and an optimal value. In these cases, one focuses on the
minimal elements [I1] pp. 45] of the set, namely on the so-called Pareto-
optimal points.

A feasible point @* is referred to as Pareto-optimal only if fq(x*) is
a minimal element of the set of achievable values O (the set of objective
values of feasible pointsﬁ); in this case, fq(x*) is a Pareto-optimal value
for (A.1). Considering the ¢ scalar components of the objective function
fo(x), * can be considered Pareto-optimal only if it is feasible and no
better feasible point exists. Precisely, if y is a feasible point and Fj(y) <
Fi(x*) for i = 1,...,q, then necessarily F;(x*) = F;(y) fori =1,...,q.
This also implies that: if a feasible point is not Pareto-optimal, than
there is at least another feasible point that is better. Hence, the search
for “good” points can be limited to Pareto-optimal ones.
A standard technique to find Pareto-optimal points is the scalarization,
where the vectorial problem ([AlT]) is reduced to the scalar one

min AT fo()
st filz) <0 (A.2)

once it has been defined the vector of weights A > 0, namely a vector with
positive components. In fact, it can be shown [IT], pp. 178] that if * is an
optimal point for problem ([A.2]), than it is also a Pareto-optimal point
for the problem (A)). Nevertheless it is worth pointing out that, for

30 = {folx*) : I €D, filx) <0, i=1,....,m, hi(x) =0, i = 1,...,p},
where D is the domain of the optimization problem.
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non-convex multi-objective optimization problems, it is possible through
scalarization to obtain a sub-set, but not all, the Pareto-optimal points.

The choice of the parameter A plays a primary role in the determina-
tion of the Pareto points, defining the weight given to each of the scalar
components. Specifically, it quantifies our desire to make F;(x) small.
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Appendix B

Proof of Lemma 2.3.2

We first claim that problem (2Z3]) is feasible. It is seen that (co, t*)
with
t* = min M6 (ec! ,
vaclo, 1]p f( (cocy))p
is feasible for problem (Z3]), and thus (cocg, t*) is feasible for SDP prob-
lem (Z.6]). It follows by Lemma [Z3.1] that there is a matrix X > 0 such
that (coc;r), X, t*) is feasible for (2.9).

Now, we wish to show that problem (29) is solvable. To this end,
we are about to prove that the dual problem of ([2.9)) is strictly feasible
and bounded above. Let us compute the dual of SDP problem (2.9).

Recall that W = [wq,...,wy_1] € CM*N , = [1,e_jk9,...,
e=dM=Dk0]T '} —0 . N—1,0=2r/M, M=2N —1. Then, we can
rewrite W as

vg 1
'ui eimo
W = _ U = , ,m=0,...,M—1. (B.l)
i (N—1)mo
Vpr—1

Thus, WidiagWxXwt) = M1 (v], Xv,,)v,,. From the equality

m=1

constraint te; = & — Widiag(W XWT), we have

1 Y -
:NZM © C*)(i,1) Z'UanX’Um, (B.2)

m=0

,,_.
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and
1 N—k M—-1
ZM ©C*)( z+l<:z:Z'vTXv edhml E=1,...,N—1.
i=1 =0
(B.3)
It is clear that (B.2)) can be further rewritten into
t=tr (A()C) —tr (B()X), (B.4)
where
) -
A= I M7, By=)_ vnvl, (B.5)

that is, Ag is the diagonal matrix with diagonal elements being %M g
diagonal elements. Observe that (B.3]) has 2(N — 1) equalities (counting
the real part and imaginary part):

tr (AkJC) =tr (Bk’1X), tr (Ak’QC) = tr (BkQX), k=1,...,N —1,

(B.6)
where
M-1 M-1
By, = Z v, cos(kmb), Bjo = Z v, sin(kmé),
m=0 m=0
k=1,...,N—1, (B.7)
and
1 1
Ak,lzaMka Ak,2:§(Mk@E), k=1,...,N—1. (B.8)

The N x N Hermitian matrices M, are defined by
M (i 4 ki) = M7 + k,4), i=1,...,N—k; (B.9)

the diagonal elements and the other lower triangular elements of My
equal to zero. The N x N Hermitian matrix F is defined by

(B.10)

E(i,iy=1, i=1,...,N,
E@,)=—j  Vi>L



Appendix

95

By considering (B.2)-(B.4), (B.6)), we can rewrite problem (Z3) equiva-

lently into the following form

max tr (ApC) — tr (BoX)
s.t. tr(AkJC)—tI'(Bk,lX) =0, k=1,...,N —1,
tI‘(AkQC)—tI‘(Bk’QX):O, k=1,...,N —1,
tr (cochC) > b, (B.11)
tr(C) =1,
C 0,
X >0
Therefore, the dual problem of (BT is
min Yoe + 2
vz {1 ()} {za(k)}
8.t oI + yeoeh + 305 (@1 (k) A + 72(k) Ak 2) = Ay,
N1 (k) By 4 x2(k)By) < B,
y < 07 z e R7 $1(k) € R7 $2(k) € Rv
Vk=1,...N—1,
(B.12)

with R the set of real numbers.

