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Introdu
tion

As san
tioned by the IEEE Radar Standard P686/D2 (January 2008),

the term waveform diversity indi
ates:

Adaptivity of the radar waveform to dynami
ally optimize the radar per-

forman
e for the parti
ular s
enario and tasks. May also exploit adap-

tivity in other domains, in
luding the antenna radiation pattern (both on

transmit and re
eive), time domain, frequen
y domain, 
oding domain,

and polarization domain.

This paradigm is, undoubtedly, the expression of the revolutionary te
h-

nologi
al advan
es in the radar signal pro
essing �eld (su
h as new �ex-

ible waveform generators, high speed signal pro
essing hardware, digital

array te
hnology, and so on), whi
h have made attainable the a
tual

stressing performan
e requirements; indeed, its basi
s are in measure-

ment diversity, knowledge-aided pro
essing and design, and transmitter

adaptivity, whi
h only in the last de
ades have be
ome fully a

essible.

The waveform diversity paradigm arises from the insatiable demands

for remote sensing performan
e that are always present, espe
ially in

military appli
ations. We re
all here that in
reasing 
omplex operat-

ing s
enarios 
all for more and more sophisti
ated algorithms with the

ability to adapt and diversify dynami
ally the waveform to the oper-

ating environment: it represents, indeed, the key ingredient to a
hieve

a signi�
ant performan
e gain with respe
t to 
lassi
 radar waveforms.

Nevertheless, this �exibility demands for renewed strategies of modeling

waveform properties and optimizing waveform design.

All these aspe
ts highly justify the interest of the resear
h herein 
on-

du
ted, whose main aim has been to investigate the potentiality o�ered

by waveform design and waveform diversity. In parti
ular, the essen
e of

the present work of thesis is the possible appli
ation of the Optimization

Theory so as to the devise high performing transmit signal/re
eive �lter

design te
hniques. Verily, on
e a 
ertain �gure of merit has been 
ho-

XI
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sen and properly des
ribed by the mathemati
al language, and on
e the

ne
essary data have been 
olle
ted, many problems of pra
ti
al inter-

est in radar �eld 
an be modeled in terms of an optimization problem,

where the main purpose is to optimize the system performan
e under

some 
onstraints imposed by interferen
e, 
lutter and, more in general,

the operating environment. The optimization theory and its tools are

not unfamiliar to the signal pro
essing 
ommunity, although only with

the te
hnologi
al growth of the last years they be
ome approa
hable and


omputationally reasonable.

Therefore, the thesis is organized as follows:

• In Chapter 1, a waveform design algorithm attempting to jointly

optimize the radar dete
tion performan
e and the region of a
hiev-

able values for the Doppler estimation a

ura
y (for a �xed target

Doppler frequen
y) in the presen
e of 
olored Gaussian noise is

proposed, under a 
onstraint on the transmitted energy and on the

degree of similarity with a pre-�xed radar 
ode. Pre
isely, the re-

sulting waveform design problem 
an be formulated in terms of a

non-
onvex multi-obje
tive optimization problem. Thus, a family

of optimal solutions is 
onstru
ted, through the use of the Pareto-

optimal theory and the introdu
tion of the Pareto weights.

• In Chapter 2, the un
ertainty over the prior knowledge of the tar-

get Doppler shift is dealt with. The starting point is the realiza-

tion that many among the algorithms and design te
hniques in the

open literature optimize the radar signal in 
orresponden
e of a

given target frequen
y, whi
h is a
tually an unknown parameter:

therefore, even small mismat
hes between the presumed and the

a
tual value may result in extremely poor performan
e. Thus, a

max-min approa
h is employed, and a robust waveform design al-

gorithm with polynomial 
omputational 
omplexity is proposed to

devise good sub-optimal transmit signals, relying on the Semidef-

inite Programming (SDP) relaxation te
hnique and the theory of

trigonometri
 polynomials, and assuming 
olored Gaussian distur-

ban
e and under a similarity and an energy 
onstraint.

• In Chapter 3, the imposition of a Peak-to-Average power Ratio

(PAR) 
onstraint is investigated, whi
h is appealing also from a

te
hni
al point of view, and very reasonable for radar appli
ations.

Spe
i�
ally, it permits to keep under 
ontrol the dynami
 range of



Introdu
tion XIII

the transmitted waveform, whi
h is be a primal issue sin
e linear

ampli�ers with a large dynami
 range may be di�
ult to obtain.

Design algorithms maximizing the Signal-to-Noise Ratio (SNR),

for both the 
ases of a given and an unknown target Doppler fre-

quen
y, are synthesized, and their phase quantized versions (whi
h

for
e the waveform phase to lie within a �nite alphabet) are de-

vised. All the problems are formulated in terms of non-
onvex

NP-hard quadrati
 optimization programs, and thus high-quality

sub-optimal solutions, relying on SDP relaxation and randomiza-

tion as well as on the theory of trigonometri
 polynomials, are

proposed.

• In Chapter 4, the problem of 
ognitive transmit signal and re
eive

�lter design for a point-like target embedded in a high reverberat-

ing environment is 
onsidered, fo
using on phase-only waveforms

sharing either a 
ontinuous or a �nite alphabet phase (so as to 
om-

ply with the te
hnologi
al limits of the 
urrent radar ampli�ers);

moreover, a similarity 
onstraint is enfor
ed, so as to keep under


ontrol the auto-ambiguity properties of the sought transmit 
ode.

In parti
ular, the Signal-to-Interferen
e-plus-Noise Ratio (SINR) is


onsidered as �gure of merit, and an iterative pro
edure, requiring

the solution fo both a 
onvex and an NP-hard quadrati
 fra
tional

problem, is proposed to sequentially improve it. As for the NP-

hard problem, a relaxation and randomization approa
h is applied

so as to �nd good-quality sub-optimal solutions.

At the end of ea
h Chapter, some 
on
lusions and possible future tra
ks

are given.
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Notation

a 
olumn ve
tor;

a(i) i-th element of the 
olumn ve
tor a;

ai i-th 
olumn ve
tor;

A matrix;

A(i, k) (i, k)-th entry of the matrix A;

(·)T transpose operator;

(·)∗ 
omplex 
onjugate operator (
omponent-wise 
omplex


onjugate if the argument is a matrix or a ve
tor);

(·)† transpose 
onjugate operator;

⌊·⌋ integer �oor operation;

tr(·) tra
e of the square matrix argument;

det(·) determinant of the square matrix argument;

diag(·) ve
tor formed by the diagonal elements of

the matrix argument;

Diag(·) diagonal matrix formed by the 
omponents of

the ve
tor argument;

λmin(·) minimum eigenvalue of the square matrix argument;

λmax(·) maximum eigenvalue of the square matrix argument;

I identity matrix;

0 matrix with zero entries;

ek ve
tor with all zeros ex
ept 1 in the k-h position;

j imaginary unit (i.e., j =
√
−1);

R set of real numbers;

C set of 
omplex numbers;

XV



XVI Notation

ℜ{·} real part of the argument;

ℑ{·} imaginary part of the argument;

‖ · ‖ Eu
lidean norm of the argument ve
tor;

‖ · ‖∞ l∞ norm of the ve
tor argument, de�ned

as ‖a‖∞ = max
k∈(1,...,N)

|x(k)|;
| · | modulus of a 
omplex number;

arg(·) argument of a 
omplex number;

⊙ Hadamard element-wise produ
t;

E[ · ] expe
ted value operator;

� generalized inequality: A � B means that A−B

is an Hermitian positive semide�nite matrix;

≻ generalized inequality: A ≻ B means that A−B

is an Hermitian positive de�nite matrix.



System Model

In the following, the model for both the transmitted and the re
eived


oded signals is presented, whi
h will be the basi
 assumption in most

part of the thesis.

It is 
onsider a radar whi
h transmits a 
oherent burst of pulses, su
h

as in [1℄:

s(t) = atu(t) exp[j(2πf0t+ φ)] ,

where at is the transmit signal amplitude, j =
√
−1,

u(t) =
N−1
∑

i=0

a(i)p(t− iTr) ,

is the signal's 
omplex envelope (see Figure 1), p(t) is the signature of the
transmitted pulse, Tr is the Pulse Repetition Time (PRT), [a(0), a(1), . . . ,
a(N − 1)] ∈ C

N
is the radar 
ode, C denotes the set of 
omplex num-

bers, f0 is the 
arrier frequen
y, and φ is a random phase. Moreover, the

pulse waveform p(t) is of duration Tp ≤ Tr and has unit energy, i.e.

∫ Tp

0
|p(t)|2dt = 1 .

The signal ba
ks
attered by a target with a two-way time delay τ and

re
eived by the radar is

r(t) = αre
j2π(f0+fd)(t−τ)u(t− τ) + i(t) + n(t) ,

where αr is the 
omplex e
ho amplitude (a

ounting for the transmit

amplitude, phase, target re�e
tivity, and 
hannels propagation e�e
ts),

fd is the target Doppler frequen
y, and the term n(t) + i(t) is overall

additive disturban
e due to the interferen
e (it may be 
lutter or other

sour
e of interferen
e) and thermal noise. This signal is down-
onverted

1



2 System Model

Figure 1: Coded pulse train u(t) for N = 5 and p(t) with re
tangular shape.

to baseband and �ltered through a linear system with impulse response

h(t) = p∗(−t). Let the �lter output be

v(t) = αre
−j2πf0τ

N−1
∑

i=0

a(i)ej2πifdTrχp(t− iTr − τ, fd) + w(t) ,

where χp(λ, f) is the pulse waveform ambiguity fun
tion [2℄, i.e.

χp(λ, f) =

∫ +∞

−∞
p(β)p∗(β − λ)ej2πfβdβ,

and w(t) is the down-
onverted and �ltered disturban
e 
omponent. The

signal v(t) is sampled at tk = τ + kTr, k = 0, . . . , N − 1, providing the

observables

1

v(tk) =
α√
N
a(k)ej2πkfdTrχp(0, fd) + w(tk), k = 0, . . . , N − 1 ,

where α =
√
Nαre

−j2πf0τ
. Assuming that the pulse waveform time-

bandwidth produ
t and the expe
ted range of target Doppler frequen
ies

are su
h that the single pulse waveform is insensitive to target Doppler

shift

2

, namely χp(0, fd) ∼ χp(0, 0) = 1, it is possible to rewrite the

1

Range straddling losses are negle
ted; also, the assumption is that there are no

target range ambiguities.

2

Noti
e that this assumption might be restri
tive for the 
ases of very fast moving

targets su
h as �ghters and ballisti
 missiles.
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samples v(tk) as

v(tk) =
α√
N
a(k)ej2πkfdTr + w(tk), k = 0, . . . , N − 1 .

Moreover, denoting by c = [a(0), a(1), . . . , a(N−1)]T the N -dimensional


olumn ve
tor 
ontaining the 
ode elements, p = 1√
N

[

1, ej2πνd , . . . ,

ej2π(N−1)νd
]T

the normalized temporal steering ve
tor, νd = fdTr the

normalized Doppler frequen
y, v = [v(t0), v(t1), . . . , v(tN−1)]
T
, and w =

[w(t0), w(t1), . . . , w(tN−1)]
T
, the following ve
torial model for the ba
ks
at-

tered signal is obtained [3℄

v = αc⊙ p+w . (1)

In the following the disturban
e w will generally be modeled as a

zero-mean 
omplex 
ir
ular Gaussian ve
tor with known positive-de�nite


ovarian
e matrix

E[ww†] = M ; (2)

further details will be given in 
ase model (2) no longer subsists.





Chapter 1

Pareto-Optimal Radar

Waveform Design

1.1 Introdu
tion

More and more sophisti
ated algorithms for radar waveform design

have been re
ently developed, due to the 
onsiderable advan
es in high

speed signal pro
essing hardware and digital array te
hnology, as well as

the growing interest for better and better radar performan
es [4, 5℄.

Some re
ent studies 
on
erning waveform optimization in the pres-

en
e of 
olored disturban
e 
an be found in [6℄. Therein, some algo-

rithms, exploiting the degrees of freedom provided by a possibly rank

de�
ient 
lutter 
ovarian
e matrix, are developed. In [7℄, a signal design

approa
h relying on the maximization of the SNR under a similarity


onstraint with a given waveform is proposed and assessed. In [1℄, fo-


using on the 
lass of linearly 
oded pulse trains (both in amplitude and

in phase), the authors introdu
e a 
ode sele
tion algorithm whi
h max-

imizes the dete
tion performan
e but, at the same time, is 
apable of


ontrolling both the region of a
hievable values for the Doppler estima-

tion a

ura
y and the degree of similarity with a pre-�xed radar 
ode.

Further algorithms are also available attempting to determine the radar

waveforms optimizing Pd under stru
tural 
onstraints (for instan
e a

phase-only modulation) [8, 9℄ or possibly for airborne Spa
e Time Adap-

tive Pro
essing (STAP) s
enarios [10℄.

In this Chapter, the fo
us is still fo
us on 
onstrained 
ode optimization,

in the presen
e of 
olored Gaussian disturban
e, assuming the same sig-

5



6 Chapter 1 Pareto-Optimal Radar Waveform Design

nal model as in [1℄. At the design stage, it is proposed a waveform

design algorithm based on the following 
riterion: joint optimization of

the dete
tion performan
e and of the region of a
hievable values for the

Doppler estimation a

ura
y, under a 
onstraint on the transmitted en-

ergy and on the degree of similarity with a pre-�xed radar 
ode. This

is tantamount to jointly maximizing two quadrati
 forms, so that the

resulting waveform design problem 
an be formulated in terms of a non-


onvex multi-obje
tive optimization problem. In order to solve it, the

s
alarization te
hnique is invoked, where the original ve
torial problem

is redu
ed to a s
alar one through the use of the Pareto-optimal the-

ory. Thus, the proposed 
odes are 
hosen as Pareto-optimal points

1

of

the previously mentioned multi-obje
tive optimization problem. Pre-

vious appli
ations of the multi-obje
tive optimization theory to radar

waveform design 
an be found in [12, 13℄, where Multi-Obje
tive Evo-

lutionary Algorithms (MOEA) are applied to approximate the Pareto

optimal set. In the present spe
i�
 appli
ation, it is not ne
essary to

approximate the Pareto set via MOEA, be
ause the proposed determin-

isti
 and non-iterative pro
edure, exploiting s
alarization, is 
apable of

providing the exa
t Pareto-optimal points.

At the analysis stage, the performan
e of the new en
oding algo-

rithm are assessed in terms of dete
tion performan
e, region of a
hiev-

able Doppler estimation a

ura
y, and ambiguity fun
tion, highlighting

the role of the Pareto weight in the optimization. The results show

that it is possible to trade-o� the aforementioned performan
e metri
s.

Pre
isely, dete
tion 
apabilities 
an be swaped for desirable properties

of the waveform ambiguity fun
tion and/or for an enlarged region of

a
hievable Doppler estimation a

ura
ies. Furthermore, the trade-o� is

ruled by both the similarity 
onstraint and the Pareto weight. Indeed,

this last parameter de�nes the relative importan
e of the two obje
tives

in the optimization problem. Otherwise stated, it represents the 
ost re-

quired for improving a given obje
tive (namely the CRLB) making worse

the other (namely the dete
tion probability).

Thus, the Chapter is organized as follows. In Se
tion 1.2, resorting

to the system model previously presented, the mathemati
al formulation

for the performan
e measures is given. In Se
tion 1.3, the 
ode design

1

A Pareto-optimal solution of a multi-obje
tive optimization problem is de�ned as

any solution that 
an't be improved with respe
t to a 
omponent without worsening

the others [11℄.
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problem is formulated, and the algorithm whi
h provides Pareto-optimal

waveforms is presented. In Se
tion 1.4, the performan
e of the proposed

en
oding method are assessed also in 
omparison with a standard radar


ode. Finally, in Se
tion 1.5, the 
on
lusions and outline possible future

resear
h tra
ks are drawn.

1.2 System Model and Performan
e Measures

In the following, assuming, for the ba
ks
attered signal, the same

model as in (1), the fo
us is on the key performan
e measures whi
h are

to be optimized or 
ontrolled during the sele
tion of the radar 
ode.

1.2.1 Dete
tion Probability

It is well known that the problem of dete
ting a target in the presen
e

of observables des
ribed by the model (1) 
an be formulated in terms of

the following binary hypotheses test







H0 : v = w

H1 : v = αc ⊙ p+w

. (1.1)

Under the assumption (2), the Generalized Likelihood Ratio Test (GLRT)

dete
tor over α for (1.1), whi
h 
oin
ides with the optimum test (a
-


ording to the Neyman-Pearson 
riterion) if the phase of α is uniformly

distributed in [0, 2π) [14, 15℄, is given by

|v†M−1(c⊙ p)|2
H1
>
<
H0

G , (1.2)

where G is the dete
tion threshold set a

ording to a desired value

of the false alarm Probability (Pfa). An analyti
al expression of the

dete
tion Probability (Pd), for a given value of Pfa, is available both for

the 
ases of non�u
tuating and �u
tuating target. In the former 
ase

(NFT)

Pd = Q

(

√

2|α|2(c⊙ p)†M−1(c⊙ p),
√

−2 lnPfa

)

, (1.3)
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while, for the 
ase of Rayleigh �u
tuating target (RFT) with E
[

|α|2
]

=
σ2a,

Pd = exp

(

lnPfa

1 + σ2a(c⊙ p)†M−1(c⊙ p)

)

, (1.4)

where Q(·, ·) denotes the Mar
um Q fun
tion of order 1. This expres-
sion shows that, given Pfa, Pd depends on the radar 
ode, the distur-

ban
e 
ovarian
e matrix and the temporal steering ve
tor only through

the SNR [1℄, de�ned as:

SNR =

{

|α|2(c⊙ p)†M−1(c⊙ p) NFT

σ2a(c⊙ p)†M−1(c ⊙ p) RFT

. (1.5)

Moreover, Pd is an in
reasing fun
tion of SNR and, as a 
onsequen
e,

the maximization of Pd 
an be obtained optimizing the SNR over the

radar 
ode.

1.2.2 Doppler A

ura
y

The Doppler a

ura
y is bounded below by CRLB and CRLB-like

te
hniques whi
h provide lower bounds for the varian
es of unbiased

estimates. A reliable measurement of the Doppler frequen
y is very

important in radar signal pro
essing be
ause it is dire
tly related to the

target radial velo
ity useful to speed the tra
k initiation, to improve the

tra
k a

ura
y [16℄, and to 
lassify the dangerousness of the target; hen
e

it is 
lear that it has to be taken in a

ount in the 
ode design operation.

It 
an be shown that the CRLB for known α is given by [1℄:

∆CR(fd) =
ψ

∂h
†

∂fd
M−1 ∂h

∂fd

(1.6)

where h = c⊙ p and ψ = 1
2|α|2 . Noti
e that

∂h

∂fd
= Trc⊙ p⊙ u,

with u = [0, j2π, ..., j2π (N − 1)]T , so that (1.6) 
an be rewritten as

∆CR(fd) =
ψ

T 2
r (c⊙ p⊙ u)†M−1 (c⊙ p⊙ u)

. (1.7)
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1.2.3 Similarity Constraint

Designing a 
ode whi
h just optimizes the dete
tion performan
e does

not provide any kind of 
ontrol on the shape of the resulting 
oded wave-

form. Pre
isely, it 
an lead to signals with signi�
ant modulus variations,

poor range resolution, high peak sidelobe levels, and more in general with

an undesired ambiguity fun
tion behavior. These drawba
ks 
an be par-

tially 
ir
umvented imposing a further 
onstraint to the sought radar


ode. In other words, it is required that the solution to be similar to a

known 
ode c0 (with ||c0||2 = 1), whi
h shares 
onstant modulus, rea-

sonable range resolution and peak sidelobe level. This is tantamount to

imposing that [7℄:

||c − c0||2 ≤ ǫ, (1.8)

where the parameter ǫ ≥ 0 rules the size of the similarity region. In

other words, (1.8) permits to indire
tly 
ontrol the ambiguity fun
tion

of the 
onsidered 
oded pulse train: the smaller ǫ the higher the degree
of similarity between the ambiguity fun
tions of the designed radar 
ode

and of the referen
e sequen
e.

1.3 Problem Formulation and Pareto-optimal Code

Design

The idea pursued in this Chapter is to design a radar 
ode whi
h op-

timizes jointly the dete
tion performan
e and the CRLB on the Doppler

estimation a

ura
y, under a similarity 
onstraint with a known radar


ode c0 and an energy 
onstraint. Spe
i�
ally, exploiting the following

relationships

(c⊙ p)†M−1(c⊙ p) = c†Rc (1.9)

and

(c⊙ p⊙ u)†M−1 (c⊙ p⊙ u) = c†R1c, (1.10)

where R = M−1 ⊙
(

pp†)∗
and R1 = M−1 ⊙

(

pp†)∗ ⊙
(

uu†)∗
are

positive semide�nite [17, pag. 1352, A. 77℄ (in parti
ular, noti
e that

R is positive de�nite sin
e xHRx = (x ⊙ p)HM−1(x ⊙ p) > 0 for any

x 6= 0, whi
h is equivalent to x ⊙ p 6= 0), it appears that Pd is an

in
reasing fun
tion of c†Rc, while the CRLB is a de
reasing fun
tion of

c†R1c. As a 
onsequen
e, the joint optimization of the Pd and CRLB
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an be formulated in terms of a non-
onvex multi-obje
tive optimization

problem [11, pp. 174-187℄:

max
c

(c†Rc , c†R1c)

s.t. ||c− c0||2 ≤ ǫ
||c||2 = 1.

(1.11)

assuming the standard 
omponent-wise partial ordering in R
2
.

In the following, radar 
odes are designed whi
h are Pareto-optimal

solutions to (1.11), through the s
alarization te
hnique (this te
hnique is

thoroughly explained in some spe
i�
 books su
h as [11, 18℄, and shortly

summarized in Appendix A for reader's ease and to give self-
onsisten
y

to this paper). Pre
isely, 
onsider the s
alarized problem

max
c

c†
[

α1

λmax(R)
R+ α2

λmax(R1)
R1

]

c

s.t. ||c − c0||2 ≤ ǫ
||c||2 = 1

, (1.12)

where

α1

λmax(R)
> 0 and

α2

λmax(R1)
> 0 are the weights. A 
ode c is an

optimal solution of (1.12) if and only if it is an optimal solution of

max
c

c†Q(γ) c

s.t. ||c − c0||2 ≤ ǫ
||c||2 = 1

, (1.13)

whereQ(γ) = R+γR1, γ = α2
α1

λmax(R)
λmax(R1)

> 0. This 
laim is evident sin
e

the obje
tive fun
tions of problem (1.12) and (1.13) are proportional and

the 
onstraint sets are the same.

