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INTRODUCTION 
In modern engineering applications, multilayered structures are extensively used due to the added 
advantage of combining physical, mechanical, and thermal properties of different materials. Many 
of these applications require a detailed knowledge of transient temperature and heat-flux 
distribution within the component layers. Both analytical and numerical techniques may be used to 
solve such problems. Nonetheless, numerical solutions are preferred and prevalent in practice, due 
to either unavailability or higher mathematical complexity of the corresponding exact solutions. 
Rather limited use of analytical solutions should not diminish their merit over numerical ones; since 
exact solutions, if available, provide an insight into the governing physics of the problem, which is 
typically missing in any numerical solution. Moreover, analyzing closed-form solutions to obtain 
optimal design options for any particular application of interest is relatively simpler. In addition, 
exact solutions find their applications in validating and comparing various numerical algorithms to 
help improve computational efficiency of computer codes that currently rely on numerical 
techniques. Although multilayer heat conduction problems have been studied in great detail and 
various solution methods including orthogonal and quasi-orthogonal expansion technique, Laplace 
transform method, Green’s function approach, finite integral transform technique are readily 
available; there is a continued need to develop and explore novel methods to solve problems for 
which exact solutions still do not exist. One such problem is to determine exact unsteady 
temperature distribution in polar coordinates with multiple layers in the radial direction. 
Numerous applications involving multilayer cylindrical geometry require evaluation of temperature 
distribution in complete disk-type. One typical example is a nuclear fuel rod, which consists of 
concentric layers of different materials and often subjected to asymmetric boundary conditions. 
Moreover, several other applications including multilayer insulation materials, double heat-flux 
conductimeter, typical laser absorption calorimetry experiments, cryogenic systems, and other 
cylindrical building structures would benefit from such analytical solutions. 
Then, object of the present thesis is to derive new thermo-elastic solutions for composite materials 
constituted by multilayered spheres and cylinders under time-dependent boundary conditions. These 
solutions are utilized for several engineering applications and we report some applications in last 
analyze chapters of present thesis. In follows, we will described the contents of thesis.  
In first chapters are reported the thermo-mechanical foundations and a summary of the formulation 
of thermo-elastic problems for isotropic material.   
In chapter X it is developed an analytical approach to find exact elastic solutions for multilayered 
cylinder composed of isotropic constituents and determining the analytical response in terms of 
displacements and stresses for all the De Saint Venant (DSV) load conditions, that is axial force, 
torque, pure bending and combined bending moment and shear actions. Successively, on the basis 
of the found analytical solutions, a homogenization procedure is adopted in order to obtain the 
overall constitutive elastic laws for multilayered cylinder, in this way deriving the exact one-
dimensional model characterized by the axial stiffness, flexural rigidity, shear deformability and 
torsional stiffness relating beam’s generalized stresses and strains. By playing with the Poisson 
ratios of adjacent phases, some counterintuitive and engineering relevant results are shown with 
reference to unexpected increasing of overall stiffness of multilayered cylinder. 
In chapter XI it is presented an analytical elastic solution for multilayered cylinder constituted by 
transversally-isotropic n-phases, under radial pressure, axial force and torque. Then, by utilizing the 
homogenization theory, it is obtained the overall elastic stiffness of the equivalent homogeneous 
transversally-isotropic solid, establishing the constitutive elastic laws relating stresses and strains. 
In chapter XII it is developed an analytical approach to find exact elastic solutions for multilayered 
cylinder subjected to axial force, constituted by n orthotropic cylindrical hollow phases and a 
central core, each of them modelled as homogeneous and cylindrically anisotropic material.  
In chapter XIII it is reported an analytical solution for multilayered cylinder composed by hollow 
cylindrical monoclinic phases under axial force and torsion. In this chapter, we consider the chiral 
structure for each cylindrical layer. In particular the composite material is constituted by two hollow 
cylindrical monoclinic phases. The cylindrical monoclinic elastic property of multilayered cylinder 
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is obtained by the particular chiral structure. In fact, we consider the two hollow phases constructed 
by  right-handed and left-handed spiral helices whose long axes are all parallel. These helical spirals 
may be either touching or separated by a matrix material and are composed by elastic orthotropic 
material.  
In chapters XIV, XV, XVI are reported some thermo-elastic solution, for hollow cylinders, hollow 
spheres and plates, respectively.  
In chapter XVII we consider a steady-state thermo-elastic problem of multilayered cylinder with 
finite length. The thermal and mechanical loads applied on the cylinder are axisymmetric in the 
hoop direction and are constant in the axial direction. In order to obtain analytical solutions for 
temperature, displacements, and stresses for the two-dimensional thermo-elastic problem, the 
cylinder is assumed to be composed of n fictitious layers in the radial direction. The material 
properties of each layer are assumed as homogeneous. 
In chapter XVIII are determined the displacements, strains, and stresses from the general analytical 
solution of multilayered sphere composed by an arbitrary number of layers constituted by materials 
with generic modulus of elasticity, thermal expansion coefficient and thermal conductivity. Material 
properties are assumed to be temperature-independent and homogeneous in each layer. The 
multilayered sphere is considered as a classical composite material whose properties abruptly vary 
from one hollow sphere to the other. 
In chapter XIX are presented the most important standard fire curves: ISO 834, External fire curve, 
hydrocarbon fire curve, ASM119 and parametric fire curves (European Parametric fire curves, 
Swedish Fire Curves, BFD curves, CE 534 curve). Moreover in this chapter are reported the 
mechanical and thermal properties of steel and concrete at elevate temperature. 
In chapters XX and XXI, the one-dimensional quasi-static uncoupled thermo-elastic problem of a 
multilayered sphere and multilayered cylinder, with time-dependent boundary conditions are 
considered, respectively. The body forces and heat generation vanish. In both cases, the analytical 
solution is obtained by applying the method of separation of variables. 
In chapter XXII it is studied a spherical tank methane gas-filled exposed to fire characterized by 
hydrocarbon fire curve. The interaction between spherical tank and internal gas is studied. By 
applying a suitable simplified hypothesis on the mechanics of problem, we determine the analytical 
thermo-elastic solution for spherical tank. By applying the solution obtained, the increasing graded 
temperature of gas methane in spherical tank is determined. Finally, a numerical example is 
reported for a spherical tank exposed to hydrocarbon fire, showing the collapse temperature. 
In chapter XXIII, an industrial insulated pipeline is modelled as multilayered cylinder, subjected to 
mechanical and thermal loads. By using a multi-layered approach based on the theory of laminated 
composites, the solutions for temperature, heat flux, displacements, and thermal/mechanical stresses 
are presented. By applying the analytical thermo-elastic solution reported in Chapter XVII, a 
parametric analysis is conducted in order to analyze the mechanical behaviour of an industrial 
insulated pipeline composed by three phases: steel, insulate coating, and outer layer made of 
polyethylene to protect the insulation. In this model, parametric analyses are conducted by varying 
the Young’s modulus, Poisson’s ratio, thermal conductivity and linear thermal expansion 
coefficient of insulate coating. The analysis shows the maximum Hencky von Mises’s equivalent 
stress in steel phase and in insulate coating.  Finally, it is presented a numerical example by 
considering three types of materials for insulate coating: (1) Expanded Polyurethane; (2) Laminate 
glass; (3) Syntatic foam.  
In chapter XXIV it is analyzed a cylindrical concrete specimen under axial force within Fibre 
Polymeric Reinforcing sheets. The elastic solutions found in Chapter XII are here extended to the 
post-elastic range. The evolution of the stress field when the core phase is characterized by an 
Intrinsic Curve or Schleicher-like elastic-plastic response with associate flow rule and the 
cylindrically orthotropic hollow phase obeys to is shown the elastic-brittle Tsai-Hill anisotropic 
yield criterion. The choice of these post-elastic behaviours is suggested by experimental evidences 
reported in literature for these materials, as well as the cylindrical orthotropy of the hollow phase 
intrinsically yields to consider several perfectly bonded FRP layers as an equivalent one, 
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interpreting their overall mechanical response by invoking the theory of homogenization and the 
mechanics of composites.  
At the end, a numerical example application to cylindrical concrete specimens reinforced with 
Carbon FRP is presented, by furnishing a predictive formula – derived from the previously obtained 
analytical solutions - for estimating the overall collapse mechanism, the concrete ultimate 
compressive strength and the confining pressure effect. The results are finally compared with 
several experimental literature data, highlighting the very good agreement between the theoretical 
predictions and the laboratory measurements. 
In chapter XXV it is reported an analytical thermo-elastic solution in closed form for bi-layer 
hollow cylinder subjected to time-dependent boundary conditions. It is assumed that each hollow 
cylinder is composed by a homogeneous and thermo-isotropic material, characterized by different 
mechanical and thermal parameters, i.e. modulus of elasticity, thermal expansion coefficient and 
thermal conductivity. Moreover, these material properties in each hollow cylinder are assumed to be 
temperature-independent. In other words, the bi-layer hollow cylinder is considered as a classical 
composite material whose properties abruptly vary from one hollow cylinder to the other. In 
particular, it is obtained a new analytical solution for a bi-layer hollow cylinder, constituted by two 
phases: Ceramic (3 4Si N ) and Metal ( 6 4Ti Al V− − ) subjected to heat flux on inner surface.  
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CHAPTER I 
KINEMATICAL  FOUNDATIONS 

 
1.1.  Deformations in 3R  
We assume once and for all that an origin O and an orthonormal basis { }1 2 3, ,e e e have been chosen 

in three-dimensional Euclidean space, which will therefore be identified with the space 3R  : From 
the notational viewpoint, we identify the point x  with the vector ox . Whenever we consider 
components of vectors in 3R , or elements of matrices in 3M , we make the convention that Latin 
indices (I,j,p,….) always take their values in the set {1,2,3}, and we combine this rule with the 
standard summation convention.  
Let there be given a bounded, open, connected, subset Ω  of 3R  with a sufficiently smooth 
boundary (specific smoothness assumptions will be made subsequently). We shall think of the 
closure Ω  of the set Ω  as representing the volume occupied by a body “before it is deformed”; for 
this reason, the set Ω  is called the reference configuration . A deformation of the reference 
configuration Ω  is a vector field: 

3:ϕ Ω → R                                                     (1.1) 
That is smooth enough, injective possibly on the boundary of the set Ω , and orientation–preserving  
 
Remarks  

(1) The reason a deformation may loose its injectivity on the boundary of Ω  is that “self-
contact” must be allowed 

(2) The expression “smooth enough” is simply a convenient way of saying that in a given 
definition, theorem, proof, etc. the smoothness of deformations involved is such that all 
arguments make sense. As a consequence, the underlying degree of smoothness varies from 
place to place. For instance, the existence of the deformation gradient (to be next 
introduced) implies that a deformation is differentiable at all points of the reference 
configuration; Theorem 1.1 relies on the Piola identify, which makes sense , at least in a 
classical setting, only for twice differentiable deformations; the characterization of rigid 
deformations (Theorem 1.2) is established for deformations that are continuously 
differentiable, etc.  

(3) Deformations are synonymously called configurations, or  placements, by some authors. 

We denote by x  a generic point in the set Ω , by ix  its components with respect to the basis { }ie , 

and by i ix∂ = ∂ ∂  the partial derivative with respect to variable ix . Given a deformation  i iϕ= eϕϕϕϕ  . 

We define at each point of the set  Ω  the matrix  

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

∂ ∂ ∂ 
 = ∂ ∂ ∂ 
 ∂ ∂ ∂ 

∇ϕ∇ϕ∇ϕ∇ϕ                                                 (1.2) 

The matrix ∇ϕ∇ϕ∇ϕ∇ϕ  is called the deformation gradient. Since a deformation is orientation-preserving 
by definition, the determinant of the deformation gradient satisfies the orientation-preserving 
condition: 

( )det 0>x∇ϕ∇ϕ∇ϕ∇ϕ for all  x ∈Ω  

In particular, the matrix ( )x∇ϕ∇ϕ∇ϕ∇ϕ  is invertible at all points x  of the reference configuration ΩΩΩΩ . 

Remarks:  
(1) The notations =F ∇∇∇∇ϕϕϕϕ  and detJ = ∇∇∇∇ϕϕϕϕ  are commonly used in the literature. 
(2) The notation ∇∇∇∇ϕϕϕϕ  is confusing, since the gradient of a real-valued function f is the column 

vector formed by the first partial derivative i f∂ , while ( ) j iij
ϕ= ∂∇∇∇∇ϕϕϕϕ  (this explains why we 
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used the notation fgrad , and not f∇ . Indeed, the deformation gradient is simply the 
matrix representing the Frechet derivative of the mapping ϕ , which fro real-valued 
functions, it is  identified with the transpose of the gradient. 

Together with a deformation ϕ  , it is often convenient to introduce the displacement u , which is 
the vector field: 

3: Ω →u R                                                           (1.3) 
defined by the relation :  

= +id uϕϕϕϕ                                                            (1.4) 

where id  denotes the (restriction to Ω  of the ) identity map from 3R  onto 3R . Notice that the 
displacement gradient is: 

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:

u u u

u u u

u u u

∂ ∂ ∂ 
 = ∂ ∂ ∂ 
 ∂ ∂ ∂ 

u∇∇∇∇                                                 (1.5) 

and the deformation gradient are related by the equation 
= + ∇I u∇∇∇∇ϕϕϕϕ                                                      (1.6) 

Given a reference configuration Ω  and a deformation 3: Ω → Rϕϕϕϕ , the set ( )Ωϕϕϕϕ  is called a 

deformed configuration. At each point 

( ):ϕ =x xϕϕϕϕ                                                        (1.7) 

of a deformed configuration, we define the three vectors (Fig.1.1) 

e3

e1

2e
O

( )

(x)

x

x

u(x)

da
da

dx

n

n

dx

 
 

Fig. 1.1 - Geometry of a deformation: The volume element, the area element, the unit outer normal, 
are denoted , ,dx da n  in the reference configuration Ω , and , ,dx daϕ ϕ ϕn in the deformed 

configuration ( )Ωϕϕϕϕ . The vectors ( )j∂ xϕϕϕϕ  define the deformation at a point x ∈Ω  to within the 

first order. 
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( ) ( )j j i iϕ∂ = ∂x x eϕϕϕϕ                                                            (1.8) 

Each vector ( )j∂ xϕϕϕϕ  measures the “local deformation in the direction of the vector je ” in the sense 

that, to within the first order with respect to dt , the vector jdte  is  transformed into the vector 

( )j dt∂ xϕϕϕϕ . Equivalently , the vector ( )j∂ xϕϕϕϕ  is the tangent vector to the jth coordinate line passing 

through the point ϕx . (i.e. the image by the deformation ϕϕϕϕ  of a segment parallel to the vector je  

containing the point x  in its interior, and parametrized by t). Since the vector ( )j∂ xϕϕϕϕ  is precisely  

the j-th column of the matrix ( )x∇∇∇∇ϕϕϕϕ , the knowledge of the deformation gradient completely define 

the local deformation to within the first order. 
Remarks: 

(1) While the deformation gradient ( )x∇∇∇∇ϕϕϕϕ  clearly depends upon the basis ie , it is possible to 

exhibit the intrinsic geometrical character of the deformation at the point x , by means of 
the polar factorization of the matrix ( )x∇∇∇∇ϕϕϕϕ , which then appears as the product of a 

“rotation tensor” by a “stretch tensor”. For details about this classical results, see for 
instance Germain [1972, p. 97], Gurtin [1981b, p. 46], Truesdell&Noll [1965, p.52]. 

(2) If the point ( )ϕ =x xϕϕϕϕ  belongs to the interior of the deformed configuration ( )Ωϕϕϕϕ , the 

three vector j∂ ϕϕϕϕ  define in the terminology of differential geometry the tangent vector space 

at the point x  of the manifold ( )int Ωϕϕϕϕ . This space is of dimension three since the matrix 

( )x∇∇∇∇ϕϕϕϕ is invertible (by definition of a deformation).  

(3) The points x ∈Ω  and the corresponding  points ( )ϕ ∈ Ωx ϕϕϕϕ  are often called material points 

and spatial points respectively, and they are often denoted X and x respectively, in the 
continuum mechanics literature. 

 
We next compute the volume, area, and length elements in the deformed configuration: In each 
case, the objective is, for a given deformation, to express quantities (volumes, surfaces, lengths) 
defined over the deformed configuration in terms of the same quantities, but defined over the 
reference configuration. To emphasize the crucial distinction between both types of quantities, we 
adopt the following notational device: The superscript " "ϕϕϕϕ ; this rule has already been applied, for 

denoting a generic point ∈Ωx  and the corresponding point ( ) ( )ϕ ∈ ∈ Ωx xϕ ϕϕ ϕϕ ϕϕ ϕ . 

This correspondence between a quantity defined as a function of the Lagrange variable x  , and a 
similar quantity defined as a function of the Euler variable ( )ϕ =x xϕϕϕϕ , can be extended to other 

quantities than volume, surfaces, and lengths: As we shall see, it applies equally well to divergences 
of tensor fields and applied forces 
Remark. This idea can be systematized through the notions of “pullback” and “push-forward”, 
familiar in differential geometry. In this respect, see for instance Choquet-Bruhat, Dewitt-Morette 
& Dillard-Bleick [1977], or Marsden 6 Hughes [1983]. 
 
1.2.   Volume element in the deformed configuration  
Let ϕ  be a deformation. If dx denotes the volume element at the point x  of the reference 

configuration , the volume element dxϕ at the point ( )ϕ =x xϕϕϕϕ  of the deformed configuration (Fig. 

1.1) is given by 

( )detdx x dxϕ = ∇∇∇∇ϕϕϕϕ                                                      (1.9) 

Since ( ) ( )det det 0x x= >∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  by assumption. 
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The volume element dxϕ  is used for computing volumes in the deformed configuration : If A 
denotes a measurable subset of the reference configuration Ω , the volume of the set A and the 
volume of the deformed set  ( ):A Aϕ ϕ=  are respectively given by: 

( ): , : det ,
A AA

vol A dx vol A dx x dx
ϕ

ϕ ϕ= = =∫ ∫ ∫ ∇∇∇∇ϕϕϕϕ                        (1.10) 

Notice that the last equality is nothing but a special case of the formula for changes of variables in 
multiple integrals: Let ( ): A A Aϕ→ =ϕ ϕϕ ϕϕ ϕϕ ϕ  be an injective, continuously differentiable mapping 

with a continuous inverse 1 : A Aϕ− →ϕϕϕϕ . Then a function : ϕ ϕ∈ →u x A R  is dxϕ - integrable over 

the set Aϕ if and only if the function 

( ) ( ) ( )detx A u x x∈ → � ∇∇∇∇ϕ ϕϕ ϕϕ ϕϕ ϕ                                          (1.11) 

is dx – integrable over the set A and if this is the case,  

( )
( )

( )( ) ( )det
AA A

u x dx u x x dx
ϕ

ϕ ϕ

ϕ=

=∫ ∫ � ∇∇∇∇ϕ ϕϕ ϕϕ ϕϕ ϕ                                 (1.12) 

It should be remembered that the validity of this formula hinges critically on the assumption that the 
mapping ϕϕϕϕ  is injective. Otherwise, it must be replaced by the more general relation: 

( ) ( ) ( )( ) ( )
( )

1' ' ' det
A A

u x card x dx u x x dx
ϕ

− =∫ ∫ � ∇∇∇∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ                    (1.13) 

Where card B denote in general the number of elements in a set B. For details, see Schwartz [1967, 
Corollaire 2, p 675], Rado & Reichelderfer [1955, p.438], Federer [1969, p.241 ff.], Smith [1983, 
Ch. 16], and also Bojarski & Iwaniec [1983, Sect.8], Marcus & Mizel [1973], Vodopyanov, 
Goldshtein & Reshetnyak [1979] for its extension to Sobolev space-valued mappings. 

These properties hold in nR  , for arbitrary n. The volume 
A

dx∫  of a dx-measurable subset of nR  is 

denoted dx-means A. 
 
1.3.  The Piola transform; Area element in the deformed configuration  
As a preparation for computing the area element in the deformed configuration in terms of the area  
element in the reference configuration, it is convenient to introduce a particular transformation 
between tensors defined over the reference configuration Ω  and tensors defined over the deformed 
configuration ϕΩ . Besides, this transform plays a crucial role in the definition of the first Piola-
Kirchhoff tensor. 
Let us first review some definitions and results pertaining to tensor fields defined over either sets Ω  
or ϕΩ . By a  tensor, we mean here a second-order tensor 

( )ijT=T , i: row index, j: column index 

Since we ignore the distinction between covariant and controvariant components, the set of all such 
tensors will be identified with the set 3M of all square matrices of order three. 
Given a smooth enough tensor field 3: Ω →T M  defined over the reference configuration Ω , we 
define at each point of Ω  its divergence div T  as the vector whose components are the divergences 
of the transposes of the row vectors of the matrix T . More explicitly, 

11 12 13 1 11 2 12 3 13

21 22 23 1 21 2 22 3 23

31 32 33 1 31 2 32 3 33

:ij j ij i

T T T T T T

T T T T T T T T

T T T T T T

∂ + ∂ + ∂   
   = = ⇒ = ∂ + ∂ + ∂ = ∂   
   ∂ + ∂ + ∂   

T div T e             (1.14) 

Of course, a similar definition holds for the divergence ϕ ϕdiv T  of tensor fields 
3:ϕ ϕ →T B M defined over the deformed configuration : 

( ) :ij j ij iT div T Tϕ ϕ ϕ ϕ ϕ ϕ= ⇒ = ∂T e                                         (1.15) 
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where :j
jx

ϕ
ϕ

∂∂ =
∂

 denote the partial derivatives with respect to the variables jxϕ . 

A Simple application of the fundamental Green’s formula over the set Ω  shows that the divergence 
of a tensor field satisfies: 

j ij i ij j idX T dx T n da
Ω Ω ∂Ω

  
= ∂ =   
   

∫ ∫ ∫div T e e                                   (1.16) 

Or equivalently in matrix form: 

dx da
Ω ∂Ω

=∫ ∫div T Tn                                                 (1.17) 

Recall that a vector is always understood as a column vector when viewed as a matrix; thus the 
notation Tn  in the previous formula represents the column vector obtained  by applying the matrix 
T to the column vector n . This Green formula is called the divergence theorem for tensor fields . A 

tensor field 3ϕ ϕ= Ω →T M  likewise satisfies: 

dx da
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

Ω ∂Ω

=∫ ∫div T T n                                          (1.18) 

where ϕn denotes the unit outer normal vector along the boundary of the deformed configuration. 
We now come to an important definition. Let ϕϕϕϕ  be a deformation that is injective on Ω , so that the 

matrix ∇∇∇∇ϕϕϕϕ  is invertible at all points of the reference configuration. Then if ( )ϕ ϕT x a tensor defined 

at the point ( )ϕ =x xϕϕϕϕ  of the deformed configuration, we associate with ( )ϕ ϕT x  a tensor ( )T x  

defined at the point x of the reference configuration by: 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ): det , ,
T

x x xϕ ϕ ϕ ϕ ϕ−= = =T x T x T x Cof x x∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ       (1.19) 

In this fashion, a correspondence, called the Piola transform, is established between tensor fields 
defined over the deformed and reference configurations, respectively. 
Remark. It would be equally conceivable, and somehow more natural, to start with a tensor field 

3: Ω →T M  and to associate with it its “inverse Piola transform 3:ϕ ϕΩ →T M  defined by  

( ) ( )( ) ( ) ( )1
: det , ,

T
x xϕ ϕ −

= ∈ΩT x T x x∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ                           (1.20) 

As we shall see in , the reason we proceed the other way is that the starting point in elasticity is a 
tensor field defined over the deformed configuration (the Cauchy stress tensor field), and it is its 
Piola transform over three reference configuration (the first Piola –Kirchhoff stress tensor field) that 
subsequently plays a key role. 
As shown in the next theorem , the main interest of the Piola transform is that it yields a simple 
relation between the divergences of the tensors ϕT  and T  and (as a corollari) the desires relation 
between corresponding area elements daϕ  and da . 
 
Theorem (1.1) (properties of the Piola transform) : Let 3: Ω →T M  denote the Piola transform of 

3:ϕ Ω →T M . Then 

( ) ( )( ) ( )det x divϕ ϕ ϕ=div T x T x∇∇∇∇ϕϕϕϕ   for all  ( ) , ,xϕ = ∈Ωx xϕϕϕϕ       (1.21) 

( ) ( )da daϕ ϕ ϕ ϕ=T x n T x n     for all  ( ) , ,xϕ = ∈Ωx xϕϕϕϕ             (1.22) 

The area elements da  and daϕ  at the points x ∈∂Ω  and ( ) ,x xϕ ϕ= ∈∂Ωϕϕϕϕ with unit outer normal 

vectors n  and ϕn  respectively, are related by  

( ) ( ) ( )det
T

x x da x da daϕ− = =n Cof n∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ               (1.23) 

Proof. The key to the proof is the Piola identity 

( ) ( )det 0T−  = = div div Cof∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ                        (1.24) 



CHAPTER I - Kinematical foundations 

F. Carannante 9 

Which we first prove: Showing the indices modulo 3, the elements of the matrix Cof ∇∇∇∇ϕϕϕϕ  are given 
by: 

( ) 1 1 2 2 2 1 1 2j i j i j i j iij
ϕ ϕ ϕ ϕ+ + + + + + + += ∂ ∂ − ∂ ∂Cof ∇∇∇∇ϕϕϕϕ    (no summation)    (1.25) 

And a direct computation shows that  

( )( ) ( )det 0T
j j ijij

−∂ = ∂ =Cof∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ                             (1.26) 

Then the relations 

( ) ( )( ) ( ) ( )( )det
T

ij ik
kj

T x x T x xϕ ϕ −= ∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ                             (1.27) 

Imply that 

( ) ( )( ) ( )( ) ( )( )det ,
T

j ij j ik
kj

T x x T x xϕ −∂ = ∂∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ                     (1.28) 

Since the other term vanishes as a consequence of the Piola identity. 
Next, by the chain rule, 

( ) ( )( ) ( ) ( ) ( )( )j ik l ik j l l ik lj
T x T x x T x xϕ ϕ ϕ ϕ ϕ ϕ ϕϕ∂ = ∂ ∂ = ∂ϕ ∇ϕϕ ∇ϕϕ ∇ϕϕ ∇ϕ ,                (1.29) 

And the relation between ( )xdiv T  and ( )xϕ ϕ ϕdiv T  follows by noting that  

( )( ) ( )( )T

lkli ki
x x δ− =∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ                                           (1.30) 

Combining with the relation detdx dxϕ = ∇∇∇∇ϕϕϕϕ , the divergence theorem for tensor fields expressed  

over arbitrary sub-domains A of Ω , and the formula for changes of variables in multiple integrals, 
we obtain  

( ) ( ) ( )

( )
( )

( )
( )

det
A A A

A A

da dx dx

dx da

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

∂

∂

= = =

= =

∫ ∫ ∫

∫ ∫

T x n div T x div T x

div T x T x n

∇∇∇∇ϕϕϕϕ
                   (1.31) 

Which proves the relation  ( ) ( )da daϕ ϕ ϕ ϕ=T x n T x n  since the domains A are arbitrary. As a 

special case, we obtain the relation ( )det T da daϕ ϕ− =n n∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ between the area elements da   and 

daϕ by taking the Piola transform ( )det T−∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  of the unit tensor I. The relation 

( )det T da daϕ ϕ− =n n∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  then follows by expressing that, since 1ϕ =n , daϕ is also the 

Euclidean norm of the vector that appears in the left-hand side of the relation 

( )det T da daϕ ϕ− =n n∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ . 

 
Remarks. 

(1) Of course, the conclusions of Theorem (1.1) still hold if we replace the set Ω  by any sub-
domain A of Ω , in which case the corresponding area elements and outer normal vectors 
are to be under-stood as being defined along the corresponding boundaries A∂  and 

( )A Aϕ∂ = ∂ϕϕϕϕ . 

(2) While the relation between the vectors  div T  and ϕ ϕdiv T  has been established here for 
deformations ϕϕϕϕ  that are twice differentiable , the relations between the area elements 
established in Theorem (1.1) still hold under weaker regularity assumptions on the 
deformation. 

(3) The last equation in Theorem (1.1) shows that the unit outer normal vectors at the points 

( )x xϕ = ϕ= ϕ= ϕ= ϕ  and x are related by 
( )
( )
x

x
ϕ =

Cof n
n

Cof n

∇∇∇∇
∇∇∇∇

ϕϕϕϕ
ϕϕϕϕ

. We now have everything at our 
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disposal to specify how areas are transformed: If ∆  is a measurable subset of the boundary 
A∂  of a sub-domain A, the area of the deformed set ( )ϕ ϕ∆ = ∆  is given by   

Area ( ): detda da
ϕ

ϕ ϕ

∆∆

∆ = =∫ ∫ n∇ ∇∇ ∇∇ ∇∇ ∇ −Τ−Τ−Τ−Τϕ ϕϕ ϕϕ ϕϕ ϕ                             (1.32) 

 
1.4. Length element in the deformed configuration; strain tensor  
If a deformation ϕϕϕϕ  is differentiable at a point x ∈Ω , then (by definition of differentiability) we can 

write, for all points :x + ∈Ωδx  

( ) ( ) ( ) ( ) ,x x x o+ − = +δx δx δx∇∇∇∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ                                   (1.33) 

and whence 

( ) ( ) ( ) ( ) ( )2 2Tx x x x o+ − = +δx δx δx δx∇ ∇∇ ∇∇ ∇∇ ∇ΤΤΤΤϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ                        (1.34) 

The symmetric tensor 
:C = ∇ ∇∇ ∇∇ ∇∇ ∇ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ                                                       (1.35) 

found in the above expression is called in elasticity the right Cauchy-Green strain tensor. Notice 
that the associated quadratic form:  

( ) ( ) ( )3 3 2, ∈ × → =T x xR R ξ C ξ ξξ ξ ϕξ ξ ϕξ ξ ϕξ ξ ϕ∇∇∇∇                                 (1.36) 

is positive definite at all points x ∈Ω , since the deformation gradient ∇∇∇∇ϕϕϕϕ  is every where invertible 
by assumption . As expected, this quadratic form is used for computing lengths: Let 

( ) , : ,f I f Iγ = → Ω  I: compact interval of R                       (1.37) 

be a curve in the reference configuration (Fig. 1.2) . Denoting by if  the components of the mapping 

f , the length of the curve γ  is given by ( )' /f df dt= : 

length ( ) ( ) ( ){ }1/ 2
: ' ' ' ,

L L

f t dt f t f t dtγ = =∫ ∫                         (1.38) 

while the length of the deformed curve ( ):ϕγ γϕϕϕϕ  is given by 

length ( ) ( )( ) ( ) ( ){ }1/2
: ' ' ' .ij

L L

f t dt C f t f t f t dtϕγ = =∫ ∫�ϕϕϕϕ              (1.39) 

 
Consequently, the length elements dl  and dlϕ in the reference and deformed configurations may be 
symbolically written as: 

{ }1/ 2Tdl = dx dx ,  { }1/2Tdlϕ = dx Cdx                                   (1.40) 

If in particular jdt=dx e , the corresponding length element in the deformed configuration is 

{ }1/ 2

jj jdt dt= ∂C ϕϕϕϕ .  

 
Remark. In the language of differential geometry, the manifold Ω  is equipped with a Riemannian 

structure through the data of the metric tensor ( )ijC=C , often denoted ijg=g  in differential 

geometry , whose associated form, often denoted 2ds ,is called the first fundamental form of the 
manifold. For details, see e.g. Lelong Ferrand[1963], Malliavin [1972]. 
Although is has no immediate geometric interpretation, the left Cauchy-green strain tensor 

:B ∇ ∇∇ ∇∇ ∇∇ ∇ ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ                                                        (1.41) 
Which is also symmetric, is equally important; in particular, it plays an essential role in the 
representation theorem for the response function of the Cauchy stress tensor . For the time being, 
we simply notice that the two matrices  T=C F F  and T=B F F have the same  characteristic 
polynomial, since this is true in general of the products FG  and G F  of two arbitrary matrices F 
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and G of the same order. When T=G F , this result  is a direct consequence of the polar 
factorization theorem.  
 

e3

e1

2e

(x+ x)

(x)dL

x+ x

xdL

 
 

Fig. 1.2 - The length elements { }1/ 2Tdl = dx dx  and { }1/2Tdlϕ = dx Cdx  in the reference and 

deformed configurations. The tensor =C ∇ ∇∇ ∇∇ ∇∇ ∇ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ  is the right Cauchy-Green tensor. 
 
In view of showing that the tensor C is indeed a good measure of “strain” understood here in its 
intuitive sense of “change in form or size”, let us first consider a class of deformations that induce 
no “strain”: 
A  deformation is called a rigid deformation if it is of the form 

( ) 3, , ,+= + ∈ ∈x oa Q x a R Q Oϕϕϕϕ  for all ∈Ωx                 (1.42) 

where 3
+O  denotes the set of rotations in 3R , i.e,. the set of orthogonal matrices of order 3 whose 

determinant is  +1. In other words, the corresponding deformed configuration is obtained by 
rotating the reference configuration around the origin by the rotation Q  and by translating it by the 
vector a : this indeed corresponds to the idea of a “rigid” deformation, where the reference 
configuration is “moved”, but without any “strain” (Fig. 1.3). Observe that the rotation Q  may be 

performed around any point 3∈ɶx R (Fig. 1.3), since we can also write: 

( ) ( )x x= + Q x xɶ ɶϕ ϕϕ ϕϕ ϕϕ ϕ                                               (1.43) 

If ϕϕϕϕ  is a rigid deformation , then ( ) 3x += ∈Q O∇∇∇∇ϕϕϕϕ   at all points ∈Ωx , and therefore 

C = I  in Ω , i.e. , ( ) ( )T
x x I=∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ   for all ∈Ωx                  (1.44) 

It is remarkable that conversely, if C = I  in Ω  and det 0>∇∇∇∇ϕϕϕϕ , the corresponding deformation is 

necessarily rigid, as we now prove under mild assumptions . We let nO denote the set of all 
orthogonal matrices of order n. 
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Theorem (1.2) (characterization of rigid deformations): Let Ω  be an open connected subset of  
nR , and let there be given a mapping  

( ), nϕ ∈ Ω RS                                                  (1.45) 

 

(x)

(x)
a

x

Q

Qx

O

 
 

Fig. 1.3 - A rigid deformation is a translation, followed by a rotation (or viceversa), of the 
reference configuration 
 
That satisfies  

( ) ( )x x = I
ΤΤΤΤ∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  for  all ∈Ωx                                    (1.46) 

Then there exists a vector ∈ na R and an orthogonal matrix n∈Q O such that 

( )x o= +ϕϕϕϕ a Q x   for  all ∈Ωx                                   (1.47) 

Proof . (i) Let us first establish that locally , the mapping ϕϕϕϕ  is an isometry, i.e. given any point 

0x ∈Ω , there exists an open subset V such that 

0x V∈ ⊂ Ω , and ( ) ( )y x y xϕ ϕ− = −  fo all ,x y V∈                (1.48) 

Since Ω  is open, there exists 0ρ > , such that the open ball 

( ) { }0 0: ;ρ ρ= ∈ − <nB x x x xR                                  (1.49) 

is contained in Ω . The spectral norm of an orthogonal matrix is equal to 1, since it is defined for an 
arbitrary square matrix A by 

( ){ }1/ 2

: max T
i iA λ= =

Av
A A

v
                                        (1.50) 

Thus we deduce from the mean value theorem ( the ball ( )0B xρ  is a convex subset of Ω ) that  

( ) ( ) ( )] , [supz x yy x x y x y x∈− ≤ − = −∇∇∇∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ  for all ( )0,x y B xρ∈               (1.51) 
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In view of proving the opposite inequality, we observe that, by the local inversion theorem, the 
mapping ϕϕϕϕ  is locally invertible in Ω  since the matrix ( )x∇∇∇∇ϕϕϕϕ  is invertible for all ∈Ωx . In 

particular then, there exist open sets V and V ϕ containing the points 0x  and ( )0 0xϕ ϕ=x  

respectively, such that the restriction of the mapping ϕϕϕϕ  to the set V is a S  - diffeomorphism from V 

onto V ϕ , i.e., the mapping :V V ϕ→ϕϕϕϕ  is bijective, and its inverse mapping :V Vϕ →ψ  is also 
continuously differentiable. 
Without loss of generality, we may assume that the set V is contained in the ball ( )0B xρ  and that 

the set V ϕ is convex (otherwise we replace the set V by the inverse image by ϕϕϕϕ  of an open ball 

container in ( )( )0V B xϕ
ρ∩ϕϕϕϕ  and centred at the point 0xϕ ). Since 

( )( )x x=ψ ϕϕϕϕ  for all x V∈                                           (1.52) 

We deduce that the mapping ψ  satisfies 

( ) ( ) 1
x xϕ −=ψ∇ ∇∇ ∇∇ ∇∇ ∇ϕϕϕϕ  for all ( )x xϕ = ϕϕϕϕ , x V∈                        (1.53) 

As a consequence, the  matrix ( )xϕψ∇∇∇∇  is also orthogonal for all points x Vϕ ϕ∈ . Since the set V ϕ  

is convex, another application of the mean value theorem shows that 

( ) ( )y x y xϕ ϕ ϕ ϕ− ≤ −ψ ψ   for all ,x y Vϕ ϕ ∈                          (1.54) 

This inequality can be equivalently written as 

( ) ( )y x y x− ≤ −ϕ ϕϕ ϕϕ ϕϕ ϕ  for all ,x y V∈                                      (1.55) 

(ii) Let us next show that locally, the matrix ∇∇∇∇ϕϕϕϕ  is a constant, in the sense that the matrix ( )x∇∇∇∇ϕϕϕϕ  

is independent of x for all x V∈ . To do this, we write the property established in step (i) in the 
equivalent form 

( ) ( ) ( )( ) ( ) ( )( ) ( )( ), : 0k k k k k k k kF x y y x y x y x y xϕ ϕ ϕ ϕ= − − − − − =       (1.56) 

for all ,x y V∈ . For each x V∈ , the function  ( ),iy V G x y∈ →  is differentiable, with 

( ) ( ) ( ) ( ) ( )( ) ( )1
, : , 0

2
k

i k k ik k k
i i

F
G x y x y y y x y x

y y

ϕ ϕ ϕ δ∂∂= = − − − =
∂ ∂

       (1.57) 

For all, ,x y V∈ . For each y V∈ , each function ( ),ix V G x y∈ →  is differentiable , with 

( ) ( ) ( ), 0,i k k
ij

j i i

G
x y y x

x y x

ϕ ϕ δ∂ ∂ ∂= − + =
∂ ∂ ∂

                               (1.58) 

i.e., 

( ) ( )x x = I
ΤΤΤΤ∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ    for all ,x y V∈ .                                (1.59) 

Letting 0y x= , we obtain 

( ) ( )0x x=∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  for all x V∈ .                                    (1.60) 

(iii) It follows from step (ii) that the mapping 3: MΩ →∇∇∇∇ϕϕϕϕ  is differentiable and that its derivative 
vanishes in Ω ; equivalently, the mapping ϕϕϕϕ  is twice differentiable and its second Frechet 
derivative vanishes. Because the set Ω  is connected( this assumption has not been used so far), a 
classical result from differential calculus ( see e.g. Schwartz [1967, p.266]) shows that the mapping 
ϕϕϕϕ  is necessarily of the form 

( )x o= +ϕϕϕϕ a Q x  ,∈ ∈n na R Q M   for  all ∈Ωx                     (1.61) 

So that its gradient Q  is the same constant ( )0x∇∇∇∇ϕϕϕϕ  in all the set Ω . Thus the matrix ( )0xQ = ∇= ∇= ∇= ∇ϕϕϕϕ  

is orthogonal since ( ) ( )0 0x x = ΙΤΤΤΤ∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  by assumption. 
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Remark. If we are provided with the additional assumption that ( )det 0x >∇∇∇∇ϕϕϕϕ  for at least one point 

∈Ωx  (and consequently for all points in the connected set Ω ), we can conclude that the 
orthogonal matrix Q  obtained in the theorem is a rotation (i.e., det 1=Q ). Notice also that if the 

mapping ϕϕϕϕ  is continuous up to the boundary, the relation ( )x o= +ϕϕϕϕ a Q x  holds for all points 

∈Ωx . 
The result of theorem (1.2) can be viewed as a special case (let ψ be any rigid deformation  in 
Theorem (1.3) of the following result, which shows that two deformations corresponding to the 
same tensor C can be obtained from one another by composition with a rigid deformation. 
 
Theorem (1.3) : Let Ω  be an open connected subset of nR , and let here be given two mappings  

( );∈ Ω nψ S Rϕ,ϕ,ϕ,ϕ,                                                   (1.62) 

Such that  

( ) ( ) ( ) ( )T T∇ ⋅∇ = ∇ ⋅∇ϕ ϕ ψ ψϕ ϕ ψ ψϕ ϕ ψ ψϕ ϕ ψ ψx x x x  for all x ∈Ω ,                (1.63) 

:ψ Ω → nR is injective, and let ( ) 0∇ ≠ψψψψ x    for all x ∈Ω . 

Then here exist  a vector ∈ na R  and an orthogonal matrix nO∈Q  such that : 

( ) ( )x = + xϕ ψϕ ψϕ ψϕ ψa Q   for all x ∈Ω .                                  (1.64) 

Proof. Since the mapping ψψψψ  is injective and let ( ) 0∇ ≠ψψψψ x  for all x ∈Ω , the inverse mapping 

( ): Ω → Ω−1−1−1−1ψ ψψ ψψ ψψ ψ                                               (1.65) 

Is also continuously differentiable and it satisfies 

( )∇ ∇−1−1−1−1ψ ξ ψ = Ιψ ξ ψ = Ιψ ξ ψ = Ιψ ξ ψ = Ι  for all ( ) , x ∈Ωxξ = ψξ = ψξ = ψξ = ψ                        (1.66) 

Besides, the set ( )Ωψψψψ  is open by the invariance of domain theorem , and connected since it is the 

image of a connected set by a continuous mapping. The composite mapping  

( )1: :θ ϕ ψ ψ−= Ω →�
nR                                       (1.67) 

Is such that 

( ) ( ) ( ) ( ) ( )1 1
: xξ ϕ ψ ξ ϕ ψ− −∇ = ∇ ⋅∇ = ∇ ⋅∇x xθθθθ  for all ( ) , x ∈Ωxξ = ψξ = ψξ = ψξ = ψ ,    (1.68) 

and consequently , by assumption, 

( ) ( ) ( ) ( ) ( ) ( ) 1T T Tϕ ϕ− −∇ ∇ = ∇ ∇ ∇ ∇ =x x x x Iθ ξ θ ξ ψ ψθ ξ θ ξ ψ ψθ ξ θ ξ ψ ψθ ξ θ ξ ψ ψ   for all ( ) , x ∈Ωxξ = ψξ = ψξ = ψξ = ψ , (1.69) 

We may therefore apply Theorem 1 to the mapping θθθθ : There exists a vector ∈ na R and an 
orthogonal matrix nO∈Q  such that 

( ) = +a Q �θ ξ ξθ ξ ξθ ξ ξθ ξ ξ  for all ( ) , x ∈Ωxξ = ψξ = ψξ = ψξ = ψ                             (1.70) 

But this is just another equivalent statement of the conclusion of the theorem. 
The previous two theorems are useful for understanding the role played by the tensor C. First, 
theorem 1.1 shows that the difference: 

2 := −E C I                                                    (1.71) 
Is a measure of the “deviation” between a given deformation and a rigid deformation, since =C I  if 
and only if the deformation is rigid. Secondly, theorem 1.3 shows that the knowledge of the tensor 
field 3: >Ω →C S  completely determines the deformation, up to composition with rigid deformations 

(the question of proving the existence of deformations for which the associated tensor field 
3: >Ω →C S is equal to a given tensor field is quite another matter. These considerations are 

illustrated in figure 1.4. The tensor E  is called the Green-St Venant strain tensor. Expressed in 
terms of the displacement gradient u∇∇∇∇ , in lieu of the deformation gradient uϕϕϕϕ∇ = Ι + ∇∇ = Ι + ∇∇ = Ι + ∇∇ = Ι + ∇  (recall that 

i d uϕϕϕϕ = += += += + ), the strain tensor C  becomes  

2T T= + + + = +C Ι u u u u Ι EΤΤΤΤϕ ϕ =ϕ ϕ =ϕ ϕ =ϕ ϕ =∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇                       (1.72) 
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Fig. 1.4 -  The right Cauchy-Green tensor C  is equal to Ι  if and only if the deformation is rigid. 
Two deformations corresponding to the same tensor C differ by a rigid deformation. 
 
With  

( ) ( )1
:

2
T T= = + +E u E u u u u∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇                                 (1.73) 

For future use, we record the formulas: 

( )1
,

2ij i k k ij i j j i i k j kC E u u u uϕ ϕ= ∂ ∂ = ∂ + ∂ + ∂ ∂                         (1.74) 

where ,i i i iuϕ e u eϕ = =ϕ = =ϕ = =ϕ = =  

Remarks.  
(1) Both theorems 1.2 and 1.3 can be rephrased in terms of the Green-St Venant strain tensor, 

using the equivalences 
T Ιϕ ϕ =ϕ ϕ =ϕ ϕ =ϕ ϕ =∇ ∇∇ ∇∇ ∇∇ ∇  in ( )Ω ⇔ =E u 0  in Ω , , ,= =id u ψ i d vϕϕϕϕ + ++ ++ ++ +             (1.75) 

T Tψ ψϕ ϕ =ϕ ϕ =ϕ ϕ =ϕ ϕ =∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇   in ( ) ( )Ω ⇔ =E u E v  in Ω ,  , ,= =id u ψ i d vϕϕϕϕ + ++ ++ ++ +    (1.76) 

(2) The introduction of the factor ½ in the definition of the tensor E is motivated by the requirement 

that its “first order” part  ( )1
2

T +u u∇ ∇∇ ∇∇ ∇∇ ∇  coincide with the linearized strain tensor , which played a 

key role in the earlier linearized theories that prevailed in elasticity. Besides, the tensor ( )1/ 2 −C I  

was sometimes advocated a san alternative measure of strain and the factor ½ had the effect that the 

first order parts of both tensor E  and ( )1/ 2 −C I  coincide. 

(3) The tensor E  is also known in the literature as the Green-Lagrange strain tensor, or the Almansi 
strain tensor . Let us finally identify the subset of 3S  spanned by the Green-St Venant strain tensor  

( )1
2

T= +E F F I  when the matrix F varies in the set 3
+M : 
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Theorem 1.4  The set  

( ) ( ) 3 31
: ;

2
T

+
 = − ∈ ∈ 
 

V 0 F F I S F M                                     (1.77) 

Is a neighbourhood of the origin in 3S . 
Proof . Since any matrix 3

>∈C S   can be written as 1/2 1/ 2=C C C  , the set ( )V 0  can be also written 

as  

 ( ) ( ) ( )3 3 1 31
: ; ,

2
f −

> >
 = − ∈ ∈ = 
 

V 0 C I S C S S                             (1.78) 

where f  is the continuous mapping ( )3 3: 2 .f ∈ → + ∈E S I E S Since the set 3
>S  is open 3S  and 

since ( )V∈0 0 , the conclusion follows. 
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CHAPTER II 
STATIC   FOUNDATIONS 

 
2.1.  The equations of equilibrium  
A body occupying a deformed configuration  ϕΩ , and subjected to applied body forces in its 
interior ϕΩ  and to applied surfaces forces on a portion ( )1 1

ϕ ϕΓ = Γ  of its boundary , is in static 

equilibrium if the fundamental  stress principle of Euler and Cauchy is satisfied. This axiom, which 
is the basis of continuum mechanics, implies the celebrated Cauchy theorem , according to which 
there exists a symmetric tensor field 3:ϕ ϕΩ →T S  such that 

1

div in

in

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− = Ω


= Γ

T f

T n g
                                                  (2.1) 

where ϕf  and ϕg  are the densities of the applied body and surface forces respectively, and ϕn is the 

unit outer normal vector along 1
ϕΓ . These equation are called the equilibrium over the deformed 

configuration , and the tensor ϕT is called the Cauchy stress tensor. 
A remarkable feature of these equations is their “divergence structure”, which makes them 
amenable to a variational formulation ; a disadvantage is that they are expressed in terms of the 
unknown ( )ϕ ϕ=x x . In order to obviate  this difficulty while retaining the divergence structure of 

the equations, we use the Piola transform 3: Ω →T M  of the Cauchy stress tensor field, which is 

defined by ( ) ( ) ( )Cofϕ ϕ=T x T x xϕϕϕϕ∇∇∇∇ . In this fashion, it is found that the equilibrium equations 

over ϕΩ  are equivalent to the equilibrium equations over the reference configuration ,Ω  

1

div in

in

− = Ω
 = Γ

T f

Tn g
                                                   (2.2) 

Where n  denotes the unit outer normal vector along 1Γ , and the fields 3: Ω →f R  and  3
1: Γ →g R  

are related to the fields 3:ϕ ϕΩ →f R  and 3
1:ϕ ϕΓ →g R  by the simple formulas  dx dxϕ ϕ=f f  and 

dx dxϕ ϕ=g g . Because they are still in divergence form, these equations can be given a variational 
formulation, known as the principle of virtual work. This principle plays a key role as the starting 
point of the theory of hyperelastic materials , as well in the  asymptotic  theory  of two-dimensional 
plate models. 
The tensor T  is called the first Piola-Kirchhoff stress tensor. We also  introduce the symmetric 
second Piola-Kirchhoff stress tensor 1− TϕϕϕϕΣ = ∇Σ = ∇Σ = ∇Σ = ∇ , which naturally arises in the expression  of the 
constitutive equations of elastic materials. 
We conclude this chapter by describing various realistic examples of applied forces, corresponding 
to densities f  and g  of the form 

( ) ( )( )ˆ , , ,x= ∈Ωf x f x xϕϕϕϕ   and  ( ) ( )( ) 1ˆ , , x= ∈Γg x g x xϕϕϕϕ                 (2.3) 

For given mapping ̂f  and ̂g . 

We assume that in the deformed configuration ϕΩ associated with an arbitrary deformation ϕ , the 
body is subjected to applied forces of two types: 

(i) applied body forces , defined by a vector field 
3: ,ϕ ϕ= Ω → Rf                                                    (2.4) 

Called the density of the applied body forces per unit volume in the deformed configuration ; 
(ii)  applied surface forces, defined by a vector field 

3: ,Rϕ ϕ= Ω →g                                                   (2.5) 

on a daϕ -measurable subset 1
ϕΓ  of the boundary  

:ϕ ϕΓ = ∂Ω ,                                                        (2.6) 
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called the density of the applied surface force per unit area in the deformed configuration. 
Let :ϕ ϕρ Ω → R  denote the mass density in the deformed configuration , so that the mass of every 

dxϕ - measurable subset Aϕ of ϕΩ  is given by the integral ( )
A

x dx
ϕ

ϕ ϕ ϕρ∫ . We assume that   

( ) 0xϕ ϕρ >  for all xϕ ϕ∈Ω                                                  (2.7) 

The applied body forces can be equivalently defined by their density 3:ϕ ϕΩ →b R  per unit mass in 
the deformed configuration, which  is related to the density ϕf  by the equation 

f ϕ ϕ ϕρ= b                                                             (2.8) 
The applied forces describe the action of the outside world on the body: An elementary force 

( )x dxϕ ϕf  is exerted on the elementary volume dxϕ  at each point xϕ  of the deformed 

configuration. For example, this is the case of the gravity field, for which ( ) ( ) 3x g xϕ ϕ ϕ ϕρ= −f e  

for all xϕ ϕ∈Ω  (assuming that the vector 3e  is vertical and oriented “upward”), where g  is the 

gravitational constant. Another example is given by the action of electrostatic forces  

Likewise, an elementary  force ( )x daϕ ϕ ϕg  is exerted on the elementary area daϕ  at each point xϕ  

of the subset 1
ϕΓ of the boundary of the deformed configuration (Fig 2.1). Such forces generally 

represent the action of another body (whatever its nature its may be) along the portion 1
ϕΓ  of the 

boundary. 

 
 

Fig. 2.1 – Applied forces comprise applied body forces ( ) ,x dx xϕ ϕ ϕ ϕ∈Ωf  and applied surface 

forces ( ) 1,x dx xϕ ϕ ϕ ϕ∈Γg . The stress principle of Euler and Cauchy asserts in addition the 

existence of elementary surface forces ( ), ,da x Aϕ ϕ ϕ ϕ ϕ ϕ∈∂t x n , along the boundary Aϕ∂ , with  

unit outer normal vector ϕn , of any sub-domain Aϕ of the deformed configuration ϕΩ . 
 
Remark. In order to avoid  introducing too many notations, we use the same symbol to denote 
distinct quantities in the same figure. For instance in Fig. 2.1 the symbol xϕ stands for three 
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different points, and the symbols daϕ and ϕn  stand for two different area elements and normal 
vectors. Applied surface forces that are only “partially” specified (for instance, only the normal 
component ( )xϕ ϕ⋅g n  could be prescribed along 1

ϕΓ ) are not excluded from our analysis, and 

indeed, examples of such “intermediate” cases are considered; but in order to simplify the 
exposition , we solely considered at this stage the “extreme” cases where either the density ϕg  is 

fully known on 1
ϕΓ , or is left completely unspecified, as on the remaining portion 

0 1:ϕ ϕ ϕΓ = Γ − Γ                                                 (2.9) 

Of the boundary of the deformed configuration. This being the case, we shall see that it is the 

deformation itself that should be specified on the corresponding portion ( )1
0 0: ϕϕ −Γ = Γ  of the 

boundary of the reference configuration, in order that the problem be well posed. 
 
2.2. The stress principle of Euler and Cauchy  
Continuum mechanics for static problems is founded on the following axiom, named after the 
fundamental contributions of Euler [1757,1771] and Cauchy [1823,1827]; for a brief story, see 
footnote (1) in Truesdell & Toupin [1960, sect. 200]. The exterior product in 3R  is denoted ∧ . 
 
Axiom 1 (stress principle of Euler and Cauchy) Consider a body  occupying  a deformed 
configuration ϕΩ , and subjected to applied forces represented by densities 3: ,Rϕ ϕ= Ω →f  and 

3:ϕ ϕ= Ω → Rg . Then there exists a vector field 
3

1: ,S Rϕ ϕΩ × →t  where { }3
1 ; 1S v= ∈ =vℝ                      (2.10) 

Such that: 
(a) For any sub-domain Aϕ  of ϕΩ , and at any point 1 Aϕ ϕ ϕ∈Γ ∩ ∂x where the unit outer normal 

vector ϕn  to 1 Aϕ ϕΓ ∩ ∂  exists :  ( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n g x  

(b) Axiom of force balance: For any sub-domain Aϕ  of ϕΩ :  

( ) ( ),
A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

+ =∫ ∫f x t x n 0 ,                            (2.11) 

where ϕn  denotes the unit outer normal vector along Aϕ∂  
(c) Axiom of moment balance : For any sub-domain Aϕ  of ϕΩ : 

( ) ( ),
A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

∧ + ∧ =∫ ∫ox f x ox t x n 0                  (2.12) 

The stress principle thus first asserts the existence of elementary surface forces ( ), daϕ ϕ ϕ ϕt x n  

along the boundaries of all domains of the reference configuration (Fig.2.1). 
Secondly, the stress principle asserts that at a point ϕx of the boundary Aϕ∂  of a sub-domain Aϕ , 
the elementary surface force depends on the sub-domain Aϕ , only via the normal vector ϕn  to Aϕ∂  
at ϕx . While it would be equally conceivable a priori that the elementary  surface force at ϕx  be 
also dependent on other geometrical properties of the sub-domain Aϕ , for instance the curvature of 

Aϕ∂ at ϕx , etc. , it is possible to rigorously rule out such further geometrical dependences by 
constructing a general theory of surfaces forces, as shown by Noll [1959] (see also Gurtin & 
Williams [1967], Ziemer [1983]) 
Thirdly, the stress principle asserts that  any sub-domain Aϕ  of the deformed configuration ϕΩ , 
including ϕΩ  itself, is in static equilibrium, in the sense that the torsor formed by the elementary 

forces ( ), ,da x Aϕ ϕ ϕ ϕ ϕ ϕ∈∂t x n , ϕn  normal to Aϕ∂  at ϕx , and the body forces ( ) dϕ ϕ ϕf x x , 

Aϕ ϕ∈x , is equivalent to zero. This means that its resultant vector vanishes (axiom of force 
balance) and that its resulting moment with respect to the origin (and thus with respect to any other 
point, by a  classical property of torsos) vanishes (axiom of moment balance). 
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Hence the stress principle mathematically express, in the form of an axiom, the intuitive idea that 
the static equilibrium of any sub-domain Aϕ of ϕΩ , already subjected to given applied body forces 

( ) dϕ ϕ ϕf x x , Aϕ ϕ∈x , and (possibly) to given applied surface forces ( )daϕ ϕ ϕg x  at those points 

1 Aϕ ϕ ϕ∈Γ ∩ ∂x  where the outer normal vector to 1 Aϕ ϕΓ ∩ ∂  exists, is made possible by the added 

effect of elementary surfaces forces of the specific form indicated, acting on the remaining part of 
the boundary Aϕ∂ . 
Remark. Gurtin [1981a, 1981b] calls system of forces the set formed by the applied bodu forces, 
corresponding to the vector field 3: ,ϕ ϕ= Ω → Rf and by  the surface forces, corresponding to the 

vector field 3
1:ϕ ϕ= Ω × →S Rt . 

Let ϕx  be a point of the deformed configuration. The vector ( ),ϕ ϕ ϕt x n  is called the Cauchy stress 

vector across an oriented surface element with normal ϕn , or the density of the surface force per 
unit area in the deformed configuration. 
 
2.3.   Cauchy’s theorem; The Cauchy stress tensor  
We now derive consequences of paramount importance from the stress principle. The first one, due 
to Cauchy [1823,1827a] , is one of the most important results in continuum mechanics. It asserts 

that the dependence of the Cauchy stress vector ( ),ϕ ϕ ϕt x n  with respect to its second argument 

1S∈n  is linear, i.e., at each point ϕ ϕ∈Ωx , there exists a tensor ( ) 3ϕ ϕ ∈T x M  such that 

( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n T x n  for all 1S∈n ; the second one asserts that at each point ϕ ϕ∈Ωx , the tensor 

( )ϕ ϕT x  is symmetric; the third one, again due to Cauchy [1827b, 1828], is that  the tensor field 
3:ϕ ϕΩ →T M  and the vector fields 3: ,Rϕ ϕ= Ω →f  and 3

1:ϕ ϕ= Γ → Rg  are related by a partial 

differential equation in ϕΩ , and by a boundary condition on 1
ϕΓ , respectively. 

 
Theorem 2.1 (Cauchy’s theorem): Assume that the applied body force density 3: ,ϕ ϕ= Ω → Rf  is 
continuous, and that the Cauchy stress vector field  

( ) ( ) 3
1: , ,ϕ ϕ ϕ ϕ ϕ ϕ∈Ω × → ∈St x n t x n R                              (2.13) 

Is continuously differentiable with respect to the variable ϕ ϕ∈Ωx  for each 1S∈n  and continuous 

with respect to the variable 1S∈n  for each ϕ ϕ∈Ωx . Then the axioms of force and moment balance 

imply that there exists a continuously differentiable tensor field 

( ) 3:ϕ ϕ ϕ ϕ ϕ∈Ω → ∈T x T x M ,                                  (2.14) 

such that the Cauchy stress vector satisfies 

( ) ( ),ϕ ϕ ϕ ϕ=t x n T x n   for all ϕ ϕ∈Ωx  and all 1S∈n               (2.15) 

and such that  

( ) ( )divϕ ϕ ϕ ϕ ϕ− =T x f x  for all ϕ ϕ∈Ωx ,                                 (2.16) 

( ) ( )Tϕ ϕ ϕ ϕ=T x T x  for all ϕ ϕ∈Ωx ,                                   (2.17) 

( ) ( )ϕ ϕ ϕ ϕ ϕ=T x n g x   for all 1
ϕ ϕ∈Γx                                    (2.18) 

where ϕn  is the unit outer normal vector along 1
ϕΓ . 

Proof. Let ϕx  be a fixed point in ϕΩ . Because the set ϕΩ  is open, we can find, as a particular sub-
domain of ϕΩ , a tetrahedron T with vertex ϕx , with three faces parallel to the coordinate planes, 
and with a face F whose normal vector i in=n e  has all its components 0in >  . Let iv  denote the 
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vertices other than ϕx , as indicated in the figure, and let iF  denote the face opposite to the vertex 

iv , so that area .i iF n area F= The axiom of force balance over the tetrahedron T  reads 

( ) ( ),
T T

y dy y daϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

+ =∫ ∫f t n 0                                   (2.19) 

Writing  this relation component wise, with 

( ) ( ) ( ) ( ), , , ,i i i iy f y y t yϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= =f e t n n e                        (2.20) 

And using the mean value theorem for integrals (which can be applied to the integral on T∂  since 

the four functions ( ),y T t yϕ ϕ ϕ ϕ∈∂ → n  and ( ), jy T t yϕ ϕ ϕ∈∂ → e  are continuous by assumption) 

, we obtain for each index I,  

( ) ( ) ( ), supi i i ij j j i
y T

y y n area F f y volϕ ϕ ϕ

∈

+ − ≤t n t e T ,                  (2.21) 

 
 

Fig. 2.2  - Cauchy’s celebrated proof of Cauchy’s theorem 
 
for appropriate points ,i ij jy F y F∈ ∈ . Keeping the vector n  fixed, let the vertices iv  coalesce 

into the vertex xϕ . Using again the continuity of the vector field ( ),xϕ ϕt n  with respect to the first 

variable xϕ , and using the relation ( )( )3/ 2
volT c area F= n  coupled with the bound of the applied 

body forces density, we obtain : 

( ) ( ), ,j jx n t xϕ ϕ ϕ ϕ= − −t n e                                              (2.22) 

Using next the continuity with respect to the second variable, let n  approach a particular basis 
vector je  in the above relation; we obtain in this fashion: 

( ) ( ), ,j jx xϕ ϕ ϕ ϕ= − −t e t e                                              (2.23) 

It follows that the relation 

( ) ( ), ,j jx n xϕ ϕ ϕ ϕ= −t n t e                                              (2.24) 

Also holds if some, or all, components in  are <0 (the case 2 0n <  is shown in fig. 2.1; hence it 

holds for all points xϕ ϕ∈Ω  and all unit vectors 1S∈n . We now define functions :ϕ ϕΩ →ijT R  by 

letting 

( ), j ij ix Tϕ ϕ ϕ=t e e  for all xϕ ϕ∈Ω ,                                    (2.25) 
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so that ( ) ( ), ij j ix T x nϕ ϕ ϕ ϕ=t n e , and thus  

( ) ( ),i ij jx T x nϕ ϕ ϕ ϕ=t n  for all xϕ ϕ∈Ω , 1S∈n                                (2.26) 

Therefore if we define a tensor ( )ϕ ϕT x  by 

( ) ( ): ,ijTϕ ϕ ϕ ϕ=T x x                                                    (2.27) 

The equations ( ) ( ),i ij jx T x nϕ ϕ ϕ ϕ=t n  are equivalent to the vector equation  

( ) ( ),xϕ ϕ ϕ ϕ= ⋅t n T x n                                                  (2.28) 

The continuity assumptions with respect to both variables ϕx  and n  then show that this relation, 
which has been so far established for points ϕx  in open  set ϕΩ and for vectors  1i in S= ∈n e  with 

0in ≠ , holds in fact  for all xϕ ϕ∈Ω  and all 1S∈n . The relations ( ) ( ),i ij ix T xϕ ϕ ϕ ϕ=t n e  also show 

that the smoothness of the field 3:ϕ ϕΩ →T M  is exactly that of the Cauchy stress vector with 
respect to the first variable ϕ ϕ∈Ωx . 
The divergence theorem for tensor fields applied to the tensor ϕT  implies that the surface integrals 
appearing in the axiom of force balance can be transformed into volume integrals: Given an 
arbitrary sub-domain Aϕ ϕ⊂ Ω , we can write: 

( ) ( ) ( ),
A A A

x da x da x dx
ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
∂ ∂

= =∫ ∫ ∫t n T n div T                 (2.29) 

So that the axiom of force balance implies that 

( ) ( ){ } 0
A

x x dx
ϕ

ϕ ϕ ϕ ϕ ϕ ϕ+ =∫ div T f                                     (2.30) 

For all sub-domains Aϕ ϕ⊂ Ω ; therefore, 

( ) ( )x xϕ ϕ ϕ ϕ ϕ+ =div T f 0   for all ϕ ϕ∈Ωx                               (2.31) 

The surface integrals appearing in the axiom of moment balance can be likewise transformed into 
volume integrals by using Green’s formula : For i j≠ , we have : 

( ) ( ){ } ( ) ( ){ }
( ) ( ){ }

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

, ,j i i j j ik i jk k

A A

k j ik i jk

A

jk ik ik jk j k ik i k jk

A A

ik jk j i i j

A A

x t x x t x da x T x x T x n da

x T x x T x dx

T x T x dx x T x x T x dx

T x T x dx x f x x f x dx

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

δ δ

∂ ∂

− = − =

∂ − =

− + ∂ − ∂ =

− − −

∫ ∫

∫

∫ ∫

∫ ∫

n n

   (2.32) 

Where in the last equality we have taken into account the equation ( ) ( )x xϕ ϕ ϕ ϕ ϕ+ =div T f 0 , that 

was just obtained. Thus the axiom of moment balance implies that 

( ) ( ){ } 0ik jk

A

T x T x dx
ϕ

ϕ ϕ ϕ ϕ ϕ− =∫                                         (2.33) 

For all sub-domains Aϕ of ϕΩ , and consequently ( ) ( )T
x xϕ ϕ ϕ ϕ=T T  for all ϕ ϕ∈Ωx . 

The boundary condition ( ) ( )x xϕ ϕ ϕ ϕ ϕ⋅ =T n g  for all 1xϕ ϕ∈Γ  is an immediate consequence of the 

definition of the Cauchy stress vector and of its relation with the tensor ϕT . 
Remarks. 

(1) The arguments showing the existence of the tensor field 3:ϕ ϕΩ →T M  and the validity of 

the relation  ( ) ( ),xϕ ϕ ϕ ϕ= ⋅t n T x n  still hold if the Cauchy stress vector ( ),xϕ ϕt n  is only 

assumed to be separately continuous with respect to each variable xϕ  and n  ( in which case 
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the mapping 3:ϕ ϕΩ →T M  in only continuous ). Besides, these results, as well as the 

equation ( ) ( )x xϕ ϕ ϕ ϕ ϕ+ =div T f 0 , are consequences of the axiom of force balance only. 

(2) On the other hand, the proof given here of the symmetry of the tensor ( )ϕ ϕT x  (a property 

that a priori has noting to do with a smoothness assumption) requires that the vector 

( ),xϕ ϕt n  be continuously differentiable with respect to the variable xϕ . The reader 

interested in these aspects is referred to a basic paper of Gurtin & Martins [1976] about 
Cauchy’s theorem, where it is shown how the smoothess assumption made in theorem 1 
(Cauchy’s theorem) can be considerably weakened. See also Gurtin, Misel & Williams 
[1968], Martins [1976]. 

 
The symmetry tensor ϕT  is called  the Cauchy stress tensor at the point ϕ ϕ∈Ωx . It is helpful to 

keep in mind the interpretation of its elements ( )ij
ϕ ϕT x : Since ( ) ( ), j ij ixϕ ϕ ϕ ϕ= ⋅t e T x e , the elements 

of the j-th row of the tensor ( )xϕ ϕT  represent the components of the Cauchy stress vector 

( ),xϕ ϕt n   at the point ϕx  corresponding to the particular choice j=n e  (cf. fig. 2.2 where  the case 

j=1 is considered). The knowledge of the three vectors ( ), jxϕ ϕt e  in turn  completely determines 

the Cauchy stress vector ( ),xϕ ϕt n  for an arbitrary  vector 1i in S= ∈n e , since  

( ) ( ), ,j jx n xϕ ϕ ϕ ϕ=t n t e                                          (2.37) 

This observation is used in the drawing of figures (as in fig. 2.3), where 
 

e3

e

2e

xda T21 2e

T11 1e

T31 3e

t ( )x e1, = Ti1 e

 
 

Fig. 2.3 -  Interpretation of the elements 1i
ϕT  of the Cauchy stress tensor ( )ijTϕ ϕ=T  

 
The Cauchy stress vector is often represented on three mutually perpendicular faces of a rectangular 
parallelepiped. The following three special cases of Cauchy stress tensors are particularly worthy of 
interest (cf. fig, 2.3, where in each case it is assumed that  the Cauchy stress tensor is constant in the 
particular region considered). First, if  
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( ) ,xϕ ϕ π π= − ∈T I ℝ ,                                       (2.38) 

The Cauchy stress tensor as pressure, and the real number π  is also called a pressure . In this case, 
the Cauchy stress vector: 

( ),xϕ ϕ π= −t n n                                             (2.39) 

Is always normal to the elementary surface element, its length is constant, 
 

   
 

Fig. 2.4 - Three important special case of Cauchy stress tensor: (a) Pressure ;ϕ π= −T I  (b) Pure 

tension in the direction : ;ϕ τ= ⊗e T e e  (c) Pure shear relative to the directions e and 

( ): ϕ σ= ⊗ + ⊗f T e f f e  

 
And it is directed inward if π  is <0 (Fig. 2.3 a). Secondly, if  

( ) 3, , , 1,ϕ ϕ τ τ= ⊗ ∈ ∈ =xT e e R e R e                                (2.40) 

The Cauchy stress tensor is a pure tension if τ  is >0, or  a pure compression if τ  is <0, in the 
direction e, with tensile stress τ . In this case, the Cauchy stress vector 

( ) ( ),xϕ ϕ τ= − ⋅t n e n e,                                           (2.41) 

which is always parallel to the vector e , is directed outward if 0τ > , or inward if 0τ < , on the 
faces with normal =n e or = −n e, and it vanishes on the faces whose normal is orthogonal to the 
vector e (Fig. 2.3) . Thirdly (Fig. 2.3), if 

( ) ( ) 3, , , , 1, 0,ϕ ϕ σ σ= ⊗ + ⊗ ∈ ∈ = = ⋅ =xT e f f e R e f R e f e f          (2.41) 

The Cauchy stress tensor is a pure shear , with shear stress τ , relative to the directions e and  f . In 
this case, the Cauchy stress vectors given by  

( ) ( ) ( ){ },xϕ ϕ σ= ⋅ + ⋅t n f n e e n f                                     (2.42) 

The Cauchy stress tensors corresponding to these three special cases are respectively given by (for 
definiteness, we assume that 1=e e  and 2=f e : 
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0 0 0 0 0 0

0 0 , 0 0 0 , 0 0 ,

0 0 0 0 0 0 0 0

π τ σ
π σ

π

−     
     −     
     −     

                              (2.43) 

 
2.4. The equations of equilibrium and the principle of virtual work in the deformed 
configuration  
As shown in Theorem 1, the axioms of force and moment balance imply that the Cauchy stress 
tensor field 3:ϕ ϕΩ →T S  satisfies a boundary value problem expressed in terms of the Euler 
variable xϕ  over the deformed configuration , comprising the partial differential equation 

div inϕ ϕ ϕ ϕ− = ΩT f  and the boundary condition 1onϕ ϕ ϕ ϕ= ΓT n g . A remarkable property of 

this boundary value problem, due to its “ divergence form”, is that it can be given a variational 
formulation, as we now show . In what follows, i iu v⋅ =u v  denotes the Euclidean vector inner 

product, T
ij jiA B tr= =A : B A B  denotes the matrix inner product, and ϕ ϕθθθθ∇∇∇∇  denotes the matrix 

( )j i
ϕ ϕθ∂ . 

Theorem 2.2 : The boundary value problem: 

1

div in

on

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− = Ω
= Γ

T f

T n g
                                          (2.44) 

Is formally equivalent to the variational equations : 

1

: dx dx dx
ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕθ
Ω Ω Γ

∇ = ⋅ + ⋅∫ ∫ ∫T f gθ θθ θθ θθ θ ,                     (2.45) 

valid for all smooth enough vector fields: 3: Rϕ ϕΩ →θθθθ cthat satisfy 

1:oonϕ ϕ ϕ ϕ= Γ = Γ − Γ0θθθθ                                     (2.46) 

Proof. The equivalence  with the variational equations rests on another Green’s formula (whose 
proof is again a direct application of the fundamental Green formula; ). For any smooth enough 
tensor filed 3:ϕ ϕΩ →T M  and vector field 3:ϕ ϕΩ → Rθθθθ  

:div dx dx da
ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

Ω Ω Γ

⋅ = − + ⋅∫ ∫ ∫T T T nθ θ θθ θ θθ θ θθ θ θ∇∇∇∇                (2.47) 

Thus, if we integrate over the set ϕΩ  the inner product of the equation divϕ ϕ ϕ+ =T f 0  with a 
vector field ϕθθθθ  that vanishes on 0

ϕΓ , we obtain: 

( )

{ }
1

:

div dx

dx da

ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

Ω

Ω Γ

= + ⋅ =

− ∇ + ⋅ + ⋅

∫

∫ ∫

0 T f θ

T θ f θ T n θθθθ
                   (2.48) 

And the variational equations follow, since 1onϕ ϕ ϕ ϕ= ΓT n g . Conversely, assume that the 

variational equations  are satisfied . They reduce to  

: dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕθ
Ω Ω

∇ = ⋅∫ ∫T f θθθθ   if ,onϕ ϕ= Γ0θθθθ                  (2.49) 

And since, by the above Green formula, 

: dx div dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕθ
Ω Ω

∇ = −∫ ∫T T  if ,onϕ ϕ= Γ0θθθθ                (2.50) 

We deduce that divϕ ϕ ϕ+ =T f 0  in ϕΩ . Taking this equation into account and using the same Green 
formula, we find that the variational equations reduce to the equations 

1 1

da da
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

Γ Γ

⋅ = ⋅∫ ∫T n gθ θθ θθ θθ θ ,                                        (2.51) 

which imply that the boundary condition ϕ ϕ ϕ=T n g  holds on 1
ϕΓ . 
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The equations  

( )
1

,

,

,

T

div in

in

on

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− = Ω

= Ω

= Γ

T f

T T

T n g

                                              (2.52) 

are called the equations of equilibrium in the deformed configuration, while the associated 
variational equations of  Theorem 2.2 constitute the principle of virtual work in the deformed 
configuration . 
 
Remark: In both the axiom of force balance and the principle of virtual work , the required 
smoothness on the field  3:ϕ ϕΩ →T S  is very mild  (it suffices that all integrals  make sense) By 
contrast , a significant additional smoothness is required for writing the equations of equilibrium ( 
in order that divϕ ϕT  makes sense ), which are only used a san intermediary between the axiom and 
the principle. Hence the question naturally arises as to whether the equations of equilibrium can be 
by-passed in this process, Antam & Osborn [1979] have shown that the principle of virtual work 
can be indeed directly deduced from the axiom of force balance. Their basic idea is to put on an 
equivalent basis the fact  that the axiom is valid for all sub-domains Aϕ  while the principle holds 
for all mappings ϕθθθθ , by associting special classes of sub-domains (cubes and their bi-Lipschitz 
continuous images) with special families of variations (basically piecewise linear functions). The 
methods of proff are reminiscent of those used for proving green’s formulas in the theory of 
integration. 
 
2.5.   The Piola-Kirchkoff stress tensors  
Our final objective is to determine the deformation field and the Cauchy stress tensor field that arise 
in a body subjected to a given system of applied  forces . In this respect, the equations of 
equilibrium in the deformed configuration are of not much avail, since they are expressed in terms 
of the Euler variable ( )xϕ ϕ=x , which is precisely on of the unknows . To obviate this difficulty, 

we shall rewrite these equations in terms of the Lagrange variable  x that  is attached to the 
reference configuration, which is considered as being given once and for all. More specifically, we 
shall transform the left-hand sides divϕ ϕT  and ϕ ϕT n  and the right-hand sides ϕf  and ϕg  appearing 

in the equations of equilibrium over ϕΩ into similar expressions over Ω . 

We defined the Piola transform: 3: Ω →T M  of a tensor field ( ) 3: Mϕ ϕ ϕΩ = Ω →T  by letting 

( ) ( )( ) ( ) ( ) ( )det ,
T

x x T x x x xϕ ϕ ϕϕ ϕ ϕ−= ∇ ∇ =T                 (2.53) 

We shall therefore  apply this transform to the Cauchy stress tensor ϕT , in which case its Piola 
transform T is called the first Piola-Kirchhoff stress tensor. As shown in theorem 1 (chapter 1a), the 
main advantage of this transform is to induce a particularly simple between the divergences of both 
tensors: 

( ) ( )( ) ( ) ( )det ,div x x div x xϕ ϕ ϕ ϕ ϕ= =T T xϕϕϕϕ∇∇∇∇                   (2.54) 

As a consequence, the equations of equilibrium over the deformed configuration will be 
transformed (Theorem 2.2)  into equations over the reference configuration  that have a similar 
divergence structure. This property in turn makes it possible to write these partial differential 
equations in variational form, as shown in Theorem 2.2 for the equations of equilibrium over the 
reference configuration.  

On can likewise transform the Cauchy stress vector ( ) ( ),x xϕ ϕ ϕ ϕ ϕ=t n T n  into a vector ( ),xt n  in 

such a way that the relation  

( ) ( ),x x=t n T n                                                      (2.55) 
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Holds, where ( )xT  is the first Piola-Kirchhoff stress tensor and where n  and ϕn are the 

corresponding normal vectors at the points x and ( )xϕ ϕ=x  of the boundaries of corresponding 

sub-domains A  and ( )A Aϕ ϕ= . Notice that there is no ambiguity in this process since the normal 

vector ϕn  at the point ( )xϕ ϕ=x  is the same  for all sub-domains whose boundary passes through 

the point x with n  as the normal vector there. In view of the relation 

( ) ( )x da x daϕ ϕ ϕ ϕ=T n T n established in Theorem 1 (chapter 1a) , it suffices to define the vector 

( ),xt n  by the relation: 

( ) ( ), ,x da t x daϕ ϕ ϕ ϕ=t n n                                            (2.56) 

Since ( ) ( ),x xϕ ϕ ϕ ϕ ϕ=t n T n by Cauchy’ theorem, the desired relation ( ) ( ),x x=t n T n  holds. 

The vector ( ),xt n  is called the first Piola-Kirchhoff stress vector at the point x of the reference 

configuration, across the oriented surface element with normal n . The vector field  
3

1: Ω× →St R defined in this fashion thus measures the density of the surface force per unit area in 

the reference configuration. 

While the Cauchy stress tensor ( )xϕ ϕT is symmetric (Theorem 2.1) the first Piola-Kirchhoff stress 

tensor ( )xT  is not symmetric in general; instead one has: 

( ) ( ) ( ) ( )1T T
x x x x

− −=T Tϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇                                     (2.57) 

It is nevertheless desirable to define a symmetric stress tensor in the reference configuration, 
essentially because the constitutive equation in the reference configuration then takes a simpler 
form. More specifically, we define the second Piola-Kirchhoff stress tensor ( )xΣΣΣΣ  by letting 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1
det ,

T
x x x x x x x x xϕ ϕ ϕ ϕ− − −= = =Σ ∇ ∇ ∇ ∇Σ ∇ ∇ ∇ ∇Σ ∇ ∇ ∇ ∇Σ ∇ ∇ ∇ ∇ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕT T       (2.58) 

Remarks. (1) In fact, the question of  whether or not the matrix ( )xT  is symmetric does not make 

sense for , as a tensor, it has one index attached to the reference configuration and one index 
attached to the deformed configuration. A complete discussion of these aspects can be found in 
Marsden & Hughes [1983]. 

(3) Historical reference on the Piola-Kirchhoff stress tensors are given in Truesdell & Toupin 
[1960, Sect. 210]. 

The Piola-Kirchhoff stress tensor ( )xT  and ( )xΣΣΣΣ  both depend on the deformation ϕϕϕϕ , first through 

the Piola transform itself, secondly because the Cauchy stress tensor also dependent on ϕϕϕϕ .  
 
2.6.  The equations of equilibrium and principle of virtual work in the reference configuration  
It remains to transform the applied forces densities that appear in the equilibrium equations over the 
deformed configuration: First, with the density 3:ϕ ϕΩ → Rf  of the applied force per unit volume 

in the deformed configuration, we associate a vector field 3: Ω → Rf  in such a way that 

( ) ( )x dx x dxϕ ϕ ϕ=f f  for all ( )x xϕ ϕϕ= ∈Ω                             (2.59) 

Where dx and dxϕ  denote the corresponding volume elements. Since  

( )( ) ( ) ( )det , ,dx x x x xϕ ϕ ϕ ϕ ϕ= =∇∇∇∇ϕϕϕϕ f                            (2.60) 

So that the vector ( )xf  depends on the deformation ϕϕϕϕ , via the factor ( )det x∇∇∇∇ϕϕϕϕ  on the one hand, 

and via the possible dependence of the density ϕf  on the deformation ϕϕϕϕ  on the other hand. Notice 

that this relation displays the same factor ( )det x∇∇∇∇ϕϕϕϕ  as the relation between the vectors ( )xdiv T  

and ( )xϕ ϕ ϕdiv T  (this observation will be used in the proof of Theorem  1.1)  
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The vector field 3: Ω → Rf  measures the density of the applied body force per unit volume in the 

reference configuration; the vector ( )xf  is defined in such a way that  the elementary vector 

( )x dxf  is equal to the elementary body force( )x dxϕ ϕf  acting on the corresponding volume 

element dxϕ  at the point ( )x xϕ ϕ=  (Fig. 2.4) 

Let: :ρ Ω → R  denote the mass density in the reference configuration. Expressing that the mass of 

the elementary volumes dx and ( )detdx x dxϕ = ∇∇∇∇ϕϕϕϕ  is the same , we find the mass densities 

:ρ Ω → R  and :ϕ ϕρ Ω → R  are related by the equation 

( ) ( ) ( ) ( )det ,x x x x xϕ ϕ ϕρ ρ ϕ= =∇∇∇∇ϕϕϕϕ                             (2.61) 

Incidentally, this relation also shows that, regardless of any consideration concerning the 
preservation of orientation, the Jacobian ( )det x∇∇∇∇ϕϕϕϕ  should not vanish in an actual deformation, 

since mass density is always 0> , at least macroscopically. 
Then if we define the density 3: Ω →b R  of the applied body forces per unit mass in the reference 
configuration by letting  

( ) ( ) ( )x x xρ= bf  for all x∈Ω ,                              (2.62) 

it follows that the densities of the applied force per unit mass are related by 

( ) ( ) ( ),x x x xϕ ϕ ϕ ϕ= =b b                                  (2.63) 

Secondly, in order to transform the boundary condition ϕ ϕ ϕ=T n g  over ( )1 1
ϕ ϕΓ = Γ  into a similar 

condition over 1Γ , it suffices to use the first Piola-Kirchhoff stress vector, which was precisely 

defined for this purpose : With the density 3
1:ϕ ϕΓ →g R  of the applied surface force per unit area in 

the deformed configuration, we associate the vector field 3
1: Γ →g R  defined by 

( ) ( )x da x daϕ ϕ ϕ=g g  for all ( ) 1x xϕ ϕϕ= ∈Γ                     (2.64) 

where daand daϕ  are the corresponding area elements. Hence by Theorem 1.1 (Properties of the 
Piola transform), the vector ( )xg  is given by  

( ) ( ) ( ) ( )det .
T

x x x ϕ ϕ−=g n g x∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ                          (2.65) 

Notice that the vector ( )xg  depends on the deformation ϕϕϕϕ , via the formula relating the 

corresponding area elements on the one hand and via the possible dependence of the density, ϕg on 

the deformation ϕϕϕϕ  on the other hand. The vector  field 3
1: Γ →g R  measures the density of the 

applied surface force per unit area in the reference configuration; it is defined in such a way that the 

elementary vector ( )x dag  is equal to the elementary surface force ( )x daϕ ϕ ϕg  acting on the 

corresponding area element daϕ  at the point ( )x xϕ ϕ=  (Fig. 2.4)  

We can now establish the analogous of Theorem 2.2 over the reference configuration: 
 
Theorem 2.3.  The first Piola-Kirchhoff  stress tensor   

( ) ( )( ) ( ) ( )det
T

x x xϕ ϕ −=T T x∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ                         (2.66) 

satisfies the following equations in the reference configuration Ω : 
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) 1

, ,

, ,

,

T T

x x x

x x x x x

x x x

− = ∈Ω

= ∈Ω

= ∈Γ

div T

T T

T n g

∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ

f

                      (2.67) 
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where ,dx dx da daϕ ϕ ϕ ϕ= =f f g g . The first and third equations are together equivalent to the 
variational equations : 

1

: dx dx da
Ω Ω Γ

= ⋅ + ⋅∫ ∫ ∫T ∇∇∇∇θ θ θθ θ θθ θ θθ θ θf g                               (1.144) 

 

 
Fig. 2.5 - The applied body force and surface force densities in the deformed configuration and in 
the reference configuration 
 
Valid for all smooth enough vector fields 3RΩ →θ :θ :θ :θ :  that satisfy 

0 1on Γ = Γ − Γ0θ =θ =θ =θ =                                        (2.68) 

Proof. The first equations follows from the equations ϕ ϕ ϕ=div T−−−− f  in ϕΩ , 

( )detϕ ϕ =div T div T∇∇∇∇ϕϕϕϕ , and ( )det ϕ∇∇∇∇ϕϕϕϕf = f ; the second follows from the definition of the 

tensor T  and the symmetry of the tensor ϕT ; the  third one follows from the equations 
, da daϕ ϕ ϕ ϕ ϕ ϕ= =T n g T n Tn , and da daϕ ϕ =g g . The equivalence with the variational equations 

is then established as in Theorem 2.1. 
In terms of the second Piola-Kirchhoff stress tensor, the above result becomes: 
 
Theorem 1.8.  The second Piola-Kirchhoff stress tensor  

( ) ( )( ) ( ) ( ) ( )1
det

T
x x x x xϕ ϕ− −=Σ ∇ ∇ ∇Σ ∇ ∇ ∇Σ ∇ ∇ ∇Σ ∇ ∇ ∇ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕT                        (2.69) 

satisfies the following equations in the reference configuration Ω : 

( ) ( )( ) ( )
( ) ( )

( ) ( ) ( ) 1

, ,

, ,

,

T

x x x x

x x x

x x x x

− = ∈Ω

= ∈Ω

= ∈Γ

div

n g

∇ Σ∇ Σ∇ Σ∇ Σ

Σ ΣΣ ΣΣ ΣΣ Σ

∇ Σ∇ Σ∇ Σ∇ Σ

ϕϕϕϕ

ϕϕϕϕ

f

                           (2.70) 

The first and third equations are together equivalent to the variational equations 

1

: dx dx daϕ
Ω Ω Γ

Σ = ⋅ + ⋅∫ ∫ ∫∇ ∇∇ ∇∇ ∇∇ ∇θ θ θθ θ θθ θ θθ θ θf g                            (2.71) 

Valid for all smooth enough maps 3Ω → Rθ :θ :θ :θ :  that satisfy 

0 1on Γ = Γ − Γ0θ =θ =θ =θ =                                           (2.72) 

The equations satisfied over Ω  and 1Γ  by either stress tensor are called the equations of 

equilibrium in the reference configuration, and their associated variational equations constitute the 
principal of virtual work in the reference configuration . The equation on 1Γ  is called a boundary 

condition of traction . 
As we already  mentioned, a boundary condition of place the form 

0ϕ ϕ=  on 0Γ ,                                                      (2.73) 
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where 3
0 0:ϕ Γ → R  is a given mapping , will be later adjoined to the equations of equilibrium in the 

reference configuration. This being the case, we may think of each vector field 3Ω → Rθ :θ :θ :θ :  
occurring in the principle of virtual work as a virtual variation of a deformation consistent with the 
boundary condition of place. More specifically, if we define the set 

{ }3
0 0: ; det 0 ;ψ ψ ϕ= Ω → ∇ > Ω = Γin onRΦΦΦΦ ψ :ψ :ψ :ψ :                 (2.74) 

(at this stage, we do not require that the vector fields 3Ω → Rψ :ψ :ψ :ψ :  be injective on Ω , a condition 
that is part of the definition of a deformation) , we remark that the tangent space at a point ϕ  of the 
manifold ΦΦΦΦ  is precisely 

{ }3
0;R nϕ οΩ → Γθ θ = 0θ θ = 0θ θ = 0θ θ = 0Τ Φ := :Τ Φ := :Τ Φ := :Τ Φ := :                                  (2.75) 

It si thus as elements of this tangent space that the vector fields occurring in the principle of virtual 
work are to be correctly understood as variations; this observation is also the basis for attaching the 
label variational to the equations themselves. The adjective virtual, derived from classical 
continuum mechanics, reflects the fact that the vector fields ϕ∈ Τ ΦΤ ΦΤ ΦΤ Φθθθθ  appearing in the principle are 

essentially mathematical quantities, which need not be given a physical interpretation. 
 
2.7.  Remarks  
(1) A more transparent interpretation of these variations , where the principle of virtual work will be 
understood as a requirement for a certain functional to be stationary. 
(2) (The introduction of a tangent space can prove quite useful in more complex situations where 
the set o admissible deformations include other geometrical constrains, such as incompressibility 
(Narsden & Hughes [1983, p.279]). 
(3)  The regularity assumptions on the applied force densities, on the boundary of the body, etc., can 
be relaxed in various ways that still guarantee that the axioms of force and moment balance and the 
principle of virtual work make sense. In this direction, see notably Noll [1959, 1966, 1978], Gurtin 
& Willims [1967], Truesdell [1977] , Antman & Osborn [1979] 
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CHAPTER III 
CONSTITUTIVE ASSUMPTION 

 
3.1. Introduction to the behaviour of materials 
 
3.1.1. Tensile strength and tensile stress 
This module outlines the basic mechanics of elastic response a physical phenomenon that materials 
often (but do not always) exhibit. An elastic material is one that deforms immediately upon loading, 
maintains a constant deformation as long as the load is held constant, and returns immediately to its 
original undeformed shape when the load is removed. This module will also introduce two essential 
concepts in Mechanics of Materials: stress and strain. 
Perhaps the most natural test of a material's mechanical properties is the tension test, in which a 
strip or cylinder of the material, having length L and cross-sectional area A, is anchored at one end 
and subjected to an axial load P - a load acting along the specimen's long axis - at the other. (See 
Fig. 3.1.1). As the load is increased gradually, the axial deflection δ  of the loaded end will increase 
also. Eventually the test specimen breaks or does something else catastrophic, often fracturing 
suddenly into two or more pieces. (Materials can fail mechanically in many different ways; for 
instance, recall how blackboard chalk, a piece of fresh wood, and Silly Putty break.) As engineers, 
we naturally want to understand such matters as how δ  is related to P, and what ultimate fracture 
load we might expect in a specimen of different size than the original one. As materials 
technologists, we wish to understand how these relationships are influenced by the constitution and 
microstructure of the material 
 

P

L A

                   
 
               Fig. 3.1.1 - The tension test.                            Fig. 3.1.2 - Interplanar bonds 
 
One of the pivotal historical developments in our understanding of material mechanical properties 
was the realization that the strength of a uniaxially loaded specimen is related to the magnitude of 
its cross-sectional area. This notion is reasonable when one considers the strength to arise from the 
number of chemical bonds connecting one cross section with the one adjacent to it as depicted in 
Fig. 3.1.2, where each bond is visualized as a spring with a certain stiffness and strength. 
Obviously, the number of such bonds will increase proportionally with the section's area. The axial 
strength of a piece of blackboard chalk will therefore increase as the square of its diameter. In 
contrast, increasing the length of the chalk will not make it stronger (in fact it will likely become 
weaker, since the longer specimen will be statistically more likely to contain a strength-reducing 
flaw). Galileo (1564-1642) is said to have used this observation to note that giants, should they 
exist, would be very fragile creatures. Their strength would be greater than ours, since the cross-
sectional areas of their skeletal and muscular systems would be larger by a factor related to the 
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square of their height. But their weight, and thus the loads they must sustain, would increase as their 
volume, that is by the cube of their height. A simple fall would probably do them great damage. 
Conversely, the “proportionate” strength of the famous arachnid mentioned weekly in the 
SpiderMan comic strip is mostly just this same size effect. There’s nothing magical about the 
muscular strength of insects, but the ratio of 2L  to 3L  works in their behaviour when strength per 
body weight is reckoned. This cautions us that simple scaling of a previously proven design is not a 
safe design procedure. A jumbo jet is not just a small plane scaled up; if this were done the load-
bearing components would be too small in cross-sectional area to support the much greater loads 
they would be called upon to resist. 
When reporting the strength of materials loaded in tension, it is customary to account for this effect 
of area by dividing the breaking load by the cross-sectional area: 

0

f
f

P

A
σ =                                                               (3.1.1) 

where fσ  is the ultimate tensile stress, often abbreviated as UTS, Pf is the load at fracture, and 0A  

is the original cross-sectional area. (Some materials exhibit substantial reductions in cross-sectional 
area as they are stretched, and using the original rather than final area gives the so-call engineering 
strength.) The units of stress are obviously load per unit area, 2/N m  (also called Pascals, or Pa) in 
the SI system and 2/lb in  (or psi) in units still used commonly in the United States. 
If the specimen is loaded by an axial force P less than the breaking load Pf, the tensile stress is 
developed by analogy with Eqn. 1 as: 

0

P

A
σ =                                                               (3.1.2) 

The tensile stress, the force per unit area acting on a plane transverse to the applied load, is a 
fundamental measure of the internal forces within the material. Much of Mechanics of Materials is 
concerned with elaborating this concept to include higher orders of dimensionality, working out 
methods of determining the stress for various geometries and loading conditions, and predicting 
what the material's response to the stress will be. 
 
3.1.2. Stiffness 
It is important to distinguish stiffness, which is a measure of the load needed to induce a given 
deformation in the material, from the strength, which usually refers to the material's resistance to 
failure by fracture or excessive deformation. The stiffness is usually measured by applying 
relatively small loads, well short of fracture, and measuring the resulting deformation. Since the 
deformations in most materials are very small for these loading conditions, the experimental 
problem is largely one of measuring small changes in length accurately. Hooke made a number of 
such measurements on long wires under various loads, and observed that to a good approximation 
the load P and its resulting deformation δ  were related linearly as long as the loads were 
sufficiently small. This relation, generally known as Hooke's Law, can be written algebraically as 

P kδ=                                                              (3.1.3) 
where k is a constant of proportionality called the stiffness and having units of lb/in or N/m. 
The stiffness as defined by k is not a function of the material alone, but is also influenced by the 
specimen shape. A wire gives much more deflection for a given load if coiled up like a watch 
spring, for instance. A useful way to adjust the stiffness so as to be a purely materials property is to 
normalize the load by the cross-sectional area; i.e. to use the tensile stress rather than the load. 
Further, the deformation δ  can be normalized by noting that an applied load stretches all parts of 
the wire uniformly, so that a reasonable measure of  “stretching" is the deformation per unit length: 

0L

δε =                                                                (3.1.4) 

Here 0L  is the original length and ε  is a dimensionless measure of stretching called the strain. 
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Using these more general measures of load per unit area and displacement per unit length (It was 
apparently the Swiss mathematician Jakob Bernoulli (1655-1705) who first realized the correctness 
of this form, published in the final paper of his life), 
Hooke's Law becomes: 

0 0

P
E

A L

δ=                                                            (3.1.5) 

or 
Eσ ε=                                                              (3.1.6) 

 
The constant of proportionality E, called Young's modulus  (After the English physicist Thomas 
Young (1773-1829), who also made notable contributions to the understanding of the interference 
of light as well as being a noted physician and Egyptologist) or the modulus of elasticity, is one of 
the most important mechanical descriptors of a material. It has the same units as stress, Pa or psi. As 
shown in Fig. 3.1.3, Hooke's law can refer to either of Eqns. 3.1.3 or 3.1.6. 
 

(b)(a)

K E

P P
A

= L

=

 
 

Fig. 3.1.3 -  Hooke's law in terms of (a) load-displacement and (b) stress-strain. 
 

The Hookean stiffness k is now recognizable as being related to the Young's modulus E and the 
specimen geometry as 

EA
k

L
=                                                           (3.1.7) 

where here the 0 subscript is dropped from the area A; it will be assumed from here on (unless 
stated otherwise) that the change in area during loading can be neglected. Another useful relation is 
obtained by solving Eqn. 3.1.5 for the deflection in terms of the applied load as 

PL

EA
δ =                                                            (3.1.8) 

Note that the stress /P Aσ = developed in a tensile specimen subjected to a fixed load is 
independent of the material properties, while the deflection depends on the material property E. 
Hence the stress σ  in a tensile specimen at a given load is the same whether it's made of steel or 
polyethylene, but the strain ε  would be different: the polyethylene will exhibit much larger strain 
and deformation, since its modulus is two orders of magnitude less than steel's. A material that 
obeys Hooke's Law (Eqn. 3.1.6) is called Hookean. Such a material is elastic according to the 
description of elasticity given in the introduction (immediate response, full recovery), and it is also 
linear in its relation between stress and strain (or equivalently, force and deformation). Therefore a 
Hookean material is linear elastic, and materials engineers use these descriptors interchangeably. It 
is important to keep in mind that not all elastic materials are linear (rubber is elastic but nonlinear), 
and not all linear materials are elastic (viscoelastic materials can be linear in the mathematical 
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sense, but do not respond immediately and are thus not elastic). The linear proportionality between 
stress and strain given by Hooke's law is not nearly as general as, say, Einstein's general theory of 
relativity, or even Newton's law of gravitation. It's really just an approximation that is observed to 
be reasonably valid for many materials as long the applied stresses are not too large. As the stresses 
are increased, eventually more complicated material response will be observed. Some of these 
effects will be outlined in the Module on Stress{Strain Curves, which introduces the experimental 
measurement of the strain response of materials over a range of stresses up to and including 
fracture. If we were to push on the specimen rather than pulling on it, the loading would be 
described as compressive rather than tensile. In the range of relatively low loads, Hooke's law holds 
for this case as well. By convention, compressive stresses and strains are negative, so the expression 

Eσ ε=  holds for both tension and compression. 
 
3.2.  Elasticity, groups of symmetry, anisotropic solids with fourth rank tensors  
 
3.2.1.  Linear Costitutive law for Hyperelastic solids 
The heterogeneous materials can be characterized by both inhomogeneity and anisotropy, since the 
first aspect is due to the multi-phase composition of the medium, while the second one is due to the 
geometrical arrangement of the different constituents within the examined heterogeneous volume. 
In this section, the constitutive relations for anisotropic materials, in linear elasticity, are presented. 
A linear anisotropic elastic material, as known, can have as many as 21 elastic constants. However, 
this number can be opportunely reduced when the examined material possesses certain material 
symmetry. Moreover, it is also reduced, in most cases, when a two-dimensional deformation is 
considered. It is worth to remember that the matrices of the elastic constants must be positive 
definite, because the strain energy must be positive. Hence, referring to a fixed rectangular 
coordinate system , ,x y ze e e , let T  and E  be the stress and the strain fields, respectively, in an 

anisotropic hyperelastic material. The stress-strain relation can be written in the following form: 
=T C : E                                                                (3.2.1) 

or, in components: 

ij ijhk hkCσ ε=                                                             (3.2.2) 

where: C = fourth rank elastic stiffness tensor  and where, for the hypothesis of iper-elasticity, the 

components ijhkC   satisfy the following conditions of full symmetry: 

ijhk jihk hkijC C C= =                                                       (3.2.3) 

The above written equation (3.2.3) groups in it the following equalities: 

ijhk jihk ijkh jikhC C C C= = =                                                 (3.2.4) 

and 

ijhk hkijC C=                                                              (3.2.5) 

where the (3.2.4) follows directly from the symmetry of the stress and the strain tensors, while the 
(3.2.5) is due to the assuming hypothesis of existence of the elastic potential φ . In other word, the 
strain energy φ  per unit volume of the material, given by: 

0

ij ijd
ε

φ σ ε= ∫                                                             (3.2.6) 

is independent of the loading path, i.e. the path that ijε  takes from 0 to ε  while it depends on the 

final value of ε , only. In linear elasticity, the (3.2.6) may be written as: 
1 1

2 2ij ij ijhk ij hkCφ σ ε ε ε= =                                              (3.2.7) 

and since the strain energy must be positive, it has to be: 
0ijhk ij hkC ε ε >                                                             (3.2.8) 
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for any real, non zero, symmetric tensor ijε . Hence, as said before, the stiffness tensor C is defined 

positive. Analogously, the stress-strain relation can be written in the following form, inverse of 
(3.2.1): 

=E S : T                                                               (3.2.9) 
or, in components: 

ij ijhk hkSε σ=                                                          (3.2.10) 

where: S = fourth rank elastic compliance tensor,  and where for the hypothesis of iper-elasticity, 

the components ijhkS   satisfy the following conditions of full symmetry: 

ijhk jihk hkijS S S= =                                                      (3.2.11) 

The above written equation (3.2.11) groups in it the following equalities: 

ijhk jihk ijkh jikhS S S S= = =                                                 (3.2.12) 

and 

ijhk hkijS S=                                                           (3.2.13) 

where the (3.2.12) follows directly from the symmetry of the stress and the strain tensors, while the 
(3.2.13) is due to the assuming hypothesis of existence of the elastic complementary potential ψ , 
[64]. In other word, the stress energy ψ   per unit volume of the material, given by: 

0

ij ijd
σ

ψ ε σ= ∫                                                        (3.2.14) 

It is independent of the loading path, i.e. the path that ijσ  takes from 0 to σ  while it depends on the 

final value of σ  , only. In linear elasticity, the (2.2.14) may be written as: 
1 1

2 2ij ij ijhk ij hkSψ σ ε σ σ= =                                             (3.2.15) 

and since the stress energy must be positive, it has to be: 
0ijhk ij hkS σ σ >                                                    (3.2.16) 

for any real, non zero, symmetric tensor ijσ . Hence, as said before, the compliance tensor S is 

defined positive. Introducing, now, the contract notation, [36], such that: 

1 2 3

4 5 6

1 2 3

4 5 6

, , ,

, , ,

, , ,

2 , 2 , 2 ,

xx yy zz

yz xz xy

xx yy zz

yz xz xy

σ σ σ σ σ σ
τ σ τ σ τ σ

ε ε ε ε ε ε
ε ε ε ε ε ε

= = =

= = =

= = =

= = =

                                   (3.2.17) 

the stress-strain laws (3.2.2) and (3.2.10) may be written, respectively, as: 
,C C Cα αβ β αβ βασ ε= =                                          (3.2.18) 

and  
,S S Sα αβ β αβ βαε ε= =                                           (3.2.19) 

With reference, in particular, to the equation (2.18), it may be expressed in a matrix form, as it 
follows: 

, T= =T C : E C C                                             (3.2.20) 
The stress and the strain tensors, T and E , are expressed in form of 6x1 column matrices, while the 

stiffness tensor  C is expressed in form of 6x6 symmetric matrix, as given in the following 

equation: 
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

=  
 
 
 
  

C                                       (3.2.21) 

where the transformation between  ijhkC    and Cαβ   is accomplished by replacing the subscripts ij 

(or hk) by α  or β  , by using the following rules: 

( )( )

1

2

3

4

5

6

ij or hk or

xx

yy

zz

zy or yz

zx or xz

xy or yz

α β↔
↔
↔
↔

↔
↔
↔

                                               (3.2.22) 

We may write the transformation (3.2.22) as: 
 

9

9

i if i j

i j if i j

h if h k

h k if h k

α

β

=
=  − − ≠

==  − − ≠

                                               (3.2.23) 

 
Analogously, with reference to the equation (3.2.17), the stress-strain law (3.2.19) may be 
expressed in a matrix form, as it follows: 

, T= =E S : T S S                                                   (3.2.24) 

where also the compliance tensor S is expressed in form of 6x6 symmetric matrix, as given by: 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

S S S S S S

S S S S S S

S S S S S S
S

S S S S S S

S S S S S S

S S S S S S

 
 
 
 

=  
 
 
 
  

                                     (3.2.25) 

Here, the transformation between ijhkS   and Sαβ   is similar to that one between ijhkC   and Sαβ  

except the following: 

                                                        

, 3

2 3

4 , 3

ijhk

ijhk

ijhk

S S if both

S S if either or

S S if both

αβ

αβ

αβ

α β
α β
α β

= ≤

= ≤

= >

                                 (3.2.26) 

From (3.2.20) and (3.2.24), it is obtained the expression of the strain energy, as: 
1 1 1

2 2 2
T T Tφ = = =E CE T E T S T                                      (3.2.27) 

and, by considering that φ  has to be positive, it must be: 
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0

0

T

T

>
>

E CE

T S T
                                                      (3.2.28) 

This implies that the matrices C and S are both positive definite. Moreover, by substituting of the 

(3.2.24) in the (3.2.20) yields: 
⋅ = = ⋅C S I S C                                                     (3.2.29) 

where the second equality follows from the first one which says that C and S are the inverses of 

each other and, hence, their product commute. For a linear anisotropic elastic material, like it has 

been anticipated before, the matrices C and S have 21 elastic independent constants. However, 

this number can be reduced when a two-dimensional deformation is considered. Assume, therefore, 

the deformation of the examined anisotropic elastic bodies to be a two-dimensional one for which 

0z =e  . When 0z =e , the stress-strain law given by the first equation of (3.2.18) becomes: 

3
1,2,3,...,6 1,2,...,6Cα αβ ββ

σ ε α β
≠

= = =∑                             (3.2.30) 

Ignoring the equation for 3σ  , the (3.2.30) may be written as: 
ˆ ˆ ˆˆ ˆ , T= =T C : E C C                                                    (3.2.31) 

where 

[ ]1 2 4 5 6
ˆ , , , ,T σ σ σ σ σ=T                                                (3.2.32) 

[ ]1 2 4 5 6
ˆ , , , ,T ε ε ε ε ε=E                                                  (3.2.33) 

and 

11 12 14 15 16

12 22 24 25 26

14 24 44 45 46

15 25 45 55 56

16 26 46 56 66

ˆ

C C C C C

C C C C C

C C C C C

C C C C C

C C C C C

 
 
 
 =
 
 
  

C                                          (3.2.34) 

Since Ĉ  is obtained from C  by deleting the third row and the third column of it, Ĉ  is a principal 

sub-matrix of C  and it also is positive definite. It contains 15 independent elastic constants. The 

stress-strain law (3.2.19) for 0z =e  is: 

30z S β βσ= =e                                                      (3.2.35) 

Solving for 3σ  , it is: 

3 33
33

1
S

S β ββ
σ σ

≠
= − ∑                                                (3.2.36) 

and by substituting the (3.2.36) within the first equation of the (3.2.19), it is obtained: 
 

'

3
Sα αβ ββ

ε σ
≠

=∑                                                            (2.2.37) 

with 

3 3' '

33

S S
S S S

S
α β

αβ αβ βα= − =                                                     (3.2.38) 

'S reduced elastic compliancesβα =  

It is clear, moreover, that: 
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' '
3 30, 0, , 1,2,...,6S Sα β α β= = =                                         (3.2.39) 

For this reason, there is no need to exclude 3β =   in the (3.2.37). By using the notation of the 
(3.3.32) and (3.2.33), the (3.2.37) can be written in the following form: 

ˆ ˆ' , ' 'T= =E S : T S S                                                       (3.2.40) 

where  S' can be defined as reduced elastic compliance tensor and it has a symmetric matrix form, 

given by: 

11 12 14 15 16

12 22 24 25 26

14 24 44 45 46

15 25 45 55 56

16 26 46 56 66

' ' ' ' '

' ' ' ' '

' ' ' ' ' '

' ' ' ' '

' ' ' ' '

S S S S S

S S S S S

S S S S S

S S S S S

S S S S S

 
 
 
 =
 
 
  

S                                            (3.2.41) 

Like Ĉ  , 'S  contains 15 independent elastic constants. Moreover, the substitution of the (3.2.40) in 

the (3.2.31) yields: 
ˆ ˆ' '⋅ = = ⋅C S I S C                                                        (3.2.42) 

where the second equality follows from the first one which says that ̂C  and 'S  are the inverses of 
each other and, hence, their product commute. This result is independent of whether 0z =e or not, 

because it represents a property of elastic constants, [64]. It has to be underlined that the positive 

definite of Ĉ  implies that 'S  is also positive definite. An alternate proof that Ĉ  and 'S  are positive 

definite is to write the strain energy as: 
1 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
2 2 2

T T Tφ = = =E CE T E T S T                                      (3.2.43) 

and to consider that φ   has to be positive for any nonzero  T̂  and Ê  , so it must be: 
ˆˆ ˆ 0

ˆ ˆ' 0

T

T

>

>

E CE

T S T
                                                      (3.2.44) 

As anticipated at the beginning of this section, the number of the independent elastic constants of 

the 6x6 matrices C and S can be opportunely reduced, yet, when the examined anisotropic material 

possesses certain material symmetry. Hence, with reference to a new rectangular coordinate system 

{ }* * *, ,x y ze e e  , obtained from the initial fixed one { }, ,x y ze e e  under an orthogonal transformation: 
* = ⋅e Q e                                                        (3.2.45) 

or, in components: 
*
i ij je Q e=                                                        (3.2.46) 

in which Q  is an orthogonal matrix that satisfies the following relations: 
T T⋅ = Ι =Q Q Q Q                                                       (3.2.47) 

or: 

ij kj ik ji jkQ Q Q Qδ= =                                                    (3.2.48) 

a material is said to possess a symmetry with respect to Q   if the elastic fourth rank stiffness tensor 
*C  referred to the ie  coordinate system is equal to that one C  referred to the  coordinate system ie , 

i.e.: 
* =C C                                                              (3.2.49) 

or in components: 
*
ijhk ijhk=C C                                                          (3.2.50) 
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where: 
*
ijhk ip jq hr ks pqrsQ Q Q Q=C C                                               (3.2.51) 

An identical equation can be written for ijhkS . 

In other words, when: 

ijhk ip jq hr ks pqrsC Q Q Q Q C=                                              (3.2.52) 

the material possesses a symmetry with respect to Q . 
The transformation law (3.2.51) is referred for the ijhkC  , but, for simplicity of the calculations, 

some authors adopt the transformation law for Cαβ : 
*

r t rtC K K Cαβ α β=                                                      (3.2.53) 

where: K is a 6x6 matrix, whose elements are obtained by means of suitable assembly of the 
components ijQ , according to proposals by Mehrabadi, Cowin et al (1995), and Mehrabadi and 

Cowin (1990). Then, an anisotropic material possesses the symmetry of central inversion (C) if the 
(3.2.52) is satisfied for: 

1 0 0

0 1 0

0 0 1

− 
 = − = − 
 − 

Q I                                                 (3.2.54) 

It is obvious that the (3.2.52) is satisfied by the Q  given in the (3.2.54) for any ijhkC  . Therefore, all 

the anisotropic materials have the symmetry of central inversion. 
If Q  is a proper orthogonal matrix, the transformation (3.2.45) represents a rigid body rotation 
about an axis. So, an anisotropic material is said to possess a rotational symmetry if the (3.2.52) is 
satisfied for: 

( )
cos sin 0

sin cos 0

0 0 1

r

θ θ
θ θ θ

 
 = − 
  

Q                                                (3.2.55) 

which represents, for example, a rotation about the ze -axis an angle θ  , as shown in the following 

figure. 

ze ez
*

ye

xe

ye

xe

*

*

O

θ

θ

 
Fig. 2.2.1 - Rigid rotation about the ze -axis. 
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By extending this property, i.e. if the (3.2.52) is satisfied by the Q  as given through the (3.2.55) for 
any θ , then the material possesses a rotational symmetry with respect at any rotation in the 0z =e  

plane. In this case, it is said that the 0z =e  is the plane of transverse isotropy or that ze  is axis of 

elastic symmetry with order p = ∞ ( L∞ ). More in general, instead, by indicating with: 
2

p

πθ =                                                                  (3.2.56) 

the rotation angle about an axis, this latter is defined as axis of elastic symmetry with order p. Since 
p may assume values equal to 2,3, 4,6 and ∞, the axis of elastic symmetry has indicated, 
respectively, with L2 , L3 , L4 , L6 and L∞ . If Q  is, instead, an orthogonal matrix as defined 
below: 

2 T= − ⊗Q I n n                                                          (3.2.57) 
where: n is a unit vector. Then, the transformation (3.2.45) represents a reflection about a plane 
whose normal is n, defined as reflection plane or symmetry plane (P). In particular, if m is any 
vector on the plane, the following relation is satisfied: 

,= − = −Qn n Qm m                                                 (3.2.58) 
According to a such orthogonal matrix, therefore, a vector normal to the reflection plane reverses its 
direction after the transformation while a vector belonging to the reflection plane remains 
unchanged. 
So, an anisotropic material is said to possess a symmetry plane if the (3.2.52) is satisfied by the Q  
as given by (3.2.57). For example, consider: 

[ ]cos ,sin ,0T θ θ=n                                                  (3.2.59) 

i.e. the symmetry plane contains the ze -axis and its normal vector makes an angle of θ  with the 

xe -axis, as shown in the following figure. 

 

ze

ye

xe

Onp

-p

θ

 
 

Fig. 3.2.2 - Reflection about a plane containing the ze -axis. 
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The orthogonal matrix Q  of the (3.2.57), so, has the following expression: 

( )
2 cos 2 sin 2 0

sin 2 2 cos 2 0 ,
2 2

0 0 1

θ θ
π πθ θ θ θ

+ 
 = − − < ≤ 
  

Q                            (3.2.60) 

which is an improper orthogonal matrix and represents a reflection with respect to a plane whose 

normal is on the ( ),x ye e  plane. Since θ  and θ π+  represent the same plane, θ  is limited to the 

range shown in (3.2.60). In the particular case that 0θ =  , Q  becomes: 

( )
1 0 0

0 1 0

0 0 1

θ
− 
 =  
  

Q                                                          (3.2.61) 

which represents a reflection about the plane 0x =e . Hence, an anisotropic material for which the 

(3.2.52) is satisfied by the Q  as given through the (3.2.61) is said to possess a symmetry plane at 
0x =e . By extending this property, i.e. if the (3.2.52) is satisfied by the Q  as given through the 

(3.2.60) for any θ  , then the material possesses a symmetry plane with respect at any plane that 
contains the ze -axis. In this case, it is said that the ze -axis is the axis of symmetry (L). 

In analogous manner, it is considered, in the following equation, the expression of an orthogonal 

matrix which represents a reflection with respect to a plane whose normal is on the ( ),y ze e  plane, 

making an angle ϕ   with the ye -axis: 

( )
1 0 0

0 cos 2 sin 2 ,
2 2

0 sin 2 cos 2

π πϕ ϕ ϕ θ
ϕ ϕ

 
 = − − − < ≤ 
 − 

Q                           (3.2.62) 

In particular, the symmetry plane 0y =e  can be represented by either 2θ π=  or 0ϕ = , while the 

symmetry plane ze  can be represented by 2ϕ π=  , as shown in the following figure: 

 

ze

ye

xe

O

n

n'

θ

 
 

Fig. 3.2.3 - The vectors n and n’ are, respectively, the normal vectors to planes of reflection 
symmetry defined by the (3.2.60) and (3.2.62) 
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3.2.2.  Anisotropy and material symmetries 

The existence of various combinations of the different symmetry forms implies a corresponding 
classification of the anisotropy classes of the materials. In particular, two extreme cases of 
anisotropic elastic materials are the triclinic  materials and the isotropic ones. The first material 
possesses no rotational symmetry or a plane of reflection symmetry, while the second material 
possesses infinitely many rotational symmetries and planes of reflection symmetry. For such 
materials, it can be shown that: 

( )ijhk ij hk ih jk ik jhC Gλδ δ δ δ δ δ= + +                                          (3.2.63) 

where λ  and G are the Lamè constants, satisfies the (2.2.52) for any orthogonal Q . It is possible to 
demonstrate that if an anisotropic elastic material possesses a material symmetry with the 
orthogonal matrix Q , then it also possesses the material symmetry with 1T −=Q Q  . This means, for 
example, that if the material has rotational symmetry with rotation about the z -axis an angle θ , it 
also has the symmetry about the z -axis an angle −θ . Moreover, it is possible to demonstrate, yet, 
that if an anisotropic elastic material possesses a symmetry with 'Q  and ''Q , then it also possesses 
a symmetry with ' ''=Q Q Q . These statements, valid either for linear or nonlinear material, are 
useful in determining the structure of the stiffness tensor when the material possesses symmetries. 
Depending on the number of rotations and/or reflection symmetry a crystal possesses, Voigt (1910) 
in fact classified crystals into 32 classes. However, in terms of the 6x6 matrix C , there are only 8 
basic groups, since different combinations of symmetry forms may lead to the same structure of the 
stiffness tensor. This classification maid for crystals can be extended for non-crystalline materials, 

so that for them the structure of  C  can also be represented by one of the 8 basic groups. 