Since problem (2.9) is feasible, then (B.11)) is feasible. It follows by
weak duality theorem that problem (B.12) is bounded below. It can be
also proved that problem (B.12) is strictly feasible. In fact, let 2z be a
sufficiently large positive number, y a negative number sufficiently close
to zero, z1(k), z2(k) equal to zero, then (z,y,x1(1),xz2(1),...,21(N —
1),z9(N — 1)) is a strictly feasible solution of (BI2). Therefore, from
Theorem 1.7.1 of [26] (Conic Duality Theorem), we can conclude that
problem (2.9]) is solvable because the dual is bounded below and strictly

feasible.



96

Appendix




Appendix C

Proof of Proposition 3.3.1

It is clear that problem (B.6]) is equivalent to the problem:

max 2z Rz
st. |z(0))P<1,i=1,...,N (C.1)
12[]> = N/v.

Let N =3P+1,v= 1+TP+1, z = [T, yT]", where = [2(0),2(1),...,
2(P),z(P +1),...,2(2P)]T and y = [2(2P + 1),...,2(3P)]T; let by =
[_TjeTa,aT, 0L, 007, b; = [—j,el',—el 05T, i =1,..., P, where a €
R” is a given vector with integer-valued components and e € R” is the

all-one vector. Let A be any number not less than the maximal eigenvalue
of Y2F ,bibl, and R be

P
Maopiq 0 } i

- b;b;. C.2
M S b (€2)

This previous assumption ensures R > 0. Therefore, it follows that

P
z'Rz = A|z|* = ) |2Tbi]> < AN/y = A(2P + 1) (C.3)
i=0
and the equality holds for any feasible point z for (C1I), if and only if
12(i) = 1,7 =0,...,2P, and blz = 0, i = 0,..., P. That is, all (i),
1=20,...,2P, are of unit modulus and

P
%eTaz(O) + Za(i)z(z’) =0,752(0)+2() —2(P+i)=0,k=1,..., P,
i=1
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which, due to nonzero 2y, are equivalent to

. P
%6Ta + ) a(@)(2()/2(0)) =0, j+ 2(6)/(2(0)) — 2(P +1)/(2(0)) =0,
i=1
i=1,...,P, (C.4)

Set 2(i)/2(0) = €% i = 1,...,2P, and the last P equations of (C4)
become

cos; —cosfpy; =0, 1 +sinb; —sinfp; =0,i=1,..., P,
which imply that 0; = —0p,; € {—%,—%7‘(’}, and the first equation of
(C4) becomes

1 P P
ieTa + Z; a(i)sing; =0, 2 a(i)cos0; = 0,
which further amounts to
P T 5
Za(z’) cost; =0, 0; € {—E,—gﬂ'}, i1=1,...,P.
i=1

This is clearly equivalent to the partition problem described in [48] pages
47 and 60], namely finding a binary vector @ such that

a(i)x(i) =0, z(i) € {£1},i=1,...,P. (C.5)

i=1
Summarizing, the conclusion is that finding a feasible solution such that
([C3) is valid with equality, is equivalent to finding a solution = € R¥ of

3.
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Proof of Proposition 3.3.2

(i) It follows from (BI3) that I — D™D = 0. Thus C'=C*+(I-
D™ D) > 0, which implies D-C D~ > 0.
(ii) It is seen immediately from (BI0)-@FI2) and BI5).
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Appendix E

Proof of Proposition 3.3.4

Notice that D™D = DD~ namely D and D~ commute. Since C*
is positive semidefinite, then

DD C*D D = C*,

where the property that, if a positive semidefinite matrix has a diagonal
element 0, then the corresponding row and column contains all zero
elements, has been used. Observe that (I — D~ D)D™D = 0. Then, it
follows that

DD C'D D =DD (C*+(I-D D)D" D =C".
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Appendix F

Proof of Proposition

Let y(i) = e28EW) j = 1,... N, where £(i) is generated by step
3 of Algorithm Bl Thus ¢ = Dy. It follows from Lemma that the
expectation of yy! is

Elyy'| = F(D-C"D") = %D‘C’*D_.
Therefore, it follows that
Elc'Re] = E[y'DRDy]

tr (DRDE[yy'))
gtr (DRDD-C"D")

v

gtr (RDD-C*D D)
= T (RC™)

4
0

> Z’U((Bﬂ))

where the first inequality is due to the fact that DRD > 0 and, in the
last equality, Proposition 334 has been applied.
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Appendix G

Proof of Proposition 3.4.2

This appendix deals with the dual problem of (8:23]), showing that it
is strictly feasible and bounded above, which by the strong duality [26]
Theorem 1.7.1], means that (3.23) is solvable.