Given γ, an optimal solution to the previous s
alarized problem 
an

be found through the pro
edure proposed in [7℄. Pre
isely, the Pareto-

optimal point 
orresponding to γ 
an be 
onstru
ted a

ording to Algo-

rithm 1.

The parameter γ 
an be interpreted as the weight given to the se
ond

obje
tive (namely, the CRLB) with respe
t to the �rst one (namely, the

Pd); otherwise stated, it represents the 
ost required for improving a


omponent making worse the other.

A �nal remark 
on
erns the appli
ability of the proposed framework

in real s
enarios. Evidently, the obje
tive fun
tions require the spe
i�-


ation of νd; as a 
onsequen
e, the solution depends on this pre-assigned
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Algorithm 1 Determination of a solution to problem (1.13)

Require: c0, ǫ, R, R1, γ;
Ensure: an optimal solution ĉ of problem (1.13);

1: let Q(γ) , R+ γR1

2: let c̃ be the unit norm eigenve
tor 
orresponding to the greatest

eigenvalue of Q(γ);

3: de�ne ĉ = c̃e
j arg

(

c̃†c0

)

(where arg(x) de�nes the argument of x);

4: if ℜ(c†0ĉ) ≥ 1− ǫ/2 (where ℜ(x) de�nes the real part of x) then
5: copt(γ) ≡ ĉ;

6: else if ℜ(c†0ĉ) ≤ 1− ǫ/2 then
7: let λmin(Q(γ)) and λmax(Q(γ)) be, respe
tively, the smallest and

the greatest eigenvalue of Q(γ);
8: de�ne:

- ρ , 1
(1−ǫ/2)2

;

- η1 , λmax(Q(γ));

- η2 ,
ρ1/2(λmax(Q(γ)))−λmin(Q(γ))

(ρ1/2−1)
;

9: 
onsider the equation

c†
0(−Q(γ)+λ̄I)

−2
c0

[

c†
0(−Q(γ)+λ̄I)

−1
c0

]2 = ρ;

10: solve the equation above, via Newton's method, respe
t to λ̄, with
η1 < λ̄ ≤ η2;

11: copt(γ) =
(

1− ǫ
2

) (−Q(γ)+λ̄I)
−1c0

c†
0(−Q(γ)+λ̄I)

−1
c0

;

12: end if
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value. It is thus ne
essary to provide some guidelines to set νd in pra
ti
al
s
enarios. To this end, it is important to highlight that:

• a single 
oded waveform designed for the 
hallenging 
ondition of

slowly moving targets (i.e. νd ≃ 0) 
an be devised;

• a single 
oded waveform optimized over an average s
enario may be

designed. Spe
i�
ally, the 
ode might be 
hosen so as to maximize

the obje
tives with R repla
ed by Ra = M−1⊙
(

E
[

pp†])∗
, where

the expe
tation operator is over the normalized Doppler frequen
y.

If this last quantity is modeled as a uniformly distributed random

variable, i.e. νd ∼ U (−ǫ, ǫ), with 0 < ǫ < 1/2, the expe
tation 
an

be readily evaluated, leading to

Ra = M−1 ⊙Σǫ , (1.14)

where Σǫ(m,n) = sin
 [2ǫ(m− n)], and sin
(x) = sin(πx)
πx .

1.4 Performan
e Analysis

In this Se
tion, the quality of the proposed waveform design te
hnique

are investigated. The analysis is 
ondu
ted in terms of Pd, CRLB for

Doppler estimation a

ura
y, and ambiguity fun
tion of the pulse train

modulated with the designed 
ode. Additionally, the Pareto-optimal


urve are provided, i.e.

{

F1(copt(γ)) , c
†
opt

(γ)Rc
opt

(γ)

F2(copt(γ)) , c
†
opt

(γ)R1copt(γ)
(1.15)

(where, a

ording to (1.3) and (1.7), F1 and F2 rule, respe
tively, Pd

and CRLB. Spe
i�
ally, they respe
tively play the role of a normalized

SNR and a normalized inverse CRLB); namely the set of Pareto-optimal

values, obtained through s
alarization and varying the relative weight γ,
for the 
onsidered optimization problem. Finally, the Pareto trade-o�

between Pd and CRLB, arising through the variation of γ, is explored.

The analysis is developed assuming a disturban
e 
ovarian
e matrix

M with the following stru
ture:

M = M

lutter

+ 10−2I
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Figure 1.1: Pareto-optimal 
urves for γ ∈]0, 10], ǫ = 0.1 (top-left), ǫ = 0.3 (top-

right), ǫ = 0.7 (bottom-left) and ǫ = 1.9998 (bottom-right), with the polyphase

Barker 
ode of length N = 7 as referen
e 
ode. The set of a
hievable values under

the 
urves is shaded in gray.

where M

lutter

= ρ|m−n|
, with ρ = 0.9. Moreover, the Pfa of the re-


eiver is �xed to 10−6
, νd = 0; a NFT is 
onsidered, and the referen
e


ode is the generalized Barker sequen
e of length N = 7 [2, pp. 109-

113℄ c0 = [0.3780, 0.3780,−0.1072−j0.3624,−0.0202−j0.3774, 0.2752+
j0.2591, 0.1855−j0.3293, 0.0057+j0.3779], properly normalized in order

to obtain a unitary norm ve
tor. Indeed, the 
hoi
e for this is mainly

be
ause it shares a good ambiguity fun
tion

2

. In Figure 1.1, the Pareto-

optimal 
urve for several values of ǫ is plotter; namely, di�erent degrees

of similarity between the devised and the pre-�xed 
ode are 
onsidered,

assuming that γ ranges in the interval ]0, 10]. This 
urve is also referred
to as optimal trade-o� 
urve, be
ause it highlights the 
onne
tion be-

tween the two obje
tives, F1 and F2, emphasizing the role of the weight

γ in the determination of their Pareto-optimal values and the 
ost paid

for in
reasing one 
omponent with respe
t to the other. The shaded re-

2

Similar results, not reported in the Chapter, have been obtained with a Frank


ode. In fa
t, other similarity 
odes may exist that, with respe
t to the analyzed

s
enari,o might perform better than the generalized Barker 
ode in terms of Pd and/or

CRLB.
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(a) ǫ = 1.9998 and γ = 1. (b) ǫ = 0.3 and γ = 1.

(
) ǫ = 0.1561 and γ = 1. (d) ǫ = 0.0506 and γ = 1.

Figure 1.2: Ambiguity fun
tion modulus of the designed 
ode with N = 7, Tr = 5Tp.

gion indi
ates the set of all the a
hievable values (F1, F2); for example,

inter
epting the 
urve with the verti
al line F1 = η (thus 
onsidering a


ertain value for Pd), it 
an be observed how small F2 (thus how large the


orresponding CRLB) has to be in order to a
hieve F1 ≥ η. The same in-

terpretation arises inter
epting the 
urve with an horizontal line F2 = β
(thus 
onsidering a 
ertain value for the CRLB), whi
h makes evident

how small F1 (thus the 
orresponding Pd) has to be in order to a
hieve

F2 ≥ β. The slope of the optimal trade-o� 
urve at a Pareto-optimal

value shows the lo
al optimal trade-o� between the two obje
tives; steep

slopes lead to large variations of F2 in 
orresponden
e of small 
hanges in

F1 (this is a
tually what happens in the lower right region of the 
urves

in Figure 1.1).

Noti
e also how a redu
tion of ǫ (or, equivalently, an in
rease in the

degree of similarity) leads to worse and worse optimal values for both F1

and F2, namely to lower and lower Pareto-optimal 
urves. This result


an be explained observing that de
reasing ǫ is tantamount to redu
ing

the size of the feasible set. However, the resulting loss (both in terms

of dete
tion 
apability and estimation a

ura
y) is 
ompensated for an

improvement of the 
oded pulse train ambiguity fun
tion, whi
h appears
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Figure 1.3: Ambiguity fun
tion modulus of the generalized Barker 
ode c0 of length

N = 7 with Tr = 5Tp.

more and more similar to that of the referen
e 
ode. This is shown

in Figures 1.2a-d, where the ambiguity fun
tion modulus is plotted, for

γ = 1 and some values of the similarity parameter ǫ. Comparing them

with the ambiguity fun
tion of the 
ode c0, plotted in Figure 1.3, it


an be easily re
ognized a greater and greater degree of similarity as ǫ
de
reases.

The e�e
ts of the similarity parameter ǫ on the dete
tion 
apability

and the Doppler estimation a

ura
y are analyzed in Figures 1.4a-b.

Therein, setting γ = 0.05, the Pd (Figure 1.4a) and the normalized

CRLB (CRLBn = T 2
r CRLB, Figure 1.4b) versus |α|2 are plotted for

several values of ǫ (ǫ = {0.1, 0.3, 0.7, 1.9998}). In order to 
ompare the

performan
e of the sought 
ode with that of the similarity sequen
e, the

Pd and CRLBn obtained through the use of c0 are evaluated too. As

ben
hmark 
ode, instead, it is 
onsider the sequen
e whi
h maximizes

the un
onstrained (namely without for
ing the similarity 
onstraint) Pd

or CRLB , i.e.

c
Pd
ben
hmark

= argmax
c

{

c†Rc / ||c||2 = 1
}

, (1.16)

cCRLB
benchmark = argmax

c

{

c†R1c / ||c||2 = 1
}

. (1.17)

The 
orresponding Pd and CRLB are referred to in the following as

P ben
hmark

d and CRLB

ben
hmark

n . Usually, they are are not obtained in


orresponden
e of the same 
ode.
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(a) Pd versus |α|2 for non-�u
tuating

target.

(b) CRLBn versus |α|2 for non-

�u
tuating target.

Figure 1.4: Pfa = 10−6
, N = 7, γ = 0.05, and: ǫ = 0.1 (solid-
ir
le 
urve),

ǫ = 0.3 (dashed 
urve), ǫ = 0.7 (dotted 
urve) and ǫ = 1.9998 (solid-down triangle


urve). The 
urves related to c0 (solid 
urve) and cbenchmark (dash-dotted 
urve) are

highlighted dire
tly on the �gure; noti
e that the 
urve for ǫ = 1.9998 overlaps with

the ben
hmark one (Pd vs |α|2).

The 
urves in Figure 1.4a show that, de
reasing ǫ, worse and worse

Pd values are obtained. This behavior 
an be explained observing that

redu
ing ǫ is tantamount to redu
ing the size of the similarity region.

Nevertheless, the quoted Pd loss is 
ompensated for an improvement in

the 
oded pulse train ambiguity fun
tion, whi
h is for
ed to be more

similar to the referen
e sequen
e. Di�erent 
onsiderations apply to the


urves of Figure 1.4b, representing the CRLB behavior for the same

values of ǫ as in Figure 1.4a. In this 
ase, due to the small value of the

relative weight γ, the s
alarization pla
es almost all the emphasis on the

Pd obje
tive, whi
h substantially rules the 
hoi
e of the optimum 
ode for

the s
alarized problem. As a 
onsequen
e, enlarging the similarity region,

we 
an �nd a new 
ode improving Pd, but su
h a 
ode 
an also lead to

a degradation of the CRLB be
ause the two obje
tives are 
ompeting.

Now the e�e
ts of the Pareto weight γ, on the performan
e of the de-

signed 
ode, �xing the similarity 
onstraint ǫ, are analyzed. To this end,
in Figure 1.5, the Pareto-optimal 
urve obtained for ǫ = 0.1561 are plot-

ted, highlighting six di�erent Pareto-optimal values (operating points in

the following), related to six di�erent weights. In Figures 1.6a and 1.6b,

the impa
t of the Pareto weight on the optimization of the dete
tion 
a-

pability and Doppler estimation a

ura
y is studied. Spe
i�
ally, the Pd

and CRLBn versus |α|2 are plotted for the six operating points of Figure

1.5. The performan
e follows the same qualitative behavior explained in
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Figure 1.5: Pareto-optimal 
urve for ǫ = 0.1561 and γ ∈ ]0, 10]. Ea
h marker

represents an operative point for a given γ; γ = 0.05 (
ir
le), γ = 0.4 (up-triangle),

γ = 1 (right-triangle), γ = 3 (square), γ = 6.5 (diamond) and γ = 10 (star).

Figure 1.1; namely, Pd and CRLB are both de
reasing fun
tions of γ.
Finally, it is important to point out that, although tied up to the same

similarity value ǫ, the 
odes resulting from the optimization problem

(1.13) are 
learly a�e
ted by the 
hosen value for the weight γ. As a


onsequen
e, the 
orresponding pulse trains will exhibit di�erent ambi-

guity fun
tions as shown in Figures 1.7a-d.

1.5 Con
lusions

In this Chapter, the radar waveform design, in the presen
e of 
olored

Gaussian disturban
e, for
ing an energy and a similarity 
onstraints,

has been addressed. The 
onsidered design 
riterion has been the joint


onstrained optimization of the dete
tion performan
e and CRLB on

Doppler estimation a

ura
y. The problem has been formulated in terms

of a non-
onvex multi-obje
tive optimization problem with two quadrati



onstraints. Hen
e, radar 
odes been have 
onstru
ted as Pareto-optimal

points of the aforementioned problem through the s
alarization pro
e-

dure.

At the analysis stage, the performan
es of the new algorithm have
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been evaluated in terms of dete
tion performan
e, CRLB for Doppler

estimation a

ura
y, and ambiguity fun
tion. Additionally, the Pareto-

optimal 
urve has been studied showing the e�e
ts of the Pareto weight

on the performan
e trade-o�. Finally, the impa
t of the similarity 
on-

straint on the performan
e, for a given value of the Pareto weight, has

been analyzed.

Possible future resear
h tra
ks might 
on
ern the extension of the

framework to situations where it is ne
essary to optimize more than two

obje
tives (performan
e measures) and/or where it is ne
essary to for
e

additional 
onstraints on the stru
ture of the radar waveform.
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(a) Pd versus |α|2 for non-�u
tuating

target

(b) CRLBn versus |α|2 for non-

�u
tuating target

Figure 1.6: Pfa = 10−6
, N = 7, ǫ = 0.1561 and γ = [0.05, 0.4, 1, 3, 6.5, 10]. Gener-

alized Barker 
ode (solid 
urve). Designed 
odes (dashed 
urves). Ben
hmark 
ode

(dash-dotted 
urve).

(a) ǫ = 0.1561 and γ = 0.4. (b) ǫ = 0.1561 and γ = 1.

(
) ǫ = 0.1561 and γ = 3. (d) ǫ = 0.1561 and γ = 10.

Figure 1.7: Ambiguity fun
tion modulus of the designed 
ode with N = 7, Tr = 5Tp.
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Chapter 2

A Doppler Robust Max-Min

Approa
h to Radar Code

Design

2.1 Introdu
tion

The advent of adaptive radar transmitters, whi
h permit the use

of advan
ed and �exible pulse shaping te
hniques, and the signi�
ant

a
hievements in high speed signal pro
essing hardware are paving the

way to the development of very innovative and 
omputational demand-

ing te
hniques for radar waveform design [4, 19℄. The idea is to adapt

and diversify dynami
ally the transmitted signal to the operating envi-

ronment in order to a
hieve a performan
e gain over 
lassi
 radar wave-

forms [5, 20, 21, 22, 6, 7℄.

In [1℄, fo
using on the 
lass of linearly 
oded pulse trains (both in am-

plitude and in phase), the authors introdu
e a 
ode sele
tion algorithm

whi
h maximizes the dete
tion performan
e but, at the same time, is 
a-

pable of 
ontrolling both the region of a
hievable values for the Doppler

estimation a

ura
y and the degree of similarity with a pre-�xed radar


ode. However, sin
e in several pra
ti
al situations, the radar ampli�ers

might work in saturation 
onditions and hen
e an amplitude modula-

tion might be di�
ult to perform, in [8℄, the authors also 
onsider the

synthesis of 
onstant modulus phase 
oding s
hemes for radar 
oherent

pulse trains. Finally, in [10℄, the problem of 
onstrained 
ode optimiza-

tion for radar Spa
e-Time Adaptive Pro
essing (STAP) in the presen
e

21
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of 
olored Gaussian disturban
e, under two a

ura
y 
onstraints (on the

temporal and the spatial Doppler frequen
y) and a similarity 
onstraint,

is addressed.

Many among the previously mentioned algorithms optimize the radar

signal in 
orresponden
e of a given target Doppler frequen
y. Hen
e,

they 
an be easily applied to situations where it is required a 
on�rma-

tion of an initial dete
tion in a 
ertain Doppler bin, namely when some

knowledge about the Doppler frequen
y is available. In other situations,

the Doppler parameter is usually unknown and a pra
ti
al appli
ation

of the te
hniques 
an be obtained either tuning the design Doppler to

a 
hallenging 
ondition, di
tated by the 
lutter Power Spe
tral Density

(PSD) shape, or optimizing the waveform to an average s
enario, namely


onsidering as obje
tive fun
tion the average SNR over the possible tar-

get Doppler shifts. The present Chapter moves another step towards the

synthesis of radar waveforms when no prior knowledge about the a
tual

Doppler is available. Spe
i�
ally, resorting to the max-min 
riterion, the

waveform design problem is formulated as the 
onstrained maximization

of the worst 
ase (over the set of possible Doppler frequen
ies) dete
tion

performan
e. The 
onstraints 
onsidered here are an energy 
onstraint,

imposed by the �nite transmission resour
es, and a similarity 
onstraint,

important to equip the waveform with desirable properties su
h as small

modulus variations, good range resolution, low peak sidelobe levels, and

more in general with a good ambiguity fun
tion. The resulting problem

is a non-
onvex Quadrati
ally Constrained Quadrati
 Program (QCQP)

with in�nitely many quadrati
 
onstraints. This 
lass of QCQP's, is

known to be NP-hard in general, and as a 
onsequen
e, �nding a global

optimal solution is often very di�
ult [23℄. Hen
e, the aim is the 
on-

stru
tion of a good sub-optimal solution for the quoted problem with the

goodness in the sense that the produ
ed solution leads to an high-quality

radar 
ode for the 
onsidered robust radar waveform design problem, as

supported also by the simulations in Se
tion 2.4.

The Chapter is organized as follows. In Se
tion 2.2, the waveform

design problem is formulated a

ording to the max-min 
riterion, based

on system model (1)-(2); in Se
tion 2.3, the new algorithm for the 
on-

sidered problem is presented; in Se
tion 2.4, the performan
e of the pro-

posed te
hnique is analyzed, and numeri
al results assessing the quality

of the produ
ed sub-optimal solution are provided. Finally, 
on
lusions

are given in Se
tion 2.5.
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2.2 System Model and Waveform Design Prob-

lem

The same signal model as in eq. (1) is herein 
onsidered. The main

goal is to �nd radar waveforms optimizing the worst 
ase dete
tion per-

forman
e, under an energy 
onstraint and a similarity 
onstraint with a

given radar 
ode exhibiting a good ambiguity fun
tion. In this Se
tion,

the problem is formulated mathemati
ally, showing how the worst 
ase

dete
tion probability 
an be maximized and the 
onstraints 
an be en-

for
ed, under the assumption (2) for the disturban
e. With referen
e to

the 
ase of non-�u
tuating target

1

, as already shown in eq. (1.2), the

dete
tion probability Pd of the GLRT, for a given value of the false alarm

Probability Pfa, depends on the radar 
ode, the disturban
e 
ovarian
e

matrix, and the temporal steering ve
tor only through the SNR, de�ned

as in eq. (1.4), whi
h is a fun
tion of the a
tual Doppler frequen
y due

to the dependen
e of p over νd. Moreover, Pd is an in
reasing fun
tion

of SNR and, as a 
onsequen
e, the maximization of Pd 
an be obtained

maximizing the quadrati
 form

(c⊙ p)†M−1(c⊙ p) = c†
(

M−1 ⊙ (pp†)∗
)

c , (2.1)

over the radar 
ode, as already shown in eq. (1.8). It is important to

highlight that M−1 ⊙ (pp†)∗ is the Hadamard produ
t of two positive

semide�nite matri
es, and hen
e it is itself positive semide�nite [17, p.

1352, A.77℄.

Performing the maximization of (2.1), possibly under some 
onstraints

[1℄ (for instan
e a

ura
y, similarity, and energy 
onstraints), leads to a


ode ve
tor whi
h depends on the spe
i�
 value of the Doppler frequen
y

present in the de�nition of p. In order to get a transmit radar waveform

independent of the Doppler frequen
y, it is proposed here a max-min

approa
h attempting at maximizing the worst 
ase (over the possible

target Doppler frequen
ies) SNR. In other words, the following obje
tive

fun
tion, to maximize over the radar 
ode, is 
onsidered:

min
νd∈[0,1]

c†(M−1 ⊙ (pp†)∗)c .

Adding the similarity 
onstraint with a 
ode c0 [7℄, important to 
onfer

desirable properties to the radar waveform, as well as an energy 
on-

1

The 
on
lusions may be easily extended to the 
ase of �u
tuating target.



24 Doppler Robust Max-Min Approa
h

straint (a

ounting for the limited transmission power), the following

optimization problem arises:

max
c∈Ω

min
νd∈[0,1]

c†(M−1 ⊙ (pp†)∗)c, (2.2)

where the set Ω is de�ned as Ω = {c | ||c|| = 1, ||c − c0||2 ≤ ǫ} with

||c0|| = 1, and the parameter ǫ ≥ 0 ruling the size of the similarity region.

Indeed, the smaller ǫ is, the higher the degree of similarity between the

ambiguity fun
tions of the designed radar 
ode and c0 is.

Before presenting the new algorithm, it is worth to point out the

di�eren
es between this optimization problem and those formulated and

solved in [1℄ and [8℄. To this end, observe that the obje
tive fun
tion

in [1℄ and [8℄ depends on a spe
i�
 design Doppler value, while in the

present problem the worst 
ase SNR (over the Doppler frequen
y) is

optimized (2.2). [1℄ a

ounts for a Doppler dependent 
onstraint on the

estimation a

ura
y of fd, while in the present 
ase, only a similarity

and an energy 
onstraint are 
onsidered. [8℄ a

ounts for a phase-only


onstraint on the devised 
ode, while in this Chapter a general amplitude-

phase 
oding is 
onsidered. In other words, (2.2) optimizes a robust

obje
tive fun
tion with respe
t to [1℄ and [8℄, but the former for
es one

less quadrati
 
onstraint than the problem in [1℄, and the 
onstraints

of the problem spe
i�ed in [8℄ look very di�erent from those in (2.2) .