Without loss in generality, in the follows, the list of such groups of materials are presented by 
choosing the symmetry plane (or planes) to coincide with the coordinate planes whenever possible. 

If the matrix  *C  referred to a different coordinate system is desired, the (3.2.51) is used to obtain 

it. 
 
•  Triclinic materials 
They represent the most general case, in which no symmetry form exists. The number of 
independent constants is, therefore, 21 and the matrix C  assumes the following form: 
 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

21

C C C C C C

C C C C C C

C C C C C C
n

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

= ° = 
 
 
 
  

C                              (3.2.64) 

 
which is equal to that one of the equation (3.2.21). 
 
•  Monoclinic materials 
The symmetry forms are: 2 2, , ;L P L PC  The number of the independent elastic constants is 13 and 

the matrix C  assumes the following expressions: 

a) Symmetry plane coinciding with 0x =e  , i.e., 0θ =  
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11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

0 0

0 0

0 0
13

0 0

0 0 0 0

0 0 0 0

C C C C

C C C C

C C C C
n

C C C C

C C

C C

 
 
 
 

= ° = 
 
 
 
  

C                              (3.2.65) 

b) Symmetry plane coinciding with 0y =e , i.e., 
2

πθ =   or 0ϕ = : 

11 12 13 15

12 22 23 25

13 23 33 35

44 46

15 25 35 55

46 66

0 0

0 0

0 0
13

0 0 0 0

0 0

0 0 0 0

C C C C

C C C C

C C C C
n

C C

C C C C

C C

 
 
 
 

= ° = 
 
 
 
  

C                              (3.2.66) 

c) Symmetry plane coinciding with 0z =e  , i.e., 
2

πϕ = : 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0
13

0 0 0 0

0 0 0 0

0 0

C C C C

C C C C

C C C C
n

C C

C C

C C C C

 
 
 
 

= ° = 
 
 
 
  

C                              (3.2.67) 

 
• Orthotropic (or Rhombic) materials 
The symmetry forms are: 2 2 23 ,3 , 2 ,3 3P L L P L PC; with reference to the symmetry form 3P, it means 

that the three coordinate planes, 0θ =  , 
2

πθ =  and 
2

πϕ =  are the symmetry planes. The number of 

the independent elastic constants is 9 and the matrix C  assumes the following form: 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0
9

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
n

C

C

C

 
 
 
 

= ° = 
 
 
 
  

C                                  (3.2.68) 

 
• Trigonal materials 
The symmetry forms are 3 2 3 3 2

63 , 3 , 3 3L L L P L L PC; with reference to the symmetry form 3P, it is 

verified that the three coordinate planes, 0θ =  , 
3

πθ = +  and 
3

πθ = −  are the symmetry planes. The 

number of the independent elastic constants is 6 and the matrix C  assumes the following form: 
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( )

11 12 13 14

12 11 13 14

13 13 33

14 14 44

44 14

11 12
14

0 0

0 0

0 0 0

60 0 0

0 0 0 0

0 0 0 0
2

C C C C

C C C C

C C C

nC C C

C C

C C
C

 
 − 
 
 = ° =− 
 
 

− 
  

C                     (3.2.69) 

 
• Tetragonal materials 
The symmetry forms are: 4 4 2

4, ,L L PC L ; It is verified that the tetragonal materials show five 

symmetry planes at 0θ =  , 
4

πθ = +  , 
4

πθ = − ,
2

πθ = +  and 
2

πϕ = + . The number of the 

independent elastic constants is 6 and the matrix C  assumes the following form: 

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0

0 0 0

0 0 0
6

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
n

C

C

C

 
 
 
 

= ° = 
 
 
 
  

C                            (3.2.70) 

 
• Transversely isotropic (or exagonal) materials 
The symmetry forms are: 3 3 2 6 6 2 6 6 6 2, 3 , , 6 , , 6 , 6 7 ;L P L L P L L L L PC L P L L PC  For the transversely 

isotropic materials the symmetry planes are 
2

πϕ = +  , i.e. ( )0z =e , and any plane that contains the 

ze -axis. So, the ze -axis is the axis of symmetry. The number of the independent elastic constants is 

5 and the matrix C  assumes the following form: 

 

( )

11 12 13

12 11 13

13 13 33

44

44

11 12

0 0 0

0 0 0

0 0 0

50 0 0 0 0

0 0 0 0 0

0 0 0 0 0
2

C C C

C C C

C C C

nC

C

C C

 
 
 
 
 = ° = 
 
 

− 
  

C                           (3.2.71) 

• Cubic materials 
The symmetry forms are 2 3 2 3 2 3 4 3 2 4 3 2

6 4 63 4 ,3 4 3 ,3 4 6 ,3 4 6 ,3 4 6 9L L L L PC L L P L L L L L L PC; For the cubic 

materials there are nine symmetry planes, whose normal vectors are on the three coordinate axes 

and on the coordinate planes making an angle 
4

π
 with coordinate axes. The number of the 

independent elastic constants is 3 and the matrix C  assumes the following form: 
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11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0
3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
n

C

C

C

 
 
 
 

= ° = 
 
 
 
  

C                           (3.2.72) 

 
• Isotropic materials 
For the isotropic materials any plane is a symmetry plane. The number of the independent elastic 

constants is 2 and the matrix C  assumes the following form: 

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0 22

0 0 0 0 0
2

0 0 0 0 0
2

C C C

C C C

C C C

C C
n

C C

C C

 
 
 
 
 − = ° = 
 −
 
 
 −
 
 

C            (3.2.73) 

If λ  and µ   are the Lamè constants, the (3.2.73) assumes the expression given by: 
 

2 0 0 0

2 0 0 0

2 0 0 0
2

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

n

µ λ λ λ
λ µ λ λ
λ λ µ λ

µ
µ

µ

+ 
 + 
 +

= ° = 
 
 
 
 

C                       (3.2.74) 

 
It is remarkable that, for isotropic materials, it needs only three planes of symmetry to reduce the 
number of elastic constants from 21 to 2. The following figure shows the hierarchical organization 
of the eight material symmetries of linear elasticity. It is organized so that the lower symmetries are 
at the upper left and, as one moves down and across the table to the right, one encounters crystal 
systems with greater and greater symmetry. 
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            Fig. 3.2.4 - Hierarchical organization of the eight material symmetries of linear elasticity 
 

It is worth to underline that the structure of the matrix C  above obtained for each class of materials 

is referred to the specified coordinate system. When different coordinate systems are employed, the 
transformation law (3.2.51) has to be used for obtaining the structure of the new matrix C , in 
which, while the number of nonzero elements may increase, the number of independent elastic 
constants remains constant since it does not depend on the choice of the coordinate systems. In the 
applications, the choice of the coordinate system is very often dictated by the boundary conditions 
of the problem and hence it may not coincide with the symmetry planes of the material. In these 

cases, the transformation of the matrix C  to a different coordinates system becomes necessary. 

The analysis until here presented for obtaining the structure of the stiffness tensor C  may be 

applied analogously for obtaining the structure of the compliance tensor S . Like C , the elastic 

compliance tensor S  is a fourth rank tensor and, under the orthogonal transformation (3.2.45), its 

components, ijhkS , referred to a new coordinate system are related to those ones, ijhkS , referred to 

the initial coordinate system by: 
*
ijhk ip jq hr ks pqrsQ Q Q Q=S S                                                  (3.2.75) 

which is identical to (3.2.52). 
Hence, the structure of the matrix C appearing in (3.2.64)-( 3.2.73) remains valid for the matrix 

S  with the following modifications required by (3.2.26). 

The relation: 
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56 24 14C C C= − =                                                        (3.2.76) 

in the (3.2.69) is replaced by: 

56 24 14

1

2
S S S= − =                                                      (3.2.77) 

and the elastic coefficient 66C  in (3.2.69), (3.2.71) and (3.2.73) is replaced by: 

( )66 11 122C S S= −                                                      (3.2.78) 

In engineering applications the matrix S  for isotropic materials is written as: 

1 0 0 0

1 0 0 0

1 0 0 01

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

E

ν ν
ν ν
ν ν

ν
ν

ν

− − 
 − − 
 − −

=  + 
 +
 

+ 

S                                 (3.2.79) 

where: 
( )

( )
3 2

,
2

E
µ λ µ λν

µ λ λ µ
+

= =
+ +

                                       (3.2.80) 

are, respectively, the Young’s modulus and the Poisson ratio. It can be shown that: 

( )( ) ( ), ,
1 1 2 2 1

E Eνλ µ
ν ν ν

= =
+ − +

                                     (3.2.81) 

For obtaining the structure of the elastic reduced compliance tensor 'S  , the same considerations are 
valid with some modifications required by the (3.2.38). Hence, for example, the expression of 'S  
for isotropic materials is the following one: 

1 0 0 0

1 0 0 0
1

' 20 0 1 0 0
2

0 0 0 1 0

0 0 0 0 1

n
G

ν ν
ν ν

− − 
 − − 
 = °
 
 
  

S                                    (3.2.82) 

Like stated previously, the strong convexity condition which is equivalent to the positive 

definiteness of the strain energy, (3.2.8), yields that the stiffness tensor C  is defined positive, as 

well as, the positive definiteness of the stress energy, (3.2.16), yields that the compliance tensor 

S  is defined positive. In particular, in the contracted notation, the (3.2.8) implies that the 6x6 

matrix C  is also positive definite and, so, all its principal minors are positive, i.e.: 
  ( )0iiC i not summed>                                                    (3.2.83) 

 

( )det 0 ,ii ij

ij jj

C C
i j not summed

C C

 
> 

 
                                           (3.2.84) 

( )det 0 , ,
ii ij ih

ij jj jh

ih jh hh

C C C

C C C i j k not summed

C C C

 
  > 
 
 

                                       (3.2.85) 
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( )det 0 , , ,

ii ij ik ih

ij jj jk jh

ik jk kk kh

ih jh kh hh

C C C C

C C C C
i j k h not summed

C C C C

C C C C

 
 
  >
 
 
  

                               (3.2.86) 

 

( )det 0 , , , ,

ii ij ik ih im

ij jj jk jh jm

ik jk kk kh km

ih jh kh hh hm

im jm km hm mm

C C C C C

C C C C C

C C C C C i j k h m not summed

C C C C C

C C C C C

 
 
 
  >
 
 
 
 

                 (3.2.87) 

[ ]det 0>C                                                                                (3.2.88) 

where i, j,h are distinct integers which can have any value from 1 to 6. 
In particular, according to the theorem which states that a real symmetric matrix is positive definite 
if and only if its leading principal minors are positive, the necessary and sufficient conditions for 
the 6x6 matrix C to be positive definite are the positivity of its 6 leading principal minors, i.e.. 
Analogously, the (3.2.16) implies that the 6x6 matrix S is also positive definite and, so, also its 6 

leading principal minors are positive. The same consideration can be applied for the matrices Ĉ and 
'S . By imposing these conditions of positivity on the minors of the matrices, the restrictions on the 

elastic coefficients can be found. The above done anisotropic classification of the materials 
according to the number of symmetry planes is based on the assumption that, for each material, the 
number and the locations of the symmetry planes are known. However, this is not the case when 
considering an unknown material. So, often, the elastic stiffness and the elastic compliances of the 
material have to be determined to an arbitrarily chosen coordinate system. The result is that, if there 
exists a symmetry plane, it may not be one of the coordinate planes. Consequently, all elements of 
the matrices C and S can be nonzero. The problem is to locate the symmetry planes if they exist 
when C (or S ) is given. When a plane of symmetry exists, as already seen, the (3.2.52) is satisfied 
by the Q given in (3.2.57), which has the properties given in (3.2.58) where n is a unit vector 
normal to the plane symmetry and m is any vector perpendicular to n. Cowin and Mehrabadi (1987) 
have demonstrated that a set of necessary and sufficient conditions for n to be a unit normal vector 
to a plane of symmetry is: 

( )ijhh j pqss p q iC n C n n n=                                                   (3.2.89) 

( )ikhk h pqpq p q iC n C n n n=                                                   (3.2.90) 

( )ijhk j k h pqrs p q r s iC n n n C n n n n n=                                           (3.2.91) 

( )ijhk j k h pqrs p q r s iC m m m C n m n m n=                                         (3.2.92) 

For example, if the plane 0x =e  is considered as plane of symmetry, by substituting in the (3.2.89)-

( 3.2.92) the vectors n and m , defined as: 

                                   1 1 3, cos sini i i i in mδ δ θ δ θ= = +      ( )1 2 3, ,x y zn n n n n n= = =             (3.2.93) 

where θ  is an arbitrary constant, the independent elastic constants are obtained, according to the 
(3.2.65) if using the contracted notation. 
More in general, the equations (3.2.89)-(3.2.92) tell that n is an eigenvector of the 3x3 symmetric 
matrices U , V , R(n) and R(m) whose elements are: 

( ), ,ij ijhh ih ikhk ih ijhk j kU C V C R C n n= = =n                              (3.2.94) 

and it is stated, here, a modified Cowin-Mehrabadi theorem, as it follows: 
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An anisotropic elastic material with given elastic stiffness ijhkC  has a plane of symmetry if and only 

if n is an eigenvector of R(n) and R(m) , or of U and R(m) or of V and R(m) . The vector n is normal 
to the plane of symmetry, while m is any vector on the plane of symmetry. 
Since this theorem is not suitable for determining n because the matrix R(m) depends on m which, 
in turns, depends on n, another theorem is used for  computing n: 
An anisotropic elastic material with given elastic stiffness ijhkC  has a plane of symmetry if and only 

if n (normal vector to the plane of symmetry) is a common eigenvector of U and V and satisfies: 
0ijhk i j h kC m n n n =                                                     (3.2.95) 

0ijhk i j h kC m m m n =                                                    (3.2.96) 

for any two independent vectors αm ( )1,2α =  on the plane of symmetry that do not form an angle a 

multiple of / 3π .  
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CHAPTER IV 
THERMO-DYNAMICAL FOUNDATIONS 

 
4.0. Thermodynamics : Basic definitions 
In the development of the theory requires the introduction of a connection between the variables 
describing deformations and the stress. This connection depends on the existence of quantities such 
as energy and entropy and therefore is a part of the subject of thermodynamics. 
The outline of thermodynamics which follows will emphasize the concepts most useful in the study 
of continuous media, including the effects of non-uniformity and dissipation. 
The literature on thermodynamics, of course, quite extensive and it is difficult to give a complete 
listing of works which may usefully be consulted on the subject. As general references the reader 
may take the texts of Zemansky, Keenan or Pippard for classical thermodynamics, and the works of 
Progogine, DeGroot,or Biot for the thermodynamics of irreversible process. 
The particular collection  of matter which is being studied will be referred to as a system. Only 
closed systems will be considered here, that is, systems which do not exchange mass with their 
surroundings . 
Occasionally, the further restriction is made that no interaction between the system and its 
surroundings occur; the system is then said to be isolated. It is assumed that the system occupies a 
closed region of space. It will be furthermore assumed that the material is chemically inert. 
Consider now a system all of whose particles are at rest. When all the information required for the 
complete characterization of the system for the purposes at hand is available, it will be said that its 
state is known. 
This information takes the form of the numerical values of several quantities, called state variables, 
each of which describes a different property of the system. Some of these properties will be 
extensive or additive, for example, volume, whereas others will be intensive, fro example, pressure. 
If for such a system the values of the state variables are independent of time, the system is said to be 
in thermodynamics equilibrium. A system is said to be uniform if the values of the intensive state 
variables do not vary space.  
The state variables may be measured for systems not in thermodynamic equilibrium and will then 
generally vary with time; the system is then said to undergo a process. During a process it may be 
that the system is not completely characterized by the state variables alone, but may require the 
specification of some additional quantities. 
 
4.1. Equations of state   
The question of whether all the state variables are independent has, thus far, been left open. It is 
found from experimental observation, however, that are at thermodynamics equilibrium, once the 
values of a certain number of the state variables have been determined, the values of the others are 
fixed; in other words, a number of functional relationships exist between the state variables. If for a 
system with (m+n) state variables Xα  ( )1,2,....,m nα = +  there exist m independent functional 

relations, they any n of the state variables ( )1 2 2, ,....,X X X  may be taken as the independent ones, 

their selection being a matter of convenience; the others may be expressed in terms of them as 
follows:  ( )1 2, ,..., 1, 2,...,nX f X X X n n n mα α α= = + + + , and will be referred to as state 

functions. 
Equations of this type are known as equations of state. The number and form of these equations 
depend on the particular system under consideration. Only in the simplest systems (characterized, 
that is, by few state variables, as for example a gas) is it possible to establish them directly by an 
analysis of experimental data. It is often possible, however, to derive a considerable amount of 
information regarding their form from thermodynamics principles, provided only that the choice of 
independent variables is made. 
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4.2. Thermal equilibrium and the zero’th law of thermodynamics 
Bring two system that are originally in thermodynamics equilibrium into perfect contact with each 
other (suitable precautions being taken so that both systems remain closed). If each system remains 
in thermodynamic equilibrium the two systems will be said to be in thermal equilibrium with each 
other. Two systems not in contact will be said to be in thermal equilibrium if they would be when 
brought into contact.  
Experiments indicate that two systems, each of which is in thermal equilibrium with a third, are also 
in thermal equilibrium with each other. This statement express the zero, th law of thermodynamics. 
 

Empirical temperature:  Consider systems (1)A  and (2)A  with state variables (1)
1{1,2,..., }iX i n∀ ∈  

and (2)
2{1,2,..., }jX j n∀ ∈  respectively. Experiments indicate that if these systems are in thermal 

equilibrium, a functional relation of the form:  

 ( )(1) (2), 0i jf X X =  (4.1) 

is satisfied. Similarly, if (1)A  and (3)A  with state variables (3)
3{1,2,..., }kX k n∀ ∈  are in thermal 

equilibrium, then a functional relationship of the form:  

 ( )(1) (3), 0i kg X X =  (4.2) 

is found and if (2)A  and (3)A are in equilibrium, then :  

 ( )(2) (3), 0j kh X X =  (4.3) 

The zero’th law of thermodynamics requires that if any two of the equations reported above (4.2)-
(4.3) are satisfied, then the first also is satisfied (4.1). This is only possible if these equations can be 
brought into form; 

 

( )
( )
( )

(1) (2)
1 2

(1) (3)
1 3

(2) (3)
2 3

, 0,

, 0,

, 0,

i j

i k

j k

f X X f f

g X X f f

h X X f f

= − =

= − =

= − =

 (4.4) 

where ( ) ( ) ( )( )1 2, ,...,
i

i i i
i i nf f X X X= . Clearly then, there exist functions 1 2 3, ,f f f  such that 

1 2 3f f f= = , or, in the other words, these functions have the same value when the systems are in 

thermal  equilibrium . This value is called the empirical temperature of these systems and will be 
denoted by θ . Of course, the numerical value of  θ  used to describe any particular state of thermal 
equilibrium may be chosen arbitrarily , so that the scale of the empirical temperature may be chosen 
at will.  θ  is clearly a state function and the equation: 

 ( ) ( ) ( )( )1

1 1 1
1 1 2, ,..., nf X X Xθ =  (4.5) 

Is an additional equation of state for system (1)A . One may , of course, choose θ  as a state variable, 

in which case on the (1)Xα  becomes a state function for system (1)A . 

 
External Work:  Consider  a system occupying a region D+B acted upon during a certain process by 

surface tractions ( ),n
i BS P t , where BP  denotes a point on the surface, and by body forces per unit 

mass ( ),iF P t , where P is any point in the system. Let the displacement of any particle be denoted 

by ( ),iu P t . Then the rate Wɺ  at which work is being done on the system is: 

 ( ) ( ) ( ) ( ) ( ), , , ,i i i B i B
D B

W t F P t u P t dV S P t u P t dAρ    = +   ∫ ∫ɺ ɺ ɺ  (4.6) 

In differential notation this take the form: 
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 ( ) ( ) ( ) ( ) ( ), , , ,i i i B i B
D B

d W t F P t du P t dV S P t du P t dAρ    = +   ∫ ∫  (4.7) 

As an example, consider the special case of zero body forces and external uniform hydrostatic 
pressure, that is ( ),i B iS P t p n= − , where in  is the outwardly drawn unit normal to the surface B at 

the point BP ; then the equation (4.6) becomes: 

 ( ) ( ),i i B
B

W t p n u P t dA pV= − = −∫ɺ ɺɺ  (4.8) 

Where V is the volume of the system. In the differential notation: 
 dW p dV= −  (4.9) 
 
Internal energy function: It will be necessary for the following discussion to introduce the concept 
of an adiabatic wall. Two systems, each in thermodynamic equilibrium, but not in thermal 
equilibrium with each other, are brought into contact through an intermediate layer or wall; the wall 
is said to be adiabatic if the system remain in thermodynamic equilibrium. A process(during which 
the system remains uniform) is said to be adiabatic if throughout the process the system under 
consideration is entirely separated from its surroundings by an adiabatic wall. 
Consider a system which is brought from a initial (at time 0t t= ) thermodynamic equilibrium state 

characterized by state variable values ( )0X X tα α=  to a final (at time 1t t= ) thermodynamics 

equilibrium state characterized by ( )1X X tα α=  by means of an adiabatic process. It is then an 

experimental fact that the total work done on the system , that is ( )1

0

t

t
W t dt∫ ɺ , is independent of the 

adiabatic process used; it is, in other words, independent of the functions ( )X tα  in the open range 

0 1t t t< <  , but depends only on the values of these functions at the end points, that is, only on 

( )0X tα  and ( )1X tα . Furthermore it is found experimentally that an adiabatic process exists which 

connects any two states, al least in one directions. The internal energy U of the system is then 
defined as the adiabatic work, namely the work done on (by) the system in an adiabatic process 
which takes the system from (to) an arbitrary reference state to (from) the state in question. 
According to the previous discussion it is clear that, once the reference state is fixed, U is a state 
function, that is, the additional equation of state : 
 ( )1 2, ,...., nU U X X X=  (4.10) 

applies. 
It is observed experimentally that the internal energy is an extensive or additive quantity, that is, 
that the internal energy of a system consisting of two or more subsystems (in contact or not) is equal 
to the sum of the internal energies of all the subsystems. The two experimental facts concerning 
adiabatic work and the extensive character of internal energy form the basis for the first law of 
thermodynamics for uniform systems. The latter is most conveniently considered, however, after 
the introduction of the concept of heat.   
 
4.3.  Heat and first law of thermodynamics 
Consider an arbitrary process connecting two end points characterized by ( )0X tα  and ( )1X tα  

respectively . Let ( ) ( ) ( )1 0 0 0,..., nU X t X t U t  =   and ( ) ( ) ( )1 1 1 1,..., nU X t X t U t  =  . The total work 

done during this process is : 

 ( )1

0

t

t
W W t dt= ∫ ɺ  (4.11) 

where ( )W tɺ is calculated from eq. (4.6). If the process is adiabatic, 

 ( ) ( )1 0 0U t U t W − − =   (4.12) 
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By the definition of the internal energy function.  In any other process, the difference between the 
change in U and the work done on the system will not be zero. This difference will be called the 
total heat supplied to the system during the process and will be denoted by Q; thus,  

 ( ) ( )1 0U t U t W Q − − =   (4.13) 

The values of  W and Q will be different for different processes connecting the same two endpoints, 
with Q = 0 representing the particular case of an adiabatic process; the value of the sum W + Q  is, 
however, independent of the particular process employed because of its relation to the change in the 
state function U. The equation (4.13) may be expressed in the more convenient derivative or 
differential forms respectively as follows: 

 
U W Q

dU dW dQ

= +
= +

ɺɺ ɺ

 (4.14) 

Consider now two system, 1 and 2, in perfect contact with each other, but separated from their 
surroundings by an adiabatic wall. For systems 1 and 2 respectively : 

 1 1 1

2 2 2

U W Q

U W Q

 = +


= +

ɺɺ ɺ

ɺɺ ɺ
 (4.15) 

Where the work done by system 2 on system 1 is included in 1W , and similarly for 2W  . For the 

entire system, eq. (4.14) takes the form : 
 1 2U W W= +ɺ ɺ ɺ  (4.16) 

Because of the adiabatic envelope and because, according to the laws of mechanics, the rate of work 
done by system 1 on system 2 through the common contact surface is exactly the negative of the 
rate of work done by system 2 on system 1. The extensive character of U, however, requires that: 
 1 2U U U= +ɺ ɺ ɺ  (4.17) 

and therefore comparison of the last three equations shows that : 
 1 2Q Q= −ɺ ɺ  (4.18) 

It is therefore reasonable to speak of heat as energy being transferred from one system to another. 
With this interpretation eq. (4.13) may be taken s the mathematical formulation of the law of 
conservation of energy, usually referred to as the first law of thermodynamics. 
The discussion of thermodynamic principles could now be continued on the basis of an analysis of 
uniform system, leaving the generalization  to non-uniform systems until a later point. It appeared 
more convenient, however, to introduce the transition to non-uniform systems at this stage of the 
development, and then to discuss the second law of thermodynamics immediately in the desired 
final form. 
 
4.4. Transition to Non-uniform systems 
In the foregoing review of the thermodynamics of uniform systems, it has been possible to 
introduce thermodynamics concepts (such as empirical temperature and internal energy) and 
thermodynamic principles (such as the law of conservation of energy) as generalization base 
directly upon experimental evidence. The experiments involved could be described purely in 
mechanical terms and although the prescribed experimental conditions could not be reproduced 
exactly in reality, they could be approached within any desired degree of precision.  
It would at first seem possible to proceed directly from the theory of uniform systems to that of non-
uniform systems, that is systems in which conditions depend on spatial position , by means of a 
suitable limiting process in which one subdivides the system into many small elements, each of 
which approximates a uniform system more and more closely as its dimensions are made smaller 
and smaller. However, it is difficult to perform such a limiting process rigorously since, at each 
stage of it, the elements represent in fact non-uniform systems, to which the previous theory does 
not apply. It therefore appears to be necessary to consider the thermodynamics of non-uniform 
systems as the more fundamental subject, introducing its concepts and principles as new postulates. 
The theory of uniform systems serves as a guide  in this process and also provides a 
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“correspondence principle “ that is , the theory of non-uniform systems must yield the same  results  
as the uniform system provides the concept of the empirical temperature of an arbitrarily small 
uniform system (for example, a thermocouple) in perfect contact with the point in question. 
Consider now a non-uniform system composed of a single homogeneous continuous substance. 
Quantities which are intensive state variable or state functions for this  substance  in a uniform state 
serve immediately as state variables when it is in a non-uniform state, although they will be now 
space-dependent. It is sometimes attempted to give an operational definition of these quantities by 
indicating how they may be measured in the interior of substance, but it will here be considered 
sufficient that a theory based on such concepts leads to the prediction of surface phenomena which 
agree with experiment. Quantities which are extensive state variables or state functions for uniform 
systems are first converted to intensive state variables for such systems by dividing the quantity in 
question by the mass of the system; the resulting “densities” then serve for non-uniform systems as 
well.  
The  state variables and state functions fro non-uniform systems will be denoted in general by 

( ),X X P tα α=  where P denotes a point in space. It is assumed that the number and choice of 

independent state variables for a non-uniform system may be taken as the same as those fro a 
uniform system of the same substance, and furthermore that the remaining state functions satisfy, at 
thermodynamic equilibrium (that is, when all particles are at rest and ( ) 0X tα∂ ∂ =  throughout the 

system), the same equations of state as in the uniform system. 
 
4.5. Conservation of energy in non-uniform system 
In the previous section, such state functions as the internal energy density ε  have been introduced 
for non-uniform systems by a postulate. Similarly, le law of conservation of energy is here 
introduced as a postulate and expressed in terms of the postulated state functions and state variables, 
with no reference made to direct experimental verification as was done in the case of uniform 
systems. 
In order to formulate this  postulate, consider a portion C, which occupies a region D + B, of a 
homogeneous, continuous substance. Let  P  be a point in D + B and let ρ  and ( ),P tu  be the mass 

density and internal energy density , respectively, of the element of material located at P at time t. 
As is customary in a linear treatment of the subject, the mass density is taken as constant in what 
follows since consideration of its dependence on deformation leads to second-order terms. Let 

( ),iv P t  be the velocity components of the particle at (P,t)  and assume that the body is acted upon 

by body force components ( ),iF P t  per unit mass. Then the kinetic energy  K of C at time is 

defined as : 

 
1

2 i i
D

K v v dVρ= ∫  (4.19) 

The internal energy of C at time t is defined as : 
 

D

U dVρ= ∫ u  (4.20) 

Let ( ),ij P tσ  be the components of the stress tensor. The resulting surface tractions then do work on 

C at the rate: 
 ij j i

B

n v dAσ∫  (4.21) 

Where ( )j Bn P  are the components of the unit normal to the surface B at BP . Similarly, the body 

force components iF  do work on C at the rate : 

 i i
D

F v dVρ∫  (4.22) 
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It is further assumed that energy is transferred into C across B by heat transfer at the rate ( ),Bq P t−  

for unit area so that the total rate  of energy transfer into D by this means is : 
 

B

q dA−∫  (4.23) 

Attention is restricted her to processes in which energy is added to a body portion there of by one  
of the three agencies  just listed (for example, electromagnetic energy transfer is excluded). The 
postulated law of conservation of energy for such process then states that the rate at which the 
surface tractions and body forces do work on a body or portion there of plus the rate of energy 
transfer into it by heat transfer is equal to the rate of increase of the sum of its kinetic and internal 
energies; that is : 

 
1

2ij j i i i i i
B D B D D

d
n v dA F v dV q dA v v dV dV

dt
σ ρ ρ ρ

 
+ − = + 

 
∫ ∫ ∫ ∫ ∫ u  (4.24) 

The first  surface integral of this equation may be transformed by means of the divergence theorem 
as follows: 

 ( )
,ij j i ij i j

B D

n v dA v dVσ σ=∫ ∫  (4.25) 

The differentiation of the right hand side of equation (4.24) may be brought under the integral sign 
as follows: 

 
1

2 i i i i
D D D D

d
v v dV dV v v dV dV

dt
ρ ρ ρ ρ

 
+ = + 

 
∫ ∫ ∫ ∫ ɺɺu u  (4.26) 

Since, by the assumption of small displacements, the change with the time of the range of 
integration is neglected. This interchange of the order of differentiation and integration may also be 
justified without the assumption of small displacements by use of the equation of continuity  which 
expresses the law of conservation of mass; The presence, now, of only a single surface integral in 
equation (4.24) and the fact  that this equation applies to any portion of the body leads to the 
existence of a heat flux vector iq  which yields the heat flux q across any surface element with 

normal in  by means of the equation: 

 i iq q n=  (4.27) 

where, by convention, q is the heat flux form the side of the surface with negative normal to the side 
with positive normal. With the use of the heat flux vector, the integral: 
 ,i i i i

B B D

q dA q n dA q dV= =∫ ∫ ∫  (4.28) 

with these results eq. (4.24) may be rewritten in the form: 

 , , , 0ij j i i i ij i j i i
D D

F v v dV v q dVσ ρ ρ σ ρ   + − + − − =   ∫ ∫ ɺɺ u  (4.29) 

Where the first integral is zero by virtue  of the equation of motion. Since, by assumption, eq. (4.29) 
applies for any arbitrarily small portion of the body, it follows that the integrand of the second 
integral is identically zero at every point in the body where it is continuous , that is , 
 , ,ij i j i iv qσ ρ− = ɺu  (4.30) 

We may write ,i jv  in terms of its symmetric and anti-symmetric portions as follows: 

 ( ) ( ), , , , ,
1 1

2 2i j i j j i i j j i ij ijv v v v v ε ω= + + − = +ɺ ɺ  (4.31) 

where ( ) ( ), , , ,
1 1

; ;
2 2ij i j j i ij i j j iv v v vε ω= + = −ɺ ɺ  

The equation (4.30) may then be rewritten in the form: 
 ,ij ij i iqσ ε ρ− = ɺɺ u  (4.32) 
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Where use has been made of the fact that the contraction  ij ijσ ωɺ  is zero since ijσ  is a symmetric  

and ijωɺ  an anti-symmetric tensor. Equations (4.32)-(4.30) express the law of conservation of 

energy for non-uniform systems. 
  
4.6. Preliminaries to the second law of thermodynamics for continua 
To prepare the way for a suitable formulation of the second law of thermodynamics for deformable 
continua, it is necessary  first  to examine more closely some concepts , such as those of state 
variable and process. This will be done here by introducing a sequence of definitions as follows. 
 
Reference state: The state of the substance under consideration in some arbitrary , but fixed uniform 
condition of thermodynamic equilibrium will be referred to as the reference state. 
 
State deformation variables: As part of the definition of the particular kind of continua being 
studied, it is assumed that, at thermodynamic equilibrium, the internal energy density at an arbitrary 
point of the system depends upon the empirical temperature, θ , at that point and upon some (not 
necessarily all) aspects of the deformation from the reference state of the material element presently 
occupying that position. The appropriate  numerical measure of these deformation characteristics, 
called state deformation variables, will be denoted here by , 1,2,...,nαξ α =  where the range of the 

subscript  α  depends upon the material under consideration. Thus, for example, for a viscous fluid, 
there is only a single state deformation variable, the specific  volume V , whereas for an elastic solid 
there are six state deformation variables, which (if attention is restricted to sufficiently small 
displacements and displacement gradients) may be taken as the six components of the small strain 
tensor ijε . Thus in this case : ijαξ ε= ;   1,2,..,6; , 1,2,3; ;ij jii jα ε ε= = =  

 
4.7. Separation of state and dissipative deformation variables in the energy equation  
For the development of the second law of thermodynamics given in following  article, it is 
necessary to rewrite the energy equation in a form which  keeps separate account  of the 
contribution of the variation of the state deformation variables since, in the case of viscous fluids or 
viscous elastic-solids, other contributions to the energy equation due to deformation are present 
giving is to what will be termed dissipative deformation variables. In the case of the elastic solid, no 
other contributions exist and there are consequently no dissipative deformation variables. 
For these three cases, the energy equation (4.32) may be put in a common form namely: 

 , ; 1,..., ; 1,..., ;i is d q n mµ µ α ασ ξ ρ α µ+ − = = =ɺ ɺ ɺu  (4.33) 

Where  dµ  are the dissipative deformation variables and sµ  and ασ  are the conjugate of dµ  and 

αξ , that is, the multipliers of dµ
ɺ  and αξɺ  respectively in energy equation. 

 
The description of a process for a given element of material implies the specification the functions 

( ) ( ) ( ) ( ) ( ) 0 1, , , , ,s t d t t t t t t tµ µ α ασ ξ θ ≤ ≤ . This specification is here purely mathematical; no 

consideration has yet been given to whether a given process is physically realizable or not. Three 
special kinds of processes, not mutually exclusive, will now be defined: 
-  Restricted process: A process in which ( )d tµ =0 is said to be a restricted process. 

- Locally reversible process: During a process the system is not, in general, in thermodynamic 
equilibrium. The internal energy density u , cannot therefore be computed, according to the general 
theory outlined previously, from the equation  which gives its value at thermodynamic equilibrium. 
If the additional assumption is made that the internal energy density can be computed from the 
instantaneous values of the state variables by use of the equation of state, then the process is said to 
be locally reversible. Therefore, for a locally reversible process:  

 ( ) ( ) ( ),t t tαξ θ =  u u  (4.34) 
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and  

 ( )t α
α

ξ θ
ξ θ

∂ ∂= +
∂ ∂
ɺ ɺɺ

u u
u  (4.35) 

Where the function ( ) ( ),t tαξ θ  u  is the same as that applicable at thermodynamic equilibrium. 

 
- Locally adiabatic process: A process will be called locally adiabatic if the quantity ,i iq  appearing  

in equation (4.33) is identically zero. With these definitions, the next step in the development may 
be carried out as follows. It will now be shown that the quantities ασ  are themselves state 

functions, that is,  
 ( )1,...., ,nα ασ σ ξ ξ θ=  (4.36) 

And therefore ασ  depend only on the quantities which determine the internal energy. This proof 

will first be shown that, if a restricted process starting from an arbitrary state 0 0,αξ θ  is to  be locally 

reversible and locally adiabatic, it is not possible to specify ( ) ( ) ( ), ,t t tα ασ ξ θ   arbitrarily; 

therefore , in such a case a functional relationship exists between these quantities. 
To prove this, assume first that it is possible to specify all these functions arbitrarily; then (since by 
hypothesis the process is restricted, locally reversible and adiabatic) equation (4.33) takes the form: 

 0α α α α α
α α

σ ξ ρ ρ ξ θ σ ρ ξ ρ θ
ξ θ ξ θ

   ∂ ∂ ∂ ∂= = + ⇒ − − =   ∂ ∂ ∂ ∂   

ɺ ɺ ɺ ɺ ɺɺ
u u u u

u  (4.37) 

 Therefore it is possible in this case to specify ( )tαξ  and ( )tθ  completely independently  of each 

only if the material is such that 0θ∂ ∂ =u  and 

 ( )0 0
1 ,...., nα α

α
σ ρ σ ξ ξ

ξ
∂= =
∂
u

 (4.38) 

If the material is such that 0θ∂ ∂ ≠u  , as is generally the case, then it is seen that ( )tαξ  and ( )tθ  

cannot be specified independently of each other to obtain a restricted locally adiabatic  process 

starting  from an arbitrary state 0 0,αξ θ . It will be assumed that it is possible however to leave this 

state with this type of process along arbitrary ( )tαξ , but that for all these processes the temperature 

is then determined by a relation of the type : ( )1,..., nθ θ ξ ξ= . Then, equation  (4.33) takes the form: 

 0α α
α α

θσ ρ ρ ξ
ξ θ ξ

 ∂ ∂ ∂− − = ∂ ∂ ∂ 

ɺ
u u

 (4.39) 

And it therefore follows that : ( )0 0 0
1 1,...., ,α ασ σ ξ ξ θ= . Since 0 0,αξ θ  represents an arbitrary state, 

the establishment of equation (4.36) under stated assumptions is completed. 
 
4.8. Caratheodory’s statement of the second law of thermodynamics and its consequences 
The treatment of the second law of thermodynamics presented by caratheodory is characherized by 
a clear-up separation between the postulates regarding physical reality and the purely mathematical 
consequences derived from these postulates. Although limited in its original form to uniform 
systems, Caratheodory’s postulate (that is , his statement of the second law of thermodynamics) 
may be rephrased, with the concepts and results of the preceding section, for non-uniform systems; 
the mathematical reasoning leading to the existence of an entropy-density function and a universal 
absolute temperature scale remains substantially unaltered . 
Caratheodory’s statement of the second law of thermodynamics in a form applicable to continuous 
non-uniform systems characterized by state variables denoted by ,αξ θ  is then as follows: 
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Consider a particular initial state, 0J  of the system, characterized by state-variable values of 
0 0,αξ θ  at the generic point P. Then there exist states J characterized by state-variable values 

of  ,αξ θ  at P which are arbitrarily close to 0 0,αξ θ  and which are not accessible from 0J  by 
means of processes which are locally reversible and locally adiabatic at P.  
The purely mathematical theorem proven by Caratheodory and useful for drawing  consequences 
from  the above postulate may be stated as follows: 
If in the neighbourhood of an arbitrary point 0G  there are points G which are inaccessible along 

solution curves of the differential equation,  

 ( )1,..., 0; 1,2,...,n
d x

P x x n
dt

α
α α= =  (4.40) 

Then this equation is integrable. Definitions of the various terms used in the above follow: 
Point: A set for the variables ( )1,..., nx x ; Solution curve: A set of n functions , xα , which yield an 

identity when substituted in eq. (4.40) ;  Integrable: An equation of the form of eq. (4.40) is said to 
be integrable if there exist two functions, ( )1,..., nx xλ  and ( )1,..., nF x x , such that: 

 
1

; 1,2,...,
d x d xd F F

P n
dt dt x dt

α α
α

α
α

λ
∂= = =
∂

 (4.41) 

It is now possible to apply Caratheodory’s mathematical theorem to his statement of the second law 
thermodynamics are just rephrased.  If there are neighboring states of 0J  which are not accessible, 

in particular, by means of any restricted locally reversible and adiabatic process. But then, eq. 
(4.37) is satisfied and since ασ  is a state function, it is of the same form as eq. (4.40). It follows, 

therefore, that the hypotheses of Caratheodory’s mathematical theorem apply to eq. (4.37) and 
therefore that equation is integrable. That is, there exist functions ( ) ( )1 1,..., , , ,..., ,n nFλ ξ ξ θ ξ ξ θ  

such that the equation: 

 ( ) ( )1
,

,
Fα α α

α α
ρ σ ξ ρ θ ξ θ

λ ξ θ ξ θ
  ∂ ∂− + =  ∂ ∂   

ɺ ɺ ɺ
u u

 (4.42) 

Is an identity for any set of functions  ( )tαξ  and ( )tθ . It follows that eq. (4.33) may be rewritten 

in terms of the newly defined state functions λ  and F for any locally reversible process in the 
following forms: 
 ( ) ( )1 1,..., , ,..., ,n nFα αρ σ ξ λ ξ ξ θ ξ ξ θ=ɺ ɺɺu-  (4.43) 

 ( ) ( ), 1 1,..., , ,..., ,i i n ns d q Fµ µ λ ξ ξ θ ξ ξ θ− = ɺ  (4.44) 

The work thus far has not characterized uniquely  the functions λ  and F. To do so, it is necessary 
to proceed as follows. We first specialize the foregoing discussion to a system undergoing a 
restricted process, so that eq. (4.44) becomes: 
 ( ) ( ), 1 1,..., , ,..., ,i i n nq Fλ ξ ξ θ ξ ξ θ− = ɺ  (4.45) 

Integration of this equation over the volume of the system, use of the divergence theorem, and of 
eq. (4.28) then yields: 
 ( ) ( )1 1,..., , ,..., ,n n

D

Q F dVλ ξ ξ θ ξ ξ θ= ∫ɺ ɺ  (4.46) 

Where Qɺ  is the rate of energy transfer into the system in the form of heat. We now specialize the 
discussion further, assuming that the system is uniform and that the system is uniform and that the 
heat transfer into it occurs reversibly in the sense of classical thermodynamics, that is, at a 
vanishingly slow rate. Since the functions λ  and F are now independent of the spatial coordinates, 
we may rewrite the last equation as 
 Q F Vλ=ɺ ɺ  (4.47) 
where V is the total volume of the system, or  
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 *Q F Mλ=ɺ ɺ  (4.48) 

where M is the total mass of the system, and ( ) ( ) ( )* , , / ,α α αλ ξ θ λ ξ θ ρ ξ θ= . 

By consideration of a second uniform system in perfect thermal contact with the one before, it is 
now possible to show  that, for a given scale of empirical temperature, there is an unique (except 

for an arbitrary multiplicative constant ) function *λ  which depends only upon θ  and furthermore 
that it is the same for all systems. The derivation also indicates that this function cannot change 
sign; by convention it is taken as positive. The function as then chosen is known as the absolute 
temperature and is denoted by ( )T θ . Since the empirical temperature has been defined  for a non-

uniform system also, this function, (a universal state function) defines the absolute temperature for 
non-uniform system as well. The function ( ),F αξ θ  corresponding to ( )T θ  is then a uniquely 

characterized  (excepted for an arbitrary additive constant  omitted below ) state function for each 
system. By convention, the function ( ),S αξ θ  is introduced where : ( ) ( ), ,S M Fα αξ θ ξ θ=  is 

called  the entropy of the uniform system. It is clear that S is an extensive state function ; the 
corresponding intensive function, known as the entropy density, is obtained by division by the 
mass of the system and is denoted by ( ),αη ξ θ , that is ( ) ( ), ,Fα αη ξ θ ξ θ= . 

It is now possible to rewrite eqs. (4.43)-(4.44) using as a matter of convenience , T rather than θ  as 
a state variable , as follows: 
 Tα ασ ξ ρ η ρ+ =ɺ ɺɺ u  (4.49) 

 ,i is d q Tµ µ ρ η− =ɺ ɺ  (4.50) 

These equations are valid  for any locally reversible process. 
 
4.9. Irreversible thermodynamics ; Entropy production 
The foregoing has been concerned with the extension of classical thermodynamics to non-uniform. 
In this article some of the concepts from more recent developments in thermodynamics dealing 
with grossly irreversible (through still locally reversible) phenomena are introduced. 
It is first noted from equation (4.50) that, depending upon the magnitude of ,i iq , the entropy 

density η could either increase or decrease ; however, it is known from the classical theory of 
uniform systems that if a system is separated by means of an adiabatic wall from its surroundings, 
its total entropy can never decrease. It is therefore desirable to find a density  with similar 
properties, as may be done in the following manner. Consider a portion of a continuous system 
occupying the region D+B. From equation (4.50) the rate of change of the entropy of this portion 
of the body is  

 , ,
2

,

i i i ii

D D D D D Di

s d s dq q Tq
dV dV dV dV dV dV

T T T TT
µ µ µ µρη  = − + = − − + 

 
∫ ∫ ∫ ∫ ∫ ∫

ɺ ɺ

ɺ  (4.51) 

or finally, by application of the divergence theorem to the first integral on the right-hand side,   

 ,
2

i ii i

D B D D

s dq Tq n
dV dV dV dV

T TT
µ µρη = − − +∫ ∫ ∫ ∫
ɺ

ɺ  (4.52) 

The first term on the right-hand side of this equation represents the entropy change of the system 
due to the heat flow across the boundary B, and the last two terms represent the entropy change due 
to processes (heat conduction and variation of dissipative variables) occurring within the volume. It 
is therefore reasonable to call the sum of the last two terms the rate of entropy-density production 
denoted by Iηɺ , namely ,  

 ,
2

i i
I

s d q T

T T
µ µρη = −
ɺ

ɺ  (4.53) 

It should be noted that Iη  is not a state function. 
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One of the important  postulates of irreversible thermodynamics is now introduced; it states that the 
entropy-density production at any point in a system is always positive, that is,  
 0Iη ≥ɺ  (4.54) 

As a consequence of this postulate and of equation (4.53) it follows that the quantities ,iq sµ  and  

( )2
,iT T , dµ

ɺ  cannot all take  on arbitrary values , but that a functional relationship must exist 

between the first set of quantities ,iq sµ  (sometimes referred to as fluxes or effects ) and the second 

set of quantities (referred to as forces or causes). For the purpose of simplifying the following 

discussion, let the following notation be adopted: ( )2
,, , 1,2,3i iq s T T d iµ µ= = =ɺ , and 

1, 2, 3m m mµ = + + + , respectively. As first approximation, the functional relationships between 
effects and causes are assumed to be linear, that is,  

 ; , 1,...., 3;s L d mµ µν ν µ ν= = +ɺ  (4.55) 

where the quantities Lµν   are independent of  dν
ɺ   

We way now state  the second important postulate of irreversible .This postulate, due to Onsager, 
who arrived  at it  through statistical mechanical considerations, states that these coupling 
coefficients must be symmetric, that is, 
  
 ; , 1,..., 3L L mµν νµ µ ν= = +  (4.56) 

Equation (4.56) states what are known as the Osanger reciprocal relations. 
 
4.10. Stress-strain relations and energy equation for an isotropic elastic solid 
On the basis of the foregoing results, it is now possible to consider detailed applications to specific 
types of continuous media . We will, in other words, develop here the form of the stress-strain 
relations for an isotropic, elastic solid subjected to deformations which obey the restrictions of 
linear elasticity theory and subjected to small  temperature changes. It will  then be possible to put 
the energy equation  for this case in a convenient form . 
The starting points is eq. (4.49) written in the form it assumes for an elastic solid, namely, 
 ij ij Tσ ε ρ η ρ+ = ɺɺ ɺ u  (4.57) 

The free-energy function , ( ),ij Tϕ ε , is introduced and defined as follows: 

 ( ) ( ) ( ), , ,ij ij ijT T T Tϕ ε ε η ε=u -  (4.58) 

Although ϕ  depends only upon the six independent components of the symmetric tensor ijε , it is 

convenient to write ( )1
2ij ij jiε ε ε= +  and to regard ϕ  as a mathematical function of all nine 

components of the ijε  tensor. It is clear that this method of definition of leads to the identity : 

 
ij ji

ϕ ϕ
ε ε

∂ ∂=
∂ ∂

 (4.59) 

Substitution of eq. (4.58) into eq. (4.57) then lead to the result 

 0ij ij
ij

T
T

ϕ ϕσ ρ ε ρ η
ε

 ∂ ∂ − − + =    ∂ ∂  

ɺɺ  (4.60) 

By assumption, the coefficients of the seven independent quantities , ijεɺ  and Tɺ , do not depend on 

these quantities; they must therefore be identically zero. Then, by use of equation (4.59) and of the 
symmetry of the stress tensor ijσ , we obtain: 

 ij
ij

ϕσ ρ
ε

∂=
∂

 (4.61) 
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T

ϕη ∂= −
∂

 (4.62) 

Note that by virtue of the adopted convention the partial differentiation of ϕ  in equation (4.61) is 

with respect to the ijε  regarded as nine independent variables. 

The six independent components of any symmetric second-rank tensor in three-dimensional space 
are determined by its three principal values and by the three angles, 1 2 3, , ,θ θ θ  which determine the 

orientation of the three (mutually orthogonal ) principal directions. Furthermore, the three principal 
value of such a tensor are determined by its three  invariants. It follows that the free energy 

function, ( ),ij Tϕ ε , may be alternatively expressed, using as arguments the three principal 

invariants of the strain tensor , , ,I II IIIε ε ε , the three orientation angles, 1 2 3, , ,θ θ θ  and T ; then  

 ( ) ( )1 2 3, , , , , , ,ij T I II III Tε ε εϕ ε ϕ θ θ θ=  (4.63) 

If attention is restricted to an isotropic elastic solid, as is the case in this discussion, then the free 
energy function must be independent of the three orientation angles, 1 2 3, , .θ θ θ  Therefore, for such a 

solid, 

 ( ) ( ), , , ,ij T I II III Tε ε εϕ ε ϕ=  (4.64) 

It follows from equation (4.61) that 

 ij
ij ij ij

I II III

I II III
ε ε ε

ε ε ε

ϕ ϕ ϕσ ρ
ε ε ε

 ∂ ∂ ∂∂ ∂ ∂= + +  ∂ ∂ ∂ ∂ ∂ ∂ 
 (4.65) 

The three invariants of the strain tensor are defined as follows: 

 
1 1

, ,
2! 3!

ij ijk
ii lm il jm lmn il jm knI II IIIε ε εε δ ε ε δ ε ε ε= = =  (4.66) 

Where ij
lmδ  and ijk

lmnδ  are generalized Kronecker deltas defined as follows: 

 

= +1if l and mare distinct integers (from 1 to 3) 

and i,j are an even permutation of the same integers

= -1 if l and m are distinct integers and i,j are an odd 

permutation of the same integers

=  0 in

ij
lmδ

 all other cases









 (4.67) 

With an analogous definition for ijklmnδ . Thus note that 

 , ,ij ijk
lm ijk lmk lmn ijk lmnδ γ γ δ γ γ= =  (4.68) 

In terms of the alternating tensor defined in eq. (4.58). Differentiation of eqs. (4.66) gives: 

 , , ,ij ij ij ik jk ij ij
ij ij ij

I II III
I I IIε ε ε

ε ε εδ δ ε ε ε ε δ
ε ε ε

∂ ∂ ∂= = − = − +
∂ ∂ ∂

 (4.69) 

It is assumed next that there exists a reference state o the substance, at a temperature 0T T= , for 

which the material is stress-free, and that the free energy function ϕ  may be expanded in a power 

series in the arguments , , , 'I II III Tε ε ε  where: 

 0

0

'
T T

T
T

−=  (4.70) 

Then  

 ( )
2

0 1 2 3 4 5

2 2
6 7 8

'1
, , , '

' ....

a a I a II a III a T a I
I II III T

a II a III a T I

ε ε ε ε
ε ε ε

ε ε ε

ϕ
ρ
 + + + + +

=  
 + + + + 

 (4.71) 
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Where the quantities 0 1, ,....a a  are constants. The stress-strain relation may now be obtained by use 

of equations (4.71) and (4.61). Since a linear theory is desired, attention is restricted to the cases in 
which ijε  and 'T  are sufficiently small so that their products may be neglected in the stress-strain 

relations and in the energy equation. Thus, the stress-strain relations resulting from this procedure 
are as follows: 

 
( )

( )
1 2 5 8

5 2 2 8

2 '

2 '

ij ij ij kk ij ij kk ij

ij ij kk ij ij

a a a a T

or a a a a T

σ δ δ ε ε δ ε δ

σ δ ε ε δ

= + − + +

= + − +
 (4.72) 

Where 1 0a =  since the material is stress free in the reference state. 

The constants 2 5, ,a a  and 8a  may be renamed in terms of Lame’s constants λ  and µ  and the 

coefficient of linear thermal expansion α  as follows: 

 ( )
( )

2

5

8 0

2

2 2

3 2

a

a

a T

µ
λ µ

λ µ α

= −
= +

= − +

 (4.73) 

Equation (4.73) then assumes the familiar form of the linear thermoelastic stress-strain relation, 
namely: 
 ( ) ( )02 3 2ij ij kk ij ij T Tσ λδ ε µ ε λ µ δ α= + − + −  (4.74) 

The principle of positive rate of entropy production, equation (4.54), is employed next to determine  
the relation governing heat conduction in an isotropic elastic solid.  
Since there are no dissipative  deformation variables , equation (4.54) merely implies a relation 
(taken here as linear between iq  and  ,iT  ( the denominator T may be included in the coefficients of 

this relation). The most general, tensorially valid, linear relation which can exist between the 
quantities iq  and  ,iT  is of the following form (Fourier’s law  of heat conduction) : 

 , ,i i ij jq aT b T= +  (4.75) 

Where the quantities a and ijb  are material properties of the indicated tensorial rank. Because of the 

assumed isotropy of the solid, the quantities ijb  must be components of an isotropic tensor, that is, 

a tensor whose components have the same numerical value in any Cartesian coordinate system. It 
may be shown that the most general isotropic tensor of rank two has components of the form 

ij ijb bδ= ; the equation (4.75) then becomes simply: 

 ,i iq k T= −  (4.76) 

Where the scalar k, known as the thermal conductivity of the solid, must be positive to insure a 
positive rate of entropy production, that is, to satisfy inequality (4.54). The equation (4.76) express 
the well-known  Fourier’s law  of heat conduction. 
The general energy equation may now be input in a more convenient form for the elastic solid and 
linear theory here considered. Since there are no dissipative deformation variables for an elastic 
solid, eq. (4.50) becomes: 

 ,i i ij
ij

q T T T
T

η ηρ η ρ ε
ε

 ∂ ∂− = = +  ∂ ∂ 

ɺɺ ɺ  (4.77) 

Or, by use of equation (4.62), we obtain: 

 
2 2

, 2i i ij
ij

q T T T
T T

ϕ ϕρ η ρ ε
ε

 ∂ ∂− = = − +  ∂ ∂ ∂ 

ɺɺ ɺ  (4.78) 

It is customary to introduce a quantity, denoted by Ec , such that for a process in which 

0, , {1,2,3}ij i jε = ∀ ∈ɺ : 
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 ,i i Eq c Tρ− = ɺ  (4.79) 

where Ec  is known as the specific heat at constant deformation of the elastic solid in question. 

Comparison of the last two equations then yields: 

 
2

2Ec T
T

ϕ∂= −
∂

 (4.80) 

Also from eq. (4.61), it is seen that  

 
2 1 ij

ij T T

σϕ
ε ρ

∂∂ =
∂ ∂ ∂

 (4.81) 

Equation (4.78) therefore takes the form: 

 ,
ij

i i E ijq c T T
T

σ
ρ ε

∂
− = −

∂
ɺ ɺ  (4.82) 

For the linear theory under consideration here, ij Tσ∂ ∂  may be evaluated by use of the linear 

thermo-elastic stress-strain relations, equation (4.74), ,i iq  may be evaluated by means of the 

Fourier law of heat conduction equation (4.76) , and  0 'T T T T= +  may here be replaced by 0T . 

The result is then the desired energy equation for the linear thermo-elastic theory, namely, 
 ( ), 03 2ii E kkk T c T Tρ λ µ α ε= + +ɺ ɺ  (4.83) 

In what follows this equation will be referred to as the corrected or coupled heat conduction, since 
the last term is not present if the inter-convertibility of thermal and mechanical energy is ignored. 
Similarly, the thermo-elastic theory which employs this equation and which therefore requires the 
simultaneous determination of temperature and deformation will be referred to as the coupled 
thermo-elastic theory. 
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CHAPTER V 
UNCOUPLED QUASI-STATIC THERMO-ELASTIC THEORY 

 
5.0  Introduction 
The basic theory describing the behaviour of continuous media developed in the last chapter led to 
the mathematical formulation. This boundary value problem is of considerable mathematical 
difficulty, as it combines the theories of elasticity and of heat conduction under transient conditions. 
Fortunately, in most of the usual engineering applications it is possible to introduce certain 
simplifications without significant error. The principal such simplifications are the omission of the 
mechanical coupling term in the energy equation  and of the inertia terms in the equations of 
motion. It will be necessary in this chapter to refer to a theory based on none of these 
approximations, or to the first only , or to both of them; the terms coupled theory, uncoupled theory, 
and uncoupled quasi-static theory will respectively be employed here for this purpose. In the 
remaining chapters however, only the last on of these theories is used and is divided into two 
distinct subjects; these will be referred to simply as the theories of heat conduction and thermo-
elasticity.  The relation between these various theories, as well as a discussion of their accuracy, 
forms the subject matter of the next four articles of this chapter. 
 
5.1  General remarks on the effects of coupling and inertia 
Consider first the mechanical coupling term in the heat conduction equation . If an external 
mechanical agency produces variations of strain within a body , this equation shows that these 
variations of strain are in general accompanied by variations in temperature and consequently by a 
flow of heat; the whole process thus gives rise to an increase of entropy  and therefore to an 
increase  in the energy stored in a mechanically irrecoverable manner. This phenomenon, known as 
thermo-elastic dissipation requires for its study the use of the coupled heat equation; clearly the 
mechanical term in the heat equation is essential to the description of this dissipative process, and 
its omission would here be meaningless. However, the deformation due to the external loads are 
accompanied only by small changes in temperature, and it would therefore appear reasonable to 
calculate these deformations without taking account of the thermal expansion. Similarly, if strains 
are produced in a body by  a non-uniform temperature distribution, it would seem intuitively clear 
that the influence of these strains on the temperature itself should not be too large. On may therefore 
anticipate the conclusion that the coupling term appearing in the heat equation can be disregarded 
for all problems except those in which the thermo-elastic dissipation  is of primary interest.  This 
matter may be made plausible by the following reasoning. The coupled heat equation, may be 
rewritten as : 

 ,
2

1
2 3

kk
ii vk T c T

T

εµ λρ δ
µ λ α

  += +  +  

ɺ
ɺ

ɺ
 (5.1) 

We note that the notations vc , specific heat at constant volume, and Ec  , specific heat at constant 

deformation , may be employed interchangeably  in the linear theory. The non-dimensional 
parameter δ  is defined by: 

 
( )2 2

0
2 2

3 2

v e

T

c v

λ µ α
δ

ρ
+

=  (5.2) 

With the velocity of propagation of dilatation waves in an elastic medium being denoted by : 

 
2

ev
µ λ

ρ
+=  (5.3) 

The term proportional to parameter δ  in eq. (5.1) is the coupling term, and it is negligible 
compared to unit if : 

 
2 2 3 1

1
2 3 3 2

kk kk

T T

ε εµ λ λ µδ
µ λ α α λ µ δ

   + +<< ⇒ <<   + +   

ɺ ɺ

ɺ ɺ
 (5.4) 
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For temperature distributions with no sharp variations or discontinuities in their time histories, it 
intuitively expected that the time rate of change of the dilation is of the same order of magnitude as 
that of the temperature; Thus the disregard of coupling as described previously appears to  be 
reasonable. The preceding discussion makes it clear that the possibility of omitting the coupling 
terms depends not only on the fact that the inequality  
 1δ <<  (5.5) 
must hold (as it does for most metals), but also on the fact that strain rates must be of the same order 
of magnitude as temperature rates. The latter condition implies that the time history of the 
displacements closely follows that of the temperature; in other words no pronounced lag or 
vibrations in the motion of the body must arise. It is therefore to be expected that the magnitude of 
inertia effects will also enter this question, so that a close relationship can be anticipated to exist 
between the two previously mentioned simplifications of the general theory. 
A complete  and rigorous delimitation of the class of problems for which these simplifications can 
be made  is not available. However, it is possible to investigate the relation between the exact and 
the approximate  theories by some specific examples.   
 
5.2   Solution of a mono-dimensional  coupled thermo-elastic problem 
The problem chosen is that of an infinite medium, initially at rest and a uniform temperature, 
subjected to a prescribed rate of internal heat generation ( ),Q x t  per unit volume, given by: 

 ( ) ( )1, cos
x

Q x t Q t
L

 =  
 

 (5.6) 

Where L is a constant. Suitable constraints are imposed  so that the displacements  components 
, ,u v w  in the , ,x y z  directions may be taken as : 

 ( ), ; 0u u x t v w= = =  (5.7) 

The equations  to be solved are then as follows: 

 ( ) ( )
2 2

02
, 2 3v

T T u
k Q x t c T

t x tx
ρ µ λ α∂ ∂ ∂+ = + +

∂ ∂ ∂∂
 (5.8) 

 
2

2
xx u

x t

σ ρ∂ ∂=
∂ ∂

 (5.9) 

 ( ) ( )2 3 2xx xx Tσ µ λ ε λ µ α= + − +  (5.10) 

 ( )3 2yy zz xx Tσ σ λ ε λ µ α= = − +  (5.11) 

 0xy yz xz xy yz xzτ τ τ γ γ γ= = = = = =  (5.12) 

 xx
u

x
ε ∂=

∂
 (5.13) 

Under suitable initial conditions to be specified shortly. As is clear from an examination of eq. 
(5.10) and (5.11), T here denotes the change in temperature from initial, stress-free state. It is 
convenient to restate first the problem in terms of two dependent variables alone, namely u and T ; 
this is done by eliminating xxε  between eq. (5.10)-(5.13) and then substituting the resulting 

expression for xxσ  into eq. (5.9). The final result is: 

 ( ) ( )
2 2

2 2
2 3 2

u T u

xx t
µ λ λ µ α ρ∂ ∂ ∂+ − + =

∂∂ ∂
 (5.14) 

Equations (5.8) and (5.14) are to solved fro u and T, then the strain and stress components are 
readily found eq. (5.10)-(5.11)-(5.12)-(5.13). 
In many types of problems it may be possible to neglect the coupling term in the heat equation (that 
is, the last term of equation (5.8)), although still retaining the temperature term in the stress-strain 
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relations, eq. (5.10)-(5.11) by the second term on the left-hand side. It will therefore be found 
convenient to rewrite these equations in the following form: 

 

( ) ( )

( ) ( )

2 2

1 02

2 2

22 2

3 2 , 0

2 3 2

v
T T u

k c T Q x t
t x tx

u T u

xx t

ρ λ µ α

µ λ λ µ α ρ

 ∂ ∂ ∂− − + + = ∂ ∂ ∂∂


∂ ∂ ∂ + − + = ∂∂ ∂

 (5.15) 

Then in the  coupled theory: 
 1 2α α α= =  (5.16) 

and in the  uncoupled theory : 
 1 20; ;α α α= =  (5.17) 

For the present problem, in which the internal heat generation is given by eq. (5.6), the solution will 
be taken in the following convenient non-dimensional form: 

 

( ) ( ) ( )

( ) ( )0

, sin
3 2

, cos

vc L x
u x t F

L

x
T x t T G

L

ρ τ
α λ µ

τ

  =   +  


  =    

 (5.18) 

where time appears in the dimensionless variable: 

 
2 2

v

k t t

c L L
τ κ

ρ
= =  (5.19) 

with κ  the thermal diffusivity. Equations (5.15) then may be rewritten as follows: 

 

( ) 2
1

2
2

2

0

0

o

Q Ld G d F
G

d d T k

d F
F K G

d

τ
τ τ

δ
τ


+ + − =



 + − =


 (5.20) 

where  

 
( )

( )

2
1 2 03 2

; ;
2 v v e

T k
K

c Lc v

λ µ α α
δ

µ λ ρ ρ
+

= =
+

 (5.21) 

The parameter δ  is identical with that of equation (5.2) for the coupled theory and is zero for the 
uncoupled theory. 
Equations (5.20) must be solved under initial conditions: 

 ( ) ( ) ( )0 0 0 0
dF

F G
dt

= = =  (5.22) 

Before discussing the particular solution of equation (5.20) (for which a special form of  ( )1Q τ  will 

be chosen ), it is desirable to study  the complementary solution, that is, the solution of these 
equation with 1Q  set equal to zero. The complementary solution (denoted by a subscript c) is : 

 
( )
( )

31 2

31 2

1 2 3

* * *
1 2 3

mm m
c

mm m
c

F C e C e C e

G C e C e C e

ττ τ

ττ τ

τ

τ

= + +

= + +
 (5.23) 

where the constants jC  and ( )* 1,2,3jC j =  are the nontrivial roots of  

 
( )

( )
*

2 2 *

1 0

1 0

j j j j

j j j

m C m C

m K C Cδ

 + + =


+ − =

 (5.24) 
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The summation convention is of course not employed here. Thus jm  are the three roots of the 

determinant equation: 

 ( )( )2 21 1 0j j jm m K mδ+ + + =  (5.25) 

And the constants jC  and ( )* 1,2,3jC j =  are related as follows: 

 
* 2 21j j

j
j

C m K
r

C δ
+

= =  (5.26) 

The discriminant of the cubic equation (5.25) is : 

 

3 22 6 2 8

1 1
3 27 2 9 9

K K K Kδδ
   

+ − + − −   
   

 (5.27) 

And is therefore positive; hence eq. (5.25) has one  real and two conjugate complex roots. 
Furthermore, it is clear (by use Descartes’rule of signs) that the real root must be negative. It may 
now be proved that the real part of the complex roots is also negative. Hence we way write the roots 
of eq. (5.25) in the form: 
 1,2 3; ;m p i q m n= − ± = −  (5.28) 

Where p and n  are positive. The ratios jr  then become 

 ( )
2 2

2 2 2 2
1,2 3

1 1
1 2 ,

n K
r p q K i p q K r

δ δ
+ = + − =

 
∓  (5.29) 

The constants jC  will have the form: 

 ( )1,2 3
1

; ;
2

C A i B C C= ± =  (5.30) 

Where A,B and C are real , because the function cF  is real ; it is then easily verified that, with 

expressions (5.29), the function cG  is also real. The complementary solution may finally be written 

as follows: 

 

( ) ( )

( ) ( )

( ) ( )

2 2 2 2 2
2 2

2 2 2 2 2

cos sin

1 2 cos1 1

1 2 sin

p
c

p
c

F e A q B q Ce

K p K q A pq K B q n K
G e Ce

K p K q B pq K A q

τ ητ

τ ητ

τ τ

τ

δ δτ

− −

− −

 = − + 

  + − + +  = + 
  − + − −
  

 (5.31) 

The  particular solution will now be found, and the problem completed, for the following particular 
function 1Q : 

 ( ) ( )0 0/ /
1 0 01 1t tQ Q e Q e τ τ− −= − = −  (5.32) 

Where 0Q  and 0t  are constants and where: 

 0
0 2

t

L

κτ =  (5.33) 

A particular solution is then  

 

( )

( ) ( )

0

0

2 3
/0 0

0

22
0 0 /0

0

1

1

P

P

Q L
F e

T k D

KQ L
G e

T k D

τ τ

τ τ

δ ττ

τ τ
τ

−

−

 
= + 

 

 +
 = +
 
 

 (5.34) 

where ( )2 2 2
0 0 0( ) 1D K τ τ δ τ= + − + . The constants A,B and C may now be calculated so as to satisfy 

the initial conditions eq. (5.22). The final solution of the present problem can then be written ; it is: 
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( ) ( ) ( )

( ) ( ) ( )

0

0

/
1 2 3 4 5

0

/
1 2 3 4 5

0

cos sin
sin

cos sin
cos

p p
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τ τ ητ τ τ

τ τ ητ τ τ

τ τ
τ

τ τ
τ
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− − − −

  + + + +  =    
     


 + + + +  =    

    

 (5.35) 

where the constants ,j jU V  are given by: 

 : 

( ) ( )
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1
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1
1 ,

n p q p n p nq K n
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In the derivation  of this solution use has been made of the following relations among the roots of 
the cubic equation (5.25): 

 ( )
( )

2 2 2

2 2 2

2 1

2 1

1

p n

K p q n p

K n p q

δ

 + =
 + + = +

 + =


 (5.36) 

The previous solution of a simple coupled thermo-elastic problem, an analysis solution follows. In 
first place, it may be noticed that the solutions for the displacements u and for the temperature T, 
consist of three types of terms, namely the damped oscillatory terms proportional to the exponential 

pe τ− , the terms proportional to the exponential e ητ−  and the remaining terms, free both these 
exponential functions. The first of these will be the principal object of this discussion; the other two 
types remain essentially unchanged even if the uncoupled quasi-static theory employed. The 

exponential pe τ−  represents the effect of the coupling term8 that is, of thermo-elastic damping ), 
and is in fact equal to unity if the parameter δ  is set equal to zero, this is easily seen from the fact 
that the roots of eq. (5.25)give in this case: 
 ( )0, 1/ , 1,p q K n= = =  (5.37) 

It has already been proved that all others values of  δ  the quantity p is positive; hence this factor 
truly represents a damped response. The magnitude of the damping may be estimated by noting that 
inequality (5.5) is satisfied  by the parameter δ  and that therefore we may write the roots of eq.  
(5.25) approximately by considering the first few terms of a power expansion in δ . Then : 
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 ( ) ( ) ( ) ( ) ( )2 2 2
22 2

1
, , 1 ,

12 1 2 1
p O q O n O

K KK K K

δ δ δδ δ δ= + = + + = − +
++ +

 (5.38) 

Which shows that thermo-elastic damping is usually small. Of course, no matter how small the 

coefficient p. for sufficiently large times the quantity pe τ−  will begin to differ appreciably from 
unity. We may thus conclude that  for short times damping is negligible, and the response can be 
accurately predicted by means of an uncoupled theory  in which inertia terms are retained.  Such a 
justification for the use of this theory is, however, not satisfactory in practice, since process of long 
duration are also of interest. It will now be shown that it is more useful to consider the importance 
of the coupling terms as a function of the rapidity of heat application , and will then be seen that if 
the heat application is not too rapid, it is not only permissible to use the uncoupled theory , but also 
under the same  circumstances the effect of inertia may be disregarded. There will the remain the 
task of determining if actual rates of temperature change are in effect sufficiently slow to make the 
entire argument valid. The rapidity of heat generation increase is represented in equation (5.32), by 
the time 0t ; we may refer to this as the input time. This time must be compared with two 

characteristic times of the system, namely, the characteristic mechanical time Mt  and the 

characteristic thermal time Tt  defined as: 

 
22

; ;
2

v
M T

e

c LL L
t L t

v k

ρρ
µ λ κ

= = = =
+

 (5.39) 

In the present problem it is possible to select at will the relative orders of magnitude of the three 
times 0, ,M Tt t t , since 0t  and L are arbitrary, and latter appears raised to a different power in Mt  and 

Tt . Three similar time arise in all coupled problems, although their mode of definition is different; 

their  relative orders of magnitude are dictated by physical consideration. As exemplified, it will be 
found generally that: 
 T Mt t>>  (5.40) 

And that (for problems of this type in which the forcing disturbance is thermal in character) 
physical considerations limit the time 0t  to the range: 

 0 Mt t>>  (5.41) 

Where 0t  may be either larger or smaller than Tt . 

It is now desired to show that, under conditions (5.40) and (5.41) , not only are the effects of inertia 
small, but that coupling effects are also small. The solution  reported  (5.35) gives the displacement 
and the temperature at any time in dimensionless form in terms of three dimensionless parameters, 
namely 0, ,Kτ δ . Inequalities (5.40) and (5.41) may be expressed in terms of the first two of these 

by their definitions as follows:  
 0 01; 1;M T Mt t K t t K τ= << = <<  (5.42) 

Since  both these inequalities are in effect restrictions on quantities proportional to K, the desired 
result is most readily obtained by expanding the solutions of eq. (5.35) in a series in powers of K, 
and then noting the character of this expansion in the range defined by equations. (5.42).  
For small values of  K , we may expand the quantities p, q and n in a series of ascending of K, as 
follows: 
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   ++
   = − + = − +

+    + +   

 
 = − +

+  + 

 (5.43) 

The entire of equation (5.35) may now be expanded in a similar power series K, with the following 
result: 
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(5.44) 
It may be noted that the first terms of these expansions are identical . Use of conditions (5.42) now 
show that it is sufficient to retain only the first term on the right-hand  sides of eq. (5.44); this term 
is free of the oscillatory inertia terms appearing in the complete solution (and in the second term) 
and therefore leads to the conclusion that neglect of inertia is here permissible. The term in question 
may be further simplified, however, since the coupling coefficient δ appears in it only in the 
combination ( )1 δ+ , and this quantity may e approximated by unity in  view of inequality  (5.5). 

The solution then becomes simply: 

 
( )

( )
( )

( )
( )

( )
0/

0
3 2

00 2 0

2
1

sin / cos / 13 2

u k T e ek

x L x LQ L Q L

τ τττ λ µ τ τ
τλ µ α

−− + −= = + 
−+  

 (5.45) 

Equations (5.45) are the solutions of the uncoupled quasi-static theory, that is, they satisfy the 
following equations (compare with equation (5.15)): 

 

( ) ( )

2

2

2

2

0

2 3 2 0

v
T T

k c Q
tx

u T

xx

ρ

λ µ α λ µ

 ∂ ∂− + = ∂∂


∂ ∂ + − + = ∂∂

 (5.46) 

The latter theory may thus be considered valid whenever the appropriate input, thermal, and 
mechanical time satisfy inequalities (5.40)-(5.41). The preceding discussion indicates that to answer 
this question it is adequate to consider the effect of inertia( that is, validity of inequalities (5.40)-
(5.41) and not that of coupling ; if the former is found to be negligible, the latter should be also. It is 
also interesting to examine what would happen in the previous illustrative problem if the input time 
were chosen to be large not only with respect to the characteristic mechanical time, as in eq. (5.41), 
but also with respect to the characteristic thermal time . In other words, it is desired to impose on 
the solution the restriction( in addition to those of inequalities (5.42) that: 
 0 0 1Tt t τ= >>  (5.47) 

Equations (5.45) then reduce to : 

 
( )

( )
( )

( )
( )

( )
0/

3 2
0 2 0

2
1

sin / cos /3 2

u k T k
e

x L x LQ L Q L
τ ττ λ µ τ

λ µ α
− +

= = − 
+  

 (5.48) 

The time variation of both the displacement and the temperature becomes then proportional to the 
heat input, eq. (5.32) ; such a solution would be obtained if, in addition to the coupling and inertia 
terms, the term containing /T t∂ ∂  were omitted in eq. (5.8). 
 
5.3 Uncoupled quasi-static formulation 
According to the conclusions of the preceding articles, it is permissible in most thermal-stress 
problem to disregard the effects of both coupling and inertia. With the neglect of coupling, the 
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general thermal-stress problem separates into two distinct problems to be solved consecutively. The 
first is a problem in what is generally termed the theory of heat conduction and requires the solution 
of a boundary-value problem whose field equation (that is, the equation to be satisfied at every 
point of the body) is, for  constant properties and in the absence of internal heat generation: 
 ,ii vk T c Tρ= ɺ  (5.49) 

Further discussion of the problem of heat conduction, including the mathematical formulation of the 
boundary conditions corresponding to different physical situations, the uniqueness theorem, and 
methods for the solution of the resulting boundary-value problem, will be deferred. When the 
temperature distribution has been found , the determination of the resulting stress distribution with 
the neglect of inertia terms is a problem in what is termed the linear uncoupled quasi- static theory 
of thermo-elasticity (or, more simply, thermo-elasticity), for which the field equations are as 
follows: 
 
Equilibrium equations:    
 , 0ij j ifσ + =  (5.50) 

Stress-strain relations: 
 ( )2 3 2ij ij kk ij ij Tσ δ λ ε µ ε δ λ µ α= + − +  (5.51) 

Strain-displacement relations: 

 ( ), ,
1

2ij i j j iu uε = +  (5.52) 

It should be noted here that, with the neglect of the inertia terms, no derivatives with respect to time 
appear in any  of the thermo-elastic field equations. If  the boundary conditions also not involve any 
derivatives with to respect to time (as is usually the case), then the time t simply plays the role of a 
parameter in the solution of the thermo-elastic problem. In other words, there is  a complete 
mathematical analogy between the solutions corresponding to a family  of steady-state  temperature 
distributions depending upon a parameter c, ( ),T P c , and to transient temperature distribution,    

( ),T P t . The resulting stress distributions will depend, of course, upon c and t respectively, that is, 

in the latter case, the stress distribution will be time dependent. These comments hold for any 
functions ( ),T P c  or ( ),T P t  arbitrarily prescribed. If, in addition, it is known that the temperature 

distribution is the of a heat conduction problem, then use may be made of fact that ( ),T P t  satisfies 

equation (5.49) or, in the steady case, that it is harmonic; in this manner special techniques may be 
developed for the determination of thermal stresses.  
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CHAPTER VI  
THE FORMULATION OF HEAT TRANSFER PROBLEMS 

 
6.0. Introduction 
The fundamental equations governing the temperature stresses, and deformation in a solid were 
derived in Chapter IV : it was noted there that from a strict viewpoint these quantities were all 
interrelated and had to be determined simultaneously. However, for most practical problems the 
effects  of the stresses and deformations upon the temperature distribution is quite small and can be 
neglected. This procedure allows the determination of the temperature distribution in the solid 
resulting from prescribed thermal conditions to become the first , and independent, step of a 
thermal-stress analysis; the second step of such an analysis is then the determination of the stresses 
and deformations of the body  due to this temperature distribution.  In this chapter, the formulation 
of the mathematical boundary-value  problem for the  determination of the temperature distribution 
is discussed. Since solid, opaque bodies are of primary interest here, heat is transferred from point 
to point within  the body solely by conduction; the field equation of the boundary-value problem 
will, therefore, always be some form of the Fourier heat conduction equation . However, heat may 
be transferred to the surface of the body by other modes of heat transfer and  which mode is 
operative will dictate the proper choice of boundary condition. To render  the problem 
mathematically tractable , it is necessary to idealize matters considerably in the formulation of the 
boundary corresponding to various thermal situations. The seriousness of the deviations from reality 
introduced by these simplifications depends, of course, on the nature of the purposes at hand. In 
particular, a formulation which is adequate only if temperatures are of interest may be inadequate 
for a thermal-stress investigation. For this reason, a brief outline of the elements of heat transfer is 
presented in this chapter, from which it is hoped that the thermal-stress specialist may acquire a 
feeling for the nature of the abstractions involved in the commonly employed thermal boundary 
conditions.  The various modes of heat transfer are  discussed first in paragraph 6.1. For a fuller 
treatment of this topic, the reader is referred to the treatises devoted solely to the subject of heat 
transfer.The energy balance equation was derived from fundamental thermo-dynamical concepts for 
various types of continuous media. These derivations were based upon the general conservation of 
energy law, and the resulting equations contain both thermal and mechanical terms. If the latter are 
neglected, the energy balance equation reduces to the heat conduction.  
 
6.1. Modes of heat transfer  
Energy in the form of heat is transferred between any two particles of matter which are at different 
temperatures. These two particles may be, for example, part of the same solid body, or of two 
different solids, or of a mass of fluid , depending on the system under consideration. Theoretically, 
of course, this system comprises all surrounding matter, but no difficulty is encountered in any 
practical problem in delimiting a closed system on which all exterior matter has negligible 
influence. The mechanism or mode of heat transfer will depend on the nature of the system thus 
defined and, more particularly, on the character of the matter between and surrounding the two 
particles. There are three modes of heat transfer, namely, conduction, radiation and convention:  
 
a) Conduction: Between two particles of a solid body which are at different temperature, heat is 
transferred only by conduction, a process which take place at the molecular and atomic levels. He 
law of heat conduction for isotropic bodies may be stated as follows: 

 
T

q k
n

∂= −
∂

 (6.1) 

where k, with typical units of /W m K° , is termed the thermal conductivity of the solid and where 
the heat flux q, associated with direction n at a point P, is defined in the following way: consider a 
finite surface of area A containing the point P, at which the surface normal is n. Let the total rate of 
heat flow through this area towards the side with positive normal be Q. Then: 
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 ( )
0

lim
A

Q
q P

A→

 =  
 

 (6.2) 

Where in the limiting process, the area A is shrunk so that the point P is always either contained in 
it or on its boundary. This law of heat conduction was stated first by Fourier, who based it on 
experimental observation; it may also be derived from the principles of irreversible 
thermodynamics.  
 
b) Radiation : If two particles at different temperature are separated by a vacuum, then clearly heat 
cannot be transferred between them by conduction ; however, heat transfer will still take place by 
electromagnetic radiation. If the two particles are separated by a material medium, radiation also 
occurs, but when this medium is solid or liquid, the amount of heat transferred through it by 
radiation is usually negligible. In the case of gases, however, radiant heat transfer may be important. 
The rate Q of heat transfer by radiation between two surfaces separated by a vacuum at absolute 
temperature 1T  and 2T is expressed by the Stefan-Boltzmann law in the following form: 

 4 4
2 2 1 1Q C T C T= −  (6.3) 

where the constants 1C  and 2C  depend upon the relative orientation of two surfaces, the distance  

between them, and the absorption and reflection properties of the surface. These constants are 
numerically quite small, and radiation may generally therefore be neglected unless at least one of 
the surfaces is at relatively high temperatures (say about 400°F) . For a through treatment of the 
complex subject of radiation, the reader is referred to the textbook by Jakob . 
 
c) Convenction :  Heat transfer in a fluid , as in any substance , takes place by the mechanisms of 
conduction and radiation, with the former mechanism generally predominant. If the fluid is in 
motion, however, increased rates of heat transfer will result since portions of the fluid at the 
different temperatures can be brought in closer proximity. When the motion of the fluid is due 
entirely to variations in density caused by a non-uniform temperature distribution, the process is 
called free or natural convention. If the motion is due to any other cause, the convention is said to 
be forced.  
 
6.2. The Fourier heat conduction equation 
The Fourier heat conduction equation is derived in an elementary manner, based on an energy 
balance which neglects any conversion of mechanical energy into heat, and on the Fourier law of 
heat conduction, equation (6.1).  
Consider an isotropic solid body with thermal conductivity k subjected to arbitrary thermal 
conditions on its surface and with internal heat generation at the rate Q per unit time per unit 
volume. Both k (if the body is non-homogeneous or if the thermal conductivity is temperature 
dependent) and Q may vary throughout the body and with time. Consider now the elemental portion 
of this body shown in figure n.1 . The rate at which heat flows into the element of volume through 
face ABCD is: 

 
T

k dydz
x

∂−
∂

 (6.4) 

Whereas the rate at which it flows out through face EFGH is : 

 
T T

k k dx dydz
x x x

 ∂ ∂ ∂ − +   ∂ ∂ ∂  
 (6.5) 

The net rate of heat flow into the element through these faces it then  

 
T

k dxdydz
x x

∂ ∂ 
 ∂ ∂ 

 (6.6) 

And similar expressions hold for the other four faces. The rate of change on internal energy is: 



CHAPTER VI - The formulation of heat transfer probl ems 

                                                                                                                                F. Carannante 75 

 
T

c
t

ρ ∂
∂

 (6.7) 

Per unit volume, where t is time, ρ  is the density , and c the specific heat of the material. No 

distinction is made here between pc  and vc  , the specific heats at constant pressure and constant 

volume, since all mechanical effects are being neglected. Under this assumption, an energy balance 
leads to the Fourier  heat equation as follows: 

 
T T T T

k k k Q c
x x y y z z t

ρ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 (6.8) 
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Fig.  6.1 – Infinitesimal volume subjected to heat flux in x-direction 
 

The solution of this equation is, in general , difficult to obtain; it is frequently reasonable, however, 
to assume that the conductivity k is constant throughout the body. Equation (6.8) reduce to: 

 2 Q T
T

c t
κ

ρ
∂∇ + =
∂

 (6.9) 

where the quantity : 

 
k

c
κ

ρ
=  (6.10) 

Is known as the thermal diffusivity and has dimensions, in typical units,  of 2 secm K° . The 

quantity 2T∇  is a follows in various coordinate systems. In  Cartesian coordinate , ,x y z : 

 
2 2 2

2
2 2 2

T T T
T

x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

 (6.11) 

Cylindrical coordinate , ,r zθ : 

 
2 2 2

2
2 2 2 2

1 1T T T T
T

r rr r zθ
∂ ∂ ∂ ∂∇ = + + +

∂∂ ∂ ∂
 (6.12) 

Spherical coordinate , ,r θ φ : 
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2 2

2
2 2 2 2 2

1 1 1
sin

sin sin

T T T T
T

r rr r r
θ

θ θθ θ φ
∂ ∂ ∂ ∂ ∂ ∇ = + + + ∂ ∂ ∂∂ ∂ 

 (6.13) 

If, as is usually the case, no heat is generated within the body, then Q=0, and eq. (6.9) becomes: 

 2 T
T

t
κ ∂∇ =

∂
 (6.14) 

The further particular case in which the temperature distribution is independent of time and Q=0, is 
often of interest; when this is so 0T t∂ ∂ =  and the temperature distribution satisfies the equation: 

 2 0T∇ =  (6.15) 
Equation (6.15) is known as Laplace’s equation; any solution of this equation is called a harmonic 
function. We note that if the body is homogeneous but with temperature-dependent properties it is 
possible to put equation (6.8) in the form of equation (6.9), although κ will now be a function of T. 
This is accomplished by a change in temperature scale through the equation: 

 ( ) ( )
0

0

1
'

T

T
T t k T dT

k
= ∫  (6.16) 

Where the constant 0k  represents the thermal conductivity at some convenient reference 

temperature 0T  and ha been introduced so as to give T’, for convenience, the dimensions of 

temperature. Since 

 

( )

( )
0

0

' 1

' 1

T T
k T

x k x

T T
k T

t k t

∂ ∂ = ∂ ∂
∂ ∂ =
 ∂ ∂

 (6.17) 

We see that (6.8) assume the form: 

 ( ) ( )2

0

'
'

T T
T T Q

k t

κ
κ ∂∇ + =

∂
 (6.18) 

The functions of T in these equations may be expressed as function of  T’ by use of the function 

( )'T T  defined explicit by (6.16). Although equation (6.18) is still non linear , it is more convenient 

for numerical or electrical analogy procedures  than equation (6.8). 
The equation for temperature dependent properties may be linearized approximately  by inverting 
the function ( )k T  to obtain ( )T k  and by then using k as the independent variable. Then: 

 

T d T k

x d k x

T d T k

t d k t

∂ ∂ =∂ ∂
∂ ∂ =
 ∂ ∂

 (6.19) 

So that eq. (6.8)becomes : 

 
d T k d T k d T k d T k

k k k Q c
x d k x y d k y z d k z d k t

ρ     ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + =     ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 (6.20) 

Therefore , eq. (6.8) (with temperature-independent heat generation will be linearized if we find 
compatible solutions to the equations: 

 ,
dT dT

k c
dk dk

α ρ β= =  (6.21) 

With ,α β  are arbitrary constant and with the temperature-dependent product cρ  expressed as a 

function of k by means of the function ( )T k . In general of course, such compatible solutions will 

not exist, but it way still be possible to obtain a linearized equation which will give good 
approximations to the actual solutions of equations (6.8) over a limited range of temperature 
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variation by adjusting the constants ,α β  so that the two solutions to (6.21) agree well over the 
range of interest. 
In the steady-state case with space-dependent conductivity, equation (6.8) may be put in a more 
convenient form by means to the transformation: 

 'T kT=  (6.22) 
The equation to be satisfied by the function T’ is then: 

 ( ) ( )2 , ,
' , , ' 0

Q x y z
T f x y z T

k
∇ − + =  (6.23) 

Where the function f is : 

 ( )21
f k

k
= ∇  (6.24) 

And may be taken as known if ( ), ,k x y z  is known.  

 
6.3. Initial and boundary conditions  
In addition to the appropriate partial differential equation (6.8) it is necessary to specify initial and 
boundary conditions in order to describe fully the problem. Of course, no need arises for initial 
conditions in the case of the steady-state problem of equation (6.15). A listing of the idealized 
thermal boundary conditions commonly employed follows. 
The initial conditions specify the initial temperature distribution throughout the body. In most 
problems, the initial temperature is constant. There are five principal boundary conditions which are 
used in the mathematical theory o heat conduction as idealizations of actual physical processes. 
Over any portion of the bounding surface of the body, one of the following conditions is usually 
used. 
 
1) Prescribed surface temperature:  
 ( ) ( ), ,T P t f P t=  (6.25) 

Where the point P is on the surface and  ( ),f P t  is a prescribed function. 

 
2) Prescribed heat input: 
By eq. (1.1), thi boundary condition takes the form, 

 ( ) ( ), ,
T

k P t q P t
n

∂ =
∂

 (6.26) 

  Where n is the outward normal to the surface at the point P. 
 
3) Perfectly insulated surface: 
By definition, a perfectly insulated surface is one across which there is no heat flux . Eq. (6.26) then 
becomes: 

 ( ), 0
T

P t
n

∂ =
∂

 (6.27) 

4) Convection boundary condition: 
In many problems, the heat flux across  a bounding surface may be taken as proportional to the 
difference between the surface temperature ( ),T P t  and the known temperature 0T  of the 

surrounding medium equation (6.26) then takes the form, 

 ( )0 ,
T

k h T T P t
n

∂
 = − ∂

 (6.28) 

where h is termed the boundary or film conductance and may very with space and time in a 
prescribed manner. Other names given to h include film (or surface) heat transfer coefficient. 
 



CHAPTER VI - The formulation of heat transfer probl ems 

                                                                                                                                F. Carannante 78 

5) Two solid bodies in contact: 
If the surface bodies are in perfect thermal contact , their temperatures at the surface must be the 
same. In addition, the heat flux leaving one body through the contact surface must be equal to that 
ending the other body. Thus for a point P on the contact surface: 

 
( ) ( )

( ) ( )
1 2

1 2
1 2

, ,

, ,

T P t T P t

T T
k P t k P t

n n

 =

 ∂ ∂= ∂ ∂

 (6.29) 

Where subscripts 1 and 2 refer to the two bodies and n is the common normal to the contact surface 
at P. If there is an imperfect thermal contact between the two bodies, the concept of a contact 
resistance R (or contact conductance h = 1/R) is frequently used. The equality of heat fluxes must 
still be enforced, but a difference between the two surface temperatures, proportional to the heat 
flux, will now exist. The appropriate boundary conditions are therefore: 

 ( ) ( ) ( )1
1 2 1

1

1
, , ,

T
k P t T P t T P t

n R

∂
 = − ∂

 (6.30) 

 ( ) ( )1 2
1 2

1 1

, ,
T T

k P t k P t
n n

∂ ∂=
∂ ∂

 (6.31) 

where 1n  is the outward normal, referred to the body 1, to the contact surface at point P. 

  
6.4. Dimensionless parameters 
It is convenient at this point to note the dimensionless parameters that may be used to put the 
Fourier heat equation (6.14) and the boundary conditions of the preceding paragraph in 
dimensionless form. Attention is restricted here to geometries with some characteristic length L, 
while geometries with no such length are discussed in next paragraph. 
We may then define the following dimensionless quantities: 

 

2

* ,

* , * , * , * ,

* ,

R

T
T

T

x y z n
x y z n

L L L L

t t
L

κ

 =

 = = = =

 =


 (6.32) 

where RT  is a suitable chosen reference temperature. 

With these quantities, equation (6.14) assumes the form: 

 
2 * 2 * 2 * *

2 *
*2 *2 *2 *

T T T T
T

x y z t

∂ ∂ ∂ ∂∇ = + + =
∂ ∂ ∂ ∂

 (6.33) 

Equations (6.32), together  with other dimensionless parameters, may be used to recast the 
boundary conditions of the preceding article in dimensionless form as follows  
1) Prescribed surface temperature:  

 ( ) ( )* *, ,T P t f P t=  (6.34) 

where 

 ( ) ( )* 1
, ,

R

f P t f P t
T

=  (6.35) 

2) Prescribed heat input:  

 ( )
*

*
*

,R

R

q LT
q P t

T kn

∂ =
∂

 (6.36) 

where 
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 ( ) ( )* 1
, ,

R

q P t q P t
q

=  (6.37) 

and Rq  is a reference heat flux which may be chosen in any convenient fashion. If no other 

conditions dictate the choice of  RT  we may set 

 R
R

q L
T

k
=  (6.38) 

to make the coefficient of ( )* ,q P t  in (6.36) unity . The reference temperature RT  then corresponds 

to the steady-state temperature difference across a bar of length L and conductivity k through which 
flows the flux Rq . 

 
3) Perfectly insulated surface: 

 ( )
*

*
, 0

T
P t

n

∂ =
∂

 (6.39) 

4) Convention boundary condition 

 ( ) ( )
*

* *
0*

, ,
T

P t m T T P t
n

∂
 = − ∂

 (6.40) 

where the dimensionless parameter: 

 
h L

m
k

=  (6.41) 

Is known as the Biot Number and 

 * 0
0

R

T
T

T
=  (6.42) 

If  0T  is a constant and the initial temperature, IT  , of the body is uniform, it is usually convenient 

to take 0RT T=  with the temperature scale chosen so that 0IT =  , or to set R IT T=  with the scale 

chosen so that 0 0T =  

5) Two solid bodies in contact: 
Perfect contact: 

 
( ) ( )

( ) ( )

* *
1 2

* *
1 2

1 2* *

, ,

, ,

T P t T P t

T T
k P t k P t

n n

 =

 ∂ ∂=

∂ ∂

 (6.43) 

Imperfect contact  

 

( ) ( ) ( )

( ) ( )

*
* *1

1 2 1*
1

* *
1 2

1 2* *
1 1

, , ,

, ,

T
P t m T P t T P t

n

T T
k P t k P t

n n

∂
 = −  ∂


∂ ∂ = ∂ ∂

 (6.44) 

where: 

 1
1 1

L hL
m

k R k
= =  (6.45) 

  
6.5. Discussion of the boundary conditions 
The boundary conditions listed here are idealizations of actual physical conditions. An 
understanding of the nature of these idealizations is necessary for a proper choice of the most 
suitable mathematical formulation of a given physical problem. 
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The surface of a body (or a portion of its surface) may receive heat either through contact with 
another solid or by radiation, or through contact a fluid. 
 
a) Contact with a solid : When two solid surface touch each other, because of the natural roughness 
of any real material, actual physical contact takes place only at some projecting segments of the 
surface. Conduction takes place at these points contact, while heat is transferred across the gaps by 
radiation and by conduction through the fluid, usually air, filling them.  
It has been found as a result of an experimental investigation that none of these modes of heat 
transfer has only predominance over the others. It therefore appears that heat transfer across a 
contact surface is a complex process; It may be rendered amenable to analysis by the following 
considerations which are  illustrated in follows figure: 

a b

c d

P1

P2

P

Body 1

Body 2

L
P

  
Fig.  6.2 – Solid-to-solid contact 

 
Consider the small volume  abcd of that figure enclosed by two planes (ab and cd ) parallel to the 
common mathematical boundary, and by the planes ac and  bd  perpendicular  to that boundary. The 
planes ab  and cd  are taken at a sufficient distance  from the boundary (about two or three times the 
maximum dimensions of the irregularities) so that the distribution of heat flow on them is not 
appreciably affected by the local aberrations of the contact surfaces. Let the distance ab = cd  be 
chosen large compared with ac = bd = L and consider the heat balance o the volume question . 
Because of the relative dimensions of the sides of this volume, the heat leakage through ac and bd 
may be neglected; the heat balance equation is then: 

 1 1
1 2

1 1Area Area
ab cd

T T T
k dA k dA c A L

n n t
ρ∂ ∂ ∂− + =

∂ ∂ ∂∫ ∫  (6.46) 

where A is the area of the surface ab and where a bar indicates the average value of a quantity 
within the volume. If the distance ab is small enough so that the heat flux does not vary appreciably 
along it, then we may write: 

 
1

1 1
1 1

1 1Area P
ab

T T
k dA k A

n n

 ∂ ∂=  ∂ ∂ 
∫  (6.47) 

And similarly for the second term of the left-hand side of  (6.46). Since the distance L is small and 
since the temperature T varies slowly with time (except for very short periods, as for example, 
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immediately following the initial contact between two bodies at different temperatures), the term on 
the right-hand of (6.46) may be neglected . The resulting boundary condition namely, 

 ( ) ( )1 2
1 1 2 2

1 1

, ,
T T

k P t k P t
n n

∂ ∂=
∂ ∂

 (6.48) 

May then be replaced by equation (6.31) because the distance L is small. 
Equation (6.30) is based on the experimental observation that the heat flux across the joint is 
roughly proportional to the temperature difference across it. The proportionality factor 1/R must 
then account for all the complexities indicated earlier and can therefore be expected to depend not 
only on the type of joint and materials but also on the mean temperature of the joint, the roughness 
of both surfaces, the pressure between them, and so forth. It has been shown experimentally, 
however, that the contact resistance is reasonably constant for any given point if its mean 
temperature does not vary too widely. Experimentally determined values of the contact resistance 
are given in the literature for various types of joints. 
It may be noted that if the contact resistance s very large ( 1m  in (6.44)  approaching zero), the 

boundary condition (6.44) may be replaced by that of equation (6.39). If , on the other hand , R is 
very small ( 1m  in (6.44) approaching  infinity), perfect contact is approached. 

 
b) Radiation :  If the surface of a body is exposed to high-temperature source, it will receive heat by 
radiation in accordance with a law of the form  (6.3), namely, 

 ( ) ( ) ( )4 4
0, ,

T
k P t C t P t

n
θ θ∂  = − ∂

 (6.49) 

where ( )0 tθ  and ( ),P tθ  are the absolute temperatures of the source and surface respectively. 

Empirical generalizations of this equation using other values for the exponents to account for 
different surface and other conditions have been proposed. These boundary conditions, being 
nonlinear, render analytical solution of the resulting boundary –value problem extremely difficult. 
Two simplifications are often permissible, however: they arise either when the source temperature  
varies over too wide a range. 

In the first case, neglect of 4θ  relative to 4
0θ  is permissible; rewriting equation (6.49) in the form: 

 
4

4
0

0

1
T

k C
n

θθ
θ

  ∂
 = −  ∂    

 (6.50) 

In fact shows that if 0 1/ 2θ θ = , for example, the resulting error in the heat flow is approximately  

only 6.7 percent of the actual heat flow. With this approximation , boundary condition (6.49) can 
therefore be replaced by the linear condition for a prescribed heat input given by equation (6.26).  
For the second case the following approach may be used. The right-hand side of (6.49) may be 
factored to give: 

 ( )( )3 2 2 3
0 0 0 0

T
k C

n
θ θ θ θ θ θ θ θ∂ = + + + −

∂
 (6.51) 

I neither the temperature of the source nor that  of the surface varies a great deal, the coefficient of 

0θ θ−  may be taken as a constant rh , sometimes called the radiation boundary conductance. 

Numerical values for rh  as a function of θ  and 0θ   are found in the next-books of McAdams, and 

Eckert and Drake. Also, since the absolute and relative temperature θ  and T are related by the 
equation: 

 
( ) ( )
( ) ( )

460

273

R T F

K T C

θ
θ

° = ° +

° = ° +
 (6.52) 

We can replace ( )0θ θ−  by ( )0T T−  in equation (6.51). The boundary condition then becomes: 
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 ( )0r
T

k h T T
n

∂ = −
∂

 (6.53) 

Which is of the same form as the convent boundary condition (6.51) . For this reason, the latter  is 
sometimes also referred to as the radiation boundary condition, particularly in English publications, 
as for example, in Carslaw and Jaeger. 
If neither of these simplifications is permissible, the boundary condition (6.49) must used and 
numerical methods are then usually necessary. 
 
c) Contact with a fluid : The determination of the temperature distribution in a solid body in contact 
with  a fluid presents a complex problem. Strictly speaking, the entire problem must be considered 
as a unit; that is, it is necessary to solve the heat conduction equation in the solid and the fluid flow 
equations, with thermal terms included in the fluid under coupling boundary conditions at the 
interface analogous to those for solid–to-solid contact equations (6.29). When only the temperature 
distribution in the solid is of interest, it is desirable to uncouple the two problems; the heat 
conduction problem in the solid is then formulated with the convention boundary condition, eq. 
(6.28), imposed over that portion of the solid surface in contact with the fluid. The boundary 
conductance h must then include all the effects of the fluid ; from a strict viewpoint it will depend, 
in addition to any other conditions imposed upon the fluid, upon the spatial distribution of the 
surface temperature and its past history, that is, upon surface and time integrals of the (unknown) 
surface temperature; the form of these integrals is determined by a solution of the fluid problem 
with the surface subjected to an arbitrary temperature distribution. If it were necessary to include all 
these effects, the uncoupling of the fluid and solid problems would be of little value, since the 
partial differential equation boundary-value problem would have been thus converted to an 
exceedingly complex integro-differential equation problem. We therefore list first several 
idealizations of the actual situation which lead to successively simpler problems. We will then give 
some indication of the situations in which these idealizations may be employed with reasonable 
accuracy. 
1) We may assume that :  

 ( ), , ,h h T P t P t =    (6.54) 

where P is a generic point on the surface of the solid in contact with the fluid. In other words, we 
assume that h depends only on time, position and the local present surface temperature. In this case, 
the formulation is now one of a partial differential equation boundary-value problem, but it involves 
a non-linear boundary condition. 
2) The boundary condition is linearized if it can be further assumed that h is independent of the 
surface temperature , that is, 
 ( ),h h P t=  (6.55) 

3) the boundary conductance may be assumed constant 
4) when the boundary conductance (not necessarily constant), is either very small or very large, the 
convection boundary conditions, equation (6.28) may be replaced by simpler conditions. If the 
dimensionless Biot number (m) is very small, equation (6.28) may be replace by (6.27), the 
boundary condition for a perfectly insulated surface. If m is very large, writing  (6.40) as : 

 ( )
*

* *
0*

1
,

T
T T P t

m n

∂ = −
∂

 (6.56) 

Shows that it becomes identical in the limiting case with (6.34), the boundary condition for a 
prescribed surface temperature . It should be particularly noted that this latter boundary condition 
seldom represents an actual physical situation  but arises almost always as a limiting form of the 
convection boundary condition. This limiting process should be used with care since, it may give 
rise to large errors in transient thermal-stress analysis.  
Of the idealizations described, the first two lead to problem formulations which require numerical 
or other approximate technique. If exact analytical solution are desired, it is necessary to resort to 
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one of the last two more extreme idealizations. It is not possible to give here a detailed discussion  
of the error thus incurred in a particular situation and we therefore refer the reader to the textbook of 
Eckert and Drake for a description of the presents status of this complex and active field. We will, 
however, outline here a simple, approximate calculation of the boundary conductance for one set of 
conditions since it offers considerable insight into the relevant factors.   
Consider the case of a viscous fluid in laminar flow over a flat plate under steady conditions , figure 
n.3. The free stream velocity (that is, the velocity at a distance from the plate) is 0v   and will 

betaken as parallel lo the place surface, with the fluid temperature there 0T . The plate temperature 

surface is maintained constant  at wT . Then, as may be shown by use of the fluid flow theory , there 

exists a boundary layer of thickness ( )xδ , outside of which the fluid velocity is substantially 0v . 

An approximate formula for ( )xδ  under these conditions is (Eckert and Drake): 

 ( )
0

4.64x x
v

νδ =  (6.57) 

where ν  is the kinematic viscosity of the fluid. Similarly, there exists a thermal boundary layer 
whose thickness, as yet unknown, will be denoted by ( )T xδ , outside of which the fluid temperature 

is substantially 0T . At a particular value of x, the velocity and temperature distributions then 

appears as in figure n.3 . We consider next a volume element fixed in space (as shown in figure n.3) 
where L δ> . By an energy balance for this element it is found that : 

 ( ) ( ) ( )0
0

, , ,0
L

f
f f

Td
T T x y v x y dy x

dx y
κ

∂
 − =  ∂∫  (6.58) 

Where ( ),fT x y  is he temperature in the fluid and where ( )
f

f
f P f

k

c
κ

ρ
=  is thermal diffusivity of 

the fluid. In this energy balance (see Eckert and Drake) heat transfer by conduction is neglected at a 
point (x,y) of the surface abcd in comparison with that transported at the rate 

( ) ( ) ( ), ,f P ff
c T x y v x yρ  for unit area by the fluid motion; however, heat transferred into the fluid 

by conduction at the rate ( ),0f
f

T
k x

y

∂
−

∂
 is taken account of at a point ( ),0x  of the surface ad since 

there is no flow across that surface. We next insert reasonable approximate expressions for 

( ),fT x y  and ( ),v x y  in the integral of equation (6.58) . Suitable expressions under the stated 

conditions are: 

 ( ) ( ) ( ) ( )

3

0
3 1

,
2 2f w w

T T

y y
T x y T T T

x xδ δ

  
 = + − −      

 (6.59) 

 ( ) ( ) ( )

3

0
3 1

,
2 2

y y
v x y v

x xδ δ

  
 = −      

 (6.60) 

where ( )xδ  is given by (6.57); substitution of these expressions into (6.58) leads to a differential 

equation for the only unknown function, ( )T xδ , with the following approximate solution: 

 ( ) ( )
1 1
3 3

0

0.975 4.52T x x x
v

νδ σ δ σ
− −

= =  (6.61) 

where σ  is called the (dimensionless) Prandtl number of the fluid and is defined as: 

 
f

νσ
κ

=  (6.62) 
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Substitution of this expression into (6.59) then yield the following as heat flow into the  fluid: 

 ( ) ( ) ( )1/3 0
0,0 0.332 ,0f s

f f w s

T v T
q k x k T T k x

y x y
σ

ν
∂ ∂= − = − − = −
∂ ∂

 (6.63) 

Where, in the last term, sk  is the thermal conductivity of the plate, sT  is the temperature in the 

plate, and the last equality follows since the heat flow into the fluid is equal to the heat flow out of 
the solid. 
Comparison with (6.28) then shows that for this case  

 1/3 00.332 f
v

h k
x

σ
ν

=  (6.64) 

This result is well verified by more accurate calculations and experiment. 
It sheds some light on the idealizations previously listed (number 1 to 3 ) as follows: 
 
1) Boundary conductance dependent only upon local instantaneous conditions : Since the surface 
temperature is constant with respect to both time and space in this problem, it yields no direct 
information on the permissibility of  assuming that h depends upon the present local surface 
temperature, rather than on integrals of it with respect to time (past history effect) and space. 
However, we again some in insight into the unimportance of the past history effect from the model 
employed in the previous calculations. In this model all the temperature change in the fluid occurs 
in the thermal boundary layer , and since this layer is generally very thin (equation (6.61)), it is 
intuitively clear that the temperature distribution in it will be, at any instant very nearly the steady-
state temperature distribution corresponding to the surface (and fluid) temperature at that instant, or 
in other words, the past history effect will be negligible unless very rapid transients are involved. 
For the effect of spatial variation of the surface temperature we may refer parenthetically to the 
recent work of Imai. He considers the case in which the wall temperature variation is of the form: 

 n
wT a bx= +  (6.65) 

where n is a positive integer; he also includes the possibility of variation of the free-stream velocity 
of the form: 

 0
mv c x=  (6.66) 

Where m is a positive integer. He then finds that the boundary conductance h can be approximately 
given by the equation : 

 
( )

( )
( ) ( ) ( )

1/3
1/3 0

1/2 2/3

2 / 3 1
2

2 103 4 / 32

fk v
h n

x

ββ ασ
α νβ

 Γ  = + − −  
Γ  −   

 (6.67) 

where, in addition to the notation previously defined, 

 
2

1

m

m
β =

+
 (6.68) 

and 

 
( ) ( )

1/2

0 0

1 2
,0

1

x v
x

v v m y

να
  ∂=  + ∂  

 (6.69) 

Equation (6.67) indicates that the effect of variation of wall temperature is considerable (as seen 
from the role played by n in that equation) and it may be expected therefore that, for an accurate 
treatment of a heat conduction problem in which considerable variation of surface temperature is 
expected, a boundary condition involving integrals of the surface temperature is necessary. 
 
2) Boundary conductance independent of local temperature: Returning now to the treatment of a 
constant wall temperature, which led to equation (6.64), we see from that equation that h, for this 
case, does not depend directly upon the surface temperature; this factor does enter directly however, 
in its effect upon the fluid properties, an effect which is large for some liquids but relatively minor 
for gases. However as is evident from equation (6.64), h is space dependent, particularly near the 
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leading edge where flow conditions are changing rapidly. It will also be time dependent if the flow 
conditions are. 
 
3) Boundary conductance assumed constant: For a portion of the plate at some distance from the 
leading edge, h varies only slightly and a constant, average value may be employed. 
The preceding discussion dealt with one of the simplest situations. We now discuss briefly some 
other possibilities. 
 
Turbulent flow. The analysis just described was predicated on laminar flow conditions . Turbulent 
flow presents a more complex problem towards which much research is being directed . We may 
see qualitatively that the effect of turbulence  is to increase  greatly the heat transfer and therefore 
the boundary conductance, since there are random velocity components perpendicular to the surface 
in question which result in heat transfer by fluid transport as well as by conduction . There will, 
generally be zones of transition from laminar to turbulent  flow for a given surface and flow 
conditions, therefore resulting in severe spatial variation of the boundary conductance. Since 
surface roughness plays a role in determining the laminar or turbulent nature of the flow, this 
surface condition will likewise affect the boundary conductance. 
High speed flow-aerodynamic heating . In the simple analysis just outlined, no account was taken of 
the dissipation of mechanical (kinetic) energy by the action of viscosity in the boundary layer. 
Although such neglect is permissible at low speeds, this dissipation becomes greatly important at 
high speeds and leads to the phenomenon of an unheated body in a high speed gas stream attaining 
temperatures substantially in excess of the free-stream temperature (aerodynamic heating). This 
process is clarified by the introduction of the concept of the stagnant or total temperature of a fluid 
steam with velocity 0v  and free-steam temperature 0T . The stagnant temperature STT  of this gas 

stream is then defined as the temperature it would attain if it were brought to rest without addition 
of heat or external work. It then follows from the first law of thermodynamics that 

 ( )2
0 0 2ST PT T v c− =  (6.70) 

where Pc , the specific heat at constant pressure of the gas, is to be expressed in mechanical units. If 

a perfect thermally insulating plate is inserted in the gas stream with its surface parallel to the flow 
direction, the gas layer immediately on its surface is brought to rest. However, this completely 
arrested layer does not attain the temperature STT  because of the heat conduction from it to adjacent 

layers which are still in motion. Rather, it is found that it and the insulator’s surface acquire a 
temperature, ADT , known as the adiabatic wall temperature, which is given by the equation: 

 ( ) ( )2
0 0 2AD PT T r v c− =  (6.71) 

Where r is known as the recovery factor. For laminar flow parallel to a flat place, it has been shown 
analytically and verified experimentally that 

 r σ=  (6.72) 
If now a conducting plate is inserted in this gate stream in place of the insulating plate, it is clear 
that if its wall temperature wT  happens to be equal to ADT , then no heat transfer into the fluid will 

occur; if w ADT T>  heat transfer from the plate into the gas stream will occur. It is therefore 

reasonable to replace 0T  in  the convection boundary, equation (6.28) , by ADT  so that it becomes: 

 ( )AD
T

k h T T
n

∂ = −
∂

 (6.73) 

Since, as seen from equation (6.71), 0ADT T≈  for low velocity flows, it is clear that this condition 

reduces to the previous case for sufficiently small velocity. Furthermore it is found that the value of 
the boundary conductance fro small velocities , equation (6.64), may be used in equation (6.73) for 
the analogous case with high velocities. 
 



CHAPTER VI - The formulation of heat transfer probl ems 

                                                                                                                                F. Carannante 86 

Natural convection: Since for this process the fluid motion is solely because of the heat transferred 
into it, it is reasonable to expect that the boundary conductance for natural convection depends more 
strongly upon the surface temperature. An analysis, similar to that just outlined, shows that this is 
the case. For a vertical flat plate at constant temperature wT  losing heat by natural convention to a 

fluid at temperature 0T , it is found (Eckert and Drake) that the boundary layer thickness (the same 

velocity and temperature) is 

 
( )1/2 1/4 1/4

0 1/4
2

3.93 0.952 w

f f

g T T
x

βν νδ
κ κ ν

− −
     −

= +        
    

 (6.74) 

Where g is the acceleration of gravity , β  is the volumetric coefficient of expansion of the fluid , 
and x is the vertical distance along the plate measured from the bottom edge. Since the boundary 
conductance is found here to be 
 2 fh k δ=  (6.75) 

we see that h  is proportional ( )1/4
0wT T−  and leads, therefore, to a nonlinear convection boundary 

condition even if the temperature dependence of fluid properties is neglected. It may be linearized, 
however, if for a given problem the variation in wT  is not too great. Furthermore, since the 

boundary conductance for natural convection for such surfaces may be sometimes replaced by that 
corresponding to a perfectly insulated surface. 
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CHAPTER VII 
METHODS OF SOLUTION OF HEAT CONDUCTION PROBLEMS 

 
7.0.  Introduction 
The problem of determination of the temperature distribution in a solid heated by various types of 
physical processes has been formulated mathematically in chapter 6, where the choice of the 
appropriate partial differential equation and initial and boundary conditions was discussed. The 
results of such a formulation is a typical partial differential equation boundary-value problem, some 
solutions of which were obtained in the preceding chapter. The literature on such boundary-value 
problems is quite extensive, and it is the purpose of this chapter to present a survey of the principal 
methods of solution which are applicable to wide classes problems. No effort will thus be made to 
present a complete development of all the available methods solution, or to describe the general 
theory of partial differential equations of the parabolic type, to which the heat equation belongs. 
Rather, we will endeavour to present a brief development of the fundamentals of each method , 
together with some remarks concerning its advantages, the types of problems for which it is most 
likely to be suitable , and some examples. The methods treated are those of separation of variables, 
Laplace transformation and conformal mapping. 
 
7.1.  Separation of variables (Method of characteristic functions) 
 
7.1.1.   Homogeneous differential equation and boundary conditions 
It is convenient to consider first a special case, namely one for which a typical boundary problem 
fro a body occupying the bounded region V V+ ∂  takes the form: 

 2 , 0
T

T P V t
t

κ ∂∇ = ∀ ∈ ∀ >
∂

 (7.1) 

 ( ) ( ) 0 , 0
T

M P N P T P V t
n

∂ + = ∀ ∈∂ ∀ >
∂

 (7.2) 

 ( ) , 0T F P P V t= ∀ ∈ =  (7.3) 

where ( )M P  and ( )N P  are prescribed non-negative functions independent of time. Clearly eq. 

(7.2) includes the case in which a portion  TV∂  of the surface is kept at zero temperature 

( )0, 0M N= ≠ , a portion HV∂  is perfectly insulated ( )0, 0M N≠ =  and a portion CV∂  is exposed 

to an ambient at zero through a boundary conductance ( ),M k N h P = =  , where 

T H CV V V V∂ + ∂ + ∂ = ∂ .  Let ( )1 ,T P t  and ( )2 ,T P t  be two functions which satisfy the differential 

equation (7.1) and the boundary condition (7.2) but not necessarily the initial condition . Then , 
because of the linearly combination 1 1 2 2a T a T+  ( 1 2,a a  are constants) will also satisfy them. 