Recall that W = [wy,...,wy_1] € CIN . = [1,e7 7%
e dL=DENT 'k —0,... N—-1,0 = 2r/L, L = 2N — 1. Then, W

can be rewritten as

vzr) 1
'vJ{ eimd
W = U = ,m=0,...,L—1. (G.1)
¥ {(N—1)mb
V-1 ¢’ "

Thus, Widiag(WXWT) = Zﬁl_:lo(vinX'vm)'vm. From the equality
constraint te; = & — Widiag(W XWT), we have

N
t=> (MoC)( Z vl Xvp, (G.2)
i=1
and
N—k L—1 '
Y (MeCH)(i+ki)=) vl Xv,e* k=1,...,N—-1. (G3)
i=1 m=0

It is clear that ((G2) can be further rewritten as

= tr (A()C) — tr (B()X), (G4)

105



106 Appendix

where

L—-1
Ag=Io M, By =) vnv},. (G.5)
m=0

Observe that (G.3) has 2(N — 1) equalities (counting the real part and
imaginary parts):

tr (Ak710) =tr (Bk71X), tr (AkQC) =tr (BkQX), k=1,...,N—1

(G.6)
where
L—1 L—1
By, = Z vl cos(kmb), Bjo = Z Vvl sin(kmé),
m=0 m=0
k=1,...,N—-1, (G.7)
and

1 1
Ak71:§Mk, Ak72:§(Mk®E), k=1,...,N —1. (GS)
The N x N Hermitian matrices M, k=1,..., N — 1, are defined by
M(i+ ki) = M(i + k,1), i=1,....,N—k (G.9)

and the diagonal elements and the other lower triangular elements of
M. are zero. The N x N Hermitian matrix F is defined by

(G.10)

E(i,i)=1, i=1,...,N,
E(i,l) = —j, Vi> L.

By considering (G.2)-(G4), (G.6), it is possible to rewrite problem (3.23))

equivalently into the following form

max tr (ApC) — tr (BpX)

s.t tI'(AkJC)—tI'(Bk,lX):O, k=1,...,N—1
tr(AkQC)—tr(Bk’QX):O, k=1,...,N—1 (G.11)
tr(B:C)<~v,i=1,....,N
tr (C)=N
C-0,X*>~0
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where E; are the same as those in problem (3.9]). Therefore, the dual

problem of (GII) is

i N .
min N () + Na
v}z {z1 ()} {z2(k)} 7 2=y 00)

5.t 2+ SNy B+ a (w1 (k) Ay + 22(k)
(Ag2) = Ao,
(@1 (k) By + x2(k)By2) < B,
y(i)>0,i=1,...,N, z e R, z1(k) € R,
xo(k) eR, k=1,...,N —1.
(G.12)

Take a point ¢ satisfying |c(i)| < v fori = 1,...,N and ||c|| = N,
and set T .

t= min p (M © (cocp)™)p:
which is a one-dimensional optimization. It follows from (3.26) that
solving the one-dimensional optimization is equivalent to solving an SDP.
Thus (¢, t) is feasible for (BI9) and (cc', ) is feasible for (3.20), and thus
B23) is feasible. It follows by the weak duality theorem that the dual
SDP (G.12) is bounded below.

It is further seen that problem (G.I2)) is strictly feasible. In fact,
let z be a sufficiently large positive number, y; positive numbers suffi-
ciently close to zero, x1(k), x2(k) equal to zero; then (z,y(1),...,y(N),
z1(1),22(1),..., 21 (N — 1), 2z2(N — 1)) is a strictly feasible solution of
([CID). It is interesting to note that By = WTW is the diagonal matrix
with each diagonal element being L. Therefore, it is possible to conclude
that problem (3.23)) is solvable, because the dual is bounded below and
strictly feasible.
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Appendix H

Proof of Proposition 3.5.1]

The present appendix is devoted to show that problem (B:28)) includes
the max-cut problem and the max-3-cut problem which are known to be
NP-hard [45], [49], and [50]. In fact, problem (B28)) is equivalent to

max ¢ Re
C
st. e <1
arg (c(i)) € {0, 72m, ..., LHow} i=1,... N
lell* = N/y.

(H.1)

The max-cut problem for a given undirected weighted graph (E, V') with
P nodes, is cast as

max Y (w(l - a(R)2 (D) /2 )
st.  ax(k)e{xl}, k=1,...,P

where wg; > 0 is the weight on the edge between nodes k and lEl Let Q
be the Laplacian matrix of the graph, i.e., Q(k,l) = —wy; for k # [ and
Qk, k) = E{;M:l wy. Thus, @ > 0 and the objective function of max-
cut problem ([L2) is equal to t27Qz. Now, in ([ELI), setting M = 2
(this means that arg(c(i)) € {0,7}, Vi, i.e., any c(i) is real-valued),
N = 2P, v = 2 (this implies that ||c||?> = P), and

[0

0 Opxp

"When there is no edge between k and [, one sets wi; = 0.
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(the so-defined R, together with ||c||*> = P and |¢(i)| < 1 Vi, implies that
an optimal solution ¢* of the maximization problem (56), has |c(i)*| = 1,
i=1,...,P,and |¢f| =0,i=P+1,...,2P), it is possible to reduce
(H.J) into the max-cut problem (H.2).
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