From the optimization theory point of view, the three formulations lead

to di�erent optimization problems:

• that in [1℄ is a homogeneous QCQP with three 
onstraints, a global

optimal solution for whi
h 
an be found in polynomial time (namely

for this problem the SDP relaxation is tight or, equivalently, the

problem shares an hidden 
onvexity);

• that in [8℄ is an NP-hard QCQP optimization problem due to the

phase-only and the possibly �nite alphabet 
onstraint, whose op-

timal solution is approximated using the relaxation and random-

ization approa
h typi
al of the max-
ut-like problems.

• that in the 
urrent Chapter is a QCQP with in�nitely many 
on-

straints, for whi
h we establish a deterministi
 approximation pro-


edure, with polynomial time 
omputational 
omplexity, to output

a solution leading to high-quality radar waveforms.
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2.3 Approximate Solution to the Max-Min Op-

timization Problem

The max-min problem (2.2) 
an be re
ast as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1],
||c − c0||2 ≤ ǫ,
||c|| = 1.

(2.3)

Moreover, elaborating on the similarity 
onstraint, problem (2.3) 
an be

equivalently rewritten as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1],
ℜ
(

c†c0
)

≥ 1− ǫ/2,
||c||2 = 1 .

(2.4)

Observing that a rotation of c does not 
hange the �rst 
onstraint, it is

possible to 
laim that problem (2.4) is equivalent to

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1],

c†c0c
†
0c ≥ δǫ,

||c||2 = 1,

(2.5)

where δǫ = (1− ǫ/2)2, in the sense that if (c⋆, t⋆) is an optimal solution

of problem (2.5), then (c⋆ej argc
⋆†c0 , t⋆) is an optimal solution of (2.4).

Therefore, from now on the fo
us will be on problem (2.5).

It 
an be easily seen that problem (2.5) is a QCQP with in�nitely

many 
onstraints. As already highlighted, this 
lass of problems is known

to be NP-hard in general (see [23℄) and hen
e di�
ult to solve. In other

words, the 
onvex relaxation of the 
lass of QCQP problem may or may

not be tight, in parti
ular, its SDP relaxation may have only optimal

solutions of rank higher than one, or may have optimal solutions of rank

higher than one as well as equal to one. Futher, to retrieve a rank-one

optimal solution of the SDP relaxation problem from an optimal solution

of general rank is usually a non-trivial task. In the following, an approxi-

mation s
heme is presented to produ
e a feasible solution for the problem
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(2.5), based on the te
hniques of SDP relaxation, SDP representation of

trigonometri
 polynomials, and a spe
i�
 rank-one matrix de
omposi-

tion. It turns out by the numeri
al simulations that the algorithm pro-

vides high-quality radar 
odes for the proposed robust waveform design

problem. Additionally, if the SDP relaxation is tight (namely, the SDP

has always a rank-one optimal solution) than the devised 
ode is also

optimal for the original non-
onvex problem.

The SDP relaxation of (2.5) is

max
C, t

t

s.t. t ≤ p†(M−1 ⊙C∗)p, ∀νd ∈ [0, 1],

tr (c0c
†
0C) ≥ δǫ,

tr (C) = 1,
C � 0 .

(2.6)

Clearly, the 
onstraint fun
tion p†(M−1 ⊙ C∗)p − t is a trigonometri


polynomial [24℄ of degree N − 1, that is,

p†(M−1 ⊙C∗)p − t = x(0)− t+ 2Re

(

N−1
∑

k=1

x(k)e−jkω

)

,

where ω = 2πνd and

x(k) =
1

N

N−k
∑

i=1

(M−1 ⊙C∗)(i+ k, i), k = 0, 1, . . . , N − 1, (2.7)

with the notation (M−1 ⊙ C∗)(i + k, i) being the (i + k, i)-th entry of

M−1 ⊙C∗
.

It is known that the nonnegativity 
onstraint of a trigonometri
 poly-

nomial has an equivalent SDP representation. Spe
i�
ally, the following

result derived in [25, Theorem 3.1℄ is quoted here as a lemma.

Lemma 2.3.1. The trigonometri
 polynomial f(ω) = x(0)+2ℜ
(

∑N−1
k=1

x(k)e−jkω
)

is nonnegative over [0, 2π], if and only if there exists an N ×
N Hermitian matrix X su
h that

x = W †
diag(WXW †), X � 0, (2.8)

where x = [x(0), . . . , x(N − 1)]T , W = [w0, . . . ,wN−1] ∈ CM×N
, and

wk = [1, e−jkθ, . . . , e−j(M−1)kθ]T , k = 0, . . . , N − 1, θ = 2π/M , M ≥
2N − 1.
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It follows by Lemma 2.3.1 that SDP (2.6) is equivalent to the follow-

ing SDP

max
X,C, t

t

s.t. W †
diag(WXW †) + te1 = x,

tr (c0c
†
0C) ≥ δǫ,

tr (C) = 1,
C � 0,
X � 0 ,

(2.9)

where x is de�ned by (2.7), W is the same as the one de�ned in Lemma

2.3.1 by taking M = 2N − 1. In order to pro
eed further it is ne
essary

to show the following

Lemma 2.3.2. It holds that SDP problem (2.9) is solvable

2

.

Proof. See Appendix B

Let (X⋆,C⋆, t⋆) be an optimal solution of (2.9). It is easily seen that

(C⋆, t⋆) is an optimal solution of SDP (2.6) with

t⋆ = min
νd∈[0,1]

p†(M−1 ⊙ (C⋆)∗)p. (2.10)

Problem (2.10) is one dimensional optimization problem with su�
iently

smooth obje
tive fun
tion, therefore it is possible to apply Newton method

to solve it. Letting

ν⋆d = arg min
νd∈[0,1]

p†(M−1 ⊙ (C⋆)∗)p, (2.11)

namely a value of νd ∈ [0, 1] minimizing the argument and

p⋆ =
1√
N

[1, ej2πν
⋆
d , . . . , ej(N−1)2πν⋆d ]T , (2.12)

it follows that

t⋆ = p⋆†(M−1 ⊙ (C⋆)∗)p⋆ = tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

C⋆
]

.

Now if C⋆
is rank-one, namely C⋆ = c1c

†
1, then c⋆ = c1e

j argc†
1c0

and ν⋆d
are optimal for the original max-min problem, i.e. the SDP relaxation is

2

By saying solvable, it means that the problem is feasible, bounded, and the

optimal value is attained (see [26, page 13℄).
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tight. Otherwise, an approximate solution to (2.2) 
an be provided. To

this end, it is ne
essary to �nd a rank-one matrix cc† su
h that

tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

cc†
]

= tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

C⋆
]

(2.13)

= t⋆, (2.14)

tr (c0c
†
0cc

†) = tr (c0c
†
0C

⋆) = s, (2.15)

tr (cc†) = tr (C⋆) = 1, (2.16)

as long asC⋆
is of rank higher than one. If it is possible to �nd a rank-one

solution cc† satisfying (2.13)-(2.16), then the following one-dimensional

sear
h yields a feasible solution of problem (2.5):

νd = arg min
νd∈[0,1]

p†(M−1 ⊙ (cc†)∗)p, (2.17)

with the optimal value

t = min
νd∈[0,1]

p†(M ⊙ (cc†)∗)p. (2.18)

In other words, (c, t) is a sub-optimal solution of problem (2.5). To �nd a

rank-one solution of (2.13)-(2.16), the following rank-one de
omposition

theorem [27℄ is invoked.

Lemma 2.3.3. Suppose that X is an N × N 
omplex Hermitian pos-

itive semide�nite matrix of rank R, and A1,A2 are two N × N given

Hermitian matri
es. Then, there is a rank-one de
omposition of X (syn-

theti
ally denoted as D(X,A1,A2)), X =
∑R

r=1 xrx
†
r, su
h that

x†
rA1xr =

tr (XA1)

R
and x†

rA2xr =
tr (XA2)

R
, r = 1, . . . , R.

In the present 
ontext, it is ne
essary to perform D
(

C⋆,M−1⊙
(

p⋆p⋆†)∗ − t⋆I, c0c
†
0 − sI

)

obtaining C⋆ =
∑R

i=1 cic
†
i , where R = Rank

(C⋆). Then, it is easily veri�ed that ea
h cic
†
i/||ci||2 for i = 1, . . . , R,

ful�lls (2.13)-(2.16). In fa
t,

1

R
tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗

− t⋆I
)

cic
†
i

]

=tr
[(

M−1 ⊙
(

p⋆p⋆†
)∗

−
t⋆I)C⋆] = 0, (2.19)

1

R
tr

[(

c0c
†
0 − sI

)

cic
†
i

]

=tr
[(

c0c
†
0 − sI

)

C⋆
]

= 0,

(2.20)
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whi
h imply

tr

[(

M−1 ⊙
(

p⋆p⋆†
)∗)

cic
†
i

]

= t⋆‖ci‖2, (2.21)

tr

[(

c0c
†
0

)

cic
†
i

]

= s‖ci‖2 . (2.22)

As a 
onsequen
e, cic
†
i/||ci||2, for i = 1, . . . , R, 
omplies with (2.13)-

(2.16). Performing the one-dimensional optimization problem (2.18)

gives the sub-optimal solutions (ci/||ci||, ti), where ti is the optimal value

of problem (2.18) 
orresponding to ci/||ci||. Take the maximal value of

{t1, . . . , tR}, say t1, and output (c1/||c1||, t1) as the sub-optimal solution

(namely the best among the 
ouples (ci/||ci||, ti)).
Summarizing, a sub-optimal solution for problem (2.2) 
an be sum-

marized as in Algorithm 2.

Algorithm 2 Approximation pro
edure for the max-min problem (2.2)

Require: c0, ǫ, M , N ;

Ensure: a sub-optimal solution (c⋆, ν⋆d) of problem (2.2);

1: solve SDP (2.9) �nding (X⋆,C⋆, t⋆);
2: solve problem (2.10) obtaining ν⋆d ; 
ompute p⋆

like (2.12);

3: let tr (c0c
†
0C

⋆) = s, and perform

D
(

C⋆,M−1 ⊙
(

p⋆p⋆†)∗ − t⋆I, c0c
†
0 − sI

)

getting C⋆ =
∑R

i=1 cic
†
i ;

4: let ci = ci/||ci||, i = 1, . . . , R, and solve problem (2.18) with pa-

rameter ci, obtaining the optimal values {t(1), . . . , t(R)} and the

optimums {νd,1, . . . , νd,R}.
5: 
hoose ci su
h that t(i) = max{t(1), . . . , t(R)}, say ci = c1, and let

c⋆ = c1e
j argc†

1c0
and ν⋆d = νd,1.

As to the 
omputational 
omplexity of the above algorithm, it is

di
tated by the solution of the SDP problem (2.9)

3

, whi
h has a worst-


ase 
omplexity of O
(

N4.5 log 1
η

)

(see [26℄), sin
e the spe
i�
 rank-one

de
omposition involved requires O(N3) operations and the 
ost of the

one dimensional optimization problem

4

is very low 
ompared to the 
ost

3

An SDP problem 
an be e�
iently solved in polynomial time through interior

point methods, and the number of iterations ne
essary to a
hieve 
onvergen
e usually

ranges between 10 and 100 (see [11℄).

4

In the later numeri
al simulation, the Matlab 
ommand fminbnd is used.
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of the 
omputations in the other steps.

Before 
on
luding, it is interesting to highlight that a possible exten-

sion of the en
oding algorithm aimed at optimizing the minimum SNR

(over νd) in a sub-interval of [0, 1] (or even in the union of more than one

of su
h sub-intervals) 
an be easily 
on
eived exploiting [25, Theorem

3.2℄ in pla
e of [25, Theorem 3.1℄ to express the nonnegativity of the

trigonometri
 polynomial in the 
onsidered sub-interval.

2.4 Performan
e Analysis

This Se
tion is devoted to the performan
e analysis of the proposed

s
heme for the robust waveform design. To this end, the assumption

is that the (l, k)-th entry disturban
e 
ovarian
e matrix is given by

M (l, k) = ρ
|l−k|
1 exp [j2πγ(l − k)] + 10ρ|l−k| + 10−2I(l, k), whi
h is a

stru
ture a

ounting for the simultaneous presen
e of sea 
lutter, land


lutter, and thermal noise. Moreover, the Pfa of the GLRT re
eiver if

�xed to 10−6
, ρ1 = 0.8, ρ = 0.9, and γ = 0.2. The analysis is 
ondu
ted

in terms of Pd, robustness with respe
t to Doppler shifts, and ambiguity

fun
tion of the 
oded pulse train whi
h results exploiting the proposed

algorithm, i.e.

χ(λ, f) =

∫ ∞

−∞
u(β)u∗(β − λ)ej2πfβdβ

=
N−1
∑

l=0

N−1
∑

m=0

ā(l)ā∗(m)χp[λ− (l −m)Tr, f ] .

The 
onvex optimization MATLAB toolbox SElf-DUal-MInimization (Se-

DuMi) [28℄ is exploited for solving the SDP relaxation. The de
ompo-

sition D(·, ·, ·) of the SeDuMi solution is performed using the te
hnique

des
ribed in [27℄. Finally, the MATLAB toolbox of [2℄ is used to plot the

ambiguity fun
tions of the 
oded pulse trains. In the following, the gener-

alized Barker sequen
e [2, pp. 109-113℄ of length N = 10 is 
onsidered as

similarity 
ode (namely, c0 = [0.3162, 0.3162, 0.1724+0.2651j,−0.1905+
0.2524j,−0.2322+0.2147j, 0.3084+0.0697j, 0.3141+0.0367j,−0.2250−
0.2222j, 0.29851 + 0.1044j,−0.1881 − 0.2542j]T ).

In Figure 2.1, the Pd of the optimized 
ode (a

ording to the max-

min 
riterion) versus |α|2 is plotted for several values of δǫ, together with
Pd of the similarity 
ode for νd = ν⋆d . The 
urves show that in
reasing δǫ
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Figure 2.1: Pd versus |α|2 for non-�u
tuating target, Pfa = 10−6
, N = 10, νd = ν⋆

d ,

and δǫ = {0.1, 0.4, 0.7, 0.9, 0.9801, 0.9999}. Generalized Barker 
ode (solid 
urve).

Max-min 
ode (dashed 
urves).

worse and worse Pd values are obtained; this behavior 
an be explained

observing that the smaller δǫ, the larger ǫ, the larger the size of the

similarity region. However, this dete
tion loss is 
ompensated for an im-

provement of the 
oded pulse train ambiguity fun
tion. This is shown in

Figures 2.2a-2.2d, where su
h fun
tion is plotted assuming re
tangular

pulses, Tr = 5Tp. The plots highlight that the 
loser δǫ to 1 the higher

the degree of similarity between the ambiguity fun
tions of the devised

and the pre-�xed 
ode. This is due to the fa
t that in
reasing δǫ is tan-
tamount to redu
ing the size of the similarity region. In other words, the

devised 
ode is for
ed to be similar and similar to the pre-�xed one and,

as a 
onsequen
e, we get similar and similar ambiguity fun
tions. The

last analysis of this Se
tion 
on
erns the robustness of Pd with respe
t to

Doppler shifts. Spe
i�
ally, in Figure 2.3, the Pd versus νd for the max-

min 
ode and the similarity 
ode c0 are plotted, assuming |α|2 = 23 dB.

Inspe
tion of the 
urves highlights that, for values of δǫ ≤ 0.9, Pd of the

optimized 
ode exhibits a quite �at behavior with respe
t to Doppler

frequen
ies. On the 
ontrary, Pd of the similarity 
ode is very sensitive
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(a) δǫ = 0.4. (b) δǫ = 0.7.

(
) δǫ = 0.9. (d) δǫ = 0.9999.

Figure 2.2: Ambiguity fun
tion modulus of the max-min 
ode with N = 10, Tr =
5Tp.

to the Doppler shift and exhibits signi�
ant variations. Moreover, for

a wide range of Doppler shifts the max-min 
ode outperforms the simi-

larity sequen
e. A
tually, the smaller δǫ, the wider the Doppler interval
where the max-min 
ode performs better than the similarity 
ode c0.

A numeri
al analysis, aimed at assessing the quality of the solution

produ
ed by the new algorithm, is now proposed. Spe
i�
ally, the nor-

malized gap ∆g between the optimal value of the SDP problem and t1
is evaluated, i.e. ∆g = t⋆−t1

t⋆ . Observing the se
ond row of Table 2.1, it

is possible to see that, for the 
onsidered values of the parameters, the

devised algorithm provides high-quality solutions. Noti
e that, for all

the simulated δǫ ≥ 0.7 or 0.15 ≤ δǫ < 0.4, it even outputs the optimal

solution to the max-min problem (i.e. the SDP relaxation problem has

always a rank-one optimal solution).
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Figure 2.3: Pd versus νd for |α|2 = 23 dB, non-�u
tuating target, N = 10, and
δǫ = {0.1, 0.4, 0.7, 0.9, 0.9801, 0.9999}. Generalized Barker 
ode (solid 
urves), Max-

min 
ode (dash 
urves).

2.5 Con
lusions

In the present Chapter, a max-min algorithm for radar waveform

design, in the presen
e of 
olored Gaussian disturban
e, and for
ing en-

ergy and similarity 
onstraints, has been proposed and analyzed. The

waveform synthesis has been formulated as a non-
onvex quadrati
 opti-

mization problem with in�nitely many quadrati
 
onstraints. Through a


lever te
hnique, exploiting SDP relaxation te
hniques and some results

from the theory of nonnegative trigonometri
 polynomials, a pro
edure


apable of providing an high-quality waveform from an optimal solu-

tion of the SDP relaxation has been devised. The te
hnique is based

on a suitable rank-one de
omposition and its implementation requires a

polynomial 
omputational 
omplexity. At the analysis stage, the perfor-

man
e of the new algorithm in terms of dete
tion performan
e, ambigu-

ity fun
tion and robustness of Pd with respe
t to Doppler shifts, have
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Table 2.1: ∆g for N = 10, several values of δǫ, and Generalized Barker 
ode as

similarity sequen
e.

δǫ 0.4 0.45 0.47 0.5 0.53 0.55

∆g 0.22% 1.39% 1.89% 2.69% 3.56% 4.08%

δǫ 0.57 0.6 0.63 0.65 0.67 //

∆g 4.54% 5.16% 5.67% 5.15% 2.75% //

been evaluated. The e�e
t of the similarity parameter has been studied.

Pre
isely, if there are su�
ient degrees of freedom for the optimization

problem, namely the similarity parameter is not 
lose to 1, then the

max-min algorithm is 
apable of ensuring a very robust dete
tion per-

forman
e with respe
t to target Doppler shifts. Moreover, this robust

behavior 
an be traded o� with ambiguity fun
tion pe
uliarities.



Chapter 3

Design of Optimized Radar

Codes with a Peak to Average

Power Ratio Constraint

3.1 Introdu
tion

Modern digital te
hnology and adaptive transmitters now give the

ability to generate high-a

ura
y, sophisti
ated, broad-bandwidth radar

waveforms, dynami
ally adaptable to and optimized for a range of dif-

ferent tasks (dete
tion, tra
king, target re
ognition, et
.) potentially on

a pulse-by-pulse and 
hannel-by-
hannel basis. For instan
e, a modern

multifun
tion phased array radar 
an adapt the waveform, dwell time,

and update interval a

ording to the nature of the surrounding 
lutter

environment, the Signal to Noise Ratio (SNR), and the parti
ular target

(the most likely type of target, the threat that it may represent, and the

degree to whi
h it is manoeuvering, et
.). This is essentially the subje
t

of waveform diversity [4, 19, 5, 29, 30℄, namely a new �exibility and dy-

nami
 adaptation whi
h demands new ways of 
hara
terizing waveform

properties and optimizing waveform design.

The possibility of modulating adaptively the radar signal depending

on the surrounding environment and on the expe
ted target 
hara
teris-

ti
s has lead to the 
on
ept of mat
hed-illumination [31, 20, 21℄, whi
h

determines the optimized transmission waveform and the 
orresponding

re
eiver response through the maximization of SNR. This 
on
ept is also

thoroughly investigated in [22℄, with referen
e to a Gaussian point-like

35
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target and stationary Gaussian 
lutter, showing that the optimum al-

lo
ation pro
edure pla
es the signal energy in the noise band having

minimum power. Re
ent studies 
on
erning waveform optimization in

the presen
e of 
olored disturban
e 
an be found in [7℄, where a signal

design approa
h relying on the maximization of the SNR under a simi-

larity 
onstraint with a given waveform is proposed and assessed. In [1℄,

fo
using on the 
lass of linearly 
oded pulse trains (both in amplitude

and in phase), the authors introdu
e a 
ode sele
tion algorithm whi
h

maximizes the dete
tion performan
e and, at the same time, is 
apable

of 
ontrolling both the region of a
hievable values for the Doppler esti-

mation a

ura
y and the degree of similarity with a pre-�xed radar 
ode.

In [10℄ and [32℄, the approa
h is extended to a

ount for a Spa
e-Time

Adaptive Pro
essing and an unknown target Doppler frequen
y respe
-

tively. However, sin
e in several pra
ti
al situations, the radar ampli�ers

might work in saturation 
onditions and hen
e an amplitude modulation

might be di�
ult to perform, in [8℄, the authors also 
onsider the syn-

thesis of 
onstant modulus (unimodular) phase 
oding s
hemes for radar


oherent pulse trains.

In this Chapter, a new waveform design approa
h relying on the max-

imization of the dete
tion performan
e under a more general 
onstraint

than unimodularity is intridu
ed. Spe
i�
ally, waveforms are designed

with a bounded transmitted Peak-to-Average power Ratio (PAR). This


onstraint is very reasonable for radar appli
ations and in
ludes, as a spe-


ial 
ase, the phase only modulation 
ondition. Indeed, it has also been

imposed in [33℄ for the synthesis of waveforms with stopband and 
orrela-

tion 
onstraints. A
tually, 
ontrolling the PAR permits to 
onstrain the

ex
ursions of the squared 
ode elements around their mean value. This

also allows to keep under 
ontrol the dynami
 range of the transmitted

waveform whi
h is an important pra
ti
al issue (for the 
urrent te
h-

nology) be
ause high PAR values ne
essitate a linear ampli�er having a

large dynami
 range and this may be di�
ult to a

ommodate. Finally,

the PAR 
ontrol is also a 
ru
ial task in OFDM (Orthogonal Frequen
y-

Division Multiplexing) systems and the interested reader might refer to

[34℄ and referen
es therein where this issue is addressed.