Furthermore, if an infinite number of such functions ( ),nT P t  are available, then a suitably 

convergent infinite series: 

 ( )
1

,n n
n

a T P t
∞

=
∑  (7.4) 

Will also satisfy these equations. In this case, the coefficients na  may then be determined so that 

the initial condition is satisfied , namely, so that : 

 ( ) ( )
1

,0n n
n

F P a T P
∞

=
= ∑  (7.5) 

Thus completing the solution of the stated boundary-value problem. 
The set of functions ( ),nT P t  may be found as follows: assume ( ),T P t  of the following form: 

 ( ) ( ) ( ),T P t P tϕ ψ=  (7.6) 
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Substitution of this into the differential equation (7.1), then yields: 

 
( )

( ) ( )
( )2 1

constant
P d t

P t d t

ϕ ψ
λ

ϕ κψ
∇

= = =  (7.7) 

Since the left-hand side of the preceding equation depends only upon position and the right-hand 
side only upon time, it follows that both must be equal to a common constant, say λ , which is 
sometimes referred to as the separation constant. Equation (7.7) therefore leads to the following two 
separate equations for ( )Pϕ  and ( )tψ  respectively: 

 ( ) ( )2 0P P P Vϕ λϕ∇ − = ∀ ∈  (7.8) 

 
( ) ( ) 0 0

d t
t t

dt

ψ
κλψ− = ∀ >  (7.9) 

If the function ( ),T P t  is to satisfy the boundary condition, then it is seen that ( )Pϕ  must satisfy 

 ( ) ( ) 0M P N P P V
n

ϕ ϕ∂ + = ∀ ∈∂
∂

 (7.10) 

The boundary-value problem for ( )Pϕ , defined by (7.8) and (7.10) will have a nontrivial solution 

(that is, 0ϕ ≠ ) only for certain particular discrete values of λ , denoted here by , 1,2,....,n n nλ =  

which are called the eigen-values or characteristic values of the boundary- value problem on ϕ . 

The solutions for ϕ  corresponding to each nλ  are denoted by nϕ  and are termed eigen-functions or 

characteristic functions . The solutions of equation (7.9) corresponding to nλ  will be denoted by 

nψ . It will next be shown that all the characteristic values are non-positive. For this purpose the 

following identity (readily derived from the divergence theorem) is employed: 

 

[ ] ( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

V V V

f g f g f g f g f g

g
f gdV f dS f g dV

n∂

∇ ⋅ ∇ = ∇ ⋅ ∇ + ∇ ⋅ ∇ = ∇ + ∇ ⋅ ∇

⇓

∂∇ = − ∇ ⋅ ∇
∂∫ ∫ ∫

 (7.11) 

where f∇  indicates the gradient of f; in extended notation this identity is : 

 
2 2 2

2 2 2
V V V

g g g g g f g f g f
f dV f dS dV

n x x y y z zx y z ∂

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂   
∫ ∫ ∫  (7.12) 

Equation (7.11) applies for any functions ( )f P  and ( )g P  defined in V V+ ∂  which satisfy the 

hypotheses of the divergence theorem. If now both ( )f P  and ( )g P  are set equal to ( )n Pϕ  

namely, the characteristic function corresponding to nλ  and equations. (7.8) and (7.9) employed, it 

is found that : 

 

( ) ( )2
2

2

1

C

n n n
n n n V V

nn
nn

V

h ds dVP V k
h dVP V

n k

ϕ ϕ ϕϕ λ ϕ
λϕ ϕϕ

∂

 
+ ∇ ⋅ ∇ ∇ = ∀ ∈

   ⇒ = −∂
= − ∀ ∈∂ ∂

∫ ∫

∫
 (7.13) 

Since, by its physical nature, ( ) 0h P > , it is seen that 0nλ ≤ . The equality sign is possible only if 

CV∂  is absent and if  0ϕ∇ ≡ , that is, if ϕ  is constant; however, if it is specified that 0ϕ =  one 

some part of the boundary, then only the trivial solution 0ϕ ≡  is possible. A nonzero constant 
solution and a zero characteristic value are possible , and exist, only if the  problem is one involving 

a perfectly insulated body , that is if 0
n

ϕ∂ =
∂

 over the entire surface B . 

The characteristic values therefore may be written as: 
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 2, 1,2,....n n nλ α= − =  (7.14) 

The corresponding solutions for ( )n tψ  are then: 

 ( ) 2

, 1,2,.....n t
n t e nκ αψ −= =  (7.15) 

And therefore  

 ( ) ( ) 2

, n t
n nT P t P e κ αϕ −=  (7.16) 

The solution of the problem may then be written in the form: 

 ( ) ( ) 2

1

, n t
n n

n

T P t a P e κ αϕ
∞

−

=
= ∑  (7.17) 

There now remains to determine  the coefficients na  from the initial condition, namely, 

 ( ) ( )
1

n n
n

F P a Pϕ
∞

=
= ∑  (7.18) 

This calculation is greatly facilitated by the fact that the functions ( )n Pϕ  are orthogonal, that is, 

 0,n m
V

dV n mϕ ϕ = ≠∫  (7.19) 

If now both sides of  (7.18) are multiplied by ( )m Pϕ , and the resulting  expressions integrated over 

V , because of property (7.19) the following explicit formula for the coefficient  ma  is found : 

 ( ) ( )1
m m

m D

a F P P dV
b

ϕ= ∫  (7.20) 

where 

 ( )2
m m

D

b P dVϕ= ∫  (7.21) 

This completes the formal procedure  for the solution of a problem in which both the differential 
equation and boundary condition are homogeneous. 
 
7.1.2.  Non-homogeneous differential equation or boundary conditions 
In most practical problems either the boundary conditions or the differential equation is not 
homogeneous. However, when the non-homogeneous terms are functions of position only, the 
problem may be reduced to the previous case, as will now be shown. We consider here the class  of 
problems leading to the following boundary-value problem.  

 ( )2 1
, 0

T
T Q P P V t

c t
κ

ρ
∂∇ + = ∀ ∈ ∀ >
∂

 (7.22) 

 ( ) ( ) ( ) , 0
T

M P N P T G P P V t
n

∂ + = ∀ ∈∂ ∀ >
∂

 (7.23) 

 ( ) , 0T F P P V t= ∀ ∈ =  (7.24) 

Because of the linearity of the problem, it is readily verified that the solution to this problem may be 
written in the form, 
 ( ) ( ) ( ), ,S CT P t T P T P t= +  (7.25) 

where ( )ST P  satisfies the following equations :  

 ( )2 1
0 , 0ST Q P P V t

c
κ

ρ
∇ + = ∀ ∈ ∀ >  (7.26) 

 ( ) ( ) ( ) , 0S
S

T
M P N P T G P P V t

n

∂ + = ∀ ∈∂ ∀ >
∂

 (7.27) 

and  ( ),CT P t  satisfies the following equations: 
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 2 , 0C
C

T
T P V t

t
κ ∂∇ = ∀ ∈ ∀ >

∂
 (7.28) 

 ( ) ( ) 0 , 0C
C

T
M P N P T P V t

n

∂ + = ∀ ∈∂ ∀ >
∂

 (7.29) 

 ( ) ( ) , , 0C ST F P T P P V t= − ∀ ∈ ∀ >  (7.30) 

The problem for ( )ST P  is therefore one of a steady-state temperature distribution; once this 

problem is solved, the problem for ( ),CT P t  is completely defined and is one with homogeneous 

differential equation and boundary condition, that is, the type treated in a) 
A solution of the preceding form will not be possible in general if HB B= , that is, if the heat input, 

is specified at every point of the body’s boundary ; in fact, application of the divergence theorem to 
(7.26) yields the result: 

 ( )
B D

T
k dS Q P dV

n

∂ = −
∂∫ ∫  (7.31) 

Whereas the heat input specified by equation (7.27) (where , for this case, ( ) ( ), 0M P k N P≡ ≡ ) 

might not satisfy this equation. In physical terms, if the total specified heat input  is not supplied to 
the body at the rate at which heat is being absorbed within the body , a steady-state solution is not 
possible. In this case the above procedure requires only slight modification. A solution to the 
problem may then be written as : 
 ( ) ( ) ( ), ,S CT P t t T P T P tβ= + +  (7.32) 

where ( ),CT P t  satisfies eqs. (7.28)-(7.29)-(7.30) as before and where now ( )ST P  satisfies the 

following equations : 

 ( )2 1
, 0ST Q P P V t

c
κ β

ρ
∇ + = ∀ ∈ ∀ >  (7.33) 

 ( );ST
k G P P V

n

∂ = ∀ ∈∂
∂

 (7.34) 

It is readily verified that 

 ( ) ( )1

V V

G P ds Q P dV
cV

β
ρ ∂

 
= + 

 
∫ ∫  (7.35) 

where V is the volume of the body. Equation  (7.35) has an interesting physical  interpretation . 
Since ( ),CT P t  is the solution of a problem of the type discussed in (a) , it is of the form (7.17) and, 

since 1 0α =  in this case , approaches a constant as t → ∞  . From eq. (7.32) it therefore follows that 

the temperature distribution for a problem of this approaches on in which the spatial distribution of 
temperature, ( )ST P , remains unchanged , but the temperature level increases at a constant rate β . 

This is known as a quasi – steady state of heat conduction.  
 
7.1.3.   Remarks and typical problems for the method of separation of variables 
This method  is conveniently applicable only when the thermal properties are constant; in addition , 
the solid should be bounded  by coordinate surfaces of a convenient coordinate system: the most 
usual systems are Cartesian, cylindrical and spherical. The solid must be of finite extent in any 
direction in which temperature variation is present. When it is applicable, this is often the simplest 
method . The infinite series obtained for the solution converges very rapidly for long ties, but very 
slowly for short times. The long-time solution may, however, be sometimes converted into one 
suitable for short times by means of the Poisson summation formula . 
Typical problems to which this method is applicable are the following: a slab (that is, a solid 
bounded by two parallel planes), initially at a uniform temperature, with the surface suddenly 
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elevated to a prescribed uniform temperature , with the cylindrical surfaces exposed to an ambient 
at elevated temperature through a boundary conductance, with its end faces at a prescribed 
temperature. 
 
7.1.4.  Example n.1  
A slab is bounded by the planes x = 0 and x = L  and is infinite in  extent in the y and z directions. 
The surface x = 0 is kept perfectly insulated while the surface x = L is exposed, for t >0, to an 
ambient at zero temperature through a uniform boundary conductance h. The initial temperature of 
the slab is  ( )RT f x  where RT  is a constant. 

The problem is of the type  just discussed; with the use of dimensionless variables defined in 
Chapter 6, the corresponding boundary problem is as follows: 

 
2 * *

* *
*2 *

; 0 1, 0
T T

x t
x t

∂ ∂= < < >
∂ ∂

 (7.36) 

 
*

* *
*

0, 0, 0,
T

x t
x

∂ = = >
∂

 (7.37) 

 
*

* * *
*

0; 1, 0,
T

mT x t
x

∂ + = = >
∂

 (7.38) 

 ( )* * *; 0 1, 0,T f x x t= < < =  (7.39) 

We may then define the following dimensionless quantities: 

 

2

* ,

* , * , * , * ,

* ,

R

T
T

T

x y z n
x y z n

L L L L

t t
L

κ

 =

 = = = =

 =


 (7.40) 

where RT  is a suitable chosen reference temperature. 

The problem is therefore on with homogeneous differential equation and boundary conditions and 
may be treated by the method in section 7.1.1. Since only dimensionless quantities are involved in 
what follows, the asterisk is henceforth omitted. As  in eq. (7.6), a particular solution of the 
differential equation and boundary conditions of the form: 
 ( ) ( ) ( ),T x t x tϕ ψ=  (7.41) 

Is sought. This then leads as in (7.8) and (7.9), to the following equations for ( )xϕ : 

 
2

2
2

0;
d

d x

ϕ α ϕ+ =  (7.42) 

 0; 0,
d

x
d x

ϕ = =  (7.43) 

 0; 1,
d

m x
d x

ϕ ϕ+ = =  (7.44) 

And to the following equation for ( )tψ : 

 2 0
d

dt

ψ α ψ+ =  (7.45) 

The general solution of  (7.42) is: 
 ( ) ( ) ( )sin cosx A x B xϕ α α= +  (7.46) 
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From (7.43) it is deduced that A = 0. From (7.44) it is seen that if 0B ≠  ( B= 0 leads to the trivial 
solution 0ϕ ≡ ), then α  must satisfy the following transcendental equation 
 tan mα α =  (7.47) 
The roots of this equation correspond to the points  of intersection of the curves tany α=  and the 

hyperbola /y m α= ; there is an infinite number such roots , denoted here by , 1,2,....n nα =  leading 

to characteristic values 2
n nλ α= − . The corresponding  characteristic functions ( )n xϕ  are, as 

calculated above, 
 ( ) ( )cosn nx xϕ α=  (7.48) 

The solution to the problem may therefore be written in the form: 

 ( ) ( )2

1

, cosn t
n n

n

T x t a e xα α
∞

−

=
= ∑  (7.49) 

Where the coefficients na  are determined by use if eqs. (7.20) and (7.21) specialized to this case. In 

other words, 

 ( ) ( )
1

0

1
cosn n

n

a f x x dx
b

α= ∫  (7.50) 

Where 

 ( ) ( ) ( )
1

2

0

1
cos sin cos ; 0

2n n n n n n
n

b x dx x xα α α α α
α

 = = + ≠ ∫  (7.51) 

or 

 
2sin1

1 ; 0
2

n
n nb

m

α α
 

= + ≠ 
 

 (7.52) 

The latter form of  nb , which is more convenient for some purposes, has been obtained by use of 

(7.47). It is clear from eq. (7.47) that the first root 1 0α =  if and only if m = 0, that is , in keeping 

with the general result obtained previously, if the slab is perfectly insulated over all its bounding 
surfaces. In this special case, the succeeding roots are: 
 ( )1 , 2,3,.....n n nα π= − =  (7.53) 

And 

 1
1

1; 2,3,.....
2nb b for n= = =  (7.54) 

The zero characteristic value which occurs in this case  (and all cases of a perfectly insulated body) 
has an interesting physical significance. Since all terms but the first of the infinite series (7.49) are 
multiplied by negative exponential in time, the temperature distribution ultimately becomes: 

 ( ) ( )
1

1
0

,lim
t

T x t a f x dx
→∞

= = ∫  (7.55) 

Namely the average initial temperature. 
If , on the other hand, m → ∞ , it seen for eq. (7.47) that  

 
( )2 1

, 1,2,....
2lim n

m

n
nα π

→∞

−
= =  (7.56) 

and 

 
1

, 1,2,....
2lim n

m
b n

→∞
= =  (7.57) 

The form assumed by eq. (7.49) for these limiting values of  nα  and nb  is identical to the solution 

to the stated problem with the face  x = 1  maintained at zero temperature , as may be verified by 
direct solution of the latter problem. This is therefore a particular example, in which it was pointed 
out that the boundary  condition of imposed surface temperature is the limiting case for increasing 
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boundary conductance. A heuristic estimate of the type of error incurred by using the imposed 
surface temperature condition in place of that corresponding to a large, but finite, value of m may 
be obtained  with eq. (7.47) . For such values of m, the first few characteristic values will differ 
more fro their limiting values. Because the characteristic values appear (multiplied by t) in eq. 
(7.49) as negative exponents, it follows that at later times the terms with large characteristic values 
will contribute little to the temperature and an error in the will be of very little importance. 
However, at early times this error may be considerable and the imposed surface-temperature 
idealization may be inadequate. 
An important case is that of uniform initial temperature 0T . Equation (7.49) then assumes the form: 

 ( ) ( ) ( )
( )

2 *
*

* * *
2

1

sin cos
, 2

sin
n

n n t

n n n

x
T x t m e

m

α
α α

α α

∞
−

=
=

 + 
∑  (7.58) 

or , in dimensional terms, 

 ( ) ( ) ( )
( )

2 2/
0 2

1

sin cos /
, 2

sin
nn n t L

n n n

x L
T x t mT e

m

κ αα α
α α

∞
−

=
=

 + 
∑  (7.59) 

If the initial temperature of the plate is zero, and the ambient temperature is 0T , then clearly the 

solution is: 

 ( ) ( ) ( )
( )

2 2/
0 2

1

sin cos /
, 1 2

sin
nn n t L

n n n

x L
T x t T m e

m

κ αα α
α α

∞
−

=

 
 = − 

 +   

∑  (7.60) 

Various charts have been prepared based on this equation and may be found in Carslaw and Jeager, 
and the textbook of McAdams and Jakob . 
It should be noted that all of the foregoing discussion applies equally well to a slab bounded by the 
planes x L= ±  if all conditions depend only upon x and are symmetrical about x = 0 for then, by 
symmetry, / 0T x∂ ∂ =  at x = 0, as had been originally stipulated. 
 
7.1.5.  Example n.2  
A slab is bounded by the planes x = 0 and x = L and is infinite in extent in the y and z directions. 
The surface x = 0 is kept perfectly insulated while the surface x = L is exposed , for t >0, to a 
constant , uniform heat input q . The initial temperature of the slab is zero. With the use of the 
dimensionless quantities defined in chapter 6 and with Rq q= , the corresponding boundary-value 

problem is: 

                                                 
2 * *

* *
*2 *

; 0 1, 0
T T

x t
x t

∂ ∂= < < >
∂ ∂

 (7.61) 

 
*

* *
*

0, 0, 0,
T

x t
x

∂ = = >
∂

 (7.62) 

 
*

* *
*

1; 1, 0,
T

x t
x

∂ = = >
∂

 (7.63) 

 * * *0; 0 1, 0,T x t= < < =  (7.64) 
The asterisks will again be omitted in what follows. This is an example of a problem involving a 
non-homogeneous boundary condition and, in particular, with the heat input specified over the 
entire boundary  surface. It is necessary therefore to proceed as in section 7.1.2, writing the solution 
in the form (7.32), that is : 
 ( ) ( ) ( ), ,S CT x t t T x T x tβ= + +  (7.65) 

where ST  satisfies the equations: 
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2

2
; 0 1,Sd T

x
d x

β= < <  (7.66) 

 0; 0,Sd T
x

d x
= =  (7.67) 

 1; 1,Sd T
x

d x
= =  (7.68) 

where β  may be determined either from (7.35) or, more simplicity, from the boundary conditions 

(7.67)-(7.68) . CT  satisfies equations: 

 
2

2
; 0 1, 0C CT T

x t
tx

∂ ∂= < < >
∂∂

 (7.69) 

 0; 0, 0,CT
x t

x

∂ = = >
∂

 (7.70) 

 0; 1, 0,CT
x t

x

∂ = = >
∂

 (7.71) 

 ; 0 1, 0,C ST T x t= − < < =  (7.72) 

The solutions to eqs. (7.66) to (7.68) for β  and ST  are: 

 
2

1, ,
2S
x

Tβ = =  (7.73) 

The solution to the problem for CT  is found in much the same says way as was followed for 

example n.1. In fact, the discussion there for m = 0  ( eqs. (7.53) and (7.54) applies directly here, so 
that the solution for the problem for CT  is : 

 ( ) ( ) ( )2 21

1

, cos 1 n t
C n

n

T x t a n x e ππ
∞ − −

=
 = − ∑  (7.74) 

 where  

 

( ) ( )
( )

21

1
0

121

2 2
0

1

2 6

2 1
2 cos 1 ; 2,3,....

2 1

n

n

x
a dx

x
a n x dx n

n
π

π

−

 
= − = − 

 

  −
 = − − = − =    − 

∫

∫

 (7.75) 

With a change of summation index, the solution may be  rewritten as: 

 ( ) ( ) ( ) 2 2 *
*2

* * * * *
2 2

2

13 1 2
, cos

6

n
n t

n

x
T x t t n x e

n
ππ

π

∞
−

=

−−= + − ∑  (7.76) 

or , in dimensional terms,  

 ( ) ( )
2 2

2
2 2

2 2 2 2
2

13 2
, cos

6

nn t
L

n

q L t x L n x
T x t e

k LL L n

π κ
κ π

π

 
− ∞  
 

=

 
−−   = + −    

  

∑  (7.77) 

 
7.2.  Laplace transform 
 
7.2.1.  Description of method 
Consider a transient heat conduction problems which corresponds to the boundary-value problem 

given by equations. (7.1) to (7.3). If both sides of the first two equations are multiplied by s te− ,  
s > 0 and all terms are integrated with respect to t from 0 to ∞ , they appear as follows: 
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 ( ) ( )2

0 0

,
,s t s t T P t

e T P t dt e dt P V
t

κ
∞ ∞

− − ∂
∇ = ∀ ∈

∂∫ ∫  (7.78) 

 ( ) ( ) ( ) ( )
0 0

,
, 0s t s tT P t

M P e dt N P e T P t dt P V
n

∞ ∞
− −∂

+ = ∀ ∈∂
∂∫ ∫  (7.79) 

It is assumed that the solution ( ),T P t  of the original boundary-value  problem is such that the 

above integrals converge for sufficiently large s. Because of the integration with respect to time, 
these integrals do not depend upon time but they do depend upon the value of the parameter s; the 
notation: 

 ( ) ( )
0

, ,s tT P s e T P t dt
∞

−= ∫  (7.80) 

is introduced and  ( ),T P s  is referred to as the Laplace transform of  ( ),T P t  with respect to t. The 

next objective is to express the other integrals in equations (7.78) and (7.79) in terms of ( ),T P s  

and its derivatives will respect to spatial variables. This is readily accomplished if it is further 
assumed that the function ( ),T P t , is such as to make permissible the interchange of differentiation 

with respect to spatial variables and integration with respect to time in the above integrals and the 
use of integration by parts. Under these circumstances: 

 ( ) ( ) ( )2 2 2

0 0

, , ,s t s te T P t dt e T P t dt T P s
∞ ∞

− −∇ =∇ = ∇∫ ∫  (7.81) 

 
( ) ( ) ( )

0 0

, ,
,s t s tT P t T P s

e dt e T P t dt
n n n

∞ ∞
− −∂ ∂∂= =

∂ ∂ ∂∫ ∫  (7.82) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
0

0 0

,
, ,

,0 , ,

s t s t s tT P t
e dt e T P t s e T P t dt

t

T P sT P s sT P s F P

∞ ∞∞− − −∂
 = + = ∂

= − + = −

∫ ∫
 (7.83) 

Where, in last equation, the initial conditions (7.3) of the original boundary-value problem has been 
employed. With the use of these results, it is seen that the transformed boundary-value problem for 

( ),T P s  is as follows: 

 ( )2 ;T sT F P P Vκ ∇ = − ∀ ∈  (7.84) 

 ( ) ( ) 0;
T

M P N P T P V
n

∂ + = ∀ ∈∂
∂

 (7.85) 

The important advantage which has been secured by this transformation of the original problem is 
that no differentiation with respect to s appears in the transformed boundary-value problem and this 
quantity may therefore be regarded as a fixed, but arbitrary, parameter. The number of independent 
variables in the original boundary-value problem has thus been reduced by one, and the solution of 
the transformed boundary-value problem will consequently be simpler than that of the original one. 
In particular , if the problem involves only on spatial dimension, eq. (7.84) of the transformed 
boundary-value problem will be an ordinary differential equation. 
The solution ( ),T P s  of the transformed problem having been obtained, it is next necessary to find 

the function ( ),T P t  which corresponds to it, that is, it is necessary to solve the integral equation: 

 ( ) ( )
0

, ,s tT P s e T P t dt
∞

−= ∫  (7.86) 

where ( ),T P s  is the known function and ( ),T P t  the unknown function. ( ),T P t is called the 

inverse transform of ( ),T P s . Extensive table of inverse transforms are available and the use of 
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these tables greatly facilitates the solution of problems by the Laplace transform technique. If a 
particular function, ( ),T P s , cannot be found in the tables, it is necessary to resort to the evaluation 

of a general solution to the integral equation , the most useful of which is  stated in terms of a 
complex integral as follows: 

 ( ) ( )1
, ,

2 lim
i

z t

i

T P t e T P z dt
i

γ β

β γ βπ

+

→∞ −
= ∫  (7.87) 

where ( ),T P z  is the function obtained by extending ( ),T P s  into the complex plane ( by replacing 

the real variable s by the complex variable z x i y= + ); the integration is carried out over the line 

x y=  where γ  is taken sufficiently large so that all the singularities of ( ),T P z  lie to the left of the 

line of integration. Equation (7.87), which applies  to a class of functions sufficiently broad to 
include all those to be encountered  in practice, is referred to as the complex inversion formula for 
the Laplace transform. The evaluation of the complex integral is usually accomplished  by the use 
of the residue theorem of functions of a complex variable. This description has been framed to give 
a general picture of the nature of the Laplace transform technique. In actual computations, it is not 

necessary to multiply explicitly all equations by s te− , to integrate and carry through each time the 
operations of eqs. (7.81) to (7.83) may be employed immediately as the operational properties of the 
Laplace transform.  
The follows operational property  is known as the convolution (or Faltung) theorem: 

 ( ) ( ) ( ) ( )1 2 1 2
0

, , , ,
t

T P s T P s T P T P t dτ τ τ= −∫  (7.88) 

By definition, the Laplace transform of the convolution integral: 

 ( ) ( ) ( ) ( )1 2 1 20
0 0

, , , ,
t t

s tT P T P t d e T P t T P t d dtτ τ τ τ τ∞ −  
− = − 

 
∫ ∫ ∫  (7.89) 

Under broad conditions , we may interchange the order of integration to obtain, 

 ( ) ( ) ( ) ( )1 2 1 20
0 0

, , , ,
t

s t s te T P t T P t d dt T P e T P t dt d
τ

τ τ τ τ τ
∞ ∞

∞ − − 
− = − 

 
∫ ∫ ∫ ∫  (7.90) 

Where the change in limits is readily understood by consideration of the iterated integral as a double 
integral in the ( ),tτ  plane. With r t τ= −  as a new variable of integration in the inner integral, we 

find: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2
0 0 0

1 2 1 2
0 0

, , , ,

, , , ,

s rs t

s s r

T P e T P t dt d T P e T P r dr d

e T P d e T P r dr T P s T P s

τ

τ

τ

τ τ τ τ τ

τ τ

∞ ∞ ∞ ∞
− +−

∞ ∞
− −

− = =

= =

∫ ∫ ∫ ∫

∫ ∫

 (7.91) 

As required. 
 
7.2.2.  Remarks on the method 
The Laplace transform procedure is applicable to any heat conduction problem which leads to a 
linear boundary-value problem as long as the coefficients of the unknown temperature function are 
at most space-dependent. The non-homogeneous terms may be both space and time dependent. 
Advantages: In many cases, some even with rather complex boundary conditions, the solution by 
this method is obtained by a routine (through possibly lengthy) procedure. For some geometries 
involving bodies of infinite extent, the solution is obtained in closed forming terms of tabulated 
functions. When the solution is in series form, both long and short time expressions can be found, 
thus insuring good convergence at all times. 
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Disadvantages: The inversion of the transformed solution is sometimes quite difficult; at times it 
can only be performed so as to leave the answer in terms of definite integrals which must be 
evaluated numerically. 
 
7.2.3.  Example n.3 
A slab initially at zero temperature is bounded by the planes x = 0 and x = L and is infinite in extent 
in the y and z directions. The surface x = L is kept  perfectly insulated while the surface x = 0 is 
maintained, for t > 0, at temperature  0T . 

This problem is a special case of  example n.1 ( with a shift in the temperature scale and in the x 
coordinate ). With the use of the dimensionless parameters and with 0RT T= , the corresponding 

boundary-value problem may be written as follows: 

 
2 * *

* *
*2

; 0 1, 0,
T T

x t
tx

∂ ∂= < < >
∂∂

 (7.92) 

                                                             * * *1, 0, 0,T x t= = >  (7.93) 

 
*

* *
*

0; 1, 0,
T

x t
x

∂ = = >
∂

 (7.94) 

 * * *0; 0 1, 0,T x t= < < =  (7.95) 
The asterisks are again omitted in subsequent calculations. 
By use of the table of operational properties the transformed boundary-value problem for ( ),T x s  

may be written down immediately as follows: 

 
2

2
; 0 1

d T
sT x

d x
= < <  (7.96) 

 
1

; 0T x
s

= =  (7.97) 

 0; 1,
d T

x
d x

= =  (7.98) 

Where eq. (7.97) follows from (7.95) by a simple calculation from the definition of the Laplace 
transform, that is, 

 
0

1s te ds
s

∞
− =∫  (7.99) 

And where (since s may be regarded as a parameter) the derivatives with respect to x are written as 
ordinary rather than partial derivatives. 

 ( )
( )
( )

cosh 1
,

cosh

s x
T x s

s s

 − =  (7.100) 

The inverse transform may be found by use of the complex inversion formula (7.87), with the 
integral evaluated by use of the residue theorem . This procedure gives the solution in the same 
form as the separation of variables , namely equation (7.49). The characteristic values of that 

procedure, 2
nα− , appear here as the zeroes of the denominator of the right-hand side of (7.100), 

which give rise to simple poles with residues.  
As noted previously, the solution in the form (7.49) is a long-time solution in that the infinite series 
converges rapidly only for large values of time. If this is all that is desired, the separation of 
variables technique is probably simpler in application. On the other hand, it is possible, as will now 
be shown, to rewrite equation (7.100) in a form that leads to a short-time solution. To do this, the 
hyperbolic functions are expressed in terms of exponentials, and the function ( ),T x s  is then 

expanded  in a power series in negative exponentials as follows: 
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( )
( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 2

2

2 12 22

0 0 0

1
,

1

1 1 1
1 1 1

sx x s x s xsx

ssx s

n n n
s n xs x s n xsx n s

n n n

e e e e
T x s

s es e e

e e e e e
s s s

− − − −−

−−

∞ ∞ ∞
 − + −− − +− −  

= = =

 + +
 = = =
 ++  

 = + − = − + −  
∑ ∑ ∑

   (7.101) 

Each term of the series is of the same form and may found in tables of inverse Laplace transforms 
(for example, Carslaw and Jaeger) . The results is, in dimensionless form, 

 ( ) ( ) ( ) ( ) **
* * *

* *0 0

2 12
, 1 1

2 2

n n

n n

n xn x
T x t erfc erfc

t t

∞ ∞

= =

   + −+= − + −      
   

∑ ∑  (7.102) 

or, in dimensional terms,  

 ( ) ( ) ( ) ( )
0

0 0

2 12
, 1 1

2 2

n n

n n

n L xnL x
T x t T erfc erfc

t tκ κ

∞ ∞

= =

  + −+ = − + −   
    

∑ ∑  (7.103) 

where the error function complement ( )efrc x  is defined as reported below: 

 ( ) ( ) 22
1 d

x

efrc x efr x e ξ ξ

π

∞
−= − = ∫  (7.104) 

Since this function decays rapidly with increasing argument, the series in eqs. (7.102) converge 

very rapidly for small *t ; for very small values of time only the first term of the first series is 
significant , that is, 

 ( ) *
0, 1

2

x
T x t T erfc for t

tκ
 

≅ <<  
 

 (7.105) 

This illustrates the intuitively clear fact that for short times a finite slab behaves like a semi-infinite 
solid, a fact which gives the latter idealization practical importance.  
 
7.3.  Conformal mapping 
 
7.3.1.  Description of method 
The method of conformal mapping is applicable only for the solution of two-dimensional, steady-
state problems with constant thermal conductivity. Solutions obtained by this method fro wedgs, 
angles, etc. may be found in Carslaw and Jearger; for problems of this type, the method of 
conformal mapping is frequently the most powerful. 
Consider the problem of the determination of the steady two-dimensional temperature distribution 
in a cylinder whose cross section occupies the simply connected region z zV V+ ∂  with boundary 

zV∂ , caused by specified temperature distribution on zV∂  (figure 7.1) . If the thermal conductivity 

is constant, the temperature distribution ( ),T x y  must then satisfy the boundary-value problem, 

 ( )
2 2

2
2 2

0 , z
T T

T x y V
x y

∂ ∂∇ = + = ∀ ∈
∂ ∂

 (7.106) 

 ( ) ( ), , zT G x y x y V= ∀ ∈∂  (7.107) 
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Figure 7.1 – Example for conformal mapping technique 
 

The difficulty with this boundary-value problem lies not in the nature of the differential equation 
nor in the form of the boundary conditions but in the shape of the boundary upon which conditions 
are imposed. It is therefore desirable to make  a change in the independents variables: 

 
( )
( )

,

,

u u x y

v v x y

 =


=
 (7.108) 

with the inverse functions denoted by: 

 
( )
( )

,

,

x x u v

y y u v

 =


=
 (7.109) 

In such a manner as to map the region z zV V+ ∂  into one (say w wV V+ ∂ ) in the ,u v plane with a 

simpler boundary (figure 7.1) without increasing the complexity of  the differential equation or the 
form of the boundary conditions. The technique of conformal mapping provides a means for 
accomplishing this. 
Let z and w be complex variables defined as: 

 
z x i y

w u i v

= +
 = +

 (7.110) 

So that we may speak of the x,y plane as the z plane and of the u,v  as the w plane. Assume that a 
function: 
 ( )w w z=  (7.111) 

Can be found which is analytic and univalent (single-valued with a single-valuated inverse) in zV  

which maps zV  onto the simpler region wV  in the w plane. If ( )w w z= , then the point z in the z-

plane is said to be mapped, thought w(z), onto w in the plane w. wV  is then the set  of all values of 

w corresponding to all z in zV . The mapping produced by an analytic function ( )w w z=  may be  

shown to be conformal, that is it preserves both magnitude and sense of angles at any point at which 

( )' 0w z ≠ . The requirement ( )' 0w z ≠  in zV  may be shown to be necessary to the univalence of  

w(z) in zV . We use here and in what follows the notation ( ) ( ) ( ) ( ), , , , ,T x y T x u v y u v T u v = =   so 

that ( ),T x y  and ( ),T u v  do not represent the same mathematical functions of their arguments but 

are equal at corresponding values of  ( ),x y  and  ( ),u v . 
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The this function and its inverse ( )z z w=  define functions ( ),u u x y= , etc. as in eqs. (7.108) 

which represent the desired change in independent variable, since ( ),T u v  (as will be seen) satisfies 

the following boundary-value problem in the w-plane: 

                                                  ( )
2 2

2
2 2

0 , w
T T

T u v V
u v

∂ ∂∇ = + = ∀ ∈
∂ ∂

 (7.112) 

 ( ) ( ), , wT G u v u v V= ∀ ∈∂  (7.113) 

The point ( ),w wP P u v=  corresponds to ( ),z zP P x y= , that is, we simply require the temperature to 

be the same at corresponding points of  zV∂  and wV∂ .  

These statements rest on some important results of the theory of functions of a complex variable; 
the reasoning is outlined as follows: 
  1) ( ),T x y  is a harmonic function in zV  by definition since it satisfies eq. (7.106) and will require     

it to be in class (2)C  there. 
  2) There exists a function  ( ),S x y  such that 

 ( ) ( ) ( ), ,H z T x y i S x y= +  (7.114) 

is a single-valuated analytic function in zV . 

  3) If  ( )w w z=  is analytic and univalent in zV , then its inverse function ( )z z w=  is analytic and 

univalent wV . 

  4) Therefore , 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
, , , , , ,

, ,

H z H z w T x u v y u v i S x u v y u v

T u v i S u v

     = = + =     

= +
 (7.115) 

Is analytic and single-valuated in wV  since an analytic function of an analytic function is also 

analytic . 
  5) Since the real and imaginary parts of an analytic function are harmonic, ( ),T u v  is harmonic 

and single-valued in wV , that is, it satisfies  eq. (7.112). The satisfaction of boundary conditions 

(7.113) follows simply from the definition of ( ),T u v . 

 
The conformal mapping procedure for the solution of boundary-value problems of this type is then 
as follows: 

(I) Find a univalent , analytic function ( )w w z=  which maps the original boundary zV∂  

into a simpler boundary wV∂ . 

(II)  Transform the boundary conditions on ( ),T x y  into boundary conditions ( ),T u v  

(III)  Solve problem for ( ),T u v  in the w-plane. 

(IV)  Convert ( ),T u v  to ( ),T x y  by use of eqs. (7.108) corresponding to the mapping 

function ( )w w z=  

 
Step (I) is frequently the most difficult and usually requires an intimate knowledge of functions of a 
complex variables. Tables of mapping function exist and are of considerable assistance. Also, 

methods have been developed for constructing a function which maps a region ' '
z zV V+ ∂  onto a 

simpler one, where ' '
z zV V+ ∂  is a close approximation to the given region  z zV V+ ∂ . 
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Step (II) presents no difficulty, as has been seen, for the case of imposed surface temperature. If it 

required that a portion of  zV  be perfectly insulated 
( ),

0
z

T x y

n

 ∂
= ∂ 

 then it is simply necessary to 

impose the condition 
( ),

0
w

T u v

n

∂
=

∂
 on the corresponding portion of  wV∂ , where zn  and wn  are the 

normals to zV∂  and  wV∂ , respectively. The treatment of other boundary conditions by the 

conformal mapping technique is also possible. Step (III) becomes routine for the case of imposed 
surface temperature over all of zV∂  if the original region is mapped onto a region (for example, the 

unit circle or the half-plane) for which the general solution is known in a simple form. We now give 
an outline showing the development of this general solution for the case in which wV  is the upper 

half-plane since this development leads to some useful intermediate formulas. Consider first the 
determination of ( ),T u v  in wV  corresponding to the boundary conditions shown in figure 7.2. The 

solution is : 

 ( ), arctan ; 0 arctan
v v

T u v
u u

π   = ≤ ≤   
   

 (7.116) 

Clearly the function ( ),T u v  so defined satisfies the boundary conditions and is bounded (as 

required by physical considerations and for uniqueness). Also, ( ),T u v  is harmonic in wV  since it is 

the imaginary part of a function analytic in wV , namely , 

 ( ) ( ) 3
, Im log , arctan

2 2

v
T u v u i v

u

π π 
 = + − ≤ ≤ −  

 
 (7.117) 

This solution is now generalized to other boundary conditions as follows: 

 ( ) 1
1

, 1 arctan , 0 arctan
v v

T u v T
u u

π
π

    = − ≤ ≤    
    

 (7.118) 

 ( ) 1
1 1

1
, 1 arctan , 0 arctan

v v
T u v T

u u
π

π ξ ξ
    

= − ≤ ≤    − −    
 (7.119) 

By the superposition of two solutions of the form of eq. (7.119), we obtain the solution to the next 
case as follows: 

 

( ) 1 1
1 2

1 1 2

2 1 1

1 2

1 1
, 1 arctan 1 arctan

arctan arctan arctan

0 arctan , 0 arctan

v v
T u v T T

u u

T T uv v

u u u

v v

u u

π ξ π ξ

ξ
π ξ ξ π ξ

π π
ξ ξ

      
= − − − =      − −      

      −= − =      − − −      

   
≤ ≤ ≤ ≤   − −   

 (7.120) 

 ( ) 1

1

1
, arctan ; 0 arctan

n
j

j
j j j

u v
T u v T

u u

ξ
π

π ξ ξ
+

=

   −
= ≤ ≤      − −   

∑  (7.121) 

It is now possible to consider the limiting form assumed by eq. (7.121) as n → ∞  . The result is : 

 ( ) ( )
( )2 2

1
,

f v d
T u v

u v

β

α

ξ ξ
π ξ

=
− +

∫  (7.122) 
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For a temperature distribution corresponding to ( ) ( ),0 ,T u f u uα β= ≤ ≤  and zero on the 

remainder of the boundary. For suitably bounded ( )f u , α  and β  may become infinite, yielding 

the following general result, namely Poisson’s integral formula for the half-plane: 

 ( ) ( )
( )2 2

1
,

f v d
T u v

u v

ξ ξ
π ξ

+∞

−∞
=

− +
∫  (7.123) 

The last step, that is, step (IV), is quite difficult if the mapping function has been determined in the 
form ( )z z w=  (as is the case for example , if the Schwarz-Christoffel theorem for the mapping of 

polygons is used) and if this function is not readily inverted.  
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Fig. 7.2 - Example for conformal mapping technique 
 
7.3.2. Example n. 4  
It is required to find the steady-state temperature in the wedge of figure n.2  , subject to the 
boundary conditions shown. 
The function: 

 0, 0 arctan ,c y
w z

x
θ = < < 

 
 (7.124) 

where 

 
0

c
π
θ

=  (7.125) 
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Clearly maps the region zV onto the upper half of the w plane. The transformed boundary condition 

are as shown in figure n.2. The solution of the transformed problem is obtained directly from eq. 
(7.120) as: 

 

( )

( )

2 2
1 1

2 2

1
2 2

, arg arg

, arctan

c c c

c

c

T Tw a u v a u i a v
T u v

w u v

T a v
T u v

u v a u

π π

π

   − + − += = =   
+   

 
=  

+ − 

 (7.126) 

Where the value of the arctan between 0 and π  is used. The function ( ),T u v  may be converted  to 

( ),T x y  or, more conveniently, to ( ),T r θ  by the substitutions 

 
( )
( )

0

0

cos

sin

c

c

u r c

v r c

θ

θ

 =


=

 (7.127) 

Which yield the result: 

 ( ) ( )
( )

01

0

sin
, arctan

cos

c

c c

a cT
T r

r a c

θ
θ

π θ
 

=  
−  

 (7.128) 
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CHAPTER VIII 
SUMMARY OF THE FORMULATION OF THERMOELASTIC PROBLEM S FOR 

ISOTROPIC MATERIAL 
 
8.0.  Introduction 
The problem considered in this chapter consists of the determination of elastic stresses and 
deformations in solid bodies under prescribed temperature distributions. The basic mathematical 
description of the behaviour of solids under the action of heat and external loads has been 
established in chapters I to IV. The principal results of that formulation are repeated in this chapter 
for purposes of reference, occasionally supplemented by discussion of their basis on physical and 
intuitive grounds. The reader may thus omit the earlier more precise developments and still obtain a 
working knowledge of the concepts involved.   
The formulation employed here rest on four principal assumption: 

1) The temperature can be determined independently of the deformations of the body ; 
2) The deformations are small; 
3) The material behaves elastically at all times; 
4) Stress-strain relationships related to linear isothermal and homogeneous material; 

The first of these assumptions requires the omission of mechanical coupling terms in the heat 
conduction equations. The second  implies that the displacements  are sufficiently small so that no 
distinction is needed between the coordinates of a particle before and after deformation and that the 
displacement gradients are sufficiently small so that their products may be neglected. The most 
common problems in which this assumption does not hold are those of buckling; Finally the third 
assumption implies that neither the temperature changes nor the stresses are too large; Many of the 
concepts and equations required for the formulation which follow are identical with those of the 
isothermal theory of elasticity; for these, only a brief outline will be given, the reader being referred 
to the one of the treatises on elasticity for more through analyses. 
 
8.1.  Thermo-elastic stress-strain relations 
Broadly speaking, thermal stress may arise in a heated body either because of a non-uniform 
temperature distribution, or external constraints, or a combination of these causes. Since the effect 
of external constraints is readily understood, we confine our attention to that of non-uniform 
temperature. Imagine a body as made up of a number of small cubical elements of equal size which 
fit together to form the given continuous body. If the temperature of the body is raised uniformly, 
and if its bounding surfaces are unrestrained , then each element will expand an equal amount 
(proportional to the temperature rise) uniformly in all directions. The elements are thus still equal-
sized cubes; they still fit together to form a continuous body, and no stresses arise. If, however, the 
temperature rise is not uniform , each element will tend to expand by a different amount, that is one 
proportional to its own temperature rise. The resulting different-sized cubes cannot , in general , fit 
together ; since, however, the body must remain continuous, each element must restrain the 
distortions of its neighbors, or, in other words, stresses must arise. The total strains at each point of 
a heated body are thus made up of two parts. The first part is a uniform expansion proportional to 
the temperature rise RT T− , where RT  is the reference temperature. Since this expansion is the 

same in all directions for an isotropic body, only normal strains and no shearing strains arise in this 
manner. If the coefficient of linear thermal expansion is denoted by α , this normal strain in any 
direction is equal to ( )RT Tα − . The second part comprises the strains required to maintain the 

continuity of the body as well as those arising because of external load. These strain are related to 
the stresses by means of the usual Hooke’s law of linear isothermal elasticity . The total strains are 
the sum of the components and are therefore related as follows to the stresses and temperature in 
any orthogonal coordinate system x,y,z: 
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( ) ( ) ( ) ( )

( ) ( )

1 1
,

1 1 1 1
, , , ,

xx xx yy zz R yy yy xx zz R

zz zz xx yy R yz yz xz xz xy xy

T T T T
E E

T T
E G G G

ε σ ν σ σ α ε σ ν σ σ α

ε σ ν σ σ α γ τ γ τ γ τ

   = − + + − = − + + −  

 = − + + − = = = 

 (8.1) 

The shear modulus G is related to Young’s modulus E and Poisson’s ratio ν  by the equation: 

 ( )2 1

E
G

ν
=

+
 (8.2) 

The relation between the dilatation e and the sum of the normal stresses I is obtained from (8.1) as : 
 ( ) ( ) ( )1 3 3V V RI E T Tε α= + −  (8.3) 

where the bulk modulus k is  

 ( )3 1 2V
E

E
ν

=
−

 (8.4) 

and where: 
 ,V xx yy zz xx yy zzIε ε ε ε σ σ σ= + + = + +  (8.5) 

It is sometimes to express the stresses explicitly in terms of the strains; the relations in question are: 

 

( ) ( )
( ) ( )
( ) ( )

2 3 2

2 3 2

2 3 2

; ; ;

xx xx R

yy yy R

zz zz R

yz yz xy xz xz xy

e T T

e T T

e T T

G G G

σ λ µ ε λ µ α
σ λ µ ε λ µ α

σ λ µ ε λ µ α
τ γ τ γ τ γ

= + − + −

= + − + −

= + − + −
= = =

 (8.6) 

The Lamè elastic constants λ  and µ  are related to E and ν  as follows: 

 ( )( ) ( );
1 1 2 2 1

E E
G

νλ µ
ν ν ν

= = =
+ − +

 (8.7) 

Note that the following relations hold: 

 ( )
2 3 2

; ; ;
3 2VE E

λ µ λµ λ µ ν
µ λ µ λ

 += + = = + + 
 (8.8) 

The stress-strain relations supply the mathematical description of the material under consideration; 
it is now necessary to enforce the requirements of mechanics and of geometry: The laws of 
mechanics are introduced by the equations of equilibrium (or of motion); geometrical consistency is 
stipulated through the strain-displacements relations. 
 
8.2.  Equations of equilibrium 
The equations of equilibrium are the same as those of isothermal elasticity since they are based on 
purely mechanical considerations. In rectangular Cartesian coordinate x, y and z these equations 
take the form: 

                                  

0

; 0

0

xyxx xz

xy yy yz

yzxz zz

X
x y z

or Y
x y z

Z
x y z

τσ τ

τ σ τ

ττ σ

∂∂ ∂+ + + = ∂ ∂ ∂
∂ ∂ ∂∇ ⋅ + = + + + = ∂ ∂ ∂
 ∂∂ ∂
 + + + =

∂ ∂ ∂

T b 0      (8.9) 

where { }, ,X Y Z=b  is the vector of the body forces. It will usually be possible to omit the body 

forces; occasionally, however, the effect of inertia will have to be considered, in which case the 
body forces are equal to the negative of the inertia forces. For small displacements one may then 
write: 
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2 2 2

2 2 2
; ; ;

u v w
X Y Z

t t t
ρ ρ ρ∂ ∂ ∂= − = − = −

∂ ∂ ∂
 (8.10) 

where ρ  is the mass density, u,v and w are the components of the displacement vector in the x,y 
and z directions respectively, and t is time.  These equations of equilibrium have been derived in 
Chapter II. An alternative derivation is obtained  by considering the equilibrium of an infinitesimal 
parallelepiped such as the shown in figure 8.1. The equilibrium of all the forces acting, for example, 
in the x direction, readily gives the first equations. (8.9).  
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Fig.  8.1 – Equilibrium of infinitesimal volume dxdydz 

 
The complementary components of the shear stress are equal, that is,  
 ; ; ;xy yx xz zx yz zyτ τ τ τ τ τ= = =  (8.11) 

Because of the requirement of moment equilibrium for any element such as that of figure n. 8.1. 
When eqs. (8.9) and (8.11) are satisfied at all points of the body, the required conditions of 
equilibrium of the body as a whole are automatically fulfilled, with the resultant of the surface 
tractions balancing the resultant of the body forces (if any). In cylindrical coordinate , ,r zθ , the 
equilibrium equations (8.9) are (see appendix) : 

 

1
0

21
0

1
0

r rrrr rz

r z r

zrz zz rz

z

R
r r z r

r r z r

Z
r r x r

θ θθ

θ θθ θ θ

θ

τ σ σσ τ
θ

τ σ τ τ
θ
ττ σ τ
θ

 ∂ −∂ ∂+ + + + = ∂ ∂ ∂
∂ ∂ ∂ + + + + Θ = ∂ ∂ ∂

∂∂ ∂ + + + + = ∂ ∂ ∂

 (8.12) 

where the body force in the , ,r zθ  directions are denoted by , ,R ZΘ . In spherical coordinate , ,r θ φ  
(see appendix) the equilibrium equations take the form: 
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21 1
0

sin tan

31 1
0

sin tan

3 21 1
0

sin tan

r rrr rrr

r r

r r

R
r r r r r

r r r r r

r r r r r

φ θθ φφθ θ

θφ θθ φφθ θθ θ

φ θφ φφ φ θφ

τ σ σ στ τσ
θ θ φ θ

τ σ στ σ τ
θ θ φ θ

τ τ σ τ τ
θ θ φ θ

∂ − − ∂∂ + + + + + = ∂ ∂ ∂
 ∂ −∂ ∂ + + + + + Θ = ∂ ∂ ∂
 ∂ ∂ ∂

+ + + + + Φ =
∂ ∂ ∂

 (8.13) 

where the body-force components in the , ,r θ φ  directions are denoted by , ,R Θ Φ . 
 
8.3.  Strain-Displacement relations  
The strains are related to the displacements in the same manner as in isothermal elasticity since 
purely geometrical considerations are involved; in a rectangular Cartesian coordinate system the 
pertinent equations are as follows: 

 

1 1
; ; ; ;

2 2

1 1 1 1
; ;

2 2 2 2

xx yy zz xy xy

yz yz xz xz

u v w u v

x y z y x

v w w u

z y x z

ε ε ε ε γ

ε γ ε γ

 ∂ ∂ ∂ ∂ ∂= = = = = + ∂ ∂ ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂= = + = = +   ∂ ∂ ∂ ∂   

 (8.14) 

where u, v and w are the components of the displacements vector in the x, y and z directions 
respectively. 
In cylindrical coordinate (see appendix) these relations take the form: 

 

1
, , ,

1 1 1 1 1
, , ,

2 2 2

r r z
rr zz

r r z z
r rz z

uu u u

r r r z

u u uu u u u

r r r z r z r

θ
θθ

θ θ θ
θ θ

ε ε ε
θ

ε ε ε
θ θ

∂∂ ∂ = = + = ∂ ∂ ∂ 

∂ ∂∂ ∂ ∂ ∂    = − + = + = +    ∂ ∂ ∂ ∂ ∂ ∂    

 (8.15) 

where , ,r zu u uθ   represent here the components of the displacement vector in , ,r zθ  directions 

respectively.  In spherical coordinates (see appendix) these relations take the form: 

 

1 1 1 1
, , , ,

tan sin 2

1 1 1 1 1
, ,

2 sin 2 sin tan

r r r r
rr r

r
r

uu u u uu u u u

r r r r r r r r r

u u u uuu

r r r r r r

φθ θ θ θ
θθ φφ θ

φ φ φ φθ
φ θφ

ε ε ε ε
θ θ θ φ θ

ε ε
θ φ θ θ φ θ

∂∂ ∂∂ ∂   = = + = + + = − +   ∂ ∂ ∂ ∂ ∂   

∂ ∂   ∂∂= + − = + −   ∂ ∂ ∂ ∂   

(8.16) 

where , ,ru u uθ φ   represent here the components of the displacement vector in , ,r θ φ  directions 

respectively. 
 
8.4.  Boundary Conditions 
In most problems, the boundary conditions which can be considered in connection with thermo-
elastic problems, it will be possible to restrict to one of the following two special cases:  

a) Traction boundary conditions; 
b) Displacement boundary conditions; 

 
In the first case, the boundary conditions for this case are expressed in terms of the stress 
components through the following  equations, to be satisfied at every point P of the boundary 
surface V∂  of the solid with volume V: 

 

xx x xy y xz z x

xy x yy y yz z y

xz x yz y zz z z

n n n t

n n n t P V

n n n t

σ τ τ
τ σ τ
τ τ σ

 + + =


+ + = ∀ ∈∂
 + + =

 (8.17) 
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where , ,x y zt t t  are the components of the prescribed surface traction in the x,y,z directions 

respectively , and , ,x y zn n n  are the direction cosines of the outward-drawn surface normal. These 

formulas also give the tractions across any interior surface. 
In the second  case, the boundary conditions for this case are expressed through the following 
equations to be satisfied at every point P of the bounding surface: 

 

( )
( )
( )

u f P

v g P P V

w h P

 =


= ∀ ∈∂
 =

 (8.18) 

where f, g, and h are prescribed functions. 
Occasionally, more complicated  boundary conditions may be encountered; for example, the 
boundary condition of equation (8.17) may be specified  over a portion of the bounding surface and 
that of equations (8.18) over the remainder of the surface. Thus at each point either three traction 
components or three displacement components are prescribed; these are known as “mixed” 
boundary conditions. As another example, we may specify at each point of the bounding surface 
three quantities, some of which are traction components and the remainder displacement 
components. These must be chosen, however, so that not more than one quantity is associated with 
a particular coordinate direction; it is thus permissible to prescribe, say , ,x yt t  and w at a particular 

point, but not ,x yt t  and v .  

Another possibility is represented by the condition of elastic support, in which a functional relation 
exists between some of the displacement and some of the traction components, as in the case of two 
bodies in contact. The difficulties arising in such problems are not peculiar to thermo-elasticity but 
are found in isothermal elasticity as well.  
 
8.5. Mathematical formulation of the problem of thermo-elasticity 
The problem of thermo-elasticity consists in the determination of the following ”fifteen functions” 
(here in rectangular Cartesian coordinates), the temperature distribution being assumed known: 

6 stress components: , , , , , ,xx yy zz xy yz zxσ σ σ τ τ τ  

6 strain components: , , , , , ,xx yy zz xy yz zxε ε ε ε ε ε  

3 displacement components: , ,u v w 
So as to satisfy the following “ fifteen equations”  throughout the body : 

   3 equilibrium equations: equations  (8.9) 
  6 stress-strain relations: equations   (8.1) 
   6 strain-displacement : equations   (8.14)  

And the boundary conditions reported in section 8.4.  
It is possible to prove that when the problem is thus formulated, and appropriate continuity 
restriction are placed on the functions, the solution is unique, that is, there exist at most one set of 
twelve stress and strain components, and one set of three displacement components (except possibly 
for rigid-body motions), which satisfies the above equations and boundary conditions. This 
formulation holds both for simply and multiply connected bodies. The rigid-body motions are of the 
form: 

 

0 0 0

0 0 0

0 0 0

z y

x z

y x

u u y z

v v z x

w w x y

ω ω

ω ω

ω ω

 = − +
 = − +
 = − +

 (8.19) 

where the constants 0 0 0, ,u v w  represent rigid-body translations and the constants 0 0 0, , ,x y zω ω ω  

represent infinitesimal rigid-body rotations about the axes indicates in the subscript. In vector form 
the rigid-body motions are given by: 
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 0 0 0 0 0 0

ˆ ˆ ˆ

det x y z

x y z

ω ω ω

 
 

= + ∧ = +  
 
  

i j k

u u ω P u  (8.20) 

The last statement follows by the substitution of the displacement  of eqs. (8.19) in the general 
formulas for the infinitesimal rotation vector components, namely: 

 0 0 01 1 1
; ; ;

2 2 2x y z
w v u w v u

y z z x x y
ω ω ω     ∂ ∂ ∂ ∂ ∂ ∂= − = − = −     ∂ ∂ ∂ ∂ ∂ ∂     

 (8.21) 

The infinitesimal rotation vector is given by the curl of the displacement vector: 

 ( )0 0 0

ˆ ˆ ˆ

ˆ ˆ ˆdet 2 x y zx y z

u v w

ω ω ω

 
 

∂ ∂ ∂∇ ∧ = = + + ∂ ∂ ∂ 
  

i j k

u i j k  (8.22) 

 
8.6.  Principal stresses and strains 
The solution of the boundary-value outlined in the previous article gives the stress, strain, and 
displacement components in a particular coordinate system (rectangular  Cartesian).  From this 
information, one may refer the stresses, strains, and displacements  at any one point of the body to 
any other coordinate system by means of well-known transformation formulas. The transformations 
related to displacements are accomplished directly by the laws of vector transformation and present 
no difficulty; those pertaining to stresses and strains are a little more complicated.  Of particular 
interest is the calculation of the maximum principal stress at any point, and a few formulas that may 
be useful in this connection follow. 
In any stress system, three mutually perpendicular planes (called principal), on which no shear 
stresses act, exist at each point. The normal stresses on these planes are called principal; one of 
them is the maximum stress and another is the minimum stress (considered algebraically, that is, 
either the least positive or the greatest negative stress) at that point. Let , ,x y zn n n  be the direction 

cosines of the normal to a principal plane in a rectangular coordinate system x,y,z and let λ  be the 
corresponding principal stress; These quantities can be found from simultaneous solution of the 
following four equations : 

 

( )
( )

( )

0

0

0

xx x xy y xz z

xy x yy y yz z

xz x yz y zz z

n n n

n n n

n n n

σ λ τ τ

τ σ λ τ

τ τ σ λ

 − + + =
 + − + =


+ + − =

 (8.23) 

 2 2 2 1x y zn n n+ + =  (8.24) 

Equation (8.23) lead to a nontrivial solution for the direction cosines only if the determinant of the 
coefficients is zero; the principal stresses are then the three roots (always real ) of the cubic 

 3 2 0I II IIIλ λ λ− + − =  (8.25) 
where the three invariant coefficients are : 

 2 2 2

det

xx yy zz

xx yy xx zz yy zz xy xz yz

I

II

III

σ σ σ

σ σ σ σ σ σ τ τ τ

= + +
 = + + − − −
 = T

 (8.26) 

The corresponding formulas for strains are very similar to these just shown. They may in fact be 
obtained directly from them by substituting in equations (8.23) and (8.26) the quantities 

, , , , ,xx yy zz yz xz xyε ε ε ε ε ε  for the quantities , , , , ,xx yy zz yz xz xyσ σ σ τ τ τ  respectively . 
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In two-dimensional stress systems, the analogous results are easily obtained from these formula, 
since  then eq. (8.25) reduces to : 

 ( ) ( )2 2 0xx yy xx yy xyλ σ σ λ σ σ τ− + + − =  (8.27) 

The two principal stresses in the plane may then be written explicitly as: 

 
2

2

2 2
xx yy xx yy

xy

σ σ σ σ
λ τ

+ − 
= ± + 

 
 (8.28) 

The principal directions make an angle ϕ  with the x-axis which is given by: 

 tan y xy

x xx

n

n

τ
ϕ

σ λ
= =

−
 (8.29) 

with the aid of the identity  

 
2

2 tan
tan 2

1 tan

ϕϕ
ϕ

=
−

 (8.30) 

The formulas for the stress components in directions 1 1,x y  , where the 1x  axis makes and angle α  

with the x axis, are: 

 

( ) ( )

1 1

1 1

1 1

2 2

2 2

2 2

cos sin 2 sin cos

sin cos 2 sin cos

sin cos cos sin

x x xx yy xy

y y xx yy xy

x y yy xx xy

σ σ α σ α τ α α

σ σ α σ α τ α α

σ σ σ α α τ α α

 = + +

 = + −


= − + −

 (8.31) 

For future reference, note at this point the analogy between the variation, under rotation of 
coordinates, of the moments of inertia of an area and of the stress components in a two-dimensional 
system. If the moments of inertia about the x and y axes are dented by xI  and yI , and the product 

of inertia about these axes by xyI , the principal moments of inertia by  I  , and angle of the principal 

directions with x axis by  ϕ , then the following formulas : 

 
2

2

2 2
x y x y

xy

I I I I
I I

+ − 
= ± + 

 
 (8.32) 

 
2

tan 2 xy

y x

I

I I
ϕ =

−
 (8.33) 

 

( ) ( )

1

1

1 1

2 2

2 2

2 2

cos sin 2 sin cos

sin cos 2 sin cos

sin cos cos sin

x x y xy

y x y xy

x y y x xy

I I I I

I I I I

I I I I

α α α α

α α α α

α α α α

 = + +

 = + −


= − + −

 (8.34) 

The quantity  
 

1 1P x y x yI I I I I= + = +  (8.35) 

Is called the polar moment of inertia. 
The reader will recognize that eqs. (8.31)-(8.34) are the formulas for the transformation of the 
components of a symmetric second rank tensor under rotation of a rectangular Cartesian coordinate 
system. Note that equations (8.34) are written in the engineering notation for moments of inertia 
rather than in terms of the tensor components , ,x y xyI I I  of the moment of inertia; the relation 

between the two notations is: 
 ; ; ;xx x yy y xy xyI I I I I I= = =  (8.36) 
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8.7.   Separation of stresses due to temperature and to external loads  
The formulation in section 8.5 accounts both for the effect of external loads and for that of non-
uniform temperature distributions, and is therefore more general than often need be considered. All 
the equations and boundary conditions to be satisfied are, however, linear; it follows that it is 
possible to divide the problem in two separate parts and thus to calculate the stresses as the sum of 
(1) those due to temperature alone and (2) those due to the external loads in the absence of 
temperature.  
(1)_ The stresses, strains and displacements due to temperature alone are obtained by the solution of 
equilibrium equations (8.9), stress-strain relations (8.1), and strain-displacement relations (8.14) as 
in the previous section but subject to the boundary conditions : 

 

0

0

0

xx x xy y xz z

xy x yy y yz z

xz x yz y zz z

n n n

n n n P V

n n n

σ τ τ
τ σ τ
τ τ σ

 + + =


+ + = ∀ ∈∂
 + + =

 (8.37) 

In place of those previously stated. A body free of external tractions, for which then eqs. (8.37) 
hold, will be referred to as a free body.  
(2)_The solution corresponding to the external loads in the absence of temperature must satisfy 
equilibrium equations (8.9), stress-strain relations (8.1), and strain-displacement relations (8.14), 
with T set equal to zero in Hooke’s  law. The boundary conditions depend on whether tractions, 
displacements, or a combination of these quantities is prescribed at the surface . If tractions are 
specified throughout, the appropriate boundary conditions are those of equations (8.17). 
If displacements are prescribed at every point of the surface, the  boundary conditions are: 

 

( ) ( )
( ) ( )
( ) ( )

a

a

a

u f P u P

v g P v P P V

w h P w P

 = −


= − ∀ ∈∂
 = −

 (8.38) 

In place of  equation (8.18). The function ( ) ( ) ( ), ,a a au P v P w P  are the displacements of the 

boundary point P as calculated in part (1). It readily verified by direct substitution in the equations 
and boundary conditions listed in previous section that the sum of solutions (1) and (2) satisfies all 
the requirements of that formulation ; since the uniqueness theorem insures that only one solution 
exists, this is the desired solution of the problem. 
 
8.8.   Alternative formulation of the problem of thermo-elasticity 
The formulation in section 8.5 is complete and perhaps the most natural one from a physical 
viewpoint. However, the equations to be solved involve fifteen dependent variables, whereas the 
boundary conditions usually contain  either only the three displacement components or only the six 
stress components. Therefore it is usually convenient to simplify the formulation by expressing the 
boundary value problem only in terms of those variables which appear in the particular boundary 
conditions under consideration. In this section , this procedure is carried out in a purely formal 
manner and the governing equations listed; for most practical applications, this treatment will 
surface. A more rigorous treatment of this equation requires the utilization of the uniqueness 
theorem, and a discussion of the alternative formulations. 
 

a) Displacement formulation 
The equilibrium equation (8.9) may be expressed in terms of strains by means of the stress-strain 
relations; the strain in turn can be written  in terms of displacements. The final result of these 
substitutions is the following equilibrium equations in  terms of displacements (for rectangular 
Cartesian coordinates ) is given by Duhamel -Neumann thermal equations : 
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( ) ( )

( ) ( )

( ) ( )

2

2

2

3 2 0

3 2 0

3 2 0

T
u X

x x

T
v Y

y y

T
w Z

z z

µ λ µ λ µ α

µ λ µ λ µ α

µ λ µ λ µ α

 ∂ ∂+ ∇ ⋅ + ∇ − + + = ∂ ∂
 ∂ ∂+ ∇ ⋅ + ∇ − + + = ∂ ∂
 ∂ ∂+ ∇ ⋅ + ∇ − + + = ∂ ∂

u

u

u

 (8.39) 

In vector form, we can write:   
 ( ) ( ) ( ) ( )3 2 Tµ λ µ λ µ α+ ∇ ∇ ⋅ + ∇ ⋅ ∇ ⊗ − + ∇ + =u u b 0 (8.40) 

These equations, when solved with the displacement boundary conditions (8.18), yield the functions 
u, v, and w fro all points in the body. The stress-strain relation  and strain-displacement relation 
may be used in that order to determine the strains and stresses, respectively, by direct substation. 
The stated formulation  of thermo-elasticity problems in terms of displacements holds, just as the 
one of section 8.5 , for both simply and multiply connected bodies. 
Equations (8.39) assume the following form when written in terms of the components of rotation 
defined in (8.21): 

 

( ) ( )

( ) ( )

( ) ( )

00

0 0

0 0

2 2 3 2 0

2 2 3 2 0

2 2 3 2 0

yz

x z

y x

T
X

x y z x

T
Y

y z x y

T
Z

z x y z

ωωµ λ µ λ µ α

ω ωµ λ µ λ µ α

ω ωµ λ µ λ µ α

  ∂∂∂ ∂
 + ∇ ⋅ − − − + + = 

 ∂ ∂ ∂ ∂  


  ∂ ∂∂ ∂+ ∇ ⋅ − − − + + =  ∂ ∂ ∂ ∂ 


 ∂ ∂∂ ∂ + ∇ ⋅ − − − + + =   ∂ ∂ ∂ ∂ 

u

u

u

 (8.41) 

In vector form, we can write:   
 ( ) ( ) ( ) ( )2 3 2 Tµ λ µ λ µ α+ ∇ ∇ ⋅ − ∇ ∧ ∇ ∧ − + ∇ + =u u b 0  (8.42) 

The application to the above equation of the operators div and curl respectively leads to the 
following results: 

 
( ) ( ) ( )

( )

2 22 3 2 0Tµ λ λ µ α

µ

 + ∇ ∇ ⋅ − + ∇ + ∇ ⋅ =


 − ∇ ∧ ∇ ∧ ∇ ∧ + ∇ ∧ =  

u b

u b 0
 (8.43) 

By remembering the relation: 

 ( ) ( )2∇ = ∇ ∇ ⋅ − ∇ ∧ ∇ ∧u u u  (8.44) 

We can rewriting the equations (8.43) as follows: 

 
( ) ( ) ( )

( )
2 2

2

2 3 2 Tµ λ λ µ α

µ

 + ∇ ⋅ ∇ = + ∇ − ∇ ⋅


∇ ∧ ∇ = −∇ ∧

u b

u b
 (8.45) 

In the stationary thermal-elasticity problem, if the body force field is such that div b and curl b both 
vanish, then both div u and curl u are harmonic fields:  

 ( ) ( )2 20;∇ ⋅ ∇ = ∇ ∧ ∇ =u u 0  (8.46) 

Hence, by equation (8.44) ,  2∇ u  is a vector field that is harmonic; that is, 

 ( )2 2 0∇ ∇ =u  (8.47) 

Thus, if the body force field b is divergence-free and curl-free, then the displacement field is bi-
harmonic. 
The equilibrium equations may be expressed in a similar way in other coordinate system. In 
cylindrical coordinate they are: 



CHAPTER VIII - Summary of the formulation of thermo -elastic problems for isotropic material 

                                                                                                                                                                F. Carannante 113 

 

( ) ( )

( ) ( )

( ) ( ) ( )

00
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0 0
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2 3 2 0
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r z

r

e T
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r r z r

e T

r z r r

re T
Z

z r r z

θ

θ

ωωµ λ µ λ µ α
θ

ω ω αµ λ µ λ µ
θ θ

ω ωµµ λ λ µ α
θ


 ∂∂ ∂ ∂+ − − − + + =  ∂ ∂ ∂ ∂ 

  ∂ ∂∂ ∂ + − − − + + Θ =  ∂ ∂ ∂ ∂ 
  ∂ ∂∂ ∂ + − − − + + =  ∂ ∂ ∂ ∂  

 (8.48) 

where the dilatation e and the components of rotation, in this coordinate system, are: 

 
0 0 0

1
;

1 1 1 1 1 1
; ; ;

2 2 2

r r z

z z z
r z

uu u u
e

r r r z

u u uu u u

r z r z r z

θ

θ θ θ
θ

θ

ω ω ω
θ θ θ

∂∂ ∂= + + +
∂ ∂ ∂

     ∂ ∂ ∂∂ ∂ ∂= − = − = −     ∂ ∂ ∂ ∂ ∂ ∂     

 (8.49) 

In spherical coordinate the corresponding equations are: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0

00

0 0

sin2
2 3 2 0

sin
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2 sin 3 2 0
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R
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ω θ ωµµ λ λ µ α
θ θ φ

ωωµ αµ λ θ λ µ
θ θ φ θ

ω ωµ αµ λ λ µ
θ φ θ θ φ

  ∂ ∂∂ ∂  + − − − + + =
  ∂ ∂ ∂ ∂

 
  ∂∂∂ ∂  + − − − + + Θ =

 ∂ ∂ ∂ ∂  


  ∂ ∂∂ ∂  + − − − + + Φ =
 ∂ ∂ ∂ ∂
 

 (8.50) 

where 

( ) ( ) ( )

( ) ( )

2
0

2

0 0

sinsin1 1
sin ; ;

2 sinsin

1 1 1
sin ; ;

2 sin 2

r

r

r r

r u uuu u
e r r

r rr

r u r uu u

r r r r r

φφθ θ

φ θ
θ φ

θθ
θ ω

θ φ θ θ φθ

ω θ ω
θ φ θ

   ∂ ∂∂∂ ∂   = + = −
 ∂ ∂ ∂  ∂ ∂   

 ∂  ∂∂ ∂
 = − = − ∂ ∂ ∂ ∂    

 (8.51) 

Finally, the surface conditions (8.17) expressed in terms of the components of the displacement 
vector u are of the form: 

 

2

2

2

x y z x

x y z y

x y z z

u v u w u
n n n t

x x y x z

v u v w v
n n n t P V

x y y y z

w u w v w
n n n t

x z y z z

λ µ µ µ

µ λ µ µ

µ µ λ µ

  ∂ ∂ ∂ ∂ ∂   ∇ ⋅ + + + + + =     ∂ ∂ ∂ ∂ ∂    
      ∂ ∂ ∂ ∂ ∂ + + ∇ ⋅ + + + = ∀ ∈∂      ∂ ∂ ∂ ∂ ∂     
  ∂ ∂ ∂ ∂ ∂    + + + + ∇ ⋅ + =    ∂ ∂ ∂ ∂ ∂     

u

u

u

 (8.52) 

In vector form, we can write:   

 ( ) ( ) , ,
T

x y zt t t P Vλ µ    ∇ ⋅ + ∇ ⊗ + ∇ ⊗ = = ∀ ∈∂  
u n u u t  (8.53) 

From equations (8.40)-(8.53) it follows that the thermal problem reduces to the usual elastic 
problem involving body forces: 
 [ ] ( ), , 3 2X Y Z Tλ µ α= − + ∇ ⋅  (8.54) 
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and an external normal surface pressure: 
 ( )3 2p Tλ µ α= − +  (8.55) 

(b) Stress formulation 
The equilibrium equations (8.9) are already expressed in terms of the stress components. It is easy 
to prove that for a simply connected body, the remaining field equations contained in the 
formulation of section 8.5 are equivalent to the following six equations containing stress component 
alone: 

 

( )

( )

( )
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( )
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2 2
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2 2
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2 2
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 ∂ + ∂+ ∇ + + ∇ + = −∂ ∂ 

 ∂ + ∂+ ∇ + + ∇ + = −∂ ∂ 

 ∂ + ∂+ ∇ + + ∇ + = −∂ ∂ 
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∂ ∂+ ∇ + + =
∂ ∂ ∂ ∂

∂+ ∇ + +
∂ ∂
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E
y z


















 ∂ =
 ∂ ∂

 (8.56) 

where xx yy zzI σ σ σ= + + . These equations are known as the compatibility equations expressed in 

terms of stress components. The present formulation requires the solution of equations (8.9) and 
(8.56) under the boundary conditions (8.37) for traction free boundaries ( or with equations (8.17) 
for the case of prescribed surface tractions). For multiply connected bodies the preceding 
compatibility equations must be supplemented by certain integral conditions. 
 
8.9.  Solution of the Lamè equations   
The solution of equations (8.39) is taken in the form: 

 ( ) ( ) ( ) ( ) ( ) ( ), , ,h p h p h pu u u v v v w w w= + = + = +  (8.57) 

where ( )hu  is the general solution, ( )pu  is a particular solution. By assuming, a particular solution 
as follows: 

 ( ) ( ) ( ), ,
Tp p pu v w G  = ∇   (8.58) 

where G  is a scalar function. By substituting the equation (8.58) in equation (8.42), and 
remembering  that G∇ ∧ ∇ = 0 , we obtain the Poisson’s equation for the function G: 

 2 3 2

2
G T

λ µα
λ µ

 +∇ =  + 
 (8.59) 

From which: 

 ( ) ( )
( ) ( ) ( )2 2 2

, ,3 2
, ,

4 2 V

T dV
G x y z

x y z

ξ η ζα λ µ
π λ µ ξ η ζ

 += −  +  − + − + −
∫  (8.60) 

where , ,ξ η ζ  are the coordinates of an element of volume dV, V is the volume of the whole body. 
The general solution can to be assumed in form proposed by other authors as Galerkin, Papkovich’s 
and Grodskii’s, Neuber, Trefftz, Lamè. We reported the solution of these authors as follows. 
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It is well known that the solution in terms of displacement field u for an isotropic and homogeneous 
linear elastic material, in absence of body forces, can be written by means of the Boussinesq-
Somigliana-Galerkin vector F. The Galerkin’s solution  in vector form is given by : 

 
( ) ( ) ( )1 2

2

µ λ
µ µ λ
 += ∇ ⋅ ∇ ⊗ − ∇ ∇ ⋅ +  

u F F  (8.61) 

In Cartesian coordinate system, we can write: 
 x y zF F F= + +F i j k  (8.62) 

The Galerkin’s vector F  must be to satisfy the bi-harmonic condition 4 0F∇ = . In explicit the 
displacement solution in terms of Galerkin’s vector is given by: 

 

( )

( )

( )

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1 2

2

1 2

2

1 2

2

yx x x x z

y y y yx z

z z z

FF F F F F
u

x x y zx y z

F F F FF F
v

y x y zx y z

F F F
w

zx y z

µ λ
µ µ λ

µ λ
µ µ λ

µ λ
µ µ λ

 ∂   ∂ ∂ ∂ ∂ ∂+ ∂= + + − + +    + ∂ ∂ ∂ ∂∂ ∂ ∂    

  ∂ ∂ ∂ ∂ ∂ ∂+ ∂
 = + + − + +    + ∂ ∂ ∂ ∂∂ ∂ ∂    

  ∂∂ ∂ ∂+ ∂= + + − + ∂∂ ∂ ∂ 

yx z
FF F

x y z










 ∂ ∂ + +   ∂ ∂ ∂   

 (8.63) 

A more detailed are given by Westergaard, who gives expressions for the stress components in 
terms of F and uses this representation to solve a number of classical three-dimensional problems – 
namely those involving concentrated forces in the infinite or semi-infinite body. 
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8.11.  Appendix: Differential operator in cylindrical and spherical coordinates system 
The treatment of a special problem may often be simplified by use of a suitable coordinate system 
that reflects the particular symmetry of the problem. For problems with cylindrical or spherical 
symmetry, it is appropriate to employ cylindrical or spherical coordinates. 
 
8.11.1. Transformation: Cartesian-cylindrical coordinate systems 
Let us consider the Cartesian and Cylindrical coordinate systems as showed in figure 8.2. At 
generic point P, consider a right-handed triad defined by unit base vectors , ,r zθe e e , which, 

respectively , are in the radial, circumferential, and axial directions. 
 

x

P

θ y

z
O

   
 

Fig.  8.2 – Cartesian and cylindrical coordinate systems 
 
With reference to an rectangular coordinates { }, ,x y z , the cylindrical coordinate { }, ,r zθ  are 

related tot the rectangular coordinates , ,x y z according to the transformation: 

cos

sin

x r

y r

z z

θ
θ

=
 =
 =

                                                          (A.1) 

An vector u  in Cartesian coordinate has component ( ) { }, ,
Tcart

x y zu u u=u , but in cylindrical 

coordinates has component: ( ) { }, ,
Tcyl

r zu u uθ=u . The transformation of vector u  in Cartesian 

coordinate system in to cylindrical coordinates is given by: 
cos sin

sin cos
x r

y r

z z

u u u

u u u

u u

θ

θ

θ θ
θ θ

 = −
 = +
 =

                                            (A.2) 

The previous relationship can be rewritten in follows compact form: 

[ ]
cos sin 0

sin cos 0

0 0 1

x r r

y

z z z

u u u

u u u

u u u
θ θ

θ θ
θ θ

−       
       = ⋅ = ⋅       
              

Q                          (A.3) 



CHAPTER VIII - Summary of the formulation of thermo -elastic problems for isotropic material 

                                                                                                                                                                F. Carannante 117 

where Q is matrix rotation . The derivate partial of the generic function ( ), ,f x y z  are: 

cos sin

sin cos

f f x f y f z f f

r x r y r z r x y

f f x f y f z f f
r r

x y z x y

f f x f y f z f

z x z y z z z z

θ θ

θ θ
θ θ θ θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

                 (A.4) 

To inverted the system (A.4) we can write: 

sin
cos

cos
sin

f f f

x r r
f f f

y r r

f f

z z

θθ
θ

θθ
θ

∂ ∂ ∂= −∂ ∂ ∂
∂ ∂ ∂ = +∂ ∂ ∂
∂ ∂=∂ ∂

                                         (A.5) 

 
8.11.2.  Differential operator in cylindrical coordinate system 
 
a) Gradient of a scalar function 
The vector gradient of the scalar function ( ), ,f x y z in to Cartesian coordinate system is: 

( ) , ,
Tcart f f f

f
x y z

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
                                         (A.6) 

The vector gradient of scalar function ( ), ,f x y z  in to cylindrical coordinate system is: 

∇ = ⋅∇cyl T cartf fQ                                                  (A.7) 
In explicit  the equation of (A.7) is equal to: 

sin
cos

cos sin 0
cos 1

sin cos 0 sin

0 0 1

cyl

f f f

r r r
f f f

f
r r r

f f

z z

θθ
θθ θ

θθ θ θ
θ θ

∂ ∂ ∂   −   ∂ ∂ ∂     
∂ ∂ ∂     ∇ = − ⋅ + =     ∂ ∂ ∂

       ∂ ∂   
   ∂ ∂   

                     (A.8) 

We can write the transformation for the nabla operator as follows: 

cos sin 0
1

sin cos 0

0 0 1

cart cyl

x r

y r

zz

θ θ
θ θ

θ

 ∂ ∂ 
   ∂ ∂−     

∂ ∂     ∇ = ⋅∇ ⇒ =     ∂ ∂
       ∂∂   
   ∂ ∂ 

Q                        (A.9) 

 
b) Divergence of a vector function 

The divergence of the generic vector function ( ) { }, ,
Tcart

x y zu u u=u  in to Cartesian coordinate 

system is:  

( )cart ycart cart x z
uu u

div
x y z

∂∂ ∂= ∇ ⋅ = + +
∂ ∂ ∂

u u                             (A.10) 
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The divergence of the generic vector function ( ) { }, ,
Tcyl

r zu u uθ=u  in to cylindrical coordinate 

system is: 

( ) ( ) ( )cylcart cart cyl cyl div∇ ⋅ = ⋅∇ ⋅ ⋅ =u Q Q u u                           (A.11) 

In explicit  the equation (A.11) is equal to: 

( ) 1cyl r r zuu u u
div

r r r z
θ

θ
∂∂ ∂= + + +

∂ ∂ ∂
u                                      (A.12) 

 
c) Curl of a vector function 

The curl of a vector function ( ) { }, ,
Tcart

x y zu u u=u is the product of the nabla operator with the 

vector function cartu : 

( )cart y ycart cart x xz z
x y z

u uu uu u
curl

y z z x x y

∂ ∂   ∂ ∂∂ ∂ = ∇ × = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
u u e e e        (A.13) 

where { }, ,x y ze e e  are unit vectors in the , ,x y z directions. It can also be expressed in determinant 

form: 

det

x y z

cart cart

x y z

x y z

u u u

∂ ∂ ∂∇ × =
∂ ∂ ∂

e e e

u                                             (A.14) 

The curl of a vector function ( ) { }3, ,
Tcyl

ru u uθ=u  in to cylindrical coordinate system is: 

( ) ( ) ( ) ( )cyl T cart cart T cyl cylcurl  = ⋅ ∇ × = ⋅ ⋅∇ × ⋅ u Q u Q Q Q u                 (A.15) 

In explicit the equation (A.15) becomes: 

( ) 1 1cyl z r z r
r z

u u uu u u u
curl

r z z r r r r
θ θ θ

θθ θ
∂ ∂∂ ∂ ∂ ∂    = − + − + − +    ∂ ∂ ∂ ∂ ∂ ∂    

u e e e          (A.16) 

where , ,r zθe e e  are unit vectors in the , ,r zθ  directions. It can also be expressed in determinant 

form: 

( ) det

r z

cyl

r z

r r

curl
r z

u r u u

θ

θ

θ
∂ ∂ ∂=
∂ ∂ ∂

e e e

u                                         (A.17) 

 
d) Gradient of a vector function 

The gradient of a vector function ( ) { }, ,
Tcart

x y zu u u=u is the tensorial product of the nabla operator 

with the vector function cartu : 

( )

x x x

cart y y ycart art

z z z

u u u

x y z

u u u
grad

x y z

u u u

x y z

∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

= ∇ ⊗ =  ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂ 

u u                                        (A.18) 

The gradient of a vector function ( ) { }, ,
Tcyl

r zu u uθ=u  in to cylindrical coordinate system is: 
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( ) ( ) ( ) ( )cyl T cart cart T cyl cylgrad  = ⋅ ∇ ⊗ ⋅ = ⋅ ⋅∇ ⊗ ⋅ ⋅ u Q u Q Q Q Q u Q            (A.19) 

In explicit the equation (A.19) becomes: 

( )

1

1

1

r r r

cyl r

z z z

uu u u

r r r z

u u uu
grad

r r r z

u u u

r r z

θ

θ θ θ

θ

θ

θ

 ∂ ∂ ∂ −  ∂ ∂ ∂  
 ∂ ∂ ∂ = +  ∂ ∂ ∂  
 ∂ ∂ ∂
 ∂ ∂ ∂ 

u                                        (A.20) 

If the vector function u is a displacement field, then the strain tensor cylE  is defined by the 
symmetric part of the displacement gradient, the component of this tensor may be written from 
(A.20): 

( ) ( )( )1

2

Tcyl cylcyl grad grad = +  
E u u                               (A.21) 

The component of the tensor cylE  are: 
1

, , ,

1 1 1 1 1
, , ,

2 2 2

r r z
rr zz

r r z z
r rz z

uu u u

r r r z

u u uu u u u

r r r z r z r

θ
θθ

θ θ θ
θ θ

ε ε ε
θ

ε ε ε
θ θ

∂∂ ∂ = = + = ∂ ∂ ∂ 

∂ ∂∂ ∂ ∂ ∂    = − + = + = +    ∂ ∂ ∂ ∂ ∂ ∂    

          (A.22) 

 
e) Divergence of a tensor function  
Let us consider the follows symmetry tensor cartT : 

xx xy xz

cart
yx yy yz

zx zy zz

σ τ τ
τ σ τ
τ τ σ

 
 =  
 
 

T                                                 (A.23) 

The divergence of a tensor function cartT  in to Cartesian coordinate system is:  

   

xyxx xz

yx yy yzcart cart cart

zyzx zz

x y z

div
x y z

x y z

τσ τ

τ σ τ

ττ σ

∂ ∂ ∂+ + ∂ ∂ ∂ 
 ∂ ∂ ∂

= ∇ ⋅ = + + ∂ ∂ ∂ 
 ∂∂ ∂
 + +

∂ ∂ ∂  

T T                                         (A.24) 

The divergence of a tensor function cylT  in to cylindrical coordinate system is: 

( ) ( ) ( ) ( )cyl T cart cart T cyl cyl Tdiv  = ⋅ ∇ ⋅ = ⋅ ⋅∇ ⋅ ⋅ ⋅ T Q T Q Q Q T Q                 (A.25) 

where cylT  is equal to: 

rr r rz

cyl
r z

zr z zz

θ

θ θθ θ

θ

σ τ τ
τ σ τ
τ τ σ

 
 =  
  

T                                             (A.26) 

In explicit the equation (A.25) becomes: 
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( )

1

1

1

r rrrr rz

cyl r z r r

zzr zz zr

r r z r

div
r r z r r

r r z r

θ θθ

θ θθ θ θ θ

θ

τ σ σσ τ
θ

τ σ τ τ τ
θ

ττ σ τ
θ

∂ −∂ ∂ + + + ∂ ∂ ∂
 
∂ ∂ ∂ = + + + +
 ∂ ∂ ∂
 ∂∂ ∂ + + +
 ∂ ∂ ∂ 

T                              (A.27) 

 
8.11.3.  Transformation: Cartesian-spherical coordinate systems 
Let us consider the spherical polar coordinates , ,r θ φ  shown in fig. 8.3. The unit base vectors, in 

this case, are , ,r θ φe e e , which respectively, define the radial, the meridional, and circumferential 

directions. 

P

r

x

y

z

θ

φ

 
 

Fig. 8.3 - Spherical polar coordinates , ,r θ φ  
 

With reference to an rectangular coordinates , ,x y z, the spherical polar coordinate , ,r θ φ  are 
related to the rectangular coordinates , ,x y z according to the transformation: 

cos sin

sin sin

cos

x r

y r

z r

φ θ
φ θ
θ

=
 =
 =

                                                   (A.28) 

As is immediately evident from fig. 8.3  It should be noted that 0r ≥ , 0 θ π≤ ≤ , 0 2φ π≤ ≤ . An 

vector u  in Cartesian coordinate has component ( ) { }, ,
Tcart

x y zu u u=u , but in spherical polar 

coordinates has component: ( ) { }, ,
Tsph

ru u uθ φ=u . 

The transformation the displacement vector in Cartesian coordinate system in to spherical polar 
coordinates is: 

( )
( )

cos sin sin cos

cos sin cos sin

sin cos

r x y z

x y z

x y

u u u u

u u u u

u u u

θ

φ

φ φ θ θ

φ φ θ θ
φ φ

 = + +
 = + −
 = − +

                              (A.29) 
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The previous relationship can be rewritten in follows compact form: 

cos sin sin sin cos

cos cos sin cos sin

sin cos 0

r x

y

z

u u

u u

u u
θ

φ

φ θ φ θ θ
φ θ φ θ θ

φ φ

     
     = − ⋅     
     −    

                        (A.29) 

The inverse relationship of  the (A.29) is equal to: 

[ ]
1

2

3

cos sin cos cos sin

sin sin sin cos cos

cos sin 0

r ru u u

u u u

u u u
θ θ

φ φ

φ θ φ θ φ
φ θ φ θ φ

θ θ

   −   
      = ⋅ = ⋅      
      −       

Q                (A.30) 

where Q  is matrix rotation. The derivate partial of the generic function ( ), ,f x y z  are: 

cos sin sin cos

cos sin cos sin

sin cos sin

f f x f y f z f f f

r x r y r z r x y z

f f x f y f z f f f
r r

x y z x y z

f f x f y f z f f
r

x y z x y

φ φ θ θ

φ φ θ θ
θ θ θ θ

φ φ θ
φ φ φ φ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + + = − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 










        (A.31) 

To inverted the system (A.31)we can write: 
cos sin

sin cos
sin

cos cos
sin sin

sin

sin
cos

f f f f

x r r r

f f f f

y r r r

f f f

z r r

θ φθ φ
θ φ θ

θ φθ φ
θ φ θ

θθ
θ

∂ ∂ ∂ ∂ = + − ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ 

∂ ∂ ∂= −
∂ ∂ ∂

                           (A.32) 

 
8.11.4.  Differential operator in spherical coordinate system 
 
a) Gradient of a scalar function 
The vector gradient of scalar function ( ), ,f x y z in to cylindrical coordinate system is: 

∇ = ⋅∇sph T cartf fQ                                              (A.33) 
In explicit  the equation of (A.33) is equal to: 

1

1

sin

sph

f

r
f

f
r

f

r

θ

θ φ

 ∂
 ∂ 

∂ ∇ =  ∂
 ∂ 
 ∂ 

                                                  (A.34) 

We can write the transformation for the nabla operator as follows: 

             

cos sin cos cos sin
1

sin sin sin cos cos

cos sin 0
1

sin

cart sph

x r

y r

rz

φ θ φ θ φ
φ θ φ θ φ

θ
θ θ

θ φ

   ∂ ∂
   ∂ ∂−     

∂ ∂     ∇ = ⋅∇ ⇒ = ⋅     ∂ ∂
     −  ∂∂   
   ∂∂   

Q              (A.35) 
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b) Divergence of a vector function 

The divergence of the generic vector function ( ) { }, ,
Tsph

ru u uθ φ=u  in to spherical polar coordinate 

system is: 

( ) ( ) ( )sphcart cart sph sph div∇ ⋅ = ⋅∇ ⋅ ⋅ =u Q Q u u                           (A.36) 

In explicit  the equation (A.36) is equal to: 

( ) 2 1 1

tan sin
sph r r

uu uu u
div

r r r r
φθ θ

θ θ φ θ
∂∂∂  = + + + + ∂ ∂ ∂ 

u                  (A.37) 

 
c) Curl of a vector function 

The curl of a vector function ( ) { }, ,
Tsph

ru u uφ θ=u  in to spherical polar coordinate system is: 

( ) ( ) ( ) ( )sph T cart cart T sph sphcurl  = ⋅ ∇ × = ⋅ ⋅∇ × ⋅ u Q u Q Q Q u                   (A.38) 

In explicit the equation (A.38) becomes: 

( )

1 1

tan sin

1 1

sin

1

sph r

r

u u u

r r

uu
curl u

r r

u u
u

r r

φ φ θ

φ
φ

θ
θ

θ θ θ φ

θ φ

θ

 ∂  ∂+ −  ∂ ∂  
 ∂ ∂
 = − − ∂ ∂  
 ∂ ∂  + −  ∂ ∂  

u                                (A.39) 

where , ,r θ φe e e  are unit vectors in the , ,r θ φ  directions. It can also be expressed in determinant 

form: 

( )

2 sin sin

det

sin

r

sph

r

r r r

curl
r

u r u u r

φθ

θ φ

θ θ

θ φ
θ

∂ ∂ ∂=
∂ ∂ ∂

eee

u                                  (A.40) 

 
d) Gradient of a vector function 

The gradient of a vector function ( ) { }, ,
Tsph

ru u uθ φ=u  in to cylindrical coordinate system is: 

( ) ( ) ( ) ( )sph T cart cart T sph sphgrad  = ⋅ ∇ ⊗ ⋅ = ⋅ ⋅∇ ⊗ ⋅ ⋅ u Q u Q Q Q Q u Q            (A.41) 

 
In explicit the equation (A.41) becomes: 

( )

1 1 1

sin

1 1 1

sin tan

1 1 1

tan sin

r r r

sph

r

r

u u u
u u

r r r

uu u u
grad u

r r r

u u uu
u

r r r

θ φ

φθ θ θ

φ φ φθ

θ θ φ

θ θ φ θ

θ θ θ φ

  ∂ ∂ ∂ − −    ∂ ∂ ∂    
  ∂ ∂ ∂  = + −  ∂ ∂ ∂    
 ∂ ∂ ∂  + +  ∂ ∂ ∂  

u                   (A.42) 
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If the vector function u is a displacement field, then the strain tensor sphE is defined by the 
symmetric part of the displacement gradient, the component of this tensor may be written from 
(A.42): 

( ) ( )( )1

2

Tsph sphsph grad grad = +  
E u u                               (A.43) 

The component of the tensor sphE  are: 
 

1 1 1 1
, , , ,

tan sin 2

1 1 1 1 1
, ,

2 sin 2 sin tan

r r r r
rr r

r
r

uu u u uu u u u

r r r r r r r r r

u u u uuu

r r r r r r

φθ θ θ θ
θθ φφ θ

φ φ φ φθ
φ θφ

ε ε ε ε
θ θ θ φ θ

ε ε
θ φ θ θ φ θ

∂∂ ∂∂ ∂   = = + = + + = − +   ∂ ∂ ∂ ∂ ∂   

∂ ∂   ∂∂= + − = + −   ∂ ∂ ∂ ∂   

(A.44) 

 
e) Divergence of a tensor function  
Let us consider the follows symmetry tensor sphT  in to spherical polar coordinate system: 

rr r r

sph
r

r

θ φ

θ θθ θφ

φ θφ φφ

σ τ τ
τ σ τ
τ τ σ

 
 =  
 
 

T                                                 (A.45) 

The divergence of a tensor function cylT  in to cylindrical coordinate system is: 

  ( ) ( ) ( ) ( )cyl T cart cart T sph sph Tdiv  = ⋅ ∇ ⋅ = ⋅ ⋅∇ ⋅ ⋅ ⋅ T Q T Q Q Q T Q                  (A.46) 

In explicit the equation (A.46) becomes: 

( )

21 1

sin tan

31 1

sin tan

3 21 1

sin tan

r rrr rrr

cyl r r

r r

r r r r r

div
r r r r r

r r r r r

φ θθ φφθ θ

θφ θθ φφθ θθ θ

φ θφ φφ φ θφ

τ σ σ στ τσ
θ θ φ θ

τ σ στ σ τ
θ θ φ θ

τ τ σ τ τ
θ θ φ θ

∂ − − ∂∂ + + + + ∂ ∂ ∂ 
 ∂ −∂ ∂= + + + + ∂ ∂ ∂ 
 ∂ ∂ ∂

+ + + + 
∂ ∂ ∂  

T                 (A.47) 
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CHAPTER   IX   
AXIS-SYMMETRICAL  SOLUTIONS FOR MULTILAYERED  CILINDER  UNDER 

STRAIN  NO-DECAYING  CONDITIONS 
 
9.1.  Introduction 
Cylindrical shells are often used as basic structural components in engineering applications. Much 
research has been conducted on isotropic or laminated composite plates and shells, also with 
reference to thermo-elastic problems of functionally graded infinite hollow cylinders. In particular, 
Liew et al [62] obtained analytical solutions of a functionally graded circular cylinder by a novel 
limiting process that employs the solutions of homogeneous circular hollow cylinders. Shao [63] 
derived analytical solutions for mechanical stresses of a functionally graded circular cylinder with 
finite length, finding mechanical and thermal stresses for the two-dimensional thermo-elastic 
problems, where the cylinder is assumed to be composed of n homogeneous fictitious layers in the 
radial direction. There, only special axis-symmetrical load conditions with simply supported 
boundary conditions at the two ends of the object are considered, and the solutions are found by 
means of specific trigonometric series. Mian & Spencer [64] determined some results for isotropic 
laminated FGMs with specific variation of the elastic moduli in the direction of the axis of the 
object. Also, recently, some new results are obtained for non-homogeneous and anisotropic 
materials, including FGMs, by using a Stress-Associated Solution theorem [65]. Moreover, Alshits 
and Kirkhner [71] derived some elastic solutions for radially inhomogeneous and cylindrically 
anisotropic circular cylinders, where no variations of the stresses along the axis of the cylinder are 
assumed. Other interesting results for laminated composite tubes are obtained by Chouchaoui & 
Ochoa [72], Chen et al, [73], Tarn, J. Q.,  [74] and Tarn & Wang [75]. In particular, these last two 
authors, by employing the so-called state space approach, start from some results obtained by 
Lekhnitskii [76] and - by means of an original rearrangement of the field equations that yields to 
isolate new state variables - construct analytical solutions for elastic problems in which the stresses 
do not vary along the axis of the composite tube. Although under the hypothesis of generalized 
plane strain and torsion, this strategy offers the possibility to find exact solutions for laminated 
composite tube under extension, torsion, shearing and pressuring, by assuming cylindrically 
anisotropy for each phase. Huang and Dong [77] presented a procedure for the analysis of stresses 
and deformations in a laminated circular cylinder of perfectly bonded materials with the most 
general form of cylindrically anisotropy. On the other hand, some limits of these last literature 
proposals inhibit their use inside the present work, as it will be discussed in the following section 
and highlighted in the conclusions. 
The new approach proposed here gives two important advantages. The first one is related to the 
possibility – in the framework of isotropic elasticity – of obtaining closed-form solutions for an 
arbitrary number of phases of multilayered cylinder, being these solutions furnished by means of a 
“chain” of (6 6)×  known matrices (see Appendices for details). Indeed, this approach, differently 
from that one suggested by Tarn and other authors, that requires the study of eigensolutions, yields 
to invert the matrix in a symbolic way, regardless the number of phases. This makes possible to 
obtain qualitative and quantitative information on the mechanical response of laminated cylinders 
composed by many layers. The second advantage is constituted by the fact that several theorems 
and properties are proved for establishing the well-position, existence and uniqueness of the 
algebraic problem obtained transforming the original differential boundary value problem for the 
laminated composite with core in an algebraic one, also investigating the consistency of the 
problem of seeking zzε -no-decaying solutions, particularly important for some engineering 

applications, as those presented in a subsequent paper and related to the mechanical interaction 
between optical fibre and materials, when the fibres are used as continuous strain sensors. 
To the author’s knowledge, only a limited amount of work has been carried out on closed-form 
solutions for multilayered cylinder, specially for some significant combination of load conditions, 
as linear radial pressures, axial force and shear stresses applied on the cylindrical external surface. 
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In this framework, the present paper will develop an analytical approach to find exact elastic 
solutions for multilayered cylinder, constituted by n cylindrical hollow phases and a central core, 
each of them modelled as homogeneous and isotropic material (Figure n. 9.1).  
 

r

phase i-th (cladding)

central core

y

x

z

Multilayered cylinder

θ

 
 

Fig. 9.1 - Typical Multilayered  cylinder 
 
The assumption of axis-symmetrical load conditions yields to construct a mathematical strategy 
based on the Love’s bi-harmonic scalar function ( ) ( , )i zrχ , (Love, A. E. H. [78]), for each i-th 
phase and then imposing the continuity conditions of the displacements and stresses at the 
interfaces. By following this way, the system of differential equations can be analytically solved in 
cascade to product a set of algebraic equations. 
The specific object of the present work is to furnish a general approach to construct exact elastic 
solutions for multilayered cylinder, made of a central core and n arbitrary cylindrical hollow 
homogeneous and isotropic phases. Special attention is then given to problems which present no-
decaying of selected mechanical quantities and in particular of the axial strains zzε , being z  the 

axis of the laminated cylinder. To build a robust mathematical procedure for obtaining analytical 
solutions for the above mentioned axis-symmetrical multilayered cylinder, it is first given a theorem 
for qualifying the space of the solutions and then it is identified their mathematical form, when the 
object exhibits no-decaying of the axial strain. Thus, with reference to the generic i-th phase of the 
material, the classical Boussinesq-Somigliana-Galerkin vector is specialized to torsionless 
composite cylinders, also characterized by no-decaying of the axial strain: following this way, a 
special form of the bi-harmonic Love’s function ( ) ( , )i zrχ  is finally obtained. It is also 
demonstrated that – for these problems – is always possible to reduce the differential boundary 
value problem (BVP) to an equivalent linear algebraic one, first solving an in cascade one-
dimensional Euler-like differential system (field equations) and then writing the boundary 
conditions through a (6 4)n+ -order square matrix P . Moreover, further constructive and existence 
theorems are formulated and proved, to both show the effectiveness of the proposed method and 
exclude ill-posed problems. In the section 9.6 are here presented some examples in comparison with 
literature data. 
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9.2. Description of multilayered structures and composite materials 
 
9.2.1. Multilayered structures 
Multilayered structures are two-dimensional elements embedding several layers with different 
mechanical, thermal and electrical properties. As two-dimensional structures we consider those with 
a dimension, usually the thickness, negligible with respect to the other two in the in-plane 
directions. Typical two dimensional structures are plates, spherical and cylindrical  shells. Plates do 
not have any curvature along the two in-plane directions, they are flat panels. Spherical and 
cylindrical shells are two-dimensional structures with curvature along the two in-plane directions. 
In the case of plates, a rectilinear Cartesian reference system is employed. In the case of cylinder 
and sphere, the introduction of a curvilinear Cartesian reference system is necessary. In plate,  
spherical and cylindrical shells cases, the third axis in the thickness direction is always rectilinear. 
Several materials are considered for layers embedded in multilayered structures. A first possibility 
are the homogeneous materials, typical homogeneous materials used in aeronautics and space field 
are the aluminium and titanium alloys [8], they present high strength-to-weight ratio and excellent 
mechanical properties. A natural development are composite materials, where two or more 
materials are combined on a macroscopic scale in order to obtain better engineering properties than 
the conventional materials (for example metals).  
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Composite materials are commonly formed in three different types [9]:  
(1) fibrous composites, which consist of s of one material in a matrix material of another;  
(2) particulate composites, which are composed of macro size particles of one material in a 

matrix of another;  
(3) laminated composites, which are made of layers of different materials, including composites 

of the first two types.  
The particles and matrix in particulate composites can be either metallic or non metallic. Other 
typical aeronautics multilayered structures are the so-called sandwich structures. They are used to 
provide a stronger and stiffer structure for the same weight, or conversely a lighter structure to carry 
the same load as a homogenous or compact-laminate flexural member. These structures are 
constituted by two stiff skins (faces) and a soft core, and they are widely used to build large parts of 
aircraft, spacecraft, ship and automotive vehicle structures. Most of the recent applications have 
used skins constituted by layered structures made of anisotropic composite materials. Several 
important issues should be considered in the design, analysis and construction of sandwich 
structures and these have been fully discussed in the well-known books by Plantema [10], Allen 
[11], Zenkert [12], Bitzer [13] and Vinson [14] as well as in the handbook sections by Marshall [15] 
and Corden [16]. In the case of smart structures, some layers are in piezoelectric materials, they use 
the so-called piezoelectric effect which connects the electrical and mechanical fields [17]. One of 
the most important innovations is the possibility to consider the so-called Functionally Graded 
Materials (FGMs) embedded in multilayered structures. These materials can be used to provide the 
desired thermo-mechanical and piezoelectric properties, via the spatial variation in their 
composition. FGMs vary the elastic, electric and thermal properties in the thickness direction via a 
gradually changing of the volume fraction of the constituents [19], [20]. One of the advantages of a 
monotonous variation of the volume fraction of constituent phases is the elimination of stress 
discontinuity, which is often encountered in laminated composites and accordingly leads to the 
avoidance of delamination-related problems [21], [22]. 
 
9.2.2.  Composite materials 
Composite materials consist of two or more combined materials which have desirable properties 
that cannot be obtained with any of the constituents alone [9]. Typical examples are reinforced 
composite materials which have high strength and high modulus s in a matrix material. In such 
composites, s are the main load-carrying members and the matrix material keeps the s together, acts 
as a load-transfer medium between s, and protects them from being exposed to the environment. 
Fibres are stiffer and stronger than the same material in bulk form, matrix materials have their usual 
bulk-form properties. Fibres have a very high length-to-diameter ratio, paradoxically short fibres 
(whiskers) exhibit better structural properties than long s. Materials are studied at various levels: 
atomic level, nano-level, single-crystal level, a group of crystals. In this work we consider a basic 
unit of materials that have properties such as the modulus, strength, thermal coefficient of 
expansion, electrical resistance and so on, whose magnitudes depend on the direction. Fibres are 
materials where the desired properties are maximized in a given direction. Where materials are 
processed such that the basic units are randomly oriented, the resulting material tends to have the 
same value of the property, in an average statistical sense, in all directions. Such materials are 
called isotropic materials, a typical example is the matrix material. The fibres and matrix materials 
usually employed in composites can be metallic or non-metallic, the fibre materials can be common 
metals like aluminium, copper, iron, nickel, steel, titanium, or organic material like glass, boron and 
graphite [9]. In the case of structural applications, for example in aeronautics field, fibre-reinforced 
composite materials are often a thin layer called lamina. A lamina is a macro unit of material whose 
material properties are determined through appropriate laboratory tests. Typical structural elements, 
such as bars, beams, plates or shells are formed by stacking the layers to obtain desired strength and 
stiffness. Fibre orientation in each lamina and stacking sequence of the layers can be chosen to 
achieve desired strength and stiffness for a specific application. In composite materials, fibres are 
the reinforcement material, and matrix is the base material. Three different types of composite 
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materials are possible: - fibrous composites, where fibres of one material are in a matrix material of 
another; - particulate composites, where macro size particles of one material are in a matrix of 
another; - laminated composites, which are made of layers of different materials, including 
composites of the first two types. In composites, the particles and matrix can be metallic or 
nonmetallic, this permits four possible combinations: metallic in nonmetallic, non-metallic in 
metallic, nonmetallic in nonmetallic, and metallic in metallic. The stiffness and strength of fibrous 
composites come from fibres which are stiffer and stronger than the same material in bulk form. 
Shorter fibres (whiskers) have better strength and stiffness properties than long fibres. Whiskers are 
about 1 to 10 microns in diameter and 10 to 100 times as long. Fibres may be 5 microns to 0.005 
inches. Some forms of graphite fibres are 5 to 10 microns in diameter [29]. A lamina or ply 
represents a fundamental building block. A fibre-reinforced lamina consists of many fibres 
embedded in a matrix material, which can be a metal like aluminium, or a nonmetal like thermoset 
or thermoplastic polymer. The fibres can be continuous or discontinuous, woven, unidirectional, 
bidirectional, or randomly distributed. Unidirectional fibre-reinforced laminae exhibit the highest 
strength and modulus in the fibre direction, but they have very low strength and modulus in the 
direction transverse to the fibres. Discontinuous fibre-reinforced composites have lower strength 
and modulus than continuous fibre-reinforced composites. A poor bonding between a fibre and 
matrix results in poor transverse properties and failures such as fibre pull out, fibre breakage and 
fibre buckling [30]. A collection of laminae stacked to obtain the desired stiffness and thickness is 
called laminate. The sequence of various orientations of a fibre-reinforced composite layer in a 
laminated is called lamination scheme or stacking sequence. The layers are usually bounded 
together with the same matrix material as that in a lamina. The lamination scheme and material 
properties of individual lamina provide an added flexibility to designers to tailor the stiffness and 
strength of the laminate to match the structural stiffness and strength requirements. The main 
disadvantages of laminates made of fibre-reinforced composite materials are the delamination and 
the fibre debonding. Delamination is caused by the mismatch of material properties between layers, 
which produces shear stresses between the layers, especially at the edges of a laminate. Fibre 
debonding is caused by the mismatch of material properties between matrix and fibre. Also, during 
manufacturing of laminates, material defects such as interlaminar voids, delamination, incorrect 
orientation, damaged fibres and variation in thickness may be introduced [31]. In formulating the 
constitutive equations of a lamina we assume that: (a) a lamina is a continuum: no gaps or empty 
spaces exist; (b) a lamina behaves as a linear elastic material. The assumption (a) permits to 
consider the macromechanical behaviour of a lamina. The assumption (b) implies that the 
generalized Hooke’s law is valid. Composite materials are heterogeneous from the microscopic 
point of view. They are assumed to be homogeneous from the macroscopic point of view. In 
contracted notation, the generalized Hooke’s law for an anisotropic material under isothermal 
conditions is: ij ijhk hkCσ ε= ; where ijσ  are the stress components, hkε  are the strain components, and 

ijhkC  are the material coefficients, all referred to an orthogonal Cartesian coordinate system 

( ), ,x y z . The material coordinate system ( ), ,x y z  is indicated in Figure 9.2. The material 

coordinate axis x is parallel to the , the y-axis is transverse to the s direction in the plane of the 
lamina, and the z-axis is perpendicular to the plane of the lamina. The orthotropic material 
properties of a lamina are obtained either by the theoretical approach or through suitable laboratory 
tests. In the case of theoretical approach (micromechanics approach), the assumptions to determine 
the engineering constants of a continuous -reinforced composite material are: 

• perfect bonding exists between s and matrix; 
• s are parallel and uniformly distributed throughout; 
• the matrix is free of voids or microcracks and initially in a stress-free state; 
• both fibres and matrix are isotropic and obey Hooke’s law; 
• the applied loads are either parallel or perpendicular to the fibre direction. 
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For a  reinforced material we can define: 

fE  = modulus of the ; mE = modulus of the matrix; fν  = Poisson’s ratio of the ;  

mν  = Poisson’s ratio of the matrix; fV =  volume fraction; mV = matrix volume fraction; 

in this way the lamina engineering constants are given by: 

, , , ,f m f m
x f f m m y f f m m y xy

f m m f f m m f

E E G G
E E V E V E V V E G

E V E V G V G V
ν ν= + = + = =
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where xE  is the longitudinal modulus, yE   is the transverse one, xyν  is the major Poisson’s ratio, 

and xyG  is the shear modulus. It is important to remember that: 
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The engineering parameters , , , , , , , ,x y z xy xz yz xy xz yzE E E G G Gν ν ν  of an orthotropic material can be 

determined experimentally using an appropriate test specimen made up of the material. 
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Fig. 9.2 - Unidirectional -reinforced composite layer with the material coordinate system (x,y,z). 
(The x-axis is oriented along the  direction). 

 
9.2.3. Sandwiches: foam and honeycomb cores 
Sandwich structures are widely used in the aerospace, aircraft, marine, and automotive industries 
because they are lightweight with high bending stiffness. In general, the face sheets of sandwich 
panels consist of metals or laminated composites while the core is made of corrugated sheet, foam, 
or honeycomb. Recently, fibrous core sandwich panels have been developed by replacing the 
conventional core material with s aligned at small angles of inclination to the faceplates [32]. The 
concept of sandwich construction has been traced back to the mid 19th century, while the broad 
introduction of the sandwich concept in aircraft structures started at the beginning of World War II. 
The commonly used core materials include aluminium, alloys, titanium, stainless steel, and polymer 
composites. The core supports the skin, increases bending and torsional stiffness, and carries most 
of the shear load [33]. Structural sandwiches most often have two faces, identical in material and 
thickness, which primarily resist the in-plane and lateral (bending) loads. However, in special cases 
the faces may differ in either thickness or material or both, because one face is the primary load-
carrying and low-temperature portion, while the other face must withstand an elevated temperature, 
corrosive environment, etc. In the case of uniform core, the sandwich with identical faces is called 
symmetric sandwich, the latter with different faces is the so-called asymmetric sandwich [14]. 
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The core of a sandwich structure can be any material or architecture, but in general, there are four 
main types: 
- foam or solid core; 
- honeycomb core; 
- web core;  
- a corrugated or truss core. 

Foam or solid cores are relatively inexpensive and can consist of balsa wood, and an almost infinite 
selection of foam/plastic materials with a wide variety of densities and shear moduli. The two most 
common types are the hexagonally-shaped cell structure (hexcell) and the square cell. Web core 
construction is like a group of I-beams with their flanges welded together. Truss core sandwich is a 
triangulated core construction. In the web core and truss core constructions, the space in the core 
could be used for liquid storage or as heat exchanger [14]. In the proposed construction the primary 
loading, both in-plane and bending, are carried by the faces, while the core resists transverse shear 
loads (analogous to the web of an I-beam), and keep the faces in place. In foam-core and 
honeycomb-core sandwiches all of the in-plane and bending loads are carried by the faces only. 
However, in web-core and truss-core sandwiches a portion of the in-plane and bending loads are 
also carried by the core elements. The most common foam cores are: 

(1) Polyurethane (PUR), a thermosetting material, widely used; 
(2) Polyisocyanurate (PIR), a thermosetting material; 
(3) Phenolic foam (PF), a thermosetting material, not yet widely used; 
(4) Polystyrene (expanded, EPS and extruded, XPS), a thermoplastic material. 

Sandwich construction has been used primarily in the aircraft industry since the 1940s, with the 
development of the British Mosquito bomber, and later logically extended to missile and spacecraft 
structures. An excellent overview of the uses of core materials and applications is given by Bitzer in 
[34]. He lists the quantity of honeycomb sandwich being used in various Boeing aircraft . In the 
Boeing 747, the fuselage cylindrical shell is primarily Nomex-honeycomb sandwich, and the floors, 
side panels, overhead bins, and ceiling are also of sandwich construction. The Beech Starship, the 
first all sandwich aircraft, uses Nomex honeycomb with graphite or Kevlar faces for the entire 
structure. A major portion of the space shuttle is a composite-faced honeycomb-core sandwich. 
Europe leads the way in the use of sandwich constructions for lightweight railcars, while in the U.S. 
some of the rapid transit trains use honeycomb sandwich. The U.S. Navy is using honeycomb-
sandwich bulkheads to reduce the ship weight above the waterline. Sailboats, racing boats, and auto 
racing cars are all employing sandwich construction. Sandwich construction is also used in snow 
skis, water skis, kayaks, canoes, pool tables, and platform tennis paddles. Honeycomb-sandwich 
construction is also excellent for absorbing mechanical and sound energy. It has a high-crush 
strength-to-weight ratio. It can also be used to transmit heat or to be an insulative barrier. In the 
former, a metallic honeycomb is used plus natural convection; for the latter, a non-metallic core is 
used with the cells filled with a foam. For a sound barrier, the honeycomb core is filled with a 
fibreglass batting, and a thin porous Tedlar skin can be used for the interior face. Also, honeycomb 
core has been used in direct fans, wind tunnel, air conditioners, heaters, grills and registers [14]. 
 
9.2.4. Functionally graded materials 
The severe temperature loads involved in many engineering applications, such as thermal barrier 
coatings, engine components or rocket nozzles, require high temperature resistant materials. In 
Japan in the late 1980s the concept of Functionally Graded Materials (FGMs) has been proposed as 
a thermal barrier material. FGMs are advanced composite materials wherein the composition of 
each material constituent varies gradually with respect to spatial coordinates [20]. Therefore, in 
FGMs the macroscopic material properties vary continuously, distinguishing them from laminated 
composite materials in which the abrupt change of material properties across layer interfaces leads 
to large interlaminar stresses allowing for damage development. As in the case of laminated 
composite materials, FGMs combine the desirable properties of the constituent phases to obtain a 
superior performance, but avoid the problem of interfacial stresses [21], [22]. Functionally Graded 
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Materials (FGMs) have a large variety of applications , due their properties, not only to provide the 
desired thermo-mechanical properties, but also to obtain appropriate piezoelectric, and magnetic 
properties, via the spatial variation in their composition. So, FGMs can be applied in several fields 
such as tribology, electronics, biomechanics, aeronautics, and space research. The special feature of 
graded spatial compositions associated to FGMs provides freedom in the design and manufacturing 
of novel structures; on the other hand, it also poses great challenges in numerical modeling and 
simulation of the FGM structures [19]. Embedding a network of piezo-ceramic actuators and 
sensors in FGM structure creates a self-controlling and self-monitoring smart system. This newly 
engineered class of materials has resulted in significant improvements in the performance of 
integrated systems, actuation technologies, shape control, vibration and acoustic control and 
condition monitoring. An alternative solution could be the use of piezoelectric materials, 
functionally graded in the thickness direction (FGPM), in order to build smart structures which are 
extensively used as sensors and actuators. The development of piezoelectric materials and structures 
with functionally graded properties along the layer-thickness direction to improve the mechanical 
and electrical properties at layer interfaces, has received increasing attention in recent years [42]. 
Other interesting possibilities are the multilayered FGM, and the functionally graded W/Cu 
obtained by sintering processing. In the field of FGMs we face substantially three problems, 
namely: 

(1) development of processing routes for functionally graded materials;  
(2) determination of the spatially varying material properties (material modeling); 
(3) modeling of structures comprising FGMs and FGPMs; 

 
9.2.5.  Processing routes 
In a functionally graded material (FGM) the properties change gradually with position. The 
property gradient in the material is caused by a position-dependent chemical composition, 
microstructure or atomic order. The manufacturing process of a FGM can usually be divided in 
building the spatially inhomogeneous structure (gradation) and transformation of this structure into 
a bulk material (consolidation) [44]. Production of a NiTi-TiCx functionally graded material 
composite is possible through use of a combustion synthesis (CS) reaction employing the 
propagating mode (SHS). Distinct interfaces with good material interaction and bonding can be 
observed between each layer of the FGM. The TiCx particle size decreases with increasing NiTi 
content in the final product as a result of minimized Ostwald ripening. Microindentation performed 
across the length of the FGM reveals a decrease in hardness as NiTi content is increased [45]. Many 
fabrication methods were proposed to obtain glass-alumina FGMs, one of these is the production 
via percolation of molten glass into a sintered polycrystalline alumina substrate and via plasma 
spraying, the glass composition is designed in order to minimize the difference between the 
coefficients of thermal expansion of the constituent phases, which may induce thermal residual 
stresses in service or during fabrication [46]. The plasma spray method is very common in the case 
of functionally graded 2 3 2/Al O ZrO  thermal barrier coating [47]. In order to prepare 2 3Ni Al O−  

graded composite coatings by an electroplating preparation, a rotating cathode can be used. A 
regular octagonal cathode is employed by changing the relative position between anode and 
cathode. The simplicity to control, the low equipment cost, and the potential for the economic mass 
production of composite coatings, permit to consider this technique as a new interesting way to 
fabricate graded composite coatings [48]. An other interesting method is the electrophoretic 
deposition (EPD) combined with a pressureless sintering, in this way an experimental 
alumina/zirconia planar FGM can be prepared, this material exhibits excellent hardness in the 
exterior layers, comparable to that of pure alumina [49]. Powder metallurgy is a suitable approach 
for the preparation of FGMs, but its effects on the electronic properties have to be carefully 
checked. Powder metallurgical processing may introduce atomic defects and local strains into the 
material and, thereby, alter the carrier concentration. Such material may be in non-equilibrium 
conditions at the operating temperature with unstable thermoelectric properties. This effect can be 
reduced and eliminated by appropriate annealing procedures [50]. A consistent compositionally 
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gradient protective layer can be prepared by chemical vapor deposition by changing the reactant 
mixture composition gradually from propane to dimethyldichlorosilane. Thus an FGM with a 
continuous composition distribution is obtained. No thermal cracks are observed and the 
compositionally gradient layer remains adhesive to the base composite following repeated rapid 
cooling tests from 1000±C to 0±C [51]. The centrifugal method is applied to obtain a graded 
distribution in manufactured FGMs. In this case a controlling composition method is required to 
monitoring the movement of solid particles. The graded distribution in FGMs manufactured by the 
centrifugal method is significantly influenced by many processing parameters, which include the 
difference in density between particles and molten metal, the applied G number, the particle size, 
the viscosity of the molten metal, the mean volume fraction of particles, the ring thickness and the 
solidification time [52]. Multi-layer 2 /Mg Si Al functionally graded composites can be produced by 

a directional remelting and quenching process. The structures of functionally graded materials 
contain three regions (unmelting, partial remelting and remelting) and form five layers (unmelting 
layer, transition layer, semisolid layer, partial remelting layer and remelting layer) [53]. A novel 
one-step method, is the resistance sintering under ultra-high pressure, it has been developed to 
fabricate W/Cu functionally graded materials without the addition of any sintering additive. A five-
layered W/Cu FGM had been successfully fabricated by resistance sintering under ultra-high 
pressure of 8GPa and 20kW power input for 50 s. The relative density of the FGM is more than 
97%. The relative density of the pure W layer is more than 96% [54]. For further information about 
the above processing methods, readers can refer to the cited literature and to the overview work by 
Kieback et alii [44]. 
 
9.2.6.  Material modelling 
We are concerned with graded composite materials, consisting of one or more dispersed phases of 
spatially variable volume fractions embedded in a matrix of another phase, that are subdivided by 
internal percolation thresholds or wider transition zones between the different matrix phases. A 
detailed description of the geometry of actual graded composite microstructures is usually not 
available, except perhaps for information on volume fraction distribution and approximate shape of 
the dispersed phase or phases. Therefore, evaluation of thermo-mechanical response and local 
stresses in graded materials must rely on analysis of micromechanical models with idealized 
geometries. While such idealizations may have much in common with those that have been 
developed for analysis of macroscopically homogeneous composites, there are significant 
differences between the analytical models for the two classes of materials. It is well known that the 
response of macroscopically homogeneous systems can be described in terms of certain thermo-
elastic moduli that are evaluated for a selected representative volume element, subjected to uniform 
overall thermo-mechanical fields. However, such representative volumes are not easily defined for 
systems with variable phase volume fractions, subjected to non-uniform overall fields [55]. The 
characterization of an FGM is not easy and it changes depending the considered material. The most 
common methods based on micromechanical models are the rule of mixtures [55], the 3-D phases 
distribution micromechanical models [56], the Voronoi Cell Finite Element Method (VCFEM) [57], 
the stress waves methods [58], and the stochastic micromechanical models [59]. The rule of 
mixtures is an extension of the classical mixture rule for the composite materials. For example in 
case of a Glass-Alumina FGM, the glass, the Alumina and the residual elements are considered as 
three different phases with three different volume fractions , ,g a pV V V . The 3-D phases 

micromechanical models consider a three-dimensional, arbitrary and non-linear distribution for the 
phases. For this aim is necessary to define an appropriate Local Representative Volume Element 
(LRVE) in order to define the local strains and stresses. An other method to define the elastic 
properties of a FGM is the definition of the Voronoi Cell Finite Element Method (VCFEM). In 
order to apply this method, the structure of the FGM must be discrete and some empty zones must 
be introduced to consider the porosity of the FGM. The characterization of FGMs can be done by 
using elastic waves to exciting the material. In order to apply this method a Linearly 
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Inhomogeneous Element (LIE) must be defined. By solving the equations of motion is possible to 
obtain the relation between the displacements and the mechanical properties of the functionally 
graded material. The elastic properties of FGM can be also obtained by using a stochastic 
micromechanical model, in this case a stochastic approach is introduced to define the volume 
fraction of elements and the material properties of the constituents. A Mori-Tanaka scheme [60] 
must be employed for the homogenization of the FGM. For further information about the above 
material modellings for FGMs, readers can refer to the previous cited literature. 
 

 
 
Fig. 9.3 – (A) Functionally graded material W/Cu ; (B) Columnar FGM: TBC processed by electron 
beam physical vapour deposition technique, 2 2 3ZrO Y O−  with graded porosity ; (C) A particulate 

FGM with the volume fractions of constituent phases graded in one(vertical direction) 
 
9.3.   Axis-symmetrical deformations for multilayered cylinder 

The problem of finding exact elastic solutions for multilayered cylinder under axis-symmetrical 
boundary conditions is needed in many significant mechanical and structural applications related to 
several engineering fields. When a solid cylinder, constituted by several homogeneous linearly 
elastic and isotropic phases, is strained symmetrically by forces applied on both its external 
cylindrical surface and its ends, it is possible to express all the mechanical quantities in terms of a 
single function, reducing the equilibrium equations of the body to a single partial differential 
equation (Love, A. E. H. [75]), (Gurtin, M. E. [87]). It is well known that the solution in terms of 
displacement field v  for an isotropic and homogeneous linear elastic material, in absence of body 
forces, can be written in the Boussinesq-Somigliana-Galerkin form as follows: 

 (4), ( ) { [ ( )]}c= ∇ ⋅∇ ⊗ − ∇ ⊗∇ ⋅ ∈ Ω ∇ ⋅ ∇ ⊗ ∇ ⋅ ∇ ⊗ = 0v F F F FC , (9.1) 

where 1/[2(1 )]c ν= − , F  is a vector field, ν  is the Poisson ratio and Ω  is the solid domain 

occupied by the object. Here, ( ) ( )div∇ ⋅ ∗ = ∗  and ( ) ( )grad∇ ⊗ ∗ = ∗ , so that 2( )∇ ⋅∇ ⊗ ∗ = ∇  and 
4{ [ ( )]}∇ ⋅∇ ⊗ ∇ ⋅ ∇ ⊗ ∗ = ∇  represent the Laplace and double-Laplace differential operators, 

respectively, while ( ) [ ( )]grad div∇ ⊗ ∇ ⋅ ∗ = ∗ . The completeness of (9.1) was already proved 
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(Gurtin, M. E. [87]). If ze  is the unit vector of the z axis which characterizes the axis-symmetrical 

problems, the whole space of the so-called torsionless and rotationally symmetric with respect to 
the z  axis, displacement solution u  is completely described by 

 (4){ ( ) 0}z≡ ∈ Ω ⋅∇× =Cu v e v , (9.2) 

where ( ) ( )curl∇× ∗ = ∗ . Then, equations (9.1) and (9.2) yield 

 (4), ( )zχ χ= ∈ ΩCF e  (9.3) 

in which (4)( )χ ∈ ΩC  is a scalar function and is called the Love’s solution. As a consequence, (9.1) 

gives [ ( )]z zcχ χ= ∇ ⋅∇ ⊗ − ∇ ⊗ ⋅ ∇ ⊗u e e  and then 

 4 (4){ [ ( )]} 0, ( )χ χ χ∇ ⋅ ∇ ⊗ ∇ ⋅ ∇ ⊗ = ∇ = ∈ ΩC . (9.4) 
By referring to a cylindrical coordinate system { , , }r zθ , where z  is the axis of multilayered 
cylinder (Figure 9.1), the equation (9.3) gives ( , )r zχ χ=  and the cylindrical components of the 
displacement reduce to  
 ( , ), 0, ( , )r r z zu u r z u u u r zθ= = =  (9.5) 

as well as, for homogeneous materials, the stresses are 
 ( , ), ( , ), ( , ), ( , ), 0.rr rr zz zz rz rz z rr z r z r z r zθθ θθ θ θσ σ σ σ σ σ τ τ τ τ= = = = = =  (9.6) 

Here, we will denote with the comma the differentiation: in particular, by taking into account axis-
symmetrical problems and referring to the cylindrical coordinate system, the Laplace operator will 
be explicitly written as 2 1

, , ,( ) ( ) ( ) ( )rr r zzr −∇ ∗ = ∗ + ∗ + ∗ , being all the functions independent of θ , 

while 
 4 1 2 3

, , , , , , ,( ) ( ) 2 [( ) ( ) ] ( ) ( ) 2( ) ( )rrrr rrr rzz rr r rrzz zzzzr r r− − −∇ ∗ = ∗ + ∗ + ∗ − ∗ + ∗ + ∗ + ∗ . 

Besides, the superscript ( )i  will recall the i-th phase constituting the multilayered cylinder, 

therefore ( )iν  and ( )iE  will represent the corresponding Poisson’s ratio and Young’s modulus, 
respectively. Writing ( ) ( )i i

ru U=  and ( ) ( )i i
zu W= , being ( ) ( ) 0i iu Vθ = =  due to symmetry, the 

compatibility equations take the form: 
 ( )( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , ,, , , 1 2 ( ), 0i i i i i i i i i i i
rr r zz z rz z r z rU r U W U Wθθ θ θε ε ε ε ε ε−= = = = + = = . (9.7) 

Finally, with reference to the generic phase “i-th” of multilayered cylinder and recalling equation 
(9.4)-(9.7), we can write 

 
( )

( ) ( ) ( ) 2 ( ) ( ) 1 ( )
, , ,( ) ( ) ( ) ( )

1 1
, [ ]

2 2 ( )

i
i i i i i i

rz rr ri i i i
U W r

µχ χ χ χ
µ µ µ λ

−= − = ∇ + +
+

 (9.8) 

and the no vanishing stresses are 

 
( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) 1 ( )

, , , ,

( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( )
, , , ,

( ) , ( ) ,

[(2 ) )] , [(1 ) )] ,

i i i i i i i i
rr rr z r z

i i i i i i i i
zz zz z rz zz r

rθθσ ν χ χ σ ν χ χ

σ ν χ χ τ ν χ χ

−= ∇ − = ∇ −

= − ∇ − = − ∇ −
 (9.9) 

where, for our convenience, we use the elastic moduli ( )iE  and ( )iν  as functions of the Lamé 
coefficients, by invoking the well-known following relations: 

 
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

(2 3 )
, .

( ) 2( )

i i i i
i i

i i i i
E

µ µ λ λν
µ λ µ λ

+= =
+ +

 (9.10) 

 
9.4.  Mechanical characterization under strain no-decaying conditions  
 
9.4.1. Preliminary remarks 

In this section we will prove that the hypothesis of no decaying of the zzε  passing from one phase to 

another (no variation in the radius direction) yields to choose the bi-harmonic Love’s function ( )iχ  
with a selected mathematical form. In particular, we will show that, in order to be authorized of 



CHAPTER IX – Axis-symmetrical solutions for multilayered cylinder under strain no-decaying conditions 
 

F. Carannante 135 

imaging axis-symmetrical elastic solutions for cylindrical piece-wise homogeneous multilayered 
cylinder characterized by no decaying of the axial strain zzε  along the radius direction, only 

combination of axial forces at the object’s ends, radial pressures that vary linearly along the z axis 
and uniform shear tractions, are admissible. As preliminary remarks, we write down some 
definitions and properties which will turn useful later. 
We begin by furnishing the following definition to identify the specific object taken as main actor 
of the present work:  
 
DEFINITION 1: Let us consider a proper subset Ω  of the three-dimensional Euclidean space and let 

( )( )

1

{ 1,..., }
n

ii

i

i n
∈

=

Ω ⊆ Ω = Ω ≡ Ω∪
N

be a partition of Ω . Let us consider multilayered cylinder 

characterized by a linearly elastic piece-wise homogeneous multi-phase material constituted by a 
solid circular cylinder made of a central core and ∈n N  isotropic hollow phases, each of them 
occupying a sub-domain ( )iΩ . 
As already said, one of the goals of the paper is to establish the character of the solution for 
multilayered cylinder under some conditions related to the no-decaying of the mechanical strain 
inside the laminated material. In this context, we give the following definition: 
 
DEFINITION 2: Consider a multilayered cylinder and let ( ) ( )mε ∈ ΩC  be a generic strain component 
function related to the Elastostatic Boundary Value Problem (BVP), “ m” depending by the choice. 
Then, the multi-phase object is said “ε -no-decaying” if the corresponding BVP admits a solution 
satisfying the following mathematical condition, everywhere in Ω : 
 ( ) , {1,2,..., }i i nε ε= ∀ ∈ ⊂ N . (9.11) 
It is worth noticing that, in general, for establishing (9.11) one could risk to incur in an ill-posed 
problem, being (9.11) a field equation that could go against to the Cauchy equations. This means 
that for ε -no-decaying problems the existence of the solution has to be demonstrated, also in the 
framework of linear elasticity. To make this we will have to prove that the intersection between the 
space of the solutions spanned by a selected class of BVPs and the space constituted by elements 
satisfying (9.11) is not empty. 
Moreover, it must be highlighted that, with reference to multilayered cylinder with axis coincident 
with z, ε -no-decaying condition (9.11) implies that at most ( ) ( ) ( )i i zε ε= , that is ( )iε  can be a 
function only of z, and doesn’t vary along the radius directions. Then, the condition 

( ) ( ) ( ) , {1,2,... }i i z i nε ε ε= = ∀ ∈  represents a necessary condition for obtaining ε -no-decaying. In 
particular, a close examination of this condition for multilayered cylinder yields to discover the 
following: 
 
PROPERTY 1: Let us consider a multilayered cylinder, subjected to axis-symmetrical boundary 
conditions and let be hkε ε≡ , where hkε  is an arbitrarily chosen strain component. Then, the  

necessary condition  for obtaining ε -no-decaying is that this strain component has to be at most a 
third-order polynomial function of z. In particular, this condition separately applied to each of the 
strain components hkε  gives: 

i) ( ) ( ) ( ) ( ) ( ) 2 ( ) 3
0 1 2 3{0,1,2,..., }, ( ) i i i i i i

zz zz zzi n z k k z k z k zε ε ε ε∀ ∈ ≡ = ⇒ = + + +  

ii) ( ) ( ) ( ) ( ) ( ) 2 ( ) 3
0 1 2 3{0,1,2,..., }, ( ) i i i i i i

rr rr rri n z k k z k z k zε ε ε ε∀ ∈ ≡ = ⇒ = + + +  

iii) ( ) ( ) ( ) ( ) ( ) 2 ( ) 3
0 1 2 3{0,1,2,..., }, ( ) i i i i i ii n z k k z k z k zθθ θθ θθε ε ε ε∀ ∈ ≡ = ⇒ = + + +  

iv) ( ) ( ){0,1,2,..., }, ( ) 0i i
rz rz rzi n zε ε ε ε∀ ∈ ≡ = ⇒ =  

where ( ) ( ) ( ) ( )
0 1 2 3, , ,i i i ik k k k  are real coefficients depending from the i-th phase. 

The details about the proof of this property are analytically reported in the Appendix A.1. 
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9.4.2.  Characterization of the solution for multilayered cylinder  under zzε  no-decaying 

condition 

In this section, we will focus the problem to find exact solutions for multilayered cylinder under 
axis-symmetrical boundary conditions, characterized by no-decaying of the strain zzε  along the 

radius direction. To make this, we will use the results obtained with the property above mentioned, 
by following an approach based on the Love’s function. In order to reach the object, we can 
establish the following 
 
THEOREM 1: Let us consider a multilayered cylinder, subjected to axis-symmetrical boundary 
conditions and let be zzε ε≡ . Then, the two following statements are equivalent and each of them 

constitutes a necessary and sufficient condition for obtaining zzε -no-decaying: 

i) the cylindrical external surface cyl∂Ω  of the object is loaded by tractions t  collecting any 
arbitrary combination of radial pressures that vary linearly along the z axis and uniform 
shear tractions, while axial forces appear at the object ends, that is: 

 ( )
0 1 0{0,1,2,..., }, ( ) { , [ , 0, ]}i cyl T

zz zzi n z p p zε ε τ∀ ∈ = ⇔ ∀ ∈∂Ω ≡ +x t  (9.12) 

where 0 1 0{ , , }p p τ ∈R  and the tractions vector t  is referred to the cylindrical coordinates; 

 
ii)  the axial strain ( )i

zzε  varies at most linearly upon z, that is 

 ( ) ( )
0 1( ) , {0,1,2,..., }i i

zz zz zzz z i nε ε ε ε ε= ⇔ = + ∀ ∈  (9.13) 

           where 0ε  and 1ε  are real coefficients independent from the i-th phase. 

 
Proof. 
 
Necessary condition: 
 ( )

0 1 0{ {0,1,2,..., }, ( )} { , [ , 0, ]}i cyl T
zz zzi n z p p zε ε τ∀ ∈ = ⇒ ∀ ∈∂Ω ≡ +x t . (9.14) 

By referring to the results obtained in the Appendix A.1, summarized above in the Property 1, we 
demonstrated that a necessary condition to assume zzε  no-decaying in axis-symmetrical 

multilayered cylinder is that – in each phase of the object – ( )i
zzε  possess at most a third-order 

polynomial form in z, see equation (A1.11). In the follows, by introducing compatibility and 
equilibrium equations at the interfacial boundaries, we need to prove that ( )i

zzε  has to reduce to a 

linear function of z which presents the same coefficients for any phase. As a consequence, it will be 
highlighted that the emerging tractions t  on cyl∂Ω  can be at most given by a combination of radial 
pressures linearly varying along the z axis and uniform shear tractions, with additional axial forces 
appearing at the end basis. Then, by virtue of the Property 1, let us assume the hypothesis for which 

 
( )( ) ( )

( ) ( ) ( ) 2 331 2
0 ( ) ( ) ( )

( )
2 4 6

ii i
i i i

zz i i i
z z z z

εε εε ε ε
µ µ µ

= = + + +  

[see equation (A1.12)]. With reference to the results reported in the Appendix A.1, by considering 
that, at the centre of multilayered cylinder (cylinder core in 0r = ), diverging terms in (0)χ  are not 
admissible, the results reported below must be true: 

 
( )(0) (0) (0) (0)

1/1(0) (0) (0) (0) (0)
4 /1 1/3 2 /1 5/3 3/1 (0) (0)

2
0,

2

µ µ λ
µ λ

Γ +
Γ = Γ = Γ = Γ = Γ =

+
, (9.15) 

where the notation used for the coefficients is referred to that already introduced in Appendix A.1. 
Also, by imposing the equilibrium and compatibility conditions at the interfacial boundary between 
the central core and the first  hollow phase, some coefficients can be immediately determined, that 
is 
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(1)

(0) (0) (1) (1) (1) (1) (1) (0) (1) (0)
3 2 3 2 1/3 2 /1 0 0 1 1 (0)

0, , ,
µε ε ε ε ε ε ε ε
µ

= = = = Γ = Γ = = =  (9.16) 

as well as it is possible to write similar relations as a consequence of the satisfaction of the 
boundary conditions at the interfaces between every couple of adjacent phases. This leads to write 
that ( ) ( ) ( ) (0) (0)

0 0 1 1{0,1,2,..., }, , / /i i ii n ε ε ε µ ε µ∀ ∈ = = , and therefore 

 ( )
0 1{0,1,2,..., }, ( )i

zz zzi n z zε ε ε ε∀ ∈ = = +  

where 
( )

( ) 1
0 0 1 ( )

{0,1,2,..., }, , .
2

i
i

i
i n

εε ε ε
µ

∀ ∈ = =  

The results highlight that the function ( )iχ  finally exhibits the fourth-order polynomial function in 

z, i.e. 
4

( ) ( )

0

( )i k i
k

k

z f rχ
=

=∑ . Moreover, regardless the number n of phases, we have that the emerging 

tractions t  on cyl∂Ω  have to be at most a combination of radial pressures linearly varying along the 
z axis and uniform shear tractions, while resultant axial forces appear at the ends (Figures 9.3 - 9.4 - 
9.5 - 9.6). Hence: 
 0 1 0[ , 0, ],T cylp p z τ≡ + ∀ ∈∂Ωt x . (9.17) 

Also note that, due the axis-symmetry, only centred axial forces at the ends can emerge. 
 
Sufficiency condition: 
 ( )

0 1 0{ , [ , 0, ]} { {0,1,2,..., }, ( )}cyl T i
zz zzp p z i n zτ ε ε∀ ∈∂Ω ≡ + ⇒ ∀ ∈ =x t . 

The sufficiency condition is obtainable by invoking the Kirchhoff uniqueness theorem for linear 
elastic boundary value problems, with reference to the so-called first or traction boundary problem 
[Gurtin, M. E., 1972]. Note that the Boussinesq-De Saint Venant principle also ensures that, far 
from the ends, the obtained solutions are able to represent the stress and strain fields coming from 
many different normal stress distributions on the basis, as well as other possible axis-symmetrical 
traction  fields (i.e. emerging rzτ ) with zero resultants. In this context, it is worth noticing that, in 

the proof of the theorem, we did not explicitly mention the possible presence of axial forces applied 
at the ends of multilayered cylinder: obviously, due to the axis-symmetry of the problem, both zero 
and nonzero emerging axial forces are admissible, but they will appear automatically equilibrated 
and their overall values can be prescribed through weak-form boundary conditions in the elastic 
problem. Rigorously speaking, by relaxing the above cited boundary conditions at the object’s ends, 
we loose the uniqueness: this means that it is possible to imagine two different load cases, 
characterised by the same local load conditions on the cylindrically surface, as well as the same 
global resultants emerging from the ends, but coming out by different local normal stress 
distributions, whose related solutions will be different. However, this mathematical evidence is of 
interest only for short multilayered cylinder, that is when the external diameter of the cylinder 

( ) ( ): max{2 } 2i nD R R= ≡  is about of the order of magnitude of its length L . On the contrary, in the 
major part of the engineering applications – where the longitudinal length of the cylinder is much 
more greater than its maximum diameter, i.e. / 1<<D L  – the Boussinesq-De Saint Venant 
principle ensures that the deformations and stresses due to the difference between two solutions 
differing only for the distribution of the tractions at the extremities, are of negligible magnitude at 
distances from the ends which are sufficiently large compared to  the diameter D . From Theorem 
1, an useful corollary related to the following necessary condition can also be easily established: 
 
COROLLARY: With reference to an arbitrary BVP for a multilayered cylinder under axis-symmetrical 
boundary conditions, it is possible to prove that: 

 
4

( ) ( ) ( )

0

( ) ( , ) ( ) , {0,1,2,..., }i i i k
zz zz k

k

z r z f r z i nε ε χ
=

= ⇒ = ∀ ∈∑   
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where ( ) ( , )i r zχ  is the Love’s solution and ( ) ( )i
kf r  are scalar functions to determine. The proof 

emerges from both Property 1 and Theorem 1. 
 

zN

i-th fase

z

x

y
zN

 
 Fig. 9.4  -  Multilayered cylinder subjected by axial force zN  applied on the basis 
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Fig. 9.5 - Multilayered cylinder subjected by uniform radial pressures along the z axis. 
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Fig. 9.6 - Multilayered cylinder subjected by uniform shear tractions and equilibrated axial force 

zN  on the base 
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Fig. 9.7 - Multilayered cylinder subjected by radial pressures linearly varying along the z axis. 
 
9.4.3.  Exact solutions for multilayered cylinder: field equations for the i-th phase 

In this section we will obtain some solutions for a piece-wise homogeneous multilayered cylinder. 
In particular there will be presented closed-form solutions for two kinds of problems. The first one 
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is related to the case where the zzε  in each phase of the object remains constant along the radius 

direction (no-decaying case): for this case, by invoking the proposed theorem, we will be able to 
construct the whole space of no-decaying solutions. The second class of problems is instead 
referred to elastic solutions found for two specific problems related to multilayered cylinder 
exhibiting variation of the zzε  along the radius (decaying case). In order to present an unified 

approach, we will begin for both classes of problems starting from a more large form of the bi-
harmonic function ( )iχ . In order to solve the field equations related to the equilibrium in each phase 
of multilayered cylinder, we can state and prove the following 
 
THEOREM 2: Let us consider a multilayered cylinder, subjected to axis-symmetrical boundary 

conditions and let be zzε ε≡ . Let also 
4

( ) ( )

0

( , ) ( )i k i
k

k

r z z f rχ
=

=∑  be the special representation of the 

Love’s solution, possessing completeness for the zzε -no-decaying BVPs. Then, it is possible to 

prove that, for an arbitrary number of hollow phases n∈N , the field equations of the differential 
BVP are always reducible to an in cascade one-dimensional Euler-like non-homogeneous 
differential system. 
 
Proof. 
Due to Theorem 1, let us assume that in each i-th phase, ( )iχ  possesses the form 

 
5

( ) ( )

0

( ),i k i
k

k

z f rχ
=

=∑  (9.18) 

in which ( ) ( )i
kf r  are scalar functions to determine and the adding fifth order term is introduced in 

order to find at least one decaying solution, too. Firstly, the differential conditions required for 
( ) ( )i

kf r  to satisfy equation (9.4) have to be established. To obtain this, we apply the fourth-order 

differential operator 4∇  to the (9.18). By collecting the terms in kz  we can write explicitly: 

 

4 ( ) ( ) ( ) 2 ( ) 3 ( ) 2 ( ) 3 ( ) 3 ( )
0, 0, 0, 0, 2, 2, 4

( ) ( ) 2 ( ) 3 ( ) 2 ( ) 3 ( ) 3 ( )
1, 1, 1, 1, 3, 3, 5

2 ( ) ( ) 2
2, 2, 2,

0 ( 2 4 4 24 )

( 2 12 12 120 )

( 2

i i i i i i i i
r rr rrr rrrr r rr

i i i i i i i
r rr rrr rrrr r rr

i i
r rr

f r f r f r f r f r f r f

z f r f r f r f r f r f r f

z f r f r f

χ∇ = ⇒ − + + + + + +

+ − + + + + + +

+ − + ( ) 3 ( ) 2 ( ) 3 ( )
2, 4, 4,

3 ( ) ( ) 2 ( ) 3 ( ) 2 ( ) 3 ( )
3, 3, 3, 3, 5, 5,

4 ( ) ( ) 2 ( ) 3 ( )
4, 4, 4, 4,

5 ( ) ( ) 2
5, 5, 5,

24 24 )

( 2 40 40 )

( 2 )

( 2

i i i i
rrr rrrr r rr

i i i i i i
r rr rrr rrrr r rr

i i i i
r rr rrr rrrr

i i
r rr rrr

r f r f r f

z f r f r f r f r f r f

z f r f r f r f

z f r f r f

+ + + +

+ − + + + + +

+ − + + +

+ − + ( ) 3 ( )
5, ) 0,i i

rrrrr f+ =

 (9.19) 

which can be written in a compact form as follows 
5

4 ( ) ( ) ( ) 2 ( ) 3 ( )
, , , ,

0

5 5
2 ( ) 3 ( )

2, , 4
4 2

( , ) 0 { [( 2 )

2( 2)!
( (1 )) ( ) ( 4)!( (1 )) ]} 0,

!

i k i i i i
k r k rr k rrr k rrrr

k

i i
jk k r r mk k

j m

r z z f r f r f r f

k
r r f k r f

k

χ

δ δ

=

+ +
= =

∇ = ⇒ − + + +

++ − + + − =

∑

∑ ∑
 (9.20) 

where jkδ  and mkδ  are the usual Kronecker delta operators. 

In order to solve (9.20) we can follow a cascade strategy: indeed, we see that, for the polynomial 
identity law, it is possible to firstly extract from equation (9.20) the following un-coupled 
differential system with varying coefficients, starting from the last two rows of equation (9.19): 
 ( ) ( ) 2 ( ) 3 ( )

, , , ,2 0, 4,5i i i i
k r k rr k rrr k rrrrf r f r f r f k− + + = = . (9.21) 

The solutions of (9.21) are 
 ( ) ( ) ( ) 2 ( ) 2 ( )

1/ 2 / 3/ 4 /( ) log log , 4,5i i i i i
k k k k kf r C r C r C r r C k= + + + =  (9.22) 
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where ( ) ( ) ( ) ( )
1/ 2/ 3/ 4 /{ , , , }i i i i

k k k kC C C C  are arbitrary constant coefficients. For seek of simplicity we rename 
( ) ( )( ) ( )i i

k kf r h r≡  to represent the specific homogeneous solution of the equations (9.21). The 

notation utilized here for the characterization of the coefficients ( )
/
i

n kC  must be read in this manner: 

the superscript ( )i  is referred to the material phase i-th, the first subscript n  tells us the number of 

the constant, the second subscript k  is related to the corresponding function ( ) ( )i
kf r  and therefore 

to the power in kz . By utilizing the obtained solutions (9.22) and substituting them into (9.19), we 
can extract other two un-coupled differential equations 

 ( ) ( )2( ) ( ) 2 ( ) 3 ( ) 3 ( ) ( )
, , , , 2 / 2 3/ 22 10 1 1 log , 2,3.i i i i i i

k r k rr k rrr k rrrr k kf r f r f r f r k C C r k+ + − + + = − + + + =   (9.23) 

We note that the homogeneous equation associated to (9.23) is formally the same of the case (9.21) 
and then it is possible to write the solution of (9.23) utilizing (9.22) as follows 

 ( )( ) ( ) 4 ( ) ( )
2 / 2 3/ 2

2 1
( ) ( ) 2 2 log 1 , 2,3.

4
i i i i

k k k k

k
f r h r r C C r k+ +

−   = − + − =    
 (9.24) 

Finally, substituting the solutions (9.24) and (9.22) into the first two lines of (9.19), the remaining 
two differential un-coupled equations can be extracted: 

    
( )( )

( ) ( )
( ) ( ) 2 ( ) 3 ( ) 3 ( ) ( )
, , , , 2/ 2 3/ 2

( ) ( ) 2 ( ) ( )
4/ 4 3/ 2 2/ 4 3/ 4

2 {16 2 1

(2 3) 1 log 2 log 3(2 3) log }, 0,1

i i i i i i
k r k rr k rrr k rrrr k k

i i i i
k k k k

f r f r f r f r k C C

k C r C r k r C C r k

+ +

+ + + +

− + + = + + +

+ + + + − + + =
 (9.25) 

from which we obtain 
( ) ( ) ( ) ( )

4 4
( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

3/ 2 2/ 2 1/ 4 4 / 4 2 / 4 3/ 4

( ) ( ) ( ) 6 ( )
1/ 4 3/ 2 3/ 4

2 1 4 1
( ) 2 27 18 6 5

8 48

6 3(4 1) 2(2 1) (4 1) log ( ), 0,1.

i i i i i i i
k k k k k k k

i i i i
k k k k

k r k r
f r C C C C r C C

k C k C k C r r h r k

+ + + + + +

+ + +

+ +
 = − + − + − + 

 − + + + − + + = 

 

 (9.26) 
It is worth noticing that, since in each above mentioned group of differential equations (9.21), 
(9.23) and (9.25), the homogeneous solution is always furnished by ( ) ( )i

kh r , we can also write 

 ( ) ( ) ( )( ) ( ) ( ), {0,1,...,5}i i i
k k kf r h r p r k= + ∀ ∈  (9.27) 

where ( ) ( )i
kp r  represents the particular solution related to the specific differential problems (9.23) – 

for 2,3k = – and (9.25), for 0,1k = , being ( ) ( ) 0i
kp r =  when 4,5k = . Then, the above proposed in 

cascade solving strategy leads to summarize the obtained results as follows. Let us consider the 
Love’s function (9.18), representing the general form of the elastic solution for zzε -no-decaying in 

multilayered cylinder under axis-symmetrical boundary conditions. As already seen before,  the 
field equation (9.19) furnishes an in cascade uncoupled system of Euler-like differential equations 
for the unknown functions ( ) ( )i

kf r . This result can be expressed as follows, by using some elements 

of Functional Analysis: 
 

PROPERTY 2: Let V  and W  be two vector spaces and := ֏EL IL V W  a linear operator, where 

I  is a sixth-order identity matrix and 2 3
, , , ,( ) ( ) 2 ( ) ( )E
r rr rrr rrrrr r r= ∗ − ∗ + ∗ + ∗L  represents the Euler 

differential operator. Let also ( ) ( ) ( ) ( )
0 1 5[ , ,..., ]i i i i Tf f f= ∈f W  be the vector collecting the six known 

functions appearing to the right-hand of the equations (9.22), (9.24), (9.26) and 
( ) ( ) ( ) ( )

0 1 5[ , ,..., ]i i i i Tp p p= ∈p V   a solution of the equation 

 ( ) ( )=i iL f f , (9.28) 

where ( ) ( ) ( ) ( )
0 1 5[ , ,..., ]i i i i Tf f f= ∈f V  is the unknown vector. Then, the set S  of all the solutions of 

(9.28) is given by: 
 ( ) ker= +i LS p , (9.29) 
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where ( ) ( ) ( ) ( )
0 1 5ker { [ , ,..., ] }≡ = ∈i i i i Th h hL h V . 

Equation (9.29) summarizes the system {(9.22), (9.24), (9.26)}, so that it gives (9.27). Therefore,  
Theorem 2 has to be considered a constructive theorem, in the sense that it suggests a procedure to 
find solutions to the equation (9.28) by first searching a particular solution ( )i ∈p V , that exists if 

and only if ( ) Im∈i Lf , and hence determining ( ) ( )ker { }≡ ∈ =i iL L 0h hV . As detailed above, the 

solution will be constructed by adding the two found solutions. Finally, it is worth to highlight that 
the functions (9.22), (9.24) and (9.26), due to both the proposed theorem and the form (9.18), 
constitute a class of axis-symmetrical elastic solutions of multilayered cylinder able to satisfy the 
field equations for all no-decaying BVPs, while - due to the introduction of fifth-order powers of z - 
only some decaying cases can be obtained. 
 
9.5 Complete set of closed-form solutions for  no-decaying problems 
 
9.5.1 The engineering  framework 

The object of this section is to find exact elastic solutions for multilayered cylinder under axis-
symmetrical load conditions, producing no-decaying of the strain zzε  along the radius direction as 

already shown above. It is possible to show that these solutions result extremely useful in many 
engineering applications. For example, in the framework of the distributed optical measurements, 
they furnish qualitative and quantitative results which help us to better explain the mechanism of 
the strain transferring, as well as to set the bases for interpreting post-elastic and non-linear 
phenomena. Indeed, by using techniques based on the Stimulated Brillouin Scattering Effect (BSE), 
it is possible to experimentally read - in bending concrete or steel beams - the varying strain 
function zzε  by embedding a continuous optical fibre in the structure. Due to both the type of link 

between materials and the composite nature of the optical fibre, characterized by a central glass core 
and one or more polymeric claddings, some dispersion phenomena appear in the transferring of the 
strain from the structure to the fibre itself. However, numerical simulations and laboratory tests 
show that possible decaying effects remain confined in limited regions around the ends of the 
structure, as well as in the proximity of points where changing of strain sign or significant 
deformation gradients appear. However, other possible decaying effects of the axial strain could 
also be related to the specific interactions developing at the interfaces between support material, 
cladding and optical fibre core. For this reason, the solution found below can be employed with the 
goal of highlighting qualitative and quantitative mechanical aspects in the framework of this new 
engineering application, as well as – more in general - in the characterization of the mechanics of 
laminated composites. 
 
9.5.2 Field equations 

With reference to the equation (9.8), we can write the axial strain in z-direction inside the generic i-
th phase as follows: 

 
( )

( ) ( ) 2 ( ) ( ) 1 ( )
, , , ,( ) ( ) ( )

1
[ ( ) ]

2

i
i i i i i

zz z z rrz rzi i i
W r

µε χ χ χ
µ µ λ

−= = ∇ + +
+

. (9.30) 

 By recalling equation (9.18), the (9.30) becomes 
5

( ) ( ) ( ) 1 ( ) 1 ( ) ( ) 3 ( )
, ,( ) ( ) ( )

0

1
{ [(2 ) ( ( ) ( )) ( 1)( 2) ( )]}

2 ( )
i i i k i i i k i

zz k rr k r ki i i
k

k z f r r f r k k z f rε µ λ µ
µ µ λ

− − −

=
= + + + − −

+ ∑  

 (9.31) 
so that, because ( )

0 1 , {0,1... }i
zz z i nε ε ε= + ∀ ∈  by virtue of the Theorem 1 for the  no-decaying 

assumption, collecting the terms in the powers of z, we have to solve the following set of 
differential equations: 
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( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )
1, 1, 3 0

( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )
2, 2, 4 1

( ) ( ) ( ) 1 ( ) ( ) ( )
3, 3, 5

( ) 1 ( )
4, 4,

5,

(2 )( ) 6 2 ( )

(2 )( ) 12 ( )

(2 )( ) 20 0

( ) 0

(

i i i i i i i i i
rr r

i i i i i i i i i
rr r

i i i i i i
rr r

i i
rr r

f r f f

f r f f

f r f f

f r f

f

µ λ µ µ µ λ ε

µ λ µ µ µ λ ε

µ λ µ

−

−

−

−

+ + + = +

+ + + = +

+ + + =

+ =
( ) 1 ( )

5, ) 0.i i
rr rr f−








 + =

 (9.32) 

By using the above obtained expressions (9.22), (9.24) and (9.26) for the functions ( ) ( )if r , system 
(9.32) becomes algebraic. The solution can be written only establishing the relations between the 
coefficients ( )

/
i

j kC , starting from the last two equations in (9.32) and then solving the first three ones, 

by means of the analogous cascade technique used above. To make this, we substitute equations 
(9.22), (9.24) and (9.26) into (9.32), obtaining, by means of some algebraic manipulations, the 
following  coefficients: 

 ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3/4 2/4 3/3 2/3 1/5 2/5 3/5 4/5 1/3 3/1( )

( ) ( )
( ) ( ) ( ) ( ) ( )0
4/3 3/1 2/1( )

(
( )
4/4

( ) ( )
( ) ( )
1/4 3/2( )

20; 0; ;
3

2 2; 2 2 ;
333

2

i i
i i i i i i i i i i

i

i i
i i i i i

i

i
i

i i
i i

i

C C C C C C C C C C

C C C C C

C

µ λ
µ

εµ λ µ λ µ λµµ
µ

+= = = = = = = = = −

+ += − = − + + +

= − ( ) ( )
) ( )

( ) ( ) ( ) ( )1
3/2 2/2( )

.
123

i
i i i i

i
C C ελ µ λµ

+ + + +

 (9.33) 

It is worth to note that equation (9.33)2 highlights that, for the no-decaying case, the bi-harmonic 
function has to be a polynomial of fourth order, being all the coefficients characterizing ( )

5 ( )if r  

equal to zero, as we already know. By invoking (9.8), it is possible to write the displacement field 
for the generic i-th phase as follows  

 

( )

( ) 2 ( ) ( )
( ) ( ) ( ) ( )1/1

1/2 3/1 3/2( ) ( )

( ) ( ) ( ) ( ) ( )
2/1 3/1 2/2 3/2 3/2( )
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log 2 2 log ,
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( ) log
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i i i i i i
i
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C
r w i n

µ λ
λ µ µ

µ λ ε µ µ λ
µ

 ++ + + 

 + − ++ + ≡ 
 

 (9.34) 

where, due to presence of diverging terms for vanishing r, we assume (9.34) to hold only for the i-th 
hollow phases. On the contrary, by excluding terms affected by 1r −  and log r , for the cylindrical 
core phase we write down: 

 

( )(0) (0) (0)
2/1 2/2(0)

(0) (0) (0) (0) (0) (0)2
(0) 22/2 11

0 (0)2

2 ,

4 ( ) (2 )
.

2 4

r
U C C z

Cz
W z r

µ
µ λ ε µ µ λεε

µ

= − +

 + − += + +  
 

 (9.35) 

where the superscript “(0)” stands for the core-phase. As a consequence of (9.34) and (9.35), the 
stresses for the hollow phases are 
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 (9.36) 
while those within the core are given by: 
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+
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 (9.37) 

 
9.5.3.  Equilibrium and compatibility conditions 

The results obtained until now satisfy the equilibrium and compatibility equations inside each 
generic i-th phase of  multilayered cylinder subjected to axis-symmetrical strains and come out from 
the application of Theorem 2. Under both the hypothesis of linear isotropic elastic behaviour of the 
homogeneous materials and the assumption of perfect bond at the cylindrical interfacial boundaries 
(no de-lamination or friction phenomena), we have now to establish the satisfaction of both the 
equilibrium and the compatibility equations at the boundary surfaces between two generic adjacent 
phases. To obtain this, we will make reference to the generic case, in which a functionally graded 
circular cylinder is constituted by a central core and n arbitrary hollow phases (Fig. 9.1). In this 
framework the following theorem can be established: 
 
THEOREM 3: Let us consider a multilayered cylinder, subjected to axis-symmetrical boundary 

conditions and let be zzε ε≡ . Let also 
4

( ) ( )

0

( , ) ( )i k i
k

k

r z z f rχ
=

=∑  be the special representation of the 

Love’s solution, possessing completeness for the ε -no-decaying BVPs. Then, for an arbitrary 
number of hollow phases ( )n∈N , the equilibrium and compatibility conditions at the interfacial 

boundaries of the phases yield a linear algebraic problem in the form =P X L , being X  the 

unknown vector collecting ( )
/
i

n kC , L  the vector of boundary data and P  a (6 4)n+ -order square 

matrix. 
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Proof. 
In continuity with the way followed until now, by accounting the interfacial boundary conditions, 
we obtain that ( ) ( )

3/1 3/ 2 0, {0,1,..., }i iC C i n= = ∀ ∈ , therefore the total unknown parameters to determine 

can be summarized as follows: 

 

(0) (0)
1/2 2/1

( ) ( ) ( ) ( ) ( ) ( )
3/0 1/1 1/2 2/1 2/2 0

0 1

, ,

, , , , , , {1,2,..... }

, ,

i i i i i i

C C

C C C C C w i n

ε ε
∈  (9.38) 

where those in (9.38)1 represent the unknown coefficients of the core, those in (9.38)2 represent the 
unknown parameters for every hollow cylinder, while (9.38)3 are the two coefficients responsible 
for the assigned linear form of the strain zzε , (9.13). Hence, the total number of unknowns will be 

(6 4)n+ , which equals the number of algebraic equations to solve. In particular, as we will show in 
the follows, the number of the boundary equations at the interfaces  is 6n , while 4 is the number of 
both strong (3) and weak (1) boundary conditions on the external cylindrical surface and on the end 
basis, respectively. In particular, we begin writing the 6n equilibrium and compatibility equations at 
the generic interface, that is: 
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 (9.39) 

where ( )iR  is the outer radius of the i-th phase. Recalling the previously obtained results, system 
(9.39) can be expressed as follows 
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 (9.40) 
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in which, for the core ( 0i = ), (0) (0) (0) (0)
3/0 1/1 1/ 2 00, 0, 0, 0C C C w= = = = . It is worth to note that the initial 

four equations (9.39) become six in (9.40): this happens because, by invoking the polynomial 
identity law and then collecting the terms in the powers of z, some solutions are immediately 
obtained, and only six independent equations (9.40) remain to satisfy, at every interface. The 
equilibrium equations for the tractions on the external cylindrical boundary surface, (i n= ), give: 
 ( ) ( ) ( ) ( )

0 1 0,( ) ( )n n n n
rr rzzr R p p r Rσ τ τ= = + = =  (9.41) 

from which, by applying the polynomial identity law, they transform as follows: 
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 (9.42) 

where the set 0 1 0{ , , }p p τ  collects load parameters defining the traction field on cyl∂Ω . Finally, it 

remains to consider the last equilibrium equation in z-direction on one of the basis, being the other 
end condition automatically satisfied. Therefore, without loss of generality, for 0z =  we can write 
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 (9.43) 

where zN  is the total axial force applied at 0z = . The solutions found above are then able to 

describe the case in which an multilayered cylinder made by n  circular hollow cylinders and a 
central core is loaded by a combination of linear radial pressures,  uniform shear tractions, and axial 
forces applied at the ends. In order to solve the algebraic system constituted by (9.40), (9.42) and 
(9.43), it is convenient to re-arrange the whole (6 4) (6 4)n n+ × +  algebraic system following a 
matrix-based procedure. Indeed, we can collect the known terms in the load vector L  
 { }0 1 00,..., , , ,T p p Nτ=L  (9.44) 

where the only non zero terms are the last four ones, while the unknown parameters ( )
/
i

n kC , here 

renamed as ( )i
kA , can be collected in the vector X  as follows 

      { }(0) (0) (1) (2) (1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 5 1 2 6 1 2 3 4 5 6 1 2 6 0 1, ...,, , , ,..., ,..., , , , , , , ,..., , ,T i i i i i i n n nA A A A A A A A A A A A A A ε ε=X  (9.45) 

so that the set of equations (9.40), (9.42) and (9.43) reads 
 ⋅ =P X L  (9.46) 
where, for simplicity, we have renamed 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 3/0 2 1/1 3 1/ 2 4 2 /1 5 2 / 2 6 0, , , , ,i i i i i i i i i i i iA C A C A C A C A C A w= = = = = = . (9.47) 

and P  is a (6 4) (6 4)n n+ × +  square matrix containing the coefficients /h mP , which are functions of 

both the radii and the elastic moduli of the phases. The explicit expression of the coefficients /h mP  

are reported in detail in the Appendix, section A.2.  It is worth to note that, being the system (9.46) 
of linear and algebraic type, provided that det 0≠P , it is possible to write the solution as follows 
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6 4

1
/

1

1 1, ,
det det

= +
−

=
= = = ∑ɶ ɶT

m n

m h m h
h

X P LX P L P L
P P

 (9.48) 

where adj[ ]=ɶP P  is the adjoint matrix of P  and then the Cramer rule has been employed. The 
possibility to invert the matrix P  is ensured by invoking the uniqueness of the linear elastic 
solution, due to Kirchhoff’s theorem, and investigating the “topological” properties of the elements 
of P . This could appear not immediately evident if one directly tries to see the actual form of P , 
but – on the other hand – it results essential for ensuring the existence of the solutions. For this 
reason, in the present paper, a rigorous proof that, for an arbitrary number of phases, det 0≠P , is 
furnished and detailed in Section 9.7. However, as we will show in a subsequent paragraph, when 
the proposed strategy is applied to a three-phase composed cylinder, an analytical proof that the 
algebraic problem is well-posed is also given by utilizing the Mathematica code [Wolfram, S., 
1998-2005], where the command RowReduce is employed. This command performs a version of 
Gaussian elimination, adding multiples of rows together so as to produce zero elements when 
possible. The final matrix is in reduced row echelon form. If this matrix  is  non-degenerate, as well 
as our case, RowReduce[P ] gives the IdentityMatrix[Length[P ]].  
We need to remark that, by invoking the proposed theorem, the above presented procedure yields to 
construct the whole class of no-decaying solutions for multilayered cylinders, under axis-
symmetrical load conditions. From the mechanical point of view, this means that this no-decaying 
class of solutions is constituted by any combination of z-linearly varying radial pressures, uniform 
shear tractions and axial forces applied at the end basis. As a trivial consequence, we can deduce 
that any other kind of boundary conditions shall be interpreted as producing decaying of the axial 
strain zzε  along the radius direction. 

 
9.6.  Examples of closed-form solutions for “decaying” cases 
 
9.6.1 Field equations 

As previously said, in this section we need to show some possible special cases in which 
multilayered cylinder can exhibit decaying of the strain zzε  along the radius direction. It is worth to 

recall that, while the proposed polynomial bi-harmonic function ( )iχ  results able to describe the 
whole class of elastic solutions in the absence of decaying phenomena, the derived following 
solutions will furnish  a particular class of problems associated with variation of the zzε  along the 

radius direction. These solutions are here constructed in order to predict mechanical responses of 
multilayered cylinder in presence of decaying phenomena. With reference to the obtained solutions 
(9.22), (9.24) and (9.26) and to the above quoted elastic equilibrium equation (9.19), the number of 
unknown parameters of the function( ) ( ) ( , )i i r zχ χ=   for the generic i-th phase become now 24. 

Indeed, for each function ( ) ( )i
kf r  we have four coefficients to determine, that is: 

 ( ) ( ) ( ) ( )
1/ 2 / 3/ 4/, , {0,1,...,5}, ,i i i i

k k k k kC C C C ∈ . (9.49) 

Actually, in order to obtain the displacement and stress field, some parameters appearing in (9.49) 
are unessential, so that it is possible to select as independent unknown coefficients the following 21 
ones 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2/0 3/0 1/1 2/1 3/1 1/ 2 2/ 2 3/ 2 4/ 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1/3 2/3 3/3 4/3 1/ 4 2/ 4 3/ 4 4/ 4 1/5 2/5 3/5 4/5.

, , , , , ,

, , , , ,

, , ,
, , , , , ,

i i i i i i i i i

i i i i i i i i i i i i

C C C C C C C C C
C C C C C C C C C C C C

 (9.50) 

Moreover, in analogy with the section 9.4.1, all the physical quantities referred to the central core 
have to be not divergent at 0r = , so that the coefficients multiplying 1r −  and log r  must vanish. 
Then, the core unknown coefficients reduce to the following ten ones 
 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

2/0 2/1 2/2 4/ 2 2/3 4/3 2/ 4 4/ 4 2/5 4/5, , , , , , , , , .C C C C C C C C C C  (9.51) 
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9.6.2 Equilibrium and compatibility conditions 

We begin by recalling the equilibrium and compatibility conditions (9.39) at the interfacial 
boundaries between every couple of adjacent phases, observing that: 
- the (9.39)1 and (9.39)3 are both constituted by 5 algebraic equations, furnishing 10 overall 

equations; 
- the (9.39)2 and (9.39)4 are both constituted by 6 algebraic equations, furnishing 12 overall 

equations; 
therefore, the total number of  equations becomes 22 n× . Since the assumed mathematical structure 
of ( )iχ  in (9.18) yields tractions on the external cylindrical surface characterized by radial pressures 
at most quadratic with z, as well as linearly varying shear, the Cauchy equilibrium equations are: 
 2

2 1
( ) ( ) ( ) ( )

0 1 0,( ) ( )n n n n
rr rzz p z zr R p p r R τσ τ τ+ += = + = =  (9.52) 

By utilizing the polynomial identity law and then collecting the terms in the powers of z, the (9.52)1   
is constituted  by  5 equations, while the (9.52)2 generates 6 equations, producing 11 overall 
algebraic equations to satisfy on the cylindrical boundary surface cyl∂Ω . Moreover, it remains to 
consider the last equilibrium equation on only one of the end basis of the cylinder (for example 
where 0z = ), therefore 

 
(0 ) ( )

( 1)

2 2(0) ( )

0 0 0
1

( 0) ( 0)
i

i

nR R i
zz zz zR

i

z rdrd z rdrd N
π π

σ θ σ θ
−

=
= + = =∑∫ ∫ ∫ ∫ , (9.53) 

where zN  is  the total axial force applied at 0z = . Finally, we have (22 12)n× +  equations. By 

excluding the parameters related to rigid body motions, we reduce the unknowns to (20 8)n× + , 
that is 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3/ 0 1/1 2 /1 3/1 1/ 2 2 / 2 3/ 2 1/ 3 2 / 3 3/ 3 4 / 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1/ 4 2 / 4 3/ 4 4 / 4 1/ 5 2 / 5 3/ 5 4 / 5

, , , , , , ,

, , , , ,

, , , ,

, , , ,

i i i i i i i i i i i

i i i i i i i i iw

C C C C C C C C C C C

C C C C C C C C
 (9.54) 

for the generic hollow cylindrical phase, while for the core we have the eight parameters 
 (0) (0) (0) (0) (0) (0) (0) (0)

2 /1 2 / 2 2/3 4/3 2 /4 4/ 4 2 /5 4/5, , , , , , , .C C C C C C C C  (9.55) 

Then, by recalling the equations (9.39) it is possible to reduce the unknowns, indeed the following 
parameters vanishes 

 
(0) (0)
2/4 2/5

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3/2 3/3 1/4 2/4 3/ 4 1/5 2/5 3/5 {1,2,..., }.

0,

0,i i i i i i i i i n

C C

C C C C C C C C ∀ ∈

= =
= = = = = = = =

 (9.56) 

from which the number of unknown coefficients becomes (12 6)n× + , represented by those written 
down 

 
(0) (0) (0) (0) (0) (0)
2 /1 2 / 2 2/3 4 /3 4/ 4 4 /5

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3/0 1/1 2 /1 3/1 1/ 2 2 /2 1/3 2 /3 4/3 4/ 4 4/5 0 {1, 2, ..., },

, , , , ,

, , , , , , , , , , , ,i i i i i i i i i i i i i n

C C C C C C

C C C C C C C C C C C w ∈
 (9.57) 

where (9.57)1 represent the unknown coefficients of the core, while (9.57)2 are the unknown 
parameters for the circular hollow cylinders. Finally, it was verified that the number of independent 
equations reduces from (22 12)n× +  to (12 6)n× + , equating the number of unknowns. It is worth 
to note that a peer discussion about the solvability conditions for the general case lies outside the 
interest of the present paper. However, in a subsequent paper, some explicit solutions for 
multilayered cylinder composed by three phases are found, using the results and strategies proposed 
above. Hence, an analogous solving strategy as that developed in section 9.4.2 will be employed for 
obtaining solutions for the discussed decaying case. 
 
9.7.  Some remarks about the present solutions: comparison with established literature data 
for multilayered cylinder  
Object of this section is to highlight some properties characterizing the found exact elastic solutions 
for multilayered cylinder, in comparison with other analytical and semi-analytical results found in 
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literature by following different solving strategies. In the Introduction, it was already mentioned a 
detailed list of works where several interesting solutions have been presented in the framework of 
multilayered cylinder. Here, by leaving out the literature results based on numerical or semi-
analytical approaches, we need to focus the attention on a set of axis-symmetrical solutions 
obtained for laminated composites tubes by Tarn and Wang [75], comparing them with some 
elements emerging from the solutions found in the present paper for isotropic phases, in both 
decaying and no-decaying cases. 
 
9.7.1.  Linear radial pressures and anti-plane shear stresses, with equilibrating axial force 

For seek of simplicity, consider a multilayered cylinder composed by three phases (2n = ), 
geometrically characterized by the radii (0) (1) (2)R R R< < . With reference to the results obtained in 
the previous sections, the system of equilibrium and compatibility equations furnishes a set of 
6 4 16n+ =  algebraic equations, where the unknown parameters X  can be found by specializing the 
coefficients /h mP  for the present case and then inverting the matrix P . If we investigate the case of 

the sole presence of shear stresses 0τ  and linear radial pressure whose slope is 1p , with 

equilibrating axial force at an extremity, the corresponding load vector assumes the following form  

1 0{0,0,0,0,0,0,0,0,0,0,0,0,0, , ,0}T p τ=L . 

By analyzing the position of the non-zero coefficients within the (16 16)-× P  matrix, it is possible to 
extract a (6 6)×  sub-matrix from it, so that the corresponding algebraic system becomes 
homogeneous. As a consequence, the following six unknowns vanish: 

(1) (2) (0) (1) (2)
1/1 1/1 2/1 2 /1 2/1 0 0.C C C C C ε= = = = = =  

Therefore, it is worth to note that load combination constituted by anti-plane shear and linear radial 
pressure is associated with not uniform strain zzε , that is 0 0ε = , while ten remaining non-zero 

unknowns have to be determined , i.e. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 / 2 3/0 1/ 2 2 /2 0 3/0 1/ 2 2/ 2 0 1{ , , , , , , , , , }c j j j j s s s sC C C C w C C C w ε . 

By recalling the equations (9.34)-(9.37), the displacements and stresses for each hollow phase are 

( ) ( ) ( )
( )

( )
( ) ( )1/2

2/2( )

2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
2/2 1 1/2 3/0( ) 1

( )2 ( ) ( ) ( )

2 ,

4 2 2 2 log
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   + − + + +   = + +
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2/2 1 1 2/2( ) ( )1/2 1/2

2 ( ) ( ) 2
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−
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For the core we have 

( ) ( )2 (0) (0) (0) (0) (0) (0)(0) 2
2/2 1(0) (0)2/2 1

( ) (0)2

4 22
, ,

2 4c

r CC r z z
U W

µ λ ε µ µ λε
µ µ

 + − + = − = +  

and 
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( ) ( )

( ) ( )

(0) (0) (0) (0) (0) (0)
2/2 2/2(0) (0) (0) (0) (0) (0)

1 1(0) (0)

(0) (0)
(0) (0) (0) (0) (0) (0) (0) (0) (0)2/2

1 2/2 1(0) (0)

4 4
, , 0,

4
2 , 4 2 .

2

rr r z

zz rz

C z C z
z z

C r
z C

θθ θ θ

µ λ µ λ
σ ε λ σ ε λ τ τ

µ µ
λσ ε µ λ τ λ ε µ µ λ

µ µ

+ +
= − = − = =

 
 = + − = − +   

 

 

Then, if we examine the closed-form solutions found by Tarn and Wang in [75] and specialize them 
to axis-symmetrical laminated tubes constituted by arbitrary isotropic phases, the comparison 
between their results and those proposed here shows that: 1) the general form selected in [75] for 
describing the displacement field doesn’t involve non-linear terms in z, as well as the stresses are 
independent of z; on the contrary, the analytical solution obtained for the case of a multilayered 
cylinder constituted by three phases (it is the same for n arbitrary phases) yields to relax this 
restriction, representing load cases in which radial pressures vary linearly along the axis of the 
composed cylinder; 2) in the work of Tarn and Wang the anti-plane shear is characterized by the 
contemporary  presence of shear tractions applied on both the inner and outer cylindrical surfaces of 
a hollow laminated tube, in which the two shear stresses must satisfy the overall equilibrium 
condition, a bs a s b= , where a  and b  represents the inner and outer radii, respectively, while s is 

the shear. This hypothesis excludes the possibility to have an uniform anti-plane shear prescribed 
only on the external cylindrical surface, that can be equilibrated by an axial force applied on one of 
the two bases of multilayered cylinder, as well as to reproduce the limit case of the presence of a 
core, that is 0a → . The solution illustrated in the previous example is instead able to represent the 
more general case of uniform anti-plane shear on the outer cylindrical surface, with or without shear 
in the object hole. However, further new solutions can be found by considering the decaying cases, 
as those reported in the section 9.5. 
 
9.8. Proof of the existence and uniqueness of the solution associated to the algebraic problem 
related to the matrix P  for multilayered cylinder 
The theorem proposed in the section 9.4.2 has to be considered as a completeness theorem, or - 
equivalently - as an uniqueness theorem for the “mathematical structure” of the solution. Indeed, it 
can be also formulated as follows: 
If there exists a “ zzε -no-decaying” solution for a multilayered cylinder under axis-symmetrical 

load conditions, this solution has to be writeable in terms of a Love’s bi-harmonic function with the 

form 
4

( ) ( )

0

( , ) ( )i k i
k

k

r z z f rχ
=

=∑ , where “i” is the generic phase of the object. 

Moreover, from the demonstration of the theorem, it also emerges that the hypothesis of no-
decaying of the axial strain zzε  leads to discover that it has to be linear along the axis of the 

multilayered cylinder, that is 0 1zz zε ε ε= + . The results of both the theorem and its above mentioned 

consequence are obtained by utilizing the field equations and only some boundary conditions at the 
interfaces between the phases of the object, not involving the whole set of equilibrium and 
compatibility equations at the interfacial surfaces. This authorizes the reader to suspect that the 
above mentioned bi-harmonic function could be too poor for representing effective elastic solutions 
satisfying all the boundary conditions among the phases of a generic multilayered cylinder. 
Therefore, in order to prove the existence, we establish the following: 
 
THEOREM 4: Let us consider a multilayered cylinder, subjected to axis-symmetrical boundary 
conditions and let be zzε ε≡ . The g -no-decaying BVP can be then approached using the 

representation 
4

( ) ( )

0

( , ) ( )i k i
k

k

r z z f rχ
=

=∑ ,  where the functions ( ) ( )i
kf r  are formally determined by 

solving the in-cascade field equations as above. P  is instead the (6 4)n+ -order square matrix 
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characterizing the linear algebraic system from which depends the satisfaction of the whole set of 
boundary conditions (interfacial and external ones). Then, it is possible to prove that: 
 , det 0∀ ∈ ≠n N P , 
which constitutes a necessary and sufficient condition for ensuring the existence. 
 
Proof. 

In order to ensure the existence of the proposed solutions in the form 
4

( ) ( )

0

( , ) ( )i k i
k

k

r z z f rχ
=

=∑ , we 

utilize the results presented in the section 2, thanks to which the boundary value differential 
problem is transformed in the equivalent linear and algebraic problem, whose details are reported in 
the Appendix A.2. In this framework, to prove the existence it will be sufficient to demonstrate that, 
for any arbitrary number of phases ∈n N , the (6 4) (6 4)n n+ × +  square matrix P  exhibits rank 
equal to its order, that is 
 det 0≠P . (9.58) 
To make this, it is convenient to modify the last four rows of P , which respectively represent the 
three equilibrium equations on the external cylindrical surface cyl∂Ω , equations (9.42), and the weak 
equilibrium equation at one of the extremities of the object, equation (9.43). This goal is obtainable 
by substituting the boundary condition (9.43) with an analogous displacement condition at the base 
z L=  and at the centre of the core 
 ( )( 0) 2

0 0 1 0( 0, ) 1 2iW r z L W L L Wε ε= = = = ⇒ + = , (9.59) 

writeable recalling equation (9.35)2, where L  is the total length of the cylinder and 0W  is a 

prescribed displacement value, replacing now the last known term N  in the vector L , equation 
(9.46). This is possible because, as well-known, in linear elastostatic problems each weak condition, 
written with reference to global forces on a selected part of the boundary, can be substituted by an 
equivalent average displacement condition on the same region. By invoking the mean value 
theorem, it is possible to reduce this overall displacement condition to a local one, provided that it 
is referred to a single point belonging to the boundary. This is the case of the equation written 
above, where the chosen point is ( 0, )r z L= = . The second substitution is instead referred to the 
rows coming out from the three mentioned equilibrium equations (9.42). This time, we operate by 
starting from the observation of the specific expressions found for stresses in both the generic i-th 
phase (9.36) and the core (9.37). In particular, we can see that the differences between the 
corresponding stress components for a hollow phase and for the core – with specific reference to 
radial ones (9.37)1 and shear stress (9.37)4 – consist in additional terms that are present for the 
hollow phases, depending upon r  and diverging at the origin. This leads to assume that, at the 
interface between core and first cladding, both the core radial and shear stresses have to satisfy the 
following equations 

 

(0) (0) (0) (0)
(0) (0) (0) (0) (0) (0)

0 2/1 1 2/2 0 0 1 1(0) (0)

(0) (0) (0) (0) (0)
(0) (0) (0)

2/2 1 0(0) (0)

( ) ( )
( ) [ 2 ] [ 4 ] ,

(2 )
( ) [2 ] ,

2

rr

rz

r R C z C p p z

R
r R C τ

λ µ λ µσ ε λ ε λ α α
µ µ

λ µ µ λτ ε α τ
µ λ

+ += = − + − = +

+= = − =
(9.60) 

where the real coefficients 0 1{ , , }τα α α ∈ R  represent scaling factors of the traction values 

0 1 0{ , , }p p τ  prescribed on cyl∂Ω . Due to the above hypotheses, the last four rows of the matrix P  

change. The problem (9.46) can be now rewritten as follows 
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where 

( )×

i
k

m q

P are sub-matrices with m  rows, q  columns and rank 
( )

[ ]ρ
×

=i
k

m q

mP . The superscript i  

denotes the phase of multilayered cylinder, to which the corresponding sub-matrix 
( )×

i
k

m q

P  is related 

and the subscript k  recalls the group of equations collected in the sub-matrix. From the mechanical 
point of view, the row-aligned couple of sub-matrices

( )×

i
k

m q

P and 1

( )

+

×

i
k

m q

P  collect the coefficients related to 

the set of compatibility and equilibrium conditions established between two adjacent phases. 
Moreover, the unknowns vector X  and the load vector L  can be partitioned as shown above. With 
reference to the specific expression of the single coefficients reported in the Appendix A.2, the 
generic couple of non-zero sub-matrices appears as follows 
  

 1

(6 6) (6 6)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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∗ ∗ ∗ ∗ ∗ ∗ 

k k
k kP P  (9.61) 

 
where the symbol * is here used to distinguish the non zero coefficients from those vanishing. It is 
easy to verify that 
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k kk k k k

k k n
R

P P  (9.62) 

as well as 
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The columns-matrices 6 3
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×
 and 6 4
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n
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×
 contain the terms related to the last two unknown 

coefficients, i.e. 0 1{ , }ε ε , and show the non-zero terms in the positions depicted below 
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while 
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Also, we can explicit the following sub-matrices 
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noting that the square (4 4)×  sub-matrix, obtainable extracting from the last four rows of P  the 
non-zero terms, is invertible, that is  
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Finally, O  are rectangular matrices containing only zero terms, with rows and columns deducible 
from their position inside P , while, on the right hand, the sub-vectors

(6 1)
O
×

 collect the vanishing 

known terms. Then, let us consider the partition of the matrix P  and of the vectors X  and L as 
above highlighted by the dashed lines. In order to prove that , det 0∀ ∈ ≠n N P , we first prove that 
it is possible to solve a sub-system (6 6 )n n× , so reducing the effective unknowns to only four, i.e. 

(0) (0)
4 5 0 1{ , , , }A A ε ε , which are located at the first two places and at the last two places of the vector 

X , respectively, as shown by the equation (9.45). Collecting these unknowns in (2 1)×  sub-vectors 
0 (0) (0)

4 5 0 1(2 1) (2 1)
[ , ] , [ , ]T TX A A ε ε ε

× ×
= =  and utilizing the above obtained results 1

(6 6) (6 6)

[ ] [ ] 6ρ ρ −
× ×

= =k k
k kP P , it 

becomes possible to solve the algebraic problem (9.46), by starting from the last four equations and 
then solving in cascade the other ones.  Thus, we first solve the following sub-system, obtaining 
  
 1

(4 1)(4 4) (4 1)

−

×× ×
= ⇒ =X t X tS S S SS S  (9.68) 
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where X S  collects the unknowns vectors 0 (0) (0)
4 5 0 1(2 1) (2 1)

[ , ] , [ , ]T TX A A ε ε ε
× ×

= =  and tS  the 

corresponding  non-zero terms, 0 0 1 1 0 0[ , , , ]Tt p p Wτα α α τ=S . 

Finally, it remains to solve the (6 6 )n n×  sub-system, that can be arranged as follows 
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 from which we obtain 
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where 1 2 3, , ,..., np p p p  collect the first n  couples of (6 1)×  vectors 6 3 6 4

(6 1) (6 1)

n n
k kp p+ +

× ×

 
 
 

, corresponding 

to the proposed upper-right partition of P . It is worth to note that, to make consistent the above 
given solutions for the first n  unknowns vectors ( )

(6 1)

kX
×

, both the sub-matrices 1
(6 6)

−
×

k
kP  and 

(6 6)×

k
kP  have to 

be invertible. In fact, only this condition ensures that, for each 1 k n≤ ≤ , all the possible alternated 
products of those matrices and their inverse still give (6 6)×  invertible square matrices. The proof 
of the existence is then complete.  
 
9.9.  Conclusions 
In this paragraph it is furnished a general approach to construct exact elastic solutions for 
multilayered cylinder, made of a central core and n arbitrary cylindrical hollow homogeneous and 
isotropic phases. The hypothesis of axis-symmetrical boundary conditions was here assumed in 
order to analyze a class of elastic problems which present no-decaying of selected mechanical 
quantities and in particular of the axial strains zzε  in the radial direction, being z the axis of the 

laminated cylinder. To construct a robust mathematical procedure for obtaining exact elastic 
solutions for the above mentioned axis-symmetrical multilayered cylinder, it was first given a 
theorem for qualifying the space of the solutions and then it was identified their mathematical form, 
when the object exhibits no-decaying of the axial strain. Therefore, with reference to the generic i-
th phase of the material, the classical Boussinesq-Somigliana-Galerkin vector has been specialized 
to torsionless composite cylinders characterized by no-decaying of the axial strain: following this 
way, a special form of the bi-harmonic Love’s function ( ) ( , )i r zχ  was finally obtained. A main 
result was that – for these problems - is always possible to reduce the differential boundary value 
problem (BVP) to an equivalent linear algebraic one, first solving an in cascade one-dimensional 
Euler-like differential system (field equations) and then writing the boundary conditions by means 
an algebraic system ruled by a (6 4)n+ -order square matrix P . To seek of completeness, 
constructive and existence theorems and properties were formulated and proved, in order to show 
the effectiveness of the proposed method and exclude ill-posed problems. 
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We need to highlight that some results reported in the above cited literature are given for 
multilayered cylinders, introducing some specific assumptions that are instead here relaxed. In 
particular, these hypotheses can be summarized in the following points: (i) the stress field of the 
composite tube is always assumed to be independent from z- axis: when this hypothesis is removed, 
a semi-analytical finite element formulation is adopted;  (ii) the found solutions in the works  
mentioned in  the introduction are all related to tubes constituted by cylindrical layers without a 
central core: this apparently surmountable hypothesis about the geometry of the object is actually 
fundamental for the goal of the present paper. Indeed, the cited assumption leads to relate both the 
in-plane and anti-plane shears applied on the inner and outer surfaces of the tube, producing zero 
traction if one of those vanishes; (iii) by starting from an assumption firstly made by Lekhnitskii 
[Lekhnitskii, S. G., 1981], Tarn et al, for example, image that not varying traction along the z- axis 
authorize them to choice so the stress field. This is – in general – incorrect: an example is furnished 
in the present work, with reference to the case of uniform anti-plane shear and axial force; (iv) the 
solutions proposed by Tarn et al take a sole scalar parameter ε  for representing axial strain in z-
direction within the laminated object for each phase: this assumption doesn’t cover all the possible 
axis-symmetric boundary value problems characterized by no-decaying of that strain component, 
because – as demonstrated by us – to find the whole class of solutions with no-decaying zzε  it is 

necessary to include stress and strain fields depending upon z. By exceeding some of the above 
problems, the new approach proposed in the present work gives then two important advantages. The 
first one is related to the possibility of obtaining closed-form solutions for an arbitrary number of 
phases of multilayered cylinder, being these solutions furnished by means of a “chain” of (6 6)×  
known matrices. Indeed, this approach, differently from that one suggested by Tarn and other 
authors, that requires the study of eigensolutions, yields to invert the matrix in a symbolic way, 
regardless the number of phases. This makes possible to obtain qualitative and quantitative 
information on the mechanical response of laminated cylinders composed by many layers. The 
second advantage is constituted by the fact that several theorems and properties was here proved for 
establishing the well-position, existence and uniqueness of the algebraic problem obtained 
transforming the original differential boundary value problem for the laminated composite with core 
in an algebraic one, also investigating the consistency of the problem of seeking zzε -no-decaying 

solutions, particularly important for many engineering applications. 
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9.11. Appendix A.1 : Mathematical conditions for strain no-decaying in multilayered cylinder. 
Object of this appendix is to prove the following property, already given in this chapter of the 
present thesis: 
 
PROPERTY 1: Let us consider a multilayered cylinder subjected to axis-symmetrical boundary 
conditions and let be hkε ε≡ , where hkε  is an arbitrarily chosen strain component. Then, the  

necessary condition  for obtaining ε -no-decaying is that those strain components exhibit at most a 
third-order polynomial function of z. In particular, it is possible to obtain the following necessary 
conditions for each strain: 

i) ( ) ( ) ( ) ( ) ( ) 2 ( ) 3
0 1 2 3{0,1,2,..., }, ( ) i i i i i i

zz zz zzi n z k k z k z k zε ε ε ε∀ ∈ ≡ = ⇒ = + + +  

ii) ( ) ( ) ( ) ( ) ( ) 2 ( ) 3
0 1 2 3{0,1,2,..., }, ( ) i i i i i i

rr rr rri n z k k z k z k zε ε ε ε∀ ∈ ≡ = ⇒ = + + +  

iii) ( ) ( ) ( ) ( ) ( ) 2 ( ) 3
0 1 2 3{0,1,2,..., }, ( ) i i i i i ii n z k k z k z k zθθ θθ θθε ε ε ε∀ ∈ ≡ = ⇒ = + + +  

iv) ( ) ( ){0,1,2,..., }, ( ) 0i i
rz rz rzi n zε ε ε ε∀ ∈ ≡ = ⇒ =  

where ( ) ( ) ( ) ( )
0 1 2 3, , ,i i i ik k k k  are real coefficients depending from the i-th phase.  

 
Proof.   Begin by first considering the condition i). Let us assume ( ) ( ) ( )i i

zz zε ε= , where the 

superscript “i” is referred to the generic i-th phase of the object and ( ) ( )i zε  is a continuous real 

scalar function. By virtue of (5.2.7) and (5.2.8)2 it is possible to obtain ( )i
zzε  as follows 
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                        ( )
( )

( ) ( ) 2 ( ) ( ) 1 ( ) ( )
, ,( ) ( ) ( ) ,

1
( ) [ ] ( )

2 ( )

i
i i i i i i

zz rrz rzi i i z
z r z

µε ε χ χ χ ε
µ µ λ

−= ⇒ ∇ + + =
+

. (A1.1) 

Therefore, by adding and subtracting ( )
,
i
zzzχ  inside the square parentheses at the left hand of (A1.1), 

we have 

 ( ) ( ){ }( ) ( )( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )
,,

2 2 1 2 ( )i i i i i i i i i
zzzz

zµ λ µ µ λ χ µ χ ε   + + ∇ = +       (A1.2) 

and, after integrating in z, we can write 

  ( ) ( ){ } ( )( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )
, 12 2 1 2 ( ) ( )i i i i i i i i i i
zz z rµ λ µ µ λ χ µ χ ε γ   + + ∇ = + +   
ɶ , (A1.3) 

where ( ) ( )( ) ( )i iz z dzε ε= ∫ɶ , while ( )
1 ( )i rγ  represents an adding function of r . By applying the 

Laplace differential operator to both the sides in (A1.3) and recalling that 4 ( ) 0iχ∇ = , the right hand 
in (A1.3) has to vanish, that is: 
 2 ( ) ( ) ( ) 1 ( ) ( )

, , 1, 1,( ) 2 [ ( ) ( ) ( )] 0i i i i i
zz z r rrz r r rχ µ ε γ γ−∇ + + + = .  (A1.4) 

If we integrate two times the (A1.4) with reference to z, we have 

 ( )2 ( ) ( ) ( ) 1 ( ) ( ) 2 ( ) ( )
1, 1, 2 32 ( ) ( ) ( ) ( ) ( )i i i i i i i

r rrz r r r z r z rχ µ ε γ γ γ γ− ∇ = − + + + + 
ɶ                (A1.5) 

where two new functions ( )
2 ( )i rγ  and ( )

3 ( )i rγ  appear. Substituting (A1.5) into (A1.3) and then 

integrating two times again in z, we finally obtain 

       

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 4

( ) ( ) 1 ( ) ( )
1, 1,( ) ( ) ( ) ( )

( ) 2( ) 3( ) ( )
( ) ( ) 2 ( ) ( )32

1 4 5( ) ( )

2 3 2 2
( , ) ( ) ( ) ( )

12

( )( )2
( ) ( ) ( )

6 2

i i i i i i

i i i i
r rri i i i

iii i
i i i i

i i

z
r z z r r r

r zr z
r z r z r

µ µ λ µ λ µ
χ ε γ γ

µ λ µ λ

γγµ λ µ γ γ γ
µ λ

−
+ +  

= − − + + + +  

  ++ + − + +  +  

ɶɶɶ

 (A1.6) 

where two new functions ( )
4 ( )i rγ  and ( )

5 ( )i rγ  appear.  The unknown functions ( ) ( ), {1,...,5}i
j r jγ ∈  

have to be determined, while ( ) ( )( ) [ ( ) ]i iz z dz dzε ε= ∫ ∫
ɶɶɶ ɶ . Substitution of (1.VI) in the bi-harmonic 

condition leads 

     
4 ( ) ( ) ( ) ( ) 2 3 ( ) 2 ( ) 1 ( ) ( )

, 1, 1, 1, 1,

1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )
2, 2, 3, 3, 1, 1,

0 2 ( ) [ ( ) ( ) 2 ( ) ( )]

[ ( ) ( )] ( ) ( ) 2 [ ( ) ( )] 0,

i i i i i i i i
z r rr rrr rrrr

i i i i i i
r rr r rr r rr

z z r r r r r r r

z r r r r r r r r r

χ µ ε µ γ γ γ γ

γ γ γ γ µ γ γ

− − −

− − −

∇ = ⇒ − − − + + +

+ + + + − + =

ɶ
 (A1.7) 

from which, by applying the polynomial identity law, the differential equations shown below have 
to be satisfied 

 

3 ( ) 2 ( ) 1 ( ) ( ) ( )
1, 1, 1, 1, 3

1 ( ) ( ) ( )
2, 2, 2

1 ( ) ( ) 1 ( ) ( ) ( )
3, 3, 1, 1, 1

( ) ( ) 2 ( ) ( )

( ) ( )

( ) ( ) 2 ( ( ) ( ))

i i i i i
r rr rrr rrrr

i i i
r rr

i i i i i
r rr r rr

r r r r r r r

r r r

r r r r r r

γ γ γ γ ε

γ γ ε

γ γ µ γ γ ε

− − −

−

− −

 − + + =
 + =
 + − + =

 (A1.8) 

where ( ) , {1,2,3}i
k kε ∈ , are arbitrary constants. By solving the ordinary differential system (A1.8) 

the explicit expression of the functions ( ) ( )i
j rγ  are obtained in the following form 

              

( )2 ( ) 2 ( ) ( ) ( ) ( ) 2
3 1/3 1/ 2( ) ( ) ( )1/3

1 1/1 1/ 4( )

( ) 2
( ) ( ) ( )2
2 2 /1 2/ 2

( ) 4
( ) 2 ( ) ( ) ( ) ( ) ( )3
3 1 1/ 2 1/3 3/1 1/3

16 2
( ) log ,

64 2

( ) log ,
4

1
( ) [ 2 (2 )] log

32 4

i i i i i
i i i

i

i
i i i

i
i i i i i i

r r r
r r

r
r r

r
r r r

ε µ
γ

µ
εγ

εγ ε µ

 + Γ − Γ  Γ = − + Γ + + Γ 
 

= + Γ + Γ

= − + + Γ − Γ + Γ + Γ( ) ( ) 2 ( )
3/ 2log ,i i ir rµ + Γ

    (A1.9) 
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in which ( )
/
i
j mΓ  are other constants to determine. The notation utilized here for the characterization of 

the coefficients ( )
/
i
j mΓ  must be read in this manner: the superscript ( )i  is referred to the material 

phase i-th, the second subscript m  tell us the order number of the integration constant, the first 
subscript j  is related to the corresponding function ( ) ( )i

j rγ . By substituting the results (A1.9) into 

(A1.7) we find an ordinary linear differential equation in the unknown function ( ) ( )i zε , i.e.: 

 ( ) ( ) ( ) 2 ( ) ( )
1 2 3 ,2 ( ) 0i i i i i

zz z zε ε ε µ ε+ + − = .      (A1.10) 

Integrating the (A1.10) we easily obtain 

  
( )( ) ( )

( ) ( ) 2 331 2
0 ( ) ( ) ( )

( )
2 4 6

ii i
i i

i i i
z z z z

εε εε ε
µ µ µ

= + + +  (A1.11) 

where ( )
0
iε  is a constant. The equation (A1.11) represents the searched result. However, for 

completeness, the explicit form of the other remaining functions can be determined. Indeed, the 
substitution of (A1.9) and (A1.11) into (A1.6) and then into (A1.7), permits to obtain the following 
two uncoupled differential equations 

                        
( ) ( )

3 ( ) 2 ( ) 1 ( ) ( ) 2
4, 4, 4, 4, ( ) ( )

( ) ( ) 2 ( ) ( ) 0
i i

i i i i
r rr rrr rrrr i i

r r r r r r r
ε µγ γ γ γ

µ λ
− − −− + + + =

+
 (A1.12) 

               ( )
3 ( ) 2 ( ) 1 ( ) ( )

5, 5, 5, 5,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 2
1 1/ 2 1/3 1/33

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( )

2 2 4 log
0.

2( )

i i i i
r rr rrr rrrr

i i i i i i i ii i

i i i i

r r r r r r r

rr

γ γ γ γ

µ ε λ µ λε λ
µ λ µ λ

− − −− + + +

 − Γ + Γ − Γ + + =
+ +

 (A1.13) 

from which, by invoking again the identity polynomial law, the solutions are found as follows: 

           
( )2 ( ) ( ) ( ) 2( ) ( ) 4

4 /2 4 /3( ) ( ) ( )4/32
4 4/1 4/ 4( ) ( )

2 log
( ) log

64( ) 4 2

i i ii i
i i i

i i

r r rr
r r

ε µγ
µ λ

Γ − Γ Γ= − + Γ + + + Γ
+

 (A1.14) 

            ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )( ) ( ) 6 ( ) ( ) ( )
0 1/3 1/ 2( ) 3 1/3

5 ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) 2
5/ 2 5/3( ) ( )5/3

5/1 5/ 4

4 log
( )

1152 64 16

2 log
log .

4 2

i i i i ii i i i i
i

i i i i i i

i i i
i i

r r
r

r r r
r

µ ε λε λ µ λγ
µ λ µ λ µ λ

 + Γ − Γ Γ = − + − +
+ + +

Γ − Γ Γ+ Γ + + + Γ

 (A1.15) 

It is worth to note that, in order to satisfy the hypothesis ( ) ( ) ( )i i
zz zε ε= , two last relationships have to 

be still ensured: they are obtainable by substituting the above obtained functions ( )i
jγ  into (A1.1) 

                
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2/1 2/ 2 0( ) ( ) 2 /1
4 / 2 4/3( ) ( ) ( ) ( )

2 4 2
, ,

4 2

i i i i i i i i
i i

i i i i

µ ε µ λ µ
µ λ µ λ

 Γ − Γ + + Γ Γ = Γ = −
+ +

 (A1.16) 

from which ( )
4 ( )i rγ  takes the final form 

  
( )( ) 2 ( ) ( ) ( ) ( ) ( )( ) ( ) 4

0 2/1 2/ 2( ) ( ) ( )2
4 4 /1 4 /4( ) ( ) ( ) ( )

2 (2 ) 1 log
( ) log

64( ) 4( )

i i i i i ii i
i i i

i i i i

r rr
r r

µ ε µ λε µγ
µ λ µ λ

 + + Γ − − Γ−  = + Γ + + Γ
+ +

. (A1.17) 

By utilizing the above obtained results, we can see that the function ( )iχ  exhibits a sixth-order 
polynomial form in z, where the corresponding coefficients are represented by functions that vary 
only upon r . In order to demonstrate the conditions ii)  and iii) , it is possible to follow a way similar 
to that considered above. Indeed, with reference to the no-decaying of the radial strain, we can start 
from the equation 

                                                         ( ) ( )
,( )

1
( )

2
i i

rr rrzi
zε χ ε

µ
= − =                               (A1.18) 

and then integrate one time respect to z and two times along the radius r , so that 
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                            ( ) ( ) ( ) ( )( ) ( ) ( ) 2 ( ) ( ) ( )
0 1 2, ( )i i i i i ir z z r r z r zχ µ ε α β β= − + + +ɶ ,                               (A1.19) 

where ( ) ( )( ) ( )i iz z dzε ε= ∫ɶ , while ( )
1 ( )i zβ  and ( )

2 ( )i zβ  represent two adding function of z and 
( )
0 ( )i rα  is a function of r . Recalling that ( )( ) ,i r zχ  has to be a bi-harmonic function and invoking 

the identity polynomial law, by means of some algebraic manipulation we obtain: 

 

( ) ( )

( )

( ) ( ) ( ) ( ) 2 ( ) 3 ( ) ( )
1 2 3 4 1 0

( ) ( ) ( ) ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) ( ) 5 ( ) ( ) 6
2 0 1 2 3 4 5 3 4

( ) ( ) ( ) ( )
( ) 2 ( ) 2 ( ) ( )2 3 3 2
0 1 4 0

2 3 4 , ,

2 4
,

5 15

2 2
( ) log log

4 2

i i i i i i i

i i i i i i i i i i i

i i i i
i i i i

z A A z A z A z z B

z C C z C z C z C z C z A z A z

D D D A
r r D r r r D B r

ε β

β µ µ

µα

= + + + =

= + + + + + + +

−= + + + − +
( ) ( )

4 ( ) ( ) 64
4

3 1
,

8 24

i i
i iC

r A rµ− +

  

(A1.20) 
where ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 4 0 0 5 1 4{ ,..., , , ,..., , ,..., }i i i i i i iA A B C C D D  are real coefficients to determine and the equation 

(A1.20)1 represents the needed result. An analogous line of reasoning can be introduced to 
demonstrate the necessary condition for no-decaying of the hoop strain θθε . Indeed, by assuming 

that 

            ( )( ) ( )
,( )

1

2
i i

rzi
z

rθθε χ ε
µ

= − = ,              (A1.21) 

and integrating respect to the two field variables, we obtain 
 ( ) ( ) ( )( ) ( ) 2 ( ) ( )

0 0, ( )i i i ir z z r r z rχ µ ε α β= − + +ɶ  (A1.22) 

where ( )
0
iα  and ( )

0
iβ are scalar function to determine and ( ) ( )( ) ( )i iz z dzε ε= ∫ɶ . Imposing that the 

Love’s function ( )( ) ,i r zχ  has to be bi-harmonic, a very similar to (A1.20) set of solutions can be 

written 

( )

( )

( ) ( ) ( ) ( ) 2 ( ) 3
1 2 3 4

( ) ( ) ( ) ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) ( ) 5 ( ) ( ) 6
0 0 1 2 3 4 5 3 4

( ) ( ) ( ) ( ) ( ) ( )
( ) 2 ( ) 2 ( ) ( ) 42 3 3 2 4
0 1 4 0

2 3 4 ,

2 4
,

5 15

2 2 3
( ) log log

4 2 8

i i i i i

i i i i i i i i i i i

i i i i i i
i i i i

z A A z A z A z

z C C z C z C z C z C z A z A z

D D D A C
r r D r r r D B r r

ε

β µ µ

µα

= + + +

= + + + + + + +

− −= + + + − + ( ) ( ) 6
4

1
,

24
i iA rµ+

  

(A1.23) 
where ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 4 0 0 5 1 4{ ,..., , , ,..., , ,..., }i i i i i i iA A B C C D D  are real coefficients to determine and the equation 

(A1.23)1 is the needed result. It is finally worth to note that, in both the cases of no-decaying of 
radial and hoop strains, the strain components appear to be at most characterized by a third-order 
polynomial function upon z and, as a consequence, the Love’s function ( )( ) ,i r zχ  has to possess at 

most a sixth-order polynomial structure in z. At the end, we investigate on the consequences of the 
assumption of no-decaying of the strain ( )i

rzε . Begin by the Love’s function giving the following 

relationship: 

                         ( ) ( )
( ) ( )

( ) 2 ( ) ( ) ( ) ( )
, ,( ) ( ) ( )

,

1 2

2 2( )

i i
i i i i i

rz zz zzzzi i i

r

z g z
µ λε χ χ ε

µ µ λ
 += ∇ − = = + 

.                   (A1.24)  

Then, by integrating along the radius we obtain 

                                      ( )
( ) ( )

2 ( ) ( ) ( ) ( ) ( )
, , 0,( ) ( )

2
2 ( )

2( )

i i
i i i i i

zz zzzz zzi i
g z r z

µ λ χ χ µ α
µ λ

+ ∇ − = +
+

 (A1.25) 

and, by applying the Laplace differential operator to both the sides in (A1.25) and recalling that  

( )( ) ,i r zχ  is a bi-harmonic function, we can write 

                               ( ) ( )2 ( ) ( ) ( ) ( ) 1 ( )
, 0, ,,

2 ( ) ( )i i i i i
zzzzzz zzzz zzzzzz

g z r z r g zχ µ α −∇ = − − − .                             (A1.26) 
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By integrating again two times respect to z, the Laplacian of the Love’s function ( )( ) ,i r zχ  assumes 

the following form: 
                       ( )2 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )

, 0, , 1 22 ( ) ( ) ( ) ( )i i i i i i i
zzzz zz zzg z r z r g z r z rχ µ α β β−∇ = − − − + + . (A1.27) 

By substituting (A1.27) into (A1.25), we have: 

            
( )

( )

( ) ( )
( ) ( ) ( ) ( ) 1 ( ) ( ) ( )

, , 0, , 1 2( ) ( )

( ) ( ) ( )
, 0,

2
2 ( ) ( ) ( ) ( )

2( )

2 ( ),

i i
i i i i i i i

zz zzzz zz zzi i

i i i
zzzz zz

g z r z r g z r z r

g z r z

µ λχ µ α β β
µ λ
µ α

−+
 = − + + + + +

− −
   (A1.28) 

so that, integrating two times on  z, we finally obtain 

          
( )

( )

( ) ( ) 3 2
( ) ( ) ( ) ( ) 1 ( ) ( ) ( )

, 0 1 2( ) ( )

( ) ( ) ( ) ( ) ( )
, 0 3 4

2
2 ( ) ( ) ( ) ( )

2( ) 6 2

2 ( ) ( ) ( )

i i
i i i i i i i

zzi i

i i i i i
zz

z z
g z r z r g z r r

g z r z r z r

µ λχ µ α β β
µ λ
µ α β β

− += − + + + + +  

− − + +
 (A1.29) 

where ( )
0
iα  and ( )i

kβ  are arbitrary functions to determine. At the end, by imposing again into (A1.29) 

that ( )2 ( ) , 0i r zχ∇ =  and invoking the identity polynomial law, we reach the following result: 

 ( ) ( )( ) ( ) ( ). 0.i i i
rzg z const zε ε= ⇒ = =  (A1.30) 

In conclusion, the obtained results can be interpreted from the two following points of view: 
1) as necessary conditions to have possible strain no-decaying solutions for multilayered cylinder 
under axis-symmetrical boundary conditions: in other words this means that, if an arbitrary strain 
component is assumed to be not varying along the radius of the laminated composite cylinder, it can 
exhibit – in each phase of the object - at most a third-order polynomial form in z; 
2) as existence conditions for deformations in a single layer material: this means that, with reference 
to a hollow homogenous and isotropic solid of revolution under prescribed axis-symmetrical 
boundary conditions, elastic solutions where an arbitrary strain component is assumed to be 
independent from r  are admissible if and only if that strain component is at most a third-order 
polynomial function of z. 
 
9.12. Appendix A.2 : Explicit expression of the coefficients /h mP  of the matrix P  for n 
arbitrary phases. 
For the case of multilayered cylinder constituted by a central core and n hollow phases, the elastic 
axis-symmetrical solutions for the above described load conditions are related to the solution of the 
algebraic linear system reported in section 9.5, where the (6 4) (6 4)n n+ × +  matrix P  is 

             

1/1 1/ 2 1/ 6 5 1/ 6 4 1/ 6 1/ 6 1 1/ 6 4

2 /1 2 / 2 2 / 6 5 2 / 6 4 2 / 6 2 / 6 1 2 / 6 4

6 5 /1 6 5 / 2 6 5 / 6 5 6 5/ 6 4 6 5 / 6 6 5 / 6 1 6 5 / 6 4

6 4 /1 6 4 / 2 6 4 / 6 5 6 4 /

− − + +

− − + +

− − − − − − − − + − +

− − − − −

=

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯

i i i n n

i i i n n

i i i i i i i i i n i n

i i i i i

P P P P P P P
P P P P P P P

P P P P P P P
P P P P

P
6 4 6 4 / 6 6 4 / 6 1 6 4 / 6 4
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CHAPTER  X  
MULTILAYERED  CYLINDER  UNDER SAINT-VENANT’S  LOADS AND 

HOMOGENIZATION:  POISSON EFFECT ON STIFFNESS  
 
10.1.  Introduction 
Object of the chapter is to show exact analytical solutions for the elastic response of a long solid 
circular cylinder, composed by the assembly of a central core and of n hollow surrounding tubular 
phases of different homogeneous elastic materials, under De Saint Venant load conditions, and to 
obtain for the whole solid a one-dimensional homogenised beam description.  
The solution for case of shear and bending is exact and new for this type of heterogeneous material, 
and is hence useful for the comparison with other simplified solutions already existing in literature. 
The adopted procedure, that for this multilayered cylinder gives homogenised elastic relationships 
between generalised stresses and strains in cases of axial force, torque, bending and shear, is 
particularly useful to highlight the possible large increase of the homogenised stiffness due to 
composition of specific base materials having selected values of Poisson modulus. The case of 
negative Poisson’s modulus is considered, since such type of material deriving from particular 
microstructures or work processes induces relevant effects on the heterogeneous material. At the 
end, some example applications are shown for two phase material, and carried out suitable 
sensitivity analyses. Multi-phase long cylinders constituted by n∈N  hollow layers enveloping a 
central core  have been extensively studied in recent literature works because their geometry is 
often met in many man-made and chemically synthesised materials and biological structures, at 
different scale levels (Figure 1). Cylindrical shells are indeed often used as basic structural 
components in engineering applications and, in order to derive macroscopic mechanical behaviours 
of these composites, much research has been conducted on isotropic or laminated composite plates 
and shells, also with reference to thermo-elastic problems involving functionally graded ideally 
infinite hollow cylinders. In particular, Liew et al. [1] obtained analytical solutions of a functionally 
graded circular cylinder by a novel limiting process that employs the solutions of homogeneous 
circular hollow cylinders. Shao [2] derived analytical solutions for mechanical and thermal stresses 
of a FGMC with finite length, and Mian, Abid and Spencer [3] determined some results for 
isotropic laminated FGMs with specific variation of the elastic moduli in the direction of the axis of 
the object. Meharabadi and Cowin [5] and Yoou et al. [6] widely discussed about the elasticity 
tensor of the FGM as non-homogeneous materials. Recently, some new results were obtained for 
non-homogeneous and anisotropic materials by using a Stress-Associated Solution theorem by 
Fraldi and Cowin [4], and Alshits and Kirkhner [7] derived some elastic solutions for radially 
inhomogeneous and cylindrically anisotropic circular cylinders, where no variations of the stresses 
along the axis of the cylinder are assumed. Other interesting results for laminated composite tubes 
are obtained by Chouchaoui & Ochoa [8], Chen et al, [9], Tarn [10] and Tarn & Wang [11]. In 
particular, these last two authors, by employing the state space approach, starting from results by 
Lekhnitskii [12], constructed analytical solutions for several elastic problems with constant stresses 
along the axis of the tube, also assuming cylindrically anisotropy for each phase. Moreover, Huang 
and Dong [13] analysed elastic response of a laminated circular cylinder with the most general form 
of cylindrical anisotropy. With reference to specific properties of the solution in terms of strains 
related to applications in the field of fiber optic sensors, Fraldi, Nunziante and Carannante derived 
analytical solutions for multilayered cylinder under axis-symmetry boundary conditions [16,17]. 
Starting from these just mentioned results, in the present chapter the same authors further generalize 
the previous work, by developing an analytical approach to find exact elastic solutions for 
multilayered cylinder composed of isotropic constituents and determining the analytical response in 
terms of displacements and stresses for all the De Saint Venant (DSV) load conditions, that is axial 
force, torque, pure bending and combined bending moment and shear actions [18,19] 
By essentially following the line of reasoning adopted in [16], the solution strategy is unitarily 
constructed for all the DSV load cases separately, by first transforming the Navier-Cauchy 
equilibrium problem to be written on each phase of multilayered cylinder in a system of Euler 
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Partial Differential Equations (PDEs) and finally, through the interfacial compatibility and 
equilibrium equations and the weak conditions on the resultants at the object extremities, by 
reducing the problem to a corresponding algebraic system of equations ruled by a matrix whose 
coefficients are parametrically dependent on geometrical and elastic phase parameters (i.e. phases 
radii and Young and Poisson ratios), for each of the DSV loading obtaining an a-priori matrix rank 
( (2 2)n+  for the axial force, (3 2)n+  in case of pure bending, and (5 3)n+  for combined shear 
forces and bending moments).   
Successively, on the basis of the found analytical solutions, a homogenization procedure is adopted 
in order to obtain the overall constitutive elastic laws for multilayered cylinder, in this way deriving 
the exact one-dimensional model characterized by the axial stiffness, flexural rigidity, shear 
deformability and torsional stiffness relating beam’s generalized stresses and strains. By virtue of 
the closed-form solutions, the localization procedure is also illustrated, with the aim of tracing 
actual stress fluctuations and peaks in each phase as functions of the geometrical and mechanical 
parameters of the object constituents, particularly needed to guess detachment at the material 
interfaces and to predict or design mechanical performance of the composite material. For this 
purpose, at the end, playing with the Poisson ratios of adjacent phases, some counterintuitive and 
engineering relevant results - already highlighted in some recent papers - are shown with reference 
to unexpected increasing of overall stiffness of multilayered cylinder, which apparently violate the 
universal Hashin-Shtrikman bounds [24,25]. 
 
10.2.  Basic equations for multilayered cylinder under De Saint Venant load conditions 
In this section the DSV problem is specialized to multilayered cylinder, for which elastic solutions 
under the action of any arbitrary combination of axial forces, bending moment and shear, torsion 
are obtained in closed-form, by partially using some results already found in the case of axis-
symmetry [16] and starting from the Lekhnitskii formalism to determine the mathematical form of 
displacements and stresses in each object phases for the cases of torsion, pure bending and shear 
[11-12]. Then, let us consider a solid cylinder composed by a central core and by n cylindrical 
hollow phases, each of them constituted by different homogeneous and linearly isotropic materials, 
perfectly bonded at the interfaces (figure 2). The geometry of the object suggests cylindrical 
coordinates { , , }r zθ  as natural frame, z representing the axis of the compound cylinder. Under the 
hypothesis of small deformation, compatibility equations relating strains and displacements are 
given for each phase by 

                      
( ) ( ){ }( ) ( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( )

, , , , , , , , ,, , , , ,i i i i i i i i i i i i
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− − −= + + + − +ε  (2.1) 

where ( ) ( ) ( ) ( ){ , , }i i i i
r zu u uθ≡u  and ( )i

ε , are displacement vector and strain vector into the generic i-

phase, respectively. Linearity for constitutive elastic relationships of each isotropic material phase is 
assumed, namely Hooke’s law is satisfied:  
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                        (2.2) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ){ , , , , , }i i i i i i i
rr zz z rz rθθ θ θσ σ σ τ τ τ=σ , is the stress vector corresponding to the Cauchy stress 

tensor ( )iT in the generic i-phase, ( ) ( ),i iµ λ  are Lamè constants. In the cylindrical reference system, 
in absence of body force, equilibrium equations become: 



Chapter X – Multilayered cylinder under Saint-Venant’s loads and homogenization 

                                                                                                                                F. Carannante 
 

168 

 

( )
( )
( )

( ) 1 ( ) ( ) ( ) ( )
, , ,

( ) ( ) 1 ( ) ( ) ( )
, , ,

( ) 1 ( ) ( ) ( )
, , ,

2

i i i i i
rr r r rr rz z

i i i i i
r r r z z

i i i i
rz r z rz zz z

r

r

r

θ θ θθ

θ θθ θ θ θ

θ θ

σ τ σ σ τ

τ σ τ τ

τ τ τ σ

−

−

−

 + + − +
 
 ∇ ⋅ = + + + =
 
 + + + 

T 0 (2.3) 

By substituting equations (2.1)-(2.2) in to equilibrium equations (2.3), we obtain for each phase the 
Navier-Cauchy equilibrium equations in cylindrical coordinates: 
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where ( ) ( ) 1 ( ) 1 ( ) ( )
, , ,

i i i i i
r r r z zu r u r u uθ θ

− −∇⋅ = + + +u  is the divergence of the displacement field and 
2 2 1 2 2 2/r r r r zθ− −∇ = ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂  represents the Laplace differential operator. Then the 

displacement field ( )iu  constituting the elastic solution of the problem, must satisfy equations (2.4) 
in each phase. Moreover, the strain ( )i

ε obtained through compatibility relations from field ( )iu , by 
means of Hooke relationships generates the stress field ( )i

σ . Projection of stress ( )i
σ  onto boundary 

must satisfy there equilibrium conditions of de Saint Venant type, as reported below. We will show 
in the following, the boundary equations at the interfaces between the two adjacent i-th and (i+1)- th 
phases, and  boundary conditions of equilibrium on the external cylindrical surface and on the end 
bases. Compatibility and equilibrium equations at every interface, are: 
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Boundary Cauchy equations on the external cylindrical  surface, (i n= ), reads: 
 ( ) ( ) ( ) ( ): 0 , 0, 0n n n n

rr rz rr R θσ τ τ= = = =  (2.6) 

Finally, it remains to consider the equilibrium equations on the bases 0z =  and  z L= . On both 
bases we have, with suitable choose of sign, 
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where , ,x y z zT T N ,M , are shear forces, axial force and torque couple, applied on the bases, 

respectively. Equilibrium equations about axes x  and y  for base 0z =  give the bending couples: 
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and for base z L= , equilibrium equations about axes x  and y  give: 
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(2.9) 

In what follows, it is proved that two distinct classes of displacement potentials are completely able 
to describe the whole set of solutions for multilayered cylinder under DSV load conditions, that is 
an irrotational displacement field derived by restricting the Love’s function to the case of axial 
force, and a solenoidal displacement field, representing all the remaining loadings, i.e. torque and 
combined bending and shear forces. 
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Fig. 10.1 - Selected examples of multilayered cylinder: Osteon microstructure (top-left); Arterial 
walls (top-right); Multi-wall Carbon Nanotubes (bottom-left); Diatomee microstructures (bottom-
right). 
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Fig. 10.2 - de Saint Venant load conditions for multilayered cylinder: a) Axial force; b) Torque; c) 
Pure bending;  d) Shear and bending moment. 
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Fig. 10.3 - Displacement of cross section in case of bending: symmetry and skew-symmetry 
conditions 
 
10.3.   Irrotational displacement potentials: axial forces 
In three-dimensional elasticity, the displacement solution u  is obtained by to define a potential 
function representation for displacement which identically satisfies the compatibility conditions and 
allows to obtaining the equilibrium condition defining the governing equation.  
It is well known that the solution in terms of displacement field u for an isotropic and homogeneous 
linear elastic material, in absence of body forces, can be written in the cylindrical system by means 

of the Boussinesq-Somigliana-Galerkin vector [ ], ,
T

r zF F Fθ≡F , where three components of vector 

F are function of cylindrical coordinates ( )3, ,r xϑ  as reported below: 

 

( ) ( ){ } ( )

( ) ( ){ } ( )

( ) ( ){ } ( )

2 2
,

2 2 1
,

2
,

2 cos sin 2

2 sin cos 2

2 2

r x y r

x y

z z z

u F F

u F F r

u F

θ θ

µ λ µ λ θ θ ζ µ

µ λ µ λ θ θ ζ µ

µ λ µ λ ζ µ

−

   = + + ⋅∇ + ⋅∇ −   
   = + + − ⋅∇ + ⋅∇ −    

  = + + ∇ − 

 (3.1) 
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where , ,x y zF F F  are components of Galerkin’s vector F  in Cartesian coordinate and are given by: 

 cos sin , sin cos ,x r y rF F F F F Fθ θθ θ θ θ= − = +  (3.2) 

and the function ζ  is given by: 

 1 1
, , , , ,cos sin sin cosx r x y r y z zF r F F r F Fθ θζ θ θ θ θ− −= ⋅ − ⋅ + ⋅ + ⋅ +  (3.3) 

The Galerkin’s vector F  must be to satisfy the bi-harmonic condition 4 0F∇ = . In Cartesian 
coordinate system the components of Galerkin’s vector F  are bi-harmonic, but in cylindrical 
coordinate system the two components ,rF Fθ  are not bi-harmonic. A more detailed derivation is 

given by Westergaard, who gives expressions for the stress components in terms of F and uses this 
representation to solve a number of classical three-dimensional problems – namely those involving 
concentrated forces in the infinite or semi-infinite body. The Galerkin’s solution was to some extent 
foreshadowed by Love [15], who introduced a displacement function appropriate for an axis-
symmetrical state of stress in a solid of revolution. When a solid cylinder is deformed 
symmetrically by forces applied on its external cylindrical surface and on its two end sections, it is 
possible to express all the mechanical quantities in terms of a single function, reducing the elastic 
equilibrium equations of the body to a single partial differential equation. 
If ze  is the unit vector of z direction which characterizes the axis-symmetrical problem, the 

displacement solution is called torsion-less and rotationally symmetric with respect to the z axis. 
Then, displacement solution u  satisfies the following condition: 

 ( ) 0h
z ⋅∇ ∧ =e u    (3.4) 

In order to satisfy the condition (3.4), it is assumed the Galerkin’s vector as reported below: 

 ( )0,0, ,
T

r zχ ≡  F  (3.5) 

in which ( ) ( )(4)r, z Cχ ∈ Ω  is a scalar function and is called the Love’s solution. By substituting 

equation (3.5) in equation (3.1) , it is possible to determine the displacement solution in terms of 
Love’s solution as reported below: 

 ( ) ( ) ( ) ( ) ( ) ( )2 1
, , ,1 2 , 0, 1 2r rz z rr ru u u rθχ µ χ µ λ χ χ µ− = − = = ∇ + + +

 
 (3.6) 

In which ( ),r zχ  is the bi-harmonic function and then satisfy the follows differential equation: 

 4 1 2 3
, , , , , , ,2 2 0,rrrr rrr rzz rr r rrzz zzzzr r rχ χ χ χ χ χ χ χ− − − ∇ = + + − + + + =   (3.7) 

The vector ∇ ∧ u  is given by: 

                     
[ ] ( ) ( ) ( )( )

( ) ( )( ) ( )

1 1
, , , , , ,

2

,
0, 2 2 ,0

TT
z z r z z r r r

T

r

r u u u u r u u uθ θ θ θ θ

µ λ µ µ λ χ

− − ∇ ∧ = − − − + =
 

  = − + + ∇   

u
  (3.8) 

Then, the curl of vector ( )hu  obtained  by equation (3.8) satisfies the condition (3.4). By substituting 
the displacement components (3.6) in (2.1), it is possible to obtain the strain components reported 
below:   

     
( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ){ }
1 2

, , , ,

2
, ,

- 2 , - 2 , 2 2 ,

1 2 2 , 0,

rr rrz rz zz z zzz

rz r rzz z r

rθθ

θ θ

ε χ µ ε χ µ ε µ λ µ λ χ χ µ

ε µ λ µ λ χ χ µ ε ε

−  = = = + + ∇ − 

 = + + ∇ − = = 

 (3.9) 

By applying the equations (2.2) it is easy to obtain for the i-th material phase the no-vanishing 

stresses that depend by scalar function( )( ) ,i r zχ : 

( ) ( ){ } ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ){ }

2 2 1
, ,, ,

2 2
, ,, ,

1 2 , 1 2 ,

1 2 4 3 , 1 2 2

rr rr rz z

zz zz rz zzz r

rθθσ λ µ λ χ χ σ λ µ λ χ χ

σ µ λ µ λ χ χ τ µ λ µ λ χ χ

−   = + ∇ − = + ∇ −   

   = + + ∇ − = + + ∇ −   

 (3.10) 
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In this section it is presented the closed-form elastic solution for multilayered cylinder above 
defined (Figure 2a), under axial forces. The multiphase solid is subjected on the two bases to 
equilibrating axial load distribution, whose resultants are zN  (Figure 2a). Then, the solid is 

subjected to axis-symmetrical boundary conditions. In follows, if it is not explicit reported the apex 

“i” varies in {0,1,...., }n  for any equations. If the multilayered cylinder is quite long ( )(n)L R>>  it is 

meaningful to assume that  stresses and strains depend only on the variable r being independent 
from z.  This condition is obtained by imposing null values to derivates of diagonal stress 
components respect to z: 

 [ ]( ) ( ) ( ) ( ) ( ) ( )
, , , , , ,

T Ti i i i i i
rr z z zz z zzzz rzz rrzzθθσ σ σ χ χ χ   = ⋅ =   S 0 (3.11)        

where  

 ( )

( )
( )

( )

( ) 1 ( ) ( ) ( )

( ) 1 ( ) ( ) ( )
( ) ( )

( ) ( ) 1 ( ) ( ) ( ) ( )

2

1
2

2
2 4 3 4 3

i i i i

i i i i

i i

i i i i i i

r

r

r

λ λ µ λ

λ µ λ λ
µ λ

µ λ µ λ µ λ

−

−

−

 − +
 
 = − +
 +
 + + +  

S  (3.12) 

The determinant of matrix  S in equation (3.12) is given by: 

 [ ] ( ) ( ) ( )1 ( ) ( ) ( ) ( ) ( ) 1det 2 3 2 1 0i i i i ir rµ λ µ λ ν− − = − + + = − + ≠
 

S  (3.13) 

Then, by equations (3.11)-(3.13), the following three conditions for Love’s function are obtained : 

 ( ) ( ) ( )
, , ,0, 0, 0i i i
zzzz rzz rrzzχ χ χ= = =  (3.14) 

By integration of the equations (3.14), we obtain the expression of Love’s function, as a polynomial 
of third order respect to z  variable : 

 ( ) ( ) ( )( ) ( ) ( ) ( ) 2 ( ) 3
0 1 1 2,i i i i ir z r r z z zχ φ φ= + + Λ + Λ  (3.15) 

where ( ) ( )
1 2,i iΛ Λ  are integration constants and ( ) ( )( ) ( )

0 1,i ir rφ φ are unknown functions of variable r. 

By also imposing the derivate of tangential stress ( )i
rzτ  respect to variable z is equal to zero, the 

ordinary differential equation in the unknown function ( )( )
1

i rφ  is obtained: 

 ( ) ( ) ( )( )( ) ( ) ( )
1, 1, 1, 0i i i

r rr rrrr r r r rφ φ φ− + =  (3.16) 

which is an Euler-like differential equation. By solving the equation (3.16), we obtain the function 

( )( )
1

i rφ  in the form: 

 ( )( ) ( ) ( ) 2 ( )
1 3 4 5logi i i ir r rφ = Λ + Λ + Λ  (3.17) 

By substituting equation (3.17) in equation (3.15), by means of equation (3.7) that express bi-

harmonicity condition, the following differential equation for function ( )( )
0
i rφ  is obtained : 

 ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )
0, 0, 0, 0,- 2 0i i i i

r rr rrr rrrrr r r r r r rφ φ φ φ + + + =
 

 (3.18) 

Finally, by solving the equation (3.18), we obtain the function ( )( )
0
i rφ  as reported below: 

 ( )( ) ( ) ( ) 2 ( ) 2 ( )
0 6 7 8 9log logi i i i ir r r r rφ = Λ + Λ + Λ + Λ  (3.19) 

By substituting the functions ( )( )
1

i rφ , ( )( )
0
i rφ  in equation (3.15) and (3.6), the no-vanishing 

displacement field components are obtained: 
         ( )( ) ( ) 1 ( ) ( ) ( )

1 0 2 01 , 0, ,i i i i i
r i zu A r A r u u zθδ ε−= − + = =  (3.20) 

where ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 1 6 2 7 12 2 3; 2 ; ;i i i i i i i i i i i i iA A A Aµ λ µ λ µ µ Λ = + + + Λ = − Λ = −

 
 

The constants ( ) ( )
1 4,i iΛ Λ corresponding to a rigid body motion can be assumed as zero, since they do 

not effect the elastic solution. Moreover, by applying the boundary conditions (2.5) and (2.6) we 
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obtain that the constant (i)8Λ  characterizes the tangential stress component ( )i
rzτ  is equal to zero in 

any phase of cylindrical solid, because the multilayered cylinder is not loaded on external surface. 
The no zero strain components become: 

                        ( ) ( )( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( )
1 0 2 1 0 2 31 , 1 , ,i i i i i i i i

rr i i zzA A r A A r Aθθε δ ε δ ε− −= − − = + − =               (3.21) 

the no zero stress components are given by:             

                                            

( )
( )

( ) ( ) 2 ( ) ( )
1 0 2 3

( ) ( ) 2 ( ) ( )
1 0 2 3

( ) ( ) ( )
2 3

2 1 2 ( ) ,

2 1 2 ( ) ,

2 (2 ),

i i i i
rr i

i i i i
i

i i i
zz

A r A A

A r A A

A A

θθ

σ µ δ µ λ λ

σ µ δ µ λ λ

σ λ µ λ

−

−

= − − + + +

= − + + +

= + +

 (3.22) 

The field displacements (3.20) satisfy the equilibrium and compatibility equations inside each 
generic i-th phase composing the circular cylinder subjected to axial force. The unknown 

parameters to determine are (0) (0)
1 3,A A and ( ) ( ) ( )

1 2 3, , {1,2,..... }i i iA A A i n∀ ∈ . These integration constants 

can to be determined, by applying the boundary conditions reported in equations from (2.5) to (2.9).  
It is easy to prove that the constant (i)3A  is same for each phases, by applying the first equation of 

boundary condition (2.5) and the follows relationship is obtained: { }( )
03 , 0,1,2,...iA i nε= ∀ ∈ .  