Firstly, the fo
us is on the sele
tion of the radar waveform optimizing

the SNR in 
orresponden
e of a given expe
ted target Doppler frequen
y,

under a PAR and an energy 
onstraint (Algorithm 3). Noti
e that this

problem is of pra
ti
al importan
e when it is required a 
on�rmation of
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an initial dete
tion in a 
ertain Doppler bin, namely when some knowl-

edge about the Doppler frequen
y is available. Besides, when the Doppler

parameter is unknown, the pra
ti
al appli
ation of Algorithm 3 
an be

obtained either tuning the design Doppler to a 
hallenging 
ondition, di
-

tated by the 
lutter Power Spe
tral Density (PSD) shape, or optimizing

the waveform to an average s
enario. This is tantamount to 
onsidering

as obje
tive fun
tion the average SNR over the possible target Doppler

shifts.

Afterward, the te
hnique is made robust with respe
t to the re
eived

target target Doppler frequen
y resorting to a max-min approa
h (Al-

gorithm 4). Otherwise stated, the worst 
ase (over the target Doppler)

SNR is optimized under the same 
onstraints as in the previous problem.

Sin
e Algorithms 3 and 4 do not impose any 
ondition on the waveform

phase (i.e. the waveform phase 
an range within the 
ontinuous interval

[0, 2π)), their phase quantized versions (Algorithms 5 and 6 respe
tively)

are devise too, whi
h for
e the waveform phase to belong to a �nite al-

phabet.

All the problems are formulated in terms of non-
onvex quadrati


optimization problems with a �nite (
ases of Algorithms 3 and 5) or an

in�nite (
ases of Algorithms 4 and 6) number of quadrati
 
onstraints.

These problems are proved to be NP-hard and, hen
e, design te
hniques,

relying on Semide�nite Programming (SDP) relaxation and randomiza-

tion

1

as well as on the theory of trigonometri
 polynomials [25℄, are

introdu
ed, whi
h approximate the optimal solution with a polynomial

time 
omputational 
omplexity. For Algorithms 3 and 5, an analyti
al

expression of the approximation bound whi
h quanti�es the quality of

the obtained waveforms is provided.

At the analysis stage, the performan
e of the new te
hnique are

assessed in terms of dete
tion probability a
hievable by the Neyman-

Pearson re
eiver and robust behavior of the dete
tion performan
e with

respe
t to the target Doppler frequen
y. The results show that the new

algorithms trade o� dete
tion performan
e and SNR robustness with

small desirable values of the PAR as well as (Algorithms 5 and 6) with

the number of quantization levels used to represent the waveform phase.

The Chapter is organized as follows. In Se
tion 3.2, under the as-

1

SDP relaxation and randomization te
hniques have also been used in other signal

pro
essing �elds. For instan
e, in maximum likelihood multiuser dete
tion [35℄ and

transmit beamforming [36℄.
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sumptions of the system model (1)-(2), the formulation of the waveform

design problems is presented; in Se
tions 3.3-3.6, solution algorithms for

the 
onsidered problems are devised; in Se
tion 3.7, the performan
e of

the new waveform design te
hniques are analyzed, providing numeri
al

results aimed at assessing their quality. Finally, 
on
lusions are given in

Se
tion 3.8.

3.2 System Model and Formulation of the Prob-

lems

The fo
us is on a monostati
 radar transmitting a linearly en
oded

pulse train and 
onsider the signal model of eq. (1) [1℄, with the only

di�eren
e that p = [1, ej2πνd , . . . , ej2π(N−1)νd ]T .

The main goal is to �nd 
odes optimizing the SNR (either in the

mat
hed 
ase, namely in 
orresponden
e of a given normalized target

Doppler frequen
y, or in the worst normalized Doppler 
ase), under a


onstraint on the transmitted energy, namely ‖c‖2 = N , and for
ing an

upper bound to the PAR, i.e.

PAR =

max
i=1,...,N

|c(i)|2

1
N ‖c‖2 = max

i=1,...,N
|c(i)|2, (3.1)

where c = [c(1), . . . , c(N)]T ∈ C
N
. Evidently, a bound on the PAR is

tantamount to imposing a more general 
onstraint than the phase-only


ondition, whi
h 
an be obtained letting PAR=1.

In the following, the waveform design problems are formulated math-

emati
ally, showing how the mat
hed or worst 
ase SNR 
an be optimized

and the 
onstraints 
an be enfor
ed, under the assumption of eq. (2) for

the disturban
e ve
tor w. First of all, fo
using (without loss of general-

ity) on the 
ase of non-�u
tuating target, the SNR 
an be again de�ned

as in eq. (1.8). Hen
e, for a given normalized target Doppler νd, the
Waveform Design Problem (WDP) 
an be formulated in terms of the

following 
omplex quadrati
 optimization program

max
c

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ

‖c‖2 = N

(3.2)
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(PAR 
onstrained WDP) where 1 ≤ γ ≤ N rules the maximum allow-

able PAR. The resulting waveform optimizes the radar performan
e in


orresponden
e of the spe
i�
 design Doppler. From a pra
ti
al point of

view, this is of interest during the 
on�rmation pro
ess, i.e. when it is re-

quired to 
on�rm an initial dete
tion in a 
ertain Doppler bin (obtained

using a possibly standard non-optimized waveform) so as to improve the

quality of dete
tion. Alternatively, the pra
ti
al appli
ation of the 
rite-

rion 
an be obtained either tuning the design Doppler to a 
hallenging


ondition, di
tated by the 
lutter Power Spe
tral Density (PSD) shape

(i.e. design Doppler in 
orresponden
e of the PSD peak), or optimizing

the waveform to an average s
enario.

If the target Doppler is not a-priori known, it makes sense to 
onsider

the waveform optimizing the worst 
ase SNR. By doing so, it is possible

to get a single transmitted signal 
apable of ensuring a robust behavior of

the dete
tion performan
e with respe
t to the a
tual Doppler frequen
y.

This 
riterion leads to the following Robust PAR 
onstrained WDP

max
c

min
νd∈[0,1]

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ,

‖c‖2 = N.

(3.3)

Sin
e problems (3.2) and (3.3) do not impose any 
ondition on the wave-

form phase (i.e. the waveform phase 
an range within the 
ontinuous

interval [0, 2π)), it is of interest to 
onsider also their phase quantized

versions, for
ing the waveform phase to belong to a �nite set. This ob-

servation leads to PAR 
onstrained and phase quantized WDP

max
c

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N

(3.4)

(where the number of quantization levelsM is an integer su
h that M ≥
2) and robust PAR 
onstrained and phased quantized WDP:

max
c

min
νd∈[0,1]

c†Rc

s.t. PAR = max
i=1,...,N

|c(i)|2 ≤ γ,

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N

(3.5)
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whi
h respe
tively refer to the 
ase of known and unknown normalized

target Doppler.

Before pro
eeding with the design of solution te
hniques for (3.2),

(3.3), (3.4), and (3.5), it is worth to address the di�eren
es between

them and the optimization problems formulated and solved in some of

the previous works:

1. the problem in [1℄ is a non-
onvex homogeneous Quadrati
ally Con-

strained Quadrati
 Programming (QCQP) with three 
onstraints,

the strong duality holds for the problem, and a polynomial-time

algorithm is established based on a suitable rank-one de
omposi-

tion;

2. the problem in [10℄ is a non-
onvex homogeneous QCQP with four


onstraints for whi
h strong duality does not hold in general. Nev-

ertheless, the authors have shown how to 
onstru
t an optimal so-

lution in polynomial-time, provided only that the SDP relaxation

of the original problem gives an optimal solution with rank not

equal to two;

3. the problem in [8℄ is an NP-hard QCQP optimization problem due

to the phase-only and the possibly �nite alphabet 
onstraint, whose

optimal solution is approximated using the relaxation and random-

ization approa
h typi
al of the boolean Quadrati
 Programming

(QP) problems;

4. the problem in [32℄ is a QCQP with in�nitely many 
onstraints,

for whi
h the authors establish a deterministi
 approximation pro-


edure, with polynomial time 
omputational 
omplexity, to output

a solution leading to high-quality radar waveforms.

In this Chapter, new randomized approximation algorithms for the WDP

(3.2) and its phase-quantized version (3.4) are established, respe
tively.

Due to the PAR 
onstraint 
onsidered in (3.2), whi
h is quite di�erent in

nature from the 
onstraint (the similarity 
onstraint under the in�nite

norm) in the optimization problem 
onsidered in [8℄, the approximation

pro
edures for (3.2) and (3.4) must be re-designed and the mathemati-


al analysis for the approximation bounds has to be re-assessed. For the

robust PAR 
onstrained WDPs (3.3) and (3.5), respe
tive randomized

approximation algorithms will be proposed, in 
ontrast to the determin-
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isti
 approximation algorithm built in [32℄, a

ording to some 
onvex

optimization te
hniques and the new randomization pro
edures.

3.3 PAR Constrained WDP

Problem (3.2) 
an be equivalently reformulated as

max
c

c†Rc

s.t. |c(i)|2 ≤ γ, i = 1, . . . , N
‖c‖2 = N.

(3.6)

Noti
e that when γ = 1, a feasible point for (3.6) has the property that

|c(i)| = 1 ∀i, and thus the norm 
onstraint ‖c‖2 = N is redundant, i.e.,

(3.6) redu
es to

max
c

c†Rc

s.t. |c(i)|2 ≤ 1, i = 1, . . . , N.
(3.7)

Problem (3.7) has been proven NP-hard in [37℄

2

(see related works [38℄,

[39℄, [40℄) and approximation algorithms for (3.7) are established in [37℄

(see [41℄ also). An interesting appli
ation for (3.7) with all parameters

and design variable being real-valued 
an be found with referen
e to

blind Maximum-Likelihood (ML) dete
tion of Orthogonal Spa
e-Time

Blo
k Codes (OSTBCs) with unknown Channel State Information (CSI)

in Multiple-Input-Multiple-Output (MIMO) transmissions [42℄.

In this Se
tion, problem (3.6) is 
onsidered with γ > 1, whi
h means

that the norm 
onstraint does not vanish. Clearly, problem (3.6) is a

non-
onvex QCQP with multiple 
onstraints

3

. It is possible to 
laim

that problem (3.6) with γ greater than one is NP-hard by a redu
tion

from an even partition problem whi
h is known to be NP-
omplete.

2

Indeed, problem (3.7) is equivalent to (3.7) with all the inequality 
onstraints

be
oming equality 
onstraints, due to the fa
t that the maximal value of a 
onvex

fun
tion is attained only at the boundary of a 
onvex region. In other words, repla
ing

the inequality 
onstraints in (3.7) into equality ones, neither the optimal value nor

the optimal solution set of problem (3.7) would be 
hanged. It has been shown in [37℄

that the problem (3.7) with all equality 
onstraints is NP-hard, thus problem (3.7) is

NP-hard, as it stands now.

3

For a QCQP, non-
onvexity does not imply that it is hard to solve; it turns out

that, if the number of 
onstraints is not too high, the QCQP 
an be solved e�
iently;

in other words, the SDP relaxation of it is tight. See [27℄, [43℄.
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Proposition 3.3.1. The radar 
ode design problem (3.6) is NP-hard

with parameters R � 0 and γ > 1.

Proof. See Appendix C.

Due to Proposition 3.3.1, the radar 
ode design problem (3.6) is un-

likely to admit a polynomial time solution method (whi
h means (3.6) is


omputational intra
table in general). Thus, e�orts will be made in the

following toward the design of an approximation algorithm for (3.6).

3.3.1 Approximation algorithm via semide�nite program-

ming relaxation and randomization

To get an approximate solution (alternatively termed as a suboptimal

solution) of (3.6), 
onsider its SDP relaxation:

max
C

tr (RC)

s.t. C(i, i) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0.

(3.8)

Evidently, problem (3.8) with the additional rank 
onstraint Rank (C) =
1 is equivalent to (3.6). It follows from the strong duality theorem [26,

Theorem 1.7.1℄ of SDP that (3.8) is solvable

4

, sin
e the SDP (3.8) is

feasible (for example, I is a feasible point) and its dual is stri
tly feasible:

min
t(i)

t(0)N + γ
∑N

i=1 t(i)

s.t. R−∑N
i=1 t(i)Ei − t(0)I � 0

t(i) ≥ 0, i = 1, . . . , N

(3.9)

where Ei stands for the N × N matrix with the ii-th entry being one

and all other entries being zero. In pra
ti
e, an optimal solution of (3.8)


an be obtained using publi
 solvers (su
h as 
vx [44℄ and SeDuMi [28℄).

Let C⋆
be an optimal solution of (3.8). The main goal is to extra
t a

rank-one feasible solution of (3.8) with mathemati
ally provable quality

from C⋆
, whi
h may or may not be of rank-one. Noti
e that if RankC⋆

happens to be one, then the radar 
ode design problem (3.6) is optimally

solved and the SDP relaxation is tight.

4

By saying solvable, it means that the problem is feasible, bounded, and the

optimal value is attained (see [26, page 13℄).
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However, often, it is not the 
ase that Rank C⋆
is one, whi
h means

that the SDP relaxation (3.8) is not tight for (3.6). Therefore, the de-

sign of a suitable pro
edure to 
onstru
t in polynomial time a suboptimal

solution of problem (3.6) is a 
ompromising must. The idea of a Gaus-

sian randomization pro
edure to produ
e an approximate solution to an

NP-hard optimization problem 
omes from the seminal work [45℄ by Goe-

mans and Williamson where the authors proposed a randomized approxi-

mation algorithm for the NP-hard max-
ut problem, with the approxima-

tion bound 0.87856, via the SDP relaxation te
hnique. Sin
e then, a large

number of NP-hard optimization problems have been solved by the ap-

proximation method of SDP-relaxation-plus-randomization, importantly

with theoreti
ally assured approximation bound. For an overview of it

from a perspe
tive of signal pro
essing, the reader is invited to refer to

the magazine paper [43℄. Using the idea (mainly from [45℄ and [46℄ and

referen
es therein), a Gaussian randomization pro
edure is presented so

as to obtain an approximate solution of problem (3.6), based on the

optimal solution C⋆
of the SDP relaxation problem (3.8). The quoted

pro
edure requires the de�nition of a suitable �ad ho
� 
ovarian
e matrix

of the Gaussian distribution to be adopted in the randomization step.

The basi
 
riterion for sele
ting su
h a 
ovarian
e matrix is that the

entire randomization pro
edure has to lead to a feasible solution of the

original problem with probability one and it has also to provide math-

emati
al tra
tability in assessing the quality of the resulting solution.

A

ording to this guideline, denote by

d =
√

diag(C⋆), (3.10)

and by d−

(d−)i =

{

1/d(i), if d(i) > 0
1, if d(i) = 0

i = 1, . . . , N. (3.11)

Additionally, let

D = Diag(d), D− = Diag(d−), (3.12)

and observe that, from (3.10)-(3.12),

(D−D)(i, i) =

{

1, if d(i) > 0
0, if d(i) = 0

i = 1, . . . , N. (3.13)
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Hen
e, the entries of the matrix

C̃
⋆
= C⋆ + (I −D−D) (3.14)


omply with

C̃⋆(i, k) =







C⋆(i, k), if i 6= k
C⋆(i, i), if C⋆(i, i) > 0
1, if C⋆(i, i) = 0

. (3.15)

By the 
onstru
tion of C̃
⋆
, it is possible to see that the diagonal

elements C̃
⋆
are positive and that C̃⋆(i, i) = 1 provided that C⋆(i, i)

vanishes. Exploiting the above de�nitions and observations, further im-

portant properties about C̃
⋆
follow:

Proposition 3.3.2. Let C⋆
be a positive semide�nite matrix and d, d−

,

D, D−
, C̃

⋆
be de�ned as (3.10)-(3.12), (3.14), respe
tively. Then, the

matrix D−C̃
⋆
D−

enjoys the following properties:

(i) D−C̃
⋆
D− � 0;

(ii) the diagonal elements of D−C̃
⋆
D−

are one.

Proof. See Appendix D.

This proposition indi
ates that D−C̃
⋆
D−


an be a suitable 
hoi
e

for the 
ovarian
e matrix of a Gaussian distribution to be adopted in the

randomized approximation algorithm. Indeed, suppose to take a Gaus-

sian random ve
tor ξ from the distribution NC(0,D
−C̃

⋆
D−); then ea
h


omponent of ξ is with zero mean and unit varian
e (a

ording to (ii)

of Proposition 3.3.2), i.e., the ve
tor ξ enjoys dependent standard 
om-

plex Gaussian random 
omponents. It 
an be seen that with probability

one, (
√

C⋆(1, 1) ξ(1)
|ξ(1)| , . . . ,

√

C⋆(N,N) ξ(N)
|ξ(N)|) is feasible for the PAR 
on-

strained WDP (3.2). Additionally, su
h a 
onstru
tion of the 
ovarian
e

D−C̃
⋆
D−

shares some advantages in mathemati
ally assessing the qual-

ity of a randomized approximation algorithm (as it 
an be seen in the

next sub-se
tion). Based on these observations, in order to produ
e an

approximate solution (i.e., a suboptimal solution, or a feasible solution)

of (3.6), the following randomization pro
edure (in Algorithm 3) is pro-

posed.

It is worth to remark that in pra
ti
e the randomization steps 3

and 4 
an be repeated many times, in order to obtain a solution with
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Algorithm 3 Gaussian randomization pro
edure for radar 
ode design

problem (3.6)

Require: R, γ;
Ensure: a randomized approximate solution c of (3.6);

1: solve the SDP (3.8) �nding C⋆
;

2: de�ne d, d−
, D, D−

a

ording to (3.10)-(3.12);

3: draw a random ve
tor ξ ∈ C
N
from the 
omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−);

4: let c(i) =
√

C⋆(i, i)ej arg(ξ(i)), i = 1, . . . , N .

better quality. As it 
an be dire
tly seen, the 
omputational 
ost of

Algorithm 3 is dominated by solving SDP (3.8) whi
h has a 
omplexity

of O(N3.5 log(1/ǫ)) [43℄, given a solution a

ura
y ǫ > 0.

3.3.2 Approximation bound

The approximation bound of an approximation algorithm is a mea-

sure 
hara
terizing the quality of the algorithm. For a randomized ap-

proximation algorithm solving a maximization (minimization) problem,

an approximation bound

5 R ∈ (0, 1] (R ∈ [1,+∞)) means that for all

instan
es of the problem, the algorithm always delivers a feasible solu-

tion whose expe
ted obje
tive fun
tional value is at least (at most) R
times the optimal value. Su
h an algorithm is usually 
alled random-

ized R-approximation algorithm. More pre
isely, let v(·) be the optimal

value of an instan
e of a given maximization (minimization) problem (·),
then a feasible solution z produ
ed by a randomized R-approximation

algorithm, 
omplies with

E[the obje
tive fun
tion evaluated at z] ≥ Rv(·)

(E[the obje
tive fun
tion evaluated at z] ≤ Rv(·) for minimization prob-

lem). It is 
lear that an algorithm produ
es a better approximation (for

either maximization problem or minimization problem), if the approxi-

mation bound is 
loser to 1. The aim of this subse
tion is to establish an

approximation bound for Algorithm 3. Toward this end, a result proved

in [37, Se
tion 3.3, pp. 884℄ is invoked:

5

It is also termed as performan
e guarantee, or worst 
ase ratio in the open

literature.
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Lemma 3.3.3. Let Z be a positive semide�nite matrix with all one di-

agonal elements and z be a randomized ve
tor generated setting z(i) =
ej arg(ξ(i)), i = 1, . . . , N , where ξ ∼ NC(0,Z). Then,

E[zz†] = F (Z) =
π

4
Z+

π

2

∞
∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
(ZT ⊙Z)(k)⊙Z � π

4
Z

(3.16)

where (A)(k) denotes the Hadamard produ
t of k 
opies of A.

Besides, from Proposition 3.3.2, it follows

Proposition 3.3.4. Let C⋆
be a positive semide�nite matrix and d, d−

,

D, D−
, C̃

⋆
be de�ned as (3.10)-(3.12), (3.14), respe
tively. Then,

D(D−C̃
⋆
D−)D = C⋆.

Proof. See Appendix E.

Capitalizing Lemma 3.3.3 and Proposition 3.3.4, the proposition be-

low is obtained showing that the randomized Algorithm 3 has the ap-

proximation abound

π
4 .

Proposition 3.3.5. Let c be the randomized solution output by Algo-

rithm 3. Then,

E[c†Rc] = tr (R(DF (D−C̃
⋆
D−)D)) ≥ π

4
tr (RC⋆) ≥ π

4
v((3.6))

(3.17)

where C̃
⋆
is de�ned in (3.14) and the fun
tion F (·) is de�ned in (3.16).

Proof. See Appendix F.

Before 
on
luding, it is important to remark that problem (3.6) is

equivalent to the real-valued quadrati
 program:

max
u,v

[uT vT ]

[

ℜ(R) −ℑ(R)
ℑ(R) ℜ(R)

] [

u

v

]

s.t. u(i)2 + v(i)2 ≤ γ, i = 1, . . . , N
∑N

i=1(u(i)
2 + v(i)2) = N

(3.18)

where u = ℜ(c) and v = ℑ(c). The approximation bound for the

approximation algorithm solving a real-valued quadrati
 program like

in (3.18) but without any spe
ial stru
ture of the positive semide�nite
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matrix appearing in the obje
tive fun
tion, obtained in [46℄, is

2
π (≈

0.6366), instead of

π
4 (≈ 0.7854). It is easy to see that 
omplex quadrati


program (3.6) is a stru
tured real quadrati
 program (3.18); in other

words, the matrix appearing in the obje
tive fun
tion of (3.18) has the

stru
ture

[

ℜ(R) −ℑ(R)
ℑ(R) ℜ(R)

]

,

rather than a general (2N) × (2N) positive semide�nite matrix. As a


onsequen
e, the 
omplex quadrati
 program (3.6) is equivalent to a

sub
lass of real quadrati
 programs, and it is reasonable that it shares a

tighter approximation bound. Indeed, this phenomenon happens also in

related literature as for instan
e in [37℄, [38℄ and [27℄.