Then, the total number of unknown parameters is (2n+2), and are give by (0)
0 1, Aε  and 

( ) ( )
1 2, {1,2,...., }i iA A i n∀ ∈ . The constant 0ε  is the axial strain of  the  multilayered cylinder. It is 

showed in the follows, that  the number of boundary equations at the interfaces  is 2n, while two is 
the number of boundary conditions to write on the external cylindrical surface and one equation of 
the end bases. Then, in total the number of equations is equal to number of unknown parameters to 

determine. In this case the tangential stress ( )i
rzτ  vanishes and then by applying the equations (2.5) 

the equilibrium and compatibility equations at the generic interface between i-th and (i+1)-th phase 
are given by: 

                            

( ) ( )
( ) ( ) ( )

( )

( ) ( 1) ( ) 1 ( ) ( 1) ( )
1 0 1 2 2

( ) 1) ( ) ( ) ( ) ( 1) ( 1) ( 1)
0 2 2

( ) 2 ( 1) ( 1) ( ) ( )
1 1 0

1 0

2

2 1 0

i i i i i i
i

i i i i i i i i

i i i i i
i

A A R A A R

A A

R A A

δ

ε λ λ λ µ λ µ

µ µ δ

+ − +

+ + + +

− + +

 − − + − = 
  − + + − + +  


 + − − =  

                      (3.23) 

The equilibrium equations for the tractions on the external cylindrical boundary surface given by 
equations (2.6) reduce to one follows equation: 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
2 0 12 2 0n n n n n n nA A Rµ λ ε λ µ −+ + − =  (3.24) 

Finally, it remains to consider the last equilibrium equation on bases given by (2.7),(2.8) and (2.9) 
that reduce in one equilibrium equation along z-direction on only one of the bases, being the other 
end condition automatically satisfied. Therefore, without loss of generality, we can write, for 0z =    

 ( ) ( )( )2 ( 1)2 ( ) ( ) ( ) ( )
0 2 0

0

1 2 2
n

i i i i i i
i z

i

R R A Nπ δ λ ε µ λ−

=

  − − + + =   ∑  (3.25) 

The solutions shown above completely describes the problem of an multilayered cylinder under 
axial load. In order to solve the algebraic system constituted by (3.23),(3.24) and (3.25), it is 
convenient to re-arrange the whole (2 2) (2 2)n n+ × +  algebraic system following a matrix-based 
procedure, as was already shown in the paper [16]. We presented the case of an solid constituted by 
three phases subjected by axial force as an sample. It is reported the function’s diagrams of the 
stress components, to select the following parameters: 

4 (1) (2) (3) (1) (2) (3)

(1) 5 2 (2) 5 2 (3) 6 2

10 , 4 , 10 , 10.5 , 0.16, 0.30,

3 10 / , 3.3 10 / , 10 / ,
zN Kg R cm R cm R cm

E kg cm E kg cm E kg cm

ν ν ν= = = = = = =

= ⋅ = ⋅ =
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Fig. 10.4 - The stress component σ rr  as function of the radius 
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Fig. 10.5 -  The stress component θθσ  as function of the radius 
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Fig. 10.6 -  The stress component zzσ  as function of the radius 

 
 

10.4.  Solenoidal displacement potentials: torque, bending moment and shear 
 
10.4.1. General treatment for bending and shear and torque 
Let us consider an multilayered cylinder, constituted by (n+1) elastic isotropic homogeneous 
materials, as reported in figure n. 2.  We will denote with apex (0) the central cylindrical core 
material and with apexes (1),(2),…,(n) the n-tube phases (see figure n. 2b, 2c, 2d), surrounding the 
core with increasing radius. In this section, for brevity we don’t reported the apex (i). In the 
following we will consider the above mentioned load conditions for the multilayered cylinder : i) 
Bending and shear;  ii) Pure torsion; iii) Pure bending. 
In the cases of pure bending with moment  xM , or  shear yT  coupled with the bending moment 

xM ,  due to symmetry of cross-section, axis y  represents a symmetry axis for displacement 

components ,r zu u  as shown in figure n.10.3 . But respect to displacement’s component uθ , axis y 

is an axis of skew-symmetry, as recognizable from figure n.10.3. On the other hand, axisx  
represents an axis of skew-symmetry for displacement’s components ,r zu u ,uθ . Symmetry and 

skew-symmetry above recognised can be expressed by following relationships: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

[ ]
, , , , , , , , ,

, , , , , , , , , 0, 2

, , , , , , , , ,

r r r r

z z z z

u r z u r z u r z u r z

u r z u r z u r z u r z

u r z u r z u r z u r z

θ θ θ θ

θ π θ θ θ π
θ π θ θ θ π θ π
θ π θ θ θ π

 = − = − − = − −


= − − = − = − − ∀ ∈
 = − = − − = − −

 (4.1) 

For the derivates of the displacement components respect the variables , ,r zθ  similar  relationships 
hold true. Above relationships allow to split in each phase displacement components in two parts: 
the first ones ,r zu u  symmetric , and the second one uθ  as skew-symmetric, so that the divergence 

takes in to account the relevant terms: 1 2g g∇ ⋅ = +u , where 1
1 , , ,r r r z zg u r u u−= + +  is symmetric 

and 1
2 , ,g r uθ θ

−=  is skew-symmetric.  By applying  relationships (4.1), it is possible to write: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

[ ]1 1 1 1

2 2 2 2

, , , , , , , , ,
0, 2

, , , , , , , , ,

g r z g r z g r z g r z

g r z g r z g r z g r z

θ π θ θ θ π
θ π

θ π θ θ θ π

 = − = − − = − − ∀ ∈
= − − = − = − −

 (4.2) 

By applying the relationship (4.2), we obtain that the integral of the divergence of displacement 
field over any cross section is equal to zero: 

 0du
ω

ω∇⋅ =∫  (4.3) 

where ω  is the area of cross section of the generic phase. This mathematical weak condition 
corresponds to a vanishing volumetric change of cross-section and of whole solid, due to 
displacement u . It is well known that also for pure torsion, condition (4.3) holds true. This 
condition holds true also in the classical De Saint Venant treatment of beam composed by a single 
material, where the divergence of displacement field is proportional to variable y . Moreover, let us 
assume this condition also to hold true in multilayered cylinder. In particular for load condition of 
pure torsion the divergence of displacement u  is equal to zero in every material phase. Then, for the 
general De Saint Venant load condition of bending, shear and torsion, it is possible to unify the 
expression of divergence of displacement u , for each material phase: 

 ( )2 1

0 0
1

7 3 1
4

2

pure torsion

k z y k y pure bending

k y z shear bending

u α

α

α α α

α

−

 =∇⋅ = − = = = −

 (4.4) 

where k  is a constant of proportionality in the phase between variable y and volumetric strain, and 
α  is a parameter that defines the load condition. By applying the formulas (4.4), it is easy to verify 
that the condition (4.3) is trivially satisfied, as reported below: 

 ( )
( ) ( )

2 11
7 3 0

4i i

dA k z y du α

ω ω

α α ω−∇⋅ = − =∫ ∫  (4.5) 

By substituting condition (4.4) in Navier-Cauchy equations (1.4), we obtain : 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2 2 2 1
,

2 2 2 1
,

2 2 2

2 4 3 7 sin

2 4 3 7 cos

4 3 7 1 sin

r r

r

z

u r u u k z

u r u u k z

u k z r

α
θ θ

α
θ θ θ

α

µ λ µ α α θ

µ λ µ α α θ

µ λ µ α α α θ

− −

− −

−

∇ − + = + −  
∇ − − = + −   

∇ = + − −   

 (4.6) 

By means of some algebraic manipulations, the resulting displacement field is decomposed in to the 
sum of two different displacements (see Appendix A1-A2):  

i) The first one is characterized by divergence equal to zero (pure torsion), and corresponds 
to the solution of the homogeneous differential equation system, and is denoted by the 
symbol “h”; 

ii)  The second one that is characterized by divergence equal to function reported in (4.4) 
with 0α≠ ,  is a particular integral and will be denoted by the symbol “p” (bending and 
shear); 

The two defined displacement solutions are, for every phase: 

 ( ) ( )1 2 2
, , , ,

, 1 2 , 1 2h h h
r z r zz

u r G u r G G u Gθ θ θ

−    = = ∇ − =− ∇        (4.7) 

 

( )( ) ( )

( ) ( )( ) ( ){ } ( )

( )( ) ( )

1

1 2 2

3 7 3 sin 4 1

3 7 1 2 3 cos 4 1

3 7 sin 4

p
r

p

p
z

u k z

u k z r z

u k r z

α

α

θ

α

α µ λ α θ α µ

α α α α µ λ µ λ θ α µ

µ λ α α θ µ

+

−

     = + − +        = − + + − + +        = + −   

 (4.8) 

Then, the solving displacement is given by : 
 h pu u u= +  (4.9) 
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where ( ), ,G G r zθ=  is a selected function depending on the phase, that satisfies the Navier-Cauchy 

system. In fact, by substituting functions (4.9) in to system (4.6), we observe that the first equation 
is trivially satisfied, but remaining two equation yield to: 

 ( ) ( )2 2 2 2

, ,
0 ; 0 , {0,1,2}

z
G G

θ
α∇ ∇ = ∇ ∇ = ∀ ∈  (4.10) 

By integrating  equations (4.10), we obtain: 
 ( )2 2G f r∇ ∇ =  (4.11) 

where ( )f r  is a function of sole variable r. By substituting  the displacement components of the 

“homogeneous” part of displacement (4.7) in to elasticity relationships, we obtain the stress 
components related to the part of displacement with vanishing volumetric strain , as function of the 

( ), ,G G r zθ= : 

         

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 ( ) 2 1 2

, , ,,

2 1 2 2 1
, ,, , ,

2 2
, , ,

,

2 ; 2 ;

2 2 ; 1 2

2
2

h i h h
rr zzr z r zz

h h
z rzz rz zzzz r

h
r r zz rr

z

r G G r G G

r G r G G G r G

r
G G G G

θθθ θθ

θ θθθ θ

θ

σ µ σ µ σ µ

τ µ τ µ

τ µ

− −

− −

 = = ∇ − =− ∇  
   = ∇ − ∇ − =− ∇ +      

 
 = ∇ +∇ − −
  

 (4.12) 

By substituting the components of displacement (4.8) corresponding to the “particular” solution in 
to the stress-strain relationships, we obtain for each phase the stress components related to this part 
of displacement with volumetric strain not locally vanishing: 

    

( ) ( ) ( )

( ) ( ) ( )( ){ } ( )2 2

sin , 4 3 sin , 2 sin , 2 cos ,

2 sin , 2 2 1 cos ,

p p p p
rr zz r

p p
rz zz r z r r z

θθ θ

θ

σ λ θ σ µ λ θ σ µ λ θ τ µ λ θ

τ µ θ α τ µ α µ λ α θ α

=−Γ =−Γ + =Γ + =Γ +

 =−Γ =Γ − + + −  
 (4.13) 

where ( )( )2 13 7 4k r zαα α −Γ= − ; 

 
10.4.2. Pure torsion 
In the follows, by writing the problem in cylindrical coordinates, we report the essential 
mathematical manipulations aimed to obtaining the final analytical solution in case of pure torsion, 
already obtained by Lekhnitskii [12]. The divergence of displacement field is everywhere 
vanishing, then the condition on parameter  α  is: 0α= ,  and  the displacement solution is a 
function of variables ,r z , since it does not depend on θ . Therefore  equation (4.7) for each phase 
lead to: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) 2 ( )

,
,

0, , 0, , 1/ 2 , 0
i i i ii i i

r r z
z

G G r z u u r z r G G uθα  = = ⇒ = = ∇ − =  
 (4.14) 

In this case, the no-zero stress components (4.12) become: 

 ( ) ( )( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) 1 ( ) ( )
, , , ,, ,

1 2 , 1 2i i i i i i i i i
z r r r r rrzz z

r G G r G r G Gθ θτ µ τ µ −   = ∇ − = ∇ + −        (4.15) 

Moreover, the equilibrium equations  (3.14) are assumed to respect condition: 
 ( )2 2 ( ) , 0iG r z∇ ∇ =  (4.16) 

Therefore, we begin by starting from the following form of the functions ( )iG  for each generic 
phase, selected as product of function ( )( )ip r  times  the square of variable z:  

 ( ) ( )( ) 2 ( ),i iG r z z p r=  (4.17) 

By substituting the function (4.17) in equilibrium equation (4.16), we obtain an ordinary Euler 
differential equation to solve respect to unknown function ( )p r : 

 ( ) ( ) 2 ( ) 3 ( )
, , , ,2 0i i i i
r rr rrr rrrrp r p r p r p− + + =  (4.18) 

By solving differential equation (4.18), we obtain the function ( )( )ip r : 
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 ( )( ) ( ) ( ) 2 ( ) 2 ( )
1 2 3 4log logi i i i ip r C r C r C r r C= + + +     (4.19) 

By substituting function (4.19) in (4.17) and than in (4.14), we obtain the displacement field 
solution, depending only by parameters ( ) ( )

1 3,i iC C , in the form:  

  ( )( ) ( ) ( ) 1
3 1, ( )i i iu r z z C r C rθ

−= −           (4.20) 

As a consequence, the stress components (3.19) become:  

 ( )( ) ( ) 1 ( ) ( ) ( ) 2
1 3 1, 2i i i i i

z rC r C r C z rθ θτ µ τ µ− −= − + =  (4.21) 

Stresses and displacement above obtained satisfy equilibrium and compatibility equations, 
respectively, in each phase of multilayered cylinder. Then, it remains to consider boundary 
conditions at the interfaces, where perfect bond is assumed. The total unknown parameters to 
determine can be summarized as follows: (0)

3C and ( ) ( )
1 3, , {1,2,..... }i iC C i n∀ ∈ . Hence, the total 

number of unknowns is (2 1)n+ , that equals the number of algebraic equations to solve. In 
particular, as we will show in the follows, the number of boundary equations at the interfaces is 2n , 
while the boundary conditions on the external cylindrical surface and on the two end bases are two. 
By means of equation (2.6) we obtain ( )

1 0 ,iC i= ∀  and by means of equation (2.5), we obtain 
(0) ( )
3 3 ,iC C i= ∀  . Finally, it remains to consider the equilibrium equation around the z-axis on only 

one of bases of the object.  At z = 0 we have 

 
( )

( 1)
0

2 ( ) 2 ( ) ( ) ( ) ( )
3 30 (1 )

0 0 0

, 0
i

i
i

n n nR i i i i i
z P P zR

i i i

r drd C I C I z
π

θδ
τ θ µ µ

−−
= = =

= = = =∑ ∑ ∑∫ ∫ M  (4.22) 

where ( ) ( ) { }( ) ( )4 ( 1)4
02 1 , 0,1,2,...,i i i

P iI R R i nπ δ − = − − ∀ ∈   is the polar inertia of cross-section, and 

zM  represents the total torque applied with opposite sign at  0z =  and z L= . By solving equation 

(4.22)  we obtain : 

 (0) ( ) ( )
3

0

, {0,1,..., }
n

i i
z P

i

C I i nµ
=

= ∀ ∈∑M  (4.23) 

Where this constant, similarly to the DSV solution, represents the specific torque angle.Substitution 
of the (4.23) into (4.20), allows to writing the final form of  displacement, for i-th phase, as follows:                                           

 ( )( ) ( ) ( )

0

,
n

i i i
z P

i

u r z Iθ µ
=

= ∑M  (4.24) 

The no-vanishing strain and stresses are reduced to: 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

, , {0,1,2,.... }
n n

i i i i i i i
z z P z z P

i i

r I r I i nθ θγ µ τ µ µ
= =

= = ∀ ∈∑ ∑M M  (4.25) 

It was already noted, that this solution is equal to that obtained by Lekhnitskii [12] with a different 
approach, and corresponds to the well known DSV solution. We presented the case of an solid 
constituted by three phases subjected by couple torque as an sample. It is reported the function’s 
diagram of the stress component zθτ , to select the following parameters: 

 
3 (1) (2) (3) (1) (2)

(3) (1) 5 2 (2) 5 2 (3) 6 2

2 10 , 4 , 10 , 10.5 , 0.16,

0.30, 3 10 / , 3.3 10 / , 10 / ,
z Kg cm R cm R cm R cm

E kg cm E kg cm E kg cm

ν ν
ν

= ⋅ = = = = =

= = ⋅ = ⋅ =

M
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Fig. 10.7 -  The stress component zθτ  as function of the radius 

 
10.4.3. Pure bending 
In order to solve the problem of pure bending toward axis y, it is useful to proceed from more 
general assumptions about the character of  the state of stress by assuming that function ( )iG  in each 
phase is bi-harmonic , then ( ) 0f r = ,  (4.11) . As here are absent torque and shear, we will assume 

that shear stresses ( ) ( ),i i
z rzθτ τ  acting on each section vanish. Since the bending moment is constant 

along z-direction, the remaining stresses must be independent on z. By applying the above 
hypotheses, we obtain the functions ( )iG  and parameter ( )ik  affecting the displacement field [(4.7)
,(4.8)] for each phase, as reported below (see the prove in Appendix A1): 

           
( ) ( )

( )( )

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 2 ( )
5 4 2 3( )

( ) ( ) 2
2 3

2 2 2
cos

2 3 2

i i i i i i i i

i

i i

U U r U U r
G r z

U U z

λ µ λ
θ

−   + + + − Ω +    =−   + −   

 (4.26) 

 ( )( ) ( ) ( ) ( ) ( )
2 32 3 2i i i i ik U Uµ =− − Ω    (4.27) 

where , {2,3,4,5}jU j ∈  are integration constants to determine and ( ) ( ) ( )3i i iµ λΩ = + . Finally, by 

substituting the function (4.26)-(4.27) into relationship (4.7), the displacement field solution 
becomes in each phase: 

        

( ) ( )( ){ }
( ) ( )( ){ }

( ) ( ) ( ) 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
5 4 2 3 2

( ) ( ) ( ) 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
5 4 2 3 2

( ) ( )
2

2 2 sin

2 2 5 3 cos

2 sin

i i i i i i i i i i
r

i i i i i i i i i i

i i
z

u U U r r U U U z

u U U r r U U U z

u U z r

θ

λ µ λ θ

λ µ λ θ

θ

−

−

  = + + + − Ω + 
  = − + − + Ω +  


= −


 (4.28) 

By means of the double derivative of  ( ) ( ) ( )
2 22 sin 2i i i

zu U z r U y zθ= − = −  respect to variables  z and 

y , it is easy to show that constant ( )
22 iUχ = −  represents the principal curvature of the solid. In core 

phase constant ( )
4
iU  must be equal to zero.  The non-zero strain components are given by: 
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( ) ( ){ }
( )

( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
3 2 4 0

( ) ( ) ( ) 3 ( ) ( )
3 4 0 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
2 3 4 0

2 1 sin ,

1 sin , 2 sin ,

2 1 cos

i i i i i i i i
rr i

i i i i i
i zz

i i i i i i i i
r i

r U U U r

U r U r U r

r U U U r

θθ

θ

ε µ λ λ δ θ

ε δ θ ε θ

γ λ µ λ δ θ

−

−

−

 = − + Ω − − 

 = + − = − 

 = − + Ω + − 

 (4.29) 

and stress components are given by: 

 

( ) ( ){ }
( ) ( ){ }

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
3 2 4 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
3 2 4 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3

2 1 sin

2 3 1 sin ,

2 5 6 2 sin , 0, 0,

i i i i i i i i i
rr i

i i i i i i i i i
i

i i i i i i i i i
zz z rz

r

r U U U r

r U U U r

U U r

θθ

θ

θ

σ µ µ λ λ δ θ

σ µ µ λ λ δ θ

σ µ λ µ λ θ τ τ

τ

−

−

 = + − Ω − − 

 = + − Ω + − 

 = − Ω + − = = 

( ) ( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
2 3 4 02 1 cos ,i i i i i i i i i

ir U U U rµ λ µ λ δ θ− = − + Ω + − 

 (4.30) 

The displacement field satisfies the equilibrium and compatibility equations inside each generic i-th 
phase of the composite circular cylinder subjected to bending moment. Under both the hypotheses 
of linear and isotropic elastic behaviour of the materials and the assumption of perfect contact at the 
cylindrical interfacial boundaries (no de-lamination or friction phenomena), we have now to impose 
both equilibrium and compatibility equations at the boundary surfaces between two generic adjacent 
phases. Let us now observe that the expression of the displacement components (4.28), contains the 
following (4 3)n+ unknown parameters: (0) (0) (0)

2 3 5, ,U U U  for the core, and  ( )( ) , 2,3,4,5 ,i
jU j∀ ∈  and 

{1,2,... }i n∀ ∈ for the n phases. In particular, the 5n equilibrium and compatibility equations at the 
interfaces, are: 

       
( ) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1): , , ; , , {0,1,..., 1}i i i i i i i i i i i

r r z z rr rr r rr R u u u u u u i nθ θ θ θσ σ τ τ+ + + + += = = = = = ∀ ∈ −  (4.31) 

where ( )iR  is the outer radius of the i-th phase. Cauchy equilibrium equations on the external 
cylindrical boundary surface, (i n= ), give: 
  ( ) : 0 , 0n

rr rr R θσ τ= = =  (4.32) 

Finally, it remains to consider the twelve equilibrium equations in z-direction on the bases (2.7)-
(2.8)-(2.9), to be particularized for null values of forces and couples, except for xM . By invoking 

the polynomial identity law, by means of equations (4.31) we determine  the following condition: 
 ( ) (0)

2 2 , {1,2,... }iU U i n= ∀ ∈  (4.33) 

expressing that curvature on every material phase is the same, in same way as for Eulero-
Bernoully’s  beam, under hypothesis of plane axial strain over cross-section. Moreover the 
integration constant vanishes (0)

5 0U = . Then, the  (3 2)n+  unknown parameters are:                                        

 (0) (0) ( )
2 3, ; , {3,4,5} , {1,2,... }i

jU U U j i n∀ ∈ ∀ ∈  (4.34) 

By applying conditions (4.33), the equations (4.31) give the 3n  linearly independent equations : 
 ( )( 1) ( ) 0 {1,2,3}, {0,1,2,.... 1 }i i

j jf f j i n+ − = ∀ ∈ ∀ ∈ −  (4.35) 

where functions ( )i
jf  that depend only on integration constants, are reported below: 

               

( )( ) ( ){ }
( )( ) ( ){ }

( ){ } ( )

( ) ( ) ( ) 2 ( ) ( )2 (0) ( ) ( ) ( ) ( ) ( )
1 4 5 0 2 3

( ) ( ) ( ) 2 ( ) ( )2 (0) ( ) ( ) ( ) ( ) ( )
2 4 5 0 2 3

( ) ( )4 ( ) ( ) ( ) (0) ( ) ( ) ( )
3 3 2 4 0

2 1 2 ;

2 1 2 3 5

1

i i i i i i i i i i
i

i i i i i i i i i i
i

i i i i i i i i
i

f U R U R U U

f U R U R U U

f R U U U

δ λ µ λ

δ λ λ µ

λ µ λ δ

−

−

 = + − + + − Ω 

 = + − + − + Ω 

 = + − Ω − − 

 (4.36) 

Only one of equations (4.32) is independent from others, and is: 

                              ( ) ( )( )4 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 43 0n n n n n n n n nR U U Uλ µ λ λ µ + − − + =                              (4.37) 

As already noted, equilibrium on two bases gives the sole couple of equations:  
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                                 ( ){ }( ) ( ) (0) ( ) ( ) ( ) ( ) ( )
2 3

0

2 5 6 2
n

i i i i i i i
x

i

I U Uµ λ µ λ
=

 + − Ω = ∑ M  (4.38)          

Where ( )( ) ( )4 ( 1)4
04 (1 )i i i
iI R Rπ δ − = − −   is inertia of cross section of generic phase. By 

summarizing the results, we have (3 2)n+  equations to solve in the (3 2)n+  unknown parameters.  
In order to solve the algebraic system constituted by equations (4.35), (4.37) and (4.38), it is useful 
to re-arrange the whole system(3 2) (3 2)n n+ × +  following a matrix-based procedure. Indeed, we 
can collect the known terms in the load vector L :  
 { }0,0,..........,0,T

x=L M  (4.39) 

Moreover the constants ( )i
kU , can be collected in the vector X  as follows: 

 { }(0) (0) (1) (1) (1) ( ) ( ) ( ) ( ) ( ) ( )
2 3 3 4 5 3 4 5 3 4 5, , , , ,..., , , ,..., , ,T i i i n n nU U U U U U U U U U U=X  (4.40)                        

so that the set of equations (4.35), (4.37) and  (4.38) reads :                                                                 
 ⋅ =P X L  (4.41) 
where P  is a square matrix containing the coefficients /h mP , which are functions of both the radii 

and of the elastic modulus of the phases. It is worth to note that, being the system  (4.41) of linear 
and algebraic type, provided that det 0≠P , it is possible to obtain the solution as :                                   

 ( )
3 2

1
/

1

det , det ,
m n

T
m h m h

n

X P L
= +

−

=

 = = =  
 
∑X P L P L P Pɶ ɶ  (4.42) 

where [ ]P adj= Pɶ  is the adjunct matrix of  P  and then the Cramer rule has been employed. This 

procedure was already followed by Authors in paper [16], to which reader is referred.  It is worth to 
note here that the same procedure can be followed for an multilayered cylinder solid missing the 
core phase. In this case the system remains the same, only the interface equilibrium equations 
between core and phase 1 become Cauchy boundary equilibrium equations. On the contrary, 
compatibility equations between core and phase 1 lose their meaning. By summarizing the result for 
multilayered cylinder without the core, we have (3 )n  equations to solve in (3 )n  unknowns 
parameters.  By invoking polynomial identity law, we determine following condition: 
 ( ) (1)

2 2 , {2,3,... }iU U i n= ∀ ∈  (4.43) 

Moreover the integration constant (1)
5 0U = .  Then, the remaining unknown (3 )n   parameters are :                                       

 (1) (1) (1) ( )
2 3 4, , ; , {3,4,5} , {2,3,... }i

jU U U U j i n∀ ∈ ∀ ∈  (4.44) 

We presented the case of an solid constituted by three phases subjected by bending moment as an 
sample. It is reported the function’s diagrams of the stress components, to select the following 
parameters: 
 

4 (1) (2) (3) (1) (2)

(3) (1) 5 2 (2) 5 2 (3) 6 2

4 10 , 4 , 10 , 10.5 , 0.16,

0.30, 3 10 / , 3.3 10 / , 10 / ,

x Kg cm R cm R cm R cm

E kg cm E kg cm E kg cm

ν ν
ν
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Fig. 10.8 - The stress component σ rr  as function of the radius 
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Fig. 10.9 - The stress component θθσ  as function of the radius 
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Fig. 10.10 - The stress component zzσ  as function of the radius 
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Fig. 10.11 - The stress component rθτ  as function of the radius 
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10.4.4. Combined bending and shear force 
In order to solve the problem of bending and shear, functions ( )iG  introduced in paragraph 10.4 
above are assumed as bi-harmonic in each phase, then ( ) 0f r = . Also in this case the integral of 

divergence of solving displacement vanishes on every cross section. In presence of constant shear 
on the solid, we will assume shear stresses ( ) ( ),i i

z rzθτ τ  acting on the solid, to be independent on z. 

Since the bending moment is linear along z direction, the remaining stresses depend linearly upon z 
direction. By applying the above hypotheses, we obtain for each material phase the function 

( )iG and the parameter  ( )ik  in the form (see Appendix A2): 

 ( )( ) ( ) ( ) 2 ( ) 4 ( ) ( ) ( ) ( )
0 1 2 3 2cos , 2 2 9 ,i i i i i i i iG G G z G z k V Vθ  = + + = − Ω   (4.45) 

where the functions ( ) ( ) ( )
0 1 2, ,i i iG G G  are given by: 

                  

( )( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( ) ( ) 3
0 4 7 5 6

( ) ( ) ( ) ( ) ( ) ( ) 5 ( )
2 3

( ) ( ) 1 ( ) 3 ( ) ( ) ( ) ( ) ( ) ( )
1 4 5 2 3

( ) ( ) ( )
2 2 3

4 2log 1 8 2 8

18 3 48 ,

4 2 3 2 4 ,

6 ,

i i i i i

i i i i i i i

i i i i i i i i i

i i i

G V V r r V V r

V V r

G V r V r r V V

G V V r

µ λ λ µ

λ µ λ−

= + − + + +

 + + − + Ω  
 = + + + − Ω  

= −

 (4.46) 

where , {2,3,4,5,6,7}jV j ∈  are integration constants to determine for each material phase. Finally, 

by substitution of functions (4.45) into relationship (4.7)-(4.8), the solving displacement field is 
obtained for each phase: 

        

( ) ( ) ( ){ }
( ) ( ) ( ){ }

( )
( )

( ) ( ) ( ) 2 ( ) 2 2 ( ) ( ) ( ) ( ) ( ) ( )
5 2 4 3 2

( ) ( ) ( ) 2 ( ) 2 2 ( ) ( ) ( ) ( ) ( ) ( )
5 2 4 2 3

( ) ( ) 2 ( ) 2
6 2 7 0( )

2 ( ) ( ) (

1 2 2 6 sin

1 2 2 6 3 5 cos

3 1

2 3 2 3

i i i i i i i i i i
r

i i i i i i i i i i

i i i
i

i
z i i

u V V z V r r V V z

u V V z V r r V V z

V V z V r
u

r

θ

µ λ λ θ

λ λ µ θ

δ

λ µ

−

−

−

 = + + + Ω − +
 

 = + − + Ω − +
 

+ − + − +
=

+ Ω +( ) ( )) ( ) ( ) ( ) ( )
2 3

sin
i i i i i

r
V V

θ
λ µ

 
 
 

 − +   

 (4.47) 

In core the phase the integration constants 4 7,V V  are equal to zero.  The strain components (2.1)

are given for i-th phase by: 

                          

( ) ( ) ( ){ }
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
3 2 4 0

( ) ( ) ( ) 3 ( ) ( )
3 4 0 2

( ) ( ) ( ) ( ) ( ) ( ) 2 ( )
2 3 2 3( )

( ) ( ) 2 ( ) (
5 6 7 4

6 1 sin ,

1 sin , 6 sin ,

4 3 3 3 2 2

i i i i i i i i
rr i

i i i i i
i zz

i i i i i i i

i
z

i i i

V V r V r z

V r V r z V r z

V V V V r

V V r V V

θθ

θ

ε λ µ λ δ θ

ε δ θ ε θ

λ µ
γ

−

−

−

 = − − − Ω + − 

 = + − = − 

 − + − Ω + =
+ + + −( )( )

( ) ( ) ( )
( )( )

( ) ( ) ( ){ }

)
0

( ) ( ) ( ) ( ) ( ) ( ) 2 ( )
2 3 2 3( )

( ) ( ) 2 ( ) ( )
5 6 7 4 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3
2 3 4 0

cos
2 1

4 6 27 2 2
sin

2 1

2 3 1 cos

i
i

i i i i i i i

i
rz

i i i i
i

i i i i i i i i
r i

V V V V r

V V r V V

V V r V r zθ

θ
δ

λ µ
γ θ

δ

γ λ µ λ δ θ

−

−

 
 
 

−  

  − + − Ω +  =  
+ + + − −  

 = − + Ω + − 

 (4.48) 

 By applying Hooke equations, following stress components are obtained for each i-th phase: 
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( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ){ }

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 ( )
3 2 4 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 ( )
3 2 4 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2

( )

( )

2 3 1 sin

2 3 3 1 sin ,

2 2 3 5 6 sin

2 3

i i i i i i i i i
rr i

i i i i i i i i i
i

i i i i i i i i
zz

i

i
z

V V r V r z

V V r V r z

V V r z

V

θθ

θ

σ µ λ λ δ µ θ

σ µ λ λ δ µ θ

σ λ λ µ µ θ

λ
τ

−

−

 = + − Ω − − 

 = + − Ω + − 

 = − + Ω 

=
( ) ( ) ( ) ( )

( )( )( )

( ) ( ) ( ) ( )
( )( )( )

( ) ( ) ( ) ( ) ( ) 2 ( )
2 3 2 3 ( )

( ) ( ) 2 ( ) ( )
5 6 7 4 0

( ) ( ) ( ) ( ) ( ) ( ) 2 ( )
2 3 2 3( ) ( )

( ) ( ) 2 ( ) ( )
5 6 7 4 0

3 2 3 2
cos

1 2 1

2 6 1 27 2
sin

1 2 1

i i i i i i

i

i i i i
i

i i i i i i i

i i
rz

i i i i
i

V V V r

V V r V V

V V V V r

V V r V V

µ
µ θ

δ

λ µ
τ µ θ

δ

−

−

  − + − Ω +  
 

+ + + − −  

  − + − Ω +  =  
+ + + − −  

( ) ( ) ( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 ( )
2 3 4 02 3 1 cosi i i i i i i i i

r iV V r V r zθτ λ µ λ δ µ θ− = − + Ω + − 

 (4.49) 

As above marked, the displacement field satisfies the equilibrium and compatibility equations 
inside each generic i-th phase of multilayered cylinder subjected to shear and bending moment. 
Under both the hypotheses of linear and isotropic elastic behaviour of the materials and the 
assumption of perfect contact at the cylindrical interfacial boundaries (no de-lamination or friction 
phenomena), now both equilibrium and compatibility equations at the interfaces between two 
generic adjacent phases must be satisfied. Moreover if we consider the displacement components 
(4.47), we note that the (6 4)n+  unknown parameters are: (0) (0) (0) (0)

2 3 5 6, , ,V V V V  for the core,  and  

( )( ) , 2,3,...,7 , {1,2,... }i
jV j i n∀ ∈ ∀ ∈  for n phases. In particular, the boundary equations of 

equilibrium and compatibility at the interfaces between i-phase and i+1 -phase (2.5), are 
 ( )( 1) ( ) 0 , {1,2,3,4,5}, {0,1,2,.... 1 }i i

j jf f j i n+ − = ∀ ∈ ∀ ∈ −  (4.50) 

where the functions ( )i
jf  that depend only on integration constants, are reported below: 

     

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( )2 (0) ( ) ( ) ( ) ( ) ( )
1 4 0 5 2 3

( ) ( ) ( ) 2 ( )2 (0) ( ) ( ) ( ) ( ) ( )
2 4 0 5 2 3

( ) ( ) ( ) ( ) ( ) 1 ( )3 ( ) (0) ( ) (
3 6 0 7 0 3 2 3

1 2 6 ;

1 2 6 3 5

1 1 6 9 2

i i i i i i i i i i
i

i i i i i i i i i i
i

i i i i i i i i
i i

f V R V R V V

f V R V R V V

f R V V R R V V V

δ λ λ µ

δ λ λ µ

δ δ λ

−

−

−

 = − + + − − Ω 

 = − + + − + Ω 

= − + − + + − ( )
( ) ( )

( )( ) ( )( )

( ) ( )

) ( )

( ) ( )4 ( ) ( ) ( ) (0) ( ) ( ) ( )
4 3 2 4 0

( ) ( )2 ( ) ( ) ( ) ( )
5 5 6 0 4 7 0

( )4 ( ) ( ) ( ) (0) ( ) ( ) ( )
3 2

3 1

2 1 2 1

2 2 3 8 9

i i

i i i i i i i i
i

i i i i i i
i i

i i i i i i i

f R V V V

f R V V V V

R V V

λ µ λ δ

δ δ

λ µ λ µ

 Ω 

 = + − Ω − − 

 = + − + − − + 

 + − + + + Ω 

         (4.51) 

The equilibrium equations (2.6) on external cylindrical boundary become: 

                             

( ) ( )
( ) ( )

( ) ( )

( )4 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 2 4

( )2 ( ) ( ) ( ) ( ) ( ) ( )
5 6 4 7

( )4 ( ) ( ) ( ) ( ) ( ) ( )
3 2

3 3 0

2 2 3

2 2 3 8 9 0

n n n n n n n n n

n n n n n n n

n n n n n n n

R V V V

R V V V V

R V V

λ µ λ λ µ

λ µ

λ µ λ µ

 + − − + = 

 + + − + + 

 + − + + + = 

                            (4.52) 

On the bases, only the following equilibrium equation must be written:  

                ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
5 6 3 2 ( ) ( )

0 0

1 2 2 9
3

i in n
i i i i i i i i

oi yi i
i i

V V I V V T
µ λ

µ ω δ µ
µ λ= =

+
 + − + + =  +∑ ∑  (4.53)          

where ( )( ) ( )2 ( 1)2 ( ) ( )4 ( 1)4
0 0(1 ) , 4 (1 )i i i i i i
i iR R I R Rω π δ π δ− −   = − − = − −     
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Then, the (5 3)n+  unknown parameters are: (0) (0) (0)
2 3 5, ,V V V  for the core, and ( ) , {3,4,5,6,7}i

jV j∀ ∈  

{1,2,... }i n∀ ∈  for the n phases.  By summarizing the results, there are (5 3)n+  equations to solve in 
the (5 3)n+  unknown parameters.  In order to solve the algebraic system (4.50)-(4.52)-(4.53), it is 
convenient to re-arrange the whole  algebraic system(5 3) (5 3)n n+ × +  following the matrix-based 
procedure previously presented [16]. Also for the case of shear and bending, in absence of the core 
phase, the solution can be easily obtained with the procedure already shown in previous section. 
The result is that here are present (5 )n  equations to solve in (5 )n  unknown parameters.  Then, the 

unknown (5 )n parameters become: (1) (1) (1) (1) (1)
2 3 4 5 7, , , ,V V V V V for first phase  and

 
( ) {3,4,5,6,7},i
jV j∀ ∈  

and {2,3,... }i n∀ ∈  for other phases. 
We presented the case of an solid constituted by three phases subjected by two shear forces and 
equilibrating bending couple as an sample. It is reported the function’s diagrams of the stress 
components, to select the following parameters: 

3 (1) (2) (3) (1) (2) (3)

(1) 5 2 (2) 5 2 (3) 6 2

10 , 200 , 4 , 10 , 10.5 , 0.16, 0.30,

3 10 / , 3.3 10 / , 10 / ,

yT Kg L cm R cm R cm R cm

E kg cm E kg cm E kg cm

ν ν ν= = = = = = = =

= ⋅ = ⋅ =
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Fig. 10.12 - The stress component σ rr  as function of the radius 



Chapter X – Multilayered cylinder under Saint-Venant’s loads and homogenization 

                                                                                                                                F. Carannante 
 

187 

2 4 6 8 10

0.05

0.10

0.15

0.20

0 10.5

(kg/cmq)

r (cm)

R(0)

(1)R R(2)

θθ

θθ
0.25

θθ

 
 

Fig. 10.13 - The stress component θθσ  as function of the radius 
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Fig. 10.14 - The stress component zzσ  as function of the radius 
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Fig. 10.15 - The stress component rzτ  as function of the radius 
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Fig. 10.16 - The stress component zθτ  as function of the radius 
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Fig. 10.17 - The stress component rθτ  as function of the radius 

 
 

10.5. Homogenization of multilayered cylinder under de Saint Venant like loads: Equivalent 
stress-strain relationships  
In the previous Sections, the exact solutions for an multilayered cylinder constituted by n arbitrary 
isotropic and linearly elastic hollow phases imprisoning a central core under the action of axial 
forces, combined shear and bending moments, and torque have been rigorously derived in the 
framework of linear theory of elasticity. The mathematical approach followed to find the closed–
form solution for each single load case has thus furnished the possibility of reducing the partial 
differential equations governing the elastic problem and the related boundary conditions in to a 
simpler linear algebraic problem, where a prescribed number of coefficients has to be determined. 
As a consequence, at least in principle, the overall mechanical response to selected loads of the 
composite material object can be obtained fully preserving the parametric influence of the whole set 
of geometrical and elastic features characterizing each phase of multilayered cylinder. 
Because the proposed analytical method offers the possibility of controlling the evolution of the 
local stress field inside each object’s layer and at the material interfaces when volume fractions and 
elastic modulus of the constituents are prescribed, the present Section is firstly dedicated to derive – 
via homogenization – an equivalent one-dimensional beam-like model, representing the overall 
behaviour of an multilayered cylinder under the action of the above mentioned DSV load 
conditions, explicitly constructing the corresponding stiffness matrix governing the elastic law 
among generalized stresses and strains. 
Successively, without loss of generality and by making reference to an multilayered cylinder 
constituted by two phases (a central core and a perfectly bonded hollow cylinder) a sensitivity 
analysis is finally conducted on the overall elasticity of the composite material, analysing in detail 
the influence of the phases volume fractions and of elastic modulus on the homogenized stiffness. 
Moreover, it is also investigated the role played by geometrical and mechanical features on the 
stress peaks and  spurious stress regimes kindled inside the layers and at the interfaces, as effect of 
the coupling of different materials. 
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10.5.1. Axial stiffness 
With reference to the solutions obtained for an multilayered cylinder under axial force, stress 
components obtained by means (3.22) and by utilizing the relationship between Lame’s constants 
and Young’s modulus, Poisson’s ratio,  we obtain 

 

( ) ( )
( )

( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
2 0 2 01 0 1 0( ) ( )

( ) ( )2 ( ) ( )2( ) 2 ( ) 2

( ) ( ) ( ) ( )
0 2( ) ( ) ( ) ( )

(0) (0)2

1 1
, ,

1 2 1 21 1

1 2
, 0, {1,2,.

1 2

i i i i i ii i i i
i ii i

rr i i i ii i

i i i i

i i i i
zz z r rz

E A E AA E A E

r r

E A
i

θθ

θ θ

ε ν ε νδ δ
σ σ

ν ν ν νν ν

ε ν ν
σ τ τ τ

ν ν

+ +− −
= − = +

− − − −+ +

 − + = = = = ∀ ∈
− −

.., }n

 (5.1) 

where Lame’s constants utilised in  equation  (5.1)  are : 

 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 , 1 1 2 ,i i i i i i i iE Eµ ν λ ν ν ν   = + = + −     (5.2) 

and ( )iE  and ( )iν  represent the Young’s modulus and the Poisson’s ratio of the i-th phase. 
By equating the internal virtual work to the external virtual work of true tractions times the solving 
displacement , it is possible to obtain the equivalent homogenized axial stiffness kε  for 

multilayered cylinder: 
 : z zzk N kε ε ε=  (5.3) 

where ( )

0

n
i

z z
i

N N
=

=∑ , and ( )i
zN  represents the axial resultant in the generic phase, and zzε  is the 

averaged strain on every cross-section of the relevant phase.  In particular, by starting from the 
external work for an infinitesimal element whose length is “dz”, we have: 

 
( ) ( )

( ) ( ) ( ) ( )
0 0 0

0 0

( ) ( ) ( ) ( ) ( ) ( )
i i

n n
i i i i

E zz z z zz z z
i i

dL n u dS n u dS
ω ω

σ ξ ξ ξ σ ξ ξ ξ
= =

= ⋅ ⋅ + ⋅ ⋅∑ ∑∫ ∫  (5.4) 

where 0,z dz zξ ξ= + = , and  
2 2( ) ( ) ( 1)

0[ (1 ) ]i i i
iR Rω π δ −= − −  is the area of the beam cross-section of 

the phase. By applying the equations (5.1), we note that the emerging stresses ( )i
zzσ  are uniform in 

each material phase. Moreover, by means of equation (3.20) we note that displacement component 
( )i
zu  does not depend on variables r and θ , then the infinitesimal actual external work for the 

choosed element is given by: 

 ( ) ( ) ( )
0 0 0

0

n
i i

E zz
i

dL F dzε ξ ξ σ ω ε
=

= − =∑  (5.5) 

where ( ) ( )0 1z zn nξ ξ= − = ,  and  ( ) ( ) ( )

0 0

n n
i i i

zz z z
i i

N Nσ ω
= =

= =∑ ∑    represents the axial force on the beam 

element. The infinitesimal internal work can be written as: 

 ( )
( )

( ) ( 1)
0

2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 (1 )

:

i

i i
i

Rn n
i i i i i i i i

I rr rr zz zz
i i R

dL dz ds dz r dr d dz
π

θθ θθ ε
ω δ

σ ε σ ε σ ε ϑ
−= = −

= = + + = Ψ∑ ∑∫ ∫ ∫σ ε  (5.6) 

where  

( ) ( )
( )

( )2 ( )( ) ( )
1( ) ( ) ( )2 2 ( ) ( )

0 2 0 2 0 0( ) ( )2 ( )2 ( 1)2
0 0

2 4
: (1 ) 2 4

1 2i

i ii in n
i i i i i

ii i i i
i i

AE
ds A A

v R Rε
ω

νω δ ε ε ν ε
ν −

= =

 −
 Ψ = = − + + + −

− −   
∑ ∑∫ σ ε  

By invoking the virtual work principle, we obtain: 
 0zN dz dzεε = Ψ  (5.7) 

For the present case, by applying the equations (3.20) and (3.21), the averaged strain 0ε  in z-

direction  is equal to:                                                            
 0zzε ε=  (5.8) 

By recalling the equation (5.3)-(5.8), we can  determine the average axial strain: 
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 1
0 0z zN k N kε εε ε −= ⇒ =  (5.9) 

By substituting the  average axial strain in equation (5.7), we obtain the homogenised axial stiffness 
kε of multilayered cylinder: 

 2 1
zk Nε ε

−= Ψ  (5.10) 

Without loss of generality, we set 1zN = ,  then, the overall axial stiffness kε of multilayered 

cylinder can be finally written as: 

 1 ( ) ( ) ( )

0

n
i i i

i

k Eε ε εω ψ−

=
= Ψ =∑  (5.11) 

where ( )i
εψ  is a modulating  coefficient that depends on geometrical and mechanical parameters: 

 
2 ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) 2

0

1
,

in
i i i i i I

i i
i I

dL
E

E dLε ε εψ η ω η
ω=

  = =   
   
∑  (5.12) 

where coefficients ( )i
εη  are: 

 ( )( )

( )2 2 ( ) ( ) ( )2
( ) ( ) ( ) 2 0 2 0 0 0 1

( ) ( ) ( ) ( )2 ( ) ( )2 ( 1)2

2 (4 ) 2(1 )1
: ,

1 2 1i

i i i i
i i i i

i i i i i i i

A A A
ds

E R R
ε

ω

ε ε ν ε δη
ω ν ν ν −

+ + − −= = +
− − +∫ σ ε  (5.13) 

It is worth to note that, by solving the problem by setting ( ) , {0,1,2,..., }i i nν ν= ∀ ∈ , ( ) 1i
εψ = in 

each phase , equation (5.11) reduces to the more simple expression: 

 ( ) ( )

0

n i i

i
k Eε ω

=
=∑  (5.14) 

10.5.2.  Torsion stiffness 
The object of the present section is the determination of the homogenised torsion stiffness of 
multilayered cylinder, for the case of pure torsion with couples z±M  applied at the bases of the 

solid. With reference to the results illustrated above, the solving displacement field reduces to 
(4.24) and no-vanishing strain and stresses are given by (4.25). By utilizing the same strategy 
followed for the axial stiffness, it is possible to obtain the homogenized overall torsion stiffness kφ  

of multilayered cylinder by means of Virtual Work Equation equating external work to the internal 
one related to true strain and stresses. The torsion stiffness of cross-section is defined as follows 
 : zk kφ φ φ=M  (5.15) 

where φ  is the mean value of the twist angle per unit length. The infinitesimal actual external work 
for an arbitrary element of multilayered cylinder, with infinitesimal length “dz” can be written as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
0 0

0 0

( ) ( ) ( ) ( )
0 0 0

0 0

i i

i i

n n
i i i i

E
i i

n n
i i i i
z z z z

i i

dL ds ds

n u ds n u ds

ω ω

θ θ θ θ
ω ω

ξ ξ ξ ξ

τ ξ ξ ξ τ ξ ξ ξ

= =

= =

= ⋅ + ⋅ =

= ⋅ ⋅ + ⋅ ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫

t u t u

 (5.16) 

where 0,z dz zξ ξ= + =  . The twist angle is defined as  ( ) 1 ( )i ir uθ
−Θ = . By means of equation (4.24) , 

we note that the twist angle ( )iΘ  is constant respect to r and θ  variables: 

 ( )( ) ( ) 1 ( ) ( )

0

n
i i i i

z P
i

u r z Iθ µ−

=

Θ = = ∑M  (5.17) 

Then, we can write following relationship: 

 ( ) ( ) ( ) ( )
( ) ( )

1 ( ) ( ) 2 1 ( ) ( ) 2
0 0

0 0i i

n n
i i i i

E z z
i i

dL r u r drd r u r drdθ θ θ θ
ω ω

ξ τ ξ θ ξ τ ξ θ− −

= =
= −∑ ∑∫ ∫  (5.18) 

where ( ) ( )0 1z zn nξ ξ= − = .  Moreover, the twist angle takes the same value in every phase and by 

means of equation (4.22), we can write: 
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 ( ) ( ) ( )( )
0

0

n
i

E z z
i

dL d zξ ξ
=

= Θ − Θ = Θ  ∑M M  (5.19) 

where ( )i
zM  is the relevant torque. The infinitesimal internal work for infinitesimal element is : 

 

( )

( ) ( 1)
0

2
( ) ( ) ( ) ( )

0 0 0 (1 )

:

i

i i
i

Rn n
i i i i

I z z
i i R

dL dz ds dz rdrd dz
π

θ θ φ
ω δ

τ γ θ
−= = −

= = = Ψ∑ ∑∫ ∫ ∫σ ε  (5.20) 

where 
( )

( ) ( ) 2 ( ) ( )

0 0

:
i

n n
i i i i

z P
i i

ds Iφ
ω

µ
= =

 Ψ = =  
 

∑ ∑∫ σ ε M . The  twist angle for unit length φ  is defined as:                                                              

 ( ) ( )
,

0

n
i i

z z P
i

I constφ µ
=

= Θ = =∑M  (5.21) 

Above equation (5.21), coupled with equation (5.19) determines the differential of the twist angle 

( )zΩ : 

 1
, ( )z z zk k d z k dzφ φφφ −= = Θ ⇒ Θ =M M  (5.22) 

By substitution, we obtain: 
 ( ) 2 1

E z zdL d z k dzφ
−= Ω =M M  (5.23) 

Finally, equations (5.20) and(5.23), yield the overall torsion stiffness kφ of multilayered cylinder: 

 2 1 ( ) ( )

0

n
i i

z P
i

k Iφ φ µ−

=
= Ψ =∑M  (5.24) 

                                                                      
10.5.3.  Bending stiffness 
Let us now consider the case in which an multilayered cylinder is subjected to pure bending, whose 
value is xM , works in direction x. By recalling the reported displacement solutions in (4.28) and 

results in (4.33)-(4.34), the displacement field for the generic i-th phase is as follows: 

    

( ) ( )( ) ( ) ( ){ }
( ) ( )( ) ( ) ( ){ }

( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) 2
5 4 0 3 0

( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) 2
5 4 0 3 0

( )
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1 2 2 1 sin

1 2 2 1 5 3 cos

sin

i i i i i i i i
r oi

i i i i i i i i
oi

i
z

u U U r U r z

u U U r U r z

u z r

θ

δ χ λ µ λ χ θ

δ χ λ µ λ χ θ

χ θ

−

−

 = + − + + − Ω + 

 = − − + − + Ω + 

= −

 (5.25)                           

where  (0)
2 02U χ=  represents the curvature of the solid. In order to determine the equivalent overall 

bending stiffness kχ  we can follow the same homogenization procedure used above. The bending 

stiffness is defined as: 
 : xk kχ χ χ=M  (5.26) 

The infinitesimal actual external work for an arbitrary element of multilayered cylinder: 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
0 0 0

0 0i i

n n
i i i i

E zz z z zz z z
i i

dL n u ds n u ds
ω ω

σ ξ ξ ξ σ ξ ξ ξ
= =

= ⋅ ⋅ + ⋅ ⋅∑ ∑∫ ∫  (5.27) 

The rotation  ( )x zϕ  around the x-axis is given by the first component of curl of displacement field: 

 ( ) ( ) ( ) ( )( ) ( )( )
, , 01 2 1 2 sini

x y z z y zx
z u u z u rϕ χ θ= − ∇× = − = = −u  (5.28) 

From equation (5.25) , we note that the rotation ( )x zϕ  is constant respect to r and θ  variables, then 

we can write (5.27) as: 

           
( ) ( ) ( ) ( )

( ) ( )

( ) ( )
0( ) 2 ( ) 2

0
0 0

sin sin
sin sini i

i in n
z zi i

E zz zz
i i

u u
dL r drd r drd

r rω ω

ξ ξ
σ ξ θ θ σ ξ θ θ

θ θ= =

   
= −   

      
∑ ∑∫ ∫  (5.29) 

where ( ) ( )0 1z zn nξ ξ= − = .  Moreover, the rotation ( )x zϕ  is uniform for the present case in every 

phase  and by applying the equation (5.29), we can  write: 
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 ( ) ( ) ( ) ( )( ) ( )
0 0

0 0

n n
i i

E x x x x
i i

dL ϕ ξ ξ ϕ ξ ξ
= =

= −∑ ∑M M  (5.30) 

where ( )i
xM  represents the bending moment of the i-th phase. Finally, the infinitesimal external 

work is given by: 
 ( ) ( ) ( )0E x x x xdL d zϕ ξ ϕ ξ ϕ= − =  M M  (5.31) 

where ( ) ( )0x x x constξ ξ= = =M M M .  The infinitesimal internal work for the element is given 

by: 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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 (5.32)            

where ( )
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The curvature χ  can be defined as:                                                               

 ( )( )
, 0,

sini
x z z z

u r constχ ϕ θ χ = = = =   (5.33) 

The curvature is same in any phase and then the cross section of the beam remains plane in 
agreement with Bernoulli’s theory of the beam. By recalling equation (5.26), we can determine the 
differential of the rotation ( )x zϕ : 

 1
, ( )x x z x xk k d z k dzχχ χχ ϕ ϕ −= = ⇒ =M M  (5.34) 

By equating the equations (5.31) and (5.32), and substituting  equation (5.22), we obtain the overall 
bending stiffness kχ of multilayered cylinder: 

 2 1
xkχ χ

−= ΨM  (5.35) 

Finally, the overall bending stiffness kχ  can be written as follows:      

 1 ( ) ( ) ( )

0

n i i i

i
k E Iχ χ χψ−

=
= Ψ =∑  (5.36) 

where ( )i
χψ  is correction coefficient that depends on geometrical and mechanical parameters: 

 
2 ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) 2

0

1
,

in
i i i i i I

i i
i I

dL
E I

E I dLχ χ χψ η η
=

  = =   
   
∑  (5.37) 

where coefficient  ( )i
χη  is given by following expression: 

      ( )
( )
( )( )

( )2 2 ( ) ( ) ( )( )2
3 0 0 3( ) ( ) ( ) 4 0

( ) ( ) ( )4 ( 1)4( ) ( )

4 3 8(1 )1 4
:

1 4 3 4i

i i i ii
i i i i

i i i ii i

U UU
ds

E I R Rχ
ω

χ ν χ νδη
ν ν−

 + − −−
 = = +

+ −  
∫ σ ε   (5.38) 

where, without loss of generality, ( ) ( )
3 4 0, ,i iU U χ  are coefficients to determine by setting 1x =M . It is 

worth to note that, by solving the problem for the case where ( ) , {0,1,2,..., }i i nν ν= ∀ ∈ , 
( ) 1i
χψ = in any phase,  and  bending stiffness reduces to: 

 ( ) ( )

0

n i i

i
k E Iχ =

=∑  (5.39) 

It is important to note here that the homogenised stiffness obtained for the bent solid in the general 
case  (5.36)  ( ) ( )( )i jν ν≠ is quite different from the one (5.39) obtained for particular case, that 
represent the trivial sum of phase’s stiffness. This new and relevant result depends principally from 
the presence of stress component rθτ  and relevant strain component rθγ , generated by Poisson 

effect between different adjacent phases. 
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10.5.4.  Shear stiffness 
In order to complete the set of homogenised constitutive equations for multilayered cylinder 
involving generalized stresses and strains, we finally consider the case in which the object is 
subjected to shear force yT T= ±   and to bending deriving from equilibrating couple x yT L=M  on 

base  z L= . With reference to above elastic solutions for the shear case in (4.47) is reported the 

actual displacement field. In order to determine the equivalent overall shear stiffness kγ  we will 

follow the same homogenization procedure used above. The shear stiffness is defined as: 
 : yk T kγ γ γ=  (5.40) 

where γ  is the transverse mean shear strain on the cross-section. By reference to an internal 
arbitrary element of multilayered cylinder, with infinitesimal length “dz”, the work made by 
emerging tractions is given by: 

 ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
0 0

0 0i i
L L

n n
i i i i i
E

i iV V

dL dS dSξ ξ ξ ξ
= =∂ ∂

= ⋅ + ⋅∑ ∑∫ ∫t u t u  (5.41) 

where 0 ,z z dzξ ξ= = +  , and by means of emerging stresses:  

      

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 0 0 0 0 0

0

i
L

i
L

n
i i i i i i

E rz z r z z zz z z
i V

n
i i i i i i

rz z r z z zz z z
i V

dL n u n u n u ds

n u n u n u ds

θ θ

θ θ

τ ξ ξ ξ τ ξ ξ ξ σ ξ ξ ξ

τ ξ ξ ξ τ ξ ξ ξ σ ξ ξ ξ

= ∂

= ∂

= + + +

+ + +

∑ ∫

∑ ∫
 (5.42) 

For sake of simplicity, by utilising stress and displacement components in Cartesian coordinates, we 
obtain:  

      

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 0 0 0 0 0

0

i
L

i
L

n
i i i i i i

E xz z x yz z y zz z z
i V

n
i i i i i i

xz z x yz z y zz z z
i V

dL n u n u n u ds

n u n u n u ds

τ ξ ξ ξ τ ξ ξ ξ σ ξ ξ ξ

τ ξ ξ ξ τ ξ ξ ξ σ ξ ξ ξ

= ∂

= ∂

= + + +

+ + +

∑ ∫

∑ ∫
 (5.43) 

The bending moment in beam is given by: 
 ( ) ,x y x yM z T z dM T dz= =  (5.44) 

and on the selected infinitesimal element equation (5.43) gives: 

                                    ( ) ( ) ( )E y y y y y x x x x x xdL T u du T u M d M dMϕ ϕ ϕ= + − + + − +            (5.45) 

where xdϕ  represents the rotation’s differential : 

 xd d zϕ χ=  (5.46) 

where χ  is the curvature of the beam. By substituting the equations (5.44)-(5.46) in to equation 
(5.45), we obtain the infinitesimal external work: 

 ( ),E y y z xdL T u z dzϕ χ = − +   (5.47) 

The rotation ( )x zϕ  around the x-axis is given by the first component of the curl of displacement 

field: 

 ( ) ( )( ) ( )( ), ,1
1 2 1 2x y z z yz u uϕ = − ∇× = −u  (5.48) 

The actual transverse mean shear strain on the cross-section is:                                                               

 ( ) ( ) ( ), , ,1 2 1 2eff y z x y z z y yzu u uγ ϕ γ= − = − =  (5.49) 

Finally, the actual external work is given by: 

 ( )2E effdL T z dzγ χ= +  (5.50) 

The infinitesimal internal work results: 
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( )

( )

( )

( 1)
0

( ) ( )

0

2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 (1 )

i

i

i
i

n
i i

I
i

Rn
i i i i i i i i i i i i

rr rr zz zz r r z z rz rz
i R

dL dz ds

dz r dr d dz

ω

π

θθ θθ θ θ θ θ γ
δ

σ ε σ ε σ ε τ γ τ γ τ γ θ
−

=

= −

= =

= + + + + + = Ψ

∑ ∫

∑ ∫ ∫

σ ε

 (5.51) 

We can rewrite the infinitesimal internal energy as follows: 

 ( )0 1 2
IdL z dzγ γ= Ψ + Ψ  (5.52) 

By recalling equations (5.26)-(5.40), we can determine the curvature and shear deformation: 

 
1

1
2

y y

y eff eff

T z k T z k

T k T k

χ

γ

χ

γ

χ χ

γ γ

−

−

= ⇒ =

= ⇒ =
 (5.53) 

By equating the equations (5.50) and (5.51) and applying the polynomial identity law, we obtain the 
follows relationship: 
 0 1; ;y eff yT T zγ γγ χ= Ψ = Ψ  (5.54) 

By substituting the equation (5.53) in Equation (5.54), we obtain the overall shear stiffness kγ and 

bending stiffness of multilayered cylinder: 
 2 0 2 1; ;y yk T k Tγ γ χ γ= Ψ = Ψ  (5.55) 

By setting 1yT = , we can to write shear and bending stiffness as follows: 

 
1 10 1; ;k kγ γ χ γ

− −
   = Ψ = Ψ     (5.56) 

It is easy to prove that the bending stiffness calculated in equation  (5.56) is same of the (5.35) 
obtained for pure bending,  since  1

γ χΨ = Ψ . Then, the bending stiffness does not change in 

presence of  shear, and depends only on geometry of cross section. Finally, the overall shear 
stiffness kγ  can be written as follows:      

 ( ) ( ) ( )

0

n i i i

i
kγ γµ ω ψ

=
=∑  (5.57) 

where ( )i
γψ  is a coefficient that depends on geometrical and mechanical parameters: 

 
2 ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) 2

0

1
,

in
i i i i i I

i i
i I

dL

dLγ γ γψ η µ ω η
µ ω=

  = =   
   
∑  (5.58) 

where  coefficient ( )i
γη  is given by follows expression: 

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4( ) ( )

1
,

i

i i i i i i i
i i

dsγ
ω

η ζ ζ ζ ζ
µ ω

= = + + +∫ σ ε  (5.59) 

where ( ) {1,2,3,4}i
j jζ ∀ ∈ ,  are coefficients to determine by setting 1yT = . These coefficients 

assume following expressions: 

( )( ) ( )
( )( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) 2 ( ) ( ) ( )
1 0 4 7

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 5 6 2 3

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 5 6 4 7 2 2 3( ) ( )

( )

( )
4

1 2 4 ;

4 9 2 ;

2 3 2 3 9 2
2 3

i i i i i
i

i i i i i i i i i i

i i
i i i i i i i i i i i i

i i

i

i

V V

I V V V V

V V V V V V V

R

ζ µ π δ ω

ζ µ λ µ

µ ωζ λ µ λ µ
λ µ

π µ
ζ

 = − − 

 = + + − Ω 

 = + + + − + +
 +

=
( )

( )

( )
( )

( )

2 ( )2 ( ) ( ) ( )2
3

( )6 ( 1)6
0 ( ) ( ) ( )2 ( ) ( ) ( )2

2 32( ) ( )

( )2 ( )2 ( ) ( ) ( )2
2

4 4 8 5
1

12 12 22 9
12 3

9 40 84 45

i i i i

i i
i i i i i i i

i i

i i i i i

V
R

V V

V

λ λ µ µ
δ

λ λ µ µ
λ µ

λ λ µ µ

−
 + +
  − −   − + +
 +
 + + 

 (5.60) 
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In particular for solid composed by only one hollow phase with Poisson’s modulus ν , tangential 
shear modulus µ , area of cross section ω , external radius ,eR and internal radiusiR , the shear 

stiffness is given by: 

       ( ){ } ( ) ( ){ }22 2 2 2 4 4 2 2 26 1 7 14 8 2 17 34 16e i e i e ik R R R R R Rγ µ ω ν ν ν ν ν   = + + + + + + + +     (5.61) 

By means of  the position  i eR Rβ= , we can rewrite the equation (5.61) as follows: 

           
( ) ( ) ( )( ) ( )

( ) ( )

2 22 4 2 2 2

22 2 4

6 1 1 1 7 14 8 34 68 32

0.85 1 1 4.85 [0,0.5]

k

k

γ

γ

µω β ν β ν ν β ν ν

µ ω β β β κ µ ω ν

   = + + + + + + + +   

 ≅ + + + = ∀ ∈  

 (5.62) 

In particular, the shear stiffness for the beam with hollow circular section is given by µ ω  for a 
coefficient κ (inverse shear’s factor) that vary in the range [0.5,0.85]. For small thickness 

1 0.5kγβ µ ω→ ⇒ ≅ , in agreement with of Jourawsky’s theory of the shear,  but for big thickness 

0 0.85kγβ µ ω= ⇒ ≅ . For solid composed by a sole phase with circular section, the shear 

stiffness is given by : 

 ( ) ( )2 26 1 7 14 8 0.85 [0,0.5]kγ µ ω ν ν ν µ ω ν = + + + ≅ ∀ ∈
 

 (5.63) 

For negative values of Poisson’s Modulus, the shear stiffness reduces. In particular for 1ν = − , the 
shear stiffness is equal to zero. As a result of what has been obtained above, it is worth to note here 
that it isn’t possible to assume the shear stiffness of multilayered cylinder by summing those of the 
single phases, as so far is made for the sake of approximation. 
 
10.6  Sensitivity analyses: closed-form solutions for solid composed by two phases 
In this section, we report an application for a solid composed by only two isotropic phases. We will 
determine the axial, torsion, bending and shear stiffness of the solid mentioned above. Then, we 
will carry out the comparison between the stiffness of multilayered cylinder beam calculated 
utilising the exact analytical solution with the approximate one given above by means of the 
homogenization procedure. 
 
10.6.1   Axial Stiffness 
Here we show the comparison between the axial stiffness kε  calculated by applying the formula 

(5.11) and approximate axial stiffness kε  estimated as usually done as sum of the single phase’s 

stiffness. The results are reported in figures n. 4,5,6,7,8. The simplified axial stiffness kε  is given 

by following formula:  

 
1 ( ) ( )

0

i i

i
k Eε ω

=
=∑  (6.1) 

In order to stress the influence of Poisson’s modulus ν , comparison is developed by considering 
different values of ν  for two phases. Let us consider the error percentage between kε  and kε  

calculated by applying following formula : ( )% 100err k k kε ε ε= − . In explicit, for case of axial 

force, this formula becomes: 

 
( )( )

( ) ( ) ( ) ( ) ( ){ }
22 2 (0) (1)

2 2 (0) (0)2 (1) 2 (1)

200 1
%

1 1 1 1 2 1 1 2 1
err

α β β ν ν

α β β ν ν α ν β ν

− −
=

  − + − − − − + + −   

 (6.2) 

where (0) (1) (0) (1),E E R Rα β= =  are ratio between Young’s modulus and ratio between radii of 
two phases, respectively. By assuming that two phases have same area and same Young’s modulus: 

1, 1/ 2α β= = , we obtain that percentage error given by (6.2) is a function only of Poisson’s 
modulus of  two phases. In this case the function (6.2) becomes: 
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 ( ) ( ) ( )2(0) (1) (1) (1) (0) (0)1
% 1, 100 4 1 2 1 2

2
err α β ν ν ν ν ν ν     = = = − + − − +       

 (6.3) 

In figure 10.18 is represented the error percentage (6.3) when Poisson’s modulus of internal phase 
varies on abscissa, and every curve refers to the selected Poisson’s modulus of external phase. By 
applying the relationship (6.3), if the Poisson’s modulus in both phases are positive, the maximum 
error percentage is equal to 8.33 corresponding to following value of Poisson’s moduli: 

(0) (1)0.5, 0.0ν ν= = . The function (6.3) can assume values greater than 8.33 if the Poisson’s 
modulus assumes positive and negative values in two phases, respectively. For example, if  

(0) (1)0.5, 0.5ν ν= = −  the percentage error assumes the value 50. It is interesting to note that for 
design purposes aimed to obtaining stiffness of multilayered cylinder, also in technical applications 
involving new materials, the actual stiffness could be increased until the 50%, respect to that 
usually evaluated. By assuming (0)1, 0.50α ν= = (incompressible core) the function (6.2) becomes: 

          ( ) ( )( ) ( ) ( ){ }2(0) 2 2 (1) (1) 2 (1)% 1, 0.5 50 1 1 2 1 2 1 1err α ν β β ν ν β ν   = = = − − + − −    
 (6.4) 

In figure 10.19 is plotted the function (6.4) for the case (0)1, 0.50α ν= = where on abscissa varies 

the radii’s ratio (0) (1)R Rβ = and every curve refers to the selected Poisson’s modulus of the 

external phase. By assuming (1)1, 0.50α ν= =  (incompressible shell) the function (6.2) becomes: 

   ( ) ( )( ) ( )( )(1) 2 2 (0) 2 (0) (0)2% 1, 0.5 200 1 1/ 2 1 1 2 3 / 2err α ν β β ν β ν ν   = = = − − − − + + +
   

 (6.5) 

Figure 10.20 shows the function (6.5) where on abscissa varies the radii’s ratio (0) (1)R Rβ =  and 
every curve refers to selected Poisson’s ratio for internal phase. Finally, in figure 10.21 and 10.22 
are reported the plots for cases (0) (1)0.5, 0.0ν ν= =  and (0) (1)0.0, 0.5ν ν= = , respectively. In these 
figures the free parameters are ,α β .  

 
Fig. 10.18 - Percentage error between the kε  and kε : Variation respect to Poisson’s modulii of 

two phases with fixed parameters: (0) (1) (0) (1)1, 2 2E E R Rα β= = = = ;  
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Fig. 10.19 - Percentage error between the kε  and kε : Variation respect to β  and (1)ν  with fixed 

parameters (0) (1) (0)1, 0.5E Eα ν= = =  (incompressible core); 

 
Fig. 10.20 - Percentage error between the kε  and kε :  Variation respect to β  and (0)ν  with fixed 

parameters (0) (1) (1)1, 0.5E Eα ν= = =  (incompressible shell); 
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Fig. 10.21 - Percentage error between the kε  and kε :  Variation respect to Young’s modulii of two 

phases and β  with fixed parameters (0) (1)0.5, 0.0ν ν= =  (incompressible core); 

 
Fig. 10.22 - Percentage error between the kε  and kε : Variation respect to Young’s modulii of two 

phases and β  with fixed parameters (0) (1)0.0, 0.5ν ν= =  (incompressible shell); 
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10.6.2   Bending stiffness   
Figures 10.23, 10.24, 10.25, 10.26, 10.27 shows the comparison between the bending stiffness kχ  

calculated by proposed model, evaluated with the formula (5.36) and bending stiffness kχ  estimated 

as the sum of the single phase’s stiffness. The approximate bending stiffness kχ  is evaluated by 

following formula:  

 
1 ( ) ( )

0

i i

i
k E Iχ =

=∑  (6.6) 

where ( )iI  is the inertia of single phase. In order to stress the influence of Poisson’s moduli, 
comparison is developed by considering two phases. Let us consider the error percentage between 

kε  and kε  calculated by applying following formula : ( )% 100err k k kχ χ χ= − . In explicit for case 

of pure bending this formula becomes: 

 
( )( )

( ) ( )( ) ( ) ( ){ }
24 4 (0) (1)

4 4 (0) (0)2 (1) 4 (1)

400 1
%

1 1 1 3 4 1 4 3 1
err

α β β ν ν

β α β ν ν α ν β ν

+ −
=

  − + − − − + + − −   

 (6.7) 

By assuming same area and same Young’s modulus for two phases: 41, 1/ 2α β= = , that 
percentage error given by (6.7) becomes a function of the Poisson’s moduli of  two phases. In this 
case the function (6.7) becomes: 

 
( )

( ) ( )
2(1) (0)

4 (1) (1) (0) (0)

2001
% 1,

2 8 1 4 1 4
err

ν ν
α β

ν ν ν ν

− = = =  + − − + 
 (6.8) 

In figure 10.23 is represented the error percentage (6.8) when Poisson’s modulus of internal phase 
varies on abscissa, and every curve refers to the selected Poisson’s modulus of external phase. By 
applying the relationship (6.8), if the Poisson’s modulii in both phases are positive, the maximum 
error percentage is equal to 7.69 corresponding to following value of Poisson’s moduli: 

(0) (1)0.5, 0.0ν ν= = . The function (6.3) can assume values greater than 7.69 if the Poisson’s 

modulus assumes alternate signs in two phases. As example, if  (0) (1)0.5, 0.5ν ν= = −  the 

percentage error assumes the value 40. By assuming (0)1, 0.50α ν= = (incompressible core) the 
function (6.7) becomes: 

 ( ) ( )( )
( )

24 4 (1)

(0)
(1) 4 (1) (1)2

200 1 1 2
% 1, 0.5

5 2 3 2 8
err

β β ν
α ν

ν β ν ν

− −
= = =

+ + − −
 (6.9) 

In figure 10.24 is plotted the function (6.9) where on abscissa varies the radii’s 
ratio (0) (1)R Rβ = and every curve refers to the selected Poisson’s modulus of the external phase. By 

assuming (1)1, 0.50α ν= =  (incompressible shell) the function (6.7) becomes: 

 ( ) ( ) ( )
( ) ( )

24 4 (0)

(1)
(0) (0) 4 (0) (0)2

200 1 1 2
% 1, 0.5

2 1 4 3 2 8 9
err

β β ν
α ν

ν ν β ν ν

− −
= = =

+ + − − −
 (6.10) 

The figure 10.25 shows the function (6.10) where on abscissa varies the radii’s ratio (0) (1)R Rβ =  
and every curve refers to the selected Poisson’s ratio for internal phase. Finally, in figure 10.26 and 
10.27 are reported the results for cases (0) (1)0.5, 0.0ν ν= =  and (0) (1)0.0, 0.5ν ν= = , respectively. 
In these last figures the free parameters are ,α β .  
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Fig. 10.23 - Percentage error between the kχ  and kχ : Variation respect to Poisson’s modulii of 

two phases with fixed parameters (0) (1) (0) (1) 41, 1 2E E R Rα β= = = = ;  

 
Fig. 10.24 - Percentage error between the kχ  and kχ :  Variation respect to β  and (1)ν  with fixed 

parameters: (0) (1) (0)1, 0.5E Eα ν= = =  (incompressible core);  
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Fig. 10.25 - Percentage error between the kχ  and kχ : Variation respect to β  and (0)ν  with fixed 

parameters (0) (1) (1)1, 0.5E Eα ν= = =  (incompressible shell); 

 
Fig. 10.26 - Percentage error between the kχ  and kχ : Variation respect to Young’s modulii of two 

phases and β  with fixed parameters (0) (1)0.5, 0.0ν ν= =  (incompressible core); 
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Fig. 10.27 - Percentage error between the kχ  and kχ : Variation respect to Young’s modulii of two 

phases and β  with fixed parameters (0) (1)0.0, 0.5ν ν= =  (incompressible shell); 
 
10.6.3.  Shear stiffness 
Figures 10.28, 10.29, 10.30, 10.31, 10.32, highlights the comparison between the bending stiffness 
kγ  calculated by means of the new analytical solution (5.57) and the shear stiffness kγ  obtained by 

summing the single phase’s stiffness, see equations (5.61) and (5.63):  

 

( )
( )

( )( ) ( )
( ) ( ) ( )

2 (0) (0)

(0) (0)

(1) (1)
22 2 (1)

(1) (1) 4 (1) (1) 2

1

7 2 7 4
6

1 1 1

7 2 7 4 1 34 4 17 8

k Rγ

β µ ν
ν ν

π µ
β β ν

ν ν β ν ν β

 +
 +

+ + 
 =
 − + +
 
   + + + + + +     

     (6.11) 

where (0) (1)γ µ µ= is the ratio between tangential elastic modulus in two phases. This comparison 

is implemented by selecting same elastic moduli for two phases. For the chosen parameters, kγ  and 

kγ  are functions of Poisson’s modulus of two phases. The error percentage between kγ  and kγ  is 

evaluated by applying following formula: 
 ( )% 100err k k kγ γ γ= −  (6.12) 

For sake of brevity, we don’t  report the explicit expression of function (6.12). Figure 10.28 shows 
the error percentage (6.12) when Poisson’s modulus of  internal phase varies on abscissa, and every 
curve refers to the selected Poisson’s modulus of external phase.  In figure 10.29 is plotted the 

function (6.12) for the case (0)1, 0.50α ν= =  (incompressible core), where on abscissa varies the 

radii’s ratio (0) (1)R Rβ = and every curve refers to the selected Poisson’s modulus of the external 

phase. The figure 10.30 shows the function (6.12) for the case (1)1, 0.50α ν= =  (incompressible 
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shell), where on abscissa varies the radii’s ratio (0) (1)R Rβ =  and every curve refers to the selected 
Poisson’s ratio for internal phase. Finally, in figure 10.31 and 10.32 are reported the results 
obtained for cases (0) (1)0.5, 0.0ν ν= =  and (0) (1)0.0, 0.5ν ν= = , respectively. In these last figures 
the free parameters are ,α β .  

 
Fig. 10.28 - Percentage error between the kγ  and kγ : Variation respect to Poisson’s modulii of 

two phases with fixed parameters (0) (1) (0) (1)1, 2 2R Rγ µ µ β= = = = ; 

 
Fig. 10.29 - Percentage error between the kγ  and kγ :  Variation respect to β  and (1)ν  with fixed 

parameters (0) (1) (0)1, 0.5α µ µ ν= = =   (incompressible core);  
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Fig. 10.30 - Percentage error between the kγ  and kγ : Variation respect to β  and (0)ν  with fixed 

parameters (0) (1) (1)1, 0.5α µ µ ν= = =   (incompressible shell);  

 
Fig. 10.31 - Percentage error between the kγ  and kγ : Variation respect to shear modulii of two 

phases and β  with fixed parameters (0) (1)0.5, 0.0ν ν= =  (incompressible core);  
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Fig. 10.32 - Percentage error between the kγ  and kγ : Variation respect to shear modulii of two 

phases and β  with fixed parameters (0) (1)0.0, 0.5ν ν= =   (incompressible shell); 
 
10.7.  Conclusions 
In this work, we considered a beam constituted by multilayered cylinder composed by n+1 isotropic 
phases subjected to De Saint Venant’s load condition: axial force, torsion, pure bending, shear and 
bending moment. We showed the elastic solution for these load conditions and  proposed a new 
mathematical procedure to determine in explicit the integration constants of the solution 
displacement field related to cases of the axial, bending, and torsion. The above elastic solutions are 
already present in literature. On the other hand, the work presents a new elastic solution for 
cylindrical multiphase solid composed by n-isotropic phases under the shear and bending load 
condition: this solution is not yet known in the literature. By using the solution presented, were 
calculated  axial, bending, torsion and shear stiffness of the solid considered. The axial stiffness kε  , 

bending stiffness kχ  , shear stiffness kγ  are not equal to the sum of stiffness of single  phases, as so 

far usually assumed in simplified procedures, but strongly dependent on values of Poisson’s moduli 
and on geometrical parameters.  It is analysed the case study of the solid composed by two isotropic 
phases. The comparison between the stiffness calculated by exact solution proposed in this work 
and the approximate corresponding stiffness estimated as sum of the single stiffness was shown, for 
any of De Saint Venant load conditions. The percentage error between exact and approximate 
stiffness depending on change of the mechanical and geometrical parameters of multilayered 
cylinder solid, was widely analyzed. For axial and bending stiffness, if (0) (1)0.5, 0ν ν= = , the 
maximum value of the percentage error between exact and approximate stiffness was found, for any 
ratio of the Young’s modulus and radius. It is easy to prove that  percentage error don’t can be 
greater than the 25% for axial stiffness, and of the 10% for bending stiffness, respectively. On the 
contrary, in the case of the shear and bending, if (0) 0ν = , (1) 0.5ν =  the percentage error reaches the 
maximum values for any value of parameters ,α β . In this case, if the ratio between Young’s 
modulus of the two phases “ 1α << ”  the percentage error might reach negative relevant values. In 
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other words, if (1) (0)E E<<  the approximate shear stiffness is greater than the exact shear stiffness. 
In particular the percentage error can reach the 100%.  Due to the wide presence of biological, 
chemical-based and man-made materials and structures presenting significant analogies with 
multilayered cylinder, it is felt that the proposed strategy can be helpfully utilized for designing 
composites  and for a better understanding of optimality criteria to which Nature obeys. 
 
10.8.  Table of symbols 

0

( )
/

( )
I

E

Axial deformation number of material phases

Scalar parameters of the -th phase , ,... indices

L total internal work  radius of the -th phases

L total external work                                        

i
h k

i

n

C i i j

R i

ε

 { , , } cylindrical coordinates

Axial force                                                        strain components

Bending moment acting in plane               stress components

Bending moment a

z hk

x hk

y

r z

N

y z

θ
ε

σ−M

M ( ) ( )cting in plane , stresses and strains of the -th phase

Torque moment  ratio

T Shear force in x direction modulus

T Shear force in y direction ,  moduli

Axial stiffness, Bending stif

i i
hk hk

z

x

y

x z i

Poisson

E Young 

Lamè

k kε χ

σ ε
ν

µ λ

−

M

( )
( )

( )
0

( )

( )

fness base z=0 surface of the -th phase

Torsion stiffness, Shear stiffness base z=L surface of the -th phase

load vector cylindrical surface of the -th phase

i

i
L

i
CYL

V i

k k V i

V i

ω γ

∂

∂

∂L
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10.10. Appendix A1: Integration of the function ( )iG  for  pure bending 
Let us assume that the function  ( )( ) , ,iG r zθ  is given by : 

 ( ) ( ) ( )( ) ( ) ( ), , ,i i iG r z p r z qθ θ=  (A1.1) 

As here are absent torque and shear, we will assume that shear stresses ( ) ( ),i i
z rzθτ τ  acting on each 

section vanish. Since the bending moment is constant along z direction, the remaining stresses do 
not depend on z variable. Then, the derivates of stress component ( ) ( ) ( ) ( ), , ,i i i i

rr zz rθθ θσ σ σ τ  respect to z 

variable are equal to zero. We can write these conditions as follows: 



Chapter X – Multilayered cylinder under Saint-Venant’s loads and homogenization 

                                                                                                                                F. Carannante 
 

209 

 ( ) ( ) ( ) ( ) ( ) ( )
, , , , 0, 0,i i i i i i

rr z z zz z r z z rzθθ θ θσ σ σ τ τ τ= = = = = =  (A1.2) 

By substituting eqs. (A1.1) in relationships (4.7)-(4.8) and (4.12)-(4.13), and remember  the 
conditions (A1.2), we obtain:  

 ( ) { }( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )
, , , , , 0,,

0 1i i i i i i i i
zz zz rr zzzzz

q q r p p pθθ θθθ θσ σ α − = ⇒ = − − + =   (A1.3) 

where ( )
0
iα  is a constant to determine. Moreover, by applying the conditions (A1.2), we can write : 

                                                          ( ) ( ) ( )
, , ,0 0i i i

rr z rzz zzr p pσ = ⇒ − =                                             (A1.4) 

By deriving the relationship (A1.4) respect to variable r : 

 ( )( ) ( )
, ,,

0 0i i
rr z rrzzr

pσ = ⇒ =  (A1.5) 

By substituting the eq. (A1.5) in to eq. (A1.3), we obtain: 
 ( ) ( )( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )

, , , , 0 , 0 ,1 1i i i i i i i i
zzzz zz zzzz zzq q r p p r p pθθθ θ α α= − − = ⇒ − = +  (A1.6) 

By deriving the equation (A1.6) in two times respect to variable r and applying the condition (A1.4)
, we obtain: 

 ( )( ) ( ) 2 ( ) ( )
, , , ,,

2 4 0i i i i
zz rzz rrzz zzzzzz

p r p r p p+ + = =  (A1.7)  

By means the equation (A1.7) and equation (A1.5), we obtain ( )
0 1iα = − , and then the function 

( )q θ  must satisfy the equation: 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
, , 1 2 30 cos sini i i i i iq q qθθθ θθ θ θ α θ α θ α+ = ⇒ = + +  (A1.8) 

Thanks to above discussed symmetry of  displacement solution respect to y -direction, we deduce 

that the constants ( ) ( )
2 3,i iα α  vanish, then : ( ) ( )( ) , , , cosiG r z p r zθ θ=  

By recalling equations (A1.7), we determine the form of function ( )( ) ,ip r z : 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 2 ( ) 3 ( )
, 0 1 2 30 ,i i i i i i
zzzzp p r z g r z g r z g r z g r= ⇒ = + + +  (A1.9) 

Then, we determine the function ( )( ) , ,iG r zθ  as reported below: 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2 ( ) 3 ( )
0 1 2 3, , cosi i i i iG r z g r z g r z g r z g rθ θ = + + +   (A1.10) 

By substituting  equation (A1.10) in to relationships (4.7) and (2.1)-(2.2), we obtain the following 
conditions: 

 
( ) ( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )
3 3, 3 1( )

, ( ) ( ) ( ) ( )
2 2, 2 2

0
0

0

i i i i
ri

rr z i i i i
r

g r r g r g r C r

g r r g r g r C r
σ

 − = = = ⇒ ⇒ 
− = = 

 (A1.11) 

where ( ) ( )
1 2,i iC C  are integration constants. By means functions in equation (A1.11) and the 

conditions (A1.2), we determine the equations involving functions ( ) ( )( ) ( )
0 1,i ig r g r  : 

 ( )
( ) ( ) 2 ( ) ( ) 3
0 0, 0, 2( )

( ) ( ) 2 ( ) ( ) ( ) 3
1 1, 1, 1

2
0

6 4

i i i i
r rri

z i i i i i
r rr

g r g r g C r

g r g r g C k r
θτ

− + + == ⇒ 
− + + = −

 (A1.12) 

By integrating the differential equations (A1.12), we determine the functions ( ) ( )( ) ( )
0 1,i ig r g r : 

 
( ) ( )
( ) ( )( )

( ) ( ) ( ) 1 ( ) 3
0 3 4 2

( ) ( ) 1 ( ) ( ) 2 ( ) ( ) 3
1 5 6 7 1

4

3 2 4

i i i i

i i i i i i

g r C r C r C r

g r C r C r C r C k r

−

−

 = + +


= + + + −

 (A1.13) 

where ( ) ( ) ( ) ( ) ( )
3 4 5 6 7, , , ,i i i i iC C C C C  are integration constants. 

By applying the conditions (4.11) on function ( )( ) , ,iG r zθ : 

 ( )2 2 ( ) ( ) ( )
7 0,i i iG f r C∇ ∇ = ⇒ =  (A1.14) 



Chapter X – Multilayered cylinder under Saint-Venant’s loads and homogenization 

                                                                                                                                F. Carannante 
 

210 

Moreover, the constants ( ) ( ) ( )
2 3 4, ,i i iC C C  can be assumed equal to zero because they characterize rigid 

body motion of the solid, then the function ( )( ) , ,iG r zθ  becomes: 

 ( ) ( )( )( ) ( ) 2 ( ) 2 ( ) ( ) ( ) 2
1 5 6 1, , 3 2 4 cosi i i i i iG r z C z C r C C k r r zθ θ− = + + + −

 
 (A1.15) 

By renaming the integration constants  with following relationships:  

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 3 2 5 4 6 5 3 22 3 2 , 2, , 2 2 3 ,i i i i i i i i i i i iC U U C U C U k U Uµ = − =− =− = − Ω    (A1.16) 

and  by substituting relationships (A1.16) in eq. (A1.15), we obtain the explicit expression of the 

function ( )( ) , ,iG r zθ  reported in equation (4.26). 

 
Appendix A2: Integration of the function ( )iG  for  shear coupled with bending  
Let us assume the function  ( )( ) , ,iG r zθ  be given by : 

 ( ) ( ) ( )( ) , , ,iG r z p r z qθ θ=   (A2.1) 

In presence of constant shear on the solid respect to z, we will assume the shear stresses ( ) ( ),i i
z rzθτ τ  

acting on each section as constant respect to variable  z. Since the bending moment is linear respect 
to z  the remaining stresses are assumed to depend linearly upon variable z. Then, the derivates in 
two times of  stress components ( ) ( ) ( ) ( ), , ,i i i i

rr zz rθθ θσ σ σ τ  respect to z variable are equal to zero. We can 

write these conditions as follows: 
 ( ) ( ) ( ) ( ) ( ) ( )

, , , , , ,0, 0,i i i i i i
rr zz zz zz zz r zz z z rz zθθ θ θσ σ σ τ τ τ= = = = = =  (A2.2) 

By substituting equation (A2.1) in relationships (4.7)-(4.8) and (4.12)-(4.13), and by remembering   
conditions (A2.2), we obtain:  

 ( ) ( )( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )
, , , , , 0, ,

0 1i i i i i i i i
zz zz rr zzzzz zzz

q q r p p pθθ θθθ θσ σ α − = ⇒ = − − + =
 

 (A2.3) 

with  ( )
0
iα   a constant to determine. Moreover, by applying condition (A2.2), we can write : 

                                                        ( ) ( ) ( )
, , ,0 0i i i

rr zz rzzz zzzr p pσ = ⇒ − =                                           (A2.4) 

By deriving the relationship (A2.4) respect to variable r : 

 ( )( ) ( )
, ,,

0 0i i
rr zz rrzzzr

pσ = ⇒ =  (A2.5) 

By substituting the equation (A2.5) in to equation (A2.3), we obtain: 
 ( ) ( )( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )

, , , , 0 , 0 ,1 1i i i i i i i i
zzzzz zzz zzzzz zzzq q r p p r p pθθθ θ α α= − − = ⇒ − = +  (A2.6) 

By deriving the equation (A2.6) in two times respect to variable r and by applying condition (A2.4), 
we obtain: 

 ( )( ) ( ) 2 ( ) ( )
, , , ,,

2 4 0i i i i
zz rzz rrzz zzzzzzzz

p r p r p p+ + = =  (A2.7)  

By means equations. (A2.7) and (A2.5) , we obtain  ( )
0 1iα = − , and then the function ( )q θ  must 

satisfy the equation: 
 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

, , 1 2 30 cos sini i i i i iq q qθθθ θθ θ θ α θ α θ α+ = ⇒ = + +  (A2.8) 

By applying the consideration of symmetry of the displacement solution respect to y-direction, we 

deduce that the constants ( ) ( )
2 3,i iα α  must vanish, then : ( ) ( )( ) , , , cosiG r z p r zθ θ=  

By recalling equations (A2.7), we determine the form of function ( )( ) ,ip r z : 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 2 ( ) 3 ( ) 4 ( )
, 0 1 2 3 40 ,i i i i i i i
zzzzzp p r z g r z g r z g r z g r z g r= ⇒ = + + + +  (A2.9) 

Then, by substitution we determine the function ( )( ) , ,iG r zθ  as reported below: 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2 ( ) 3 ( ) 4 ( )
0 1 2 3 4, , cosi i i i i iG r z g r z g r z g r z g r z g rθ θ = + + + +   (A2.10) 
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By substitution of  equation (A2.10) in relationships (4.7) and (2.1)-(2.2), we obtain the following 
conditions: 

 
( ) ( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )
4 4, 4 1( )

, ( ) ( ) ( ) ( )
3 3, 3 2

0
0

0

i i i i
ri

rr zz i i i i
r

g r r g r g r C r

g r r g r g r C r
σ

 − = = = ⇒ ⇒ 
− = = 

 (A2.11) 

where ( ) ( )
1 2,i iC C  are integration constants. By means of functions in equation (A2.11) and the 

conditions (A2.2), we determine the differential equations involving functions ( ) ( )( ) ( )
0 1,i ig r g r  : 

 ( )
( ) ( ) 2 ( ) ( ) 3
1 1, 1, 2( )

, ( ) ( ) 2 ( ) ( ) 3
2 2, 2, 1

2
0

2 2 2 4 6

i i i i
r rri

z z i i i i
r rr

g r g r g C r

g r g r g C k r
θτ

− + + == ⇒ 
− + + = −

 (A2.12) 

By integrating the differential equations (A2.12), we determine the functions ( ) ( )( ) ( )
1 2,i ig r g r : 

 
( ) ( )
( ) ( )( )

( ) ( ) ( ) 1 ( ) 3
1 3 4 2

( ) ( ) 1 ( ) ( ) ( ) 3
2 5 6 1

4

6 4

i i i i

i i i i i

g r C r C r C r

g r C r C r C k r

−

−

 = + +


= + + −

 (A2.13) 

where ( ) ( ) ( ) ( )
3 4 5 6, , ,i i i iC C C C  are integration constants. 

By applying the conditions (4.11) on function ( )( ) , ,iG r zθ : 

 
( )

( )( ){ }
2 2 ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0, 0, 0, 1 0,

0

3 3 3 2 72 8 0

i i

i i i i i i i
r rr rrr rrrr

G f r

g r g r g r g r C k r g

∇ ∇ = = ⇒

 − + + − + + − + =  
 (A2.14) 

By solving the differential equation  (A2.14), we obtain : 

 ( ) ( )( )( ) ( ) ( ) 5 ( ) 1 ( ) ( ) 3 ( )
0 1 7 8 9 109 24 logi i i i i i ig r C k r C r C r C r C r r−= − + + + + +  (A2.15) 

where  ( ) ( ) ( ) ( )
7 8 9 10, , ,i i i iC C C C  are integration constants.  The constants ( ) ( )

3 7,i iC C  are assumed here equal 

to zero since they characterize rigid body motion of the solid. Moreover, the constants ( ) ( )
2 4,i iC C  

vanish because the stress components ( ) ( ) ( ) ( ), , ,i i i i
rr zz rθθ θσ σ σ τ  vary linearly respect to variable z and do 

not contain constant terms respect the same variable. Then the function ( )( ) , ,iG r zθ  becomes: 

           
( ) ( )( )

( )( )

( ) ( ) ( ) 2 ( ) 4 ( ) ( ) 4
8 9 1 10 1

( ) ( ) 2 ( ) 2 2
5 6 1

, , 9 24 log cos

6 2 cos ;

i i i i i i

i i i

G r z C C r k C r C r C z r

C C r C k r r z

θ θ

θ−

 = + + − + + +
 

 + + + −
 

 (A2.16) 

The integration constants  are now renamed by means of following relationships:  

          
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 3 2 5 5 6 4 8 4 7

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
9 5 6 10 4 7 3 2

6 6, 2, 4, 4 8,

2 8, 4 , 2 2 9 ,

i i i i i i i i i i

i i i i i i i i i i i

C V V C V C V C V V

C V V C V V k V Vµ

= − =− =− =− +

 = + = + = − Ω  

 (A2.17) 

Finally, by substituting  relationships (A2.17) in equation (A2.16), we obtain the explicit expression 

of the function ( )( ) , ,iG r zθ  reported in equation (4.45). 
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CHAPTER XI  
MULTILAYERED CYLINDER CONSTITUTED BY TRASVERSALLY-ISOTROPIC 

PHASES SUBJECTED TO AXIAL FORCE AND PURE TORSION 
 
11.1  Introduction  
Object of the present chapter is to derive an homogenized theory from the micromechanical analysis 
of a composite solid cylinder made by a central core and n hollow phases, under the assumption of 
linear elastic behavior and perfect bond at the interfaces. 
To make this, we first obtain the analytical elastic solutions for multilayered cylinder constituted by 
transversally-isotropic n-phase, under some prescribed load conditions.  In particular those load  
related to radial pressure, axial force and torque. Then, by utilizing the homogenization theory, we 
obtain the overall elastic stiffness of the equivalent homogeneous transversally-isotropic solid, 
establishing the constitutive elastic laws relating stresses and strains.  
 
11.2. General theory for torsion strains in composite transversally-isotropic cylinders  
 
11.2.1 Solution of the field equations for the i-th phase of multilayered cylinder 
In the  present section, let us first investigate the problem the torsion. We consider an elastic body 
constituted by transversally-isotropic n-phase, are quite unlike each other, bounded by one 
cylindrical surfaces. The solid is stresses by the twisting moments  0M  and LM  act  on the ends. In 

addition, stresses 0τ  directed tangent to the contours of the cross sections (that is, parallel), and not 

varying along there contours are distributed on the lateral surface. 
Let us  choose the axis of a transversally-isotropic body of revolution with planes of anisotropy 
perpendicular to it as the z-axis of cylindrical coordinate system; the polar x-axis is directed 
arbitrarily. We shall denote the components of the body forces per unit volume by R and Z, and the 
superscript ( )i  is referred to the single phase of the solid. The equations of the generalized Hooke’s 
law are written in the same way as in Cartesian coordinates for i-th phase: 

                       ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 12 13 12 11 13

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
13 13 33 44

( ) ( ) ( ) ( ) ( ) ( )
44 11 12

,

, 2

2 ,

i i i i i i i i i i i i i i
rr rr zz rr zz

i i i i i i i i i i
zz rr zz z z

i i i i i i
rz rz r r

a a a a a a

a a a a

a a a

θθ θθ θθ

θθ θ θ

θ

ε σ σ σ ε σ σ σ

ε σ σ σ ε τ

ε τ ε τ

= + + = + +

= + + =

= = − ( )i
θ

                     (11.2.1) 

According to P. Bekhterev, the constants ( )i
jka  are called the coefficients of deformation.  Expressing 

the coefficients of deformation by means of the “technical constants”, we have: 

      ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
11 12 33

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
13 44 11 12

1 , , 1 ,

, 1 , 1 1 2 ,

i i i i i i i
z

i i i i i i i i i i
z z z

a E a E a E

a E a G a a E G

ν

ν ν

= = − = −

= − = − = + =
               (11.2.2) 

where ( )iE , ( )i
zE  are Young’s moduli for the tension-compression in the direction perpendicular to 

the plane of isotropy, ( )iν  is the Poisson coefficient which corresponds to tension in the plane of 
isotropy and which characterizes the transverse compression in this plane, ( )i

zν  is the Poisson 

coefficient which characterizes the transverse compression in the plane of isotropy for tension in 
direction perpendicular to it, and  ( )iG , ( )i

zG  are the shear moduli for the planes of isotropy and for 

the perpendicular planes  in the radial directions. In this case, as in the case of an isotropic body, let 
us assume that the cross sections are not twisted, and the displacements in the radial and axial 
directions are absent, that is : 

    ( )( ) ( ) ( ) ( )0, , , 0,i i i i
r zu u u r z uθ θ= = =                                            (11.2.3) 

Then, 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )
, ,

1 1
0, , ,

2 2
i i i i i i i i i

rr zz rz z z r ru u r uθθ θ θ θ θ θε ε ε ε ε ε −= = = = = = −                  (11.2.4) 



CHAPTER XI - Multilayered cylinder constituted by transversally-isotropic phases: axial force and pure torsion 

F. Carannante 213 

And from equations (11.2.1), it follows that ( ) ( ) ( ) ( ) 0.i i i i
rr zz rzθθσ σ σ τ= = = =  The remaining two 

components of stress ( )i
zθτ  and ( )i

rθτ  depend only on r  and z  and satisfy the equation of equilibrium: 
( ) ( ) 1 ( )

, , 2 0i i i
r r z z rrθ θ θτ τ τ−+ + =                                                (11.2.5) 

Eliminating ( )iuθ  from the expression for ( )i
zθε  and ( )i

rθε  , we obtain: 

( ) ( )1 ( ) 1 ( )

, ,
0i i

z rr z
r rθ θε ε− −− =                                                (11.2.6) 

Or, on the basis of the last two equations of (2.1), 

( ) ( )( )( ) 1 ( ) ( ) ( ) 1 ( )
44 11 12, ,

2 0i i i i i
z rr z

a r a a rθ θτ τ− −− − =                                  (11.2.7) 

We can satisfy the equation of equilibrium (11.2.5) by introducing the stress function ( ) ( , )i r zψ ; we 
set 

( ) 2 ( ) ( ) 2 ( )
, ,, ,i i i i

z r r zr rθ θτ ψ τ ψ− −= = −                                             (11.2.8)  

From (11.2.7), we obtain an equation satisfied by stress function ( ) ( , )i r zψ : 

( )( ) ( ) ( ) 1 ( ) ( ) ( ) ( )
44 , 44 , 11 12 ,3 2 0i i i i i i i

rr r zza a r a aψ ψ ψ−− − − =                                  (11.2.9) 

For an isotropic rod the stress function satisfies the equation : 
( ) 1 ( ) ( )
, , ,3 0i i i
rr r zzrψ ψ ψ−− + =                                                 (11.2.10) 

Let us consider the particular case when the solid is stresses by the twisting moments  0M  and LM  

act  on the ends, and  the load  traction 0τ  is constant along  z-direction. With this admission, we 

can to hypothesize that the function ( )i
rθτ  depend only of the variable r . Hence, from  (11.2.8) , to 

follow, that  : 

( )( ) ( ) ( ) ( )
, 0 10 , ( ) ( )i i i i
zz r z p r z p rψ ψ= ⇒ = +                              (11.2.11) 

The equation (11.2.9) becomes : 

       ( ) 1 ( ) ( ) 1 ( )
0, 0, 1, 1,3 3 0i i i i

rr r rr rp r p z p r p− − − + − =                                  (11.2.11) 

By applying the polynomial identity law respect to variable z, we must  to solve two uncouple 
differential  equation  into unknown function ( ) ( )

0 1( ), ( )i ip r p r : 

( )( ) 1 ( )
, ,3 0 0,1i i

j rr j rp r p j−− = =                                              (11.2.12) 

Solving the (11.2.12), we obtained the expression of the stress function ( ) ( )i rψ : 

( )( ) ( ) 4 ( ) ( ) 4 ( )
1 2 3 4( , )i i i i ir z C r C z C r Cψ = + + +                                     (11.2.13) 

From (11.2.8), we can to obtain the expression of the stress components: 

( )
( )

( ) ( ) ( )
3 1

( ) ( ) 2 ( ) 2
1 2

4i i i
z

i i i
r

r C C z

C r C r

θ

θ

τ

τ −

= +

= − +
                                                   (11.2.14) 

The strain components  are: 

( )
( )( )

( ) ( ) ( ) ( )
44 3 1

( ) ( ) ( ) ( ) 2 ( ) 2
11 12 1 2

2i i i i
z

i i i i i
r

a C C z r

a a C r C r

θ

θ

ε

ε −

= +

= − − +
                                        (2.15) 

The displacement component ( )iuθ   can to obtain by solving the follows differential equation system: 

( ) ( )( )
( ) ( )

1 ( ) ( ) ( ) ( ) ( ) 3
11 12 1 2,

1 ( ) ( ) ( ) ( )
44 3 1,

2

4

i i i i i

r

i i i i

z

r u a a C r C r

r u a C C z

θ

θ

− −

−

 = − − +



= +

                                 (11.2.16) 

Integrating the (11.2.16),  we obtain the displacement vector solution of the field equations for the i-
th phase of multilayered cylinder: 

( ) ( )( )( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) 3 ( ) 1 ( )
44 3 1 11 12 1 2 54 1 2i i i i i i i i iu a r C z C z a a C r C r C rθ

− = + − − − +                (11.2.17) 
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where, due to presence of diverging terms for vanishing r, 0r = , we assume (11.2.14) and (11.2.17)  
to hold only for the i-th hollow phases. Instead, by excluding terms affected by 1r− , for the 
cylindrical core phase we can write down 

         ( ) ( )(0) (0) (0) (0) 2 (0) (0) (0) 3 (0) (0)
44 3 1 11 12 1 2 5( , ) 4 1 2 , 0, 0,u r z a r C z C z a a C r C Cθ  = + − − = =          (11.2.18) 

where the superscript “(0)” stands for the core-phase. ( (0)
5 0C = ).  Written  the elastic solution for 

the generic i-th phase in Cartesian coordinate, the field displacement is  shown below : 

   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
2 0( ) ( ) ( ) ( ) 2 2 ( ) ( ) ( ) ( )

11 12 1 44 3 1 5 02 2

( )
2 0( ) ( ) ( ) ( ) 2 2 ( ) ( ) ( ) ( )

11 12 1 44 3 1 5 02 2

( )

1
2 2 1

1
2 2 1

0

i
ii i i i i i i i

x i

i
ii i i i i i i i

y i

i
z

C
u y a a C x y a z C C z C

x y

C
u x a a C x y a z C C z C

x y

u

δ
δ

δ
δ

  − = − − − − + − −  +   

  − = − − − − − + − −  +   

=

  (11.2.19) 

where 0iδ  is the usual Kronecker delta symbol. The stress component in Cartesian coordinate are: 

   
( ) ( )

( )
( ) ( )

( )
( ) ( )

( ) ( )
2 0 2 0( ) ( ) 2 2 ( ) ( ) 2 2 ( )

1 12 22 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
3 0 1 3 0 1

1 1
, ,

4 1 , 4 1 , 0,

i i
i ii i i i i

xx yy xy

i i i i i i i
yz i xz i zz

C C
y x C y x C

x y x y

x C C z y C C z

δ δ
σ σ τ

τ δ τ δ σ

   − −   = − = − − = − +
   + +   

   = − + = − − + =   

          (11.2.20) 

Renamed the integration constants as follows, we rewritten the displacement field: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 44 3 2 44 1 3 11 12 2 4 54 , 2 , , ,i i i i i i i i i i i iT a C T a C T a a C T C= = = − =                           (11.2.21) 

The displacement vector solution for the i-th phase of multilayered cylinder becomes: 

           ( ) ( ) ( )( )
( ) ( ) ( ) 3
11 12 2( ) ( ) ( ) ( ) 1 ( )

1 2 3 4 0( )
44

1 {0,1,..., }
2

i i i

i i i i i
ii

a a T r
u T T z r z T r T r i n

aθ δ−
−

= + − + + − ∈       (11.2.22) 

The no-zero strain components are: 

( ) ( )
( ) ( ) ( ) 2( )
11 12 2( ) ( ) ( ) ( ) 21

2 0 3( )
44

, 1
2 2

i i ii
i i i i
z r ii

a a T rT
T z r T r

aθ θε ε δ −
− 

= + = − − − 
 

             (11.2.23) 

The no-zero stress components becomes: 

         ( ) ( ) ( ) 2( ) 2
0 3( ) ( ) ( ) ( ) 2

1 2( ) ( ) ( ) ( )
44 44 11 12

1
2 , ,

2

ii
ii i i i

z ri i i i

T rT rr
T T z

a a a aθ θ
δ

τ τ
−−

= + = − −
−

                       (11.2.24) 

 
11.2.2.  Equilibrium and compatibility conditions 
The results obtained until now satisfy the equilibrium and compatibility equations inside each 
generic i-th phase of a composite circular cylinder subjected to torsion strains. Under both the 
hypothesis of linear and transversally-isotropic elastic behavior of the materials and the assumption 
of perfect contact at the cylindrical interfacial boundaries (no de-lamination or friction phenomena), 
we have now to establish the satisfaction of both the equilibrium and the compatibility equations at 
the boundary surfaces between two generic adjacent phases. To obtain this, we will make first 
reference to the generic case in which an assembled functionally graded circular cylinder is 
constituted by a central core and n  arbitrary cladding phases (Fig. 11.1). 
The total unknown parameters to determine can be summarized as follows: 

 

(0) (0)
1 2

( ) ( ) ( ) ( )
1 2 3 4

0

,

, , , {1,2,..... }i i i i

T T

T T T T i n

τ
∈  (11.2.21) 

 where those in (11.2.21)1 represent the unknown coefficients of the core, those in (11.2.21)2 
represent the unknown parameters for every circular hollow cylinder, (11.2.21)3 represents load 
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parameter defining the traction field on cyl∂Ω . Hence, the total number of unknowns will be 
(4 3)n + , which equals the number of algebraic equations to solve. In particular, as we will show in 
the follows, the boundary equations at the interfaces is 4n , while 1 is the number of boundary 
conditions on the external cylindrical surface and one the end basis, respectively. In particular, we 
begin writing the 4n equilibrium and compatibility equations at the interfaces, that is: 

 
( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( )
{0,1,..., 1}

( ) ( )

i i i i

i i i i
r r

u r R u r R
i n

r R r R

θ θ

θ θτ τ

+

+

 = = = ∈ −
= = =

                   (11.2.22) 

where ( )iR  is the outer radius of the i-th phase. Recalling the previously obtained results, the system 
(11.2.22) can be expressed as follows: 

( ) ( )

( )
( )

( )

( ) ( 1)( 1) ( 1) ( ) ( )
( 1) ( ) ( )3 ( ) ( 1) ( )3 311 12 11 12

2 2 4 4 0( 1) ( ) ( )
44 44

( ) ( ) ( 1)
1 1

( ) ( ) ( 1)
2 2

( 1) ( 1) ( 1) ( 1)4 ( 1)
11 12 2 44 3

1 0
2 2

0

0

2

i ii i i i
i i i i i i

ii i i

i i i

i i i

i i i i i

T Ta a a a
T T R T T R

a a R

R T T

R T T

a a T R a T

δ
++ +

+ +
+

+

+

+ + + + +

   −− −− + + − − =   
  

− =

− =

− + ( )
( )

( ) ( )
( )

( 1) ( ) ( ) ( ) ( )4 ( ) ( )
0 11 12 2 44 3 0

( 1) ( 1) ( 1) ( )2 ( ) ( ) ( ) ( )2
11 12 44 11 12 44

1 2 1
0

2 2

{0,1,..., 1}

i i i i i i i
i i

i i i i i i i i

a a T R a T

a a a R a a a R

i n

δ δ+

+ + +








 − − + − − = − −

∀ ∈ −

(11.2.23) 

It is worth to note that the initial two equations (11.2.22) become four in (11.2.23): this happens 
because, by invoking the polynomial identity law and then collecting the terms in the powers of z, 
some solutions are immediately obtained, and only four independent equations (11.2.23) remain to 
satisfy. The Cauchy equilibrium equation on the external cylindrical boundary surface, (i n= ), 
give: 

( ) ( )
0( )n n

rz r Rτ τ= =                                                (11.2.24) 

This equations in explicit become: 

( )
( )

( ) ( ) ( ) ( )4 ( ) ( )
11 12 2 44 3

( ) ( ) ( ) ( )2
11 12 44

0

2

2
0

n n n n n n

n n n n

a a T R a T

a a a R
τ

− +
+

−
=                           (11.2.25) 

where 0τ  represents mechanical load parameter defining the traction field on cyl∂Ω . Finally, it 

remains to consider the equilibrium equation to rotation about to x-direction on two basis for 0z =   
and for z L= . Therefore, this two equations are: 

 

( )

( 1)
0

( )

( 1)
0

2 ( ) 2

0
0

2 ( ) 2

0
0

( 0)

( )

i

i
i

i

i
i

n R i
z zR

i

n R i
z zR

i

z r drd

z L r drd

π

θδ

π

θδ

τ θ

τ θ

−

−

=

=

 = = −


 = =


∑∫ ∫

∑∫ ∫

M

M

 (11.2.26) 

where zM  is the total couple torque applied on each base of the solid. The equations (11.2.26) in 

explicit becomes: 

( )

( ) ( )

( )
( )4 ( 1)41

0( )
0 44

( ) ( )
1 2 ( )4 ( 1)4

0( )
0 44

1
2

2
1

2

in
i i

i zi
i

i in
i i

i zi
i

T
R R

a

T T L
R R

a

π δ

π
δ

−

=

−

=


 − − = −  


 +  − − = 


∑

∑

M

M

                           (11.2.27) 

However, from (11.2.23) to note that (0) ( ) (0) ( )
1 1 2 2, , {1,2,..., }i iT T T T i n= = ∀ ∈ ,  consequently we 

can to reduce the unknown parameters number to determine to (2 3)n + . Them  are following : 
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(0) (0)

1 2 0

( ) ( )
3 4

, , ,

, {1,2,..... }i i

T T

T T i n

τ
∈

                                                    (11.2.28) 

The system (11.2.23) become : 

( ) ( )

( ) ( )
( )

( ) ( 1)( 1) ( 1) ( ) ( )
(0) ( )3 ( ) ( 1) ( )3 311 12 11 12

2 4 4 0( 1) ( ) ( )
44 44

( 1) ( 1) (0) ( 1)4 ( 1) ( 1) (
11 12 2 44 3 0 11

( 1) ( 1) ( 1) ( )2
11 12 44

1 0
2 2

2 1

2

i ii i i i
i i i i

ii i i

i i i i i i
i

i i i i

T Ta a a a
T R T T R

a a R

a a T R a T a

a a a R

δ

δ

++ +
+

+

+ + + + +

+ + +

   −− −− + + − − =   
  

− + −
−

−
( ) ( )

( )
) ( ) (0) ( )4 ( ) ( )

12 2 44 3 0

( ) ( ) ( ) ( )2
11 12 44

2 1
0

2

{0,1,..., 1}

i i i i
i

i i i i

a T R a T

a a a R

i n

δ




 − + − = −

∀ ∈ −

  (11.2.29) 

We can write the (11.2.27) as follows: 

                                         

( )

( ) ( )

( )4 ( 1)4(0)
01

( )
0 44

(0) (0) ( )4 ( 1)4
1 2 0

( )
0 44

1

2

2 1

2

i in
i

zi
i

i in
i

zi
i

R RT

a

T T L R R

a

δπ

π δ

−

=

−

=

  − −
=  

  


+  − − = 
 

∑

∑

M

-M

                  (11.2.30) 

The algebraic equations  (11.2.30) in the unknown parameter (0) (0)
1 2,C C , are independent of the n  

phases number . Therefore, the solution of algebraic system (11.2.30) furnished: 

                                         (0) (0)
1 2( ) ( )

( ) ( )
0 044 44

, ,z z
i in n

P P
i i

i i

T T
I I

L
a a= =

= − =
∑ ∑

M M
                                           (11.2.31)                                       

where ( )( ) ( )4 ( 1)4

2
i i i

PI R R
π −= − . To replace (11.2.31) in to (11.2.29)2  we find expression of the 

constants   ( )
3

iT   that shown below: 

     

( ) ( )(0) ( ) ( ) ( ) ( )
2 11 12 11 12( ) ( 1)4 ( 1)4

3 ( )1 1
1 144 44 44 44

( )
0 44

1 1 1 1

2
2

{1,2,... }

i i i ii i
zi j j

kj j j jn
j jP

k
k

T a a a a
T R R

Ia a a a
L

a

i n

− −
− −

= =

=

− −   
= − = −   

   

∀ ∈

∑ ∑
∑

M

      (11.2.32) 

By invoking the (11.2.32) and substitute them in to (11.2.25), we obtained the constant 0τ : 

0 ( )2
z
nLR

τ
π

= − M
                                                         (11.2.33) 

It is worth to note that (11.2.33) derive too, from condition of the global equilibrium between 
uniform tractions 0τ  and the torque couples on basis. Substitute (11.2.32) in to (11.2.29)1  we find 

expression of the constants   ( )
4

iT   as follows: 

   
( )(0) ( 1) ( 1) ( ) ( )

( ) ( )2 11 12 11 12
4 3( 1) ( ) ( )2 ( 1)2

1 144 44

1 1
, {1,2,... }

2

j j j ji i
iji j

j j j j
j j

T a a a a
T T i n

a a R R

δ− −

− −
= =

 − − −= − + − ∀ ∈  
    

∑ ∑       (11.2.34) 

Substituting  the (11.2.31) and (11.2.32) into (11.2.34), we obtain : 

             ( )

( 1) ( 1) ( ) ( )
11 12 11 12

( 1) ( )
1 44 44( )

4 ( )

( ) ( ) ( 1)4
( ) 11 12( )2 ( 1)2 1

0 44 1 1 44 44

1 1 1 12

{1,2,... }

j j j ji

j j
ji z

tn ji
P ij j j k

t j j k k
t j k

a a a a

a a
T

I
L a a Ra R R a a

i n

δ

− −

−
=

−
− −

= = =

  − −− +  
   =  

−    + − − −   
    

∀ ∈

∑

∑ ∑ ∑

M

           (11.2.35) 
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11.2.3 Elastic solution for multilayered cylinder subjected to pure torsion  
In this case the equation no-change are (11.2.29), but equations (11.2.25) and (11.2.30) becomes  
respectively: 

( )( ) ( ) ( ) ( )4 ( ) ( )
11 12 2 44 32 0n n n n n na a T R a T− + =                                           (11.2.36) 

( )

( ) ( )

( )4 ( 1)4(0)
01

( )
0 44

(0) (0) ( )4 ( 1)4
1 2 0

( )
0 44

1

2

2 1

2

i in
i

zi
i

i in
i

zi
i

R RT

a

T T L R R

a

δπ

π δ

−

=

−

=

  − −
=  

  


+  − − = 
 

∑

∑

M

M

                  (11.2.37) 

By equation (11.2.37), we obtain: 
( )

(0) (0)
1 2( )

0 44

, 0,
in

P
z i

i

I
T T

a=

= =∑M                                        (11.2.38) 

From the (11.2.38), substituting (0)
2 0T =  in to equations (11.2.29), we obtain : 

( ) ( )
3 40, 0,i iT T= =                                              (11.2.39) 

The displacement solution is : 
( )

( )

( )
0 44

{0,1,..., }i z
in

P
i

i

r z
u i n

I

a

θ

=

= ∈
∑

M
                                  (11.2.40) 

The only  no-zero strain component is ( )i
zθε :  

( )
( )

( )
0 44

,
2

i z
z in

P
i

i

r

I

a

θε

=

=
∑

M
                                             (11.2.41) 

The only no-zero stress component becomes: 

         ( )
( )

( )
44 ( )

0 44

,i z
z in

i P
i

i

r

I
a

a

θτ

=

=
∑

M
                                               (11.2.42) 

 
11.3. General theory for axis-symmetrical strains in composite transversally-isotropic 
cylinders  
 
11.3.1.  Solution of the field equations for the i-th phase of multilayered cylinder 
The problem of finding exact elastic solutions for multi-phase circular cylinders under axis-
symmetrical stress states covers many significant mechanical and structural fields. When a solid 
cylinder constituted by several linearly elastic and transversally-isotropic phases is strained 
symmetrically by forces applied on both its external cylindrical surface and its ends, it is possible to 
express all the mechanical quantities in terms of a single function, reducing the equilibrium 
equations of the body to a single partial differential equation. Let us consider an elastic body 
constituted by transversally-isotropic n-phase bounded by one cylindrical surfaces in equilibrium 
under the influence of surface and body forces possessing rotational symmetry. An isotropic body, 
under deformation, remains a body of revolution, and its deformation will be axially-symmetric. If, 
however,  a body is made from anisotropic material, the above situation occurs only for certain 
special cases. We shall study the question of symmetric deformation only case where the material is 
transversally- isotropic. Let us  choose the axis of a transversally-isotropic body of revolution with 
planes  of anisotropy perpendicular to it as the z-axis of cylindrical coordinate system; the polar x-
axis is directed arbitrarily. We shall denote the components of the body forces per unit volume by R 
and Z, and the superscript ( )i  is referred to the single phase of the solid. The equations of the 
generalized Hooke’s law are written in the same way as in Cartesian coordinates for i-th phase as 
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the relationship  (11.2.1). In this case, it is natural to assume that the radial sections remain planar, 
and the body remains a body of revolution in the deformed state, that is, 

( ) ( )( ) ( ) ( ) ( ) ( ), , 0, , ,i i i i i
r r z zu u r z u u u r zθ= = =                                 (11.3.1) 

Hence, it follows that ( ) ( ) 0i i
z rzθε ε= =   and   ( ) ( ) 0i i

z rzθτ τ= = . The remaining components of deformation 

and stresses will not depended on θ ; moreover, 

( )( )( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )
, , , ,, , , 1 2 ,i i i i i i i i i

rr r r r zz z z rz r z z ru r u u u uθθε ε ε ε−= = = = +                        (11.3.2) 

The four components of stresses which are not equal zero satisfy the equations of equilibrium: 

( )( ) ( ) 1 ( ) ( )
, ,

( ) 1 ( ) ( )
, ,

0

0

i i i i
rr r rz z rr

i i i
rz r rz zz z

r R

r Z

θθσ τ σ σ

τ τ σ

−

−

 + + − + =


+ + + =

                                      (11.3.3) 

where the comma denotes the differentiation, the superscript ( )i  is referred to the single phase. Let 
us consider the case when body forces are absent, that is, where 0R Z= = . It is possible to satisfy 
the first equations of equilibrium (11.3.4) (for 0R = ) by introducing a function ( )( ) ,i r zϕ  in 

expression of the displacement components (11.3.2) for i-th phase. For transversally-isotropic body 
the displacement components will be connected with ( )( ) ,i r zϕ  by the relationship: 

( )
( ) ( ) ( )

1 ,

( ) ( ) ( ) ( ) ( ) 1 ( )
2 , 3 , ,

i i i
r rz

i i i i i i
z zz rr r

u

u r

ϕ

ϕ ϕ ϕ−

 = Γ


= Γ + Γ +

                                         (11.3.5) 

where the constants ( ) ( ) ( )
1 2 3, ,i i iΓ Γ Γ  are: 

( )( ) ( ) ( )( ) ( ) ( )2 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
11 12 13 33 11 1233 11 12 11 12( ) ( ) ( ) ( ) ( )

1 2 2 3 44( ) ( ) ( )2 ( ) ( ) ( )2
11 33 13 11 33 13

2
, ,

i i i i i ii i i i i

i i i i i
i i i i i i

a a a a a aa a a a a
a

a a a a a a

 − − ++ −  Γ = Γ − Γ = Γ =
− −

 

(11.3.6) 
The relationships between the stresses components and function  ( )( ) ,i r zϕ  are: 

          
( ) ( )

( ) ( )

( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )
, , , , , ,, ,

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )
, , , , , ,, ,

,

,

i i i i i i i i i i i i
rr rr r zz rr r zzz z

i i i i i i i i i i i i
zz rr r zz rz rr r zzz r

b r a b r a

c c r d r a

θθσ ϕ ϕ ϕ σ ϕ ϕ ϕ

σ ϕ ϕ ϕ τ ϕ ϕ ϕ

− −

− −

= − + + = − + +

= + + = + +
                  (11.3.7) 

where the constants ( ) ( ) ( ) ( ), , ,i i i ia b c d  are: 

( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
13 11 12 13 13 44 12 33( ) ( )

( ) ( ) ( )2 ( ) ( ) ( )2
11 13 13 11 13 13

( ) ( ) ( ) ( ) ( ) ( )2 ( )2
13 11 12 11 44( ) ( ) 11 12

( ) ( ) ( )2 ( ) ( ) ( )
11 13 13 11 13 13

, ,

,

i i i i i i i i

i i
i i i i i i

i i i i i i i
i i

i i i i i i

a a a a a a a a
a b

a a a a a a

a a a a a a a
c d

a a a a a a

− + −
= =

− −

− + −= =
− − 2

,

                    (11.3.8) 

From the second equation of equilibrium (11.3.4) ( for 0Z = ), we obtain the following equation for 
the stress function ( )( ) ,i r zϕ : 

( )( ){ }( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , , , , ,2 0i i i i i i i
r rr zzzz rrz rrzz rrr rrrrr r r d a c r rϕ ϕ ϕ ϕ ϕ ϕ ϕ + − + + + + + + =                 (11.3.9) 

Introducing the following notation: 

( ) ( )2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 24 , 4 ,i i i i i i i i i i i ia c a c d a c a c dλ λ= + + + − = + − + −         (11.3.10) 

and  the operators 2 2 1 2, ( 1,2).j jr r r z jλ−∇ = ∂ ∂ + ∂ ∂ + ∂ ∂ =  

It is possible to write (11.3.9) as follows: 
    2 2 ( )

1 2 0iϕ∇ ∇ =                                                     (11.3.11) 

Since we can easily verify that  2 2 ( ) 2 2 ( )
1 2 2 1

i iϕ ϕ∇ ∇ = ∇ ∇   , the operators can be interchanged. It is 

possible to prove the following theorem concerning the number ( ) ( )
1 2,i iλ λ  which depend on the 
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elastic constants in following way: “ The number ( ) ( )
1 2,i iλ λ  can be only real or complex, but cannot 

be purely imaginary. In the case of an isotropic body: 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2( ) ( )

2
, , 1, 2, 1,

1 1

i i
i i i i i i i i

i i
a b c d a c

ν ν λ λ
ν ν

−= = − = = + = = =
− −

       (11.3.12) 

By introducing the new function  ( )( ) ( ) ( )1i i iχ ϕ ν= − , we obtain the following known formulas for 

displacement components from (11.3.5) 

( )
( ) ( )

( ) ( ) ( ) ( ) 2 ( ) ( ) 1 ( )
, , ,( ) ( )

1 1
, 1 2

i i
i i i i i i i

r rz z rr ri i
u u r

E E

ν νχ ν χ χ χ−+ +  = − = − ∇ + +               (11.3.13) 

where 2 2 1 2,r r r z−∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  
The stresses component become from (11.3.7): 

 
( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) 1 ( )

, , , ,

( ) ( ) 2 ( ) ( ) ( ) ( ) 2 ( ) ( )
, , , ,

( ) , ( ) ,

[(2 ) )] , [(1 ) )] ,

i i i i i i i i
rr rr z r z

i i i i i i i i
zz zz z rz zz r

rθθσ ν χ χ σ ν χ χ

σ ν χ χ τ ν χ χ

−= ∇ − = ∇ −

= − ∇ − = − ∇ −
 (11.3.14) 

The function ( )iχ  satisfies the equation 

 2 2 ( ) 4 ( ) 0i iχ χ∇ ∇ = ∇ = . (11.3.15) 
that is, the function is bi-harmonic. 
 