3.4 Robust PAR Constrained WDP

Problem (3.3) 
an be equivalently expressed as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1]
|c(i)|2 ≤ γ, i = 1, . . . , N
‖c‖2 = N.

(3.19)

The 
onventional SDP relaxation of (3.19) is

max
C, t

t

s.t. t ≤ p†(M−1 ⊙ (C)∗)p, ∀νd ∈ [0, 1]
C(i, i) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0.

(3.20)

Problem (3.20) in
ludes the in�nitely many quadrati
 
onstraints t ≤
p†(M−1⊙ (C)∗)p, ∀νd ∈ [0, 1]. However, it 
an be proved that they 
an

be transformed into a �nite number 
onvex 
onstraints, resorting to the

SDP representation of nonnegative trigonometri
 polynomials [25℄. To

this end, �rst observe that

p†(M−1 ⊙ (C)∗)p − t = x(0)− t+ 2ℜ
(

N−1
∑

k=1

x(k)e−jkω

)

,
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where ω = 2πνd and

x(k) =

N−k
∑

i=1

(M ⊙ (C)∗)(i+ k, i), k = 0, 1, . . . , N − 1. (3.21)

Hen
e, the following theorem, proved in [25, Theorem 3.1℄ and quoted

here as a lemma, is exploited.

Lemma 3.4.1. The trigonometri
 polynomial f(ω) = x(0) + 2ℜ (
∑

k=1
N−1x(k)e−jkω

)

is nonnegative over [0, 2π], if and only if there exists an

N ×N Hermitian matrix X � 0 su
h that

x = W †
diag(WXW †), (3.22)

where x = [x(0), . . . , x(N − 1)]T , W = [w0, . . . ,wN−1] ∈ C
L×N

, wk =
[1, e−jkθ, . . . , e−j(L−1)kθ]T , k = 0, . . . , N − 1, θ = 2π/L, L ≥ 2N − 1.

The above Lemma implies that (3.20) 
an be re
ast equivalently as

the following SDP:

max
C,X, t

t

s.t. W †
diag(WXW †) + te1 = x

C(i, i) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0, X � 0

(3.23)

where x is de�ned by (3.21) and W is the same as the one de�ned in

Lemma 3.4.1 by taking L = 2N − 1.

Proposition 3.4.2. It holds that SDP problem (3.23) is solvable.

Proof. See Appendix G.

Let (C⋆,X⋆, t⋆) be an optimal solution of (3.20). Feasible solutions

ck, k = 1, . . . ,K (K will be referred to as the number of randomizations),

of (3.3) are generated using C⋆
in a way similar to Algorithm 3. Then

pi
k ck, say c1, su
h that the obje
tive fun
tion value t(1) is maximal

over all

t(k) = min
νd∈[0,1]

p†(M ⊙ (ckc
†
k)

∗)p, k = 1, . . . ,K. (3.24)



3.4 Robust PAR Constrained WDP 49

The minimization problems (3.24) are one dimensional optimization prob-

lem. It is seen that ea
h problem in (3.24) is equivalent to an SDP. In

fa
t, for ea
h k, it follows that

t(k) = max
s

s s.t. p†(M ⊙ (ckc
†
k)

∗)p ≥ s, ∀νd ∈ [0, 1]. (3.25)

It follows from Lemma 3.4.1 that problem (3.25) is equivalent to

t(k) = max
X1, s

s

s.t. W †
diag(WX1W

†) + se1 = xk

X1 � 0, s ∈ R

(3.26)

where the l-th element of xk is similar to that de�ned in (3.21), i.e.,

xk(l) =
N−l
∑

i=1

(M ⊙ (ckc
†
k)

∗)(i+ l, i), l = 0, 1, . . . , N − 1. (3.27)

Algorithm 4 summarizes the pro
edure to generate an approximate

solution of (3.3).

Algorithm 4 Gaussian randomization pro
edure for the 
ode design

problem (3.3)

Require: M , γ;
Ensure: a randomized approximate solution c of (3.3);

1: solve the SDP (3.23) �nding C⋆
;

2: de�ne d, d−
, D, D−

a

ording to (3.10)-(3.12);

3: draw random ve
tors ξk ∈ C
N
from the 
omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−), k = 1, . . . ,K;

4: let ck(i) =
√

C⋆(i, i)ej arg(ξk(i)), i = 1, . . . , N , k = 1, . . . ,K;

5: 
ompute

t(k) = min
νd∈[0,1]

p†(M ⊙ (ckc
†
k)

∗)p,

by solving SDP (3.26), k = 1, . . . ,K;

6: pi
k the maximal value over {t(1), . . . , t(K)}, say t(1), and output

c1.

It is worth to remark that the 
omplexity of the algorithm is domi-

nated by the 
omputation required for solving SDPs (3.23) and (3.26).

Lastly, noti
e that an alternative way to numeri
ally solve the one di-

mensional problems is to perform one dimension sear
h sin
e ea
h of
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the problems has su�
iently smooth obje
tive fun
tion and 
ompa
t

feasible interval. In the numeri
al simulation, we shall use the Matlab


©
ommand fminbnd to perform it.

3.5 PAR Constrained and Phase QuantizedWDP

In this se
tion, the synthesis of an approximation algorithm for (3.4)

has been 
onsidered, equivalently reformulated as:

max
c

c†Rc

s.t. |c(i)|2 ≤ γ

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N.

(3.28)

Clearly, whenM goes to in�nity, (3.28) be
omes (3.6). The 
laim is that

problem (3.28) is also NP-hard, as shown below.

Proposition 3.5.1. The phase quantized 
ode design problem (3.28) is

NP-hard with parameters R � 0 and γ > 1.

Proof. See Appendix H.

Due to the hardness of problem (3.28), similar to Algorithm 3, it

is proposed a randomized approximation algorithm based on the SDP

relaxation te
hnique (as explained in Algorithm 5). Noti
e that the SDP

relaxation problem for (3.28) is (3.8) as well.

Noti
e that, using the related idea in [46℄, the approximation algo-

rithm is appli
able to the following quadrati
 program:

max
c

c†Rc

s.t. arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
[|c(1)|2, . . . , |c(N)|2]T ∈ F

(3.30)

where F ⊆ R
N
+ is a 
losed 
onvex set. In this 
ase, the 
onvex relaxation

of (3.30) is

max
C

tr (RC)

s.t. diag(C) ∈ F
C � 0

(3.31)

whi
h 
an be solved e�
iently due to the 
onvexity of the problem. As to

the approximation bound for Algorithm 5, Lemma 3.3 of [37℄ is quoted

as the following lemma.
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Algorithm 5 Gaussian randomization pro
edure for radar 
ode design

problem (3.28)

Require: R, γ, M ;

Ensure: a randomized approximate solution c of (3.28);

1: solve the SDP (3.8) �nding C⋆
;

2: de�ne d, d−
, D, D−

a

ording to (3.10)-(3.12);

3: draw a random ve
tor ξ ∈ C
N
from the 
omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−);

4: let c(i) =
√

C⋆(i, i)µ(ξ(i)), i = 1, . . . , N . where µ(x) is de�ned as

µ(x) =























1, if arg(x) ∈ [0, 2π 1
M )

ej2π
1
M , if arg(x) ∈ [2π 1

M , 2π 2
M )

.

.

.

ej2π
M−1
M , if arg(x) ∈ [2πM−1

M , 2π)

. (3.29)

Lemma 3.5.2. Let Z be a positive semide�nite matrix with all diagonal

elements being one, z be a randomized ve
tor generated setting z(i) =
µ (ξ(i)), i = 1, . . . , N , where ξ ∼ NC(0,Z), and the rounding fun
tion

µ(x) is de�ned a

ording to (3.29). Then,

E[zz†] � 2

π
ℜ(Z) for M = 2, and E[zz†] � M2 sin2 π

M

4π
Z for M ≥ 3.

(3.32)

Resorting to the above lemma, it 
an be obtained the following result


on
erning the approximation bound.

Proposition 3.5.3. Let c be the randomized solution obtained through

Algorithm 3. Then,

E[c†Rc] ≥ R(M)× tr (RC⋆) ≥ R(M)× v((3.28)) (3.33)

where

R(M) =

{

2
π , if M = 2
M2 sin2 π

M
4π , if M ≥ 3

. (3.34)

Proof. The proof is based on Propositions 3.3.2, 3.3.4, and Lemma 3.5.2.

It is 
ompletely similar to the proof of Proposition 3.3.5 and, thus, it is

omitted here.
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In words, Algorithm 5 is a randomized R(M)-approximation algo-

rithm for (3.28), where some examples of R(M) are R(4) = 0.6366,
R(8) = 0.7458, R(16) = 0.7754, R(32) = 0.7829, R(64) = 0.7848,
R(128) = 0.7852.

3.6 Robust PAR Constrained and Phase Quan-

tized WDP

In this Se
tion, the main goal is to solve problem (3.5), whi
h 
an be

equivalently written as

max
c, t

t

s.t. t ≤ p†(M−1 ⊙ (cc†)∗)p, ∀νd ∈ [0, 1]
|c(i)|2 ≤ γ, i = 1, . . . , N

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N.

(3.35)

It is veri�ed that (3.20) is an SDP relaxation of (3.35). Let (C⋆,X⋆, t⋆)
be an optimal solution of (3.20). Based on C⋆

, approximate solutions

of (3.5) are 
onstru
ted, and then the one with the best performan
e is

sele
ted. Algorithm 6 summarizes the pro
edure to generate an approx-

imate solution of (3.5).

Noti
e that, although there is not an analyti
al approximation bound,

the numeri
al simulations indi
ate that su
h an approximate s
heme

leads to high quality radar waveforms, also with a moderate sample size

K. This point will be better eli
ited in the se
tion addressing numeri
al

results.

3.7 Performan
e Analysis

This Se
tion is devoted to the performan
e analysis of the proposed

waveform design te
hniques in 
orresponden
e of di�erent values for the

design parameters (namely, the PAR 
onstraint γ, the number of ran-

domizations K, the number of phase quantization levels M , et
.). To

this end, a disturban
e 
ovarian
e matrixM , a

ounting for both 
lutter

and thermal noise, with the following stru
ture is assumed:

M =

Nc
∑

i=1

βip(νd,i)p(νd,i)
† + βnI
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Algorithm 6 Gaussian randomization pro
edure for radar 
ode design

problem (3.5)

Require: M , γ, M ;

Ensure: a randomized approximate solution c of (3.5);

1: solve the SDP (3.23) �nding C⋆
;

2: de�ne d, d−
, D, D−

a

ording to (3.10)-(3.12);

3: draw random ve
tors ξk ∈ C
N
from the 
omplex normal distribution

NC(0,D
−(C⋆ + (I −D−D))D−), k = 1, . . . ,K;

4: let ck(i) =
√

C⋆(i, i)µ (ξk(i)), i = 1, . . . , N , k = 1, . . . ,K, where

µ(x) is de�ned in (3.29);

5: 
ompute

t(k) = min
νd∈[0,1]

p†(M ⊙ (ckc
†
k)

∗)p,

by solving SDP (3.26), k = 1, . . . ,K;

6: pi
k the maximal value over {t(1), . . . , t(K)}, say t(1), and output

c1.

where the number of dis
rete 
lutter s
atterers Nc = 10, their strength
βi = β = 103, νd,i = (i− 1)/2, i = 1, . . . , 10, and βn = 10−2

.

The analysis is 
ondu
ted in terms of Pd of the GLRT re
eiver [1℄ (or

equivalently the standard mat
hed �lter with pre-whitening, followed

by squared modulus operation and threshold 
omparison) for a pre-

s
ribed target normalized Doppler frequen
y ν̄d (design parameter for

Algorithms 3 and 5), and robustness of the dete
tion 
apabilities with

respe
t to Doppler shifts for a �xed ᾱ:

Pd(α, ν̄d) = Q

(

√

2|α|2c†R(ν̄d)c,
√

−2 lnPfa

)

,

Pd,rob = Pd(ᾱ, νd), νd = −1

2
, . . . ,

1

2
, α = ᾱ,

where Q (·, ·) is the Mar
um Q fun
tion [47℄, assuming a false alarm

probability Pfa = 10−6
. Additionally, due to the randomization pro-


edures involved into Algorithms 3-6, the aforementioned performan
e

metri
s have been averaged over 500 independent trials. It is important

to highlight that, for Algorithms 3 and 5, Pd,rob = Pd(ᾱ, νd) is the dete
-
tion performan
e obtained when the 
ode is designed for the given ν̄d,
while the a
tual target and the re
eiver steering ve
tors are mat
hed to

the same Doppler νd.
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Figure 3.1: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, N = 10 and γ ∈

{1, 1.3, 1.6, 1.9, 2.2, 2.5}. Algorithm 3 - PAR 
onstrained 
ode.

In Figure 3.1, the Pd, a
hieved using the 
ode devised a

ording

to Algorithm 3, versus |α|2, in plotted, for N = 10, some values of γ
(pre
isely, γ ∈ {1, 1.3, 1.6, 1.9, 2.2, 2.5}), and ν̄d = 0.1. The 
urves high-
light that greater and greater PAR parameters lead to better and better

Pd values. Su
h behaviour was indeed expe
ted, be
ause in
reasing γ
(namely, imposing a less restri
tive PAR 
onstraint on the devised 
ode)

is tantamount to in
reasing the size of the feasible set of the problem.

However, it is also evident that, after a threshold value for γ, depending
on the maximum eigenvalue of the 
ovarian
e matrix M , no additional

performan
e improvements 
an be observed. This phenomenon has a


lear analyti
al interpretation. In fa
t, for γ greater than the threshold

value, the PAR 
onstraint be
omes ina
tive and an optimal solution to

(3.2) 
oin
ides with an optimal solution to

max
c

c†Rc

s.t. ‖c‖2 = N.
(3.36)

In other words, the optimal waveform is proportional to the eigenve
tor

of R 
orresponding to the maximum eigenvalue.

The robustness of Algorithms 3 and 4 with respe
t to target Doppler

shifts is studied in Figure 3.2. Therein, the Pd,rob versus the a
tual νd is
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Figure 3.2: Pd versus νd for Pfa = 10−6
, |ᾱ|2 = 0 dB, ν̄d = 0.1, K = 10, N = 10,

and γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. Algorithm 1 - PAR 
onstrained 
ode (solid 
urves).

Algorithm 4 - Robust PAR 
onstrained 
ode (dashed 
urves).

plotted for the PAR 
onstrained (Algorithm 3) and the Robust PAR 
on-

strained (Algorithm 4) 
odes, assuming N = 10, K = 10, |ᾱ|2 = 0 dB,

and γ = {1, 1.3, 1.6, 1.9, 2.2}. The nominal target Doppler for Algorithm

3 is set to ν̄d = 0.1, while Algorithm 4 does not require this information.

Inspe
tion of the 
urves shows that Algorithm 3 outperforms Algorithm

4 when the a
tual target Doppler is su�
iently 
lose to the nominal

one. However, in the presen
e of signi�
ant Doppler mismat
hes, Pd,rob

of Algorithm 3 exhibits a signi�
ant deterioration, approa
hing values

very 
lose to zero. Besides, the transition from the Doppler interval with


lose to 1 dete
tion rates to the undete
tability region is quite sharp.

On the 
ontrary, the performan
e 
urves of Algorithm 4 show a quite

�at shape with respe
t to Doppler variations, outperforming Algorithm

3 for a wide range of Doppler shifts. This feature is far more evident as γ
in
reases, leading (for the 
onsidered values of the parameters) to 
odes

with greater and greater dete
tion 
apabilities, due to the less restri
tive


onstraints enfor
ed in the optimization problem.

In Figure 3.3, the impa
t of the number of randomizations K on the

dete
tion performan
e of Algorithm 4 is analyzed. Spe
i�
ally, the worst


ase Pd versus |α|2 is plotted for N = 10, γ = 1.3, and several values ofK
(K ∈ {1, 5, 10, 25}). It is easy to noti
e a performan
e improvement asK
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Figure 3.3: Worst 
ase Pd versus |α|2 for Pfa = 10−6
, γ = 1.3, N = 10, and

K ∈ {1, 5, 10, 25} randomizations. Algorithm 4 - Robust PAR 
onstrained 
ode.

in
reases. This behavior 
an be explained based on Step 6 of Algorithm

4, whi
h sele
ts the 
ode ensuring the best performan
e among all the

K randomization experiments. It is also worth pointing out that, for a

quite moderate number of randomizations, K = 5, 10, the performan
e


an be 
onsidered satisfa
tory, in the sense that an additional in
rease

in K does not lead to additional sensible improvements in Pd.

In Figures 3.4 and 3.5, the same analysis developed in Figures 3.1

and 3.2 (for Algorithms 3 and 4), with referen
e to the performan
e

of Algorithms 5 and 6, has been 
ondu
ted. Pre
isely, in Figure 3.4,

the Pd of the 
ode designed a

ording to Algorithm 5 versus |α|2 is

plotted for N = 10, ν̄d = 0.1, some values of the PAR parameter γ ∈
{1, 1.3, 1.6, 1.9, 2.2}, and M = 4 levels for the phase quantization. As

in Figure 3.1, in
reasing γ leads to better and better dete
tion levels.

In Figure 3.5, the Pd,robs versus the a
tual νd for the PAR 
onstrained

Phase quantized (Algorithm 5) and the Robust PAR 
onstrained Phase

quantized (Algorithm 6) 
odes are plotted, assuming N = 10, K = 10,
|ᾱ|2 = 0 dB, M = 4 and γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. The nominal target

Doppler for Algorithm 3 is set to ν̄d = 0.1, while Algorithm 4 does not

require this information. Analyzing the 
urves, the same 
onsiderations

as in Figure 3.2 
an be repeated.
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Figure 3.4: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, M = 4, N = 10, and

γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. Algorithm 5 - PAR 
onstrained Phase quantized 
ode.
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Figure 3.5: Pd versus νd for Pfa = 10−6
, |ᾱ|2 = 0 dB, ν̄d = 0.1, K = 10, M =

4, N = 10, and γ ∈ {1, 1.3, 1.6, 1.9, 2.2}. Algorithm 5 - PAR 
onstrained Phase

quantized 
ode (dashed-dotted 
urves). Algorithm 6 - Robust PAR 
onstrained Phase

quantized 
ode (dashed x-marked 
urves).
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(b) γ = 1.9
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(
) γ = 1.3
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(d) γ = 2.5

Figure 3.6: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, M = 4, K = 10, N = 10.

Algorithm 3 - PAR 
onstrained 
ode (solid line). Approximation Bound of Algorithm

3 (dashed o-marked 
urve). Algorithm 5 - PAR 
onstrained Phase quantized 
ode

(dashed-dotted line). Approximation Bound of Algorithm 5 (dotted x-marked 
urve).

The fo
us is now on Algorithms 3 and 5 and the 
orresponding

approximation bounds. In Figures 3.6, assuming N = 10, ν̄d = 0.1,
K = 10, and M = 4, the performan
e of Algorithms 3 and 3 are 
om-

pared with the Pd 
urves obtained exploiting their approximation bounds

de�ned by (3.17) and (3.33) respe
tively (i.e. using (3.17) or (3.33) in

the �rst argument of the Mar
um Q fun
tion in pla
e of the respe
tive

quadrati
 form). Ea
h subplot refers to a spe
i�
 value of the PAR pa-

rameter γ. The plots highlight that Algorithm 3 performs better than

Algorithm 5, whi
h quantizes the phase of the transmitted waveform on

four di�erent levels. The performan
e loss of the latter with respe
t to

the former is kept within 1 dB, for Pd = 0.9, and is quite a

eptable


onsidering also the less demanding hardware implementation of a phase

quantized waveform. It is also interesting to observe that the Pd 
urves

obtained using the approximation bound provide a quite good approxi-

mation of the a
tual dete
tion performan
e, for all the 
onsidered values

of the parameter γ and for both the 
onsidered algorithms. As a matter
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Figure 3.7: Pd versus |α|2 for Pfa = 10−6
, ν̄d = 0.1, γ = 1.3, K = 10, and

M ∈ {2, 4, 8, 16}. Algorithm 5 - PAR 
onstrained Phase quantized 
ode (dashed-

dotted lines). Algorithm 3 - PAR 
onstrained 
ode (o-marked 
urve). Noti
e that

the 
urve of Algorithm 3 overlaps with that referring to Algorithm 5 for M = 8 and

M = 16.

of fa
t, the lower bound approximation is at most 2 dB far from the true

Pd 
urve.

In the last part of this Se
tion, the e�e
ts of the number of quan-

tization levels are investigate. Spe
i�
ally, in Figure 3.7, the Pd versus

|α|2 is plotted for ν̄d = 0.1, K = 10, γ = 1.3, and several values of M
(M ∈ {2, 4, 8, 16}). As expe
ted, in
reasing the number of quantization

levels, leads to better and better performan
es until M ≤ 8. Then, a

saturation e�e
t is experien
ed and the performan
e obtained by the

phase quantized Algorithm 5 ends up 
oin
ident with that provided by

Algorithm 5, whi
h, as already pointed out, assumes 
ode elements with

phases ranging in a 
ontinuous interval.

Finally, before 
on
luding this se
tion, in Table 3.1 the average CPU

time required to solve the SDP problem (3.8) (and (3.23)), whi
h is the

most 
omputational expensive step of Algorithms 3 and 5 (Algorithms 4

and 6), are provided. All the experiments were 
ondu
ted on a desktop


omputer equipped with a Intel Core 2 Quad Q9400 CPU (2.66 GHz).

The results highlight that the 
omputational time is quite modest and

a

eptable for all the 
onsidered values of γ. Nevertheless, it is also worth
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Table 3.1: Average CPU time in se
onds required to solve problems (3.8) and (3.23).

γ 1 1.3 1.6 1.9 2.5

SDP (3.8) 0.083 0.104 0.097 0.085 0.086

SDP (3.23) 0.097 0.143 0.158 0.128 0.112

pointing out that the waveform design must not ne
essary be performed

on-line. It 
an be also implemented o�-line produ
ing a waveform library

[30℄ and then during the operation a waveform from the library is sele
ted

for that parti
ular s
enario.