11.3.2. Elastic solution for the i-th phase of multilayered cylinder subjected to axial force and 
radial pressure 
In this section we will obtain elastic solutions for multilayered cylinder subjected to axial force and 
radial pressure. In order to present an unified approach, we will begin for both classes of problems 
starting from a more large form of the function ( )iϕ . We consider the constants ( )i

jkc  that are called 

the “moduli of elasticity”. The constants ( )i
jkc  are connected with  the coefficients of deformation  

( )i
jka , by means follows relationship: 

( ) ( ) ( ) ( )

( )

( ) ( ) ( )2 ( )2 ( ) ( )
( ) ( )11 33 13 13 12 33
11 12( ) ( ) ( ) ( ) ( ) ( )2 ( ) ( ) ( ) ( ) ( ) ( )2

11 12 11 12 33 13 11 12 11 12 33 13

( ) (
( ) ( )13 11
13 33( )2 ( ) ( ) ( )

13 11 12 33

, ,
2 2

,
2

i i i i i i
i i

i i i i i i i i i i i i

i i
i i

i i i i

c c c c c c
a a

c c c c c c c c c c c c

c c
a a

c c c c

− −= =
   − + − − + −   

= =
− + ( )

) ( )
( )12
44 ( )( ) ( ) ( ) ( )2

4411 12 33 13

1
, ,

2

i
i

ii i i i

c
a

cc c c c

+ =
+ −

    (11.3.16) 

Let us consider the elastic equilibrium of a transversally-isotropic body in the form of a cylinder 
solid or hollow circular cylinder loaded by axial force or radial pressure. We shall take the centre of 
any section as the origin of coordinates; the z-axis is directed along the axis of the cylinder. 
By equations (11.3.7), let us that the tensor stress no-dependent by z variable. Then, we can write: 

    

( )
( )
( )

( ) ( ) 1 ( ) ( ) ( )
( ) 1 ( ) ( ), , , ,

,
( ) ( ) 1 ( ) ( ) ( ) ( ) 1 ( ) ( )

, , , ,,
( ) ( ) 1 ( ) (

( ) ( ) ( ) 1 ( ) ( ) ( ) ,
, , , ,

0
1

0

0

i i i i i
i i irr r zz zz

rrzz
i i i i i i i i

rr r zz rzzzz
i i i i

i i i i i i zzzz
rr r zz zz

b r a
b r a

b r a b r a

c c r d
c c r d

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕϕ ϕ ϕ

−
−

− −

−
−

 + + =
 
  + + = ⇒ ⋅  

  
 + + =



)

0

0

0

   
   =   
     

            (11.3.17) 

The determinant of matrix of the coefficient is: 

( ) ( ) ( )
( ) 1 ( ) 2( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

11 12 33 11 12 13 13 44( ) 1 ( )
( )3 ( )2
11 44( ) ( ) 1 ( )

1
2

det 0

i i
i i i i i i i

i i
i i

i i i

b r a
c c c c c c c c

b r a
c c r

c c r d

−

−

−

   − + − +   = ≠ 
 
 

         (11.3.18) 

The determinant (3.18) is not negative because  ( )( ) ( ) ( ) ( ) ( ) 2
11 12 33 11 12 130, 2 0i i i i ic c c c c c− > + − > . In fact the 

determinant of the elastic constant matrix  ( )i
jkc  must to be greater  to zero. It is equal to: 
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( ) ( ) ( )2( ) ( ) ( ) ( ) ( ) ( ) 2 2 ( ) ( ) ( ) 2
11 12 33 11 12 13 44 33 11 12 13det 4 2 0 2 0i i i i i i i i i

jkc c c c c c c c c c c c   = − + − > ⇒ + − >          (11.3.19) 

Moreover the determinant of the sub-matrix  
( ) ( )
11 12
( ) ( )
12 11

i i

i i

c c

c c

 
 
 

 must to be grater to zero: 

( ) ( )( ) ( )
11 12( )2 ( )211 12

11 12( ) ( ) ( ) ( )
12 11 11 12

0
det 0 0

0

i ii i
i i

i i i i

c cc c
c c

c c c c

 − >  > ⇒ − > ⇒  
+ >  

                    (11.3.20) 

From (3.18), we obtain the following differential equation system: 

( ) ( ) ( )

( )
,

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) 3
, 0 1 2 3

( )
,

0

0 ,

0

i
rrzz

i i i i i i i i
rzz

i
zzzz

r z p r z q r A A z A z A z

ϕ

ϕ ϕ

ϕ

 =
 = ⇒ = + + + + +
 =

           (11.3.21) 

Substituting (11.3.21) into (11.3.7)4, we can obtain: 

( )( ) ( ) 1 ( ) 2 ( ) ( ) 1 ( ) 2 ( )
, , , , , ,

i i i i i i i
rz rrr rr r rrr rr rq r q r q p r p r p zτ − − − −= + − + + −                         (11.3.22) 

Since, the stress component  ( )i
rzτ  no-dependent by z variable, we can obtain the function ( ) ( )ip r : 

( )( ) 1 ( ) 2 ( ) ( ) ( ) 2 ( ) ( )
, , , 1 2 0 30 ( ) 1 logi i i i i i i
rrr rr r ip r p r p p r B r B r Bδ− −+ − = ⇒ = + − +                    (11.3.23) 

Substituting the expression the function ( )( ) ,i r zϕ  into (11.3.11), we obtain a differential equation 

in unknown  function  ( )( )iq r : 

        2 2 ( ) ( ) ( ) 2 ( ) 3 ( )
1 2 , , , ,0 2 0i i i i i

r rr rrr rrrrq r q r q r qϕ∇ ∇ = ⇒ − + + =                       (11.3.24) 

To solve the (11.3.24), we obtain the function  ( )( )iq r : 

  ( ) ( ) ( )( ) ( ) 2 ( ) ( ) 2
1 0 2 31 logi i i i

iq r C r C C r rδ= + − +                           (11.3.25) 

The field displacement solution becomes: 

( )

( )( )

( ) ( )
( ) ( ) ( ) 113 44

1 0 2( ) ( )
11 44

( ) ( ) ( )
( ) ( ) ( )3 1 2

1 3 0( ) ( ) ( ) ( )
11 44 11 44

2 1

3 2 2 4
2 1 1 log

i i
i i i

r ii i

i i i
i i i

z ii i i i

c c
u B r B r

c c

A B A
u z C C r

c c c c

δ

δ

− +
 = − + −  




   = + + + + − +     

               (11.3.26) 

The stress component ( )i
rzτ  is: 

( )( ) ( ) 1
3 04 1i i

rz iC rτ δ −= −                                                      (11.3.27) 

On the external surface of the solid  the shear tractions are zero, therefore ( )
3 0 {0,1,..., }iC i n= ∀ ∈ . 

Moreover, the unknown constants ( ) ( )
1 2,i iC A  are zero, because their  represent  rigid motion . Finally, 

the field displacement solution becomes: 

( )( ) ( ) ( ) 1
1 0 2

( )
0

1i i i
r i

i
z

u D r D r

u z

δ

ε

− = + −


=
                                                (11.3.28) 

where  
( ) ( )( ) ( ) ( ) ( ) ( ) ( )

13 44 13 44( ) ( ) ( ) ( ) 3 1
1 1 2 2 0( ) ( ) ( ) ( ) ( ) ( )

11 44 11 44 11 44

2 3 2
, , 2

i i i i i i
i i i i

i i i i i i

c c c c A B
D B D B

c c c c c c
ε

+ +  
= − = − = + 

 
 

The non-zero strains  component are: 
                   ( ) ( )( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( )

1 2 0 1 2 0 01 , 1 ,i i i i i i i
rr i i zzD D r D D rθθε δ ε δ ε ε− −= − − = + − =                      (11.3.29) 

The non-zero stresses  component are: 

    
( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )
1 11 12 2 0 11 12 13 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )
1 11 12 2 0 11 12 13 0 1 13 33 0

1

1 , 2

i i i i i i i i
rr i

i i i i i i i i i i i i
i zz

D c c D c c r c

D c c D c c r c D c cθθ

σ δ ε

σ δ ε σ ε

−

−

= + − − + +

= + + − + + = +
             (11.3.30) 
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11.3.3.  Equilibrium and compatibility conditions 
The results obtained until now satisfy the equilibrium and compatibility equations inside each 
generic i-th phase of a composite circular cylinder subjected to torsion strains. Under both the 
hypothesis of linear and transversally-isotropic elastic behavior of the materials and the assumption 
of perfect contact at the cylindrical interfacial boundaries (no de-lamination or friction phenomena), 
we have now to establish the satisfaction of both the equilibrium and the compatibility equations at 
the boundary surfaces between two generic adjacent phases. To obtain this, we will make first 
reference to the generic case in which an multilayered cylinder is constituted by a central core and n  
arbitrary cladding phases. The total unknown parameters to determine can be summarized as 
follows: 

 

( )
1

( ) ( )
1 2

0

, {1,2,..... },

c

i i

D

D D i n

ε
∈          (11.3.31) 

where those in (11.3.31)1 represent the unknown coefficient of the core, those in (11.3.31)2 
represent the unknown parameters for every circular hollow cylinder, while (11.3.31)3 is  coefficient 
responsible for the assigned constant form of the strain zzε  . Hence, the total number of unknowns 

will be (2 2)n + , which equals the number of algebraic equations to solve. In particular, as we will 
show in the follows, the number of the boundary equations at the interfaces 2n , while 2 is the 
number boundary conditions on the external cylindrical surface and on the end basis. In particular, 
we begin writing the 2n equilibrium and compatibility equations at the generic interface, that is: 

 
( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( )
{0,1,..., 1}

( ) ( )

i i i i
r r

i i i i
rr rr

u r R u r R
i n

r R r Rσ σ

+

+

 = = = ∈ −
= = =

 (11.3.32) 

where ( )iR  is the outer radius of the i-th phase. Recalling the previously obtained results, system 
(11.3.32) can be expressed as follows 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( 1) ( )
( 1) ( ) ( )2 2

0 1 1( )

( 1) ( ) ( 1) ( 1) ( 1) ( ) ( ) ( )
0 13 13 1 11 12 1 11 12

( 1) ( 1) ( 1) ( ) ( ) ( )
2 12 11 2 12 11

0 ( )2 ( )2

1 0

{0,1,...

1 0

i i
i i i

i i

i i i i i i i i

i i i i i i

i i i

D D
D D R

R

c c D c c D c c i

D c c D c c

R R

δ

ε

δ

+
+

+ + + +

+ + +


 − − + − =   

 − + + − + + ∈


 − −
 + − − =
   

, 1}n −  (11.3.33) 

The equilibrium equation to the tractions on the external cylindrical boundary surface, (i n= ), give: 
 ( ) ( )

0( )n n
rr r R pσ = =  (11.3.34) 

where 0p  are radial pressure on cyl∂Ω .  The (11.3.34) can  be  expressed  as follows:  

 
( ) ( )

( ) ( ) ( )
2 12 11 ( ) ( ) ( ) ( ) ( )2

1 11 12 13 0 0( )2

n n n

n n n n n
n

D c c
D c c c R p

R
ε

−
+ + + =  (11.3.35) 

Finally, it remains to consider the last equilibrium equation in z-direction on one of the basis, being 
the other end condition automatically satisfied. Therefore, without loss of generality, for 0z =  we 
can write 

 
( )

( )

( 1)
0

2 ( )

0 1
0

( 0) ,
i

i
i

n R i
zz zR

i

z rdrd N
π

δ
σ θ

−−
=

= =∑∫ ∫  (11.3.36) 

where zN  is the total axial force applied at 0z = . The equation (11.3.36) can be to rewritten as 

follows : 

 ( ) ( )( ) ( 1) ( ) ( ) ( )
0 1 13 33 0

0

1 2
n

i i i i i
i z

i

R R D c c Nπ δ ε−

=

 − − + = ∑              (11.3.37) 
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The solutions found above are then able to describe the case in which an multilayered cylinder 
made by n  circular hollow cylinders and a central core is loaded by a combination of radial 
pressures and axial forces applied at the ends. In order to solve the algebraic system constituted by 
(11.3.33), (11.3.35) and (11.3.37), it could be convenient to re-arrange the whole (2 2) (2 2)n n+ × +  
algebraic system following a matrix-based procedure. Indeed, we can collect the known terms in the 
load vector L  
 { }00,..., ,T

zp N=L    (11.3.38) 

where the only non zero terms are the last two ones, while the unknown parameters can be collected 
in the vector X  as follows: 

 { }(0) (1) (1) (2) (2) ( ) ( )
0 1 1 2 1 2 1 2, , , , , ,...., ,T n nD D D D D D Dε=X  (11.3.39) 

so that the set of equations (11.3.33), (11.3.35) and (11.3.37) reads 
 ⋅ =X LP�  (11.3.40) 
The algebraic system (11.3.40) has only solution. The equations (11.3.33) can be rewritten as 
follows: 

{ }( ) ( ) ( ) ( 1) ( ) (0) 0 0,1,...,i i i i i i n+− + = ∀ ∈P D Q D H D                     (11.3.41) 

where the matrix  ( ) ( ) ( )i i iP ,Q , H  and vector ( ) (0)iD , D  are : 

( ) { }
( )

( )
( )

0 ( ) ( )
( ) ( ) 12 11
11 12 ( )2 ( )2

1

1 0,2,..., 1

i
i

i
i i i

i i
i i

R
R

i n
c c

c c
R R

δ

 
 

= − ∀ ∈ − 
 + −  

P ,           (11.3.42) 

{ }
( )

( )
( )

( 1) ( 1)
( 1) ( 1) 12 11
11 12 ( )2 ( )2

1

0,1,..., 1

i
i

i

i i
i i

i i

R
R

i n
c c

c c
R R

+ +
+ +

 
 

= ∀ ∈ − 
 + −  

Q ,                 (11.3.43) 

( ) { }
( )

0( )

( ) ( ) ( ) ( 1)
11 12 0 13 13

0
0,1,..., 1

i
ii

i i i i
i

R
i n

c c c c

δ
δ +

 
= ∀ ∈ − 

+ +  
H                    (11.3.44) 

{ }( ) ( ) ( ) (0) (0)
1 2 1 01,2,..., ,

T Ti i iD D i n D ε   ≡ ∀ ∈ ≡   D D                           (11.3.45) 

Then, the matrix ( ) ( ) ( )i i iP ,Q , H  are dependent  by geometrical and mechanical parameters: 

      ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 12 11 12 13 11 12, , , , , , , , ,i i i i i i i i i i i i i i i ic c R c c R c c c R= = =P P Q Q H H            (11.3.46) 

The equations  (11.3.41) constituted an algebraic system (with order 2 2n n× ) in the  unknown 
parameters ( ) ( )

1 2,i iD D  for {1,2,..., }i n∈ . By solving the equations (11.3.41) , we obtained  the 

constants ( ) ( )
1 2,i iD D  as function  of the unknown parameters (0)

1 0,D ε : 
( ) ( ) 1 ( ) ( ) 1 ( ) ( 1) 1 ( 1) ( ) 1 ( ) ( 1) 1 ( 1) (1) 1 (1) (0) 1 (0) (0).... ....

{1,2,..., }

i i i i i i i i i i i

i n

− − − − − − − − − − − = + + + ⋅ ⋅ ⋅ 

∀ ∈

D Q H Q P Q H Q P Q P Q P Q H D
    

 (11.3.47) 
The equations (11.3.41)  can be write as follows: 

                     

(1) (1)

(2) (2)

(0) (0)(3) (3)

( ) ( )n n

   
   
   
   = ⋅ = ⋅
   
   
   
   

D Π

D Π

D Π DD Π

D Π

⋮ ⋮

                                 (11.3.48) 

where  ( ) ( ) 1 ( ) ( ) 1 ( ) ( 1) 1 ( 1) ( ) 1 ( ) ( 1) 1 ( 1) (1) 1 (1) (0) 1 (0).... ....i i i i i i i i i i i− − − − − − − − − − − = + + + ⋅ ⋅ Π Q H Q P Q H Q P Q P Q P Q H  . 
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The  matrix Π  has order 2 2n x . The equations (11.3.35) and (11.3.37) become: 
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where ( ) ( )2 ( 1)2
0
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(1 )
n

i i i
i
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=

 = − − ∑ . By substituting the constants ( ) ( )
1 2,i iD D , in to equations 

(11.3.49), we can obtained the algebraic system in to  unknown parameters (0)
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where the matrix Λ  is: 
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The system of the equations (11.3.50) has solution because [ ]det 0≠Λ . 

 
11.4.  Application of the homogenization theory to composite transversally-isotropic cylinders  
 
The average strain tensor is denoted by  

{ }T
rr zz z rz rθθ θ θε ε ε ε ε ε≡ε                                    (11.4.1) 

and the average stress tensor is denoted by 
 { }T

rr zz z rz rθθ θ θσ σ σ σ τ τ τ≡                                 (11.4.2)  

The average stress-strain relation for the multiphase solid can be written in the following form: 
                                                                     Hσ=ε A                                                          (11.4.3) 

The average elastic compliance tensor is: 
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where ,zE E  are average elastic modulus in z direction and in isotropic plane, respectively; 

            ,zν ν  are average Poisson’s modulus in z direction and in isotropic plane, respectively; 

            and zµ  is shear modulus; 

The strain tensor for i-th phase is denoted by 

{ }( ) ( ) ( ) ( ) ( ) ( ) ( )i T i i i i i i
rr zz z rz rθθ θ θε ε ε ε ε ε≡ε                             (11.4.5) 

and the stress tensor for i-th phase is: 

 { }( ) ( ) ( ) ( ) ( ) ( ) ( )i T i i i i i i
rr zz z rz rθθ θ θσ σ σ τ τ τ≡σ                                  (11.4.6) 

The stress-strain relation for generic i-phase can be written in the following form: 
                                                                     ( ) ( ) ( )i i iσ ε= C                                                        (11.4.7) 

The elastic stiffness tensor  for generic i-phase is characterized by follows matrix ( )iC : 
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and the elastic compliance tensor  for generic i-phase is characterized by follows matrix ( )iA : 
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The relationships between the component of the matrix ( )iC  and component the matrix  ( )iA of the 
generic i-phase are follows: 
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(11.4.10) 
Let us consider the case which the external forces are constituted by two axial force zN  applied on 

the basis  0V∂  and LV∂ .  We can obtained the  mean stress tensor and mean strain tensor  in the 

following manner: 
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Moreover, for solid constituted by n-phase, it is easy to obtain the following relationship: 

                                                         0, ,z
rr zz

N

Aθθσ σ σ+ = =                                                (11.4.14) 

The mean Young’s modulizE  and the mean Poisson’s moduli zν  are: 
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where  ( )( ) ( )2 ( 1)2 ( )
0 0

1 , ,
ni i i i

i i
A R R A Aπ δ −

=
 = − − =  ∑  and ( ) ( )

1 2 0, ,i iD D ε  are integration constants 

valuated  to put 1F = . 
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Let us consider the case which the solid  loaded on external cylindrical surface by uniform radial 
pressure. Moreover, for solid constituted by n-phase, it is easy to obtain the following relationship: 

                                                        02 , 0,rr zzpθθσ σ σ+ = =                                       (11.4.18) 

The average Young’s moduliE  and the average Poisson’s moduli ν  are: 
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In the case the external forces are constituted by two couple  torque zM  applied on the basis  0V∂  

and LV∂ , the only stress component is zθτ  and only strain component is zθε : 
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Expressing the coefficients of deformation by means of the “moduli of elasticity”, we have: 
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CHAPTER XII 
MULTILAYERED CYLINDER CONSTITUTED BY ORTHOTROPIC PHASES 

 UNDER AXIAL LOAD 
 
12.1. Introduction 

Today, usage of composite materials in aeronautic industries, submarines, automotive engineering, 
sport equipments and etc has been noticeably progressed. This remarkable usage of these kinds of 
materials is because of its high strength and having high module with low density. 
Therefore, in many applications, use of these materials is commodious compare to isotropic 
materials and these materials are preferable. So far, a lot of researches have been carried out about 
mechanical and thermo mechanical behaviour of composite laminates while very few works are 
available about heat transfer of these materials [1]-[3]. Primary research in this field has been 
carried out on anisotropic crystals [4],[5]. Ma and Chang [6] studied analytical heat conduction in 
anisotropic multilayer media. They changed anisotropic problem to a simple isotropic problem by 
using a linear coordinate transformation. There are some accomplished researches about heat 
transfer in composite materials that are reviewed briefly. Kulkarani and Brady [7] presented a 
thermal mathematical model for heat transfer in laminated carbon composites. This model was 
based on volumetric percentage of matrix and fibres and using of this model also heat transfer 
coefficient indirection of fibres and perpendicular to fibres has been estimated. Johansson and 
Lesnic [8] showed applications of MFS methods for transient heat conduction in layered materials 
and developed this method for numerical estimation of heat flux in these materials. Sun and 
Wichman [9] presented a theoretical solution for transient heat transfer in a one-dimensional three 
layer composite slab and compared obtained resultants with finite element solution. Karageorghis 
and Lesnic [10] introduced a solution for heat conduction in laminated composite material that its 
conduction coefficient was dependence to temperature and boundary condition consisted of 
convection and radiation. Haji-sheikh et al. [11] obtained a mathematical formulation for steady-
state heat conduction and temperature distribution in multi-layer bodies. They affirmed that if layers 
are homogenous, eigenvalues will be real numbers but for orthotropic state these values can be 
imaginary numbers. Guo et al. [12] studied temperature distribution in thick polymeric matrix 
laminates and compared it with results of numerical solution. They solved transient heat transfer in 
polymeric matrix composite laminates using finite element method. They considered the internal 
energy generation due to chemical reactions in the heat transfer equation. Singh et al. [13] obtained 
an analytical solution for conductive heat transfer in multilayer polar coordinate system in radial 
direction. Bahadur and Bar-Cohen [14] presented analytical solution for temperature distribution 
and heat flux in a cylindrical fin with orthotropic conductive coefficient and compared its results 
with obtained results from finite element solution. Onyejekwe [15] obtained an exact analytical 
solution for conductive heat transfer in composite media using boundary integral theory. 
Tarn and Wang [16],[17] studied conductive heat transfer in cylinders that are made of functional 
graded material (FGM) and composite laminates. Furthermore, many studies about conductive heat 
transfer have been carried out in nano-composites [18],[19]. One of the applications of composite 
materials is in manufacturing super conductive materials. Cha et al. [20] investigated inverse 
temperature distribution and heat generation in super conductor composite materials. 
In this framework, the present chapter will firstly develop an analytical approach to find exact 
elastic solutions for multilayered cylinder, constituted by n cylindrical hollow phases and a central 
core, each of them modelled as homogeneous and cylindrically anisotropic material. This new 
solutions for the n jacket phases cylindrically anisotropic are given, by means of a mathematical 
procedure that yields to reduce the differential anisotropic boundary value problem (BVP) in the 
equivalent linear algebraic one. The closed-form solutions are finally obtained in the realm of the 
Complex Potential theory, for an arbitrary number of phases n. 
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12.2. Elastic solutions for multilayered cylinder constituted by N cylindrically orthotropic 
phase  
 
12.2.1. Field equations for the i-th phase 
In this section, let us consider multilayered cylinder composed by an isotropic core, and by n 
orthotropic cylindrical shells: , ,r zθ  are the principal directions of the material cylindrical 
orthotropy. With reference to the cylindrical coordinate system { , , }r zθ , the equilibrium equations, 
in the absence of body forces, are: 
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rr r r rz z rr

r r z z r

rz r z zz z rz

r r

r r

r r

θ θ θθ

θ θθ θ θ θ

θ θ

σ τ τ σ σ

τ σ τ τ

τ τ σ τ

− −

− −

− −

 + + + − =
 + + + =
 + + + =

                           (12.2.1) 

In the framework of the analysis of multilayered cylinder, due to the cylindrical geometry of the 
phases, it results extremely useful to adopt the formalism introduced by Ting [31], which yields to 
rewrite the equilibrium equations (12.2.1) in vector form, introducing the “emerging” stresses (e.g. 
tractions on the boundary surface of a single phase) as follows: 

( ) ( ) ,, ,
0r z zr

r rθ θθ+ + + =t t t K t                                         (12.2.2) 

where 

, , ,
rr r zr

r r z z

rz z zz

θ

θ θ θθ θ

θ

σ τ τ
τ σ τ
τ τ σ

     
     = = =     
          

t t t                                      (12.2.3) 

represent the traction vectors on the surfaces  .r const= ,  .constθ = , and .z const= , respectively, 
and  K  is  a 3x3  constant matrix given by  

 

0 1 0

1 0 0

0 0 0

− 
 =  
  

K     .                                                    (12.2.4) 

The relations between the strain ijε  and displacement iu  are: 

( )
( )

1 1
, , , ,

1
, , , , ,

, , ( )

, , ,

rr r r r r r r

zz z z rz z r r z z z z

u r u u r u r u u

u u u r u r u

θθ θ θ θ θ θ θ

θ θ θ

ε ε γ

ε γ γ

− −

−

= = + = + −

= = + = +
                      (12.2.5) 

Under the assumption of cylindrical anisotropy, by identifying ( ) ( ), , , ,x y z r zθ≡  the stress-strain 

law becomes: 

ij ijhk hkCσ ε=                 .                                        (12.2.6) 

Hence 

( ) 1 1 11 1 22 1 33 1 23 1 13 1 12r rj jhk hk j rr j j zz j z j rz j rj
C C C C C C Cθθ θ θσ ε ε ε ε γ γ γ= = = + + + + +t       (12.2.7) 

Similar equations hold for ( )
jθt  and for ( )z j

t  . Making use of  (12.2.5) it can be shown that: 

( )
( )
( )

1
, , ,

1
, , ,

1
, , ,

r r z

T
r z

T T
z r z

r

r

r

θ

θ θ

θ

−

−

−

= + + +

= + + +

= + + +

t Q u R u K u P u

t R u T u K u S u

t P u S u K u M u

                                (12.2.8) 

where superscript “T” means “transposition”, and 
       [ ]T

r zu u uθ=u                                                  (12.2.9) 

while  ,Q, R,P,M T,S,  are 3x3 matrices, explicitly reported below: 
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11 16 15 16 12 14 15 14 13

16 66 56 66 26 46 56 46 36

15 56 55 56 25 45 55 45 35

, ,

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

     
     = = =     
          

Q R P      

               
55 45 35 66 26 46 56 46 36

45 44 34 26 22 24 25 24 23

35 34 33 46 24 44 45 44 34

, ,

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

     
     = = =     
          

M T S .                (12.2.10) 

Substitution of (12.2.8) in (12.2.2) leads to a differential equation for u . It should be pointed out 
that  the elastic constants ijhkC  are here referred to the cylindrical coordinate system. Therefore the 

matrices ,Q, R,P,M T,S,  are not constant matrices even for homogeneous materials, that is – for 
example – in a Cartesian reference system. In particular, for a cylindrically anisotropic material , 
the matrices ,Q, R,P,M T,S,  are constant. By inserting (12.2.8) into (12.2.2) a single equation for 
the displacement u  is obtained as follows: 

           
( ) ( ) ( ) ( )
( ) ( ) ( )

2
, , , , , ,

, , , 0

T T T
rr zz r rz z

T T
r z

r r r

r r

θθ θ θ

θ

 + + + + + + + + + 

+ + + + + + =

Q u M u T u R R u P P u S S u

R K + K R Q u TK + K T u K S +S K P u K TK u
       (12.2.11) 

In the case that the material possesses cylindrically orthotropy, the linearly elastic constitutive 
relation of  the ith phase, in the Voigt notation, is      

( )i
k kj jCσ ε=                                         (12.2.12) 

where stress and strain vectors and the Elasticity matrix are respectively:  

[ ] , ,

rr rr

zz zz
k j

z z

rz rz

r r

θθ θθ

θ θ

θ θ

σ ε
σ ε
σ ε

σ ε
τ γ
τ γ
τ γ

   
   
   
   

 = =    
   
   
   
      

( ) ( ) ( )
11 12 13
( ) ( ) ( )
12 22 23
( ) ( ) ( )

( ) 13 23 33
( )
44

( )
55

( )
66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i i i

i i i

i i i
i

i

i

i

c c c

c c c

c c c

c

c

c

 
 
 
 

=  
 
 
 
  

C    

and the superscript ( )i  denotes the elastic moduli of the generic i-th phase of multilayered cylinder. 
As a consequence, the matrices (12.2.10) become: 

                             
11 12 13

66 66

55 55

0 0 0 0 0 0

0 0 , 0 0 , 0 0 0 ,

0 0 0 0 0 0 0

c c c

c c

c c

     
     = = =     
          

Q R P  

                            
55 66

44 22 23

33 44 44

0 0 0 0 0 0 0

0 0 , 0 0 , 0 0 .

0 0 0 0 0 0

c c

c c c

c c c

     
     = = =     
          

M T S                 (12.2.13) 

Let us now consider the case of axis-symmetry of both the geometry of multilayered cylinder and of 
the load conditions, in which the displacement field is therefore independent from the variable θ , 
as well as the displacement component uθ  vanishes. The equilibrium equation (12.2.11) becomes: 

( )
( ) ( )

2
, , ,

, , 0

T
rr zz rz

T T
r z

r

r r

 + + + + + 

+ + + + =

Q u M u P P u K TK u

R K + K R Q u K S +S K P u
                   (12.2.14) 

Due to the results obtained by the Authors in a previous work [26,27,29], we now find the 
displacement field solution for multilayered cylinder under pure axial loads in the form: 

[ ]0( ), 0,T
ru r zε=u                                             (12.2.15) 
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where zzε  is a real scalar parameter to determine, that we will discover to be the same for all phases 

of the solid [26]. Moreover, the equilibrium equation (12.2.14) reduces to the following scalar one: 

                                        ( )'' '
11 22 0 13 23( ) ( ) ( ) 0r r rc r r u r u r c u r c c rε + − + − =                         (12.2.16) 

By recalling the classical results of the Complex Potential Theory [24] for anisotropic elastic 
materials, we can assume the solution of the homogeneous equation related to equation (12.2.16), 
with the form 1 2

1 2( )H
ru r C r iC rλ λ= + , so that the following characteristic polynomials in 1λ  and 2λ  

are given: 
2

22 11 1
1 2 22 112

22 11 2

0

0

c c
c c

c c

λ
λ λ

λ
 − =

⇒ = = ±
− =

            .           (12.2.17) 

The result (12.2.17) leads to construct the general form of the homogeneous solution ( )H
ru r  as 

follows: 

( ) ( )22 11 22 11 22 11 22 11

1 2( ) c c c c c c c cH
ru r C r r iC r r− −= + + +        .                 (12.2.18) 

Moreover, a particular solution Pru of  equation (12.2.16) is trivially obtained 

0 23 13

11 22

( )
( )

( )
P
r

c c
u r r

c c

ε −=
−

             .                              (12.2.19) 

Thus, the general integral of  equation( 12.2.16) is writeable as: 

       0 23 13 22 22
1 2

11 22 11 11

( )
( ) ( ) ( ) cosh log sinh log

( )
P H

r r r

c c c c
u r u r u r r C r C r

c c c c

ε    −= + = + +      −    
Â      (12.2.20) 

where � is unit imaginary. By substituting the displacement function (12.2.20) in to compatibility 
equations (12.2.5), we obtain the following expression for the strain components: 

( )
( )

( )
( )

0 23 13 1 22 22 2 22 22

11 22 11 11 11 11

0 23 13 1 22 2 22

11 22 11 11

0

sinh log cosh log ,

cosh log sinh log ,

, 0,

rr

zz r rz z

c c C c c C c c
r r

c c r c c r c c

c c C c C c
r r

c c r c r cθθ

θ θ

ε
ε

ε
ε

ε ε γ γ γ

   −
= + +      −    

   −
= + +      −    

= = = =

Â

Â       (12.2.21) 

where / 2 ,ij ij i jε γ= ≠ . From the constitutive law for cylindrically orthotropic material (12.2.12), 

the no-zero stress components assume the following explicit form: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

0 23 11 12 13 22 12 1
1 12 2 11 22 22 11

11 22

1
1 11 22 2 12 22 11

0 23 11 12 13 22 12 1
1 12 2 11 22 22 11 22 11

11 22

1
1 11 22 2 12

cosh log

sinh log

sinh log

rr

c c c c c c
C c C c c r c c r

c c

C c c C c r c c r

c c c c c c
r C c C c c c c c c r

c c

r C c c C c

θθ

ε
σ

ε
σ

−

−

−

−

+ − +  = + + +
−

+

+ − +  = + + +
−

+

Â

Â

Â

Â ( )
( ) ( ) ( )

( ) ( )

22 11 22 11

2 2
0 23 13 33 11 22 1

1 23 2 13 22 11 22 11
11 22

1 13 22 11 2 23 22 11

cosh log ,

cosh log

sinh log ,

zz

c c c c r

c c c c c
r C c C c c c c c r

c c

C c c c C c c c r

ε
σ −

 − + − = + + +
−

+

Â

Â

 

(12.2.22) 
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It is worth to note that the found solution results able to also represent, as particular cases, the 
situations where isotropy or different types of transverse isotropy occur. In order to show this 
property of the solution, we summarize in the following these special cases:  
 
A) In the case in which the material possesses transverse isotropy, with plane of isotropy coincident 
with the ( , )r θ -plane, we will have: 

                             ( )22 11 23 13 55 44 66 11 12, , , / 2,c c c c c c c c c= = = = −  

and, by virtue of (19), the displacement components become: 
1

1 2 0, 0,r zu C r C r u u zθ ε−= + = =  .                                      (12.2.23) 

B)  In the case in which the material possesses transverse isotropy, with plane of isotropy coincident 
with the ( , )r z -plane, we will have: 

                             ( )33 11 23 12 66 44 55 11 13, , , / 2,c c c c c c c c c= = = = −  

and the displacement components reduce to: 

    0 12 13 22 22
1 2 0

11 22 11 11

( )
cosh log sinh log , 0, ,

( )r z

c c c c
u r C r i C r u u z

c c c c θ
ε ε

   −= + + = =      −    
         (12.2.24) 

C) In the case in which the material possesses transverse isotropy, with plane of isotropy coincident 
with the ( , )zθ -plane, we will have: 

                             ( )22 33 12 13 66 55 44 22 23, , , / 2,c c c c c c c c c= = = = −  

and the displacement components assume the form: 

    0 23 12 22 22
1 2 0

11 22 11 11

( )
cosh log sinh log , 0, .

( )r z

c c c c
u r C r iC r u u z

c c c c θ
ε ε

   −= + + = =      −    
        (12.2.25) 

The case of full isotropy is treated in [26]. 
 
12.2.2. Equilibrium and compatibility conditions at the interfaces 
By making reference to an multilayered cylinder made of an central isotropic core and to n ∈N  
arbitrary hollow phases, the displacement field for to the core is [26]: 

 (0) (0) (0) (0) (0)
0, 0,r r zu r u u zθε ε= = =                                                  (12.2.26) 

while the displacement components for the i-th generic phase are (12.2.20): 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )0 23 13 22 22
1 2( ) ( ) ( ) ( )

11 22 11 11

( ) ( ) ( )
0

( )
cosh log sinh log

( )

0, .

i i i i i
i i i

r i i i i

i i i
z

c c c c
u r C r C r

c c c c

u u zθ

ε

ε

   −= + +   
   −    

= =

Â
        (12.2.27) 

The stress components for i-th generic phase are given by equation (12.2.22), but the stress 
components for core phase are reported below: 

                             
( ) ( )(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

11 12 12 0 11 12 12 0

(0) (0) (0) (0) (0)
12 11 0

,

2

rr r r

zz r

c c c c c c

c c

θθσ ε ε σ ε ε

σ ε ε

= + + = + +

= +
               (12.2.28) 

As reported in Fraldi and Cowin [25], the displacement field (12.2.26) for the core is assumed by 
considering isotropy in this solid central phase, due to the inadmissibility of cylindrical anisotropy 
at 0r = .  The equations above obtained satisfy equilibrium and compatibility equations in the inner 
of each phase of multilayered cylinder. Then, it remains to consider the boundary conditions at the 
interfaces, where perfect bond is assumed. In particular, we will analyse a special load condition, 
that is the sole presence of axial forces applied at the extremities of the object. The unknown 
parameters to determine are here summarized by the sole: 

 
(0) (0)

0

( ) ( ) ( )
0 1 2

, ,

, , {1,2,...., }
r

i i iC C i n

ε ε
ε ∀ ∈

                                           (12.2.29) 
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The constants in equation ( 12.2.29)1 represent the unknown coefficients of the core, while the other 
ones in (12.2.29)2, whose number is 3 n× , represent the unknown parameters corresponding to the 
hollow phases. Hence, the total number of unknowns will be(2 3 )n+ × , which equals the number of 
algebraic equations to solve. In particular, as we will show in the following, the boundary equations 
at the interfaces are 3, while the boundary conditions on the external cylindrical surface and on the 
end basis are two. We can begin by writing the equilibrium and compatibility equations at the 
interfaces, that is: 

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( )

( ) ( ) {0,1,2,..., 1}

( ) ( )

i i i i
z z

i i i i
r r

i i i i
rr rr

u r R u r R

u r R u r R i n

r R r Rσ σ

+

+

+

 = = =


= = = ∈ −
 = = =

            (12.2.30) 

where ( )iR  is the outer radius of the generic phase. The Cauchy equilibrium equation on the 
external cylindrical boundary surface, in the absence of applied traction, gives: 
                                                                    ( ) ( ) 0( )n n

rr r Rσ = =                                                (12.2.31) 

Finally, it remains to consider the last equilibrium equations along the z-direction on one of the end 
bases of the object. Without loss of generality, we can consider the weak condition at 0z = , 
writing: 

                                                              

( )2
( )

0 0 0

iRn
i

zz z
i

rdrd N
π

σ θ
=

=∑ ∫ ∫                                               (12.2.32) 

where zN∓  are the axial forces applied on the bases 0,z z L= = , respectively. 

Making explicit (12.2.301) and by means of the polynomial identity law, we have: 
                                                     (0) ( ) ( 1) ( )

0 0 0 0... ...i i nε ε ε ε+= = = = = .                                         (12.2.33) 

Therefore, by recalling (12.2.26) and (12.2.27), the equation (12.2.302) furnishes: 

 
( ) ( )

( ) ( )

(0) (0) (0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 1 2

(0) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( 1) ( )
0 1 2

( ) (1 ) cosh log sinh log

cosh log sinh log {0,1,... 1}

i i i i i i i i
i r i

i i i i i i i i

R R C R iC R

R C R i C R i n

δ ε δ ε α η η

ε α η η+ + + + +

 + − + + = 

= + + ∀ ∈ −
 

                                                                                                                                                  (12.2.34) 
Equation (12.2.303) can be rewriting  as follows 

  

( ) ( )

( )

( ) ( ) ( ) ( )
(0) ( ) ( ) ( ) (0) (0) ( ) ( ) ( )1 12 2

0 11 12 13 0 0 0 ( )

( ) ( ) ( ) ( )
( ) ( )1 2 12

0 ( )

( 1) ( 1)
(0) ( 1) 1 12
0

(1 ) cosh log

(1 ) sinh log

i i i i
i i i i i i

i r i i

i i i i
i i

i i

i i
i

C c i C
c c c R

R

C iC c
R

R

C c

δ ε ε δ ε β η

δ η

ε β
+ +

+

  + Λ + + + − + +   
  

  Λ ++ − =  
  

+= + ( )

( )

( 1) ( 1)
( 1) ( )2

( )

( 1) ( 1) ( 1) ( 1)
( 1) ( )1 2 12

( )

cosh log

sinh log {0,1,... 1}

i i
i i

i

i i i i
i i

i

i C
R

R

C iC c
R i n

R

η

η

+ +
+

+ + + +
+

 Λ + 
 

 Λ ++ ∀ ∈ − 
 

(12.2.35) 

 Finally, the boundary condition (12.2.31) becomes 

                                

( )

( )

( ) ( ) ( ) ( )
(0) ( ) ( ) ( )1 12 2
0 ( )

( ) ( ) ( ) ( )
( ) ( )1 2 12

( )

cosh log

sinh log 0

n n n n
n n n

n

n n n n
n n

n

C c i C
R

R

C iC c
R

R

ε β η

η

 + Λ+ + 
 

 Λ ++ = 
 

                     (12.2.36) 

where the following parameters were assumed: 
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( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( ) 23 1322

22 11( ) ( ) ( )
11 11 22

( ) ( ) ( ) ( ) ( ) ( ) 2 2
23 11 12 13 22 12 23 13 33 11 22( ) ( )

( ) ( )
11 22 11 22

( )
, , ,

( )

, .

i ii
i i i i i

i i i

i i i i i i

i i
i i

c cc
c c

c c c

c c c c c c c c c c c

c c c c

η α

β γ

−= Λ = =
−

 + − +  − + −   = =
− −

         (12.2.37) 

Then, the algebraic system to solve is composed by 2n+2 equations. This algebraic system is given 
by equations (12.2.32), (12.2.34), (12.2.35) and (12.2.36).  The 2n+2 unknown parameters to 
determine are given by: 

   { } { }(0) (0) ( ) ( )
0 1 2, , , {1,2,...., }i i

r C C i nε ε ∀ ∈                                 (12.2.38) 

 
12.3. Closed-form elastic solutions for multilayered cylinder constituted by isotropic central 
core  and cylindrically orthotropic hollow phases 
Let us now consider the case in which the multilayered cylinder is constituted by an isotropic 
central core and an cylindrically orthotropic hollow phase, under axis-symmetrical boundary 
conditions characterized by the sole presence of axial forces applied at the extremities of composite 
solid. In fact this one is a particular case of great utility for many applications. In this case, the 
displacements field for the two phase are represented by the equations (12.2.26) and (12.2.27) 
respectively, while (12.2.28) furnishes the stress within the core and (12.2.22) gives the stresses 
inside the hollow phase. In the following, we will denote with the apices “0” and “1” the quantities 
related to core and hollow phase, respectively. In order to obtain the analytical solution of the 
problem in explicit form, we should solve the algebraic system corresponding to the boundary 
conditions (12.3.32),(12.2.34), (12.2.35) and (12.2.36) by setting i=1, for determining the four 
unknown coefficients (0) (0) (1) (1)

0 1 2{ , , , }r C Cε ε  reported in equation (12.2.38) with i=1. After some 

algebraic manipulations, let us write the algebraic system to solve  in the following  matrix form : 
           =P X L                 (12.3.3) 

where (0) (0) (1) (1)
0 1 2[ , , , ]T

r C Cε ε=X  is the vector collecting the unknown to determine, and 

[0,0,0, ]TzN=L  represents the load vector. In the (12.3.3) 

    

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

P P P P

P P P P

P P P P

P P P P

 
 
 =
 
 
 

P                                       (12.3.4) 

is a (4 4)×  square matrix containing all the geometrical and mechanical parameters characterizing 

the geometry of multilayered cylinder (i.e. the core radius (0)R  and the external radius of the hollow 
phase, (1)R ,   and the elastic constants (0) (0)

11 12,c c  of  the isotropic core phase and the elastic constants 
(1)
ijc  of  the cylindrically orthotropic phase. Explicitly, we have: 

( )
( ) ( ) ( )
(1) (1) (1) (0)
23 13(0) (1) (0) (1) (0)

11 12 13 14(1)2 (1)
, , cosh log , sinh log ,

1

c c R
P R P P R P R

η
η η

η
−

= = = − = −
− Λ

Â  

(0) (0)
21 11 12 ,P c c= +

( ) ( )
( )

(1) (1) (1) (1) (1) (1) (1) (1)2
12 23 13 23 13(0)

22 12 (1) (1)2
,

1

c c c c c
P c

η η
η

− + Λ −
= +

Λ −

( ) ( )1(0) (1) (1) (0) (1) (1) (0)
23 12 cosh log sinh log ,P R c R Rη η

−
  = − + Λ   

( ) ( )1(0) (1) (1) (0) (1) (1) (0)
24 12cosh log sinh log ,P R R c Rη η

−
  = − Λ +   Â  
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( ) ( )
( )

(1) (1) (1) (1) (1) (1) (1)2 (1)
12 13 23 13 23

31 32 (1) (1)2
0, ,

1

c c c c c
P P

η η
η

− + Λ −
= =

Λ −

( ) ( )1(1) (1) (1) (1) (1) (1) (1)
33 12 cosh log sinh log ,P R c R Rη η

−
  = + Λ     

( ) ( )1(1) (1) (1) (1) (1) (1) (1)
34 12cosh log sinh log ,P R R c Rη η

−
  = Λ +   Â

(0) (0)2
41 122 ,P c Rπ=  

( )
( )

(1)2 (1)2 (1)
13 23(0) (0)2 (1)2 (0)2 (1)

42 11 33(1)2 (1)
,

1

c c
P c R R R c

η
π π

η

 −
   = + − +  − Λ  

 

( ) ( ) ( ) ( )
( ) ( ) ( )

(0) (1) (1) (1)2 (1) (0) (1) (1) (1)2 (1) (1) (1)
23 13 13 23

43 (1)2 (1) (1) (1) (0) (1) (0) (1) (1) (1)
13 23

cosh log cosh log2
,

1 sinh log sinh log

R c c R R c c R
P

c c R R R R

η η η ηπ
η η η η

 − + − +   =   −  + − −     

 

( ) ( ) ( ) ( )
( ) ( ) ( )

(0) (1) (1) (1) (1) (0) (1) (1) (1) (1) (1) (1)
13 23 23 13

44 (1)2 (1) (1) (1) (0) (1) (0) (1) (1) (1)
23 13

cosh log cosh log2
,

1 sinh log sinh log

R c c R R c c R
P

c c R R R R

η η η ηπ
η η η η

 − + − +   =   −  + − −     

Â
 

(12.3.5) 
where the following parameters were assumed: 

                  
(1)

(1) (1) (1) (1)22
22 11(1)

11

, ,
c

c c
c

η = Λ =                                          (12.3.6) 

Finally, the whole set of unknown coefficients can be obtained by inverting matrix P , that is 

                                                                1 1
det

T−= =X P L P L
P
ɶ                                                 (12.3.7)  

where adj[ ]=ɶP P  is the adjoint matrix of P  and then the Cramer rule has been employed, provided 
that det 0≠P . 
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CHAPTER XIII 
MULTILAYERED CYLINDER CONSTITUTED BY CYLINDRICAL MONOCLINIC 

PHASES SUBJECTED TO AXIAL FORCE AND PURE TORSION 
 
13.1. Introduction 
In this chapter, let us consider the chiral structure characterized by multilayered cylinder, composed 
by two hollow cylindrical monoclinic phases. The cylindrical monoclinic elastic property of 
multilayered cylinder is obtained by the particular chiral structure. In fact, we consider the two 
hollow phases constructed by  right-handed and left-handed spiral helices whose long axes are all 
parallel. These helical spirals may be either touching or separated by a matrix material and are 
composed by elastic orthotropic material. Let us the helical angle be ψ  and let us negative values of 
ψ  correspond to otherwise similar left-handed helices; the vanishing of ψ  then corresponds to a 
straight reinforcement fibre. We show that when the effective elastic constants for this material are 
calculated, the sign of the constants “chiral constants” is determined by the sign of ψ  and vanishes 

when ψ   is zero. It is then possible to geometrically visualize the chiral, symmetry-breaking 
character of the “chiral constants” as these constants pass from positive to negative (or negative to 
positive) values through zero as the vanishing of a helical angle of one handedness occurs and the 
initiating of a helical angle of the opposite handedness commences. At the dividing line between the 
two types of handedness, the reinforcing fibres are straight. In terms of the elastic symmetry, as the 
constants “chiral constants” pass from positive to negative (or negative to positive) values through 
zero, the elastic material is first a monoclinic material of a certain chirality, then a orthotropic 
material, and then a monoclinic material of an opposite chirality.  
 
13.2. Cylindrical monoclinic material  
If  the internal composition of a material possesses symmetry of any kind, then symmetry can be 
observed in its elastic properties. This will occur because the elastic properties are identical to the 
directions of symmetry which are developed in the body (the equivalent directions).  F. Neumann 
set forth a principle for crystals which establishes the connection between symmetry of construction 
and elastic symmetry. This principle can be formulated in the following way:  a material , in regard 
to its physical properties, has the same kind of symmetry as its crystallographic form. This principle 
can be expanded to include bodies which are not crystalline, but which posses a symmetry of 
structure (wood, plywood). However, elastic symmetry  is usually more extensive than geometric 
symmetry; in addition to the equivalent directions which coincide with the symmetric directions of 
the structure, other directions exist for which the elastic properties are identical. If an anisotropic 
body possesses an elastic symmetry, then the equations of the generalized Hooke’s law are 
simplified: We find the simplifications by applying the following method: we refer the body to the 
first coordinate system { }, ,x y z  and then to the second coordinate system { }', ', 'x y z ; the second 

system is symmetric to the first in accordance with the form of its elastic symmetry . Since the 
directions  of similar axes of both systems are equivalent with respect to elastic properties, the 
equations  of the generalized Hooke’s law and expression of elastic potential will have the same 
form in both the first and second systems; the corresponding elastic constants entering into their 
composition also will be identical. For the first coordinate system { }, ,x y z : 

( )1 1
: :

2 2
T

ijhk ij hkV C ε ε= =C E E                                        (13.2.1) 

For the second coordinate system { }', ', 'x y z : 

( ) ' '1 1
: ' : '

2 2
T

ijhk ij hkV C ε ε= =C E E                                       (13.2.2) 

Since  one and the same quantity is being discussed, we have: 
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                                                      ( ) ( )1 1
: : : ' : '

2 2
T T=C E E C E E                                             (13.2.3) 

Let us consider in more detail the first coordinate system. We shall express the components '
ijε  of 

the strain tensor 'E  in terms of the components ijε  using  the transformation law of the tensors. 

Substituting the obtained expressions into the right side of (13.2.3) and equating the coefficients for 
the components ijε  in the left and right sides, we conclude that certain coefficients ijhkC  are equal to 

zero, and other coefficients are connected by definite relations. As a result, it turns out that bodies 
possessing elastic symmetry have a smaller number of independent elastic constants than 21 (for 
example, 13, 9, and so forth). Considering the elastic potential expressed in terms of the 
components of stress, we derive the relationships between the moduli ijhkA  in the same way. If we 

consider , instead of the expression of elastic potential, the equations of the generalized Hooke’s 
law written for two symmetric coordinate systems, we can arrive at the same results in a different 
way . We shall state the equations of the generalized Hooke’s law and the structure of the 
expressions of elastic potential for the basic cases of elastic symmetry. If a material has one plane of 
elastic symmetry , then independent elastic constants are 13. Let us assume that through each point 
of a body we draw a plane possessing the property that any two directions symmetric with respect 
to this plane are equivalent with respect to the elastic properties. Directing the x- axis normal to the 
plane of elastic symmetry, we obtain, after simplifications, the following equations of the 
generalized  Hooke’s law: 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

0 0

0 0

0 0

20 0

20 0 0 0

20 0 0 0

xx xx

yy yy

xx zz

yz yz

xz xz

xy xy

c c c c

c c c c

c c c c

c c c c

c c

c c

σ ε
σ ε
σ ε
τ ε
τ ε
τ ε

    
    
    
    

= ⋅    
    
    
    

        

                              (13.2.4) 

 
13.3. Transformation of elastic stiffness tensor from helicoidal  into cylindrical coordinate 
systems 
Let us consider the helicoidal coordinate system ( , , )r t c  characterized by unit vectors ( , , )r t ce e e as 

showed in figure 13.1. This coordinate system has unit vector te  that tangent to helix; the unit 

vector  re  is perpendicular to te ; and unit vector ce  is perpendicular to plane definite by axis  “r” 

and “t”.  Let us consider a new coordinate system characterized by cylindrical system ( , , )r zθ . The 

unit vectors of the cylindrical system are denote by  ( , , )r zθe e e , as showed in figure 13.1. If  

cylindrical system has the same origin of the helicoidal system, then the unit vector re  is coincident 

into two coordinate systems. The angle between two unit vectors  te  and θe   is identified  by ψ , 

that equal to  angle between two vector  ce  e ze .  Euler’s theorem on the representation  of rigid 

body rotations (Brand, 1947; Lamb, 1929; Goldstein, 1950; Pars, 1979; Whittaker, 1937) has many 
forms. The theorem concerns the characterization of a three-dimensional  rotation by an angle ψ  
about a specific axis, here indicated by the unit vector p . This theorem is represented by the 
formula (Beatty, 1966, 1977; Finger, 1892; Gurtin, 1976; Truesdell and Toupin, 1960): 

( ) 21 sin 1 cosψ ψ= + + −Q P P                                       (13.3.1) 

where the three-dimensional shew-symmetric tensor P  with components ijP  is introduced to 

represent the unit vector p , 
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0

0

0

z y

z x ij ijk k

y x

p p

p p or P e p

p p

 −
 = − = 
 − 

P                           (13.3.2) 

It is easy to show that P  has the following properties: 
2 3, 0, , .T= − = = ⊗ − = −P P P p P p p I P P                     (13.3.3) 

The transformation law between cylindrical and helicoidal  coordinate system is characterized by a 
rotation about the radial axis. Then, in this case the vector {1,0,0}=p and shew-symmetric tensor P  
becomes: 

0 0 0

0 0 1

0 1 0

 
 = − 
  

P                                                    (13.3.4) 

By applying the formula (13.3.1), we can obtain the rotation matrix  
1 0 0

0 cos sin

0 sin cos

ψ ψ
ψ ψ

 
 = − 
  

Q                                                 (13.3.5) 

Then, the transformation law between two coordinate system is: 
1 0 0

0 cos sin

0 sin cos

r r r

t t

z c c

e e e

e e e

e e e
θ ψ ψ

ψ ψ

       
       = − ⋅ = ⋅       
              

Q                               (13.3.6) 

In a space of six dimensions, the representation of a three-dimensional rotation by an angle ψ  about 

a specific axis, characterized by the unit vector , ,
T

x y zp p p =  p , is represented as a six-

dimensional orthogonal tensor by the formula: 

        ( ) ( ) ( ) ( ) ( )22 3 2 41 1ˆ ˆ ˆ ˆ ˆ ˆ ˆsin 1 cos sin 1 cos 1 cos
3 6

ψ ψ ψ ψ ψ= + + − + − + + − +Q I P P P P P P     (13.3.7) 

Where the six-dimensional shew-symmetric tensor P̂  with components 

0 0 0 0 2 2

0 0 0 2 0 2

0 0 0 2 2 0ˆ
0 2 2 0

2 0 2 0

2 2 0 0

y z

x z

x y

x x z y

y y z x

z z y x

p p

p p

p p

p p p p

p p p p

p p p p

 −
 

− 
 
 =  − 
 − −
 
 − − 

P                   (13.3.8) 

Satisfies the following conditions: 
5 3 6 4 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 5 4 0, 5 4 0T= − + + = + + =P P P P P P P P                     (13.3.9) 

Matrices of six-dimensional tensor components are distinguished with circumflexes. Note that 
formulae (13.3.1) and (13.3.7) show that a change in the sense of p  is the same as a reversal of the 
direction of the angle from ,ψp  to , ψ− −p . Formula (13.3.7) is of interest in anisotropic elasticity 
because the elastic tensor can be expressed as a second rank tensor in six dimensions  Mehrabadi 
and Cowin [27] as well as in its more traditional representation as a fourth rank tensor in three 
dimensions. Formula (13.3.7) connects the geometric operation in three dimensions to the matrix 
algebra of six dimensions. Since the tensor transformation rules for a second rank tensor rather than 
a fourth rank tensor apply, transformations of the reference coordinate system for the elasticity 
tenor may be accomplished in a very straightforward fashion using matrix multiplication. The 



CHAPTER XIII-Multilayered cylinder constituted by cylindrical monoclinic phases: axial force and pure torsion 

F. Carannante 241 

anisotropic form of Hooke’ law is often written in indicial notation as ij ijkm kmCσ ε= , where the ijkmC  

are the components of the three-dimensional fourth rank elasticity tensor. There are three important 
symmetric restrictions on the fourth rank tensor components ijkmC  . These restrictions, which require 

that components with the subscripts ,ijkm jikmand kmij  be equal, follow from the symmetry of the 
stress tensor, the symmetry of the strain tensor, and the requirement that no work be produced by 
the elastic material in a closet loading cycle, respectively . Written as a linear transformation in six 
dimensions, Hooke’s law has the representation =T cE  or  

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

2

2

2

xx xx

yy yy

zz zz

yz yz

xz xz

xy xy

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

σ ε
σ ε
σ ε
τ ε
τ ε
τ ε

    
   
   
   

= ⋅   
   
   
   

      










                           (13.3.10) 

In the two subscript notation of Voigt [21] for the components of ijkmC . In the Voigt notation the 

components of c  and ijkmC  are related by replacing the six-dimensional indices 1,2,3,4,5 and 6 by 

the pairs of the three-dimensional indices 1,2 and 3; thus 1,2,3,4,5 and 6 become 11, 22, 33, 23 or 
32, 13 or 31, 12 or 21, respectively. The members of the paired indices 23 or 32, 13 or 31 , 12 or 21 
are equivalent because of the symmetry of the tensors of the stress and strain. The matrix c  in 
equation (13.3.10) is not a matrix of tensor components in six dimensions, although it is formed 
from the components of a three-dimensional fourth rank tensor. Six-dimensional vector base and 
notations are introduced so that stress and strain can be considered as vectors in a six-dimensional 
vector space as well as second rank tensors in three-dimensional Cartesian reference systems. The 
six-dimensional quantities will be indicated by a circumflex ; thus, the six-dimensional vectors of 
stress and strain will be denoted by T̂ and Ê , respectively, whereas the three-dimensional second 
rank tensors of stress and strain are denoted by T  and E , respectively. The direct relationship 
between the components of T̂  and T , and Ê  and E , are dual representations given by 

            
[ ]

[ ]
1 2 3 4 5 6

1 2 3 4 5 6

ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 2 2

TT

xx yy zz yz xz xy

TT

xx yy zz yz xz xy

σ σ σ σ σ σ σ σ σ τ τ τ

ε ε ε ε ε ε ε ε ε ε ε ε

 = =  

 = =  

T

E
       (13.3.11) 

where the shearing components of these new six-dimensional stress and strain vectors are  the 

shearing components of these three-dimensional stress and strain tensors multiplied by 2 . This 

2  factor ensures that the scalar product of the two six-dimensional vectors is equal to the trace of 

the product of the corresponding second rank tensors, ˆ ˆ tr⋅ = ⋅T E T E . Introducing the new notation 
of equation (13.3.11) into equation (13.3.10), the equation (13.3.10) can be rewritten in the form: 

ˆ ˆˆ=T cE                                                         (13.3.12) 

where ̂c  is a new six-by-six matrix. The matrix form of equation (13.3.9) is given by: 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

2 2 2

2 2 2

2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2

xx

yy

zz

yz

xz

xy

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

σ
σ
σ

τ
τ
τ

  
  
  
  
   = ⋅  
  
  
  
    

2

2

2

xx

yy

zz

yz

xz

xy

ε
ε
ε

ε
ε
ε

 
 
 
 
 
 
 
 
 
 

       (13.3.13) 

or 
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

xx

yy

zz

yz

xz

xy

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

σ
σ
σ
τ
τ
τ

   
  
  
  

=  
  
  
  

   

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

xx

yy

zz

yz

xz

xy

ε
ε
ε
ε
ε
ε

 
 
 
 

⋅  
 
 
 

    

                         (13.3.14) 

The relationship between the non-tensorial Voigt notation c   and six-dimensional  second rank 
tensor components ĉ  is easily constructed from equation (13.3.13) ; a table of this relationship is 
given in Mehrabadi and Cowin [27] . The symmetric matrix ĉ  can be shown Mehrabadi and Cowin 
[27] to represent the components of a second rank tensor in a six-dimensional space, whereas  the 
components  of the matrix c   appearing in equation (13.3.10)  do not form a tensor.  It is easy to 
prove that if the material has rhombic syngony in the helicoidal system, then in the cylindrical 
coordinate system, the material has a monoclinic anisotropy. The monoclinic  crystal system has  
exactly one pale of reflective symmetry (Cowin and Mehrabadi, 1987; Gurtin, 1972; Hearmon, 
1961; Lekhnitskii, 1963; Fedorov,1968). A material is said to have a plane of reflective symmetry 
with respect to a plane passing through the point. In particular, we show that in the cylindrical 
coordinate the plane of elastic symmetry is zθ − . Remember that  vector p  is equal to {1,0,0} , 

then, six-dimensional shew-symmetric tensor P̂  , becomes: 
0 0 0 0 0 0

0 0 0 2 0 0

0 0 0 2 0 0ˆ
0 2 2 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 
 

− 
 
 =
 −
 
 
 − 

P                               (13.3.15) 

The six-dimensional orthogonal tensor Q̂  is equal to: 

( )
( )

( ) ( )

2 2

2 2

1 0 0 0 0 0

0 cos sin sin 2 2 0 0

0 sin cos sin 2 2 0 0ˆ
0 sin 2 2 sin 2 2 cos 2 0 0

0 0 0 0 cos sin

0 0 0 0 sin cos

ψ ψ ψ
ψ ψ ψ

ψ ψ ψ
ψ ψ
ψ ψ

 
 

− 
 
 =
 −
 
 
 − 

Q             (13.3.16) 

In the helicoidal coordinate system the elastic constant matrix is: 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

hel hel hel

hel hel hel

hel hel hel
hel

hel

hel

hel

c c c

c c c

c c c

c

c

c

 
 
 
 

=  
 
 
 
  

c                              (13.3.17) 

where, the vector stress is obtained multiplying the matrix helc  by the strain vector, in Voigt 
notation. and the moduli of elasticity hel

ijc  are linked with elastic moduli , , ,rr tt ccE E E  

, , ,rt tc rcν ν ν , ,rt tc rcG G G . By invoking the equation (13.3.7), the elastic constant matrix in the 

cylindrical coordinate system becomes: 
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11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

2 0 0

2 0 0

2 0 0

2 0 0

0 0 0 0 2

0 0 0 0 2

cyl cyl cyl cyl

cyl cyl cyl cyl

cyl cyl cyl cyl
cyl

cyl cyl cyl cyl

cyl cyl

cyl cyl

c c c c

c c c c

c c c c

c c c c

c c

c c

 
 
 
 

=  
 
 
 
  

c                            (13.3.18) 

where the constant cyl
ijc  are linked with constant hel

ijc  and  angle θ  of the helix. 
2 2 2 2

11 11 12 12 13 13 13 12, cos sin , cos sin ,cyl hel cyl hel hel cyl hel helc c c c c c c cψ ψ ψ ψ= = + = +

( )4 2 2 4
22 22 23 44 33cos 2 2 cos sin sincyl hel hel hel helc c c c cψ ψ ψ ψ= + + +  

( )2 2
23 23 22 23 33 44

1
cos 2 2 4 sin 2

4
cyl hel hel hel hel helc c c c c cψ ψ= + + + −  

                             ( )24 22 33 22 23 33 44

1
2 4 cos 2 sin 2

4
cyl hel hel hel hel hel helc c c c c c c ψ ψ = − + − + −                       (13.3.19) 

( )4 2 2 4
33 33 23 44 22cos 2 2 cos sin sincyl hel hel hel helc c c c cψ ψ ψ ψ= + + +  

( )34 22 33 44 33 23 22

1
4 2 cos 2 sin 2

4
cyl hel hel hel hel hel helc c c c c c c ψ ψ = − + − + −   

( ) ( )( )2 2
44 44 22 23 33 14 12 13

1
cos 2 2 sin 2 , 1 2 sin 2 ,

4
cyl hel hel hel hel cyl hel helc c c c c c c cψ ψ ψ= + − + = −  

( )( )2 2 2 2
55 55 66 56 66 55 66 55 66cos sin , 1 2 sin 2 , sin coscyl cyl cyl cyl cyl cyl cyl cyl cylc c c c c c c c cψ ψ ψ ψ ψ= + = − = +  

( )
( )

( )
( )

( )
( )

2 2 2 2

55 56 66

cos sin cos sin1 sin 2
, , ,

2 1 4 1 2 1
cyl cyl cyl

E EE
c c c

ψ α ψ α ψ ψα ψ
ν ν ν

+ +−
= = =

+ + +
 

 

ψ

z

y

O

> 0

x

ψ

er

e
ze

θe

t

ce

ψ

ez
eθ
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Fig. 13.1  - Helicoidal coordinate system ( , , )r t c  characterized by unit vectors ( , , )r t ce e e and  

cylindrical system ( , , )r zθ characterized by unit vectors ( , , )r zθe e e . 
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13.4. General theory of the linear elastostatic problems in cylindrical coordinate system 
With reference to the cylindrical coordinate system { , , }r zθ , the equilibrium equations, in the 
absence of body forces, are: 

( )1 1
, , ,

1 1
, , ,

1 1
, , ,

0

2 0

0

rr r r rz z rr

r r z z r

rz r z zz z rz

r r

r r

r r

θ θ θθ

θ θθ θ θ θ

θ θ

σ τ τ σ σ

τ σ τ τ

τ τ σ τ

− −

− −

− −

 + + + − =
 + + + =
 + + + =

                           (13.4.1) 

In the framework of the analysis of multilayered cylinder, due to the cylindrical geometry of the 
phases, it results extremely useful to adopt the formalism introduced by Ting [19], which yields to 
rewrite the equilibrium equations (13.4.1) in vector form, introducing the “emerging” stresses (e.g. 
tractions on the boundary surface of a single phase) as follows: 

( ) ( ) ,, ,
0r z zr

r rθ θθ+ + + =t t t K t                                   (13.4.2) 

where 

, , ,
rr r zr

r r z z

rz z zz

θ

θ θ θθ θ

θ

σ τ τ
τ σ τ
τ τ σ

     
     = = =     
          

t t t                                (13.4.3) 

represent the traction vectors on the surfaces  .r const= ,  .constθ = , and .z const= , respectively, 
and  K  is  a 3x3  constant matrix given by  

0 1 0

1 0 0

0 0 0

− 
 =  
  

K     .                                                    (13.4.4) 

The relations between the strain ijε  and displacement iu  are: 

( )
( )

1 1
, , , ,

1
, , , , ,

, , ( )

, , ,

rr r r r r r r

zz z z rz z r r z z z z

u r u u r u r u u

u u u r u r u

θθ θ θ θ θ θ θ

θ θ θ

ε ε γ

ε γ γ

− −

−

= = + = + −

= = + = +
                 (13.4.5) 

Under the assumption of cylindrical anisotropy, by identifying ( ) ( ), , , ,x y z r zθ≡  the stress-strain 

law becomes: 

ij ijhk hkCσ ε=                 .                                   (13.4.6) 

Hence 

( ) 1 1 11 1 22 1 33 1 23 1 13 1 12r rj jhk hk j rr j j zz j z j rz j rj
C C C C C C Cθθ θ θσ ε ε ε ε γ γ γ= = = + + + + +t       (13.4.7) 

Similar equations hold for ( )
jθt  and for ( )z j

t . Making use of  (13.4.5) it can be shown that: 

( )
( )
( )

1

1

1

, , ,

, , ,

, , ,

r rr r r rz z

T
r r z z

T T
z rz r z zz z

r

r

r

θ θ

θ θ θθ θ θ

θ θ

−

−

−

= + + +

= + + +

= + + +

t Q u Q u K u Q u

t Q u Q u K u Q u

t Q u Q u K u Q u

                         (13.4.8) 

where superscript “T” means “transposition”, and 

     [ ]TT
r zu u uθ=u                                                          (13.4.9) 

while  , , , , ,rr r rz z zzθ θθ θQ Q Q Q Q Q  are 3x3 matrices, explicitly reported below: 

                 
11 16 15 16 12 14 15 14 13

16 66 56 66 26 46 56 46 36

15 56 55 56 25 45 55 45 35

, , ,rr r rz

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c
θ

     
     = = =     
          

Q Q Q  
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66 26 46 56 46 36 55 45 35

26 22 24 25 24 23 45 44 34

46 24 44 45 44 34 35 34 33

, ,z zz

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c
θθ θ

     
     = = =     
          

Q Q Q .              (13.4.10) 

Substitution of (13.4.8) in (13.4.2) leads to a differential equation for u . It should be pointed out 
that  the elastic constants ijhkC  are here referred to the cylindrical coordinate system. Therefore the 

matrices , { , , }hk h k r zθ∈Q  are not constant matrices even for homogeneous materials, that is – 

for example – in a Cartesian reference system. In particular, for a cylindrically anisotropic material 
, the matrices , { , , }hk h k r zθ∈Q  are constant. By inserting (13.4.8) into (13.4.2) a single equation 

for the displacement u  is obtained as follows: 

( ) ( )
( ) ( ) ( )

( )

2
, , , , ,

, , ,1

,

0

T
rr rr zz zz rz rz rz

T T T
r r r z z z r r rr r

T
z z rz z

r

r

θθ θθ θθ θθ θθ θ

θ θ θ θ θ θ θ θ

θ θ

−

−

 + + + + + + + 

 + + + + + +
 + =
 + + 

Q u Q u Q Q u Q u K Q K u Q K + K Q u

Q Q u Q Q u Q K + K Q Q u

K Q + Q K Q u

  (13.4.11) 

In the case that the material possesses cylindrically monoclinic, and the plane of elastic symmetry is 

( )zθ − , the linearly elastic constitutive relation of  the ith phase, in the Voigt notation, is:  
( )i

k kj jCσ ε=                                              (13.4.12) 

where stress and strain vectors and the Elasticity matrix are respectively:  

            [ ] , ,

rr rr

zz zz
k j

r r

z z

rz rz

θθ θθ

θ θ

θ θ

σ ε
σ ε
σ ε

σ ε
τ γ
τ γ
τ γ

   
   
   
   

 = =    
   
   
   
      

( ) ( ) ( ) ( )
11 12 13 14
( ) ( ) ( ) ( )
12 22 23 24
( ) ( ) ( ) ( )

( ) 13 23 33 34
( ) ( ) ( ) ( )
14 24 34 44

( ) ( )
55 56
( ) ( )
56 66

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

i i i i

i i i i

i i i i
i

i i i i

i i

i i

c c c c

c c c c

c c c c

c c c c

c c

c c

 
 
 
 

=  
 
 
 
  

C        (13.4.13) 

and the superscript ( )i  denotes the elastic moduli of the generic i-th phase of multilayered cylinder. 
As a consequence, the matrices (13.4.10) become: 

                          
11 12 14 14 13

66 56 66 56

56 55 56 55

0 0 0 0

0 , 0 0 , 0 0 ,

0 0 0 0 0
rr r rz

c c c c c

c c c c

c c c c
ϑ

     
     = = =     
          

Q Q Q  

66 56 55

22 24 24 23 44 34

24 44 44 34 34 33

0 0 0 0 0 0

0 , 0 , 0

0 0 0
z zz

c c c

c c c c c c

c c c c c c
ϑϑ ϑ

     
     = = =     
          

Q Q Q        (13.4.14) 

Let us now consider the case of axis-symmetry in which the displacement field is therefore 
independent from the variable θ . The equilibrium equation (13.4.11) becomes: 

( )
( ) ( )

2
, , ,

1
, , 0

T
rr rr zz zz rz rz rz

T T
r r rr r z z rz z

r

r

θθ

θ θ θ θ

−

−

+ + + + +

 + + + + = 

Q u Q u Q Q u K Q K u

Q K + K Q Q u K Q +Q K Q u
            (13.4.14) 

In compact form, the equilibrium equation becomes: 
1 2

1 , 2 , , 4 , 5 , 6 0rr zz z rz r zr r− − + + + + + = A u A u A u A u A u A u                  (13.4.15) 

where 

1 2 3 4

5 6

, , , ,

, ,

T T
rr zz rz rz r r rr

T
z z rz

θ θ

θ θ θθ

= = = + = + +

= + + =

A Q A Q A Q Q A Q K K Q Q

A K Q Q K Q A KQ K
     (13.4.16) 
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13.5. Exact solution for jacket phases 
The displacement solution for i-th generic phase is: 

( ) ( ) ( ) ( ) ( ) ( )( , ), ( , ), ( , )i i i i i i
r r z zu u r z u u r z u u r zθ θ= = =                       (13.5.1) 

Applying the elastic constitutive , the stress  component becomes: 
( ) ( ) ( ) ( ) ( )

11 12 13 14
( ) ( ) ( ) ( ) ( )

12 22 23 24
( ) ( ) ( ) ( ) ( )

13 23 33 34
( ) ( ) ( ) ( ) ( )

14 24 34 44
( ) ( ) ( )

55 56
( ) ( ) ( )

56 66

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

j j j j j
rr

j j j j j

j j j j j
zz
j j j j j
z
j j j

rz

j j j
r

c c c c

c c c c

c c c c

c c c c

c c

c c

θθ

θ

θ

σ
σ
σ
τ
τ
τ

  
  
  
  

=  
  
 
 
   

( )
,

( )

( )
,

( )
,

( ) ( )
, ,

( ) ( )
,

j
r r
j

r
j

z z
j
z

j j
r z z r
j j
r

u

u r

u

u

u u

u u r

θ

θ θ

 
 
 
 
 
 
   +
  

−    

                (13.5.2) 

The stress component are independent of the z variable, then we can obtained the follow differential 
equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )
, , , , , , , ,0, 0, 0, 0, 0, 0,j j j j j j j j

r rz r z z zz zz r zz z rz rz zu u u u u u u r uθ θ θ
−= = = = + = + =         (13.5.3) 

By solving the equations (13.5.3), we can write: 

( )
( )
( )

( ) ( )
1

( ) ( ) ( )
2

( ) ( ) ( )
3 0

,

,

,

i j
r

i j j

i j j
z

u p r

u p r r z

u p r z

θ φ

ε

=

= +

= +

                                   (13.5.4) 

Substituting the displacement field (13.5.4) into Navier-Cauchy equilibrium equations, we obtain 
the follows ordinary differential equations system in the unknown functions 

( ) ( ) ( )( ) ( ) ( )
1 2 3, ,j j jp r p r p r : 

( ) ( ) ( )
( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
11 1, 1, 22 1 13 23 0 14 24

( ) ( ) 2 ( ) ( ) 2 ( ) ( ) ( )
56 3, 3, 66 2, 2, 2

( ) ( ) ( ) ( ) ( )
55 3, 3, 56 2,

2 0

2 0

0

j j j j j j j j j j j
r rr

j j j j j j j
r rr rr r

j j j j j
r rr rr

c p r p c p c c r c c r

c r p r p c r p r p p

c p r p c r p

ε φ + − + − + − =

 + + + − =


+ + =

     (13.5.5) 

By to integrate the first equations of the (13.5.5) , we can obtained the function ( )( )
1

jp r  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
1 1 2 1 0 2

j j j jj j j j j j jp r C r r iC r r h r h rλ λ λ λ ε φ− −= + + − + +                  (13.13) 

where  
( ) ( )

( ) 23 13
1 ( ) ( )

11 22

,
j j

j
j j

c c
h

c c

−=
−

 
( ) ( )

( ) 24 14
2 ( ) ( )

11 22

2

4

j j
j

j j

c c
h

c c

−=
−

 
( )

( ) 22
( )
11

,
j

j
j

c

c
λ =  

By to integrate the second and third equations of the (13.5.5), we can obtained the functions 

( )( )
2

jp r  and ( )( )
3

jp r : 

                             ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )3 3 4 3
2 4 4 3 5 4, log

j j j j
j j j j j jh C h C

p r h C p r h C r
r r

= − = +                   (13.5.7) 

 where       ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )55 56 66
3 4 5( )2 ( ) ( ) ( )2 ( ) ( ) ( )2 ( ) ( )

56 55 66 56 55 66 56 55 66

, ,
2

j j j
j j j

j j j j j j j j j

c c c
h h h

c c c c c c c c c
= = =

− − −
 

Then, the displacement solution is: 

                    

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 2
1 2 1 0 2

( ) ( )
( ) ( ) ( ) ( ) 3 3

4 4

( ) ( )
( ) ( ) ( ) ( )4 3

0 5 4 log

j j j jj j j j j j j
r

j j
j j j j

j j
j j j j

z

u C r r iC r r h r h r

h C
u r z h C

r

h C
u z h C r

r

λ λ λ λ

θ

ε φ

φ

ε

− −


= + + − + +

 = + −



= + +


            (13.5.8) 
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The core phase is isotropic and vanishes the terms that diverge in r = 0, then the displacement 
solution and  for core phase is: 

( ) ( )
0

( ) ( )

( ) ( )
0

c c
r

c c

c c
z

u C r

u r z

u z

θ φ
ε

 =


=
 =

                                                   (13.5.9) 

By applying the constitutive law for isotropic material, the stress component for core phase  are: 

                                 
( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 12 0 12 0 11 12 0 12 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
12 0 11 0 11 12

,

2 ,

c c c c c c c c c c c c
rr

c c c c c c c c c
zz z

c c C c c c C c

c C c c c r

θθ

θ

σ ε σ ε

σ ε τ φ

= + + = + +

= + = −
          (13.5.10) 

From the constitutive law for cylindrically monoclinic material (13.5.2), the stress components 
assume the following explicit form: 

         

( )( ) ( )( )
( )( ) ( )( )
( )( )

1 1( ) 1 ( ) ( ) 1 ( ) ( ) ( )
11 12 13 14 15 16

( )

1 1( ) 1 ( ) ( ) 1 ( ) ( ) ( )
( ) 21 22 23 24 25 26

( ) 1( ) 1 ( )
31 32

( )

( )

( )

0 0

0 0

j j j j j j

j
rr

j j j j j j
j

j j j
zz
j
z
j

rz
j

r

k r k r i k r k r k k r

k r k r i k r k r k k r

k r k r i

λ λλ λ

λ λλ λ

θθ

λλ

θ

θ

σ
σ
σ
τ
τ
τ

− + − +− −

− + − +− −

− +−

+ +
 
  + +
 
  += 
 
 
 
  

( )( )
( )( ) ( )( )

( )
1
( )
2
( )1( ) 1 ( ) ( ) ( )
333 34 35 36
( )
41 1( ) 1 ( ) ( ) 1 ( ) ( ) ( )
( )41 42 43 44 45 46
0

1 ( )

2

0 0

0 0

0 0 0 0 0

0 0 0 0 0

j

j

jj j j j

j

j j j j j j
j

j

C

C

Ck r k r k k r
C

k r k r i k r k r k k r

r

r

λλ

λ λλ λ

ε
φ

− +−

− + − +− −

−

−

 
   
   
   
   +   
   + +   
   −    
 − 

    

(13.5.11) 
where 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 13 12 11 12 14 12 11

( ) ( ) ( ) ( ) ( ) ( )
23 11 12 13 12 22( ) ( )

15 25 ( ) ( )
11 22

, ,

,

j j j j j j j j j j

j j j j j j

j j
j j

k k c c k k c c

c c c c c c
k k

c c

λ λ= = + = − = −

+ − +
= =

−

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
24 11 12 14 12 22( ) ( )

26 16 ( ) ( )
11 22

2 2 2 2
2 ,

4

j j j j j j

j j
j j

c c c c c c
k k

c c

+ − +
= =

−
 

                                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
21 23 22 12 22 24 22 12, ,j j j j j j j j j jk k c c k k c cλ λ= = + = − = −                  (13.5.12) 

( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
31 33 23 13 32 34 23 13

( ) ( ) ( ) ( )( )2 ( )2
24 14 23 13( ) ( ) ( ) ( )13 23

35 33 36 34( ) ( ) ( ) ( )
11 22 11 22

, ,

2 2
, ,

4

j j j j j j j j j j

j j j jj j
j j j j

j j j j

k k c c k k c c

c c c cc c
k c k c

c c c c

λ λ= = + = − = −

− +−= − = +
− −

 

( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
41 43 24 14 42 44 24 14

( ) ( ) ( ) ( ) ( )2 ( )2
14 24 13 23( ) ( ) ( ) ( ) 24 14

45 34 46 44( ) ( ) ( ) ( )
11 22 11 22

, ,

4
, ,

4

j j j j j j j j j j

j j j j j j
j j j j

j j j j

k k c c k k c c

c c c c c c
k c k c

c c c c

λ λ= = + = − = −

+ − −= − = +
− −

         

For brevity, in matrix (13.5.11) the coefficient ( )jλ  is written with symbolλ . The results obtained 
until now satisfy the equilibrium and compatibility equations inside each generic i-th phase of a 
composite circular cylinder subjected to axis-symmetrical strains. Under both the hypothesis of 
linear elastic behaviour of the materials and the assumption of perfect contact at the cylindrical 
interfacial boundaries (no de-lamination or friction phenomena), we have now to establish the 
satisfaction of both the equilibrium and the compatibility equations at the boundary surfaces 
between two generic adjacent phases. To obtain this, we will make first reference to the generic 
case in which an assembled functionally graded circular cylinder is constituted by a central core and 
n  arbitrary cladding phases. The total unknown parameters to determine can be summarized as 
follows: 
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( ) ( ) ( )
0 0

( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 0

, ,

, , , , , {1,2,..... }

c c c

j j j j j j

C

C C C C j n

φ ε
φ ε ∈

                        (13.5.13) 

where those in (13.5.13)1 represent the unknown coefficient of the core, those in (13.5.13)2 
represent the unknown parameters for every circular hollow cylinder, while (13.5.13)3 are the two 
coefficients that represent unit angle warping and  the axial strain, respectively. Hence, the total 
number of unknowns will be (6 3)n+ , which equals the number of algebraic equations to solve. In 
particular, as we will show in the follows, the boundary equations at the interfaces is 6n , while 3  is 
the number of boundary conditions on the external cylindrical surface and on the end basis. In 
particular, we begin writing the 6n equilibrium and compatibility equations at the interfaces, that is: 

 

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( )

( ) ( )

( ) ( )
{0,1,.

( ) ( )

( ) ( )

( ) ( )

j j j j
r r

j j j j

j j j j
z z

j j j j
rr rr

j j j j
rz rz

j j j j
r r

u r R u r R

u r R u r R

u r R u r R
j

r R r R

r R r R

r R r R

θ θ

θ θ

σ σ
τ τ
τ τ

+

+

+

+

+

+

 = = =


= = =
 = = = ∀ ∈

= = =
 = = =

 = = =

.., 1}n−             (13.5.14) 

where ( )jR  is the outer radius of the j-th phase. By writing in explicit the equations (13.5.14)2-
(13.5.14)3-(13.5.14)5-(13.5.14)6, we obtained: 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 3 4, , 0, {0,1,..., 1},c j c j j jC C j nφ φ φ ε ε ε= = = = = = ∀ ∈ −       (13.5.15) 

Recalling the previously obtained results, the system (13.5.14) reduce to : 
( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )

( ) ( )
{0,1,..., 1}

( ) ( )

j j j j
rr rr

j j j j
rr rr

u r R u r R
j n

r R r Rσ σ

+

+

 = = = ∈ −
= = =

           (13.5.16) 

In explicit the system (13.5.16)  can be expressed as follows: 

( ) ( ) ( )( ) ( )
( )

( ) ( )

( ) ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( )
1 1 2 2 1 1 0

( ) ( 1) ( )2 ( ) (0)
2 2 0 0

0( ) ( ) ( 1) ( 1) ( ) 1 ( ) ( ) ( 1) ( 1) ( ) 1 ( ) ( 1)
1 11 1 11 1 12 1 12 15 15

0

1

j j j j j j j j j j j

j j j j
j

ji i i i i i i i i i i i

C C R R i C C R R h h R

h h R R C

E
C k C k R C k C k R k k

λ λ λ λ

λ λ

ε

φ δ

ν δ

+ − + − +

+

+ + − + + − − +

− + + − − + −

+ − + =

− + − + − +

( ) ( ) ( )

02

0 0( ) ( ) ( 1) ( 1) ( ) 1 ( ) ( ) ( 1) ( 1) ( ) 1 ( ) ( 1) ( )
2 13 2 13 2 14 2 14 16 16 2

2

0
1 2

ji i i i i i i i i i i i i E C
i C k C k R i C k C k R k k Rλ λ

ε
ν ν

δ
φ

ν ν
+ + − + + − − +





   +  − − 

 − + − + − + = − −

 

(13.5.17) 
The Cauchy equilibrium equations on the external cylindrical boundary surface, (i n= ), give: 

 ( ) ( )( ) 0n n
rr r Rσ = =                                           (13.5.18) 

The equations (13.5.17) in explicit becomes: 

                                   
( ) ( )( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) 1

1 11 12 2 13 14

( ) ( ) ( )
15 0 16 0

n n n n n n n n n n

n n n

C k R k R iC k R k R

k k R

λ λ λ λ

ε φ

− − − − − −+ + + +

+ + =
         (13.5.19) 

Finally, it remains to consider the  equilibrium equation in z-direction  and about z-direction on one 
of the basis. Therefore, without loss of generality, for 0z =  we can write 

                            

(0 ) ( )

( 1)

(0 ) ( )

( 1)

2 2(0) ( )

0 0 0
1

2 2(0) 2 ( ) 2

0 0 0
1

( 0) ( 0) ,

( 0) ( 0) ,

i

i

i

i

nR R i
zz zz zR

i

nR R i
z z zR

i

z rdrd z rdrd N

z r drd z r drd

π π

π π

θ θ

σ θ σ θ

τ θ τ θ

−

−

=

=

= + = =

= + = =

∑∫ ∫ ∫ ∫

∑∫ ∫ ∫ ∫ M

                 (13.5.20) 

where ,z zN M  are the total axial force and torque moment applied at 0z = , respectively. In order to 

solve the algebraic system constituted by (13.5.17), (13.5.19) and (13.5.20), it could be convenient 
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to re-arrange the whole (2 3) (2 3)n n+ × +  algebraic system following a matrix-based procedure. 
Indeed, we can collect the known terms in the loads vector L  

 { }0,0,...,0, ,T
z zN=L M                                         (13.5.21) 

where the only non zero terms is the last two ones, while the unknown parameters can be collected 
in the vector X  as follows 

 { }(0) (1) (1) (2) (2) ( ) ( ) ( ) ( )
0 1 2 1 2 1 2 1 2 0, , , , ,..., , ,..., , , ,T i i n nC C C C C C C C C ε φ=X           (13.5.22) 

so that the set of equations (5.15), (5.17) and (5.18) reads 
 ⋅ =X LP�                                                  (13.5.23) 

where,P  is a (2 3) (2 3)n n+ × +  square matrix containing the coefficients /h mP , which are functions 

of both the radii and the elastic moduli of the phases. The explicit expression of the coefficients 

/h mP  are reported in detail in the Appendix. Finally, being the system (13.5.23) of linear and 

algebraic type, provided that det 0≠P , it is possible to write the solution as follows 

 
2 3

1
/

1

1 1 1adj[ ] , ,
det det det

m n

m h m h
h

X P L
= +

−

=
= = = = ∑X L L Lɶ ɶP P P

P P P
           (13.5.24) 

where adj[ ]= ɶP P  is the adjoint matrix of P  and then the Cramer rule has been employed. The 
possibility to invert the matrix P  is ensured by invoking the uniqueness of the linear elastic 
solution, due to Kirchhoff’s theorem. This could appear not immediately evident if one directly tries 
to see the actual form of P . When the proposed strategy is applied to a three-phase composed 
cylinder, an analytical proof that the algebraic problem is well-posed is also given by utilizing the 
Mathematica code, where the command RowReduce is employed. This command performs a 
version of Gaussian elimination, adding multiples of rows together so as to produce zero elements 
when possible. The final matrix is in reduced row echelon form. If is a non-degenerate square 
matrix, as well as our case, RowReduce[ P ] gives the IdentityMatrix[Length[P ]]. In linear 
elastostatic problem with displacement boundary condition, the equations (13.5.20) on the basis of 
the solid, must be to substitute by analogous displacement condition at the base z L= : 

( )
0

( )
0

( )
{0,1,... }

( )

j
z

j

u z L W
j n

u z L rθ ϕ
 = = ∀ ∈

= =
                               (13.5.25) 

where L  is the total length of the cylinder, 0W  is a prescribed displacement value, 0ϕ is a 

prescribed angle of rotation. By solving the conditions (13.5.25), we obtain the uniform 
deformation in z - direction 0ε  and unit angle of rotation φ  as function of 0W  and 0ϕ : 

0 0 0 0

0 0

L W W L

L r r L

ε ε
φ ϕ φ ϕ

= ⇒ =
 = ⇒ =

                                      (13.5.26) 

Then, in the linear problem with displacement prescribed on basis of multilayered cylinder, the 
equations to solve are (13.5.17) and (13.5.20), where 0ε ,φ  are note. In explicit, the equations 

(13.5.17) in this case become: 

            
( ) ( ) ( )( )

( ) ( )

( ) ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) (0)
1 1 2 2 0 0

( 1) ( ) ( ) ( 1) ( ) ( )2
1 1 0 2 2 0

1

i i i i i i i i j
j

i i i i i i

C C R R i C C R R R C

h h W R h h R
L

λ λ λ λ δ

ϕ

+ − + −

+ +

− + + − − + =

 = − + − 

           (13.5.27)a         

( ) ( ) ( )
( )

( ) ( ) ( 1) ( 1) ( ) 1 ( ) ( ) ( 1) ( 1) ( ) 1 ( ) ( ) ( 1) ( 1) ( ) 1
1 11 1 11 1 12 1 12 2 13 2 13

0 0( ) ( ) ( 1) ( 1) ( ) 1
2 14 2 14 2

0( 1) ( ) (
16 16 02

1 2

1

1 2

i i i i i i i i i i i i i i i

ji i i i i

ji i

C k C k R C k C k R i C k C k R

E C
i C k C k R

E
k k R

L

λ λ λ

λ δ
ν ν

ν δ
ϕ

ν ν

+ + − + + − − + + −

+ + − −

+

− + − + − +

+ − + =
− −

 
= − + − − 

( )) ( 1) ( )
15 15 0

i i ik k W+ 
+ − 

 

 (13.5.27)b 

The equation (13.5.20) becomes 
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( ) ( )( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) ( )
1 11 12 2 13 14 15 0 16 0

1n n n n n n n n n n n n nC k R k R iC k R k R k W k R
L

λ λ λ λ ϕ− − − − − −  + + + = − +      (13.5.28) 

In order to solve the algebraic system constituted by (13.5.27)-( 13.5.28), it could be convenient to 
re-arrange the whole (2 1) (2 1)n n+ × +  algebraic system following a matrix-based procedure. 
Indeed, we can collect the known terms in the displacements vector D  

 

( )

( ) ( )
( )

( ) ( )
( )

(1) (0) (1) (0)2
1 2

1(1) (1) (0) 2
15 16

( 1) ( ) ( ) ( 1) ( ) ( )2
1 1 2 2

( 1) ( ) ( 1) ( 1) ( )
15 15 16 16

( ) ( 1) ( 1) ( ) ( 1) ( 1)2
1 1 2 2

( ) ( 1) ( ) ( 1) ( 1
15 15 16 16

2 1

1

j j j j j j

j j j j j

n n n n n n

n n n n n

h R h R

k k R E

h h R h h R

k k k k R
L

h h R h h R

k k k k R

ν ν ν
−

+ +

+ + +

− − − −

− − −

+ + −

− −

= − −

− −

− −

D

⋮ ⋮

⋮ ⋮

0

0

)

( ) ( ) ( )
15 16

n n n

W

k k R

ϕ

 
 
 
 
 
 
 

   ⋅   
  

 
 
 
 
 
 − − 

           (13.5.29) 

the unknown parameters can be collected in the vector Y  as follows 

 { }(0) (1) (1) (2) (2) ( ) ( ) ( ) ( )
0 1 2 1 2 1 2 1 2, , , , ,..., , ,..., ,T i i n nC C C C C C C C C=Y           (13.5.30) 

so that the set of equations (5.15), (5.17) and (5.18) reads 
 ⋅ =Y DQ                                                  (13.5.31) 

where,Q  is a (2 1) (2 1)n n+ × +  square matrix containing the coefficients /h mQ , which are functions 

of both the radii and the elastic moduli of the phases. Finally, being the system (5.31) of linear and 
algebraic type, provided that det 0≠Q , it is possible to write the solution as follows 

 
2 1

1
/

1

adj[ ] 1, ,
det det det

m n

m h m h
h

Y Q D
= +

−

=
= = = = ∑D D DY

ɶ
ɶQ

Q Q

Q Q Q
          (13.5.32) 

where adj[ ]= ɶQ Q  is the adjoint matrix of Q  and then the Cramer rule has been employed. 
 
 
13.6. Example application for solid with three phases 
 
Multilayered cylinder subjected by axial force  
We consider the case of multilayered cylinder constituted by a central core and two hollow cylinder 
phases (1) and (2).  The three phase have the same volume equal to π  and the solid is loaded by 
axial force zN  applied on basis, as showed in figure 13.2. Let us consider that the two hollow phase 

are transversally isotropic in the helicoidal coordinate system and the plane of the isotropy is “r-c”, 
but the central core is composed by isotropic material. Moreover, we consider that  the following 
relationship between the elastic constants: 

, ,rr cc ttE E E E Eα= = =     rt tc rcν ν ν ν= = = , 

( ) ( ),
2 1 2 1rt tc rc

E E
G G G

α
ν ν

= = =
+ +

,                                (13.6.1) 

Applying the relationship (13.6.1), we determine the elastic constants in helicoidal system as 
function of the Young’s moduli E , Poisson’s moduli and parameter α : 

       
( )

( ) ( )

2

11 33 2
,

1 1 2
hel hel

E
c c

ν α
ν α ν ν

−
= =

 + − + 
     ( )55 ,

2 1
hel E

c
ν

=
+

  
( )

( ) ( )13 2
,

1 1 2
hel E

c
ν ν α

ν α ν ν
+

= −
 + − + 
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           ( )12 23 2
,

1 2
hel hel E

c c
αν

α ν ν
= = −

− +
 

( )
( )

2

22 2

1
,

1 2
hel E

c
α ν

α ν ν
−

=
− +

  ( )44 66 ,
2 1

hel hel E
c c

α
ν

= =
+

                 (13.6.2) 

Substituting the equations (13.6.2) in to (13.3.19), we obtained the connection between the elastic 
constant of helicoidal system and these in the cylindrical system: 

( )
( ) ( )

2

11 2
,

1 1 2
cyl

E
c

ν α
ν α ν ν

−
=

 + − + 
   

( ) ( )
( ) ( )12 2

2 1 cos 2
,

2 1 1 2
cyl

E
c

ν ν α ν α ν ψ
ν α ν ν

+ + + −  = −
 + − + 

 

( ) ( )
( ) ( )

2 2

13 2

cos 1 sin
,

1 1 2
cyl

E
c

ν α ν ψ α ν ψ
ν α ν ν

 + + + = −
 + − + 

 
( )

( ) ( )
2 2

14 2

1 sin 2
,

2 1 1 2
cyl E

c
ν α ψ
ν α ν ν

−
= −

 + − + 
 

( ) ( )( ) ( )
( ) ( )

2 2 4 2 2 2 4

22 2

1 cos 2 1 sin 2 cos 2 sin
,

1 1 2
cyl

E
c

α ν ψ α ν α ν ψ ψ ν α ψ

ν α ν ν

 − + − + + − =
 + − + 

 

( ) ( ) ( )( ) ( ){ }
( ) ( )

2 2 2

23 2

1 2 1 1 6 sin 2 4 cos 2
,

4 1 1 2
cyl

E
c

α α α α ν ν α α ψ αν ν ψ

ν α ν ν

 − − + + + − − =
 + − + 

 

( ) ( ) ( )( )
( ) ( )

22 2 2

24 2

1 1 1 cos 2 sin 2
,

4 1 1 2
cyl

E
c

α ν α ν α ν ν ψ ψ

ν α ν ν

 − + − + − −
 =

 + − + 
 

( ) ( )( ) ( )
( ) ( )

2 4 2 2 2 2 4

33 2

cos 2 1 sin 2 cos 2 1 sin
,

1 1 2
cyl

E
c

ν α ψ α ν α ν ψ ψ α ν ψ

ν α ν ν

 − + − + + − =
 + − + 

 

( ) ( ) ( )( )
( ) ( )

22 2

34 2

1 1 1 cos 2 sin 2
,

4 1 1 2
cyl

E
c

α α α ν α ν ν ψ ψ

ν α ν ν

 − − + + − −
 = −

 + − + 
 

         
( ) ( ) ( ) ( ){ }

( ) ( )

2 2 2

44 2

2 1 1 cos 4 1 1 2 sin 2
,

4 1 1 2
cyl

E E
c

α ν α ν ψ α ν α α να ψ

ν α ν ν

   + − + + + + − +   =
 + − + 

      (13.6.3) 

We assume that in the phase (1) helix slope is equal to ψ , but in the phase (2) is ψ− . Then , we 
obtain the following relationship between elastic constants of the two hollow phases in cylindrical 
coordinate system: 

(1) (2) (1) (2) (1) (2)
11 11 12 12 13 13

(1) (2) (1) (2) (1) (2)
22 22 23 23 33 33

(1) (2) (1) (2) (1) (2)
44 44 55 55 66 66

(1) (2) (1) (2) (1) (2) (1) (2)
14 14 24 24 34 34 56 56

, , ,

, , ,

, , ,

, , , ,

c c c c c c

c c c c c c

c c c c c c

c c c c c c c c

= = =

= = =

= = =

= − = − = − = −

                   (13.6.4) 

Moreover, it is easy to obtain other relationship between the constants (1)
ijk  and (2)

ijk : 
(1) (2) (1) (2) (1) (2)

1 1 2 2, , ,h h h hλ λ= = =  
(1) (2) (1) (2)

6 6

(1) (2) (1) (2)
4 4 46 46

{1,...,5}, {1,2,3}

{1,...,5},

ij ij i i

j j

k k j and k k i

k k j and k k

= ∀ ∈ = − ∀ ∈

= − ∀ ∈ =
              (13.6.5) 

Recalling the equations (13.5.17)-( 13.5.19)-( 13.5.20), we obtain that the total number of 
unknowns will be 7, which equals the number of algebraic equations to solve. The unknowns 
parameter are ( ) (1) (1) (2) (2)

0 0 1 2 1 2, , , , , ,cC C C C Cφ ε  and coefficient of the matrix P  becomes: 
(0)

11 ,p R=   ( )(1) (1)(0) (0)2
12 1 2 ,p R Rλ λ−= − +   ( )(1) (1)(0) (0)

13 ,p i R Rλ λ−= − −    14 0,p =   15 0,p =  
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(1) (0)
16 1 ,p h R= − (1) (0)2

17 2 ,p h R= −  21 2
,

1 2

E
p

ν ν
=

− −
  ( ) ( )(1) (1)(0) 1 (1) (1) (0)2

22 12 11 ,p R k k R
λ λ− += − +  

( ) ( )(1) (1)(0) 1 (1) (1) (0)2
23 14 13 ,p i R k k R

λ λ− += − + 24 0,p = 25 0,p =      (1)
26 15 2

,
1 2

E
p k

ν
ν ν

= − +
− −

 (1) (0)
27 16 ,p k R= −  

31 0,p =    ( )(1) (1) (1) (1)/2 (0) (0)2
32 2 1 2 ,p R Rλ λ λ λ− −= +  ( )(1) (1) (1) (1)/2 (0) (0)2

33 2 1 2 ,p i R Rλ λ λ λ− −= − − +    

( )(1) (1) (1) (1)/2 (0) 2
34 2 1 2 ,p R Rλ λ λ λ− −= − +   ( )(1) (1) (1) (1)/2 (0) (0)2

35 2 1 2 ,p i R Rλ λ λ λ− −= − +   36 0,p =     

(1) (0)2
37 24 ,p h R=     41 0,p = ( ) ( ) ( )(1) (1) (1) (1)1 /2 (0) 1 (1) (1) (0)2

42 12 112 2 ,p R k k R
λ λ λ λ− + − += +  

( ) ( ) ( )(1) (1) (1) (1)1 /2 (0) 1 (1) (1) (0)2
43 14 132 2 ,p i R k k R

λ λ λ λ− + − += − + ( ) ( ) ( )(1) (1) (1) (1)1 /2 (0) 1 (1) (1) 2
44 12 112 2 ,p R k k R

λ λ λ λ− + − += − +   

( ) ( ) ( )(1) (1) (1) (1)1 /2 (0) 1 (1) (1) (0)2
45 14 132 2 ,p i R k k R

λ λ λ λ− + − += − +   46 0,p =    (1) (0)
47 162 2 ,p k R=   51 0,p =    

52 0,p =   53 0,p = ( ) ( ) ( )(1) (1) (1) (1)1 /2 1 (1) (1) (0)2
55 14 133 3 ,p i R k k R

λ λ λ λ− + − += +  

( ) ( ) ( )(1) (1) (1) (1)1 /2 1 (1) (1) (0)2
54 12 113 3 ,p R k k R

λ λ λ λ− + − += + (1)
56 15 ,p k=   (1) (0)

57 163 ,p k R= −
(0)2

61 2

2
,

1 2

E R
p

πν
ν ν

=
− −

 

( ) ( ) ( )( )
(1)(1) (1) (1) (1) (1)1 /21 /2 (0)1 /2 (1) (1) (0)2 /2 (1) (1)

31 32

62 (1)2

2 2 2 1 1 2 2 1
,

1

R k R k
p

λλ λ λ λ λπ λ λ

λ

+− −   − − − − +    =
−

 

( ) ( ) ( )( )
(1)(1) (1) (1) (1) (1)1 /21 /2 (0)1 /2 (1) (1) (0)2 /2 (1) (1)

33 34

63 (1)2

2 2 2 1 1 2 2 1
,

1

i R k R k
p

λλ λ λ λ λπ λ λ

λ

+− −   − − − − +    =
−

 

( ) ( ) ( ) ( )(1) (1) (1) (1)(1) (1)3 /2 1 /2 1 /2 1 /2(0)1 (1) (1) (0)2
32 31

64 (1)2

2 2 3 2 2 3
,

1

R k k R
p

λ λ λ λλ λπ

λ

− − + +−     − − −        =
−

 

( ) ( ) ( )
( )( )

(1) (1)(1) (1)

(1) (1) (1)

(1) (1)

1 /2 1 /2/2 (1) (1) (0)2
33

1 /2 /2 (0)1

/2 /2 (1) (1)
34

65 (1)2

6 2 3 1
2 3

3 2 2 3 1
,

1

k R
i R

k
p

λ λλ λ

λ λ λ

λ λ

λ
π

λ

λ

+ +

− − −

  − − +   
 
 − +
 =

−
( ) ( )(0)2 (1) 2

35

66 2

1 2 2 1
,

2 1

R E k
p

π ν ν ν
ν ν

 − + + − =
+ −

 ( ) (1) (0)3
67 36

2
4 2 3 3 1 ,

3
p k Rπ= − −  

71 0,p =  
( )( ) ( ) ( )(1) (1) (1) (1) (1) (1)1 /2 (0)2 /2 1 /2 (1) (1) (0)2 /2 (1) (1)

41 42

72 (1)2

2 2 2 1 2 2 2 2
,

4

R k R k
p

λ λ λ λ λ λπ λ λ

λ

− − + − − + − +
 =

−
 

( )( ) ( )( )(1) (1) (1) (1) (1) (1)1 /2 (0)2 /2 1 /2 (1) (1) (0)2 /2 (1) (1)
43 44

73 (1)2

2 2 2 1 2 2 2 2
,

1

i R k R k
p

λ λ λ λ λ λπ λ λ

λ

− − + − − + − +
 =

−
 

( )( )
( )( )

(1) (1) (1)
1

(1) (1) (1)

(1) (1)

(0)2/2 1 /2 1 /2 (1) (1) (1)
41

1 /2 /2 (0)2

/2 /2 (1) (1)
42

74 (1)2

6 2 3 2
2 3

32 2 3 2
,

4

k R
R

k
p

λλ λ λ

λ λ λ

λ λ

λ λ
π

λ

λ

+ +

− − −
 − − +
 
 + − +  =

−

( )( )

( )( )

(1) (1) (1) (1)

(1) (1) (1)

(1) (1)

/2 1 /2 1 2 (1) (0)2
1 43

1 /2 /2 (0)2

/2 /2 (1) (1)
44

75 (1)2

6 2 3 2
2 3

3 2 2 3 2
,

4

k R
i R

k
p

λ λ λ λ

λ λ λ

λ λ

λ
π

λ

λ

+ +

− − −
 − − +
 
 + ⋅ − ⋅ +  =

−
 



CHAPTER XIII-Multilayered cylinder constituted by cylindrical monoclinic phases: axial force and pure torsion 

F. Carannante 253 

( ) (1) (0)3
76 45

2
4 2 3 3 1 ,

3
p k Rπ= − −    

( )
(0)4 (1)

77 464 ,
2 1

E
p R kπ

ν
 

= +  + 
 

The loads vector L becomes:  { }0,0,...,0, ,0T
zN=L   

 
Multilayered cylinder subjected by couple torque 
Multilayered cylinder, described below, is loaded only by couple torque zM , as showed in figure 

13.13. The unknowns parameter are ( )
0 0, , ,cC φ ε  (1) (1)

1 2,C C  (2) (2)
1 2, ,C C and  coefficient of the matrix P  

are same to coefficient of the case 6.1, but  the loads vector L becomes: 
{ }0,0,...,0,0,T

z=L M  

Multilayered cylinder with angle of rotation prescribed 
Multilayered cylinder, described below, is loaded only by displacement condition on basis. In 
particular, we consider that the displacement in z direction 0W on base for z L=  is equal to zero, 

but the angle of rotation 0ϕ  is equal to 0.1 rad. For this load condition the stress results are reported 

in figures 13.3, 13.4, 13.5, 13.6. The axial force and couple torque resultants are function of slope 
of helicoidal fibres, as showed in figure 13.11(A) 
 
Multilayered cylinder with displacement in z direction prescribed 
Multilayered cylinder, described below, is loaded only by displacement condition on basis. In 
particular, we consider that the displacement in z direction 0W on base for z L=  is equal to 0.1 mm 

, but the angle of rotation 0ϕ  is equal to zero. For this load condition the stress results are reported 

in figures 13.7, 13.8, 13.9, 13.10. The axial force and couple torque resultants are function of slope 
of helicoidal fibres, as showed in figure 13.11(B) 
 
13.7. Strategies for obtaining overall elasticity tensors: Voigt and Reuss estimating 
In this section, we consider an volume V  bounded by V∂  , which constituted by n elastic 
cylindrical  hollow phases with volume ( )iV  and a elastic cylindrical central core (0)V . Any hollow  
phase having elasticity tensors ( )iC ( )1,2,...,i n=  and central core having elasticity tensor (0)C . It is 

assumed that any phase is perfectly bonded to contact phase. All the phases of the cylindrical  solid 
are assumed to be linearly elastic. Hence, the overall response of the solid is linearly elastic, too. 
Each phase is assumed to be homogeneous, and the central core is isotropic, but hollow phases are 
monoclinic anisotropy . In general, the overall response of the solid may be anisotropic. This 
depends on the geometry and arrangement of the phases. The overall elasticity tensors of the 
cylindrical solid, denoted by C . The goal is to calculate the overall elasticity tensor C of the 
cylindrical solid.  In order to do it, obtain the average value of the strain field over each phase as: 

( ) ( )
( )

( ) ( ) ( )
( )

1

i

i i i
i

V

dV
V

= = ∫E E x E x                             (13.7.1) 

and the average value of the stress field over phase  is: 

( ) ( )
( )

( ) ( ) ( )
( )

1

i

i i i
i

V

dV
V

= = ∫T T x T x                            (13.7.2) 

For  i-generic cylindrical hollow phase, we can write: 
                                                                        ( ) ( ) ( ):i i i=T C E                                                    (13.7.3) 
but for cylindrical central core the relationship (7.3) becomes: 

(0) (0) (0):=T C E                                                  (13.7.4) 
Since: 

(0) ( ) (0) (0) ( ) ( )
0 0

1 1

:
n n

i i i
i i

i i

f f f f
= =

= = + = +∑ ∑T C E T T C E C E                   (13.7.5) 
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where  
( )

( )
i

i V
f

V
=  is the volume fraction of the i th−  cylindrical hollow phase, 

(0)
(0) V

f
V

=  is the 

volume fraction of the cylindrical central core; ,T E  are the average stress and strain tensor of the 
cylindrical solid, respectively. In the case of the macrostrain prescribed, we assume that 

(0) ( )i= =E E E , then we obtain: 

(0) ( )
0

1

n
i

i
i

f f
=

= +∑C C C                                            (13.7.6) 

In the cases considered (13.6.1) and (13.6.2), if we assume that the cylindrical hollow phases (1) 
and (2) have same volume, then the overall elasticity tensor C  is not depended by sign of the helix 
angle θ . However, the elastic response of the cylindrical solid multiphase is dependent by sign of 
the helix angle ψ . If  in the case (13.6.2) the torque couple is positive , and 0ψ >  in the phase (1), 

then 0 0zzε ε= < , but if 0ψ <  in the phase (1), then 0 0zzε ε= > . 

 
13.8. Conclusions 
In this chapter is analysed the mechanical behaviour of multilayered cylinder constituted by three 
phase composed by helicoidal fibres, under axial forces and torsion. The phase (0) is assumed 
isotropic, but the phase (1) is constituted by fibres with slope (1)ψ ψ=  and the phase (2) is 

constituted by fibres with slope (2)ψ ψ= − . In this model the orientation of the helicoidal fibre 

influence the global mechanical behaviour. In particular, if the axial force zN  applied on the basis is 

of traction and 0ψ >   (where (1) (2)ψ ψ ψ> − = ), then we obtained that the axial deformation is more 

than zero (elongation : 0 0zzε ε= > ), the unitary twisted angle is more than zero (anticlockwise : 

0φ > ), as showed in figure 13.12 . The integration constants assumed the follows sign: (0)
0 0,C <   

(1) (2)
1 10, 0,C C< <   (1) (2)

2 2C i a C ib= =  where 0, 0a b> > .  Conversely, if  the axial force zN  

applied on the basis is of traction and  0ψ <  (where (1) (2)ψ ψ ψ> − = ),  we obtained that the axial 

strain  is more less zero (elongation: 0 0zzε ε= > ), but  the unitary twisted angle is more less zero 

(clockwise : 0φ < ), as showed in figure 13.12. The integration constants assumed the follows sign: 
(0)
0 0,C <   (1) (2)

1 10, 0,C C< <  (1) (2)
2 2C i a C ib= =  , where 0, 0.a b> >  If   twist couple  tM  

applied on basis is anticlockwise  and  0ψ >   (where (1) (2)ψ ψ ψ> − = ), then we obtained that  the 
unitary twisted angle is more less zero (anticlockwise : 0φ > ), but axial strain is more then zero 

(elongation : 0 0zzε ε= > ), as showed in figure 13.13. The integration constants assumed the 

follows sign: (0)
0 0,C <  (1) (2)

1 10, 0,C C< <   (1) (2)
2 2C i a C ib= =  , where 0, 0.a b> <  Conversely, 

if  twist couple zM  applied on basis is anticlockwise  and 0,ψ <  (where (1) (2)ψ ψ ψ> − = ), then we 

obtained that  the unitary twisted angle is more less zero (anticlockwise : 0φ > ), but axial strain is 

more less zero (contraction : 0 0zzε ε= < ), as showed in figure 13.13. The integration constants 

assumed the follows sign: (0)
0 0,C >  (1) (2)

1 10, 0,C C> >   (1) (2)
2 2C i a C ib= =  where 0, 0,a b< >  
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Fig. 13.2 -  Multilayered cylinder composed by three phases constituted by helicoidal fibres 
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Fig. 13.3 - The stress component rrσ  as function of the radius and slope of the fibres. 