3.8 Con
lusions

In this Chapter, radar waveform design in the presen
e of 
olored

Gaussian disturban
e under a PAR and an energy 
onstraint has been


onsidered. First of all, the fo
us has been on the sele
tion of the radar

signal optimizing the SNR in 
orresponden
e of a given expe
ted target

Doppler frequen
y (Algorithm 3). Then, through a max-min approa
h,

a robust version (with respe
t to the re
eived Doppler) of the aforemen-

tioned te
hnique has been devised (Algorithm 4), optimizing the worst


ase SNR under the same 
onstraints as in the previous problem. Sin
e

Algorithms 3 and 4 do not impose any 
ondition on the waveform phase,

introdu
ed their phase quantized versions (Algorithms 5 and 6 respe
-

tively) have been introdu
ed, for
ing the waveform phase to belong to

a �nite alphabet. A
tually, this is a quite ni
e feature for a pra
ti
al

implementation of the te
hniques. All the problems have been formu-

lated in terms of non-
onvex quadrati
 optimization programs with a

�nite (Algorithm 3 and 5) or an in�nite (Algorithm 4 and 6) number

of quadrati
 
onstraints. The NP-hard nature of the problems has been

proved and, hen
e, design te
hniques have been introdu
ed, relying on

Semide�nite Programming (SDP) relaxation and randomization as well

as on the theory of trigonometri
 polynomials, whi
h provide high quality

sub-optimal solutions with a polynomial time 
omputational 
omplexity.

At the analysis stage, the performan
e of the devised algorithms have

been evaluated, 
onsidering both the dete
tion probability a
hieved by

the Neyman-Pearson dete
tor, as well as the robustness with respe
t

to target Doppler shifts. Additionally, the e�e
ts of the possible phase

quantization have been studied, showing the trade o� existing between
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the number of quantization levels and some simpli
ity in 
ir
uitry im-

plementation.

Possible future resear
h tra
ks might 
on
ern the generalization of

the waveform design problem so as to a

ount for an additional similar-

ity 
onstraint with a known 
ode sequen
e. This new approa
h will pave

the way to a joint 
ontrol of both the PAR and the waveform ambiguity

fun
tion. Unfortunately, the additional 
onstraint 
annot be easily han-

dled and the design of a solution method to the resulting optimization

problems is still an open issue.
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Chapter 4

Cognitive Design of the

Re
eive Filter and

Transmitted Phase Code in

Reverberating Environment

4.1 Introdu
tion

The problem of radar waveform diversity and re
eiver optimization

has been addressed over and over during the last few de
ades, due to

the in
reasing performan
e requirements in terms of target lo
alization

and tra
king a

ura
y, range-Doppler resolution, mainlobe 
lutter reje
-

tion and low sidelobe signal and/or �lter design. The growth in terms

of te
hnology, su
h as new 
omputing ar
hite
tures, high speed and O�

The Shelf (OTS) pro
essors, and digital arbitrary waveform generators,

had made possible to perform very 
omplex and e�e
tive signal pro
ess-

ing [51, Ch. 6, 11, 25℄, leading the path to the re
ent 
ognitive paradigm

(see [52℄, [53℄, [54℄, and [55℄), whi
h states indeed a new su

ess fron-

tier for radar signal pro
essing. Its main innovation 
on
erns the smart

use of some a-priori information and previous radar experien
es about

the operating environment (as for instan
e lo
ation of ele
tromagneti


interferen
es, re�e
tivity 
hara
teristi
 of the environment, weather 
on-

ditions and dis
rete 
lutter).

Two prin
ipal resear
h modalities, exploiting the waveform diversity to

improve the radar performan
es, have emerged. The �rst is fo
used on

63
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the signal-independent interferen
e and well models, but is not limited

to, radar environments where the main 
ontribution to the disturban
e

is represented by thermal noise, and/or intentional interferen
e (Jam-

mers), and/or unintentional emissions by information sour
es, and/or

terrain s
attering due to signals from other radar platforms (hot 
lut-

ter), [7, 8, 56, 57℄. The latter assumes a reverberant environment, namely

a signal-dependent 
lutter s
enario, with disturban
es produ
ed by radar

re�e
tions from terrain or non-threatening targets in the surveillan
e vol-

ume. For a point-like target embedded in signal-dependent 
lutter, opti-

mization of the transmit signal and re
eive �lter to maximize the Signal

to Interferen
e plus Noise Ratio (SINR) has been a

omplished, assum-

ing both an energy 
onstraint [58℄ and a dynami
 range 
onstraints [59℄,

on the transmitted waveform. Implementation errors [59℄, amplitude

and phase modulation limitations [60℄, and quantization error e�e
ts

[61℄, have also been 
onsidered, modifying the pro
edure of [58℄. In [62℄,

a 
ognitive approa
h for the design of the transmit signal (amplitude-

phase modulated pulse train) and re
eive �lter, a

ounting for a sim-

ilarity between the transmitted sequen
e and a pres
ribed radar 
ode,

has been devised. In [63℄, innovative algorithms for optimizing the mean-

square error of a target ba
ks
attering estimate in the presen
e of signal-

dependent 
lutter, have been derived. Either a 
onstant-modulus or a

low Peak to Average power Ratio (PAR) 
onstraint has been enfor
ed on

the transmitted waveform. For a zero-Doppler Gaussian point target in

the presen
e of signal-dependent Gaussian 
lutter, modeled as the out-

put of a sto
hasti
 Linear-Time-Invariant (LTI) �lter with a stationary

Gaussian shaped impulse response, analyti
 approa
hes to optimizing the

energy-
onstrained transmit signal spe
trum while maximizing dete
tion

performan
e have been introdu
ed [22℄.

In this Chapter, the joint optimization of the transmit signal and

re
eive �lter for a radar system whi
h operates in a highly reverberant

environment is addressed, fo
using on both 
ontinuous and �nite alpha-

bet phase 
odes. Spe
i�
ally, the assumption is that the radar system 
an

predi
t the a
tual s
attering environment, using a dynami
 environmen-

tal database, in
luding a geographi
al information system, meteorologi-


al data, site spe
i�
 
lutter maps [64℄, and some ele
tromagneti
 re�e
-

tivity and spe
tral 
lutter models. Thus, exploiting the aforementioned

information and 
onsidering as �gure of merit the Signal-to-Interferen
e

plus Noise Ratio (SINR), a suitable radar phase 
ode and re
eive �lter
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are devised, under a similarity 
onstraint between the sought waveform

and a referen
e 
ode [7℄, [8℄. The devised 
onstrained optimization pro-


edure sequentially improves the SINR. Ea
h iteration requires the so-

lution of both a 
onvex problem and an NP-hard optimization problem.

As to the NP-hard quadrati
 fra
tional optimization problem, the relax-

ation and randomization approa
h [8℄ is invoked in order to �nd a good

quality solution. The resulting 
omputational 
omplexity is linear with

the number of iterations and trials in the randomized pro
edure, and

polynomial with the re
eive �lter length. The performan
e of the new

algorithm is analyzed in a homogeneous 
lutter environment, showing

that interesting SINR improvements 
an be obtained jointly optimizing

the transmitter and the re
eiver.

The Chapter is organized as follows. In Se
tion 4.2, we des
ribe

the system model is des
ribed, whi
h slightly di�ers from the one in

eq.s 1-2. In Se
tion 4.3, the 
onstrained optimization problems for the

design of (either 
ontinuous or �nite alphabet) radar phase 
odes and the

re
eive �lters is formulated. Additionally, two sequential optimization

pro
edures are introdu
ed, so as to obtain high quality solutions to these

problems. In Se
tion 4.4, the performan
e of the proposed algorithms are

assessed. Finally, in Se
tion 4.5, 
on
lusions are drawn out and possible

future resear
h tra
ks are dis
ussed.

4.2 System Model

The model herein 
onsidered is slightly di�erent from the one pre-

sented in eq.s 1-2, sin
e the 
lutter disturban
e and the thermal noise

terms will be expli
itly separated. The fo
us is still on a monostati
 radar

system that transmits a 
oherent burst of N pulses. The waveform at the

re
eiver end is down-
onverted to baseband, undergoes a pulse mat
hed

�ltering operation, and then is sampled. The N -dimensional 
olumn

ve
tor v = [v(1), v(2), . . . , v(N)] ∈ C
N

of the observations, from the

range-azimuth 
ell under test, 
an be expressed as

v = αTc⊙ p(νdT ) + i+ n, (4.1)

with c = [c(1), c(2), . . . , c(N)]T ∈ C
N

the radar 
ode, αT a 
omplex

parameter a

ounting for the target response, p(νdT ) = [1, ej2πνdT , . . . ,

ej2π(N−1)νdT ]T , νdT the normalized target Doppler frequen
y, i ∈ CN
the

ve
tor of 
lutter samples, and n ∈ C
N
the ve
tor of noise samples.
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The 
lutter ve
tor i is modeled as the superposition of returns from

di�erent un
orrelated s
atterers, ea
h from the (r, i)−th range-azimuth

bin, namely:

i =

Nc−1
∑

r=0

L−1
∑

i=0

α(r,i)J r

(

c⊙ p(νd(r,i))
)

, (4.2)

where Nc ≤ N is the number of range rings

1

that interfere with the

range-azimuth bin of interest (0, 0), L is the number of dis
rete azimuth

se
tors, α(r,i) and νd(r,i) are, respe
tively, the e
ho and the normalized

Doppler frequen
y of the s
atterer in the range-azimuth bin (r, i); fur-
thermore, ∀r ∈ {0, . . . , N − 1}

J r(l,m) =

{

1 if l −m = r
0 if l −m 6= r

(l,m) ∈ {1, . . . , N}2,

where Jr = JT
−r denotes the shift matrix. As to the statisti
al 
hara
-

terization of the noise ve
tor n, it is still assumed that it is zero-mean

and white, i.e.:

E [n] = 0, E

[

nn†
]

= σ2nI.

Now, 
onsider the statisti
al 
hara
terization of the 
lutter ve
tor i. As

previously stated, the s
atterers are assumed to be un
orrelated; more-

over, for ea
h s
atterer, denote by σ2(r,i) = E
[

|α(r,i)|2
]

, assume that the

expe
ted value of its 
omplex amplitude is zero, i.e. E
[

α(r,i)

]

= 0,
and that its normalized Doppler frequen
y, statisti
ally independent of

α(r,i), is uniformly distributed around a mean Doppler frequen
y ν̄d(r,i) ,

i.e. νd(r,i) ∼ U
(

ν̄d(r,i) −
ǫ(r,i)
2 , ν̄d(r,i) +

ǫ(r,i)
2

)

. As a 
onsequen
e, we have:

E [i] = 0 and

Σi (c) = E

[

ii†
]

=

Nc−1
∑

r=0

L−1
∑

i=0

σ2(r,i)J rΓ(c, (r, i))J
T
r , (4.3)

where

Γ(c, (r, i)) = Diag(c)Φ
ν̄d(r,i)
ǫ(r,i) Diag(c)

†,

and, ∀ (l,m)∈{1, . . . , N}2,

Φ
ν̄d
ǫ (l,m)=e(j2πν̄d(l−m)) sin[πǫ(l−m)]

[πǫ(l −m)]
.

1

Noti
e that model (4.2) refers to the general 
ase of range ambiguous 
lutter. It

redu
es to the range unambiguous s
enario letting Nc = 1.
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A relevant s
enario, whi
h 
an be des
ribed and modeled a

ording to

(4.3), is now des
ribed (see also [62℄). Let assume that, for any (r, i)

range-azimuth bin, the Radar Cross Se
tion (RCS) σ
(r,i)
0 of the s
atterer

is predi
ted through the intera
tion between a digital terrain map, su
h

as the National Land Cover Data (NLCD) and RCS 
lutter models

2

.

Whenever σ
(r,i)
0 has been estimated, a

ording to the previous informa-

tion, we 
an evaluate σ2(r,i) as

σ2(r,i) = σ
(r,i)
0 Kr|G (θi) |2,

where Kr is a 
onstant a

ounting for the 
hannel propagation e�e
ts,

su
h as the free spa
e two-way path loss and additional system losses

(radar equation), θi is the azimuth angle of the bin (r, i), and G (θ) is
the one-way antenna gain for the angle θ.

4.3 Problem Formulation and Design Issues

The present Se
tion deals with the design of a suitable radar 
ode

and re
eive �lter maximizing the SINR, under some 
onstraints on the

shape of the 
ode. Spe
i�
ally, assuming that the ve
tor of observations

v is �ltered through w, the SINR at the output of the �lter

3


an be

written as:

SINR =
|αT |2

∣

∣w† (c⊙ p(νdT ))
∣

∣

2

w†
Σi (c)w + σ2n‖w‖2

, (4.4)

where |αT |2
∣

∣w†(c⊙ p(νdT ))
∣

∣

2
is the useful energy at the output of the

�lter, while σ2n‖w‖2 and w†
Σi (c)w represent, respe
tively, the noise

and the 
lutter energy at the �lter output. Noti
e that the 
lutter en-

ergy w†
Σi (c)w fun
tionally depends both on the re
eive pro
essing w

and the transmitted waveform through Σi (c) (namely it is a quarti


polynomial in variables w and c). This observation represents the main

di�eren
e between a signal-dependent and a signal-independent environ-

ment where the output 
lutter energy is only a fun
tion of w, being a

homogeneous quadrati
 form in that variable.

To develop the proposed SINR optimization algorithm, the following

te
hni
al Lemma 4.3.1 (whose proof is given in [62℄) has been used, so

as to provide an alternative expression to the SINR:

2

Otherwise, it 
ould be estimated exploiting feedba
ks from previous s
ans.

3

Obviously, the impli
it assumption is that w 6= 0.
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Lemma 4.3.1. An equivalent expression of the SINR is given by:

SINR =
|αT |2

∣

∣cT (w∗ ⊙ p(νdT ))
∣

∣

2

cTΘi (w) c∗ + σ2n‖w‖2
(4.5)

where:

Θi (w) =

Nc−1
∑

r=1

L−1
∑

i=0

σ2(r,i)Diag(J−rw
∗)Φ

ν̄d(r,i)
ǫ(r,i) Diag(J−rw)+

L−1
∑

i=0

σ2(0,i)Diag(w
∗)Φ

ν̄d(0,i)
ǫ(0,i) Diag(w) .

As to the shape of the 
ode, the fo
us is on both 
ontinuous al-

phabet phase 
odes, i.e. |c(k)| = 1, k = 1, . . . , N , and �nite alphabet

phase 
ode, namely c(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, k = 1, . . . , N .

Furthermore, a similarity 
onstraint [7, 8℄ is enfor
ed, namely

‖c − c0‖∞ ≤ δ , (4.6)

where the parameter δ ≥ 0 governs the size of the similarity region and

c0 is a pre�xed phase 
ode. By doing so, it is required the solution

to be similar to a known 
ode c0, whi
h shares some ni
e properties

su
h as reasonable range-Doppler resolution and peak sidelobe level. In

other words, imposing (4.6) is tantamount to indire
tly 
ontrolling the

ambiguity fun
tion of the 
onsidered 
oded pulse train: the smaller δ the
higher the degree of similarity between the ambiguity fun
tions of the

devised radar 
ode and c0.

Summarizing, the joint design of the radar 
ode and re
eive �lter


an be formulated in terms of the following 
onstrained optimization

problems:

•

Pc



















max
c,w

|αT |2
∣

∣w† (c⊙ p(νdT ))
∣

∣

2

w†
Σi (c)w + σ2n‖w‖2

s.t. |c(k)| = 1, k = 1, . . . , N
‖c− c0‖∞ ≤ δ

(4.7)

for a 
ontinuous alphabet phase 
ode;
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•

Pd



















max
c,w

|αT |2
∣

∣w† (c⊙ p(νdT ))
∣

∣

2

w†
Σi (c)w + σ2n‖w‖2

s.t. c(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M}, k = 1, . . . , N,
‖c − c0‖∞ ≤ δ

(4.8)

for a dis
rete alphabet phase 
ode.

Problems Pc
and Pd

are non-
onvex optimization problems, sin
e the

obje
tive fun
tion is a non-
onvex fun
tion and the 
onstraints |c(k)|2 =
1, k = 1, . . . , N, and c(k) ∈

{

1, ej2π/M , . . . , ej2π(M−1)/M
}

, k = 1, . . . , N ,

de�ne non-
onvex sets. The te
hnique adopted to �nd a good quality

solution for Pc
and Pd

is based on a sequential optimization pro
edure.

The idea is to iteratively improve the SINR. Spe
i�
ally, given w(n−1)
,

it will be sear
hed an admissible radar 
ode c(n) at step n improving

the SINR 
orresponding to the re
eive �lter w(n−1)
and the transmitted

signal c(n−1)
. Whenever c(n) is found, the signal will be �xed and a new

sear
h, now for the adaptive �lter w(n)
improving the SINR 
orrespond-

ing to the radar 
ode c(n) and the re
eive �lter w(n−1)
. will start, and

so on. Otherwise stated, w(n)
and c(n) are used as starting point at step

n + 1. To trigger the pro
edure, the optimal re
eive �lter w(0)
to an

admissible 
ode c(0) is 
onsidered.

From an analyti
al point of view, w(n)
is an optimal solution to the

optimization problem:

Pw(n)







max
w

|αT |2
∣

∣w†
(

c(n) ⊙ p(νdT )
)

∣

∣

2

w†
Σi

(

c(n)
)

w + σ2n‖w‖2
. (4.9)

As shown in [62℄, Pw(n)
is solvable and a 
losed form optimal solution

w(n)

an be found for any feasible c(n). Spe
i�
ally, an optimal solution

to Pw(n)
is given by:

w(n) =

(

Σi

(

c(n)
)

+ σ2nI
)−1 (

c(n) ⊙ p(νdT )
)

∥

∥

∥

(

Σi

(

c(n)
)

+ σ2nI
)−1/2 (

c(n) ⊙ p(νdT )
)
∥

∥

∥

2
, (4.10)

from whi
h it is evident the in�uen
e of c(n) and the steering ve
tor
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p(νdT ) on w(n)
. Furthermore, c(n) is given by:

c(n) = argmax
c∈{c(n−1),c(⋆)}

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2

where c(⋆) is a good solution of problem Pc
c
(n)

if the fo
us is on Pc
, and

a good solution of problem Pd
c

(n)
if the fo
us is on Pd

, respe
tively given

by:

•

Pc
c

(n)



















max
c

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N,

‖c− c0‖∞ ≤ δ

; (4.11)

•

Pd
c

(n)



























max
c

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
s.t. c(k) ∈ {1, ej2π/M , . . . , ej2π(M−1)/M},

k = 1, . . . , N,
‖c− c0‖∞ ≤ δ

. (4.12)

Making use of [62, Proposition 2.1℄, the following Proposition 4.3.2 holds

true:

Proposition 4.3.2. Let

{(

c(n),w(n)
)}

be a sequen
e of points obtained

through the proposed sequential optimization pro
edure, either for the


ontinuous or the dis
rete alphabet 
ases; let SINR

(n)
be the SINR value


orresponding to the point

(

c(n),w(n)
)

at the n−th iteration. Then:

• the sequen
e SINR

(n)
is a monotoni
 in
reasing sequen
e;

• the sequen
e SINR

(n)

onverges to a �nite value SINR

⋆
;

• starting from the sequen
e

{(

c(n),w(n)
)}

, it is possible to 
on-

stru
t another sequen
e

{(

c̃(n
′), w̃(n′)

)}

, that 
onverges to a feasi-

ble point (c̃⋆, w̃⋆) of problems Pc
or Pd

, su
h that the SINR eval-

uated in (c̃⋆, w̃⋆) is equal to SINR

⋆
.
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Figure 4.1: Blo
k diagram of the proposed transmit-re
eive optimization pro
edure,

for both the 
ontinuous phase 
ode 
ase and the dis
rete phase 
ode 
ase.

Observe that, from a pra
ti
al point of view, the proposed optimiza-

tion pro
edure requires a 
ondition to stop the iterations; to this end, an

iteration gain 
onstraint 
an be for
ed, namely |SINR(n)−SINR

(n−1)| ≤
ζ, where ζ is the desired gain. In Figure 4.1 a pi
torial representation

of the proposed joint optimization pro
edure of the re
eive �lter and the

transmit phase 
ode is given (in parti
ular, the symbol Pc
(n)

refers to

either problem Pc
c
(n)

for the 
ontinuous phase 
ode 
ase or to problem

Pd
c

(n)
for the dis
rete phase 
ode 
ase). The next Subse
tions will be de-

voted to the study of the optimization problems Pc
c
(n)

and Pd
c

(n)
required

for implementing the proposed sequential optimization pro
edures.