( 0 00 , 0.1w mm radϕ= = ) 
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Fig. 13.4  - The stress component  θθσ  as function of the radius and slope of the fibres 

( 0 00 , 0.1w mm radϕ= = ) 
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Fig. 13.5 - The stress component  zzσ  as function of the radius and slope of the fibres 

( 0 00 , 0.1w mm radϕ= = ) 
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Fig. 13.6 - The stress component  zθτ  as function of the radius and slope of the fibres 

( 0 00 , 0.1w mm radϕ= = ) 
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Fig. 13.7  - The stress component  rrσ  as function of the radius and slope of the fibres 

( 0 00.1 , 0w mm radϕ= = ) 
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Fig. 13.8  - The stress component  θθσ  as function of the radius and slope of the fibres 

( 0 00.1 , 0w mm radϕ= = ) 
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Fig. 13.9 -  The stress component  zzσ  as function of the radius and slope of the fibres 

( 0 00.1 , 0w mm radϕ= = ) 
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Fig. 13.10  - The stress component  zθτ  as function of the radius and slope of the fibres 

( 0 00.1 , 0w mm radϕ= = ) 
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Fig. 13.11  - The axial force and couple torque reaction on basis of the solid for displacement 
imposed.  We reported the diagram of the zM  and zN   as function of slope of the fibres 
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Fig. 13.12 - The mechanical behaviour of multilayer cylinder subjected to axial tensile force 
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Fig. 13.13 - The mechanical behaviour of multilayered cylinder subjected to couple torque 
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CHAPTER XIV 
THERMAL STRESS IN HOLLOW CYLINDERS 

 
14.0. Introduction 
In the preceding chapter, the basic formulation of problems of thermo-elasticity were reviewed. 
Before proceeding to an examination of the practical solution of thermo-elastic problems, it is 
useful to take up here a number of special case. The solutions presented are rigorous from the 
standpoint of the formulations of the previous chapter (as opposed, for example, to those based on 
assumptions of the type under lying  strength of material analyses, considered in the next chapter); 
nevertheless, they are obtainable without difficulty by elementary methods. 
Although these methods are sometimes difficult to generalize to more complex situations, the 
results obtained are of interest in themselves since they represent cases of frequent practical 
occurrence and, at the same time, serve to illustrate in a general way the nature of thermal stresses.  
 
14.1. Uncoupled thermo-elastic problem in plane strain with radial temperature variation 
The calculations for the stresses and deformations in a solid or hollow circular cylindrical body of 
outer radius b and of height h are given in this section for the case in which the temperature 
distributions a function of the radial distance r only and the cylindrical surface is free of tractions. 
The problem is one of plane stress if the ratio h/b is very small compared to unity (that is, for a disc) 
and the end faces are free of tractions. On the other hand , if the ratio h/b is large compared to unity 
and if axial displacement are prevented, the problem is one of plane strain. It is to prove that the 
solutions for the two problems are mathematically analogous; therefore, only the solution for the 
plane-strain problem will be obtained here in detail. If the ratio h/b is of the same order of 
magnitude as unity, neither the plane stress nor the plane-strain components assumptions are useful 
and the complete three-dimensional theory must be employed. The solution for the hollow cylinder 
of inner radius a will be obtained first, and the solution for the solid disc then derived as a special 
case. Although we are considering the case of plane strain, it is convenient, in order to derive the 
basic equation of the problem, to write the equilibrium equations in terms of displacements in 
cylindrical coordinates. For the case of plane strain, the displacement components assume the form:  
 ( ) ( ), , , , , , 0r zu U r t u V r t uθθ θ= = =  (14.1) 

 The equilibrium equations in this case become: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1
2 3 2

2 3 21 1 1 1

rU rVV U T

r r r r r r r r r

rU rVV U T

r r r r r r r r r

µµ λ α λ µ
θ θ θ

µ λ λ µ
µ α

θ θ θ θ

    ∂ ∂∂ ∂ ∂ ∂ ∂+ + − − = +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    


   + ∂ ∂ +∂ ∂ ∂ ∂ ∂ + + − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (14.2) 

If the cylinder is subjected to radial temperature variation and zero external load (axial symmetry of 
loads applied), let us assume that displacement components reduce to sole ( , )ru U r t= . In this case 

the equilibrium equations reduce to one equation as reported below: 

 
( )1 3 2 1

2 1

rU T T

r r r r r

λ µ να α
λ µ ν

 ∂  ∂ + ∂ + ∂ = =     ∂ ∂ + ∂ − ∂   
 (14.3) 

The Fourier heat conduction for uncoupled thermo-elastic problem, becomes: 

 
2

2

1 1vcT T T T

r r k t tr

ρ
κ

∂ ∂ ∂ ∂+ = =
∂ ∂ ∂∂

 (14.4) 

where  
v

k

c
κ

ρ
=  is  thermal diffusivity in the case of uncoupled  thermo-elastic problem.  

The general solution of equation (14.3) is : 
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 ( ) ( )
( ) ( ) ( ) ( )2

1

1
, ,

1

r

r
a

f t
u U r t T t d f t r

r r

α ν
ξ ξ ξ

ν
+

= = + +
− ∫  (14.5) 

where in the integral the effective variable is radius, but ξ  is the mute variable and ( ) ( )1 2,f t f t  are 

two unknown functions of the time. By solving the Fourier’s equation (14.4) with one method 
reported in chapter 7, and substituting the function of temperature ( ),T r t  in equation (14.5), we 

obtain the explicit displacement solution. 
Since the boundary conditions stipulate zero tractions on the surface r = a  and  r = b, the function of 
the time ( ) ( )1 2,f t f t  are best obtained by first determining the stresses. By use of the strain-

displacement relations, the strain components are: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 2 2

2
1 2 2

1 1
, , ;

1 1

1
, ;

1

0;

r

rr
a
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zz z rz r

f t
f t T t d T r t

r r

f t
f t T t d

r r
θθ

θ θ

α ν νε ξ ξ ξ α
ν ν

α νε ξ ξ ξ
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ε ε ε ε

+ +   = − − +   − −   

+ = + +  − 

= = = =

∫

∫  (14.6) 

By applying the Hooke’s law, we obtain the stress components as follows: 

      

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2
12 2 2
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1
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1
1 2 , ;

1 2 11 2

1
1 2 , , ;
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ν α ασ τ τ
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    = − − + −    − −− −     

    = + − + + −    − −− −     

 = + − = − −− −  

∫

∫

0; 0;z rθτ= =

 (14.7) 

where RT  is the reference temperature. The boundary conditions of zero tractions on the cylindrical 

surfaces are then  
 0 andrr at r a r bσ = = =  (14.8) 

and thus the functions of the time ( ) ( )1 2,C t C t  may now be determined: 

 

( ) ( ) ( )

( ) ( )

1 2 2

2

2 2 2

1 1 2
1 ,

1

1
,

1

b

R
a

b

a

f t T T t d
b a

a
f t T t d

b a

ν να ν ξ ξ ξ
ν

να ξ ξ ξ
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  + −   = − −     − −    


 +  =    − −  

∫

∫

 (14.9) 

The final expression for the displacement solution is: 

 ( ) ( )
( ) ( ) ( )

2 2

2 2

1 21
, , 1

1

r b

r R
a a

a r
u T t d T t d rT

r b a
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∫ ∫  (14.10) 

Then, the expressions of the non zero strain components become: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
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2 2 2
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2 11
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∫ ∫

∫ ∫

 (14.11) 

Finally, the non zero stress components are given by: 
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 (14.12) 

In the particular instance of constant temperature 0T , the radial displacement is : 

 ( )( )01r Ru T T rα ν= + −  (14.13) 

The strain components become: 
 ( )( )01rr RT Tθθε ε α ν= = + −  (14.14) 

and the stress components are: 
 ( )00; ;rr zz RE T Tθθσ σ σ α= = = − −  (14.15) 

For the special case of a solid cylinder, the inner radius a may be set equal to zero and the results 
are as follows:  
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1 21 1
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r R

r
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 −+ = + − +  −   
∫ ∫  (14.16) 

The corresponding strain components become: 
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 (14.17) 

and, the stress components are: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2
0 0

2 2
0 0

2
0

1 1
, ,

1

1 1
, , ( , )

1

2
, ( , )

1

b r

rr

b r

b

zz R

E
T t d T t d

b r

E
T t d T t d T r t

b r

E
T t d T r t ET

b

θθ

ασ ξ ξ ξ ξ ξ ξ
ν

ασ ξ ξ ξ ξ ξ ξ
ν

α νσ ξ ξ ξ α
ν

 
= − −  

 
= + − −  

 
= − + −  

∫ ∫

∫ ∫

∫

 (14.18) 

These expressions become indeterminate for r = 0. However, if the temperature is finite there (as is 
the case, for example if concentrated heat sources are absent) then, by use of l’Hospital’s rule, the 
following limits are found: 
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2
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∫

 (14.19) 

In this case the centre displacement is zero, and the stresses there are given by: 

                                           ( ) ( ) ( ) ( ) ( )2
0

1 1
0 0 , 0

1 2
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rr
E

T t d T
b

θθ
ασ σ ξ ξ ξ

ν
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∫  (14.20) 
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14.2. Coupled thermo-elastic problem in plane strain with radial temperature variation  
Let us consider a hollow cylinder with inner radius “a” and outer radius “b”, subjected to radial 
temperature variation. In this case the displacement components and temperature are functions of 
radius and time as reported in previous section. Let us consider the hypotheses that the ratio h/b is 
large compared to unity and if axial displacement are prevented, the problem is one of plane strain. 
The equilibrium equation remaining the same in the case of uncoupled thermo-elastic problem, but 
change the Fourier’s equation as reported below: 

 

( )

( )2

2

1 3 2 1

2 1

1 3 2 1

r

rv
R

r u T T

r r r r r

r ucT T T
T

r r k t k t r rr

λ µ να α
λ µ ν

ρ λ µ α

  ∂  ∂ + ∂ + ∂ = =      ∂ ∂ + ∂ − ∂    


 ∂∂ ∂ ∂ + ∂  + = +    ∂ ∂ ∂ ∂∂    

 (14.21) 

where RT  is the reference temperature. By integrating the equilibrium equation (the first of eqs. 

(14.21)), respect to variable r , we obtain: 

 
( ) ( )1

1 3 2

2
rr u

T f t
r r

λ µ α
µ λ

∂  += + ∂ + 
 (14.22) 

where ( )1f t  is an function of sole variable time. By utilizing the equation (14.22), we can rewrite 

the Fourier’s equation in follows manner: 

 
( )

( ) ( )
2 22

1
2

3 21
3 2

2
Rv RTc T dfT T T

r r k k t k dtr

λ µ αρ α λ µ
λ µ

 +∂ ∂ ∂
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 (14.23) 

By deriving the equations (14.23) respect to variable r , the follows equation is obtained: 

 
( )

( )

2 23 2 2

3 2 2

3 21 1

2
Rv TcT T T T

r r k k r tr r r

λ µ αρ
λ µ

 +∂ ∂ ∂ ∂
 + − = +
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 (14.24) 

The general solution of  equilibrium equation is reported in eq. (14.5). By solving the Fourier’s 
equation (14.23) with one method reported in chapter VII (for example with method separation of 
variables), and substituting the function of temperature ( ),T r t  in equation (14.5), we obtain the 

explicit displacement solution. 
 
14.3. Uniform pressure with constant temperature (plain strain) 
Let us consider a hollow cylinder with inner radius “a” and outer radius “b” , subjected to uniform 
pressure for r = b equal to ep  and subjected to uniform pressure for r = a equal to ip . Moreover the 

profile of temperature is constant ( 0 RT T T= > ) along radius and in the time. In this case, let us 

consider the plane strain problem, then the only displacement component ru  is function of radius : 

 ( ) 0; 0; 0; ;r r zu u r u u T Tθ= = = =  (14.25) 

The results in this case are conveniently obtained from the displacement formulation in cylindrical 
coordinates. By omitting all displacement components and all derivatives in the θ  and z directions, 
The equilibrium equations are reduced simply to:  

 
( )1

0rr u

r r r

 ∂∂ = ∂ ∂ 
 (14.26) 

The general solution of  equation (14.26) is : 

 1
1 2ru C r r C−= +  (14.27) 

For the hollow sphere of inner radius a and outer radius b the constants 1C  and 2C  must  be 

determined from the condition that : 
 ( ) ( ),rr i rr er a p r b pσ σ= = = =  (14.28) 
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From the strain-displacement relation and Hooke’s law the non-zero stress components for this case 
are: 

                                           

( ) ( )( )

( ) ( )( )

( ) ( )

2
1 02

2
1 02

1 0

2
2 3 2 ;

2
2 3 2 ;
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= + + − − +

= − − +

  (14.29) 

where RT  is the reference temperature. By substituting the stress functions (14.29) in boundary 

conditions (14.28), we determine the constants integration 1C  and 2C : 
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2 22 2

1 0 22 2 2 2
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2
e ie i
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 (14.30) 

Finally, the displacement solution for a hollow sphere is : 
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The non-zero strain components are: 
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 (14.32) 

The non-zero stress components are:  
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 (14.33) 

If  the external pressure vanishing 0ep = , the internal pressure 0ip p= − , and thickness of hollow 

cylinder is very small ( 1
s b a

a a

−= << ), we obtain the well known Mariotte’s formula for cylinder 

tank subjected to internal uniform pressure: 

 0 ;
p a

θθσ
δ

≅  (14.34) 

where  s b a= −  is the thickness of the hollow cylinder .  
The radial stress vanishes in solid ( 0rrσ ≅ ), but the stress component zzσ  do not vanish because in 

plane-strain problem the displacement component zu  is equal to zero. Then, the expression of the 

stress component zzσ  is given by: 

 ( )( )0
1

3 2
2
o

zz R
p a

T T
s

σ λ α λ µ µ
µ λ

  ≅ − − +   +   
 (14.35) 

For example, let us consider a hollow cylinder characterized by following relations:  
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 ( ) 01 , , ,Rb s a s s a T T= + = =  (14.36) 

where s is the thickness of the hollow cylinder: b a s− =  and s  is the ratio between the thickness 
and the inner radius. Moreover, the cylinder is subjected to uniform pressure 0 0, 0ip p p= − > , for 

r = a  and  0ep =  for r = b.  Let us assume the following non-dimensional parameter for graphics of 

the displacement, strain and stress functions: 
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0 0 0

2 2 2
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; ; ;
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rr zz
rr zz

eq rr zz zz rr
eq eq
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θθ θθ

σσ σσ σ σ
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σ σ

− −= = = = =
−

− + − + −
= =

 (14.37) 

By applying the relations (14.37), we obtain that the non-dimensional stress components ,rr θθσ σ  

depend only two non-dimensional parameters s  and r , as reported below: 

 
( ) ( )

( )( )
( )

( )( )2 2

1 2 1 2 2 2
; ;

2 1 2 1
rr

r r s s s r s r

s s r s s s r
θθσ σ

   − + + + + + +   = = −
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 (14.38) 

The non-dimensional stress component zzσ  depends only two non-dimensional parameters ν  and 

s : 

 ( )
2

,
2zz s s

νσ = −
+

 (14.39) 

 
 

Fig. 14.1 - Non-dimensional radial stress distribution along radial direction 
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Fig. 14.2 - Non-dimensional circumferential stress distribution along radial direction 
 

 
 

Fig. 14.3 - Non-dimensional axial stress distribution versus Poisson’s  modulus 
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Fig. 14.4 -  Non-dimensional equivalent stress distribution along radial direction  
(with fixed Poisson’s modulus 0.3ν = ) 

 
 

Fig. 14.5 -  Non-dimensional equivalent stress distribution along radial direction 
 (with fixed ratio 0.1s = ) 
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14.4 Radial temperature variation and uniform pressure (plane-strain) 
Let us consider a hollow cylinder with inner radius “a” and outer radius “b” , subjected to uniform 
pressure for r = a equal to 0ip p= − . Moreover the hollow cylinder is subjected to radial 

temperature variation. In this case, the equilibrium equation is reported in equation  and Fourier’s 
equation is reported in equation (14.23) for coupled thermo-elastic problem (or equivalent equation 
(14.4)  for uncoupled thermo-elastic problem).  The general solution of the equilibrium equation in 
terms of radial displacement function is given by equation (14.5). In this case, the boundary 
conditions for the hollow cylinder of inner radius a and outer radius b are:  

 
( )
( )

0

0

rr

rr

r a p

r b

σ
σ
 = = −


= =
 (14.40) 

By solving the equations (14.40) we obtain the functions 1( )C t  and 2( )C t , we obtain: 

 
( )( )

( )
( ) ( ) ( )

( )

( )
( )

( ) ( )

2
0

1 2 2

22
0

2 2 2

3 2 3 21
( ) , ;

2 2 2

3 2
( ) , ;

2 2

b
R

a

b

a

Tp a
C t T t d

b a

p ba
C t T t d

b a

µ λ µ α λ µ
α ξ ξ ξ

λ µ λ µλ µ

α λ µ
ξ ξ ξ

µ λ µ

 + +
= + − + +− +   

 +
= + +−   

∫

∫

 (14.41)  

By substituting the function of the time 1( )C t  and 2( )C t  in equation (14.5), we determine the 

displacement solution: 

                       

( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )

2 2
0

2 2

2 2

2 2

3 2

2 2

3 2
, ,

2

R
r

b r

a a

T p a r b
u r

rb a

a r
T t d T t d

r b a

α λ µ
λ µ µ λ µ

µ λ µα λ µ ξ ξ ξ ξ ξ ξ
λ µ µ λ

 +
= − + + + + +−   

  + + +   + +  +  − +     

∫ ∫

 (14.42) 

 
14.5 Steady-state problem with radial temperature variation (plane strain) 
Let us consider  a hollow cylinder with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. In this section we study the steady-state problem, then the temperature 
displacement, strain and stress components are functions only variable r. Let us consider the case in 
which  the inner surface r = a is exposed, to an ambient at  temperature iT  and external surface r = b  

is exposed to a temperature eT . The differential equation related to heat conduction and the 

corresponding boundary conditions are reported below: 

 
( ) ( )2

2

1
0; ,

d T r d T r
a r b

r drdr
+ = < <  (14.43) 

 ( ) ,iT r a T= =  (14.44) 

 ( ) ,eT r b T= =  (14.45) 

By solving the differential equation (14.43), we obtain the function of temperature: 
 ( ) 1 2logT r A r A= +  (14.46) 

 where 1 2,A A  are constants integration to determine. By solving the boundary conditions (14.44)-

(14.45), we determine the constants integration as reported below: 

 ( ) ( )1 2log , log log logi e e i
a a

A T T A T a T b
b b

   = − = −   
   

 (14.47) 

By substituting the expressions of constants integration (14.47) in equation (14.46) , we obtain the 
function of the temperature: 
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 ( ) ( ) log log log logi e e i
a

T r T T r T a T b
b

 
 = − + −   

 
 (14.48) 

If the hollow cylinder is subjected to radial temperature variation and zero external load, let us 
assume that the displacement components reduce to sole ( )r ru u r= . In this case the equilibrium 

equations reduce to one ordinary differential equation as reported below: 

 
( )1 1

1
rd r ud d T

dr r r d r

να
ν

  + =   ∂ −  
 (14.49) 

The general solution of equation (14.49) is : 

 
( )
( ) ( ) 2

1

1
( )

1

r

r
a

C
u r T d C r

r r

α ν
ξ ξ ξ

ν
+

= + +
− ∫  (14.50) 

where 1 2,C C  are constants integration to determine. By substituting the function (14.48) in equation 

(14.50) , we determine the expression of the displacement solution are reported below: 

 2
1 3 logr

D
u D r D r r

r
= + +  (14.51) 

where 1 2 3, ,D D D  are following constants:  

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )( )
( ) ( )

1 1

2

2 2 3

1 2 log log
;

4 1 log

1 2 log 1
; ;

4 1 log 2 1 log

e i e i

e i i e i

T T T a T b
D C

a b

a T T T a b T T
D C D

a b a b

α ν
ν

α ν α ν
ν ν

 + − + − = +
−

 + − + + − = − = −
− −

 (14.52) 

By applying the strain-displacement relationship, we determine the non-zero strain components: 

 ( )2 2
1 3 1 32 2

1 log ; log ;rr
D D

D D r D D r
r r

θθε ε= − + + = + +  (14.53) 

By applying the stress-strain relationship, we obtain the non-zero stress components: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
1 3 1 22 2

2
1 3 1 22 2

1 3 1 22

1 2 1 log log
1 21 2

1 2 log log
1 21 2

2 1 2log log
1 21 2

rr R

R

zz R

DE E
D D r A r A T

r

DE E
D D r A r A T

r

E E
D D r A r A T

θθ

ασ ν ν
νν ν

ασ ν ν
νν ν

ν ασ
νν ν

  = − − + − + − + −    −− −   

  = + − + + − + −    −− −   

 
 = + − − + −    −− − 

 (14.54) 

The boundary conditions of zero tractions on the cylindrical surfaces are then  
 0 andrr at r a r bσ = = =  (14.55) 

By solving the equations (14.55), respect to integration constants 1 2,C C , we obtain the explicit 

expressions of the coefficient 1 2 3, ,D D D  as reported below: 

 

( )
( )

( ) ( )
( ) ( )

( ) ( )
( )( )

( ) ( )
( ) ( )

2 2

2 2

1 2 2

2 2

2 2

2 32 2

2 log log
2 log( / )

1
;

log 1 2 log 1 22log( / )

1

1 1
; ;

2 1 log2 1

e i

e i R

e i i e

e i e i

T b a T a b
T T T a b

b a
D

a a T T b b T Ta b

b a

a b T T T T
D D

a bb a

α ν
ν ν

ν

α ν α ν
νν

 +
 − + −
 + −

=  
   + − + + −    +

 − −
 

+ − + −
= = −

−− −

 (14.56) 
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If the thickness of hollow cylinder is very small ( 1
s b a

a a

−= << ), we obtain the well known  

approximate formula for cylindrical tank subjected to temperature gradient : 

 

( )( )

( ) ( )
( )

( )( )

( )
( )

( )( )
( )

1
;

2

1 (2 ) 1
; ; 0;

2 1 2

2
0; ; ;

2 1 2 1

e i
r

e i e i
rr zz

e ie i
rr zz

T T a
u

T T T T

E T TE T T

θθ

θθ

α ν

α ν ν α ν
ε ε ε

ν
α να

σ σ σ
ν ν

− +
≅

+ − − + −
≅ ≅ =

−

− −−
≅ ≅ ≅ −

− −

 (14.57) 

where  s b a= −  is the thickness of the hollow cylinder.  
For example, let us consider a hollow cylinder characterized by following relations:  
 ( )1 , , ,i Rb s a s s a T T= + = =  (14.58) 

where s is the thickness of the hollow cylinder: b a s− =  and s  is the ratio between the thickness 
and the inner radius. Moreover, the cylinder is subjected to temperature gradient e iT T T∆ = − .  Let 

us assume the following non-dimensional parameter for graphics of the displacement, strain and 
stress functions: 

 
( )

( ) ( ) ( )2 2 2

; ; ; ;
2 1

; ;
2

rr zz
rr zz

eq rr zz zz rr
eq eq

r a r a E T
r

b a s a
θθ

θθ

θθ θθ

σσ σ ασ σ σ β
β β β ν

σ σ σ σ σ σ σ
σ σ

β

− − ∆= = = = = =
− −

− + − + −
= =

 (14.59) 

By applying the relations (14.59) we obtain that the non-dimensional stress components 
, ,rr zzθθσ σ σ  depend only two non-dimensional parameters s  and r , as reported below: 

   
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( )( ) ( )

2 2 2

2

1 log 1 1 1 1 log 1 1 log 1

2 1 log 1 1
rr

s s rs s s r s r s

s s r s s
σ

   + + + + + + + + +   
= −

 + + + 

 (14.60) 

      
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

2 2

2

1 2 2 log 1 2 1 1 log 1

2 1 log 1 1

s r s r s s s s r s r s

s r s s
θθσ

δ

   + + + + + + + + +   = −
 + + + 

 (14.61) 

The non-dimensional stress component zzσ  depends only three non-dimensional parameters ,rν  

and s : 
 

                           
( ) ( ) ( ) ( )

( ) ( )

2
2 1 log 1 2 2log 1

2 log 1 1
zz

s s s s r s

s s

ν ν
σ

δ
 − + + + + + + =

 + + 
 (14.62) 

 
The distribution of the non-dimensional stress components along radial direction are reported 
below: 
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Fig. 14.6 - Non-dimensional radial stress distribution along radial direction 
  

 

 
 

Fig. 14.7 - Non-dimensional circumferential stress distribution along radial direction 
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Fig. 14.8 -  Non-dimensional axial stress distribution along radial direction 
(with fixed Poisson’s modulus 0.30ν = ) 

 

 
 

Fig. 14.9 -  Non-dimensional axial stress distribution along radial direction 
(with fixed ratio 0.10s = ) 
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Fig. 14.10 -  Non-dimensional equivalent stress distribution along radial direction 
(with fixed Poisson’s modulus 0.30ν = ) 

 

 
Fig. 14.11 - Non-dimensional equivalent stress distribution along radial direction 

(with fixed ratio 0.10s = ) 
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14.6 Hollow Cylinder with plane-harmonic temperature distribution (steady-state problem) 
The solution of the preceding section was obtained, by means of the displacement formulation, for 
the case of a temperature distribution varying with r only. We will now allow the temperature to 
vary with the angle θ  as well, but we will take it to be that corresponding to a steady state, that is: 

 ( )
2

2
2 2

1 1
, 0

T T
T r r

r r rr
θ

θ
∂ ∂ ∂ ∇ = + = ∂ ∂∂  

 (14.63) 

The solution will be obtained here by means of the stress formulation; for convenience of reference, 
the statement of that formulation will be repeated here in extended notation. It is then required to 
satisfy the following equations, which for a circular cylinder in a state of plane strain, with inner 
radius a and outer radius b and with free cylindrical surface: 
Differential equation: 

 4 2
1 1 0;E T a r bϕ α∇ + ∇ = < <  (14.64) 

 Boundary conditions: 

 0; r b
r

ϕϕ ∂= = =
∂

 (14.65) 

 
1 2 0

1 2

;

cos sin ;

a x a y b r a

a a r a
r

ϕ
ϕ θ θ

= + + = 

∂ = + = ∂ 

 (14.66) 

Michell conditions 

 

2 22 2

1 1
0 0

2 22 2

1 1
0 0

x T x T
y rd E y

r r r r
r a

y T y T
x rd E x

r r r r

π π

π π

ϕ ϕ θ α
θ θ

ϕ ϕ θ α
θ θ

 ∂∇ ∂∇ ∂ ∂ − = − −    ∂ ∂ ∂ ∂   =
 ∂∇ ∂∇ ∂ ∂ − = − −   ∂ ∂ ∂ ∂   

∫ ∫

∫ ∫

 (14.67) 

 
22 2

1 1
0 0

;
T

rd E rd r a
r r

π πϕ θ α θ∂∇ ∂= − =
∂ ∂∫ ∫  (14.68) 

where 
 cos ; sinx r y rθ θ= =  (14.69) 

and where the constants 1 2 0, ,a a b  are arbitrary as far the boundary value problem of equations. 

(14.64) to  (14.66) is concerned and are used to satisfy the Mitchell conditions. 
For a solid cylinder (a = 0) equations (14.66) - (14.68) do not apply, and are replaced by the 
condition that the solution must be finite at r = 0. It is easily verified that in this case for a harmonic 
temperature distribution the solution (which is unique) is  0ϕ = .  
For a hollow cylinder the results, as will be seen, are not quite as simple. It is convenient to express 
the temperature in the form  of a Fourier series, that is, 

 ( ) ( ) ( )
0 0

, ( ) cos ( )sinn n
n n

T r F r n G r nθ θ θ
∞ ∞

= =
= +∑ ∑  (14.70) 

where, if the temperature is to be plane harmonic, the coefficients  nF  and nG  must satisfy the 

relations 

 

2

2

2

2

1
0 0,1,2,......

1
0 1,2,3,......

n
n

n
n

d Fd n
r F n

r dr dr r

d Gd n
r G n

r dr dr r

  − = = 
 

  − = = 
 

 (14.71) 

For a temperature distribution in this form we take: 



Chapter XIV : Thermal stress in hollow cylinders 

F. Carannante 283 

 ( ) ( ) ( )
0 0

, ( )cos ( )sinn n
n n

r f r n g r nϕ θ θ θ
∞ ∞

= =
= +∑ ∑  (14.72) 

Substitution of eqs. (14.70)-(14.72)  into the basic equations (14.64)-(14.68) to be satisfied by the 
solution gives (where primes indicate differentiation with respect to r): 
Differential equation for nf : 

 
( )2 22 2

2 3 4

42 1 2 1 2
0 0,1,2,....IV III II I

n n n n n

n nn n
f f f f f n

r r r r

−+ ++ − + + = =  (14.73) 

Boundary conditions for nf : 

 
( )

( ) 0 0,1,2,.....n
n

df b
f b n

dr
= = =  (14.74) 

 
0 0 1 1

0 1
1

( ) ; ( ) ; ( ) 0 2

( ) ( )( )
0; ; 0 2

n

n

f a b f a a a f a for n

df a df adf a
a for n

dr dr dr

= = = ≥ 

= = = ≥ 

 (14.75) 

Mitchell conditions for nf  at r = a: 

 [ ]1 1
1 1 12

1 1 1
( )

f dfd d d
r E F r

r dr r dr dr r drr
α     − − + = − −     

     
 (14.76) 

 0 0
1 1

1 df dFd d
r E

dr r dr dr dr
α   = −  

  
 (14.77) 

and differential equation for ng : 

 
( )2 22 2

2 3 4

42 1 2 1 2
0 1,2,....IV III II I

n n n n n

n nn n
g g g g g n

r r r r

−+ ++ − + + = =  (14.78) 

Boundary conditions for ng : 

 
( )

( ) 0 1,2,.....n
n

dg b
g b n

dr
= = =  (14.79) 

 
1 2

1
2

( ) ; ( ) 0 2

( )( )
; 0 2

n

n

g a a a g a for n

dg adg a
a for n

dr dr

= = ≥ 

= = ≥ 

 (14.80) 

Mitchell conditions for ng  at r = a: 

 [ ]1 1
1 1 12

1 1 1
( )

g dgd d d
r E G r

r dr r dr dr r drr
α     − − + = − −     

     
 (14.81) 

In derivation of the Michell conditions in the form just given the required integrations with respect 
to θ  have been performed with the aid of the orthogonality relations    

 ( ) ( ) ( ) ( )
2 2

0 0

0
sin sin cos cos

0

n m
n m d n m d

n m

π π
θ θ θ θ θ θ

π
≠

= =  = ≠
∫ ∫  (14.82) 

The reader will therefore notice that Mitchell conditions arise only for the functions 0 1 1, ,f f g , 

whereas those for 2n ≥  are automatically satisfied. It is then immediately clear by inspection of the 
boundary-value problems for ,n nf g  that the solution is : 

 0; 0n nf g n= = ≥  (14.83) 

We have thus obtained the important result that only the terms of a plane-harmonic temperature 
distribution for which n = 0 and n = 1 contribute to the stress components in the plane. It will  be 

convenient to consider these contributions separately and to denote them by ( ) ( ), , 0,1n n
rr nθθσ σ = . Thus  

(0) (0),rr θθσ σ  correspond to a plane-harmonic temperature distribution of the form: 
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 ( )(0)
0, ( )T r F rθ =  (14.84) 

and (1) (1),rr θθσ σ  correspond to a plane-harmonic temperature distribution of the form: 

 ( )(1)
1 1, ( )cos ( )sinT r F r G rθ θ θ= +  (14.85) 

where of course the functions 0 1 1, ,F F G  must satisfy (14.71). The stress components in the plane 

corresponding to the general plane-harmonic temperature distribution of equation (14.70) are then 
simply the sum of those caused by these two contributions. The axial stress component, zzσ , 

however, for the case of plane strain under consideration here, will depend upon the entire 
temperature distribution. 

We first determine (0) (0),rr θθσ σ . These can, of course, be found as a special case of the solution of 

section 14.1 , but it will be instructive to proceed with the present formulation and to compare the 
two derivations . With n = 0 the solution of (14.73) is: 

 ( )
2 2

0 1 2 3 4log log
r r r r

f r C C C C
a a a a

       = + + +       
       

 (14.86) 

The five constants 1 2 3 4 0, , , ,C C C C b  must now determined from eqs. (14.74),(14.75)-(14.77). The 

form of  ( )(0) ,T r θ  is from (14.71): 

 ( )(0)
0 0 1, ( ) log

r
T r F r T T

a
θ  = = + 

 
 (14.87) 

where 0 1,T T  are constant; thus expressions (14.10) for the stresses must reduce, for this special 

temperature, to those corresponding to the stress function 0f  of equation (14.86) and given by the 

formulas: 

 

0 32 4
2 2 2

2
0 32 4

2 2 2 2

21
1 2log

2
3 2log

0

rr

r

df CC C r

r dr ar a a

d f CC C r

adr r a a
θθ

θ

σ

σ

τ

 = = + + + 
 

 = = − + + + 
 

=

 (14.88) 

The constant temperature 1T  causes no stresses and we can omit if from the calculations. The 

constants appearing in equations. (14.88) are: 

 

( )

( )

2 2
1 1 0

2 2 2

2
2 21 1 0

3 2 2

2
1 1 0

4

log ;
2

1 2log ;
8

4

E T b a r
C

ab a

E T a r
C b a

ab a

E T a
C

α

α

α

=
−

  = + −  
 −  

= −

 (14.89) 

where the relation: 

 ( )' 0
0

T
F a

a
 =  
 

 (14.90) 

Has been used. With these constants we find 
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2 2 2
1 1 0

2 2

2 2 2
1 1 0

2 2

log log
2

log log 1
2

rr
E T b r a b r

r a ab a

E T b r a b r

r a ab a
θθ

ασ

ασ

  − = −    −    

  + = − −    −    

 (14.91) 

and it easily verified that equations. (14.10) do indeed give the same result. We now turn to the 

determination of  (1) (1),rr θθσ σ . It is obvious that identical expressions will be found for 1 1,F G ; we shall 

therefore deal in detail with only the former. For n = 1 the solution of  (14.73)  is: 

 ( )
3

1 1 2 3 4 log
r a r r r

f r C C C C
a r a a a

         = + + +         
         

 (14.92) 

and the stress components corresponding to it are 

 

2
(1) 31 1 2 4

2 2 2 3 3

22
(1) 31 2 4

2 2 3 3

(1) 31 2 4
3 3

221 1 1
cos cos

62
cos cos

221
sin sin

rr

r

r Cd f f aC C

r r r dr a rr r r a

r Cd f aC C

a rr dr r a

r Cf aC Cd

r r dr r a rr a

θθ

θ

ϕ ϕσ θ θ
θ

ϕσ θ θ

ϕτ θ θ
θ

 ∂ ∂  = + = − = − + +  ∂ ∂    

 ∂= = = + + ∂  

 ∂ ∂   = − = = − + +    ∂ ∂     

 (14.93) 

The five constants 1 2 3 4 1, , , ,C C C C a are found from equations. (14.74) to (14.76). The function (1)T  

has the form:  

 ( )(1) 0 0
1 1, cos sin

A B
T r A r B r

r r
θ θ θ   = + + +   

   
 (14.94) 

Where the coefficient of cosθ (that is, 1F ) has been found so as to satisfy eq. (14.71) with n = 1 and 

similarly for the coefficient of  sinθ  (namely 1G ) . The terms proportional to 1A  and 1B , however, 

cause no stress. The final expressions for the stresses are: 

 

( ) ( )

( ) ( )

( ) ( )

2 2
(1) 1 1

0 02 22 2

2 2 2 2
(1) 1 1

0 02 42 2

2 2
(1) 1 1

0 02 22 2

1 1 cos sin
2

3 cos sin
2

1 1 sin cos
2

rr

r

E r a b
A B

r ra b

E r a b a b
A B

r ra b

E r a b
A B

r ra b

θθ

θ

ασ θ θ

ασ θ θ

ατ θ θ

  
= − − +  

+   

 += − − + 
+  

  
= − − −  

+   

 (14.95) 

Since the constants 2 3 4, ,C C C  are as follows (for the 0A  term):  

 ( ) ( )
2 3

1 1 0 1 1 0 1 1 0
2 3 42 2 2 2

; ; ;
24 4

E A b a E A a E A a
C C C

b a b a

α α α= − = = −
+ +

 (14.96) 

Also, note that, the stress component (1)
zzσ  is given by:               

                         ( )
2 2

(1) 1 1 1 1
0 02 2 2

1

2 cos sin
1zz

E r E Ta b
A B

a b r

ν α ασ θ θ
ν

 += − + −  ++  
                                (14.97) 

for the present plane-strain problem. 
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14.7  Hollow cylinder under axial-symmetric mechanical and thermal loads    
It is well known that the thermo-elastic equilibrium problem, for homogeneous and linearly 
isotropic materials, is ruled by the Duhamel-Neumann thermal equations, that in absence of body 
forces, in Cartesian Coordinate System ( ), ,x y z  is given by : 

                                            ( ) ( ) ( ) ( )3 2 0Tµ µ λ λ µ α∇ ⋅ ∇ ⊗ + + ∇ ∇ ⋅ − + ∇ =u u                           (14.98)                             

where , ,T
x y zu u u =  u  is the displacement field, T is temperature, µ,λ  are Lamè constants and α  is 

the linear thermal expansion coefficient. The differential operators appearing in equation (14.98) are 
the Nabla operator ∇ , the divergence (*) x y z∇ ⋅ = ∂ ∂ + ∂ ∂ + ∂ ∂ , and the gradient (*)∇ ⊗ .  
Conduction equation is written in hypothesis of steady-state problem: 

 2 1 2
, , , , 0rr r zzT T r T r T Tθθ

− −∇ = + + + =  (14.99) 

where 2∇  is the Laplacian differential operator. In order to study the multilayered cylinders, it is 
considered the cylindrical reference system ( ), , ,O r zθ , selected with its origin O as the same of the 

Cartesian one. The coordinate θ  is measured starting from axis x and it is positive if anti-clockwise. 
The axis of cylinder solid coincide with z direction of cylindrical reference system selected. It is 
worth to note that throughout the whole paper no external constraints acting on the multilayered 
cylinder will be considered. The cylindrical coordinates ( ), ,r zθ  are related to the rectangular 

coordinates ( ), ,x y z  according to the transformation: 

 cos , sin ,x r y r z zθ θ= = =  (14.100) 
where the domain Ω  occupied by multilayered cylinder, is defined as  
0 ,r R< ≤ 0 2 ,≤ ≤ϑ π 0 z L≤ ≤ . The displacement vector u  in the rectangular system has 

components , ,cart T
x y zu u u =  u , and  in the cylindrical system has components: 

[ ], ,cyl T
r zu u uθ=u .The transformation of vector u  between the two coordinate systems is given by: 

 cos sin , sin cos ,x r y r z zu u u u u u u uθ θθ θ θ θ= − = + =  (14.101) 

The Duhamel-Neumann thermal equations (14.98) in the cylindrical coordinate system become: 

 

( ) ( )( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )

2 2
, ,,

2 2 1 1
, ,,

2
,,

2 3 2 0

2 3 2 0

3 2 0

r r rr

r

z zz

u u u r T

u u u r r r T

u T

θ θ

θ θ θ θθ

µ µ λ λ µ α

µ µ λ λ µ α

µ µ λ λ µ α

−

− − −

  ∇ − + + + ∇ ⋅ − + = 
  ∇ + − + + ∇ ⋅ − + =  

 ∇ + + ∇ ⋅ − + =


u

u

u

 (14.102) 

In compact form the equations (14.102) can be written as follows: 
 ( ) ( ) ( ) ( )2 3 2 Tµ λ µ λ µ α+ ∇ ∇ ⋅ − ∇ ∧ ∇ ∧ − + ∇u u  (14.103) 

where (*)∇ ∧  is curl differential operator. The solution of equations (14.102) is taken in the form: 

 ( ) ( ) ( ) ( ) ( ) ( ), , ,h p h p h p
r r r z z zu u u u u u u u uθ θ θ= + = + = +  (14.104) 

where ( ) ( ) ( ) ( ), ,h h h h
r zu u uθ ≡  u  is the general solution, ( ) ( ) ( ) ( ), ,p p p p

r zu u uθ ≡  u  is a particular solution. 

By assuming, a particular solution  ( )pu  as follows: 

 ( ) ( ) ( ), ,
Tp p p

r zu u u Gθ  = ∇   (14.105) 

where G  is a scalar function. By substituting the equation (14.105) in equation (14.103), and 
remembering  that G∇ ∧ ∇ = 0 , we obtain the Poisson’s equation for the function G: 

 2 3 2

2
G T

λ µα
λ µ

 +∇ =  + 
 (14.106) 

By substituting the equation (14.106) in Fourier’s equation (14.99), the bi-harmonic condition for 
the scalar function G is obtained: 

 ( )2 2 4 0G G∇ ∇ = ∇ =  (14.107) 
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By considering  axial-symmetry of thermal loads, in explicit the equation (14.107) becomes: 

 4 1 2 3
, , , , , , ,2 2 0rrrr rrr rzz rr r rrzz zzzzG G r G G r G r G G G− − − ∇ = + + − + + + =   (14.108) 

In three-dimensional elasticity, the general solution ( )hu  is obtained by to define a potential 
function representation for displacement which identically satisfies the compatibility conditions and 
allows to obtaining the equilibrium condition defining the governing equation.  It is well known that 
the solution in terms of displacement field u for an isotropic and homogeneous linear elastic 
material, in absence of body forces, can be written in the cylindrical system by means of the 

Boussinesq-Somigliana-Galerkin vector  [ ], ,
T

r zF F Fθ≡F , where three component of vector F are 

function of cylindrical coordinates ( ), ,r zθ  as: 

 

( )

( )

( )

( ) 2 2
,

( ) 2 2
,

( ) 2
,

2 1
cos sin

2 2

2 1
sin cos

2 2

2 1

2 2

h
r x y r

h
x y

h
z z z

u F F

u F F
r

u F

θθ

µ λ θ θ ω
µ µ λ µ

µ λ θ θ ω
µ µ λ µ

µ λ ω
µ µ λ µ

 +  = ⋅∇ + ⋅∇ −  +
 +  = − ⋅∇ + ⋅∇ −  +
 +
 = ∇ −

+

 (14.109) 

where , ,x y zF F F  are components of Galerkin’s vector F  in Cartesian coordinate and are given by: 

 cos sin , sin cos ,x r y rF F F F F Fθ θθ θ θ θ= − = +  (14.110) 

and the function ω  is given by: 

 1 1
, , , , ,cos sin sin cosx r x y r y z zF r F F r F Fθ θω θ θ θ θ− −= ⋅ − ⋅ + ⋅ + ⋅ +  (14.111) 

The Galerkin’s vector F  must be to satisfy the bi-harmonic condition 4 0F∇ = . In Cartesian 
coordinate system the components of Galerkin’s vector F  are bi-harmonic, but in cylindrical 
coordinate system the two components ,rF Fθ  are not bi-harmonic. A more detailed derivation [19] 

is given by Westergaard, who gives expressions for the stress components in terms of F and uses 
this representation to solve a number of classical three-dimensional problems – namely those 
involving concentrated forces in the infinite or semi-infinite body. The Galerkin’s solution was to 
some extent foreshadowed by Love [15], who introduced a displacement function appropriate for an 
axis-symmetrical state of stress in a solid of revolution. When a solid cylinder is deformed 
symmetrically by forces applied on its external cylindrical surface and on its two end sections, it is 
possible to express all the mechanical quantities in terms of a single function, reducing the elastic 
equilibrium equations of the body to a single partial differential equation [18]. 
If ze  is the unit vector of z direction which characterizes the axis-symmetrical problem, the 

displacement solution is called torsion-less and rotationally symmetric with respect to the z axis. 
Then, displacement solution u  satisfies the following condition: 

 ( ) 0h
z ⋅∇ ∧ =e u    (14.112) 

In order to satisfy the condition (14.112), it is assumed the Galerkin’s vector as reported below: 

 ( )0,0, ,
T

r zχ ≡  F  (14.113) 

in which ( ) ( )(4)r, z Cχ ∈ Ω  is a scalar function and is called the Love’s solution. By substituting 

equation (14.113) in equation (14.109) , it is possible to determine the displacement solution in 
terms of Love’s solution as reported below: 

 ( )( ) ( ) 2 1
, , ,

1 1
, 0,

2 2
hh h

r rz z rr ru u u rθ
µχ χ χ χ

µ µ µ λ
− 

= − = = ∇ + + + 
 (14.114) 

In which ( ),r zχ  is the bi-harmonic function and then satisfy the follows differential equation: 

 4 1 2 3
, , , , , , ,2 2 0,rrrr rrr rzz rr r rrzz zzzzr r rχ χ χ χ χ χ χ χ− − − ∇ = + + − + + + =   (14.115) 

The vector ( )h∇ ∧ u  is given by: 
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( ) ( ) ( )
( ) ( )1
, ,

( ) ( ) ( ) 2
, ,

,
( ) ( ) ( )1

, ,

0

2
-
2

0

h h
z z

h h h
r z z r

r
h h h

r r

r u u

u u

r u u u

θ θ

θ θ θ

µ λ χ
µ µ λ

−

−

  −
   +  ∇ ∧ = − = ∇
   +
  − +
    

u  (14.116) 

Then, the curl of vector ( )hu  obtained  by equation (14.116) satisfies the condition (14.112). 
By summarizing, the thermo-elastic steady-state problem, under axial-symmetric load conditions, is 
governed by two bi-harmonic scalar functions ( ),r zχ and ( ),G r z . The temperature and the vector 

displacement, are given by: 

 
( )

2

2 1
, , , , ,

2

3 2

1 1
, 0,

2 2r r rz z z rr r

T G

u G u u G rθ

µ λ
α λ µ

µχ χ χ χ
µ µ µ λ

−

+ = ∇ +


  = − = = + ∇ + +  + 

 (14.117) 

By differentiating displacement’s components (14.117), it is possible to obtain the strain 
components reported below:   

 
( )

( )
( )

( )

, ,
, , ,

2
, ,

, ,

2
, ,

, , ,

1
- , - ,

2 2

2
,

2 2

2
2 , 0

2

rrz rzr
rr r r rr r

z zzz
zz z z zz

r rzz
rz r z z r rz z r

u
u G G

r r

u G

u u G

θθ

θ θ

χ χ
ε ε

µ µ

µ λ χ χ
ε

µ µ λ µ

µ λ χ χ
γ γ γ

µ µ λ µ

 
= = = =  

 

+ ∇
= = + −

+

+ ∇
= + = + − = =

+

 (14.118) 

The stress-strain relations are given by well known Hooke’s law for thermo-isotropic material: 

 
( ) ( )( )2 3 2

, { , , }

kh hk hk rr zz RT T

h k r z

θθσ µ ε δ λ ε ε ε α λ µ
θ

 = + + + − + − 

∀ ∈
 (14.119) 

where RT  is the reference temperature and  hkδ  is the Kronecker’s delta. By applying the equations 

(14.119) it is easy to obtain for the i-th material phase the no-vanishing stresses that depend by two 
scalar functions ( ),r zχ and ( ),G r z : 

 

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

( )
( )

2
2

, ,

,

2
1 2 1

, ,

,

2
2

, ,

,

2

, ,

,

2 3 2 ,
2

2 3 2
2

4 3
2 3 2 ,

2

2
2 , 0

2

rr rr rr R

z

r r R

z

zz zz zz R

z

rz zz rz z r

r

G G T

r G r G T

G G T

G

θθ

θ θ

λ χσ χ µ α λ µ
µ λ

λ χσ χ µ α λ µ
µ λ

µ λ χ
σ χ µ α λ µ

µ λ

µ λ χ
τ χ µ τ τ

µ λ

− −

 ∇= − − ∇ − + + +  

 ∇= − − ∇ − + + +  

 + ∇
= − − ∇ − + + 

+  

 + ∇
= − + = = 

+  

,

 (14.120) 

 
14.8. Uncoupled thermo-elastic analysis in hollow cylinder exposed to an ambient at zero 
temperature through a uniform boundary conductance (plane strain) 
Let us consider a hollow cylinder with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. The surface r = a is kept perfectly insulated while the surface r = b is 
exposed, for t >0, to an ambient at zero temperature through a uniform boundary conductance h. 
The initial temperature (for  t = 0) of the hollow cylinder  is 0 RT T const= =  where 0RT > . In this 

section, we determine the heat conduction and profile of temperature in hollow cylinder under 
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decreasing of  temperature from  0RT >  until  to zero. The differential equation related to heat 

conduction and the corresponding boundary conditions are reported below: 

 
2

2

1 1
; , 0

T T T
a r b t

r r tr κ
∂ ∂ ∂+ = < < >

∂ ∂∂
 (14.121) 

 0, , 0,
T

k r a t
r

∂− = = >
∂

 (14.122) 

 ; , 0,
T

k hT r b t
r

∂− = = >
∂

 (14.123) 

 ; , 0,RT T a r b t= < < =  (14.124) 

where 0 RT T=  is a suitable chosen reference temperature in initial condition (for t = 0) and h is 

convection coefficient on surface r=b . The problem is therefore on with homogeneous differential 
equation and boundary conditions and may be treated by the method separation of variables. A 
particular solution of the differential equation (14.121) and boundary conditions (14.122)-(14.123) 
is given by: 
 ( ) ( ) ( ),T r t r tϕ ψ=  (14.125) 

By substituting the function (14.125) in eqs.(14.121)-(14.123), we obtain: 

 
2

2
2

1
0;

d d

r d rd r

ϕ ϕ ω ϕ+ + =  (14.126) 

 0; ,
d

k r a
d r

ϕ− = =  (14.127) 

 ; ,
d

k h x b
d r

ϕ ϕ− = =  (14.128) 

And to the following equation for ( )tψ : 

 2 0
d

dt

ψ ω κψ+ =  (14.129) 

The general solution of  (14.129) is:  

 ( ) 2 tt e ω κψ −=  (14.130) 

The equation  (14.126) is an Bessel differential equation  and the solution is given by: 
 ( ) ( ) ( )0 0r A J r BY rϕ ω ω= +  (14.131) 

where ( ) ( )0 0,J r Y rω ω  are Bessel function and ,A B are constants integration. From (14.127) it is 

deduced that the constant B  is given by:  

 
( )
( )

1

1

J a
B A

Y a

ω
ω

= −  (14.132) 

The equations (14.127) and (14.128) are an homogenous algebraic system as reported below : 

 [ ] 0

0

A

B

   
⋅ =   
   

Λ  (14.133) 

where the matrix [ ]Λ  is given by: 

 [ ] ( ) ( )
( ) ( ) ( ) ( )

2 2
1 1

2 2
1 0 1 0

a J a a Y a

b k J b hJ b b k Y b hY b

ω ω ω ω
ω ω ω ω ω ω

 
=  − −        

Λ  (14.134) 

The algebraic system (14.133) admit not trivial solution if the determinant of the matrix [ ]Λ  is 

equal to zero. By imposing this condition, we obtain the transcendental equation in unknown 
parameter ω : 
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[ ] ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

0 1 1 0

2
1 1 1 1

det

0

h J b Y a J ag a b

a b

Y b

k J b Y a J a Y b

ω ω ω ω

ω ω ω ω ω

ω ω  = − + 

 + −

=

 =

Λ

 (14.135) 

The roots of this transcendental equation (14.135) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding 

eigenfunctions or characteristic functions ( )m rϕ  are, as calculated above, 

                                           ( ) ( ) ( ) ( ) ( ) ( )
( )

1 0 1 0

1

m m m m m
m

m m

r Y a J r J a Y r
r

A Y a

ϕ ω ω ω ω
ϕ

ω
−

= =               (14.136) 

The solution to the problem may therefore be written in the form: 

                                                          ( ) ( ) 2

1

, m t
m m

m

T r t A r e ω κϕ
∞

−

=
= ∑                                       (14.137) 

where the coefficients mA  are determined by applying the initial condition (14.124) that yields the 

following relationship: 

 ( ) ( )
2 2 2

0 0

b b

m R m m
a a

A T r r drd r r drd
π π

ϕ θ ϕ θ
   

=    
   
∫ ∫ ∫ ∫  (14.138) 

By calculating numerically the relationship (14.138) we obtain the constants mA  as function mω  . 

The expression of function temperature ( ),T r t  is given by substituting the constant mA  in equation 

(14.137). Although we are considering the case of plane strain and then by applying the equations 
reported in section 14.1, we obtain radial displacement function and stress function in hollow 
cylinder. The radial displacement function is given by : 

( )
( )

( )
( ) ( ) ( ) 2

1 1
1

3 2 3 2

2 2
mR tm

r m m m m m
m m

T r D
u C r A J r B Y r e

r
ω κα λ µ α λ µ

ω ω
λ µ ω λ µ

∞
−

=

 + + 
 = − + + + +  + +  

∑    (14.139) 

where the constants integration ,m mA B  are given by equations (14.138) and (14.132), respectively. 

The other displacement components are vanishing in hypothesis of plane strain and axial-symmetry. 
The constants ,m mC D  are determined by utilizing the boundary conditions given by equations(14.8)  

In explicit the expressions of constants  ,m mC D  are given by: 

                         

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

2 2

2

1 1 1 1

1

2
1 1 1 1

2
1

(3 2 )

( 2 )( ) ( )

(3 2 )

( 2 ) ( )

,

,

m m m mm
m

m m

m m m mm
m

m m

J b Y a J a Y bb A
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b a Y a

J b Y a J a Y ba b A

b a
D

Y a

ω ω ω ωα λ µ µ
λ µ λ µ ω ω

ω ω ω ωα λ µ
λ µ ω ω

−+
+ +

−+
+

  = ⋅
−

  = ⋅
−

 (14.140) 

Radial, circumferential and axial stress components are given by: 

  ( ) ( )
( ) ( ) ( ) 2

1 12
1

3 2
2

2
m tm

rr m m m m m
m m

D
C A J r B Y r e

rr
ω καµ λ µµσ λ µ ω ω

λ µ ω

∞
−

=

 + 
 = + − − +  +  

∑  (14.141) 

  

( )

( )
( ) ( ) ( ) ( ) ( ){ }

2

2

2
1

1 1 0 0
1

2

3 2
2

2

m

m
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m

m

t
m m m m m m m m m

m m

D
C e

r

A J r B Y r r A J r B Y r e
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θθ

ω κ

µσ λ µ

αµ λ µ
ω ω ω ω ω

λ µ ω

∞
−

=

∞
−

=

 = + + + 
 

+
 − + − + +

∑

∑
 (14.142) 

    
( ) ( )

( ) ( ) ( ) 2

0 0
1

3 2 3 2
2

2
mR t

zz m m m m m
m m

T
C A J r B Y r e

r
ω κα µ λ µ αµ λ µ

σ λ ω ω
λ µ λ µ ω

∞
−

=

 + + 
 = + − +  + +  

∑  (14.143) 

It is important to note that component stress zzσ  assumes no-zero value for t → ∞ , but other stress 

components vanish. The axial force applied on bases of hollow cylinder is given by: 
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∞
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=

∞
−

=

+ 
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+  
+ − + −       +  

∑∫ ∫

∑
(14.144) 

For example, let us consider, an hollow cylinder constituted by steel, under decreasing  temperature. 
The geometrical, mechanical and thermal parameters considered for hollow cylinder are reported 
below: 

                            

9 2

3 3

2 5 1
0

210 10 / , 0.3, 440 / , 45 / ,

7.8 10 / , 1.05 , 1.00 , 0.05 ,

20 / , 1.2 10 , 300

v

R

E N m c J kg K k W m K

kg m b m a m s b a m

h W m K K T T K

ν

ρ
α − −

= ⋅ = = ⋅° = ⋅°

= ⋅ = = = − =

= ⋅° = ⋅ ° = = °

 (14.145)  

In this case the graphics function ( )g ω  given by equation (14.135) is reported below: 

 
 

By fixed  m= 20,  the eigenvalues mω  and corresponding values of constants integration mA  are 

reported in table 14.1: 
 

 
Table 14.1 – Eigenvalues mω  and corresponding values of constants integration mA  
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We reported the graphics of temperature function along the radial direction and in time: 
 

 
 

Fig. 14.12 -  Temperature function  versus the time 
 

 

 
 

Fig. 14.13 - Temperature function along radial direction 
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We reported the graphic of radial displacement component function along the radial direction: 
 

 

 
 

Fig. 14.14 - Radial displacement distribution along radial direction  
 
 

We reported the graphics of stress components along the radial direction and in time: 
 

 
 

Fig. 14.15 -  Radial stress distribution along radial direction  
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Fig. 14.16 -  Radial stress distribution in time  
 

 
 

 
 

Fig. 14.17 -  Circumferential stress distribution along radial direction  
 



Chapter XIV : Thermal stress in hollow cylinders 

F. Carannante 295 

 
 

Fig. 14.18 -  Circumferential stress distribution in time 
 

 
 

Fig. 14.19 -  Axial stress distribution along radial direction 
 



Chapter XIV : Thermal stress in hollow cylinders 

F. Carannante 296 

 
 

Fig. 14.20 -  Axial stress distribution in time  
 
 

 
 

Fig. 14.21 -  Hencky von Mises’s equivalent stress distribution along radial direction 
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Fig. 14.22 - Hencky von Mises’s equivalent stress distribution in time  
 
 
 

 
 

Fig. 14.23 -  Axial force applied on bases of hollow cylinder versus time  
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14.9.  Uncoupled thermo-elastic analysis in hollow cylinder exposed to uniform heat flux in 
plane strain  
Let us consider a hollow cylinder with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. The surface r = a is kept perfectly insulated while the surface r = b is 
exposed, for t >0, to a constant, uniform heat input 0q . In this section, we determine the heat 

conduction and temperature profile in hollow cylinder subjected to uniform heat input 0q  applied 

on external surface, starting to initial temperature in solid equal to 0 RT T const= = . The differential 

equation related to heat conduction and the corresponding boundary conditions are reported below: 

                                                 
2

2

1 1
; , 0

T T T
a r b t

r r tr κ
∂ ∂ ∂+ = < < >

∂ ∂∂
 (14.146) 

 0, , 0,
T

k r a t
r

∂− = = >
∂

 (14.147) 

 0, , 0,
T

k q r b t
r

∂− = = >
∂

 (14.148) 

 0; , 0,T T a r b t= < < =  (14.149) 

This is an case of a problem involving a non-homogeneous boundary condition and, in particular, 
with the heat input specified over the entire boundary  surface. It is necessary  writing the solution 
in the follows form (see Chapter VII) : 
 ( ) ( ) ( )0, ,S CT r t T t T r T r tξ= + + +  (14.150) 

where ST  satisfies the equations: 

 
2

2

1
; ,S Sd T d T

a r b
r d rd r

ξ
κ

+ = < <  (14.151) 

 0; ,Sd T
k r a

d r
− = =  (14.152) 

 0; ,Sd T
k q r b

d r
− = =  (14.153) 

 ( ) ( )
2

0

0
b

S S
V a

T r dV rT r drd
π

θ= =∫ ∫ ∫  (14.154) 

where ξ  may be determined either from the boundary conditions (14.152)-(14.154). CT  satisfies 

equations: 

 
2

2

1 1
; , 0C C CT T T

a r b t
r r tr κ

∂ ∂ ∂+ = < < >
∂ ∂∂

 (14.155) 

 0; , 0,CT
k r a t

r

∂− = = >
∂

 (14.156) 

 0; , 0,CT
k r b t

r

∂− = = >
∂

 (14.157) 

 ; , 0,C ST T a r b t= − < < =  (14.158) 

The solutions to equations. (14.151) to (14.154) for ξ  and ST  are: 
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( ) ( )

( )
( )

( )

2 0
2 2

4 2 2 4 2 2 22 00
22 2 2 2

2
log , ,

4

2 3 4 log log
, ,

4

v
S

v

c b q
T r r C D r
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bq b a b a a a a b ba bq
C D

b a k k b a
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ρ

= + + = −
−

 + − + −
 = =

− −

   (14.159) 

The parameter ξ  is equal to ratio between total external heat and internal energy of hollow cylinder 
with unit high: 

 ( ) ( )2 2 20 0
2 2

2
, 1 2 , 1 ,

vv

b q q S
S b V b a

c Vc b a
ξ π π

ρρ
= − = − = ⋅ = ⋅ −

−
 (14.160) 

where S and V are area of external surface and volume of hollow cylinder with unit high, 
respectively. The solution to the problem for CT  is found in much the same says way as was 

followed in section 14.8. The problem is therefore on with homogeneous differential equation and 
boundary conditions and may be treated by the method separation of variables. We can select a 
particular solution of the differential equation and boundary conditions in the form: 
 ( ) ( ) ( ),CT r t r tϕ ψ=  (14.161) 

By substituting the function (14.161) in equations (14.155)-(14.157), we obtain: 

 
2

2
2

1
0;

d d

r d rd r

ϕ ϕ ω ϕ+ + =  (14.162) 

 0; ,
d

r a
d r

ϕ = =  (14.163) 

 0; ,
d

x b
d r

ϕ = =  (14.164) 

And to the following equation for ( )tψ : 

 2 0
d

dt

ψ ω κψ+ =  (14.165) 

The general solution of  (14.165) is:  

 ( ) 2tt e κ ωψ −=  (14.166) 

The general solution of  (14.162)  is: 
 ( ) ( ) ( )0 0r A J r BY rϕ ω ω= +  (14.167) 

where ( ) ( )0 0,J r Y rω ω  are Bessel functions and ,A B are constants integration. From (14.163) it is 

deduced that the constant 2C  is given by:  

 
( )
( )

1

1

J a
B A

Y a

ω
ω

= −  (14.168) 

The equations (14.163) and   (14.164) are an homogenous algebraic system as reported below : 

 [ ] 0

0

A

B

   
⋅ =   
   

Λ  (14.169) 

where the matrix [ ]Λ  is given by: 

 [ ] ( ) ( )
( ) ( )

2 2
1 1

2 2
1 1

a J a a Y a

a J b b Y b

ω ω ω ω
ω ω ω ω

 
=  
 

Λ  (14.170) 

The algebraic system (14.169) admit not trivial solution if the determinant of the matrix [ ]Λ  is 

equal to zero. By imposing this condition, we obtain the transcendental equation in unknown 
parameter ω : 
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                                     [ ] ( ) ( ) ( ) ( ) ( )2 2
1 1 1 1det 0g a b J a Y b J b Y aω ω ω ω ω ω = = − = Λ  (14.171) 

The roots of this transcendental equation (14.171) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding 

eigenfunctions or characteristic functions ( )m rϕ  are, as calculated above, 

                                   ( ) ( ) ( ) ( ) ( ) ( )
( )

1 0 1 0

1

m m m m m
m

m m

r Y a J r J a Y r
r

A Y a

ϕ ω ω ω ω
ϕ

ω
−

= =                        (14.172) 

The solution to the problem may therefore be written in the form: 

 ( ) ( ) 22
0

1

, log
4

m tv
m m

m

c
T r t T t r C D r A r e

k
κ ωρ ξξ ϕ

∞
−

=
= + + + + + ∑  (14.173) 

where the coefficients mA  are determined by applying the initial condition (14.158) that yields the 

following relationship: 

 ( ) ( ) ( )
2 2 2

0 0

b b

m S m m
a a

A T r r rdrd r r drd
π π

ϕ θ ϕ θ
   

= −   
   
∫ ∫ ∫ ∫  (14.174) 

By substituting the constant mA  in equation (14.173), we obtain the expression of function 

temperature ( ),T r t . The radial displacement function is given by: 

                   

( )
( )

( )
( ) ( ) ( ) 2

2

1 1
1

3 2 21
log

2 2 2

3 2

2
m

v
r

tm
m m m m m

m m

cH M
u G r t N r C D r r

r r k

Q
P r A J r B Y r e

r
ω κ

α λ µ ρ ξ
λ µ

α λ µ
ω ω

ω λ µ

∞
−

=

+     = + + + + + − + +    +    

 + 
 + + + +  +  

∑

 (14.175) 

where the constants integration ,m mA B  are given by equations (14.174) and (14.168), respectively. 

The constants integrations , , , , ,m mP Q G H M N are determined by solving  the boundary conditions 

(14.8) . In explicit these constants are given by : 

 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1 1 1 1

2 2
1

2
1 1 1 1 0

2 2 2 2
1

2 3
00

(3 2 )
, 0,

( )( 2 )( )

(3 2 ) (3 2 )
, ,

( 2 )( ) ( )( )

(3( )(3 2 )
,

2( )

m m m m
m

m m

m m m m
m

m m

m

v

R

m

J b Y a J a Y b A b
P M

b a Y a

a b J b Y a J a Y b A bq
Q N

b a Y a c b a

a b qT T
G H

ω ω ω ω αµ λ µ
λ µ λ µ ω ω

ω ω ω ω α λ µ α λ µ
λ µ ω ω ρ λ µ

α λα λ µ
λ µ

− +   =
+ + −

− +  + 

=

−
= = −

+ − +

+− += = −
+

2 2 2

2 2 2

2 ) 4 (log log )
,

8 ( ) ( 2 )

b a a a b

k b a

µ
λ µ

 − − 
+−

+

 (14.176) 

In explicit the radial and circumferential stress components are given by: 

          

( ) ( ){ }
( ) ( )

( ) ( )
( ) ( ) ( ) 2

2 2

2

0

1 12
1

2

1
3 2 log

8 2 2 2

3 2
2

2
m

rr

v
R

tm
m m m m m

m m

G Hr t N Mr

c r
T T t C D r

k

Q
P A J r B Y r e

rr
ω κ

σ λ µ µ λ µ µ

ρ µξ µα λ µ ξ
µ λ λ µ

αµ λ µµλ µ ω ω
λ µ ω

− −

∞
−

=

 = + − + + − + 

    − + − + + + + −   + +     

 + 
 + + − − +  +  

∑

 (14.177) 
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( ) ( ){ } ( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( ){ }
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2

2 2
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2
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1 1 0 0
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2 2

3 1
3 2 log
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r

ω κ
θθ
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µσ λ µ µ λ µ µ λ µ

ρ µξ µα λ µ ξ
µ λ λ µ

αµ λ µ
ω ω ω ω ω

λ µ ω

∞
−− −

=

∞
−

=

  = + + + + + + + + +    

    − + − + + + + + +   + +     

+
 − + − + +

∑

∑

   (14.178) 

        

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) 2

2

0

0 0
1

2
2 3 2 log

2 2 2

3 2
2

2
m

v
zz R
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c r
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P A J r B Y r e
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ρ µξ µσ λ α λ µ ξ
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λ ω ω

λ µ ω
∞

−

=

  = + − + − + + + + + + +  

 + 
 + − +  +  

∑

 (14.179) 

The circumferential stress assumes asymptotic values in r = a and r = b  for  t → ∞ , as showed in 
figure 14.30. These asymptotic values are given by: 

 

( ) ( )

( ) ( )

0
2 2 2

0
2

4 4 2 2

4 4 2 2 4

2 2

4 log log
, ,

(1 ) 4( )

, ,
3
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4(
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a b a b
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b aEb q
r a t

k b a

b aEb q
r b t

b

b

k a

θθ

θθ

ασ
ν

ασ
ν

− + −
−

 
= → ∞ = −  −  

 
= → ∞ =  − 

− +
− 

+ −
 (14.180) 

The axial force applied on bases of hollow cylinder is given by: 

( ) ( ) ( )

( ) ( )
( )

( )

( )
( ) ( ) ( ) ( ) ( )

2
2

2 2
0

10

2 2 2 2 2 2 2 2

2 2
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3 2 1
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2

2 4
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C D
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A B
aJ a bJ b aY a bY b
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ω κα λ µ

σ θ π λ ξ
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π αµ λ µ ρ ξ
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π α µ λ µ
ω ω ω ω

λ µ ω ω
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 − + −  + −   

+
+ − + −   +

∑∫ ∫

2

1

m t

m

e ω κ
∞

−

=

 
  

 
∑

 (14.181) 

For example, let us consider, a hollow cylinder constituted by steel, under uniform heat flux. The 
geometrical, mechanical and thermal parameters considered for hollow cylinder are reported below: 

 

9 2

3 3

2 5 1
0

210 10 / , 0.3, 440 / , 45 / ,

7.8 10 / , 10.5 , 10.0 , 0.5 ,

500 / , 1.2 10 , 300R

E N m c J kg K k W m K

kg m b m a m s b a m

q W m K T T K

ν
ρ

α − −

= ⋅ = = ⋅° = ⋅°

= ⋅ = = = − =

= − = ⋅ ° = = °

 

By fixed  m= 20,  the eigenvalues mω  and corresponding values of constants integration mA  are 

reported in table 14.2: 

 
Table 14.2 – Eigenvalues mω  and corresponding values of constants integration mA  
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In this case the graphics function ( )g ω  given by equation (14.171) is reported below: 

 

 
 
We reported the graphics of temperature function along the radial direction and in time: 
 
 

 
 

Fig. 14.24 - Temperature function  versus the time 
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Fig. 14.25 -  Temperature function along radial direction 
 

We reported the graphic of radial displacement component function along the radial direction: 
 

 
 

Fig. 14.26 - Radial displacement distribution along radial direction  
 
 

We reported the graphics of stress components along the radial direction and in time: 
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Fig. 14.27  -  Radial stress distribution along radial direction  
 
 

 
 

Fig. 14.28 -  Radial stress distribution in time  
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Fig. 14.29 - Circumferential stress distribution along radial direction  
 
 

 
 

Fig. 14.30 -  Circumferential stress distribution in time 
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Fig. 14.31  -  Axial stress distribution along radial direction 
 

 
 

Fig. 14.32 -  Axial stress distribution in time  
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Fig. 14.33 -  Hencky von Mises’s equivalent stress distribution along radial direction 
 
 

 
 

Fig. 14.34 -  Hencky von Mises’s equivalent stress distribution in time  
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Fig. 14.35 -   Axial force applied on bases of hollow cylinder versus time  
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CHAPTER XV 
THERMAL STRESS IN HOLLOW SPHERES 

 
15.1. Uncoupled thermo-elastic problem with radial temperature variation 
Let us consider a hollow sphere with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. In this case the displacement components and temperature are functions of 
radius and time: 
 ( ) ( ), ; 0; 0; , ;r ru u r t u u T T r tθ φ= = = =  (15.1) 

The results in this case are conveniently obtained from the displacement formulation in spherical 
coordinates. By omitting all displacement components and all derivatives in the θ  and φ  directions, 
The equilibrium equations are reduced simply to:  

 
( )2

2

1 3 2 1

2 1

rr u T T

r r r rr

λ µ να α
µ λ ν

 ∂  ∂ + ∂ + ∂   = =   ∂  ∂  + ∂ − ∂   

 (15.2) 

The Fourier heat conduction for uncoupled thermo-elastic problem, becomes: 

 
2

2

2 1vcT T T T

r r k t tr

ρ
κ

∂ ∂ ∂ ∂+ = =
∂ ∂ ∂∂

 (15.3) 

where  
v

k

c
κ

ρ
=  is  thermal diffusivity. The general solution of  equation (15.2) is : 

 ( ) ( ) ( )22
12 2

3 2 1
,

2

r

r
a

f t
u T t d f t r

r r

λ µα ξ ξ ξ
λ µ

 += + + + 
∫  (15.4) 

where in the integral the effective variable is radius, but ξ  is the mute variable. By solving the 
Fourier’s equation (15.3) with one method reported in Chapter VII, and substituting the function of 
temperature T(r,t) in equation (15.4), we obtain the explicit displacement solution. 
For the hollow sphere of inner radius a and outer radius b the function of the time ( )1f t  and ( )2f t  

must  be determined from the condition that : 
 0 at ,rr r a bσ = =  (15.5) 

From the strain-displacement relation and Hooke’s law the non-zero stress components for this case 
are: 

          

( )( )

( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( ) ( )

2 2
1 3 3

2 2
1 3 3

2
2 3 2

4 4 3 2
3 2 , ;

2

2 2
3 2

2 3 2 1
3 2 2 , ,

2

r r r
rr R

r

R
a

r r r
R

R

u u u
T T

r r r

f t
f t T T t d

r r

u u u
T T

r r r

f t
f t T T r t T t

r r

θθ φφ

σ λ µ α λ µ

µ µα λ µα λ µ ξ ξ ξ
λ µ

µσ σ λ α λ µ

µ λ µα λ µ µα ξ ξ
λ µ

∂ ∂ = + + − + − = ∂ ∂ 

 +
 = + + − −    + 

∂ = = + + − + − = ∂ 

 +
 = + + − − −   + 

∫

;
r

a

dξ
 
 
 

∫

 (15.6) 

where RT  is the reference temperature. By solving the boundary condition (15.6) , we obtain the 

functions ( )1f t  and ( )2f t , as reported below:  

( ) ( ) ( )
( ) ( ) ( )

( )( )
( )

3
2 2

1 23 3 3 3

3 24
, ; ,

2 2

b b

R
a a

a
f t T T t d f t T t d

b a b a

α λ µα µα ξ ξ ξ ξ ξ ξ
λ µ λ µ

+
= − + =

− + − +
∫ ∫  (15.7) 

 
The final result for a hollow sphere is : 
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σ σ
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∫ ∫ ∫
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2 2 3 3
2

, , 2 , ,
b r b

r a a

b
T t d T t d T t d a b T r t

r
ξ ξ ξ ξ ξ ξ ξ ξ

 
+ + + − 

 
∫ ∫ ∫

(15.8) 

In the special case in which the temperature 0T  is constant, these equations show that all stress 

components are zero, and that: 
 ( )0r Ru r T Tα= −  (15.9) 

The results for a solid sphere of radius b may be obtained by setting a = 0 ; they are: 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2
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2 2
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r b

θθ φφ
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∫ ∫

∫ ∫

∫ ∫

 (15.10) 

As in the case of the cylinder indeterminate form arise for  r = 0; if however, the temperature is 
finite , the following limits hold:: 

 

( ) ( )

( )
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2
2
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1 1
, 0,

3

1
, 0

lim

lim
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r

r

T t d T t
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r

ξ ξ ξ

ξ ξ ξ

→

→

=

=

∫

∫

 (15.11) 

As may be shown by means of Hospital’s rule. Then at r = 0, the radial displacement is zero and the 
normal stress components are : 

 ( ) ( ) ( ) ( ) ( )2
3

0

3 2 1 1
0, 0, 0, 4 , 0,

2 3

b

rr t t t T t d T t
b

θθ φφ
λ µσ σ σ µ α ξ ξ ξ
λ µ

  += = = −  +   
∫   (15.12) 

 As a special case of the solid sphere, we may obtain the solution for an infinite body under radial 

temperature distributions by letting b → ∞  in equations (15.10). The result is (with ( )2

0

,T t dξ ξ ξ
∞

∫  

assumed convergent): 
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λ µ

µα λ µσ σ ξ ξ ξ
λ µ

 += − + 

 += −  + 

  += = −  +   

∫

∫

∫

 (15.13) 

 
15.2 Coupled thermo-elastic problem with radial temperature variation 
Let us consider a hollow sphere with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. In this case the displacement components and temperature are functions of 
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radius and time as reported in previous section. The equilibrium equation remaining the same in the 
case of uncoupled thermo-elastic problem, but change the Fourier’s equation as reported below: 

 

( )

( )

2

2

22

2 2

1 3 2 1

2 1

2 3 2 1

r

rv
R

r u T T

r r r rr

r ucT T T
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r r k t k t rr r

λ µ να α
µ λ ν

ρ λ µ α

  ∂  ∂ + ∂ + ∂    = =   ∂  ∂  + ∂ − ∂    


  ∂∂ ∂ ∂ + ∂   + = +  ∂ ∂ ∂  ∂ ∂    

 (15.14) 

where RT  is the reference temperature. By integrating the equilibrium equation (the first of eqs. 

(15.14)), respect to variable r , we obtain: 

 
( )2

12

1 3 2
( )

2

rr u
T f t

rr

λ µ α
µ λ

∂  += + ∂ + 
 (15.15) 

where 1( )f t is an function of sole variable time. By utilizing the equation (15.15), we can rewrite 

the Fourier’s equation in follows manner: 

 
( )

( )

2 22
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2

3 22 3 2

2
Rv

R

Tc dfT T T
T

r r k k t k dtr

λ µ αρ λ µ α
λ µ

 +∂ ∂ ∂ + 
 + = + +  ∂ + ∂∂    

 (15.16) 

By deriving the equations (15.16) respect to variable r , the follows equation is obtained: 

  ( ) ( )3 2 2 2

3 2 2

12 2
1 vcT T T T T

r r k r t r tr r r

δρδ
κ
+∂ ∂ ∂ ∂ ∂+ − = + =

∂ ∂ ∂ ∂ ∂∂ ∂
 (15.17) 

where 
v

k

c
κ

ρ
=  is  thermal diffusivity and  the non-dimensional parameter δ  is defined by: 

 
( ) ( )

( ) ( )( )

2 22 2 2

2 2

3 2 3 2 1

2 1 1 2
R R R

v e v v

T T ET

c v c c

λ µ α λ µ α ανδ
ρ ρ µ λ ν ν ρ

 + + += = =  + − − 
 (15.18) 

with the velocity of propagation of dilatational waves in an elastic medium being denoted by: 

 
2

2 1

1 2e

E
v

µ λ ν
ρ ν ν ρ
+ −= = ⋅

− −
 (15.19) 

The termδ  characterized the coupled problem, and it is negligible compared to unity if 1δ ≪ . 
The general solution of equilibrium equation is reported in eq.(15.4). By solving the Fourier’s 
equation (15.17) with one method reported in chapter 7 (for example with method separation of 
variables), and substituting the function of temperature ( ),T r t  in equation (15.4), we obtain the 

explicit displacement solution. Moreover, the function 1 2( ), ( )f t f t present in equation (15.4) can be 

to determine by applying the relationships (15.7). Then, we can to determine the integration 
constants of the function temperature by applying the boundary conditions for heat conduction 
problem. 
 
15.3 Uniform pressure with constant temperature 
Let us consider a hollow sphere with inner radius “a” and outer radius “b” , subjected to uniform 
pressure for r = b equal to ep  and subjected to uniform pressure for r = a equal to ip . Moreover the 

profile of temperature is constant ( 0 RT T T= > ) along radius and in the time. In this case the only 

displacement component ru  is function of radius : 

 ( ) 0; 0; 0; ;r ru u r u u T Tθ φ= = = =  (15.20) 
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The results in this case are conveniently obtained from the displacement formulation in spherical 
coordinates. By omitting all displacement components and all derivatives in the θ  and φ  directions, 
The equilibrium equations are reduced simply to:  

 
( )2

2

1
0

rr u

r rr

 ∂∂   =
∂  ∂ 
 

 (15.21) 

The general solution of  equation (15.21) is : 

 2
1 2r

C
u C r

r
= +  (15.22) 

For the hollow sphere of inner radius a and outer radius b the constants 1C  and 2C  must  be 

determined from the condition that : 
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σ
σ
 = =


= =
 (15.23) 

From the strain-displacement relation and Hooke’s law the non-zero stress components for this case 
are: 
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 (15.24) 

By substituting the stress functions (15.24) in boundary conditions (15.23), we determine the 
constants integration 1C  and 2C : 

 ( )
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3 33 3

1 0 23 3 3 3
; ;

3 2 4
e ie i

R

a b p pp b p a
C T T C

b a b a
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 (15.25) 

Finally, the displacement solution for a hollow sphere is : 

                             ( ) ( ) ( ) ( )
3 33 3

0 23 3

1 1

4 3 2
e i

r R e i
p b p aa b

u T T r p p r
rb a

α
µ λ µ

 −= − + − + +−   
 (15.26) 

The strain components are: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 33 3

0 33 3

3 33 3

0 33 3

1 1
;

2 3 2

1 1

4 3 2

e i
rr R e i

e i
R e i

p b p aa b
T T p p

rb a

p b p aa b
T T p p

rb a
θθ φφ

ε α
µ λ µ

ε ε α
µ λ µ

 −= − + − − + +−   

 −= = − + − + +−   

 (15.27) 

The stress components are:  

 
( )

( )

3 3
3 3

3 33 3

3 3
3 3

3 33 3

1
1 1 ;

1
2 2

2

rr e i

e i

a b
p b p a

r rb a

a b
p b p a

r rb a
θθ φφ

σ

σ σ

    
= − + −    

−      

    
= = + − +    

−      

 (15.28) 

If  the external pressure vanishing 0ep = , the internal pressure 0ip p= − , and thickness of hollow 

sphere is very small ( 1
s b a

a a

−= << ), we obtain the well known  approximate formula for spherical 

tank subjected to internal uniform pressure: 
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 00; ;
2rr
p a

sθθ φφσ σ σ≅ = ≅  (15.29) 

where  s b a= −  is the thickness of the hollow sphere. 
For example, let us consider a hollow sphere characterized by following relations:  
 ( ) 01 , , Rb s a s s a T T= + = =  (15.30) 

where s is the thickness of the hollow sphere: b a s− =  and s  is the ratio between the thickness 
and the inner radius. Moreover, the sphere is subjected to uniform pressure 0ip p= −  for r = a and    

0ep =  for r = b.  Let us assume the following non-dimensional parameter for graphics of the 

displacement, strain and stress functions: 

           ( )2

0 0 0

; ; ; ; ;eqrr
rr eq eq rr

r a r a
r

b a s a p p p
θθ

θθ φφ θθ
σσσσ σ σ σ σ σ σ− −= = = = = = = −

−
 (15.31) 

By applying the relations (15.31), we obtain that the non-dimensional stress components 
, , ,rr eqθθ φφσ σ σ σ  depend only two parameters s  and r , as reported below: 

               

( ) ( ){ }
( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

3

3 3

2 3 3

3

1 3 3 3 3 1
; ;

1 3 3 2 1 3 3

3 3 2 1 1 2 2 1
;

2 1 3 3

rr eq

r s s r s r s

s r s s s s r s s

s s r r s r

s s r s s
θθ φφ

σ σ

σ σ

 − + + + + + = =
   + + + + + +   

 + + + + + +
 = =

 + + + 

 (15.32) 

The distribution of the non-dimensional stress components along radial direction are reported 
below: 

 

 
 

Fig. 15.1 -  Non-dimensional radial stress distribution along radial direction 
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Fig. 15.2 -  Non-dimensional circumferential stress distribution along radial direction 
 

 
 

Fig. 15.3 - Non-dimensional equivalent stress distribution along radial direction 
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15.4. Radial temperature variation and uniform pressure 
Let us consider a hollow sphere with inner radius “a” and outer radius “b”, subjected to uniform 
pressure for r = a equal to 0ip p= − . Moreover the hollow sphere is subjected to radial temperature 

variation. In this case, the equilibrium equation is reported in equation (15.2) and Fourier’s equation 
is reported in equation (15.16) for coupled thermo-elastic problem (or equivalent equation (15.3) for 
uncoupled thermo-elastic problem).  The general solution of the equilibrium equation in terms of 
radial displacement function is given by equation (15.4). In this case, the boundary conditions for 
the hollow sphere of inner radius a and outer radius b are:  

 
( )
( )

0

0

rr

rr

r a p

r b

σ
σ
 = = −


= =
 (15.33) 

By solving the equations (15.33) we obtain the functions 1( )f t  and 2( )f t as reported below: 

 
( ) ( ) ( ) ( )

( )
( )

( ) ( )

3
20

1 3 3

33
20

2 3 3

1 4
( ) , ;

3 2 2

3 2
( ) ,

4 2

b

R
a

b

a

p a
f t T T t d

b a

p ba
f t T t d

b a

αµα ξ ξ ξ
λ µ λ µ

α λ µ
ξ ξ ξ

µ λ µ

 
= − + + + +−   

 +
= + +−   

∫

∫

 (15.34)  

By substituting the function of the time 1( )f t  and 2( )f t  in equation (15.4), we determine the 

displacement solution: 

( ) ( )

( ) ( ) ( ) ( )

3 3
0

23 3

3 3
2 2 2

2 23 3

1

4 3 2

3 2 4
, , ,

2 3 2

r R

b r b

r a a

p a b
u r T r

rb a

a b r
T t d T t d T t d

r rb a

α
µ λ µ

α λ µ µξ ξ ξ ξ ξ ξ ξ ξ ξ
λ µ λ µ

 
= + − + 

+−   

  ++ + +  + +−    
∫ ∫ ∫

 (15.35) 

The stress components are: 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

3 3
0

33 3

3 3
2 2 2

3 3 2 2

3 3
0

33 3

3 3
2 2 2 3

3 3 2 2

1

4 3 2
, , , ;

2

2
2

2 3 2
, , 2 ,

2

rr

b r b

r a a

b b

r a

p a b

rb a

a b
T t d T t d T t d

a b r r

p a b

rb a

a b
T t d T t d T t d a b

b a r r

θθ φφ

σ

µα λ µ ξ ξ ξ ξ ξ ξ ξ ξ ξ
λ µ

σ σ

µα λ µ ξ ξ ξ ξ ξ ξ ξ ξ ξ
λ µ

 
= − + 

−  

  ++ + −  +−    

 
= = + + 

−  

 + + + + − +−  

∫ ∫ ∫

∫ ∫ ( ) ( )3 ,
r

a

T r t
 
 
 

∫

 (15.36) 

 
15.5  Steady-state problem with radial temperature variation 
Let us consider  a hollow sphere with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. In this section we study the steady-state problem, then the temperature 
displacement, strain and stress components are functions only variable r. Let us consider the case in 
which  the inner surface r = a is exposed, to an ambient at  temperature iT  and external surface r = b  

is exposed to a temperature eT . The differential equation related to heat conduction and the 

corresponding boundary conditions are reported below: 

 
( ) ( )2

2

2
0; ,

d T r d T r
a r b

r drdr
+ = < <  (15.37) 
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 ( ) ,iT r a T= =  (15.38) 

 ( ) ,eT r b T= =  (15.39) 

By solving the differential equation (15.37), we obtain the function of temperature: 

 ( ) 2
1

A
T r A

r
= +  (15.40) 

 where 1 2,A A  are constants integration to determine. By solving the boundary conditions (15.38)-

(15.39), we determine the constants integration as reported below: 

 
( )

1 2, ;e ie i ab T TbT aT
A A

b a a b

−−= =
− −

 (15.41) 

By substituting the expressions of constants integration (15.41) in equation (15.40) , we obtain the 
function of the temperature: 

 ( ) ( )
( )1

;e i
i e

ab T T
T r aT bT

a b r

 −
= + − −  

 (15.42) 

If the hollow sphere is subjected to radial temperature variation and zero external load, let us 
assume that the displacement components reduce to sole ( )r ru u r= . In this case the equilibrium 

equations reduce to one ordinary differential equation as reported below: 

 
( )2

2

1 1

1

rd r ud d T

dr r d rr

να
ν

  +   =   ∂  − 
 

 (15.43) 

The general solution of equation (15.43) is : 

 
( )
( ) ( )2 2

12 2

1
( )

1

r

r
a

C
u r T d C r

r r

α ν
ξ ξ ξ

ν
+

= + +
− ∫  (15.44) 

where 1 2,C C  are constants integration to determine. By substituting the function (15.42) in equation 

(15.44) , we determine the expression of the displacement solution are reported below: 

 2
1 32r

D
u D r D

r
= + +  (15.45) 

where 1 2 3, ,D D D  are following constants:  

 

( )[ ]
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

3

1 1 2 2

3

1 3 21
; ;

3 1 6 1

1
;

2 1

e i ie i

e i

a b T T aTbT aT
D C D C

b a b a

ab T T
D

b a

α να ν
ν ν

α ν
ν

 + − ++ −  = + = +
− − − −

+ −
= −

− −

 (15.46) 

By applying the strain-displacement relationship, we determine the non-zero strain components: 

 32 2
1 13 3

2
; ;rr

DD D
D D

rr r
θθ φφε ε ε= − = = + +  (15.47) 

By applying the stress-strain relationship, we obtain the non-zero stress components: 

              

( ) ( )

( ) ( )

32 1
1 22 3

32 1
1 22 3

12
1 2

2 1 21 2

1 1 2
1 21 2

rr R

R

DD AE E
D A T

r rr

DD AE E
D A T

r rr
θθ φφ

ν ασ ν ν
νν ν

ασ σ ν ν
νν ν

 +   = − − + − + −    −− −    

    = = + + − + − + −     −− −    

 (15.48) 

The boundary conditions of zero tractions on the cylindrical surfaces are then  
 0 andrr at r a r bσ = = =  (15.49) 

By solving the equations (15.49), respect to integration constants 1 2,C C , we obtain the explicit 

expressions of the coefficient 1 2 3, ,D D D  as reported below: 
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( )
( )

( ) ( )
( )( )

( ) ( )
( )( )

( ) ( )
( )( )

3 3

1 3 3 3 3

3 3

2 33 3

;
1

1 1
; ;

2 12 1

e i e i
R

e i e i

T b T a T T ab a b
D T

b a b a

a b T T ab T T
D D

b ab a

ν
α

ν

α ν α ν
νν

 − − +
 = + −
 − − −
 

+ − + −
= = −

− −− −

 (15.50) 

If the thickness of hollow sphere is very small respect to radius ( 1
s b a

a a

−= << ), we obtain the 

well known  approximate formula for spherical tank subjected to temperature gradient : 

 

( ) ( )
( )

( )

( )
( )

; ; ;
2 1 2

0; ;
2 1

e i e i e i
r rr

e i
rr

T T a T T T T
u

E T T

θθ φφ

θθ φφ

α α α
ε ε ε

ν
α

σ σ σ
ν

− − −
≅ ≅ = ≅

−

−
≅ = ≅

−

 (15.51) 

For example, let us consider a hollow sphere characterized by following relations:  
 ( )1 , , i Rb s a s s a T T= + = =  (15.52) 

where “s” is the thickness of the hollow sphere: b a s− =  and s  is the ratio between the thickness 
and the inner radius. Moreover, the sphere is subjected to temperature gradient e iT T T∆ = − .  Let us 

assume the following non-dimensional parameter for graphics of the displacement, strain and stress 
functions: 

 

( ) ( )2

; ; ;

; ; ;
2 1

rr
rr

eq
eq eq rr

r a r a
r

b a s a

E T

θθ
θθ φφ

θθ

σσσ σ σ
β β

σαβ σ σ σ σ
ν β

− −= = = = =
−

∆= = = −
−

 (15.53) 

By applying the relations (15.53), we obtain that the non-dimensional stress components 
, , ,rr eqθθ φφσ σ σ σ  depend only two parameters s  and r , as reported below: 

 

( )( ) ( )( )
( ) ( )

( ) ( )( )( )( )( )
( ) ( )

( ) ( ) ( )( )
( ) ( )

3

3 3

3

2 1 1 3 2 2
;

1 3 3

1 6 2 9 3 2 2 3 2
;

1 1 1

1 2 3 3 3 2
;

1 3 3

rr

eq

s r r s s r s

s r s s

s r s s r s s r s s

s r s

s r s r s s s

s r s s

θθ φφ

σ

σ σ

σ

 − + + + + =
 + + + 

 + + − + + − + + − −
  = = −

 + + +
 

 + + + + − − =
 + + + 

 (15.54) 

 
The distribution of the non-dimensional stress components along radial direction are reported 
below: 
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Fig. 15.4 -  Non-dimensional radial stress distribution along radial direction 
 

 

 
 

Fig. 15.5 -  Non-dimensional circumferential stress distribution along radial direction 
 



CHAPTER XV: Thermal stress in hollow spheres 

F. Carannante 319 

 

 
 

Fig. 15.6 -  Non-dimensional equivalent stress distribution along radial direction 
 
 
15.6. Uncoupled thermo-elastic analysis in hollow sphere exposed to an ambient at zero 
temperature through a uniform boundary conductance 
Let us consider an hollow sphere with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. The surface r = a is kept perfectly insulated while the surface r = b is 
exposed, for t >0, to an ambient at zero temperature through a uniform boundary conductance h. 
The initial temperature (for  t = 0) of the hollow sphere  is 0 RT T const= =  where 0RT > . In this 

section, we determine the heat conduction, displacement and stress function in hollow sphere under 
decreasing of  temperature from  0RT >  until  to zero. The differential equation related to heat 

conduction and the corresponding boundary conditions are reported below: 

 
2

2

2 1
; , 0

T T T
a r b t

r r tr κ
∂ ∂ ∂+ = < < >

∂ ∂∂
 (15.55) 

 0, , 0,
T

k r a t
r

∂− = = >
∂

 (15.56) 

 ; , 0,
T

k hT r b t
r

∂− = = >
∂

 (15.57) 

 ; , 0,RT T a r b t= < < =  (15.58) 

where 0 RT T=  is a suitable chosen reference temperature in initial condition (for t = 0). The 

problem is therefore on with homogeneous differential equation and boundary conditions and may 
be treated by the method separation of variables. As  in eq.(15.55), a particular solution of the 
differential equation and boundary conditions of the form: 
 ( ) ( ) ( ),T r t r tϕ ψ=  (15.59) 
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By substituting the function (15.59) in eqs. (15.55)-(15.57), we obtain: 

 
2

2
2

2
0;

d d

r d rd r

ϕ ϕ ω ϕ+ + =  (15.60) 

 0; ,
d

k r a
d r

ϕ− = =  (15.61) 

 ; ,
d

k h x b
d r

ϕ ϕ− = =  (15.62) 

And to the following equation for ( )tψ : 

 2 0
d

dt

ψ ω κψ+ =  (15.63) 

The general solution of  (15.63) is:  

 ( ) 2 tt e ω κψ −=  (15.64) 

The general solution of  (15.60) is: 

 ( ) 1
1 2

i r i rr r C e C eω ωϕ − − = +   (15.65) 

where 1 2,C C  are constants integration. From (15.61) it is deduced that the constant 2C  is given by:  

 
( )2

2
2 12 21

i ai a
C C e

a
ωω

ω

 +
 =

+  

 (15.66) 

The equations (15.61) and (15.62) are an homogenous algebraic system as reported below : 

 [ ] 1

2

0

0

C

C

   
⋅ =   

  
Λ  (15.67) 

where the matrix [ ]Λ  is given by: 

 [ ]
( ) ( )1 1

1 1

ia ia

ib ib

ia e ia e

bh bh
ib e ib e

k k

ω ω

ω ω

ω ω

ω ω

−

−

 − +
 =     − − + −        

Λ  (15.68) 

The algebraic system (15.67) admit not trivial solution if the determinant of the matrix [ ]Λ  is equal 

to zero. By imposing this condition, we obtain the transcendental equation in unknown parameter 
ω : 

                          
[ ] ( ) ( ) ( )

( ) ( )2

det cos

sin 1 0

g a b ab h k b a

a b k ab b h

ω ω ω

ω ω

   = = − + − +   

  + − + − =   

Λ

 (15.69) 

Finally, we can rewrite the equation (15.69) in follows manner: 

 ( ) ( )
( )2

tan
1

ab h k b a
a b

b h k ab

ω
ω

ω

 + −  − =  − +
 (15.70) 

The roots of this transcendental equation (15.70) are an infinite number such, denoted here by 

, 1,2,....m mω = A  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding  

eigenfunctions or characteristic functions ( )m rϕ  are, as calculated above, 

                      

( ) ( ) ( ) ( )

( )
( ) ( ) ( ){ }

1

2

2 2

1
cos sin

cos 2 sin 2
1

m
m mm

m

m m

r
r r i r

C r

i a
a r i a r

a r

ϕ
ϕ ω ω

ω
ω ω

ω

 = = + + 

+
   + − − −   +

 (15.71) 
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The solution to the problem may therefore be written in the form: 

                                                          ( ) ( ) 2

1
1

, m t
m m

m

T r t C r e ω κϕ
∞

−

=
= ∑                                       (15.72) 

where the coefficients 1mC  are determined by applying the initial condition (15.58) that yields the 

following relationship: 

 
( )

( )

2
2

0 0
1 2 2 2

0 0

sin

sin

b

R m
a

m b

m
a

T r r drd d

C

r r drd d

π π

π π

ϕ θ θ φ

ϕ θ θ φ
=
∫ ∫ ∫

∫ ∫ ∫

 (15.73) 

By applying the relationship (15.73) we obtain the explicit expression of the constant 1mC  as 

reported below: 

    
( ) ( ) ( ) ( ) ( ){ }

( ) ( )( ) ( ) ( ){ }
2

1 2 2 2 2

2 cos 1 sin

2 cos 2 1 sin 2

mi a
R m m m m m

m

m m m m m m

T e a i b a a b ab a b
C

b a a b a a b a a b

ω ω ω ω ω ω

ω ω ω ω ω ω

   − − − + + −   = −
   + − − − + − −   

 (15.74) 

By substituting the constant 1mC  in equation (15.72), we obtain the expression of function 

temperature ( ),T r t . By applying the equations in section 15.1, we obtain displacement function 

and stress function  in hollow sphere . The displacement function is given by eq. (15.8) 

   

2 3 3
2 2 21

3 3 2 2
1

3 2 4

2 3 2

m t b r b
n

r R m m m
m r a a

C e a b r
u T r r dr r dr r dr

b a r r

ω κ λ µ µα α ϕ ϕ ϕ
λ µ λ µ

−∞

=

  += − + + +  + +−    
∑ ∫ ∫ ∫  (15.75) 

The radial stress is given by: 

 

2 3 3
2 2 21

3 3 2 2
1

4 3 2

2

m t b r b
m

rr m m m
m r a a

C e a b
r dr r dr r dr

a b r r

ω κµα λ µσ ϕ ϕ ϕ
λ µ

−∞

=

  += + −  +−    
∑ ∫ ∫ ∫  (15.76) 

The circumferential stress is reported below: 

      ( )
2 3 3

2 2 2 3 31
3 3 2 2

1

2 3 2
2

2

m t b r b
m

m m m m
m r a a

C e a b
r dr r dr r d a b

b a r r

θθ φφ

ω κ

σ σ

µα λ µ ϕ ϕ ϕ ξ ϕ
λ µ

−∞

=

= =

  += + + + −  +−    
∑ ∫ ∫ ∫

 (15.77) 

In explicit the function radial displacement given by equation (15.75) is reported below: 

  ( )
( ) ( ) ( )

2

2
1 2

1
1 22 2

3 2
1 1

2

m

m m

m
m

t
r R

i r i rm
m m m m

m

Q
Q r

r
u T r e

C i r e C i r e
r

ω κ

ω ω
α α λ µ

ω ω
ω λ µ

∞
−

−=

 + + 
 = − +  +
  + − + +  + 

∑    (15.78) 

where the constants integration 1 2,m mC C  are given by equations (15.74) and (15.66), respectively. 

The constants integrations 1 2,m mQ Q  are determined by solving  the boundary conditions (15.5). In 

explicit the expressions of constants  1 2,m mQ Q  are given by: 

          

2 2

1 13 3 2

2 23

2 13 3 2

4 ( )( ) ( )( )

( )(1 )( 2 )

(3 2 ) ( )( ) ( )( )
,

( )(1 )( 2 )

,
m m m

m m m

ib ib ia
m m m m

m m
n n

ib ib ia
m m m m

m m
m m

e e a i i b e i a b i
Q C

b a i a

a e e a i i b e i a b i
Q C

b a i a

ω ω ω

ω ω ω

α µ ω ω ω ω
ω λ µ ω

α λ µ ω ω ω ω
ω λ µ ω

−

−

  =
−

  =

− + − + −

+ +

+ − + − + −

+ +−

 (15.79) 

In explicit the radial and circumferential stress components are given by: 
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( )
( )

( ) ( ) ( )
2

3
1 2

1 1 22 3

3 2 4

4 3 2

2

m

m m

m m
t

rr i r i r
m m m m m

m

Q Q r

ei
C i r e C i r e

r

ω κ
ω ω

λ µ µ
σ αµ λ µ

ω ω
ω λ µ

−

∞
−

−
=

 + − +
 

= + 
 + + + −  + 

∑  (15.80) 

( )

( )
( ) ( )( ) ( )( )

2

2

3
1 2

1

1 22 3
1

3 2 2

2 3 2
1 1 1

2

m

m m m

t
m m

m

i r i r t
m m m m m m

m m

Q Q r e

C r i r e C r r i e e
r

ω κ
θθ

ω ω ω κ

σ λ µ µ

αµ λ µ
ω ω ω ω

ω λ µ

∞
−−

=

∞
− −

=

 = + + + 

 +  + − + + − −  +  

∑

∑
 (15.81) 

For example, let us consider, a spherical tank constituted by steel, under decreasing  temperature. 
The geometrical, mechanical and thermal parameters considered for spherical tank are reported 
below: 

                            

9 2

3 3

2 5 1
0

210 10 / , 0.3, 440 / , 45 / ,

7.8 10 / , 1.01 , 1.00 , 0.01 ,

200 / , 1.2 10 , 300

v

R

E N m c J kg K k W m K

kg m b m a m s b a m

h W m K K T T K

ν

ρ
α − −

= ⋅ = = ⋅° = ⋅°

= ⋅ = = = − =

= ⋅° = ⋅ ° = = °

 (15.82)  

In this case the graphics function ( )g ω  given by equation (15.69) is reported below: 

 
 
By fixed  m= 20,  the eigenvalues mω  and corresponding values of constants integration mA  are 

reported in table 15.1: 

 
Table 15.1 – Eigenvalues mω  and corresponding values of constants integration mA  
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We reported the graphics of temperature function along the radial direction and in time: 
 

 

 
 

Fig. 15.7 -  Temperature function  versus the time 
 

 
 
 

Fig. 15.8 -  Temperature function along radial direction 
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We reported the graphic of radial displacement component function along the radial direction: 

 
 

 
 

Fig. 15.9 - Radial displacement distribution along radial direction 
 
 

We reported the graphics of stress components along the radial direction and in time: 
 

 

 
 

Fig. 15.10 - Radial stress distribution along radial direction 
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Fig. 15.11 -  Radial stress distribution in time  
 
 

 
 

Fig. 15.12 - Circumferential stress distribution along radial direction 
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Fig. 15.13 -  Circumferential stress distribution in time 
 
15.7.  Uncoupled thermo-elastic analysis in hollow sphere exposed to uniform heat flux 
Let us consider a hollow sphere with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. The surface r = a is kept perfectly insulated while the surface r = b is 
exposed, for t >0, to a constant , uniform heat input 0q . In this section, we determine the heat 

conduction, displacement and stress function in hollow sphere subjected to uniform heat input 0q  

applied on external surface, starting to initial temperature in solid equal to 0 RT T const= = . The 

differential equation related to heat conduction and the corresponding boundary conditions are 
reported below: 

                                                 
2

2

2 1
; , 0

T T T
a r b t

r r tr κ
∂ ∂ ∂+ = < < >

∂ ∂∂
 (15.83) 

 0, , 0,
T

k r a t
r

∂− = = >
∂

 (15.84) 

 0, , 0,
T

k q r b t
r

∂− = = >
∂

 (15.85) 

 0; , 0,T T a r b t= < < =  (15.86) 

This is an case of a problem involving a non-homogeneous boundary condition and, in particular, 
with the heat input specified over the entire boundary  surface. It is necessary  writing the solution 
in the follows form (see Chapter VII ) : 
 ( ) ( ) ( )0, ,S CT r t T t T r T r tξ= + + +  (15.87) 

where ST  satisfies the equations: 

 
2

2

2
; ,S Sd T d T

a r b
r d rd r

ξ
κ

+ = < <  (15.88) 

 0; ,Sd T
k r a

d r
− = =  (15.89) 
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 0; ,Sd T
k q r b

d r
− = =  (15.90) 

 ( ) ( )( )
2

2

0 0

sin 0
b

S S
V a

T r dV T r r drd d
π π

θ θ φ= =∫ ∫ ∫ ∫  (15.91) 

where ξ  may be determined either from the boundary conditions (15.89)-(15.91). CT  satisfies 

equations: 

 
2

2

2 1
; , 0C C CT T T

a r b t
r r tr κ

∂ ∂ ∂+ = < < >
∂ ∂∂

 (15.92) 

 0; , 0,CT
k r a t

r

∂− = = >
∂

 (15.93) 

 0; , 0,CT
k r b t

r

∂− = = >
∂

 (15.94) 

 ; , 0,C ST T a r b t= − < < =  (15.95) 

The solutions to equations (15.88) to (15.91) for ξ  and ST  are: 

         

( ) ( ) ( )

( ) ( )
( )

( )( )

2 1
1 2

2 4 3 2 2 3 42 3 2
00 0

1 23 3 3 3 3 3 2 2

6 ,

3 6 63
, , ,

10

S v

v

T r c k r r A A

b q a a b a b ab bb q a b q
A A

c b a b a k k b a a ab b

ρ ξ

ξ
ρ

− = + + 

+ + + +
= − = − =

− − − + +

 (15.96) 

The parameter ξ  is equal to ratio between total heat and internal energy of hollow sphere: 

      ( ) ( ) ( ) ( ) ( ) ( )2 3 3 2 3 3
0 03 , 4 , 4 3 ,v vb q c b a q S c V S b V b aξ ρ ρ π π = − − = − = = −

 
 (15.97) 

where S and V are area of external surface and volume of hollow sphere, respectively. The solution 
to the problem for CT  is found in much the same says way as was followed in section 10.5. The 

problem is therefore on with homogeneous differential equation and boundary conditions and may 
be treated by the method separation of variables. We can select a particular solution of the 
differential equation and boundary conditions in the form: 
 ( ) ( ) ( ),CT r t r tϕ ψ=  (15.98) 

By substituting the function (15.98) in eqs.(15.92)-(15.94), we obtain: 

 
2

2
2

2
0;

d d

r d rd r

ϕ ϕ ω ϕ+ + =  (15.99) 

 0; ,
d

r a
d r

ϕ = =  (15.100) 

 0; ,
d

x b
d r

ϕ = =  (15.101) 

And to the following equation for ( )tψ : 

 2 0
d

dt

ψ ω κψ+ =  (15.102) 

The general solution of  (15.102) is:  

 ( ) 2tt e κ ωψ −=  (15.103) 

The general solution of  (15.99)  is: 

 ( ) ( )1
1 2

i r i rr r C e C eω ωϕ − −= +  (15.104) 

where 1 2,C C  are constants integration. From (15.100) it is deduced that the constant 2C  is given 

by:  
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 ( ) ( )2 2 2 2
2 11 i aC i a a C e ωω ω = + +

 
 (15.105) 

The equations (15.100) and   (15.101) are an homogenous algebraic system as reported below : 

 [ ] 1

2

0

0

C

C

   
⋅ =   

  
Λ  (15.106) 

where the matrix [ ]Λ  is given by: 

 [ ] ( ) ( )
( ) ( )
1 1

1 1

ia ia

ib ib

ia e ia e

ib e ib e

ω ω

ω ω

ω ω
ω ω

−

−

 − +
=  − + 

Λ  (15.107) 

The algebraic system (15.106) admit not trivial solution if the determinant of the matrix [ ]Λ  is 

equal to zero. By imposing this condition, we obtain the transcendental equation in unknown 
parameter ω : 

                     [ ] ( ) ( ) ( ) ( ) ( )2det cos 1 sin 0g b a a b ab a bω ω ω ω ω   = = − − + + − =   Λ    (15.108) 

Finally, we can rewrite the equation (15.108) in follows manner: 

 ( ) ( ) ( )2tan 1a b a b abω ω ω   − = − +     (15.109) 

The roots of this transcendental equation (15.109) are an infinite number such, denoted here by 

, 1,2,....m mω = A  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding  

eigenfunctions or characteristic functions ( ) ( ) 1m mm r r Cϕ ϕ=  are, as calculated above,   

  ( ) ( ) ( ) ( )
( ) ( ) ( ){ }

2

2 2

1
cos sin cos 2 sin 2

1
m m m mm

i a
r r i r a r i a r

r a r

ω
ϕ ω ω ω ω

ω
+

     = + + − − −     +
 (15.110) 

The solution to the problem may therefore be written in the form: 

 ( ) ( ) 22 1
0 2 1

1

,
6

m tv
m m

m

c A
T r t T t r A C r e

k r
κ ωρ ξξ ϕ

∞
−

=
= + + + + + ∑  (15.111) 

where the coefficients 1mC  are determined by applying the initial condition (15.95) that yields the 

following relationship: 

 
( ) ( )

( )

2
2

0 0
1 2 2 2

0 0

sin

sin

b

S m
a

m b

m
a

T r r r drd d

C

r r drd d

π π

π π

ϕ θ θ φ

ϕ θ θ φ
= −

∫ ∫ ∫

∫ ∫ ∫

 (15.112) 

By substituting the constant 1mC  in equation (15.111), we obtain the expression of function 

temperature ( ),T r t . By applying the relationships in section 15.1 and 15.2, we obtain displacement 

function and stress function  in hollow sphere . The displacement function is given by eq. (15.4) 

( ) ( ) ( )

2

3 3
2 2 2

3 3 2 2

3 3
2 2 21

3 3 2 2
1

3 2 4

2 3 2

3 2 4

2 3 2
m

b r b

r S S S
r a a

b r b
tn

m m m R
m r a a

a b r
u t T r dr t T r dr t T r dr

b a r r

C a b r
r dr r dr r dr e T r

b a r r
ω κ

α λ µ µξ ξ ξ
λ µ λ µ

α λ µ µϕ ϕ ϕ α
λ µ λ µ

∞
−

=

  += + + + + + +  + +−    

  ++ + + −  + +−    

∫ ∫ ∫

∑ ∫ ∫ ∫

 (15.113) 

The radial stress is given by: 

      

( ) ( ) ( )

2

3 3
2 2 2

3 3 2 2

3 3
2 2 21

3 3 2 2
1

4 3 2

2

4 3 2

2
m

b r b

rr S S S
r a a

b r b
tm

m m m
m r a a

a b
t T r dr t T r dr t T r dr

a b r r

C a b
r dr r dr r dr e

a b r r
ω κ

µα λ µσ ξ ξ ξ
λ µ

µα λ µ ϕ ϕ ϕ
λ µ

∞
−

=

  += + + + − +  +−    

  ++ + −  +−    

∫ ∫ ∫

∑ ∫ ∫ ∫

 (15.114) 
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The circumferential stress is reported below: 

      

( ) ( )

( ) ( )( )

( )

3 3
2 2

3 3 2 2

2 3 3
3 3

3 3
2 2 2 3 31

3 3 2 2

2 3 2

2

2 3 2
2

2

2 3 2
2

2

b r

S S
r a

b

S S
a

b r b
m

m m m m
r a a

a b
t T r dr t T r dr

b a r r

t T r d a b t T
b a

C a b
r dr r dr r d a b

b a r r

θθ φφ
µ α λ µσ σ ξ ξ

λ µ

µ α λ µ ξ ξ ξ
λ µ

µα λ µ ϕ ϕ ϕ ξ ϕ
λ µ

  += = + + + +  +−    

  ++ + + − + +  +−    

 ++ + + + − +−  

∫ ∫

∫

∫ ∫ ∫
2

1

m t

m

e ω κ
∞

−

=


 
 

∑

(15.115)  

In explicit the displacement function is given by: 

     

( )
( )

( )
( ) ( ) ( ) 2

32 2
1 1 1 22 2

2
1 1 22 2 2

1

3 2
3 2

6 2 5

3 2
1 1

2
m m m

v
r

i r i r tm
m m m m m

m m

cN P
u N r t P r A A r r

kr r

Q
Q r C i r e C i r e e

r r
ω ω ω κ

α λ µ ρ ξ
λ µ

α λ µ
ω ω

ω λ µ

∞
− −

=

+   = + + + + + + +   +   

 +  + + + − + +  +  
∑

(15.116) 

where the constants integration 1 2,m mC C  are given by equations (15.112) and (15.105), 

respectively. The constants integrations 1 2 1 2 1 2, , , , ,m mQ Q P P N N  are determined by solving  the 

boundary conditions (15.5). In explicit these constants are given by : 

 

2 2

1 12 3 3

2 2 3

2 12 3 3

2
0

1 3 3

4 (1 )( ) (1 )( )
,

( )( )( 2 )

(3 2 ) ( )( ) ( )( )
,

( )( )( 2 )

3
,

( )

m m m

m m m

ia ia ib
m m m m

m m
m m

ia ib ia
m m m m

m m
m m

v

e e ia b i e ia i b
Q C

a b b i

e i a b i e i a i b b e
Q C

a b b i

b q
P

a b c

ω ω ω

ω ω ω

α µ ω ω ω ω
ω ω λ µ

α λ µ ω ω ω ω
ω ω λ µ

α
ρ

−

−

− − + + +

− − +

+ +

  =

 − − −  + +

+

−

=
− −

=
3 4 2 2

0
2 1 0 2 2 2 2

(3 2 ) (5 )
0, ( ), ,

( 2 ) 10( )( )R

q a b a ab b
P N T T N

k a b a ab b

α λ µα
λ µ

 + − −− −  + − + +
=


= =

 (15.117) 

In explicit the radial and circumferential stress components are given by: 

          

( ) ( )
( ) ( )

( )
( ) ( ){ }

( ) ( )
( )

( )
( )

2

3
1 2 0

2 31
2 1 2

1

13
1 2 2 3

2

2 3 2 2
3 2 4

2 2

2 3 2 2
3 2 4

2 3 15

14 3 2
3 2 4

2 1

m

m

m

rr R

tv
m m

m

i r
m

m m

m

r
m

i

N N r T T t

cA
A r Q Q r e

r k

C i r ei
t P P r

r C i r e

ω

ω κ

ω

αµ λ µ λ µσ λ µ µ ξ
λ µ µ

αµ λ µ ρ ξ λ µ µ
λ µ

αµ λ µ
λ µ µ

ω λ
ω

ωµ

−

∞
−−

=

−
−

+  += + − − − + +  

+  − + + + + − +  

  + ++
   + + − +   +  + − 

∑

2

1

m t

m

e ω κ
∞

−

=

 


  
∑

 (15.118) 

( ) ( )
( ) ( )

( )
( ) ( )( )

( ) ( )
( )

( )( )
( )( )

2

3
1 2 0

2 31
2 1 2

1

13
1 2 2 3

2

2 3 2 2
3 2 2

2 2

2 3 2 22
3 2 2

2 3 2 15

1 12 3 2
3 2 2

2 1

m

m

m

R

tv
m m

m

i r
m m m

i r
m m m m

N N r T T t

cA
A r Q Q r e

r k

C r i r e
t P P r

r C r r i e

θθ

ω κ

ω

ω

αµ λ µ λ µσ λ µ µ ξ
λ µ µ

αµ λ µ ρ ξ λ µ µ
λ µ

ω ωαµ λ µ
λ µ µ

ω λ µ ω ω

−

∞
−−

=

−
−

+  += + + − − + +  

+  − + + + + + +  

− + ++
 + + + +  + + − −

∑

2

1

m t

m

e ω κ
∞

−

=

     
    

∑

(15.119) 

The circumferential stress assumes asymptotic values in r = a and r = b  for  t → ∞ , as showed in 
figure 15.20. These asymptotic values are given by: 
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( )

( )

2 2 2
0

2 2 2

3 2 2 3
0

2 2 2

3 ( )( 3 )
, ,

(1 ) 10( )

( )(5 6 3 )
, ,

(1 ) 5( )

Eq b a b a ab b
r a t

k a ab b

Eq b b a a a b ab b
r b t

k a ab b

θθ

θθ

ασ
ν

ασ
ν

 − + += → ∞ =  − + + 

 − + + += → ∞ =  − + + 

 (15.120) 

For example, let us consider, a spherical tank constituted by steel, under uniform heat flux. The 
geometrical, mechanical and thermal parameters considered for spherical tank are reported below: 

 

9 2

3 3

2 5 1
0

210 10 / , 0.3, 440 / , 45 / ,

7.8 10 / , 10.5 , 10.0 , 0.5 ,

500 / , 1.2 10 , 300R

E N m c J kg K k W m K

kg m b m a m s b a m

q W m K T T K

ν
ρ

α − −

= ⋅ = = ⋅° = ⋅°

= ⋅ = = = − =

= − = ⋅ ° = = °

  

In this case the graphics function ( )g ω  given by equation (15.108) is reported below: 

 
 
By fixed  m= 20,  the eigenvalues mω  and corresponding values of constants integration mA  are 

reported in table 15.2: 
 

 
Table 15.1 – Eigenvalues mω  and corresponding values of constants integration mA  
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We reported the graphics of temperature, radial displacement and stress components along the 
radial direction and in time: 
 

 
 

Fig. 15.14 - Temperature function  versus the time 
 

 
 

Fig. 15.15 - Temperature function along radial direction 
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Fig. 15.16 - Radial displacement distribution versus the time 
 
 
 

 
 

Fig. 15.17 - Radial stress distribution along radial direction 
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Fig. 15.18 - Radial stress distribution in time  
 
 

 
 

Fig. 15.19  - Circumferential stress distribution along radial direction 
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Fig. 15.20 - Circumferential stress distribution in time 

 
15.8.  Approximate solution for hollow sphere exposed to uniform heat flux 
Let us consider a hollow sphere with inner radius “a” and outer radius “b” , subjected to uniform 
heat flux 0q  applied on external surface, but inner surface is kept perfectly insulated. In this section, 

we consider a hollow sphere with small thickness respect to radius: 
 ( ) , 1s s a b a a s= = − ≪  (15.121) 

In this case, it is possible to determine an approximate solution by applying the hypothesis (15.121). 
An approximate solution of transcendental equation (15.109) is given by: 
 ( ) ( ) ( ) ( )1 {1,2,....m m s m b a m a s m Nω π π π−≅ = − = ∀ ∈ }  (15.122) 

By substituting the equation (15.122) in to (15.110), we obtain the characteristic function : 

     ( ) ( )
( ) ( )2

cos sin {1,2,....
im

s
m a r m a r

r e m s m N
r m i s a s a s

π π π
ψ π

π
 − −    = − ∀ ∈    −      

}  (15.123) 

By substituting the characteristic function  ( )rψ  given by (15.123) in to equation (15.112), we 

obtain in explicit the integration constants 1 , {1,2,....mC m N∀ ∈ } , as reported below: 

      
( ) ( ) ( ) ( ){ }

( ) ( )

2 22 2 2
0

1

3

23 3

3 3 41 1 1 5 45 155

5 3 3

im
m s

m

mq a se s s s s s s s
C

m k m i s s s

π

π

π

π

−
+ + + + + − +     =

+ + +  

−
 (15.124) 

Now, by utilizing the equation (15.116) and (15.118), it is possible to determine symbolic 
expression of radial displacement, strain and stress components in hollow sphere. The approximate 
solution give possibility to make parametric analyses for hollow sphere. In this case the parameter 
considered are seven: Young’s modulus, Poisson’s ratio, linear thermal expansion coefficient, 
density, specific heat coefficient, thermal conductivity and ratio between thickness and radius of 
hollow sphere. In order to visualize the typical behaviour of a diffusive phenomenon, such as the 
non-stationary heat conduction described above, it can be useful thermal time constant Cτ  (thus 

characterizing heat transfer rates) depend strongly on particle size and on its thermal diffusivity 
/ vk cρ . In this case thermal time constant Cτ  is given by: 
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 2 1 2 2 1
C v vc s k c a s kτ ρ ρ− −= =  (15.125) 

We reported variation the maximum value assumed by θθσ  with parameter considered. By fixing 

the radius 10a m= , heat flux 2
0 1000q Wm−= and initial temperature 0 300RT T K= = ° , we obtain the 

following graphics: 

 
Fig. 15.21 -  Variation of Young’s modulus with fixed values of other parameters: 

6 1 1 1 1 1 30.3, 1.2 10 , 440 , 45 , 7800 , 0.01,vK c J kg K k Wm K kgm sν α ρ− − − − − − −= = ⋅ ° = ° = ° = =  

 
Fig. 15.22 -  Variation of Poisson’s ratio with fixed values of other parameters: 

6 1 1 1 1 1 3210 , 1.2 10 , 440 , 45 , 7800 , 0.01,vE GPa K c J kg K k Wm K kgm sα ρ− − − − − − −= = ⋅ ° = ° = ° = =  
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Fig. 15.23 -  Variation of linear thermal expansion coefficient with fixed values of other 
parameters: 1 1 1 1 3210 , 0.3, 440 , 45 , 7800 , 0.01,vE GPa c J kg K k Wm K kgm sν ρ− − − − −= = = ° = ° = =  

 

 
 

Fig. 15.24 - Variation of specific heat coefficient with fixed values of other parameters: 
6 1 1 1 3210 , 0.3, 1.2 10 , 45 , 7800 , 0.01,E GPa K k Wm K kgm sν α ρ− − − − −= = = ⋅ ° = ° = =  
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Fig. 15.25 -  Variation of thermal conductivity with fixed values of other parameters: 
6 1 1 1 3210 , 0.3, 1.2 10 , 440 , 7800 , 0.01,vE GPa K c J kg K kgm sν α ρ− − − − −= = = ⋅ ° = ° = =  

 

 
 

Fig. 15.26 - Variation of density with fixed values of other parameters: 
6 1 1 1 1 1210 , 0.3, 1.2 10 , 440 , 45 , 0.01,vE GPa K c J kg K k Wm K sν α − − − − − −= = = ⋅ ° = ° = ° =  
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Fig. 15.27 -  Variation of ratio s  with fixed values of other parameters: 
6 1 1 1 1 1 3210 , 0.3, 1.2 10 , 440 , 45 , 7800 ,vE GPa K c J kg K k Wm K kgmν α ρ− − − − − − −= = = ⋅ ° = ° = ° =  

 
15.9. Coupled thermo-elastic analysis in hollow sphere exposed to an ambient at zero 
temperature through a uniform boundary conductance 
Let us consider  a hollow sphere with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation as described in section 15.6. The surface r = a is kept perfectly insulated 
while the surface r = b is exposed, for t >0, to an ambient at zero temperature through a uniform 
boundary conductance h. The initial temperature (for  t = 0) of the hollow sphere  is 0 RT T const= =  

where 0RT > . We determine the heat conduction, displacement and stress function in hollow sphere 

under decreasing of  temperature from  0RT >  until  to zero. In this paragraph, by applying the 

equation of section 15.2,  the coupled thermo-elastic analyses is conducted. 
The differential equation related to heat conduction and the corresponding boundary conditions are 
reported below: 

 
( )3 2 2

3 2 2

12 2
, , 0

T T T T
a r b t

r r r tr r r

δ
κ
+∂ ∂ ∂ ∂+ − = < < >

∂ ∂ ∂∂ ∂
 (15.126) 

 0, , 0,
T

k r a t
r

∂− = = >
∂

 (15.127) 

 ; , 0,
T

k hT r b t
r

∂− = = >
∂

 (15.128) 

 ; , 0,RT T a r b t= < < =  (15.129) 

where 0 RT T=  is a suitable chosen reference temperature in initial condition (for t = 0). 