4.3.1 Radar Code Optimization: Solution of the Problem

4.11

An algorithm to �nd in polynomial time a good quality solution to

the NP-hard problem Pc
c
(n)

is now des
ribed. Using Lemma 4.3.1, Pc
c
(n)


an be equivalently re
ast as the following problem P1:

P1



























max
c

∣

∣

∣
cT
(

w(n−1)∗ ⊙ p(νdT )
)
∣

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N

‖c− c0‖∞ ≤ δ

, (4.13)
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This is a non-
onvex fra
tional quadrati
 problem. Noti
e that, sin
e

|c(k)| = |c0(k)| = 1, k = 1, . . . , N , the similarity 
onstraint

max
k∈[1,...,N ]

|c(k)− c0(k)| ≤ δ


an be equivalently written as ℜ [c∗(k)c0(k)] ≥ 1−δ2/2 for k = 1, . . . , N ,

whi
h is tantamount to imposing arg (c(k)) ∈ [γk, γk + δc], where γk =
arg (c0(k)) − arccos(1 − δ2/2) and δc = 2arccos

(

1− δ2/2
)

for k =
1, . . . , N , [8℄. Thus, problem (4.13) is equivalent to:

P ′
1



























max
c

∣

∣

∣
cT
(

w(n−1)∗ ⊙ p(νdT )
)
∣

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N

arg (s(k)) ∈ [γk, γk + δc] , k = 1, . . . , N

. (4.14)

Observe that problem P ′
1, even in the simpler formulation 
orre-

sponding to ǫ = 2, is generally NP-hard, 
onsequently one 
annot �nd

polynomial time algorithms for 
omputing its optimal solutions. Hen
e,

the fo
us is on approximation te
hniques, thus a relaxation and ran-

domization based algorithm is proposed, whi
h provides a randomized

feasible solution to (4.14). To this end, assume that

S =
(

w(n−1) ⊙ p(νdT )
∗
)(

w(n−1) ⊙ p(νdT )
∗
)†
, (4.15)

and

M = Θi

(

w(n−1)
)∗

+
σ2n
N

‖w(n−1)‖2I. (4.16)

The relaxed version of problem P ′
1, obtained negle
ting the similarity


onstraint, namely the 
onditions arg (s(k)) ∈ [γk, γk + δc], k = 1, . . . , N ,

is given by the following fra
tional quadrati
 problem P ′′
1 ;

P ′′
1



















max
c

∣

∣

∣
cT
(

w(n−1)∗ ⊙ p(νdT )
)
∣

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. |c(k)| = 1, k = 1, . . . , N

, (4.17)

whi
h is equivalent to

P ′′′
1















max
X,c

tr (SX)

tr (MX)
s.t. X(k, k) = 1, k = 1, . . . , N

X = cc†, c ∈ C
N

. (4.18)
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The SDP relaxation [26℄ of problem P ′′′
1 , obtained dropping the rank-

one 
onstraint X = cc†, is:














max
X

tr (SX)

tr (MX)
s.t. X(k, k) = 1, k = 1, . . . , N

X � 0

. (4.19)

In order to solve the fra
tional problem (4.19), following the guidelines

of [65℄, it su�
es to solve the equivalent SDP problem:

(SDP)



















max
X, u

tr (SX)

s.t. tr (MX) = 1
X(k, k) = u
X � 0, u > 0

. (4.20)

Indeed, both problems (4.19) and (4.20) are solvable and have equal op-

timal value; in fa
t, if

(

X̂, û
)

is an optimal solution of (4.20), then it 
an

be shown straightforward that X̂/û is an optimal solution of (4.19); also,

if X̂ solves (4.19), then

(

X̂/tr (MX̂), 1/tr (MX̂)
)

solves (4.20). Thus,

following the same approa
h as in [8, pp. 8-9℄, a randomized feasible so-

lution c(⋆) to problem Pc
c
(n)


an be 
omputed using Algorithm 7, where

H indi
ates the number of randomizations involved in the pro
edure.

Noti
e that the H randomizations involved into steps 3-6 are meant

to improve the approximation quality; in fa
t the randomized feasible

solution yielding the largest obje
tive value will be 
hosen as the ap-

proximate solution. As to the 
omputational 
omplexity 
onne
ted with

the implementation of the algorithm, the solution of the SDP relaxation

requires O(N3.5) �oating point operations (�ops)4 whereas ea
h random-

ization involves O(N2) �ops [35℄. It follows that, for a modest number

of randomizations, the most relevant 
ontribution to the 
omputational


omplexity is 
onne
ted with the SDP solution.

4.3.2 Radar Code optimization: Solution of the Problem

4.12

At the 
urrent state of the art, most radar systems use phase 
oded

waveforms, where the phases are taken from a �nite and regularly spa
ed

4

Herein, the Landau notation O(n) is used; hen
e, an algorithm is O(n) if its

implementation requires a number of �ops proportional to n [66℄.
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Algorithm 7 Radar Phase Code Optimization

Require: M ,S,H, {γi}, δc.
Ensure: A randomized approximate solution c(⋆) to Pc

c
(n)

;

1: Let (X⋆, u⋆) be an optimal solution to problem (4.20).

2: Denote by X̂ = X⋆/u⋆.
3: Generate random ve
tors (ξ)h ∈ C

N
, h = 1, . . . ,H, from the 
omplex

normal distribution NC(0,Y ) where Y = X̂ ⊙ ycy
†
c, where yc =

[e−jγ1 , . . . , e−jγN ]T .
4: Let (s(k))h = y∗c (k)σ((ξ(k))h), k = 1, . . . , N , h = 1, . . . ,H, where

σ(x) = ej
arg(x)

2π
δc , x ∈ C.

5: Compute

t(h) =
c
†
hSch

c
†
hMch

, h = 1 . . . ,H.

6: Pi
k the maximal value over {t(1), . . . , t(H)}, say t(1), and output

c(⋆) = c1.

alphabet. As a 
onsequen
e, in this Subse
tion, an algorithm to �nd in

polynomial time good solutions to the NP-hard problem Pd
c

(n)
is de-

s
ribed.

Firstly, assume that c0(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N , and

5

M ≥ 2. Then, using Lemma 4.3.1, Pd
c

(n)

an be equivalently rewritten

in terms of the following problem P2:

P2



























max
c

∣

∣cT
(

w(n−1)∗ ⊙ p(νdT )
)

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2

s.t. c(k) ∈ {1, ej2π 1
M , . . . , ej2π

M−1
M }, k = 1, . . . , N

‖c− c0‖∞ ≤ δ

. (4.21)

This is a non-
onvex fra
tional quadrati
 problem. Noti
e that, a

ount-

ing for {c(k), c0(k)} ∈
{

1, ej2π
1
M , . . . , ej2π

M−1
M

}2
, k = 1, . . . , N , the


onstraint max
k∈[1,...,N ]

|c(k) − c0(k)| ≤ δ, k = 1, . . . , N , 
an be equivalently

written as ℜ [c∗(k)c0(k)] ≥ 1 − δ2/2 for k = 1, . . . , N , whi
h in turn

5

Noti
e that, for M = 2 and δ < 2, the optimal solution to problem (4.21) is the

trivial one, i.e. c(⋆) , c0.
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amounts to enfor
ing

c(k) ∈ {ej2π
βk
M , ej2π

βk+1

M , . . . , ej2π
βk+δd−1

M },

where

βk = [M arg(s0(k))/(2π)] − ⌊[M arccos(1− δ2/2)]/(2π)⌋

depends on c0(k) and δ,

δd =

{

1 + 2⌊M arccos(1−δ2/2)
2π ⌋ δ ∈ [0, 2)

M δ = 2

depends only on δ [8℄.

Thus, problem (4.21) is equivalent to:

P ′
2























max
c

∣

∣cT
(

w(n−1)∗ ⊙ p(νdT )
)

∣

∣

2

cTΘi

(

w(n−1)
)

c∗ + σ2n‖w(n−1)‖2
s.t. arg (c(k)) ∈ 2π

M [βk, βk + 1, . . . , βk + δd − 1] ,
|c(k)| = 1, k = 1, . . . , N.

. (4.22)

Observe that problem P ′
2, even in the simpler formulation 
orresponding

to ǫ = 2, is generally NP-hard, 
onsequently one 
annot �nd polynomial

time algorithms for 
omputing its optimal solutions. As a 
onsequen
e,

in the following, the fo
us is on approximation te
hniques, and a relax-

ation and randomization based algorithm is proposed, whi
h provides a

randomized feasible solution of (4.22). Thus, using S and M de�ned

respe
tively in (4.15) and (4.16), resorting to the same relaxation pro
e-

dure as in (4.17)-(4.20), and following the same steps as in [8, pp. 13-14℄,

a randomized feasible solution c(⋆) to problem Pd
c

(n)

an be 
omputed

using Algorithm 8.

As for Algorithm 7, the H randomizations involved into steps 3-6 are

meant to improve the approximation quality; moreover, the 
omputa-

tional 
omplexity is mostly related to the solution of the SDP problem

(O(N3.5) �ops). Finally, also with referen
e to the �nite alphabet 
ase,

a modest number of randomizations is su�
ient to ensure satisfa
tory

performan
es.
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Algorithm 8 Radar Quantized Phase Code Optimization

Require: M , S, H, {βi}, M , δd.

Ensure: A randomized approximate solution c(⋆) of Pd
c

(n)
;

1: Let (X⋆, u⋆) be an optimal solution to problem (4.20).

2: Denote by X̂ = X⋆/u⋆.
3: Generate a random ve
tor (ξ)h ∈ C

N
, h = 1, . . . ,H, from the 
om-

plex normal distribution NC(0,W ) where W = X̂ ⊙ ydy
†
d, with

yd = [e−j 2π
M

β1 , . . . , e−j 2π
M

βN ]T .
4: Let (s(k))h = y∗d(k)µ((ξ(k))h), k = 1, . . . , N , h = 1, . . . ,H, where

µ(x) =























1, if arg(x) ∈ [0, 2π 1
δd
);

ej2π
1
M , if arg(x) ∈ [2π 1

δd
, 2π 2

δd
);

.

.

.

ej2π
δd−1

M , if arg(x) ∈ [2π δd−1
δd

, 2π).

5: Compute

t(h) =
c
†
hSch

c
†
hMch

, h = 1 . . . ,H.

6: Pi
k the maximal value over {t(1), . . . , t(H)}, say t(1), and output

c(⋆) = c1.

4.3.3 Transmit-Re
eive System Design: Optimization Pro-


edure

In this Subse
tion, the proposed sequential optimization pro
edures

for the re
eive �lter and the radar 
ode are summarized and s
hematized

respe
tively as Algorithm 9 for the 
ontinuous alphabet 
ase and Algo-

rithm 10 for the �nite alphabet 
ase. To trigger the re
ursion, an initial

radar 
ode c(0), from whi
h we obtain the optimal re
eive �lter w(0)
, is

required; a natural 
hoi
e is obviously c(0) = c0.

The 
omputational 
omplexity, 
onne
ted with the implementation

of both Algorithm 9 and Algorithm 10, depends on the number of it-

erations N as well as on and the 
omplexity involved in ea
h iteration.

Pre
isely, the overall 
omplexity is linear with respe
t to N , while ea
h

iteration in
ludes the 
omputation of the inverse of Σi (c0) + σ2nI and
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Algorithm 9 Transmit-Re
eive System Design for Continuous Alphabet

Phase Codes

Require:

{

σ(r,i)
}

,
{

ν̄d(r,i) , ǫ(r,i)

}

, σ2n, c0, νdT ,H, δ, ζ.

Ensure: A solution (c⋆,w⋆) of Pc
.

1: Set n = 0, c(n) = c0,

w(n) :=

(

Σi (c0) + σ2nI
)−1

(c0 ⊙ p(νdT ))
∥

∥

∥

(

Σi (c0) + σ2nI
)−1/2

(c0 ⊙ p(νdT ))
∥

∥

∥

2 ,

and SINR

(n) = SINR.

2: do

3: n := n+ 1;
4: Constru
t the matri
es

S =
(

w(n−1) ⊙ p(νdT )
∗) (w(n−1) ⊙ p(νdT )

∗)†
and M =

Θi

(

w(n−1)
)∗

+ σ2n‖w(n−1)‖2I , and the parameters {γi}, δc.

5: Find a good quality solution c(⋆) to problem Pc
c
(n)

, through the use

of Algorithm 7.

6: Set

c(n) = argmax
c∈{c(n−1),c(⋆)}

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
.

7: Constru
t the matrix Σi

(

c(n)
)

.

8: Solve problem Pw(n)
�nding an optimal re
eive �lter

w(n) :=

(

Σi

(

c(n)
)

+ σ2nI
)−1 (

c(n) ⊙ p(νdT )
)

∥

∥

∥

(

Σi

(

c(n)
)

+ σ2nI
)−1/2 (

c(n) ⊙ p(νdT )
)∥

∥

∥

2
,

and the value of the SINR for the pair

(

c(n),w(n)
)

.

9: Let SINR

(n) = SINR.

10: until |SINR(n) − SINR

(n−1)| ≤ ζ.
11: Output c⋆ = c(n) and w⋆ = w(n)

.
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Algorithm 10 Transmit-Re
eive System Design for Finite Alphabet

Phase Codes

Require:

{

σ(r,i)
}

,

{

ν̄d(r,i) , ǫ(r,i)

}

,σ2n,c0,νdT ,H,δ,ζ,M .

Ensure: A solution (c⋆,w⋆) of Pd
.

1: Set n = 0, c(n) = c0,

w(n) :=

(

Σi (c0) + σ2nI
)−1

(c0 ⊙ p(νdT ))
∥

∥

∥

(

Σi (c0) + σ2nI
)−1/2

(c0 ⊙ p(νdT ))
∥

∥

∥

2 ,

and SINR

(n) = SINR.

2: do

3: n := n+ 1;
4: Constru
t the matri
es

S =
(

w(n−1) ⊙ p(νdT )
∗) (w(n−1) ⊙ p(νdT )

∗)†
and M =

Θi

(

w(n−1)
)∗

+ σ2n‖w(n−1)‖2I , and the parameters {βi}, δd.

5: Find a good solution of problem Pd
c

(n)
, through the use of Algorithm

8.

6: Set

c(n) = argmax
c∈{c(n−1),c(⋆)}

|αT |2
∣

∣w(n−1)† (c⊙ p(νdT ))
∣

∣

2

w(n−1)†
Σi (c)w

(n−1) + σ2n‖w(n−1)‖2
.

7: Constru
t the matrix Σi

(

c(n)
)

.

8: Solve problem Pw(n)
�nding an optimal re
eive �lter

w(n) :=

(

Σi

(

c(n)
)

+ σ2nI
)−1 (

c(n) ⊙ p(νdT )
)

∥

∥

∥

(

Σi

(

c(n)
)

+ σ2nI
)−1/2 (

c(n) ⊙ p(νdT )
)
∥

∥

∥

2
,

and the value of the SINR for the pair

(

c(n),w(n)
)

.

9: Let SINR

(n) = SINR.

10: until |SINR(n) − SINR

(n−1)| ≤ ζ.
11: Output c⋆ = c(n) and w⋆ = w(n)

.
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the 
omplexity e�ort of Algorithm 7 and Algorithm 8, respe
tively. The

former is in the order of O(N3) [66℄. The latter, for a modest number of

randomizations, is 
onne
ted with the SDP solution, i.e. O(N3.5) [62℄.

4.4 Performan
e Analysis

In this Se
tion, the performan
e analysis of the proposed algorithm

for the joint optimization of the radar 
ode and the re
eive �lter s pre-

sented. An L-band radar is 
onsidered, whose operating frequen
y is

f0 = 1.4 GHz, and exploiting a broadside array with Na = 21 elements

pointing in the range-azimuth bin of interest (0, 0). Spe
i�
ally, a uni-

formly weighted linear array with uniform spa
ing equal to d = λ/2 is


onsidered. Consequently, the radiation pattern is given by:

G(θ) =















1

Na

sin
(

Na
π

2
cos(θ)

)

sin
(π

2
cos(θ)

)
if 0 ≤ θ ≤ π

10−3
if π ≤ θ ≤ 2π

.

The fo
us is on a s
enario with a homogeneous range-azimuth 
lutter

where the number of range rings that interfere with the range-azimuth

bin of interest (0, 0) is Nc = 2 and the number of azimuth 
ells in ea
h

ring is L = 100. Moreover, the pulse train length is set to N = 20
and, as similarity 
ode c0, the N -dimensional generalized Barker 
ode

and its M -quantized version

6

are set for Algorithm 9 and Algorithm

Cogn:Alg4, respe
tively. With referen
e to the 
ontinuous phase 
ase, it

is worth to remark that the 
hoi
e for this similarity 
ode is mainly due to

its auto
orrelation properties, namely its minimal peak-to-sidelobe ratio

ex
luding the outermost sidelobe. The des
ription of generalized Barker


odes 
an be found in [67℄ and [68℄, also for other values of N . The exit

6

Spe
i�
ally, given the 
ode c, its M -quantized version cq is 
onstru
ted as

cq(k) = µ̄(c(k)), k = 1, . . . , N , where the non-linearity µ̄(x) is de�ned by

µ̄(x) =























1, if arg(x) ∈ [0, 2π 1
M
)

ej2π
1

M , if arg(x) ∈ [2π 1
M
, 2π 2

M
)

.

.

.

ej2π
M−1

M , if arg(x) ∈ [2πM−1
M

, 2π)

.
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δ = 2;

δ = 1.7;

δ = 1.5;

δ = 1;

δ = 0.4;

δ = 0.1.

Figure 4.2: Algorithm 3 - SINR behavior for δ = [0.1, 0.4, 1, 1.5, 1.7, 2].


ondition implemented to stop the pro
edure assumes ζ = 10−5
, namely:

|SINR(n) − SINR

(n−1)| ≤ 10−5.

The randomizations for both Algorithms 7 and 8 have been set to H =
100.

As to the parameters of the uniform 
lutter, the assumption is that

σ0
σ2
n
Kr = CNRKr = 30 dB, a mean Doppler frequen
y ν̄d = 0, and

Doppler un
ertainty

ǫ
2 = 0.35 for ea
h range-azimuth bin. Additionally,

a target with Signal to Noise Ratio

|αT |2
σ2
n

= SNR = 10 dB and normalized

Doppler frequen
y νdT = −0.4 is supposed to be on the s
ene.

The analysis is 
ondu
ted in terms of the attainable SINR, in 
orre-

sponden
e of the devised transmit 
ode and re
eive �lter, as well as the

shape of the related auto- and 
ross-ambiguity fun
tions

7

.

In Figure 4.2, the SINR behavior, averaged over 100 independent tri-
als of Algorithm 9, is plotted versus the number of iterations, for di�erent

values of the similarity parameter δ. As expe
ted, in
reasing δ, the opti-
mal value of the SINR improves sin
e the feasible set of the optimization

problem be
omes larger and larger. A
tually, performan
e gains up to

22 dB, with respe
t to step zero of the pro
edure, 
orresponding to the

traditional adaptation on re
eive side only, 
an be observed for δ = 2. Of

7

The MATLAB


© toolbox SeDuMi [28℄ for solving the SDP relaxation, and the

MATLAB


© toolbox of [70℄ for plotting the ambiguity fun
tions of the 
oded pulse

trains, have been exploited.
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(a) c0. (b) Algorithm 9 - c⋆ for δ=0.1.

(
) Algorithm 9 - c⋆ for δ=1. (d) Algorithm 9 - c⋆ for δ=2.

Figure 4.3: Algorithm 9 - Ambiguity Fun
tion modulus of the radar 
odes, assuming

Tr = 3Tp.


ourse, this is just a potential value and in real 
onditions smaller gains


ould be experien
ed due to some ina

ura
ies in the available informa-

tion. Also, observe that the number of iterations, required to a
hieve


onvergen
e, in
reases as well.

In Figures 4.3, the ambiguity fun
tion

8

of a synthesized 
ode c⋆, to-

gether with that of the referen
e 
ode c0, is plotted for two di�erent sizes

of the similarity region. Indeed, an opposite behavior with respe
t to Fig-

ure 4.2 
an be observed. Pre
isely, in
reasing δ, the set of feasible points
be
omes larger and larger, and better and better SINR performan
es

are swapped for worse and worse ambiguity behaviors. Noti
e that the

ambiguity fun
tion allows to visually represent the similarity between

8

A 
oherent pulse train with ideal re
tangular pulses of width Tp and pulse rep-

etition time Tr is 
onsidered.
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the referen
e 
ode and the devised one. Moreover, it has also a 
ertain

relevan
e for the following reason: in order to update the site spe
i�



lutter maps, as well as to dynami
ally estimate other 
lutter parame-

ters and a

ount for a full 
ognitive implementation, a parallel re
eiving

pro
essing bran
h, exploiting a 
onventional pulse train mat
hed �lter,


ould be adopted. It is thus of paramount importan
e the availability

of a signal sharing good range-Doppler resolution and ambiguity proper-

ties. By doing so, e�e
tive real-time estimates of the 
lutter parameters

with a low 
omputational 
ost 
an be obtained.

In Figures 4.4, the frequen
y behavior of the radar 
ode and the

re
eive �lter, 
orresponding to δ = 2, and for di�erent values of the

iteration number (n = [0, 5, 20, 50]), is analyzed.
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(a)

(

c(0),w(0)
)

. (b)

(

c(5),w(5)
)

.

(
)

(

c(19),w(19)
)

. (d)

(

c(50),w(50)
)

.

Figure 4.4: Algorithm 9 - Cross-Ambiguity Fun
tion, in dB, of the radar 
ode and

re
eive �lter.

Pre
isely, the 
ontour map of the (slow-time) 
ross-ambiguity fun
-

tion is plotted,

g

(n) (m, νd) =
∣

∣

∣
w(n)†

(

Jm

(

c(n) ⊙ p (νd)
))
∣

∣

∣

2
(4.23)

where m is the delay-lag and νd is the Doppler frequen
y of the in
oming

signal, whi
h also allows to visualize the systems response to ambiguous

ranges. For a given value of m, it gives the Doppler response to a 
lut-

ter pat
h lo
ated m PRI away from the one of interest. As for
ed by

the design pro
edure, the 
ross-ambiguity fun
tion is equal to one at

(m, νd) = (0,−0.4), whi
h is the range-Doppler position of the nominal

target. Moreover, lower and lower values of g

(n) (m, νd) 
an be observed

in the strip 0 ≤ m ≤ 2, −0, 35 ≤ νd ≤ 0.35 as the iteration step n grows

up. Interestingly, this performan
e trend re�e
ts the 
apability of the
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δ = 2;

δ = 1.7;

δ = 1.5;

δ = 1;

δ = 0.4;

δ = 0.1.

Figure 4.5: Algorithm 10 - SINR behavior for δ = [0.1, 0.4, 1, 1.5, 1.7, 2], M = 16.

proposed joint transmit-re
eive optimization pro
edure to sequentially

re�ne the shape of the 
ross-ambiguity fun
tion in order to get better

and better 
lutter suppression levels.

In Figure 4.5, the SINR behavior, averaged over 100 independent

trials of Algorithm 10, is plotted versus the number of iterations, for

di�erent values of the similarity parameter δ, and for M = 16. The

same 
onsiderations as for the analysis 
ondu
ted in Figure 4.2 hold true;

indeed, in
reasing δ, better and better SINR values are experien
ed,

due to the enlargement of the feasible set. Performan
e gains up to

approximatively 12 dB, with respe
t to step zero of our pro
edure 
an

be observed for δ = 2.
In Figures 4.6, the ambiguity fun
tion of a synthesized 
ode c⋆, to-

gether with that of the referen
e quantized 
ode c
q
0, is plotted for three

di�erent sizes of the similarity region, assuming M = 16. Again, an

opposite trend with respe
t to Figure 4.5 is observed, whi
h re�e
ts how

δ rules the trade-o� between SINR performan
e and ambiguity behav-

ior. Pre
isely, in
reasing δ, the set of feasible points be
omes larger and

larger, and better and better SINR performan
es are swapped for worse

and worse ambiguity shapes.
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In Figure 4.7, the impa
t of the number of quantization level on the

devised 
ode is 
onsidered, for a �xed similarity parameter δ = 2. As

expe
ted, the a
hieved average SINR in
reases as the number of levels in-

volved into the quantization pro
edure in
reases. Indeed, the greater the


ardinality of the alphabet, the higher the degrees of freedom available

in the 
hoi
e of the radar 
ode.

4.5 Con
lusions

In this Chapter, the problem of 
ognitive 
onstant envelope transmit

signal and re
eive �lter joint optimization in a signal-dependent 
lut-

ter environment has been 
onsidered. Iterative algorithms have been

devised, trying to optimize the SINR while a

ounting for a similar-

ity 
onstraint on the transmitted sequen
e. At ea
h step, the proposed

pro
edures require the solution of both 
onvex and NP-hard problems.

In order to �nd a good quality solution to the latter, relaxation and

randomization te
hniques have been invoked. At the analysis stage,the

performan
e of the proposed algorithms have been assessed in terms of

average SINR (versus the number of iterations), ambiguity fun
tion of

the resulting phase 
ode, and 
ross-ambiguity fun
tion of the transmit

signal and re
eive �lter pair. Furthermore, with referen
e to the �nite

alphabet 
ase, the impa
t of the quantization level on the system per-

forman
e have been analyzed. The results have highlighted that, in the

presen
e of a perfe
t a-priori knowledge, with a modest number of trials,

signi�
ant SINR gains (up to 22 dB foe the 
ontinuous alphabet 
ase, or

12 dB withM = 16 for the quantized alphabet 
ase, respe
tively) 
an be

obtained jointly optimizing the transmitter and re
eiver. Possible future

resear
h tra
ks might 
on
ern the study of further 
onstraints on the

re
eive �lter, so as to keep under 
ontrol other key parameters su
h as

the Integrated-to-Sidelobe Level or the Peak-to-Sidelobe Level. �nally,

it is of primary 
on
ern to study the impa
t of an imperfe
t a-priori

knowledge, due to di�erent error sour
es, on the potential performan
e

gain.
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(b) c⋆ for δ=0.4.
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(d) c⋆ for δ=2.

Figure 4.6: Algorithm 10 - Ambiguity Fun
tion modulus of the radar 
odes, assum-

ing M = 16 and Tr = 3Tp.
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Figure 4.7: Algorithm 10 - SINR

(n)
behavior for δ = 2, M = [4, 8, 16, 32, 64];

Algorithm 9 (o-marked violet dashed line).



Appendix A

Multi-Obje
tive Optimization

Problems

A multi-obje
tive optimization problem

1

presents a ve
tor-valued ob-

je
tive fun
tion and 
an be written in the form

min
x

f0(x)

s.t. fi(x) ≤ 0, ∀i = 1, . . . ,m,
hi(x) = 0, ∀i = 1, . . . , p

(A.1)

where x ∈ R
n
is the optimization variable, fi(x), i = 1, . . . ,m and hi(x),

i = 1, . . . , p denote respe
tively the i-th inequality 
onstraint and the

i-th equality 
onstraint fun
tion, f0(x) : x ∈ R
n → R

q
is the ve
tor-

valued obje
tive fun
tion whose q 
omponents F1(x), . . . , Fq(x) 
an be

interpreted as q di�erent s
alar obje
tives, ea
h of whi
h we would like

to minimize

2

.

If x and y are both feasible, we say that x is at least as good as

y a

ording the i-th obje
tive if Fi(x) ≤ Fi(y), while x is better than

y (or x beats y) a

ording the i-th obje
tive if Fi(x) < Fi(y); so, if
Fi(x) ≤ Fi(y) for i = 1, . . . , q and, for al least one j, Fj(x) < Fj(y), we
say that x dominates y.

A point x⋆
is de�ned optimal only if it 
omplies with

Fi(x
⋆) ≤ Fi(y), i = 1, . . . , q

1

The material in this sub-se
tion is taken from [11, pp. 174-187℄.

2

The material of this Appendix is taken from [11, pp. 174-187℄

89
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for every feasible y; otherwise stated, x⋆
has to be simultaneously opti-

mal for ea
h of the s
alar problems

min
x

Fj(x)

s.t. fi(x) ≤ 0 ∀i = 1, . . . ,m,
hi(x) = 0, ∀i = 1, . . . , p

for j = 1, . . . , q. In the presen
e of an optimal point, the obje
tives are

said non
ompeting, sin
e no 
ompromises have to be made among them:

ea
h obje
tive is as small as it 
ould be made, even if the others were

ignored.

However, the set of a
hievable values for problem (A.1) does not always

present a minimum element, and thus the problem itself has not an

optimal point and an optimal value. In these 
ases, one fo
uses on the

minimal elements [11, pp. 45℄ of the set, namely on the so-
alled Pareto-

optimal points.

A feasible point x⋆
is referred to as Pareto-optimal only if f0(x

⋆) is
a minimal element of the set of a
hievable values O (the set of obje
tive

values of feasible points

3

); in this 
ase, f0(x
⋆) is a Pareto-optimal value

for (A.1). Considering the q s
alar 
omponents of the obje
tive fun
tion

f0(x), x
⋆

an be 
onsidered Pareto-optimal only if it is feasible and no

better feasible point exists. Pre
isely, if y is a feasible point and Fi(y) ≤
Fi(x

⋆) for i = 1, . . . , q, then ne
essarily Fi(x
⋆) = Fi(y) for i = 1, . . . , q.

This also implies that: if a feasible point is not Pareto-optimal, than

there is at least another feasible point that is better. Hen
e, the sear
h

for �good� points 
an be limited to Pareto-optimal ones.

A standard te
hnique to �nd Pareto-optimal points is the s
alarization,

where the ve
torial problem (A.1) is redu
ed to the s
alar one

min
x

λTf0(x)

s.t. fi(x) ≤ 0
hi(x) = 0

(A.2)

on
e it has been de�ned the ve
tor of weights λ ≻ 0, namely a ve
tor with

positive 
omponents. In fa
t, it 
an be shown [11, pp. 178℄ that if x⋆
is an

optimal point for problem (A.2), than it is also a Pareto-optimal point

for the problem (A.1). Nevertheless it is worth pointing out that, for

3O = {f0(x
⋆) : ∃x ∈ D, fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p},

where D is the domain of the optimization problem.
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non-
onvex multi-obje
tive optimization problems, it is possible through

s
alarization to obtain a sub-set, but not all, the Pareto-optimal points.

The 
hoi
e of the parameter λ plays a primary role in the determina-

tion of the Pareto points, de�ning the weight given to ea
h of the s
alar


omponents. Spe
i�
ally, it quanti�es our desire to make Fi(x) small.
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Appendix B

Proof of Lemma 2.3.2

We �rst 
laim that problem (2.9) is feasible. It is seen that (c0, t
⋆)

with

t⋆ = min
νd∈[0,1]

p†(M−1 ⊙ (c0c
†
0)

∗)p,

is feasible for problem (2.3), and thus (c0c
†
0, t

⋆) is feasible for SDP prob-

lem (2.6). It follows by Lemma 2.3.1 that there is a matrix X � 0 su
h

that (c0c
†
0, X, t⋆) is feasible for (2.9).

Now, we wish to show that problem (2.9) is solvable. To this end,

we are about to prove that the dual problem of (2.9) is stri
tly feasible

and bounded above. Let us 
ompute the dual of SDP problem (2.9).

Re
all that W = [w0, . . . ,wN−1] ∈ CM×N
, wk =

[

1, e−jkθ, . . . ,

e−j(M−1)kθ
]T
, k = 0, . . . , N − 1, θ = 2π/M , M = 2N − 1. Then, we 
an

rewrite W as

W =













v
†
0

v
†
1
.

.

.

v
†
M−1













, vm =











1
ejmθ

.

.

.

ej(N−1)mθ











, m = 0, . . . ,M − 1. (B.1)

Thus, W †
diag(WXW †) =

∑M−1
m=1 (v

†
mXvm)vm. From the equality


onstraint te1 = x−W †
diag(WXW †), we have

t =
1

N

N
∑

i=1

(M−1 ⊙C∗)(i, i) −
M−1
∑

m=0

v†
mXvm, (B.2)

93
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and

1

N

N−k
∑

i=1

(M−1 ⊙C∗)(i+ k, i) =

M−1
∑

m=0

v†
mXvme

jkmθ, k = 1, . . . , N − 1.

(B.3)

It is 
lear that (B.2) 
an be further rewritten into

t = tr (A0C)− tr (B0X), (B.4)

where

A0 =
1

N
I ⊙M−1 , B0 =

M−1
∑

m=0

vmv†
m, (B.5)

that is, A0 is the diagonal matrix with diagonal elements being

1
NM−1

's

diagonal elements. Observe that (B.3) has 2(N − 1) equalities (
ounting
the real part and imaginary part):

tr (Ak,1C) = tr (Bk,1X), tr (Ak,2C) = tr (Bk,2X), k = 1, . . . , N − 1,
(B.6)

where

Bk,1 =

M−1
∑

m=0

vmv†
m cos(kmθ), Bk,2 =

M−1
∑

m=0

vmv†
m sin(kmθ),

k = 1, . . . , N − 1, (B.7)

and

Ak,1 =
1

2
Mk, Ak,2 =

1

2
(M k ⊙E), k = 1, . . . , N − 1. (B.8)

The N ×N Hermitian matri
es Mk are de�ned by

Mk(i+ k, i) = M−1(i+ k, i), i = 1, . . . , N − k ; (B.9)

the diagonal elements and the other lower triangular elements of Mk

equal to zero. The N ×N Hermitian matrix E is de�ned by

{

E(i, i) = 1, i = 1, . . . , N,
E(i, l) = −j, ∀i > l.

(B.10)
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By 
onsidering (B.2)-(B.4), (B.6), we 
an rewrite problem (2.9) equiva-

lently into the following form

max
X,C

tr (A0C)− tr (B0X)

s.t. tr (Ak,1C)− tr (Bk,1X) = 0, k = 1, . . . , N − 1,
tr (Ak,2C)− tr (Bk,2X) = 0, k = 1, . . . , N − 1,

tr (c0c
†
0C) ≥ δǫ,

tr (C) = 1,
C � 0,
X � 0.

(B.11)

Therefore, the dual problem of (B.11) is

min
y,z,{x1(k)},{x2(k)}

yδǫ + z

s.t. zI + yc0c
†
0 +

∑N−1
k=1 (x1(k)Ak,1 + x2(k)Ak,2) � A0,

∑N−1
k=1 (x1(k)Bk,1 + x2(k)Bk,2) � B0,

y ≤ 0, z ∈ R, x1(k) ∈ R, x2(k) ∈ R,
∀k = 1, . . . , N − 1 ,

(B.12)

with R the set of real numbers.

Sin
e problem (2.9) is feasible, then (B.11) is feasible. It follows by

weak duality theorem that problem (B.12) is bounded below. It 
an be

also proved that problem (B.12) is stri
tly feasible. In fa
t, let z be a

su�
iently large positive number, y a negative number su�
iently 
lose

to zero, x1(k), x2(k) equal to zero, then (z, y, x1(1), x2(1), . . . , x1(N −
1), x2(N − 1)) is a stri
tly feasible solution of (B.12). Therefore, from

Theorem 1.7.1 of [26℄ (Coni
 Duality Theorem), we 
an 
on
lude that

problem (2.9) is solvable be
ause the dual is bounded below and stri
tly

feasible.
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Appendix C

Proof of Proposition 3.3.1

It is 
lear that problem (3.6) is equivalent to the problem:

max
z

z†Rz

s.t. |z(i)|2 ≤ 1, i = 1, . . . , N
‖z‖2 = N/γ.

(C.1)

Let N = 3P +1, γ = 1+ P
2P+1 , z = [xT ,yT ]T , where x = [z(0), z(1), . . . ,

z(P ), z(P + 1), . . . , z(2P )]T and y = [z(2P + 1), . . . , z(3P )]T ; let b0 =
[−j
2 eTa,aT , 0TP ,0

T
P ]

T
, bi = [−j,eTi ,−eTi ,0

T
P ]

T
, i = 1, . . . , P , where a ∈

R
P
is a given ve
tor with integer-valued 
omponents and e ∈ R

P
is the

all-one ve
tor. Let λ be any number not less than the maximal eigenvalue

of

∑P
i=0 bib

†
i , and R be

[

λI2P+1 0

0 0P×P

]

−
P
∑

i=0

bib
†
i . (C.2)

This previous assumption ensures R � 0. Therefore, it follows that

z†Rz = λ‖x‖2 −
P
∑

i=0

|z†bi|2 ≤ λN/γ = λ(2P + 1) (C.3)

and the equality holds for any feasible point z for (C.1), if and only if

|z(i)| = 1, i = 0, . . . , 2P , and b
†
iz = 0, i = 0, . . . , P . That is, all z(i),

i = 0, . . . , 2P , are of unit modulus and

j

2
eTaz(0) +

P
∑

i=1

a(i)z(i) = 0, jz(0) + z(i)− z(P + i) = 0, k = 1, . . . , P,
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whi
h, due to nonzero z0, are equivalent to

j

2
eTa+

P
∑

i=1

a(i)(z(i)/z(0)) = 0, j + z(i)/(z(0)) − z(P + i)/(z(0)) = 0,

i = 1, . . . , P, (C.4)

Set z(i)/z(0) = ejθi , i = 1, . . . , 2P , and the last P equations of (C.4)

be
ome

cos θi − cos θP+i = 0, 1 + sin θi − sin θP+i = 0, i = 1, . . . , P,

whi
h imply that θi = −θP+i ∈ {−π
6 ,−5

6π}, and the �rst equation of

(C.4) be
omes

1

2
eTa+

P
∑

i=1

a(i) sin θi = 0,

P
∑

i=1

a(i) cos θi = 0,

whi
h further amounts to

P
∑

i=1

a(i) cos θi = 0, θi ∈ {−π
6
,−5

6
π}, i = 1, . . . , P.

This is 
learly equivalent to the partition problem des
ribed in [48, pages

47 and 60℄, namely �nding a binary ve
tor x su
h that

P
∑

i=1

a(i)x(i) = 0, x(i) ∈ {±1}, i = 1, . . . , P. (C.5)

Summarizing, the 
on
lusion is that �nding a feasible solution su
h that

(C.3) is valid with equality, is equivalent to �nding a solution x ∈ R
P
of

(C.5).



Appendix D

Proof of Proposition 3.3.2

(i) It follows from (3.13) that I −D−D � 0. Thus C̃
⋆
= C⋆ + (I −

D−D) � 0, whi
h implies D−C̃
⋆
D− � 0.

(ii) It is seen immediately from (3.10)-(3.12) and (3.15).
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Appendix E

Proof of Proposition 3.3.4

Noti
e that D−D = DD−
, namely D and D−


ommute. Sin
e C⋆

is positive semide�nite, then

DD−C⋆D−D = C⋆,

where the property that, if a positive semide�nite matrix has a diagonal

element 0, then the 
orresponding row and 
olumn 
ontains all zero

elements, has been used. Observe that (I −D−D)D−D = 0. Then, it

follows that

DD−C̃
⋆
D−D = DD−(C⋆ + (I −D−D))D−D = C⋆.
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Appendix F

Proof of Proposition 3.3.5

Let y(i) = ej arg(ξ(i)), i = 1, . . . , N , where ξ(i) is generated by step

3 of Algorithm 3. Thus c = Dy. It follows from Lemma 3.3.3 that the

expe
tation of yy†
is

E[yy†] = F (D−C̃
⋆
D−) � π

4
D−C̃

⋆
D−.

Therefore, it follows that

E[c†Rc] = E[y†DRDy]

= tr (DRDE[yy†])

≥ π

4
tr (DRDD−C̃

⋆
D−)

=
π

4
tr (RDD−C̃

⋆
D−D)

=
π

4
tr (RC⋆)

≥ π

4
v((3.6))

where the �rst inequality is due to the fa
t that DRD � 0 and, in the

last equality, Proposition 3.3.4 has been applied.
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Appendix G

Proof of Proposition 3.4.2

This appendix deals with the dual problem of (3.23), showing that it

is stri
tly feasible and bounded above, whi
h by the strong duality [26,

Theorem 1.7.1℄, means that (3.23) is solvable.

Re
all that W = [w0, . . . ,wN−1] ∈ C
L×N

, wk = [1, e−jkθ, . . . ,
e−j(L−1)kθ]T , k = 0, . . . , N − 1, θ = 2π/L, L = 2N − 1. Then, W


an be rewritten as

W =













v
†
0

v
†
1
.

.

.

v
†
L−1













, vm =











1
ejmθ

.

.

.

ej(N−1)mθ











, m = 0, . . . , L− 1. (G.1)

Thus, W †
diag(WXW †) =

∑L−1
m=0(v

†
mXvm)vm. From the equality


onstraint te1 = x−W †
diag(WXW †), we have

t =

N
∑

i=1

(M ⊙C∗)(i, i) −
L−1
∑

m=0

v†
mXvm, (G.2)

and

N−k
∑

i=1

(M ⊙C∗)(i+ k, i) =
L−1
∑

m=0

v†
mXvme

jkmθ, k = 1, . . . , N − 1. (G.3)

It is 
lear that (G.2) 
an be further rewritten as

t = tr (A0C)− tr (B0X), (G.4)
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where

A0 = I ⊙M , B0 =
L−1
∑

m=0

vmv†
m. (G.5)

Observe that (G.3) has 2(N − 1) equalities (
ounting the real part and

imaginary parts):

tr (Ak,1C) = tr (Bk,1X), tr (Ak,2C) = tr (Bk,2X), k = 1, . . . , N − 1
(G.6)

where

Bk,1 =
L−1
∑

m=0

vmv†
m cos(kmθ), Bk,2 =

L−1
∑

m=0

vmv†
m sin(kmθ),

k = 1, . . . , N − 1, (G.7)

and

Ak,1 =
1

2
M k, Ak,2 =

1

2
(Mk ⊙E), k = 1, . . . , N − 1. (G.8)

The N ×N Hermitian matri
es Mk, k = 1, . . . , N − 1, are de�ned by

Mk(i+ k, i) = M (i+ k, i), i = 1, . . . , N − k (G.9)

and the diagonal elements and the other lower triangular elements of

M k are zero. The N ×N Hermitian matrix E is de�ned by

{

E(i, i) = 1, i = 1, . . . , N,
E(i, l) = −j, ∀i > l.

(G.10)

By 
onsidering (G.2)-(G.4), (G.6), it is possible to rewrite problem (3.23)

equivalently into the following form

max
X,C

tr (A0C)− tr (B0X)

s.t. tr (Ak,1C)− tr (Bk,1X) = 0, k = 1, . . . , N − 1
tr (Ak,2C)− tr (Bk,2X) = 0, k = 1, . . . , N − 1
tr (EiC) ≤ γ, i = 1, . . . , N
tr (C) = N
C � 0, X � 0

(G.11)
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where Ei are the same as those in problem (3.9). Therefore, the dual

problem of (G.11) is

min
{y(i)},z,{x1(k)},{x2(k)}

γ
∑N

i=1 y(i) +Nz

s.t. zI +
∑N

i=1 y(i)Ei +
∑N−1

k=1 (x1(k)Ak,1 + x2(k)
(Ak,2) � A0,
∑N−1

k=1 (x1(k)Bk,1 + x2(k)Bk,2) � B0,
y(i) ≥ 0, i = 1, . . . , N, z ∈ R, x1(k) ∈ R,
x2(k) ∈ R, k = 1, . . . , N − 1.

(G.12)

Take a point c satisfying |c(i)| ≤ γ for i = 1, . . . , N and ‖c‖ = N ,

and set

t = min
νd∈[0,1]

p†(M ⊙ (c0c
†
0)

∗)p,

whi
h is a one-dimensional optimization. It follows from (3.26) that

solving the one-dimensional optimization is equivalent to solving an SDP.

Thus (c, t) is feasible for (3.19) and (cc†, t) is feasible for (3.20), and thus
(3.23) is feasible. It follows by the weak duality theorem that the dual

SDP (G.12) is bounded below.

It is further seen that problem (G.12) is stri
tly feasible. In fa
t,

let z be a su�
iently large positive number, yi positive numbers su�-


iently 
lose to zero, x1(k), x2(k) equal to zero; then (z, y(1), . . . , y(N),
x1(1), x2(1), . . . , x1(N − 1), x2(N − 1)) is a stri
tly feasible solution of

(G.12). It is interesting to note that B0 = W †W is the diagonal matrix

with ea
h diagonal element being L. Therefore, it is possible to 
on
lude
that problem (3.23) is solvable, be
ause the dual is bounded below and

stri
tly feasible.
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Appendix H

Proof of Proposition 3.5.1

The present appendix is devoted to show that problem (3.28) in
ludes

the max-
ut problem and the max-3-
ut problem whi
h are known to be

NP-hard [45℄, [49℄, and [50℄. In fa
t, problem (3.28) is equivalent to

max
c

c†Rc

s.t. |c(i)|2 ≤ 1

arg (c(i)) ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i = 1, . . . , N
‖c‖2 = N/γ.

(H.1)

The max-
ut problem for a given undire
ted weighted graph (E, V ) with
P nodes, is 
ast as

max
x

∑

k<l (wkl(1− x(k)x(l))) /2

s.t. x(k) ∈ {±1}, k = 1, . . . , P
(H.2)

where wkl ≥ 0 is the weight on the edge between nodes k and l1. Let Q
be the Lapla
ian matrix of the graph, i.e., Q(k, l) = −wkl for k 6= l and
Q(k, k) =

∑P
l 6=k, l=1wkl. Thus, Q � 0 and the obje
tive fun
tion of max-


ut problem (H.2) is equal to

1
4x

TQx. Now, in (H.1), setting M = 2
(this means that arg (c(i)) ∈ {0, π}, ∀i, i.e., any c(i) is real-valued),

N = 2P , γ = 2 (this implies that ‖c‖2 = P ), and

R =

[

1
4Q 0

0 0P×P

]

1

When there is no edge between k and l, one sets wkl = 0.
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(the so-de�ned R, together with ‖c‖2 = P and |c(i)| ≤ 1 ∀i, implies that

an optimal solution c⋆ of the maximization problem (56), has |c(i)⋆| = 1,
i = 1, . . . , P , and |c⋆i | = 0, i = P + 1, . . . , 2P ), it is possible to redu
e

(H.1) into the max-
ut problem (H.2).
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