The problem is therefore on with homogeneous differential equation and boundary conditions and 
may be treated by the method separation of variables. As  in eq.(15.126), a particular solution of the 
differential equation and boundary conditions of the form: 
 ( ) ( ) ( ),T r t r tϕ ψ=  (15.130) 
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By substituting the function (15.130) in equations.(15.126)-(15.128), we obtain: 

 
( ) ( ) ( )3 2

2
3 2 2

2 2
0;

d r d r d r

r d rd r d r r

ϕ ϕ ϕ
ω + − − = 

 
 (15.131) 

 0; ,
d

k r a
d r

ϕ− = =  (15.132) 

 ; ,
d

k h x b
d r

ϕ ϕ− = =  (15.133) 

And to the following equation for ( )tψ : 

 
( )

( ) ( )
2

0
1

d t
t

dt

ψ κω ψ
δ

+ =
+

 (15.134) 

The general solution of  (15.134) is:  

 ( ) ( ) ( )2 1t
t e

κ ω δ
ψ

− +
=  (15.135) 

The general solution of  (15.131) is: 

 ( ) ( )1 2 3
1 i r i rr C e C e C
r

ω ωϕ −= + +  (15.136) 

where 1 2 3, ,C C C  are constants integration to determine . Then, the temperature solution is given by: 

 ( ) ( ) ( ) ( )2 11
1 2 3,

ti r i rT r t C e C e r C e
κ ω δω ω − +− − = + +   (15.137) 

By substituting the function (15.137), in equation (15.14), and by integrating in two times, respect 
to variable r,  we obtain in explicit the displacement function in hollow sphere: 

              

( ) ( )

( )
( ) ( ) ( ) ( ) ( )

2

2

14
2

2 3
13

1 22 2

3 2
1 1

2 3

t

r R

ti r i r

C
u T r e

r

C r
C i r e C i r e e

r

κ ω δ

κ ω δω ω

α

α λ µ ωω ω
λ µ ω δ

− +

− +−

= − + +

+  
+ − + + − +  

 (15.138) 

where 4C  is an other constant integration to determine. By recalling the boundary conditions 

reported in equations (15.5), (15.132) and (15.133), we obtain the homogeneous algebraic system in 
four unknown parameters1 2 3 4, , ,C C C C  as reported below: 
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By solving the first , third and fourth equations of (15.139), respect to constants 2 3 4, ,C C C , we 

obtain the follows solution: 
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The algebraic system (15.139) can to be rewritten in follows manner: 

 

11 12 13 14

21 22 23 24 2

31 32 33 34 3

41 42 43 44 4

1 0

0
,

0

0

C

C

C

C

Φ Φ Φ Φ     
     Φ Φ Φ Φ     ⋅ =
     Φ Φ Φ Φ
     Φ Φ Φ Φ    

 (15.141) 

where the elements of matrix ij Φ   are given by following expressions: 

            
( ) ( )

11 12 13 14 21
1

2

22 23 24 31
1 1

3 2 2

32 33 34

41

(1 ), (1 ), (1 ),

(1 ), , (1 ),

3 1 2 1 3 ( 2 )
(1 ), , ,

12 (3 2 )

(1

ia ia ib

ib ia

ia

ib

hb
e ia e ia e ib

k

hb hb
e ib e ia

k k

ia i
e ia

e i

ω ω ω

ω ω

ω

ω

ω ω ω

ω ω

ω δ λ δ µ ω λ µω
δµ α λ µ

−

−

−

Φ − Φ + Φ Φ Φ − −

Φ − + Φ − Φ Φ +

+ + +  + Φ − Φ Φ
+

Φ +

= = = = 0, =

= = = 0, =

= = =

=
( ) ( )3 2

42 43

2

44

3 1 2 1 3
), (1 ), ,

12

( 2 )
,

(3 2 )

ib
ib

b e ib

i

ω ω δ λ δ µ
ω ω

δµ
ω λ µ
α λ µ

− + + +  Φ − Φ

+Φ
+

= =

=

 (15.142) 

The algebraic system (15.141) admit not trivial solution if the determinant of the matrix ij Φ   is 

equal to zero. By imposing this condition, we obtain the transcendental equation in unknown 
parameter ω : 

 ( )det 0 0ij g ω Φ = ⇒ =   (15.143) 

 The roots of this transcendental equation (15.143) are an infinite number such, denoted here by 

, 1,2,....m mω = A  leading to characteristic values 2
m mλ ω= − . The corresponding  characteristic 

functions ( )m rϕ  are, as calculated above, 

 ( ) ( ) 2 3

1 1 1

1
m mm i r i rm m

m
m m m

r C C
r e e

C r C C
ω ωϕ

ϕ − 
= = + + 

 
 (15.144) 

The solution to the problem may therefore be written in the form: 

                                     ( ) ( ) ( ) ( )2 11
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, mm m
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 ∑  (15.145) 

where the coefficients 2 3,m mC C  depend of coefficients 1mC  as showed equations (15.140). The 

coefficient 1mC  are determined by applying the initial condition (15.129) that yields the following 

relationship: 
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 (15.146) 

Finally, the displacement function can to be rewritten as follows:  
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It is important to note that if the parameter 0δ →  in expressions of temperature and radial 
displacement, by means the solution (15.140), we obtain the solution for uncoupled problem.  
For example, let us consider, a spherical tank constituted by Rubidio, under decreasing  
temperature. In this case the parameter 0.048δ =  and then the solution for coupled is very closed 
respect to uncoupled problem. The geometrical, mechanical and thermal parameters considered for 
spherical tank are reported below: 

                                 

9 2

3

2 5 1
0

2.4 10 / , 0.3, 363 / , 58.2 / ,

1532 / , 1.05 , 1.00 , 0.05 ,

50 / , 9 10 , 293 ,R
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kg m b m a m s b a m

h W m K K T T K

ν
ρ

α − −

= ⋅ = = ⋅° = ⋅ °

= = = = − =

= ⋅° = ⋅ ° = = °

 (15.148) 

In this case the graphics function ( )g ω  given by equation (15.143) is reported below: 

 
By fixed  m= 20,  the eigenvalues mω  and corresponding values of constants integration mA  are 

reported in table 15.3: 

 
Table 15.3 – Eigenvalues mω  and corresponding values of constants integration mA  
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We reported the comparison between uncoupled and coupled solution obtained for temperature, 
radial displacement and stress components along the radial direction and in time: 

 
Fig. 15.28 -  Temperature function  versus the time 

 

 
 

Fig. 15.29 -  Temperature function along radial direction 
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Fig. 15.30 - Radial displacement distribution along radial direction 
 
 
 

 
 

Fig. 15.31 - Radial stress distribution along radial direction 
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Fig. 15.32 -  Radial stress distribution in time  
 
 

 
 

Fig. 15.33 -  Circumferential stress distribution along radial direction 
 



CHAPTER XV: Thermal stress in hollow spheres 

F. Carannante 345 

 
 

Fig. 15.34 - Circumferential stress distribution in time 
 
 
15.10.  Coupled thermo-elastic analysis in hollow sphere exposed to uniform heat flux 
Let us consider  a hollow sphere with inner radius “a” and outer radius “b” , subjected to radial 
temperature variation. The surface r = a is kept perfectly insulated while the surface r = b is 
exposed, for t >0, to a constant , uniform heat input 0q  . The initial temperature of the hollow 

sphere  is zero. In this section, we determine the heat conduction, displacement and stress function 
in hollow sphere subjected to uniform heat input 0q  applied on external surface, starting to initial 

temperature in solid equal to 0 RT T const= = . In this paragraph, by applying the equation of section 

15.2,  the coupled thermo-elastic analyses is conducted. The differential equation related to heat 
conduction and the corresponding boundary conditions are reported below: 

                                                 
( )3 2 2

3 2 2

12 2
; , 0

T T T T
a r b t

r r r tr r r

δ
κ
+∂ ∂ ∂ ∂+ − = < < >

∂ ∂ ∂∂ ∂
 (15.149) 

 0, , 0,
T

k r a t
r

∂− = = >
∂

 (15.150) 

 0, , 0,
T

k q r b t
r

∂− = = >
∂

 (15.151) 

 0; , 0,T T a r b t= < < =  (15.152) 

This is an case of a problem involving a non-homogeneous boundary condition and, in particular, 
with the heat input specified over the entire boundary  surface. It is necessary  writing the solution 
in the follows form (see Chapter VII) : 
 ( ) ( ) ( )0, ,S CT r t T t T r T r tζ= + + +  (15.153) 

where ST  satisfies the equations: 

 
3 2

3 2

2 2
0; ,S S Sd T d T d T

a r b
r r d rd r d r

+ − = < <  (15.154) 
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where ζ  may be determined either from the boundary conditions (15.155)-(15.157). CT  satisfies 

equations: 
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 (15.159) 

 0; , 0,CT
k r b t

r

∂− = = >
∂

 (15.160) 

 ; , 0,C ST T a r b t= − < < =  (15.161) 

By applying the similar procedure showed in section 15.7, we obtain the temperature function and 
radial displacement components, as reported below: 
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 where 1Pζ ξ= + , 1 2 1 2 1 2, , , , , ,A A N N P P ξ  and 1 2 3 4, , ,m m m mC C C C  are integration constants. By 

applying the boundary conditions reported in equations (15.155) to (15.157), and (15.159),(15.160) 
and (15.5), it is possible to determine the integration constants reported above as function of 
parameters 1mC  and mω : 
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he parameters mω  can to be determined by imposing conditions reported in equation (15.143) and 

fixed h = 0. The roots of this transcendental equation (15.143) are an infinite number such, denoted 

here by , 1,2,....m mω = A  leading to eigenvalues or characteristic values 2
m mλ ω= − . The 
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corresponding  eigenfunctions or characteristic functions ( )m rϕ  are  determined by applying the 

equation (15.144) . Finally the parameters 1mC  are determined by applying the relations (15.146).  

In this case the graphics function ( )g ω  given by equation (15.143) is reported below: 
 

 
 
By fixed  m= 20,  the eigenvalues mω  and corresponding values of constants integration mA  are 

reported in table 15.4: 
 

 
Table 15.4 – Eigenvalues mω  and corresponding values of constants integration mA  

 
We reported the comparison between uncoupled and coupled solution obtained for temperature, 
radial displacement and stress components along the radial direction and in time: 
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Fig. 15.35 -  Temperature function  versus the time 
 

 
 

Fig. 15.36 - Temperature function along radial direction 
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Fig. 15.37 - Radial displacement distribution along radial direction 
 
 

 
 

Fig. 15.38 -  Radial stress distribution along radial direction 
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Fig. 15.39 -  Radial stress distribution in time  
 

 
 

Fig. 15.40 -  Circumferential stress distribution along radial direction 
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Fig. 15.41 -  Circumferential stress distribution in time 
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CHAPTER XVI 
THERMAL STRESSES IN PLATES 

 
16.1.  Introduction 
Thin plates are initially flat structural members bounded by two parallel planes, called faces, and a 
cylindrical surface, called an edge or boundary. The generators of the cylindrical surface are 
perpendicular to the plane faces. The distance between the plane faces is called the thickness “s” of 
the plate. It will be assumed that the plate thickness is small compared with other characteristic 
dimensions of the faces (length, width, diameter, etc.). Geometrically, plates are bounded either by 
straight or curved boundaries (figure 16.1). The static or dynamic loads carried by plates are 
predominantly perpendicular to the plate faces. The load-carrying action of a plate is similar, to a 
certain extent, to that of beams or cables; thus, plates can be approximated by a gridwork of an 
infinite number of beams or by a network of an infinite number of cables, depending on the flexural 
rigidity of the structures. This two-dimensional structural action of plates results in lighter 
structures, and therefore offers numerous economic advantages. The plate, being originally flat, 
develops shear forces, bending and twisting moments to resist transverse loads. Because the loads 
are generally carried in both directions and because the twisting rigidity in isotropic plates is quite 
significant, a plate is considerably stiffer than a beam of comparable span and thickness. So, thin 
plates combine light weight and a form efficiency with high load-carrying capacity, economy, and 
technological effectiveness. Because of the distinct advantages discussed above, thin plates are 
extensively used in all fields of engineering. Plates are used in architectural structures, bridges, 
hydraulic structures, pavements, containers, airplanes, missiles, ships, instruments, machine parts, 
etc. We consider a plate, for which it is common to divide the thickness “s”  into equal halves by a 
plane parallel to its faces. This plane is called the middle plane (or simply, the mid-plane) of the 
plate. Being subjected to transverse loads, an initially flat plate deforms and the mid-plane passes 
into some curvilinear surface, which is referred to as the middle surface. We will consider only 
plates of constant thickness. For such plates, the shape of a plate is adequately defined by describing 
the geometry of its middle plane. Depending on the shape of this mid-plane, we will distinguish 
between rectangular, circular, elliptic, etc., plates. A plate resists transverse loads by means of 
bending, exclusively. The flexural properties of a plate depend greatly upon its thickness in 
comparison with other dimensions. Plates may be classified into three groups according to the ratio 
a/s, where “a” is a typical dimension of  plate in plane and “s” is a plate thickness. These groups 
are: 

1. The first group is presented by thick plates having ratios 8 10
a

s
≤ − . The analysis of such 

bodies includes all the components of stresses, strains, and displacements as for solid bodies 
using the general equations of three-dimensional elasticity. 

2. The second group refers to plates with ratios 80 100
a

s
≥ − . These plates are referred to as 

membranes and they are devoid of flexural rigidity. Membranes carry the lateral loads by 
axial tensile forces N (and shear forces) acting in the plate middle surface. These forces are 
called membrane forces; they produce projection on a vertical axis and thus balance a lateral 
load applied to the plate-membrane. 

3. The most extensive group represents an intermediate type of plate, so called thin plate with 

80 100 8 10
a

s
− ≤ ≤ − . Depending on the value of the ratio w/s, the ratio of the maximum 

deflection of the plate to its thickness, the part of flexural and membrane forces here may be 
different.  

Therefore, this group, in turn, may also be subdivided into two different classes. 
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a. Stiff plates. A plate can be classified as a stiff plate if 0.2
w

s
≤ . Stiff plates are flexurally rigid 

thin plates. They carry loads two dimensionally, mostly by internal bending and twisting 
moments and by transverse shear forces. The middle plane deformations and the membrane 
forces are negligible. In engineering practice, the term plate is understood to mean a stiff plate, 
unless otherwise specified. The concept of stiff plates introduces serious simplifications that are 
discussed later. A fundamental feature of stiff plates is that the equations of static equilibrium for 
a plate element may be set up for an original (undeformed) configuration of the plate. 

b. Flexible plates. If the plate deflections are beyond a certain level, 0.3
w

s
≥ , then, the lateral 

deflections will be accompanied by stretching of the middle surface. Such plates are referred to 
as flexible plates. These plates represent a combination of stiff plates and membranes and carry 
external loads by the combined action of internal moments, shear forces, and membrane (axial) 
forces. Such plates, because of their favorable weight-to-load ratio, are widely used by the 
aerospace industry. When the magnitude of the maximum deflection is considerably greater than 

the plate thickness, the membrane action predominates. So, if 5
w

s
> , the flexural stress can be 

neglected compared with the membrane stress. Consequently, the load-carrying mechanism of 
such plates becomes of the membrane type, i.e., the stress is uniformly distributed over the plate 
thickness. 

The above classification is, of course, conditional because the reference of the plate to one or 
another group depends on the accuracy of analysis, type of loading, boundary conditions, etc. We 
consider only small deflections of thin plates, a simplification consistent with the magnitude of 
deformation commonly found in plate structures. 
The calculations of thermo-elastic stresses and deflections in thin plates discussed in this chapter 
bear a close resemblance to the corresponding ones of isothermal plate theory, and in fact frequent 
reference will be made to isothermal derivations and results. In particular, the reader will be 
referred to the book by S. Timoshenko on Theory of Plates and Shells. No attempt will be made to 
reproduce at length results readily accessible elsewhere, although some repetition is of course 
unavoidable. The derivations of this chapter are restricted to those of small-deflection theory and 
the effect on the deflections of loads in the plane of the plate is neglected.  
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Fig. 16.1 – Thin plate  
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16.2.  Basic plate field equations  
 
16.2.1.  Strain-displacement equations 
Historically the first model of thin plate bending was developed by Lagrange, Poisson and 
Kirchhoff. It is known as the Kirchhoff plate model, of simply Kirchhoff plate, in honor of the 
German scientist who “closed” the mathematical formulation through the variational treatment of 
boundary conditions. Let us consider a load-free plate, shown in Figure.16.2, in which the x-y plane 
coincides with the plate’s mid-plane and the z coordinate is perpendicular to it and is directed 
downwards. The fundamental assumptions of the linear, elastic, small-deflection theory of  bending 
for thin plates may be stated as follows: 

1. The material of the plate is elastic, homogeneous, and isotropic. 
2. The plate is initially flat. 
3. The deflection (the normal component of the displacement vector) of the mid-plane is small 

compared with the thickness of the plate. The slope of the deflected surface is therefore very 
small and the square of the slope is a negligible quantity in comparison with unity. 

4. The straight lines, initially normal to the middle plane before bending, remain straight and 
normal to the middle surface during the deformation, and the length of such elements is not 
altered. This means that the vertical shear strains xzγ  and yzγ  are negligible and the normal 

strain zε  may also be omitted. This assumption is referred to as the ‘‘hypothesis of straight 

normals.’’ 
5. The stress normal to the middle plane, zσ , is small compared with the other stress 

components and may be neglected in the stress–strain relations. 
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Fig. 16.2 – Displacement components u,v and w in thin plate 
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Many of these assumptions, known as Kirchhoff’s hypotheses, are analogous to those associated 
with the simple bending theory of beams. These assumptions result in the reduction of a three-
dimensional plate problem to a two-dimensional one. Consequently, the governing plate equation 
can be derived in a concise and straightforward manner. The plate bending theory based on the 
above assumptions is referred to as the classical or Kirchhoff’s plate theory.  
It was assumed in the foregoing discussions that the temperature of an elastic plate remains constant 
and has the same value at all points of the plate; hence, temperature effects were not taken into 
consideration. If the temperature of the plate is raised or lowered it expands or contracts, 
respectively. Within a certain temperature change, such expansion or contraction, for most 
structural materials, is directly proportional to the change in temperature. When a free plate made of 
homogeneous isotropic material is heated uniformly, there appear normal strains but no thermal 
stresses. The thermal stresses will occur in the following cases: first, if the plate experiences a non-
uniform temperature field; secondly, if the displacements are prevented from occurring freely 
because of the restrictions placed on the boundary even with a uniform temperature; and thirdly, if 
the material displays anisotropy even with uniform heating – for example, if a heated plate consists 
of several layers of different materials (e.g., bimetallic plates). 
Let us assume that the temperature of an infinitesimal plate element is increased from RT  to T. The 

initial temperature, RT , is defined as a reference state of uniform temperature distribution which 

does not produce stress or strain in the plate. The thermal field, ( ), ,T x y z , is assumed to be known 

from a solution of the heat conduction problem. A thin plate of thickness “s” is considered, whose 
median plate lies in the x-y plane, with z denoting the distance from this plane. The displacements, 
in the x,y and z directions, of points on the median plate are denoted by u,v, and w respectively. 
The normal component of the displacement vector, w (called the deflection), and the lateral 
distributed load p are positive in the downward direction (Figure 16.2). As it follows from the 
assumption (4): 
 0, 0, 0,z yz xzε γ γ= = =  (16.1) 

The displacement-strain relationships are given by: 

 

, , ,

, , ,

x y z

yz xz xy

u v w

x y z

w v w u u v

y z x z y x

ε ε ε

γ γ γ

∂ ∂ ∂= = =
∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂= + = + = +
∂ ∂ ∂ ∂ ∂ ∂

 (16.2) 

Integrating the expressions (16.2) and taking into account equation (16.1), we obtain: 

 

( )

( )

( )

0

0

, ,

, ,

, ,

w
u u x y z

x
w

v v x y z
y

w w x y

∂ = − ∂


∂ = − ∂
 =



 (16.3) 

We can also represent the displacement components u,v in the form: 
 ( ) ( )0 0, , ,x yu u x y z v v x y zϑ ϑ= − = −  (16.4) 

where : 

 , ,x y

w w

x y
ϑ ϑ∂ ∂= =

∂ ∂
 (16.5) 

are the angles of rotation of the normal to the middle surface in the Ox-z and Oy-z plane, 
respectively. Owing to the assumption (4), xϑ  and yϑ  are also slopes of the tangents to the traces of 

the middle surface in the abovementioned planes. The strain components are calculated on the basis 
of the assumptions of plane stress and that sections which are plane and perpendicular to the middle 
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surface remain so after heating. By substituting the displacement components (16.3) in equation 
(16.2), we obtain the non-zero strain components: 

 
2 2 2

0 0 0 0
2 2

, , 2 ,x y xy

u v u vw w w
z z z

x x y y y x x y
ε ε γ∂ ∂ ∂ ∂∂ ∂ ∂= − = − = + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (16.6) 

where ν  is the Poisson’s ratio, α  is the linear thermal expansion coefficient and RT  is the reference 

temperature. Over a moderate temperature change, α  remains reasonably constant and represents 
an experimentally determined material property. For the sake of simplicity, we assume that the 
material properties of the plate are not affected by temperature changes: i.e., the modulus of 
elasticity, E, and Poisson’s ratio, ν , are assumed to be constant. In general, a temperature increase 
or decrease produces changes in a plate’s curvature and in the dimensions of the plate’s middle 
surface. The second derivatives of the deflection on the right-hand side of equation (16.6) have a 
certain geometrical meaning. 
The second derivative of the deflection 2 2w x∂ ∂ , will define approximately the curvature of the 

section along the x axis, xχ . Similarly 2 2w y∂ ∂  defines the curvature of the middle surface yχ  

along the y axis. The curvaturesxχ  and yχ  characterize the phenomenon of bending of the middle 

surface in planes parallel to the Ox-z and Oy-z coordinate planes, respectively. They are referred to 
as bending curvature and are defined by 

 
2 2

2 2
, ,x y

w w

x y
χ χ∂ ∂= − = −

∂ ∂
 (16.7) 

We consider a bending curvature positive if it is convex downward, i.e., in the positive direction of 
the z axis. The curvature 2 2w x∂ ∂ can be also defined as the rate of change of the angle x w xϑ = ∂ ∂  

with respect to distance x along this curve. However, the above angle can vary in the y direction 
also. By analogy with the torsion theory of rods, the derivative 2w x y∂ ∂ ∂  defines the warping of 
the middle surface at a point with coordinates x and y is called the twisting curvature with respect to 
the x and y axes and is denotes by xyχ . Thus  

                                                                  
2

xy

w

x y
χ ∂=

∂ ∂
 (16.8) 

0u  and 0v  represent the displacement components of point of the middle surface along x and y axis, 

respectively (z = 0). Then, the deformation components of point of the middle surface are given by: 

 0 0 00 0 0 0, , ,x y xy

u v u v

x y y x
ε ε γ∂ ∂ ∂ ∂= = = +

∂ ∂ ∂ ∂
 (16.9) 

Taking into account equations (16.7), (16.8) and (16.9) we can rewrite equation (16.6) as follows: 
 0 0 0, , ,x x x y y y xy xy xyz z zε ε χ ε ε χ γ γ χ= − = − = −  (16.10) 

 
16.2.2. Stresses and stress resultants 
In the case of a three-dimensional state of stress, stress and strain are related by the of the 
generalized Hooke’s law. As was mentioned earlier, Kirchhoff’s assumptions (4) brought us to 
equation (16.1) . From a mathematical standpoint, this means that the three new equations (16.1) are 
added to the system of governing equations of the theory of elasticity. So, the latter becomes 
overdetermined and, therefore, it is necessary to also drop three equations. As a result, the three 
relations out of six of Hookes’ law for strains (16.1) are discarded. Moreover, the normal stress 
component 0zσ = . Solving Hookes’ law for stress components xσ , yσ  and xyτ  yields: 

 
( )( ) ( ) ( )

( )

2 2
1 , 1 ,

1 1

,
2 1

x x y R y y x R

xy xy

E E
T T T T

E

σ ε νε α ν σ ε νε α ν
ν ν

τ γ
ν

   = + − + − = + − + −   − −

=
+

  (16.11) 
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where E is the Young’s modulus,. Introducing the plate curvatures, equation (16.7),(16.8),(16.9)  
and using equation  (16.10), the above equations appear as follows: 

 

( ) ( )

( ) ( )

( )

2 2
0 0

2 2 2

2 2
0 0

2 2 2

2
0 0

1 ,
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1 ,
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2 ,
2 1
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y x y x
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σ ν ν α ν
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σ ν ν α ν
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τ
ν

  ∂ ∂ ∂ ∂= + − + − + −  − ∂ ∂ ∂ ∂  

  ∂ ∂ ∂ ∂= + − + − + −  − ∂ ∂ ∂ ∂  

 ∂ ∂ ∂= + − + ∂ ∂ ∂ ∂ 

 (16.12) 

It is seen from equation (16.12) that Kirchhoff’s assumptions have led to a completely defined law 
of variation of the stresses through the thickness of the plate. Therefore, as in the theory of beams, it 
is convenient to introduce, instead of the stress components at a point problem, the total statically 
equivalent forces and moments applied to the middle surface, which are known as the stress 
resultants and stress couples. The stress resultants and stress couples are referred to as the axial 
forces ,x yN N  and xyN , as the shear forces, ,x yQ Q , as well as the bending and twisting moments 

, ,x y xyM M M , respectively. Thus, Kirchhoff’s assumptions have reduced the three-dimensional 

plate straining problem to the two-dimensional problem of straining the middle surface of the plate. 
We can express the bending and twisting moments, axial forces, as well as the shear forces, in terms 
of the stress components, i.e., 

           

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

/2 /2 /2

/2 /2 /2

, , , , ,

, , ,

s s s s s

x x y y xy xy x xz y yz

s s s s s

s s s

x x y y xy xy

s s s

N dz N dz N dz Q dz Q dz

M zdz M zdz M zdz

σ σ τ τ τ

σ σ τ

− − − − −

− − −

= = = = =

= = =

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫

 (16.13) 

Because of the reciprocity law of shear stresses (xy yxτ τ= ), the twisting moments on perpendicular 

faces of an infinitesimal plate element are identical, i.e., xy yxM M= . The sign convention for the 

shear forces and the twisting moments is the same as that for the shear stresses. A positive bending 
moment is one which results in positive (tensile) stresses in the bottom half of the plate. 
Accordingly, all the moments and the shear forces acting on the element in figure 16.2 are positive. 
Note that the relations (16.13) determine the intensities of axial forces, moments and shear forces, 
i.e., moments and forces per unit length of the plate mid-plane. Therefore, they have dimensional 
units as [force*length/length] or simply [force] for moments and [force/length] for shear and axial 
forces, respectively. It is important to mention that while the theory of thin plates omits the effect of 
the strain components xz xz Gγ τ=  and yz yz Gγ τ=  on bending, the vertical shear forces ,x yQ Q  are 

not negligible. In fact, they are necessary for equilibrium of the plate element. Substituting equation 
(16.12) into equation (16.13) and integrating over the plate thickness, we derive the following 
formulas for the stress resultants and couples in terms of the curvatures and the deflection:  

                          ( ) ( )
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 ∂ ∂ ∂= + = − + ∂ ∂ ∂ ∂ 
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 (16.14) 

 where  
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 ( )
3

212 1

E s
D

ν
=

−
 (16.15) 

is the flexural rigidity of the plate. It plays the same role as the flexural rigidity EI in beam bending. 
Note that D > EI; hence, a plate is always stiffer than a beam of the same span and thickness. The 
symbols TN  and  TM  denote the quantities : 

 ( ) ( )
/2 /2

/2 /2

,
s s

T R T R

s s

N E T T dz M E T T z dzα α
− −

= − = −∫ ∫  (16.16) 

are termed the thermal stress resultants, i.e., the thermal equivalent normal force and bending 
moment, respectively. It is often convenient to express the stresses directly in terms of the forces 
and moments; this is done by means of the formulas: 
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 (16.17) 

which are derived by substituting (16.6) into (16.11), and eliminating the displacement derivates by 
means of (16.14). Determination of the remaining three stress components ,xz yzτ τ  and zσ , through 

the use of Hooke’s law is not possible due to the fourth and fifth assumptions, since these stresses 
are not related to strains. The differential equations of equilibrium for a plate element under a 
general state of stress (assuming that the body forces are zero) serve well for this purpose, however. 
If the faces of the plate are free of any tangent external loads, then ,xz yzτ τ  are zero for / 2z s= ± . In 

case of 0 0 0u v= = , from the first two equilibrium equations and equations (16.11) and (16.12), the 

shear stresses ,xz yzτ τ  are: 
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∫ ∫

∫ ∫

 (16.18) 

where 2∇  is the Laplace operator, given by: 

 
2 2

2
2 2

w w
w

x y

∂ ∂∇ = +
∂ ∂

 (16.19) 

It is observed from equations (16.17) and (16.18) that the stress components xσ , yσ  and xyτ  (in-

plane stresses) vary linearly over the plate thickness, whereas the shear stresses ,xz yzτ τ  vary 

according to a parabolic law. The component zσ  is determined by using the third of equilibrium 

equation, upon substitution of ,xz yzτ τ  from equations (16.18) and integration. As a result, we obtain: 

 ( ) ( )
/2 /23 2 3

2 2 2

2
/2 /212 4 3 12 1

s s
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s s

E s s z z E
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∫ ∫  (16.20) 
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Fig. 16.3 – Stress components in thin plate  

 
16.2.3.  Equilibrium equations 
The components of stress (and, thus, the stress resultants and stress couples) generally vary from 
point to point in a loaded plate. These variations are governed by the static conditions of 
equilibrium. Let us consider equilibrium of an element s dx dy⋅ ⋅  of the plate subject to a vertical 

distributed load of intensity ( , )zp x y and distributed load ( , )xp x y  and  ( , )yp x y  applied to an upper 

surface of the plate, as shown in figures 16.3 and  16.4. Since the stress resultants and stress couples 
are assumed to be applied to the middle plane of this element, a distributed loads are transferred to 
the mid-plane. Note that as the element is very small, the force and moment components may be 
considered to be distributed uniformly over the mid-plane of the plate element: in figures 16.3 and 
16.4 they are shown, for the sake of simplicity, by a single vector. As shown in figures 16.3 and 
16.4, in passing from the section x to the section x + dx an intensity of stress resultants changes by a 
value of partial differential. The same is true for the sections y and y+dy . For the system of forces 
and moments shown in figures 16.3 and 16.4, the following three independent conditions of 
equilibrium may be set up. The determination of six quantities , , , , ,x y xy x y xyN N N M M M  defined in 

equation (16.13) is most conveniently carried out in two steps: in first of these the two-dimensional 
equilibrium  and compatibility equations in the x-y plane are used to determine forces , ,x y xyN N N , 

and in the second, the equilibrium equation of forces in the z direction and of bending and twisting 
moments , ,x y xyM M M  are written in terms of displacements so as to determine the deflection w 

and hence, from equations (16.14), the moments M. An outline of these derivations will now be 
given. The equations of equilibrium in the plane of the plate are: 

 ( ) ( ), 0, , 0,xy xy yx
x y

N N NN
p x y p x y

x y x y

∂ ∂ ∂∂ + + = + + =
∂ ∂ ∂ ∂

 (16.21) 

In the case 0x yp p= = , it is possible to solve equations (16.21) by introducing the existence of a 

stress-function ( ),F x y  defined by: 
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2 2 2

2 2
, , ,x y xy

F F F
N N N

y x x y

∂ ∂ ∂= = = −
∂ ∂ ∂ ∂

 (16.22) 

The determination of the solution F requires the solution of a two-dimensional thermo-elastic 
problem of plane stress. In particular, F must correspond to displacement ( )0 ,u x y and ( )0 ,v x y , 

satisfying the first three equations of (16.14) . Alternative formulations of this type of problem is 
reported below. For a simply connected plate, F must satisfy the equation of compatibility , namely  

 ( )
2 2 2

2 2
2 1 0x y T xy y x TN N N N N N N

y s x y t x s

ν ν
ν

− + − +     ∂ ∂ ∂− + + =     ∂ ∂ ∂ ∂     
 (16.23) 

Which is easily put in terms of F by introducing equations (16.22). For plates of constant thickness, 
equation (16.23) reduces to: 
 4 2

TF N∇ = −∇  (16.24) 

The equation (16.24) is the governing differential equation for the two-dimensional thermo-elastic 
problem of plane stress for thin plates. The second part of the solution, namely the determination of 
the transverse displacement w, is the more direct concern of plate theory. The basic equations for 
this part of the calculations will now be outlined. The equilibrium equations of forces in the z 
direction and of moments about the x and y axes acting on an element of volume s dx dy⋅ ⋅  fo the 
plates as shown figure 16.4 are, respectively, as follows: 
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 (16.25) 

Where xQ  and yQ  are shear forces per unit of length acting on a surface whose normal is indicated 

by the subscript, and ( ),zp x y  is the distributed transverse loading for unit of area. With the 

substitution of xQ  and yQ  from second and third of (16.25) into the first of these, the equilibrium 

equation of forces in the z direction assumes the form: 

 ( )
2 22

2 2
2 ,xy yx

z

M MM
p x y

x x y y

∂ ∂∂ − + = −
∂ ∂ ∂ ∂

 (16.26) 

The governing equation for the deflection w is now obtained by substituting into this result the 
expressions for the moments of equations (16.14). The results is: 

    ( ) ( )
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 (16.27) 

For plates of uniform thickness , this equation reduces to: 

 ( )
2

4 ,
1

T
z

M
D w p x y

ν
∇∇ = −

−
 (16.28) 

where 

 ( ) ( ) ( ) ( )
4 4 4

4
4 2 2 4

2
x x y y

∂ ∂ ∂∇ = + +
∂ ∂ ∂ ∂

 (16.29) 

is commonly called the bi-harmonic operator. The (16.28) governing differential equation for the 
deflections for thin plate bending analysis based on Kirchhoff’s assumptions. This equation was 
obtained by Lagrange in 1811. Mathematically, the differential equation (16.28) can be classified as 
a linear partial differential equation of the fourth order having constant coefficients. If only the 
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effect of non-uniform heating on a free plate is desired, the loading ( ),zp x y may be set equal to 

zero and then (16.28) takes the form: 

 ( )
( )2

4 2 2
3 3

12 1 6

1
T

T T

M
w M M

D E s s

ν µ
ν

+∇∇ = − = − ∇ = − ∇
−

 (16.30) 

These equations show that the superposition of deflections due to temperature alone and those due 
to transverse loads alone is possible. Once a deflection function ( ),w x y  has been determined from 

equation (16.30), the stress resultants and the stresses can be evaluated by using equations (16.14) 
and (16.17). Since we have assumed the validity of Kirchhoff’s small-deflection theory, the 
governing equations of thermal bending, Equation (16.28), and thermal stretching or contracting, 
equation (16.24), are independent of each other. 
In order to determine the deflection function, it is required to integrate equation (16.30) with the 
constants of integration dependent upon the appropriate boundary conditions. We will discuss this 
procedure later. Expressions for the vertical forces xQ  and yQ , may now be written in terms of the 

deflection ( ),w x y  from equation (16.25) together with equation (16.14), as follows: 
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 (16.31) 
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Fig 16.4 - Axial forces ,x yN N  and xyN in thin plate 
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Fig 16.5 - Shear forces ,x yQ Q , bending moments ,x yM M  and twisting moment xyM  in thin plate 

 
16.2.4. Plate boundary conditions 
Equation (16.30) represents the governing equation of plate bending and must be solved under 
suitable boundary conditions at the edgs of the plate. The most frequently used of these conditions 
are listed below; in this discussion the coordinates (s,n) are, respectively, parallel to and normal to 
the edge of the plate. 
 
First case : For a built-in edge the deflection and its derivative along a normal to the edge must be 
zero: 

 0; 0
w

w
n

∂= =
∂

 (16.32) 

The normal derivative is related to the derivatives in the x and y directions by the formula: 

 cos sin
w w w

n x y
β β∂ ∂ ∂= +

∂ ∂ ∂
 (16.33) 

with the notation and sign convention of figure 16.6. 
 
Second case:  At a simply supported edge the deflection and the tangential component of the 
bending moment are zero, that is: 
 0; 0nw M= =  (16.34) 

In order to be used in conjunction with equation (16.30), the second of these conditions must now 
be expressed in terms of w; this may be done in two ways, both of which will be outlined. The same 
results are, of course by either derivation. The moments nM , sM  and nsM  are related to the 

moments xM , yM  and xyM  by means of the relations: 
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Which follow directly from equations (16.13) and transform law’s of tensor stress. Introducing now 
(16.14) one obtains: 
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(16.36) 
The boundary conditions (16.34) are easily expressed in terms of w by the first of these equations. 
As an alternative derivation of equations (16.36), note first that the relations between the moments 

nM , sM  and nsM , the curvature nχ , sχ  and the twist nsχ  are of the same form as equation (16.14), 

namely : 

 ( ) ( ) ( ), , 1
1 1

T T
n n s s s n ns ns

M M
M D M D Mχ ν χ χ ν χ ν χ

ν ν
= + − = + − = −

− −
 (16.37) 

The relations between nχ , sχ , nsχ  and the quantities xχ , yχ , xyχ  are shown in Timoshenko to be of 

the form: 
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sin cos cos sin

n x y xy

s x y xy

ns x y xy

χ χ β χ β χ β β

χ χ β χ β χ β β

χ χ χ β β χ β β

 = + −
 = + +


= − + −

 (16.38) 

Substituting of these relations into (16.37) yields one again equations (16.36), provided that 
expressions (16.7) and (16.8) are used for xχ , yχ , xyχ . Equations (16.36) may be simplified in 

rectangular plate, they reduce the last three of (16.14). In conclusion, one may remark that while the 
isothermal boundary conditions for a simply supported edge are homogeneous, in the thermal case 
they are not because of the presence of the term ( )1TM ν−  in all bending moments. 

 
Third case: At a free edge of plate one must satisfy the requirements that the bending moment nM , 

the shear force nQ , and the twisting moments nsM  be zero. The latter moment is, however, 

statically equivalent to a distributed force of intensity ( )0nsM
n

s

∂− =
∂

 and, in addition , to 

concentrated forces R at the corners (if any) of the plate of magnitude: 
 [ ] [ ]1 2

( 0) ( 0)ns nsR M n M n= = − =  (16.39) 

Where the subscripts 1 and 2 indicate the values of nsM  on opposite sides of the corner. A joint 

boundary condition is thus arrived at for the shear forces and twisting moments at a free edge, 
namely, 

 0ns
n

M
Q

s

∂− =
∂

 (16.40) 

This boundary condition must be supplemented by the requirement that R=0 at any unsupported 
corner, with R defined as above. It is now again necessary, as in second case, to express explicitly 
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in terms of w the edge conditions just stated. It will first be noted that the condition of moment 
equilibrium contained in either the second or third of (16.25) may be written, in the orthogonal (s,n) 
coordinate system previously introduced, as  

 n ns
n

M M
Q

n s

∂ ∂= −
∂ ∂

 (16.41) 

The boundary conditions at a free edge are then 

 0; 2 0n ns
n

M M
M

n s

∂ ∂= − =
∂ ∂

 (16.42) 

These equations may be put in terms of w by the introduced of the expressions (16.36). The form 
then assumed by the first of them has already been discussed; the second, for the case of uniform 
thickness, may be written in terms of w by means of the relation: 

       ( ) ( )
( )

2 2

2 2
2

2
2 2

sin cos
1

2 1
1

cos sin

n ns T

w w

y xM M M
D w

n s n s nw

x y

β β
ν

ν
β β

   ∂ ∂− +   ∂ ∂∂ ∂ ∂∂ ∂   − = − ∇ + − −  ∂ ∂ ∂ ∂ − ∂∂  + − ∂ ∂   

 (16.43) 

where 

 cos sin , cos sin
n x y s y x

β β β β∂ ∂ ∂ ∂ ∂ ∂= + = −
∂ ∂ ∂ ∂ ∂ ∂

 (16.44) 

In the special case of  the rectangular plate, equation (16.43) gives (with 0, ,n x s yβ = = = ) 

 ( )
3 3

3 2

1
2 0

1
TMw w

D
x x y x

ν
ν

  ∂∂ ∂+ − + = ∂ ∂ ∂ − ∂ 
 (16.45) 

As the boundary condition on an edge for which x is constant. The reaction R of (16.39) is 
expressed directly in terms of w by the third of (16.36) for an arbitrary coordinate system, by the 
last of (16.14) for a rectangular system.  It my be noted at a free edge, as at a simply supported one, 
the thermal-boundary conditions are not homogeneous, in contrast to the isothermal case. 
 
Four case: For edges elastic support the boundary conditions are readily derived with aid of the 
formulas just given and will not be discussed here in detail. The reader may also find helpful in 
such cases Timoshenko’s analysis of the corresponding isothermal case. 
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n
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Figure 16.6 – Plate with arbitrary planform  
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16.3.  Rectangular plates 
We begin the application of the developed plate bending theory with thin rectangular plates. These 
plates represent an excellent model for development and as a check of various methods for solving 
the governing differential equation of plate. In this section we consider some mathematically 
‘‘exact’’ solutions in the form of double and single trigonometric series applied to rectangular plates 
with various types of supports and transverse loads, plates on an elastic foundation, continuous 
plates, etc. 
 
16.3.1. Pure bending of plates 
Consider a rectangular plate with a free boundary and assume that this plate is subjected to 
distributed bending moments over its edges 1 2,x yM m M m= =  (figure 16.7). In this particular case, 

the governing differential equation (16.28) becomes 

 

4 4 4

4 2 2 4
2 0

w w w

x x y y

∂ ∂ ∂+ + =
∂ ∂ ∂ ∂  (16.46) 

This equation will be satisfied if we make 

 ( ) ( )2 2
1 2

1
,

2
w x y C x C y= +  (16.47) 

The constants of integration 1 2,C C  may be evaluated from the following boundary conditions: 

 1 2,x yM m M m= =  (16.48) 

Using equations (16.14), (16.47), and (16.48), we obtain 

 ( ) ( )
2 1 1 2

1 22 2
,

1 1

m m m m
C C

D D

ν ν
ν ν

− −= =
− −

 (16.49) 

Substituting the above into Equation(16.47) yields the deflection surface, as shown below: 

 ( ) ( ) ( ) ( )2 2
2 1 1 22

1
,

2 1
w x y m m x m m y

D
ν ν

ν
 = − + − −

 (16.50) 

Hence, in all sections of the plate parallel to the x and y axes, only the constant bending moments 

1 2,x yM m M m= =  will act. Other stress resultants and stress couples are zero, i.e., 

 0xy x yM Q Q= = =  (16.51) 

This case of bending of plates may be referred to as a pure bending. Let us consider some particular 
cases of pure bending of plates: 
a) 1 2m m m= = , then  

 ( ) ( ) ( )2 2,
2 1

m
w x y x y

D ν
= − +

+
 (16.52) 

This is an equation of the elliptic paraboloid of revolution. The curved plate in this case represents a 
part of a sphere because the radii of curvature are the same at all the planes and all the points of the 
plate. 
b) 1 2, 0,m m m= =  then 

 ( ) ( ) ( )2 2

2
,

2 1

m
w x y x y

D
ν

ν
= − +

+
 (16.53) 

A surface described by this equation has a saddle shape and is called the hyperbolic paraboloid of 
revolution. Horizontals of this surface are hyperbolas, asymptotes of which are given by the straight 

lines /x y ν= ± . As is seen, due to the Poisson effect the plate bends not only in the plane of the 

applied bending moment 1xM m m= =  but it also has an opposite bending in the perpendicular 

plane. 
c) 1 2, ,m m m m= = −  then 
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 ( ) ( ) ( )2 2,
2 1

m
w x y x y

D ν
= − +

−
 (16.54) 

This is an equation of an hyperbolic paraboloid with asymptotes inclined at 45 to the x and y axes. 
Let us determine the moments nM  and ntM  from equations (16.35) in skew sections hat are parallel 

to the asymptotes. Letting  45α = ° , we obtain 
 0,n ntM M m= = −  (16.55) 

Thus, a part of the plate isolated from the whole plate and equally inclined to the x and y axes will 
be loaded along its boundary by uniform twisting moments of intensity m. Hence, this part of the 
plate is subjected to pure twisting. Let us replace the twisting moments by the effective shear forces 
Vα , rotating these moments through 90. Along the whole sides of the isolated part we obtain 0Vα = , 

but at the corner points the concentrated forces S=2m are applied. Thus, for the model of 
Kirchhoff’s plate, an application of self-balanced concentrated forces at corners of a rectangular 
plate produces a deformation of pure torsion because over the whole surface of the plate 

constnmM m= = . 

x

y

z
O

s/2
s/2

m1

m2

m2

m1

 
 

Fig. 16.7 – Plate subjected to distributed bending moments over its edges 1 2,x yM m M m= =  

 
 
16.3.2.  Navier’s method (Double series solution) 
 
Plate subjected to a uniform load 
In 1820, Navier presented a paper to the French Academy of Sciences on the solution of bending of 
simply supported plates by double trigonometric series. Consider a rectangular plate of sides a and 
b, simply supported on all edges and subjected to a uniform load ( ),p x y . The origin of the 

coordinates is placed at the upper left corner as shown in figure 16.8 . The boundary conditions for 
a simply supported plate are the following : 

 

( ) ( ) ( ) ( )
2

2

2

2

0, , ,0 , 0

0 at 0, ,

0 at 0, ,

w y w a y w x w x b

w
x x a

x

w
y x b

y

= = = =

∂ = = =
∂
∂ = = =
∂

 (16.56) 
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In this case, the solution of the governing differential equation (16.28)  with 0TM =  i.e., the 

expressions of the deflection surface ( ),w x y , and the distributed surface load ( ),p x y , have to be 

sought in the form of an infinite Fourier series, as follows: 

 

( )

( )
1 1

1 1

, sin sin

, sin sin

nm
m n

nm
m n

m x n y
w x y w

a b

m x n y
p x y p

a b

π π

π π

∞ ∞

= =

∞ ∞

= =

    =    
    


    =        

∑∑

∑∑
 (16.57) 

where nmw  and nmp  represent coefficients to be determined. It can be easily verified that the 

expression for deflections (16.57) automatically satisfies the prescribed boundary conditions (16.56)
. Let us consider a general load configuration. To determine the Fourier coefficients nmp , each side 

of equation (16.57) is multiplied by sin sin
l x k y

a b

π π   
   
   

, and integrated twice between the limits 

0;a and 0;b, as follows: 

 

( )
0 0

1 1 0 0

, sin sin

sin sin sin sin

b a

b a

nm
m n

m x n y
p x y dxdy

a b

m x n y l x k y
p dxdy

a b a b

π π

π π π π∞ ∞

= =

    =   
   

       =        
       

∫ ∫

∑∑ ∫ ∫

 (16.58) 

 
It can be shown by direct integration that: 

 
0

0 if
sin sin

/ 2 if

a m lm x l x
dx

a m la a

π π ≠    =     =    
∫  (16.59) 

 
0

0 if
sin sin

/ 2 if

b n kn y k y
dy

b n kb b

π π ≠    =     =    
∫  (16.60) 

The coefficients of the double Fourier expansion are therefore the following: 

 ( )
0 0

4
, sin sin

b a

nm

m x n y
p p x y dxdy

a b a b

π π   =    
   

∫ ∫  (16.61) 

Since the representation of the deflection (16.57) satisfies the boundary conditions (16.56), then the 
coefficients nmw  must satisfy first equation of (16.28). Substitution of first equation of (16.57) into 

equation (16.28) results in the following equation: 

 
4 2 2 4

1 1

2 sin sinnm
nm

m n

pm m n n m x n y
w

a a b b D a b

π π π π π π∞ ∞

= =

              + + −             
               

∑∑  (16.62) 

This equation must apply for all values of x and y. We conclude therefore that 

 
22 2

4
2 2

0nm
nm

pm n
w

a b D
π  

+ − = 
 

 (16.63) 

from which 

 
( ) ( )

24 2 2

1

/

nm
nm

p
w

D m a n bπ
=

 +
 

 (16.64) 

Substituting the above into first equation of(16.57), one obtains the equation of the deflected 
surface, as follows: 

 ( )
( ) ( )

24 2 2
1 1

1
, sin sin

/

nm

m n

p m x n y
w x y

D a bm a n b

π π
π

∞ ∞

= =

   =    
    +

 

∑∑  (16.65) 
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where nmp  is given by equation (16.61) . It can be shown, by noting that : 

 sin 1, sin 1, , ,
m x n y

x y n m N
a b

π π   ≤ ≤ ∀ ∀ ∈   
   

 (16.66) 

Then,  the series (16.65) is convergent. Substituting w(x,y) into the equations  (16.14) and (16.31), 
we can find the bending moments and the shear forces in the plate, and then using the expressions 
(16.17), determine the stress components. For the moments in the plate, for instance, we obtain the 
following: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

22 2

22 2 2
1 1

22 2

22 2 2
1 1

22 2 2
1 1

/1
sin sin

/

/1
sin sin

/

cos cos
/

x nm
m n

y nm
m n

nm
xy

m n

m a n b m x n y
M p

a bm a n b

n b m a m x n y
M p

a bm a n b

p mn m x n
M

aab m a n b

ν π π
π

ν π π
π

ν π π
π

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

 +     =    
    +

 

 +     =    
    +

 

 = −  
  +

 

∑∑

∑∑

∑∑
y

b
 
 
 

 (16.67) 

The infinite series solution for the deflection (16.65) generally converges quickly; thus, satisfactory 
accuracy can be obtained by considering only a few terms. Since the stress resultants and couples 
are obtained from the second and third derivatives of the deflection w(x,y),  the convergence of the 
infinite series expressions of the internal forces and moments is less rapid, especially in the vicinity 
of the plate edges. This slow convergence is also accompanied by some loss of accuracy in the 
process of calculation. The accuracy of solutions and the convergence of series expressions of stress 
resultants and couples can be improved by considering more terms in the expansions and by using a 
special technique for an improvement of the convergence of Fourier’s series.  
 
Plate under an arbitrary temperature distribution 
Consider a rectangular plate of sides a and b, simply supported on all edges under an arbitrary 
temperature distribution with ( ), 0p x y = . The origin of the coordinates is placed at the upper left 

corner as shown in figure 16.8. The boundary conditions for a simply supported plate are the 
following : 

 

( ) ( ) ( ) ( )

( )

( )

2

2

2

2

0, , ,0 , 0

0 at 0, ,
1

0 at 0, ,
1

T

T

w y w a y w x w x b

Mw
x x a

x D

Mw
y x b

y D

ν

ν

= = = =

∂ + = = =
∂ −

∂ + = = =
∂ −

 (16.68) 

where in general TM  is a function of x and y. In this case, the solution of the governing differential 

equation (16.28) is clearly equivalent to the set: 

 
( )

( )

2

2

,
1

, 0

TM
D w f x y

f x y

ν
 ∇ + = −
∇ =

 (16.69) 

On the boundary w = 0, and therefore also ( )2 2 0w s∂ ∂ = ; hence 

 2 on theboundary
1

TM
D w

ν
∇ = −

−
 (16.70) 
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The boundary condition on the function f is then, from the first of equation (16.69), f = 0 ; hence the 
appropriate solution of the second of these equation is f = 0 . The problem is reduced to the solution 
of : 

 2

1
TM

D w
ν

∇ = −
−

 (16.71) 

Under the condition that : 
 0 on theboundaryw =  (16.72) 
This reduced problem can be solved in terms of a double trigonometric series, each term of which 
satisfies the boundary condition just stated, namely by setting: 

 ( )
1 1

, sin sinnm
m n

m x n y
w x y w

a a

π π∞ ∞

= =

   =    
   

∑∑  (16.73) 

The right-hand side of (16.71) is expressed in a similar form, that is  

 ( )
1 1

, sin sinT nm
m n

m x n y
M x y a

a a

π π∞ ∞

= =

   =    
   

∑∑  (16.74) 

where the Fourier coefficients nma  are 

 ( )
0 0

4
, sin sin

a b

nm T

m x n y
a M x y dydx

ab a a

π π   =    
   

∫ ∫  (16.75) 

Substituting these two series into (16.71), and equating coefficients of like terms one obtains 

 ( ) 2 22

1

1
nm

nm

a
w

D m n

a b

ν π

 
 
 =
 −    +    
    

 (16.76) 

An explicit solution has thus been obtained. Note, however, that equation (16.73), although quite 
useful for the calculation of the deflections themselves, may, in the case of certain temperature 
distributions, be unsatisfactory for the calculation of the bending moments near the edges of the 
plate; a solution of equation (16.71) in a different form must then be derived. 

x

y

O

b

 
Fig. 16.8 – Cartesian Coordinate system of plate 

 
16.4. Circular plates  
Circular plates are common in many structures such as nozzle covers, end closures in pressure 
vessels, pump diaphragms, turbine disks, and bulkheads in submarines and airplanes, etc. When 
circular plates are analyzed, it is convenient to express the governing differential equation of plates 
in polar coordinates. This can be readily accomplished by a coordinate transformation. An 
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alternative approach based on the procedure presented in section 16.2 for rectangular plates to 
derive the basic relationships for the lateral deflections of circular plates may be used also. 
 
16.4.1 Basic relations in polar coordinates  
As mentioned earlier, we use the polar coordinates r and θ  in solving the bending problems for 
circular plates. If the coordinate transformation technique is used, the following geometrical 
relations between the Cartesian and polar coordinates are applicable (Figure 16.9): 

 2 2cos , sin , , tan
y

x r y r r x y Arc
x

θ θ θ  = = = + =  
 

 (16.77) 

Referring to the above 

 
2 2 2 2

2 2

cos , sin ,

sin cos
, ,

r x x r y y

x r y rx y x y

y x

x r r y r r

θ θ

θ θ θ θ

∂ ∂= = = = = =
∂ ∂+ +
∂ ∂= − = − = =
∂ ∂

 (16.78) 

Inasmuch as the deflection is a function of r and θ , the chain rule together with the relations (16.78) 
lead to the following 

 

1
cos sin

1
sin cos

w w r w w w

x r x x r r
w w r w w w

y r y y r r

θ θ θ
θ θ

θ θ θ
θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ = + = − ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ = + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂

 (16.79) 

By applying the relations (16.79), we determine the Laplacian operator in polar coordinate: 

 
2 2 2 2

2
2 2 2 2 2

1 1w w w w w
w

x y r r r r θ
∂ ∂ ∂ ∂ ∂∇ = + = + +
∂ ∂ ∂ ∂ ∂

 (16.80) 

After repeating twice the operation 2∇ , we obtain the operator ( )2 2 4w w∇ ∇ = ∇ : 

 
4 3 2 4 3 2 4

4
4 3 2 2 3 2 2 2 3 2 4 2 4 4

2 1 1 2 2 4 1w w w w w w w w
w

r r r r r r r r r r r r rθ θ θ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∇ = + − + + − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (16.81) 

The governing differential equation for the plate deflection in polar coordinates becomes: 

 ( )
2 2

4
2 2 2

1 1 1
,

1
T T TM M M

D w p x y
r r r rν θ

 ∂ ∂ ∂∇ = − + + − ∂ ∂ ∂ 
 (16.82) 

Let us set up the relationships between moments and curvatures. Consider now the state of moment 
and shear force on an infinitesimal element of thickness s, described in polar coordinates, as shown 
in figure 16.7. Note that, to simplify the derivations, the x axis is taken in the direction of the radius 
r, at 0θ = . Then, the radial rM , tangential Mθ , twisting rM θ  moments, and the vertical shear 

forces ,rQ Qθ  will have the same values as the moments , ,x y xyM M M , and shears ,x yQ Q  at the 

same point in the plate. Thus, transforming the expressions for moments  (16.14) and shear forces   
(16.31) into polar coordinates, we can write the following: 

 
( )

2 2

2 2

2 2

2 2

2 2

1
,

1

11 1 1
, ,

1

,
1 1

T
r

T
r

T T
r

Mw w w
M D

r r r r

DMw w w w w
M D M

r r r r r r r

M MD
Q D w Q w

r r

θ θ

θ

ν
θ ν

ν
ν

θ ν θ θ

ν θ ν

  ∂ ∂ ∂= − + + −  ∂ ∂ ∂ −  

  − ∂ ∂ ∂ ∂ ∂ ∂ = − + + − = − −    ∂ ∂ ∂ − ∂ ∂ ∂   

∂ ∂   = − ∇ − = − ∇ −   ∂ − ∂ −   

 (16.83) 

Similarly, the formulas for the plane stress components, from Equation (16.17), are written in the 
following form: 



Chapter XVI : Thermal stresses in plate 

F. Carannante 371 

 
( ) ( )

( ) ( )

3

3 3

12
,

1 1

12 12
, ,

1 1

T
r r R

T
R r r

Mz E
M T T

s

Mz E z
M T T M

s sθ θ θ θ

ασ
ν ν

ασ τ
ν ν

 
= + + − − − − 

 
= + + − − = − − − 

 (16.84) 

where rM , Mθ  and rM θ  are determined by Equations (16.83). Clearly the maximum stresses take 

place on the surfaces / 2s s= ±  of the plate. Into polar coordinates gives the effective transverse 
shear forces. They may be written for an edge with outward normal in the r and θ  directions, as 
follows: 

 

( )

( )

2
2

2 2

2
2

11 1
,

1

1 1 1
1

1

r T
r r

r T

M M w w
V Q D w

r r r r r

M M w w
V Q D w

r r r r r r

θ

θ
θ θ

ν
θ ν θ θ

ν
θ ν θ

− ∂ ∂ ∂ ∂ ∂   = + = − ∇ − + −   ∂ ∂ − ∂ ∂ ∂   

∂  ∂ ∂ ∂ ∂   = + = − ∇ − + − −   ∂ ∂ − ∂ ∂ ∂   

 (16.85) 

The boundary conditions at the edges of a circular plate of radius “a” may readily be written as 
follows: 
a) Clamped edge r = a 

 ( ) 0, ( ) 0,
w

w r a r a
r

∂= = = =
∂

 (16.86) 

b) Simply supported edge r = a 
 ( ) 0, ( ) 0,rw r a M r a= = = =  (16.87) 

c) Free edge r = a 
 ( ) 0, ( ) 0,r rM r a V r a= = = =  (16.88) 

 
16.4.2. Axisymmetrically heated circular plates 
When an applied loading and end restraints of the circular plate are independent of the angle θ , 
then the deflection of the plate and the stress resultants and stress couples will depend upon the 
radial position r only. Such a bending of the circular plate is referred to as axially symmetrical and 
the following simplifications can be made: 

 
( )

0; 1,2,3,4
k

rk
M M kθ θθ

∂ = = = =
∂

 (16.89) 

The previous equations for the bending of a circular plate can therefore be simplified to: 

 

2 2

2 2

2

2

1
, ,

1 1

1 1
,

1 1

T T
r

T T
r

M Md w dw d w dw
M D M D

dr r dr dr r dr

M Md d w dw d d dw
Q D D r

dr dr r dr dr r dr dr

θ
ν ν

ν ν

ν ν

   
= − + − = − + −   − −   

    = − + − = − −    − −   

 (16.90) 

The differential equation of the deflected surface of the circular plate, Equation (16.82), reduces 
now to: 

 ( )
24 3 2

4 3 2 2 3 2

2 1 1 1 1

1
T Td M dMd w d w d w dw

D p r
dr r dr r dr r dr dr r drν

  
+ − + = − +   −   

 (16.91) 

The Equation (16.91) appears in the form: 

 ( ) ( )
1 1

1
TdMD d d d dw d

r r p r r
r dr dr r dr dr r dr drν

      = −      −     
 (16.92) 

The rigorous solution of equation (16.92) is obtained as the sum of the complementary solution of 
the homogeneous differential equation, hw , and the particular solution, pw , i.e., 

 h pw w w= +  (16.93) 
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The complementary solution hw  of (16.92) is given by: 

 2 2
1 2 3 4log loghw C r C r r C r C= + + +  (16.94) 

where 1 2 3 4, , ,C C C C  are constants that can be evaluated from the boundary conditions. The 

particular solution, pw , is obtained by successive integration of equation (16.92): 

 
( )

( )
1 1 1

1
T

p

rp r r M
w r drdrdrdr drdr

r r D r Dν
= −

−∫ ∫ ∫ ∫ ∫ ∫  (16.95) 

Case 1)  If the plate is under a uniform loading 0p p= , and 0TM =  the particular solution is 

 
4

0

64p

p r
w

D
=  (16.96) 

For purposes of calculation, the following quantities are given explicitly: 

 
4

2 2 0
1 2 3 4log log

64

p r
w C r C r r C r C

D
= + + + +  (16.97) 

 ( )
4

01
2 32 log 2

16

p rCdw
C r r C r

dr r D
= + + + +  (16.98) 

 

( ) ( ) ( )

( ) ( ) ( )

2
0

1 2 3 22

2
0

1 2 3 22

02

1
2 1 log 2 1 3

16

1
2 1 log 2 1 1 3

16

4
8

r

r

p r
M D C C r C C

r D
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Fig. 16.9 – Polar coordinates system of plate 
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CHAPTER XVII 
STEADY-STATE PROBLEM FOR MULTILAYERED CYLINDERS 

 
17.0.  Introduction 
By using a multi-layered approach based on the theory of laminated composites, the solutions of 
temperature, displacements, and thermal/mechanical stresses in a functionally graded circular 
hollow cylinder are presented in this chapter. The cylinder has finite length and is subjected to 
axisymmetric thermal and mechanical loads. The material properties are assumed to be 
temperature-independent and radially dependent, but are assumed to be homogeneous in each layer.  
Functionally graded materials (FGM) and laminated composites are important non-homogeneous 
materials designed to work in a high-temperature environment. A number of research works have 
been carried out for thermo-elastic problems of functionally graded structures. Obata and Noda 
studied the one-dimensional steady thermal stresses in a functionally graded circular hollow 
cylinder and hollow sphere by use of a perturbation method. By introducing the theory of laminated 
composites, Ootao and Tanigawa  treated the three-dimensional transient thermal stresses of 
functionally graded rectangular plates due to partial heat supply, and analyzed the piezo-thermo-
elastic problem of a functionally graded rectangular plate bonded to a piezoelectric plate. 
Kim and Noda researched the two-dimensional unsteady thermo-elastic problems of functionally 
graded infinite hollow cylinders by using a Green’s function approach. Jabbari et al. derived 
analytical solutions for one-dimensional steady-state thermo-elastic problems of functionally graded 
circular hollow cylinders in the case of material models expressed as power functions of r, and 
treated the two-dimensional thermo-elastic problems of the functionally graded cylinder by using 
the Fourier transform. Erashlan obtained analytical solutions for thermally induced axisymmetric 
and elastic–plastic deformations in non uniform heat-generating composite tubes. Liew et al. 
obtained analytical solutions of a functionally graded circular hollow cylinder by a novel limiting 
process that employs the solutions of homogeneous circular hollow cylinders. Shao and Wang  
derived analytical solutions of mechanical stresses of a functionally graded circular hollow cylinder 
with finite length. Ma and Wang  investigated the nonlinear bending and post-buckling behaviour of 
a functionally graded circular plate subjected to thermal/mechanical loadings based on classical 
plate theory. In their studies, the material properties were considered as both temperature dependent 
and temperature independent. 
In this chapter, we consider a steady-state thermo-elastic problem of multilayered cylinder with 
finite length. The thermal and mechanical loads applied on the cylinder are axisymmetric in the 
hoop direction and vary in the axial direction. In order to obtain analytical solutions of temperature, 
displacements, and stresses for the two-dimensional thermo-elastic problem, the cylinder is 
assumed to be composed of  n fictitious layers in the radial direction. The material properties of 
each layer are assumed to be homogeneous. 
 
17.1.  Basic equations for steady-state problem 
Let us consider an multilayered cylinder composed by n fictitious hollow cylindrical phases, with 
finite length L (Figure n.1). The external radius and internal radius of the multilayer cylinders are 
denoted by ( )nR and (0)R , respectively. The radius at interface between the generic phase i-th and the 
phase (i+1)-th are denoted with ( )iR . The mechanical and thermal properties of each layer are 
assumed to be homogeneous and isotropic and are denoted with apex (i).  Cylindrical coordinates r, 
θ  and z are used in the analysis. The multilayered cylinder is subjected to gradient temperature, 
between the inner and the outer surface, that are eT  and iT , respectively. The multilayered cylinder 

is subjected to an external constant pressure ep  and an internal constant pressure ip  applied on the 

inner and the outer surface ( )nr R=  and (0)r R= , respectively. Moreover, it is subjected to axial 
force N on the two bases. In follows, details of multilayered cylinder are shown in figure 17.1. The 
basic thermo-elastic equations for the i-th layer can be expressed as reported below: 
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Strain-Displacement relations: 
In isotropic-thermal elasticity case, the strains are related to the displacements by purely 
geometrical considerations. Let us assume that multilayered cylinder subjected to axial-symmetric 
mechanical and thermal loads. Then, in cylindrical coordinate the displacement components are 
given by: 

 ( ) ( )( ) ( ) ( ) ( ) ( ), , 0, , , {1,2,... }i i i i i
r r z zu u r z u u u r z i nθ= = = ∀ ∈  (17.1) 

where with apex 1,2,…n  denote the hollow phases of multilayered cylinder . The functions ( ) ( ),i i
r zu u  

are the radial and axial displacements in the i-th layer, respectively. The superscript  “i”  represents 
the i-th layer. Then,  the strain-displacement relations take the form: 

   ( )( )( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
, , , ,, , , 1 2 , 0, {1,2,... }i i i i i i i i

rr r r r zz z z rz r z z r r zu r u u u u i nθθ θ θε ε ε ε ε ε−= = = = + = = ∀ ∈  (17.2) 

Thermo-elastic stress-strain relations: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
, ,

( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
, ,

2 3 2

2 3 2

2 3 2

i i i i i i i i i i i
rr r z z r r R

i i i i i i i i i i i
r r z z r R

i i i i i i i i i i i
zz r r r z z

r u u u T T

u u r u T T

u r u u T

θθ

σ λ µ λ λ µ α

σ λ µ λ λ µ α

σ λ µ λ λ µ α

−

−

−

= + + + − + −

= + + + − + −

= + + + − + ( )
( )

)

( ) ( ) ( ) ( ) ( ) ( )
, , ; 0; {1,2,... }

R

i i i i i i
rz r z z r z r

T

u u i nθ θτ µ τ τ

−

= + = = ∀ ∈

 (17.3) 

where ( ) ( ) ( ) ( ), , ,i i i iTµ λ α  are the Lamè elastic constants, thermo-elastic coefficients and temperature 
in the i-th layer, respectively. Moreover let us assume that the function of temperature in each phase 
is given by: 

                                                    ( )( ) ( ) , {1,2,...., }i iT T r z i n= ∀ ∈                                        (17.4) 

Equilibrium equations: 
The equations of equilibrium are the same as those of isothermal elasticity since they are based on 
purely mechanical considerations. By applying the hypothesis of the axial-symmetric steady-state 
temperature loads and in absence of the body force, the equilibrium equations become: 

 
( )( ) ( ) 1 ( ) ( )

, ,

( ) ( ) 1 ( )
, ,

0
{1,2,... }

0

i i i i
rr r rz z rr

i i i
rz r zz z rz

r
i n

r

θθσ τ σ σ

τ σ τ

−

−

 + + − = ∀ ∈
+ + =

 (17.5) 

 
Equilibrium and compatibility boundary conditions 
The results obtained until now satisfy the equilibrium and compatibility equations inside each 
generic i-th phase of multilayered cylinder, subjected to axis-symmetrical strains or steady-state 
temperature loads. Under both the hypothesis of linear isotropic elastic behaviour of the 
homogeneous materials and the assumption of perfect bond at the cylindrical interfacial boundaries 
(no de-lamination or friction phenomena), we have now to establish the satisfaction of both the 
equilibrium and the compatibility equations at the boundary surfaces between two generic adjacent 
phases. To obtain this, we will make reference to the generic case, in which a multilayered cylinder 
is constituted by a central core and n arbitrary hollow phases (figure 17.1). In this framework the 
following boundary conditions be established. In particular, we begin writing the  compatibility 
equations at the generic interface, that is: 

 
( ) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1)

( ) ( )
{1,2,... 1}

( ) ( )

i i i i
r r

i i i i
z z

u r R u r R
i n

u r R u r R

+ +

+ +

 = = = ∀ ∈ −
= = =

 (17.6) 

The equilibrium equations at the generic interface are given by: 

 
( ) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1)

( ) ( )
{1,2,... 1}

( ) ( )

i i i i
rr rr

i i i i
rz rz

r R r R
i n

r R r R

σ σ
τ τ

+ +

+ +

 = = = ∀ ∈ −
= = =

 (17.7) 
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The equilibrium equations for the tractions on the inner and the outer spherical boundary surface, 
give: 

 
(1) (0) (1) (0)

( ) ( ) ( ) ( )

( ) , ( ) 0 ,

( ) , ( ) 0 ,

rr i rz

n n n n
rr e rz

r R p r R

r R p r R

σ τ

σ τ

 = = = =


= = = =
 (17.8) 

where ,e ip p  are the pressure applied on the inner and the outer surface of multilayered cylinder, 

respectively. Finally, it remains to consider the last equilibrium equation in z-direction on one of the 
basis of multilayered cylinder, being the other end condition automatically satisfied. Therefore, 
without loss of generality, for z = 0 we can write: 

 
( )

( 1)

2 ( )

0
1

( 0)
i

i

n R i
zz zR

i

z rdrd N
π

σ θ
−

=
= =∑∫ ∫  (17.9) 

where zN  is the axial force applied on the bases of multilayered cylinder 

 
Heat conduction equation 
The conduction equation is wrote in hypothesis of steady-state problem and of the axial-symmetric 
load conditions for each phases of multilayered cylinder: 

 ( ) 1 ( ) ( )
, , , 0 {1,2,... }i i i
rr r zzT r T T i n−+ + = ∀ ∈  (17.10) 

 
Temperature boundary and continuity conditions 
At the interfaces between the phases, the temperature and heat flux is the same. Then we can write 
the following conditions: 

 
( ) ( ) ( 1) ( )

( ) ( ) ( ) ( 1) ( 1) ( )
, ,

( ) ( )
{0,1,... 1}

( ) ( )

i i i i

i i i i i i
r r

T r R T r R
i n

k T r R k T r R

+

+ +

 = = = ∀ ∈ −
= = =

 (17.11) 

on the inner and the outer surface the temperature is equal to eT  and iT , respectively: 

 ( ) ( ) (1) (0)( ) , ( )n n
e iT r R T T r R T= = = =  (17.12) 

 

x

z

uru

P uz

R

R(i+1)

R(i)

(i-1)

G

r
q

q

phase (i+1)

phase (i)

 
Fig. 17.1 - Multilayered cylinder composed by n-hollow cylinders  
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17.2.  Multilayered cylinder under radial temperature variation and uniform pressure in 
plane strain     
Let us consider an multilayered cylinder constituted by n-hollow cylinder phases as decrypted in 
section 17.1. The equations field in each phase are composed by equilibrium and heat conduction 
equations. By substituting the strain-displacement relations (17.2) in stress-strain relations (17.3) 
and these in equilibrium equations (17.5), we obtain the displacement formulation of the 
equilibrium equations. The elastic moduli ( )iE  and ( )iν  can be to express as functions of the Lamé 
coefficients, by invoking the well-known following relations: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(2 3 ) ( ) , 2( ) ,i i i i i i i i i iE µ µ λ µ λ ν λ µ λ   = + + = +     (17.13) 

Then, the equations field to satisfy in thermo-elastic axial-symmetric steady-state problem, in 
cylindrical coordinate, are given by: 

                        

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , ,, ,,

1 ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , , ,, ,

( ) 1 ( ) ( )
, , ,

1 2 1 2 1 2

1 2 1 2 1 2

0

i i i i i i i
r r z z r rr zr

i i i i i i i
r z z r z zz zr r

i i i
rr r zz

r r u u u T

r r u r u u T

T r T T

ν ν ζ

ν ν ζ

−

−

−

   + − + − =    

  + − − + =   
 + + =



    (17.14) 

where the constant ( ) ( )( ) ( ) ( ) ( )1 2 1i i i iζ α ν ν   = + −
   

. For the case of plane strain, the 

displacement component ( )i
zu  vanishes. If the hollow cylinder is subjected to radial temperature 

variation and radial uniform pressure, the displacement components reduce to sole ( ) ( ) ( )i i
r ru u r=  and 

the temperature is a function of sole variable r : ( )( ) ( )i iT T r= . In this case the equilibrium 

equations reduce to one ordinary differential equation. The equations field (17.14) become: 

                          ( )1 ( ) ( ) ( ) ( ) 1 ( )
, , ,, ,

2 , 0, {1,2,..., }i i i i i
r r rr rr r

r r u T T r T i nζ− −  = + = ∀ ∈
  

 (17.15) 

By applying the formulas in Chapter XIV, we determine the displacement solution in each phases of 
multilayered cylinder, as reported below: 

    ( )( ) ( ) 1 ( ) ( ) ( ) 1
1 22 {1,2,...., }i i i i i

ru r rT r dr C r C r i nζ − −= + + ∀ ∈∫  (17.16) 

where ( ) ( )
1 2,i iC C  are constants integration to determine. By integrating the Fourier’s equation 

reported in (17.15), we determine the well know temperature function for steady-state problem in 
each phases: 

 ( )( ) ( ) ( )
1 2log {1,2,...., }i i iT r A r A i n= + ∀ ∈  (17.17) 

where ( ) ( )
1 2,i iA A  are constants integration to determine. Then, the heat flux in each phases is given 

by: 

 ( ) ( ) ( ) ( ) ( ) 1
, 1 {1,2,..., }i i i i i
rq k T k A r i n−= − = − ∀ ∈  (17.18) 

By substituting the temperature function (17.17) in equation (17.16), we obtain the explicit 
expression of displacement function:                                   

                          ( )( ) ( ) ( ) 1 ( ) ( ) ( )
1 2 1 2log 1 2 {1,2,... }i i i i i i

ru C r C r r A r A i nζ−  = + + − + ∀ ∈   (17.19) 

By applying the strain-displacement relationship, we determine the no-vanishing strain components: 

 
( )
( )

( ) ( ) ( ) 2 ( ) ( ) ( )
1 2 1 2

( ) ( ) ( ) 2 ( ) ( ) ( )
1 2 1 2

log 1 2
{1,2,... }

log 1 2

i i i i i i
rr

i i i i i i

C C r A r A
i n

C C r A r Aθθ

ε ζ

ε ζ

−

−

  = − + + +   ∀ ∈
 = + + − +  

 (17.20) 

By applying the stress-strain relationship, we obtain the non-zero stress components:  
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( )

( )

( )( )
( ) ( ) 2 ( ) ( ) ( ) ( )1

2 1 2( ) ( )
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( ) ( ) 2 ( ) ( ) ( ) ( )1

2 1 2( ) ( )
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σ ζ
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−
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=
+ − ( )( ) ( ) ( ) ( )

1 2

{1,2,... }

2 logi i i i
R

i n

A r A Tζ





 ∀ ∈

    − + + Ω    

 (17.21) 

where ( )( ) ( ) ( ) ( )1 2i i i iEα νΩ = − . The equivalent stress determines whether yielding occurs. For 

planar isotropy and non-homogeneity in radial direction, the equivalent stress based on the Henchy- 
von Mises criteria is given by follows equation: 

 ( ) ( ) ( )
1 22 2 2( ) 1 2 ( ) ( ) ( ) ( ) ( ) ( )2i i i i i i i

eq rr rr zz zzθθ θθσ σ σ σ σ σ σ−  = − + − + −  
 (17.22) 

By substituting the equation (17.21) in (17.22), the equivalent stress is given by: 

 
( )

( )

( )2 ( )2 4 ( ) ( ) ( ) ( ) ( ) ( ) 2
( ) 1 2 1 1 2 1 2

( )
( ) ( )2 ( )2 ( ) ( ) ( )2 2

2 1 2 1
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1 2 2 log 3 4 log
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− − + + + − +
 =

+  + + +
 

 (17.23) 

Finally, by utilizing the expressions of the temperature, heat flux, radial displacement and radial 
stress in each phases, we can write in explicit the boundary conditions for multilayered cylinder. 
Then, the compatibility boundary conditions (17.6), become one equation : 

                        
( ) ( )

( ) ( )

( ) ( 1) ( ) ( 1) ( ) 2 ( 1) ( 1) ( ) ( 1)
1 1 2 2 1 2

( ) ( ) ( ) ( )
1 2

log 1 2

log 1 2 {1,2,..., 1 }

i i i i i i i i i

i i i i

C C C C R A R A

A R A i n

ζ

ζ

+ + − + + + − + − = − + +
 

 − − + ∀ ∈ −
 

 (17.24) 

The equilibrium conditions (17.7) at interfaces between the phases, are given by: 

( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( 1) ( 1)( ) ( 1)
( 1) ( )1 2 1 2

( ) ( )2 ( 1) ( )2( ) ( 1)
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2 1 2 1

1 2 1 21 1
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Ri i i ii i
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C C C CE E
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i n

ν νν ν

ψ ψ

+ ++
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− − − = Ω − Ω +   − −+ +   

   + + − − + −
   

∀ ∈ −

 (17.25)  

where ( ) ( ) ( )( ) ( ) ( ) ( )1 2 1 .i i i iEψ α ν = −
 

  

The equilibrium equations on the external and internal surface of the solid  (17.8) become: 

         

( )

( )

(1) (1)(1)
(1) (1) (1) (0) (1)1 2

1 2(1) (1) (0)2

( ) ( )( )
( ) ( ) ( ) ( ) ( )1 2
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1 1 2
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R en n n

C CE
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C CE
T A R A p

R

ψ
ν ν

ψ
ν ν

  
 − = −Ω + − + +    + −  


   − = −Ω + − + +   + − 

 (17.26) 

The temperature and continuity boundary conditions at interfaces between the adjacent phases 
(17.11) become: 

 ( )
( 1) ( ) ( ) ( 1) ( )
1 1 2 2

( 1) ( 1) ( ) ( )
2 2

log 0
{1,2,..., 1 }

0

i i i i i

i i i i

A A R A A
i n

k A k A

+ +

+ +

 − + − =  ∀ ∈ −
 − =

 (17.27) 

Finally, it is remains to consider the boundary conditions on the external and internal surface  
related to temperature (17.12): 
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(1) (0) (1)
1 2

( ) ( ) ( )
1 2

log

log

i

n n n
e

A R A T

A R A T

 + =


+ =
 (17.28) 

The equations (17.24) to (17.28) represents an algebraic system constituted by  4 n×  equations, 
where the unknown parameters  are  4 n×  ,  as reported below: 

 ( ) ( ) ( ) ( )
1 2 1 2, , , {1,2,..., }i i i iA A C C i n∀ ∈  (17.29) 

The algebraic system mentioned above, can be subdivided in two uncoupled algebraic systems: 
(i) the first composed  by equations (17.24), (17.25) and (17.26) ; It is characterized by 

2 n×  equations in 2 n×  unknown parameters  ( ) ( )
1 2, {1,2,..., }i iC C i n∀ ∈  

(ii)  the second composed by equations (17.27) and (17.28); It is characterized by 

2 n× equations in 2 n×  unknown parameters  ( ) ( )
1 2, {1,2,..., }i iA A i n∀ ∈  

In order to solve the first algebraic system (i), it is easy to determine the constants 
( ) ( )
1 2, {2,3..., }i iA A i n∀ ∈ as function of the constants (1) (1)

1 2,A A . By solving the algebraic system 

(17.27), we obtain the following relations: 

     ( ) 1
( ) (1) (1) ( ) ( ) (1) (1) (1) ( )
1 1 2 2 1 ( ) ( 1)

1

1 1
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i i i j
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+
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 = = + − ∀ ∈ 
 

∑  (17.30) 

By substituting the equations (17.30) in algebraic system (17.28), fixed  i = n, we determine the 

constants (1) (1)
1 2,A A as reported below: 

 (1) (1)
1 2(0)

; ;
log
e i e i

i
T T T T

A A T
R ωω

− −= = −  (17.31) 

where ( ) ( )( )(1) (0) ( ) ( 1)

1
log log

j
n

j jk

j

k R R Rω −

=

 
=  

 
∑  is non-dimensional constant parameter for fixed 

number of the phases. Finally, we write the solution in closed form of the algebraic system (i) as 
follows: 
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∏

 (17.32) 

Then, the temperature function in each phases is given by: 

            ( ) ( )
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∏
 (17.33) 

In order to solve the second algebraic system (ii), let us consider the  algebraic system composed by 
equilibrium and compatibility conditions (17.24)- (17.25), which can be written as:  
 ⋅ =Q X L�  (17.34) 

where the vectors ( ) ( ) ( ) ( )(2) (1) (3) (2) ( 1) ( ) ( 1) ( 1)
1 1 2 2 1 1, ,..., ,...,

T
i i n n
i i n n

+ − −
− −

 − − − − L = L L L L L L L L  is characterized 

by following sub-vectors: 
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 (17.35) 

and (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors ( )iX , as reported below: 

 ( ) ( ) ( )
1 2, , {1,2,...., }

Ti i iC C i n = ∀ ∈ X  (17.36) 

The matrix  Q is composed by following  sub-matrices: 

 

(1) (2)
1 1

(2) (3)
2 2

(3) (4)
3 3

( 2) ( 1)
2 2

( 1) ( )
1 1

n n
n n

n n
n n

− −
− −

−
− −

 −
 

− 
 − =
 
 

− 
 

−  

B B 0 0 0 0 0

0 B B 0 0 0 0

0 0 B B 0 0 0
Q

0 0 0 0 B B 0

0 0 0 0 0 B B

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯

⋯

 (17.37) 

where the generic matrices ( ) ( 1),i i
i i

+B B are given by: 

( )( ) ( ) ( )( ) ( )

( ) 2 ( ) 2

( ) ( 1)( ) ( ) ( ) 2 ( 1) ( 1) ( ) 2

( ) ( ) ( ) ( 1) ( 1) ( 1)

1 1

, ,

1 1 2 1 1 1 2 1

i i

i ii i i i i i
i i

i i i i i i

R R

E E R E E R

ν ν ν ν ν ν

− −

+− + + −

+ + +

   
   

= =   − −   + − + + − +      

B B (17.38) 

are (2 2)×  matrices with nonzero determinant, whose components were already gave above. 
The determinant of the matrices (17.38) is given by: 

            
( )

( )( )
( )

( )( )
( ) ( ) ( 1) ( 1)

( ) ( 1)

( ) ( ) ( ) ( ) ( 1) ( 1)

2 1 1
det[ ] 0, det[ ] 0,

1 1 2 1 1 2

i i i i

i i
i ii i i i i i

E E

R R

ν ν
ν ν ν ν

+ +
+

+ +

− −
= ≠ = ≠

+ − + −
B B  (17.39) 

However, in force of the special form of Q derived above, one can rewrite the reduced algebraic 
problem in order to have the solution without recall any numerical strategy. To make this, let us we 
can write the algebraic system (17.34) in follows manner: 

 

(2) (2) (1) (1) (2) (1)
1 1 1 1

(3) (3) (2) (2) (3) (2)
2 2 2 2

( 1) ( 1) ( ) ( ) ( 1) ( )

( 1) ( 1) ( 2) ( 2) ( 1) ( 2)
2 2 2 2

( ) ( ) ( 1) ( 1) ( ) ( 1)
1 1 1 1

i i i i i i
i i i i

n n n n n n
n n n n

n n n n n n
n n n n

+ + +

− − − − − −
− − − −

− − −
− − − −

 = + −


= + −

= + −

= + −

= + −

B X B X L L

B X B X L L

B X B X L L

B X B X L L

B X B X L L

⋮

⋮











 (17.40) 

By applying an in-cascade procedure, we finally obtain 

 ( ) ( ) (1) ( ) {2,3,..., }i i i i n= ⋅ + ∀ ∈X Φ X Ψ  (17.41) 

where ( ) ( ),i i
Φ Ψ  are matrix and vector, respectively. The expressions of ( ) ( ),i i

Φ Ψ are given by: 
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               ( ) ( ) ( ) ( )( )

1 1( ) ( 1) ( )

1

21 11 1( ) ( ) ( ) ( )
1 1 1 1 1 1

1 1

{2,3,..., }

i
i i j i j

i j i j
j

ji
i i i j i ji i i k i k

i i i i k i k i j i j
j k

i n

− −− + −
− −

=

−− −− − − −− −
− − − − − − − − − −

= =

   = ⋅    


       = ⋅ − + ⋅ ⋅ −          

∀ ∈

∏

∑ ∏

Φ B B

Ψ B L L B B L L
 (17.42) 

where dot stands for scalar product. The equations (17.41)-(17.42) permit to write the generic 
unknowns sub-vector ( )iX  as function of a transferring matrix ( )i

Φ  and vector ( )i
Ψ ,  and the 

unknowns sub-vector (1)X . The problem is hence reduced to an algebraic one in which only the two 
coefficients – collected in (1)X  – related to the first phase have to be determined, by imposing two 
boundary conditions described by the equations obtained above. Therefore, in order to find the two 
unknowns collected in (1)X , it remains to rewrite the boundary conditions (17.26) in matrix form. In 
particular, by applying the equation (17.41) for i n= , we obtain the follows relationship: 
 ( ) ( ) (1) ( )n n n= ⋅ +X Φ X Ψ  (17.43) 
Then, the boundary conditions (17.26), become: 
 (1)⋅ = ϒΡ X  (17.44) 
where the matrix  P and vector ϒ  are given by: 

 ( ) [ ]( )
1 2 1 2, ,

TT Tn = ⋅ ϒ = ϒ ϒ  
P P Φ P  (17.45) 

where 1 2,P P  are two vectors and 1 2,ϒ ϒ  are two scalars, as reported below: 

                  

( ) ( ) ( ) ( )
( )
( )

(1) ( )
(0) 2 ( ) 2

1 2(1) (1) ( ) ( )

(1) (1) (1) (0) (1)
1 1 2

( ) ( ) ( ) ( ) ( ) ( )
2 1 2 2

1 1
, , ,

1 1 2 1 1 2

log 1 2 ;

log 1 2

T T
n

n

n n

R i

n n n n n n
R e

E E
R R

T A R A p

T A R A p

ν ν ν ν

ψ

ψ

− −
   
   = − = −

+ − + −      

 ϒ = −Ω + − + + 

 ϒ = −Ω + − + + − ⋅ 

P P

P Ψ

 (17.46) 

Then, by inverting, all the 2 n×  unknown coefficients , we obtain the unknown parameters: 

                                                
{ }

(1) 1

( ) ( ) 1 ( )

,

2,3,...,i i i i n

−

−

 = ⋅ ϒ


= ⋅ ⋅ ϒ + ∀ ∈

X P

X Φ P Ψ

 (17.47) 

By substituting the relationships (17.47) and  (17.32) in equation (17.19), we obtain the explicit 
analytical expression of displacement solution in each phases of multilayered cylinder.  
 
17.3.   Parametric analysis for multilayered cylinder composed by two phases 
Let us consider a multilayered cylinder composed by two hollow cylinders. The inner radius of  

multilayered cylinder is assumed to be (0)R  and the thickness of any phases is equal to δ . Then, we 
can write the following relationships: 

 ( ) ( )(1) (0) (2) (0) (0)1 , 1 2 , ,R R R R Rξ ξ ξ δ= + = + =  (17.48) 

The multilayered cylinder is subjected only the gradient of temperature between the internal and 
external surfaces e iT T T∆ = − , but the internal and external pressure are assumed vanishing. 

We consider four cases :  
(i) variation of Poisson’s ratio in two phases, with fixed values of the Young’s moduli, 

thermal conductivity coefficients and linear thermal expansion coefficients;  
(ii)  variation of Young’s moduli in two phases, with fixed values of the Poisson’s ratio, 

thermal conductivity coefficients and linear thermal expansion coefficients;  
(iii)  variation of linear thermal expansion coefficients in two phases, with fixed values of the 

Young’s moduli, Poisson’s ratio and thermal conductivity coefficients; 
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(iv) variation of thermal conductivity coefficients in two phases, with fixed values of the 
Young’s moduli, Poisson’s ratio and linear thermal expansion coefficients;  

Let us assume the following non-dimensional parameter for graphics of the displacement, strain and 
stress functions: 

         
( )

( ) ( )

( ) ( )(0)
( )

( ) (0) (1) (0)

( )( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

(1) (1) (1) (1) (1)

2
; ; ;

22
; ; ; ; ;

i i
ii r

rn
e i e i

ii ii i
eqi i i i irr rr

rr rr eq
e i e i

T T ur R
r T u

T TR R T T R

T T T T
θθ θθ

θθ θθ

α

σε σε σε ε σ σ σ
α α β β β

−−= = =
−− −

= = = = =
− −

 (17.49) 

where (1)β  is given by follows relationship: 

 ( ) ( ) ( )(1) (1) (1) (1)1 2 1 ;e iE T Tβ α ν = − −   (17.50) 

In the first case (i) let us assume (1) (2) (1) (2) (1) (2), , ,E E k k α α= = = then the only free parameters 
are Poisson’s ratio in two phases. Let us consider six cases in which is fixed Poisson’s ratio of the 

phase (1) (1) 0.3ν = , but in phase (2) the Poisson’s ratio assume the following values: 0, 0.1, 0.2, 
0.3, 0.4, 0.49.  The  Fig. 17.2 shows the radial displacement along radial direction. Fig. 17.3 and 
17.4 show the radial and circumferential strain along radial direction, respectively. In particular, if 

the ratio (2) (1)ν ν increase, then the radial and circumferential strain increase along radial direction. 

If the ratio (2) (1)ν ν increase, then  the radial, circumferential and axial stress increase in phase (1) 
and decrease in phase (2), as shown the figures 17.5, 17.6 and 17.7. The equivalent stress 
determines whether yielding occurs. For planar isotropy and non-homogeneity in radial direction, 
the equivalent stress based on the Henchy- von Mises criteria is given by follows equation: 

 ( ) ( ) ( )
1 22 2 2( ) 1 2 ( ) ( ) ( ) ( ) ( ) ( )2i i i i i i i

eq rr rr zz zzθθ θθσ σ σ σ σ σ σ−  = − + − + −  
 (17.51) 

The equivalent stress increase with ratio(2) (1)ν ν  as showed in figure 17.8. The non-dimensional 
graphics of the radial displacement, strain and stress as reported below: 

 
 

 

Fig. 17.2 -  Non-dimensional radial displacement  along radial direction  ((1) 0.3ν = ) 
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Fig. 17.3 -  Non-dimensional radial strain distribution along radial direction  ( (1) 0.3ν = ) 

 

 
Fig. 17.4 -  Non-dimensional circumferential strain  along radial direction  ((1) 0.3ν = ) 
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Fig. 17.5 - Non-dimensional radial stress distribution along radial direction  ( (1) 0.3ν = ) 

 
 

 
Fig. 17.6 - Non-dimensional circumferential stress along radial direction  ((1) 0.3ν = ) 

 



Chapter XXVII: Steady-state problem for multilayered cylinder 

F. Carannante 384 

 
Fig. 17.7 -  Non-dimensional axial stress along radial direction  ((1) 0.3ν = ) 

 

 
 

Fig. 17.8 -  Non-dimensional equivalent stress along radial direction  ((1) 0.3ν = ) 
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In the second case (ii) let us assume (1) (2) (1) (2) (1) (2), , ,k kν ν α α= = =  then the only free 
parameters are Young’s moduli in two phases. Let us consider six cases in which are selected the 

different ratio of  the Young’s moduli (2) (1)E E as follows : 0.1, 0.5, 1.0, 2.0, 5.0, 10.0. Figure 

17.10 shows that if the ratio (2) (1)E E increase the radial strain decrease in both phases.  

Conversely, figure 17.11 shows that  if the ratio (2) (1)E E increase the circumferential strain 
increase in both phases. Fig. 17.12, 17.13 and 17.14 show the radial, circumferential and axial 
stresses along radial direction, respectively. As expected, the circumferential and axial stresses 
distribution exhibits significant jumps at all interfaces as shown in Fig. 17.13. These discontinuities 
are due to the differences between Young’s modulus. The circumferential and axial stresses varies 
characteristically in each layer in view of the occurrence of discontinuities at all interfaces shown in 

the Fig. 17.13. In particular, if the ratio (2) (1)E E increase, the radial, circumferential, axial and 
equivalent stresses increase along radial direction as shown the figures 17.12, 17.13, 17.14 and 
17.15. 
 

 
 
Fig. 17.9 -Non-dimensional radial displacement  along radial direction (Young’s moduli variation )  
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Fig. 17.10 - Non-dimensional radial strain along radial direction  (Young’s moduli variation ) 
  
 

 
 

Fig. 17.11 - Non-dimensional circumferential strain  along radial direction 
 (Young’s moduli variation ) 
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Fig. 17.12 - Non-dimensional radial stress along radial direction  (Young’s moduli variation ) 
  

 
 

Fig. 17.13 -  Non-dimensional circumferential stress along radial direction 
(Young’s moduli variation ) 
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 Fig. 17.14 -  Non-dimensional axial stress along radial direction  (Young’s moduli variation )  
 

 
 

Fig. 17.15 -  Non-dimensional equivalent stress along radial direction  (Young’s moduli variation ) 
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In the third case (iii) let us assume (1) (2) (1) (2) (1) (2), 0.3, ,E E k kν ν= = = = then the only free 
parameters are linear thermal expansion coefficients in two phases. Let us consider six cases in 

which are selected the different ratios of  linear thermal expansion coefficients (2) (1)α α as follows 

: 0.1, 0.5, 0.8, 1.0, 1.5, 2.0. Figure 17.16 and 17.18 shows that if the ratio(2) (1)α α  increase, then 

the radial displacement and circumferential strain increase. Moreover, if the ratio(2) (1)α α  increase, 
then the radial strain increase in phase (2) and decrease in phase (1). The radial stress increase with 

ratio (2) (1)α α  as showed in figure 17.19. The circumferential and axial stresses increase in absolute 

value with ratio (2) (1)α α , as reported in figure 17.20 and 17.21. Finally, if the ratio (2) (1)α α  
increase the equivalent stress increase in both phases (1) and (2) (figure 17.22). 
 
 

 
 
 

Fig. 17.17 - Non-dimensional radial displacement along radial direction  
(Linear thermal expansion coefficient variation) 
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Fig. 17.17 - Non-dimensional radial strain along radial direction  
(Linear thermal expansion coefficient variation) 

 

 
 

Fig. 17.18 - Non-dimensional circumferential strain  along radial direction  
(Linear thermal expansion coefficient variation) 
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Fig. 17.19 -  Non-dimensional radial stress along radial direction  
(Linear thermal expansion coefficient variation) 

 

 
Fig. 17.20 -  Non-dimensional circumferential stress along radial direction   

(Linear thermal expansion coefficient variation) 
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Fig. 17.21 -  Non-dimensional axial stress along radial direction   

(Linear thermal expansion coefficient variation) 
 

 
 

Fig. 17.22.  Non-dimensional equivalent stress along radial direction  
 (Linear thermal expansion coefficient variation) 
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In the four case (iv) let us assume (1) (2) (1) (2) (1) (2), 0.3, ,E E ν ν α α= = = = then the only free 
parameters are thermal conductivity coefficient in two phases. Let us consider six cases in which 

are selected the different ratio of  thermal conductivity coefficient (2) (1)k k as follows : 0.1, 0.5, 1.0, 

2.0, 5.0, 10.0. In particular, if the ratio (2) (1)k k increase, then the radial displacement and 
circumferential strain increase along radial direction as showed in figures 17.23 and 17.25. In phase 

(1) the radial strain assumes maximum value if (2) (1)k k> and in phase (2) the radial strain assume 

maximum value if (2) (1)k k< .  

 
Fig. 17.23 -  Non-dimensional radial displacement  along radial direction  

(Thermal conductivity coefficient variation) 

 
Fig. 17.24 - Non-dimensional radial strain along radial direction  

(Thermal conductivity coefficient variation) 
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Fig. 17.25 -  Non-dimensional circumferential strain  along radial direction  
(Thermal conductivity coefficient variation) 

 

 
Fig. 17.26 - Non-dimensional radial stress along radial direction  

(Thermal conductivity coefficient variation) 
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Fig. 17.27 -  Non-dimensional circumferential stress along radial direction  
 (Thermal conductivity coefficient variation) 

 
 

Fig. 17.28 -  Non-dimensional axial stress along radial direction   
(Thermal conductivity coefficient variation) 
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Fig. 17.29 -  Non-dimensional equivalent stress along radial direction   
(Thermal conductivity coefficient variation) 

 

 
 

Fig. 17.30 - Non-dimensional temperature along radial direction  
 (Thermal conductivity coefficient variation) 
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Finally, we reported the maximum absolute value of non-dimensional equivalent stress in phase (1) 
and in phase (2) for four case, as reported below: 

(i) Poisson’s ratio variation in both phases; 
(ii)  Young’s moduli and  linear thermal expansion coefficient variation; 
(iii)  Young’s moduli and  thermal conductivity coefficient variation; 
(iv) Thermal conductivity coefficient and  linear thermal expansion coefficient variation; 

 
Fig. 17.31 - Maximum absolute value of  non-dimensional equivalent stress in phase (1) 

- Poisson’s ratio variation – 

 
Fig. 17.32 -  Maximum absolute value of  non-dimensional equivalent stress in phase (2) 

- Poisson’s ratio variation - 



Chapter XXVII: Steady-state problem for multilayered cylinder 

F. Carannante 398 

 

 
 

Fig. 17.33 -  Maximum absolute value of  non-dimensional equivalent stress in phase (1) 
- Young’s moduli and  linear thermal expansion coefficient variation - 

 

 
 

Fig. 17.34 -  Maximum absolute value of  non-dimensional equivalent stress in phase (2) 
-  Young’s moduli and  linear thermal expansion coefficient variation - 

 



Chapter XXVII: Steady-state problem for multilayered cylinder 

F. Carannante 399 

 
 

Fig. 17.35 -  Maximum absolute value of  non-dimensional equivalent stress in phase (1) 
- Young’s moduli and  thermal conductivity coefficient variation - 

 

 
 

Fig. 17.36 -  Maximum absolute value of  non-dimensional equivalent stress in phase (2) 
- Young’s moduli and  thermal conductivity coefficient variation – 
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Fig. 17.37 -  Maximum absolute value of  non-dimensional equivalent stress in phase (1) 
- thermal conductivity coefficient and linear thermal expansion coefficient variation – 

 

 
 

Fig. 17.38 -  Maximum absolute value of  non-dimensional equivalent stress in phase (2) 
- thermal conductivity coefficient and linear thermal expansion coefficient variation - 
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17.4.  Numerical example for multilayered cylinder composed by three phases  
In this study, we present some numerical results for the temperature distributions in multilayered 
cylinder constituted by three phases, subjected to the considered boundary conditions and the 
resulting displacement and thermal stresses. For the multilayered cylinder the geometry and 
material quantities are shown in Table 1. The inner radius of multilayered cylinder is assumed to be 

(0)R  and the thickness of any phases is equal to δ . Then, we can write the following relationships: 
 

 ( ) ( ) ( )(1) (0) (2) (0) (3) (0) (0)1 , 1 2 , 1 3 , ,R R R R R R Rξ ξ ξ ξ δ= + = + = + =  (17.52) 

where (0)Rξ δ= represent the ratio between the thickness of any hollow cylinder and inner radius. 
Let us consider two case, in which the boundary conditions at the inner and the outer surfaces are 
assumed to be : 

 

(1) (0) (1) (0)

(3) (3)(3) (3)

(1) (0) (1) (0)

(3) (3)(3) (3)

( ) 298 ( ) 0
( )

( ) 0( ) 308

( ) 298 ( ) 10
( )

( ) 20( ) 298

i R rr i

rr ee

i R rr i

rr ee

T r R T T K r R p
i

r R pT r R T K

T r R T T K r R p MPa
ii

r R p MPaT r R T K

σ
σ

σ
σ

 = = = = ° = = = 
 

= = == = = °  

 = = = = ° = = = 
 

= = == = = °  

 (17.53) 

 
In each cases, let us consider three sub-cases, in which are chance the position of materials, as 
reported below:  
 

(a) phase 1: Stainless steel,    phase 2 : Zinc,                   phase 3 : Aluminium; 
(b)  phase 1: Aluminium,       phase 2 : Stainless steel,    phase 3 : Zinc 
(c)  phase 1: Aluminium,       phase 2 : Zinc,                   phase 3 : Stainless steel; 
 

In case (i) the multilayered cylinder are subjected to an gradient of temperature between inner and 
outer surfaces, but the external load vanishing. In second case (ii) the multilayered cylinder is 
subjected to gradient of  pressure between inner and outer surfaces, but the temperature is uniform 
and equal to RT . In total, we studied six cases, in which the ratio ξ  is assumed equal to 0.01.  

The Fig. 17.47, shows the temperature distributions along the radial direction in the first case 
considered. The temperature gradient varies in each layer because of the difference in the thermal 
conductivity coefficients. Fig. 17.40 and 17.48 shows the radial displacement distributions along 
the radial direction in the two cases considered. 
 In particular in the first case (i), the assembling give by sub-case (c) the radial displacement assume 
the minimum value, but in case (ii) the minimum values of radial displacement are given by sub-
case (a). The figures 17.41 and 17.21 show the thermal radial and circumferential strain distribution 
along the radial direction in the case (i), respectively. 
 The figures 17.49 and 17.50 show the thermal radial, circumferential and equivalent stress 
distribution  along the radial direction in case (ii), respectively. As expected, the circumferential 
stress distribution exhibits significant jumps at all interfaces as shown in figures 17.44 and 17.52. 
These discontinuities are due to the differences in material properties such as the coefficient of 
linear thermal expansion and Young’s modulus. The circumferential stress varies characteristically 
in each layer in view of the occurrence of discontinuities at all interfaces. In other figures we 
reported the dimensional parameters distribution  along the non-dimensional radial direction. 
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Table 17.1 - The geometry and material constants of multilayered cylinder 

 

Case (a)

Ti Te

pi peZn AlFe

Case (b)

Ti
Te

pi pe

Case (c)

Ti
Te

pi pe

(3)(2)(1)
(3)(2)(1)

(3)(2)(1)

Fe
Zn
Al

Zinc
Aluminium

Stainless steel=
=
=

Al Fe Zn

Legend

ZnAl Fe

 
 

Fig.  17.39 -  Multilayered cylinder composed by three hollow cylinders   
 

We reported the numerical results for case (i) as follows : 
 

 Aluminium Zinc Stainless steel 
2E N m− 

   970 10⋅  9108 10⋅  9215 10⋅  

1 1k W m K− − 
   237 116 30 

ν  0.35 0.25 0.30 
1 1m m Kα − ⋅   623.1 10−⋅  630.2 10−⋅  612 10−⋅  

3kg mρ − 
   2700 7140 7800 

1 1
vc kJ kg K− − ⋅   0.90 0.39 0.46 
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Fig. 17.40 -  Radial displacement distribution along radial direction 
 
 
 

 
 

Fig. 17.41 - Radial strain distribution along radial direction 
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Fig. 17.42 - Circumferential strain  along radial direction 
 
 

 
 

Fig. 17.43 -  Radial stress distribution along radial direction 
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Fig. 17.44 -   Circumferential stress along radial direction 
 
 

 
 
 

Fig. 17.45 - Axial stress along radial direction 
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Fig. 17.46 -  Hencky von Mises’s equivalent stress along radial direction 
 

 
 

Fig. 17.47 -  Non-dimensional temperature distribution along radial direction 
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We reported the numerical results for case (ii) as follows : 
 

 
 

Fig. 17.48 -  Non dimensional  radial displacement distribution along radial direction 
 

 
 

Fig. 17.49 -  Radial strain distribution along radial direction 
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Fig. 17.50 -  Circumferential strain  along radial direction 
 

 
 

Fig. 17.51 -  Radial stress distribution along radial direction 
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Fig. 17.52 -  Circumferential stress along radial direction 
 

 
 

Fig. 17.53 -  Axial stress along radial direction 
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Fig. 17.54 -  Equivalent stress along radial direction 
 
17.5.  Conclusions 
In this study, analytical and numerical results for a multilayered cylinder were obtained. The 
analytical thermo-elastic solution in closed form is employed to obtain the parametric analyses for 
bi-layer hollow cylinders and the numerical results for cylindrical tank composed by three phases. 
The temperature, displacement and thermal stress distributions were obtained which can be applied 
to mechanical parts in precision measurement or design useful structural applications. The proposed 
method may be readily extended to solve a wide range of physical engineering problems. In 
particular, the parametric analyses presented in this paper can be to utilized for to optimize the 
designer of the composite cylindrical tank subjected to mechanical and thermal loads. By 
summarized the results obtained by parametric analyses, it is possible reduce the maximum 
equivalent stress in cylindrical tank by utilizing hollow cylinders constituted by materials with 
selected mechanical and thermal property. 
 
17.6.  Nomenclature 
k     thermal conductivity coefficient,     
α     linear thermal expansion coefficient 
E    Young’s modulus,    
ν     Poisson’s ratio 

iT    temperature on the inner surface,    

eT    temperature on the outer surface  

ip    pressure on the inner surface,         

ep    pressure on the outer surface 

,T T  dimensional and non-dimensional temperature 
,r r   dimensional and non-dimensional radial coordinate 
( ) ( ),i i
jk jkε ε  dimensional and non-dimensional  strain components  in generic i-th phase 
( ) ( ),i i
jk jkσ σ  dimensional and non-dimensional stress components  in generic i-th phase 
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( ) ( ),i i
r ru u   dimensional and non-dimensional radial component of displacement in generic i-th phase  
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CHAPTER XVIII 
STEADY-STATE PROBLEM FOR MULTILAYERED SPHERES 

 
18.0.  Introduction 
The Functionally Graded Materials, afterwards denoted by FGMs, are often found in many 
engineering applications. In the framework of Theory of Elasticity, FGMs are mostly treated as 
non-homogeneous materials whose mechanical and thermal material properties continuously or in a 
piece-wise continuous manner (laminated composites) vary along a spatial direction. FGMs are a 
new branch in the Mechanic of Materials which can be used in various conditions such as thermal 
and mechanical load applications. The mechanical benefits obtained by a FGMs might be 
significant, as it can be seen by the excellent structure performance of some of these materials. 
Hence, there has been a considerable interest in the application of these materials in recent years, in 
areas such as high temperature applications and industrial fields (electronics, biomaterials and so 
on). The increment of the using of composite materials in engineering application, as FGMs, has 
developed a considerable researching activity in this area. An understanding of thermal stresses in 
isotropic bodies is essential for a comprehensive study of their response due to an exposure to a 
temperature field, which may in turn occurs in service or during  manufacturing stages. In literature, 
the FGMs are microscopic inhomogeneous composites characterized by continuously varying of 
mechanical and thermal property, according to a certain power law, along a fixed direction, in 
contrast with classical composite materials whose properties abruptly vary from one lamina to the 
other (Ibrahim et al. [12]). FGMs were firstly developed by a group of Japanese scientists, used in 
aggressive environments and have been widely explored in various engineering applications 
including electron, chemistry, optics, biomedicine, etc. [13]. The exact solutions for the stresses in 
functionally graded cylindrical and spherical vessels, subjected to internal pressure alone, are given 
by Tutuncu and Ozturk [25]. These authors consider radially varying inhomogeneous material 
properties with material stiffness obeying to a simple power law and stress distributions depending 
on an inhomogeneity constant. This can be adapted for specific applications in order to control the 
stress distribution; including continuously varying volume fraction of the constituents. The 
analytical solution for stresses in spheres and cylinders made of FGMs are given by Lutz and 
Zimmerman [16]. These authors consider thick spheres and cylinders under radial thermal loads, 
composed by radially graded materials, with linear composition of the constituent materials. Obata 
and Noda [20] studied one-dimensional steady-state thermal stresses in a functionally graded 
circular hollow cylinder and a hollow sphere by using  a perturbation approaching. The object of 
this study is to achieve the effect of composites on stresses and to design the optimum FGM hollow 
circular cylinder and hollow sphere under different assumptions of temperature distributions. Liew 
et al. [15] present an analysis that determines the thermo-mechanical behaviour of FGMs composed 
by hollow circular cylinders.  These solutions are obtained by an original limiting process that 
employs the solutions of homogeneous hollow circular cylinders. These solutions are not 
determined by the recourse to basic theory or equations of non-homogeneous thermo-elasticity, but 
by the thermal stresses results that occur in the FGM cylinder, except in trivial case of zero 
temperature and heat resistance that may be improved by a proper variation of material 
composition. Thermal stresses in FGM cylinder are governed by more factors than that of 
homogeneous. Shao [24] presents the solution of a functionally graded circular hollow cylinder of 
finite length by using a multi-layered approaching of the theory of laminated composites which is 
subjected to axisymmetric thermal and mechanical loads. The properties of material are 
independent of temperature with radially varying and are homogeneous in each layer. The results 
are also presented for a mullite/molybdenum functionally graded circular hollow cylinder. Zong -Yi 
Lee [28] studied a quasi-static coupled thermo-elastic problem for multilayered spheres. By  using 
Laplace transform with respect to time, the general solutions of the governing equations are 
obtained in transform domain. The solution is obtained by using the matrix similarity 
transformation and inverse Laplace transform. The solutions are obtained in temperature and 
thermal deformation distributions caused by transient state. It is demonstrated that computational 
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procedures established are capable of solving the generalized thermo-elasticity problem of 
multilayered spheres. You et al. [26] present an accurate method to carry out elastic analysis of 
thick-walled spherical pressure vessels subjected to internal pressure. Two kinds of pressure vessel 
are considered: The first one consists in two homogeneous layers near to the inner and the outer 
surface of the vessel and a functionally graded layer in the middle; the second one consists in the 
FGM only. The effects of Young’s modulus of the outer layer, and Young’s modulus and geometric 
size of the middle layer, on deformations and stresses in vessels consisting in the three different 
layers, are examined. A method to obtain an almost constant circumferential stress in vessels, 
composed by FGM, is investigated. Ahmet and Tolga [2] present plane strain analytical solutions of 
functionally graded elastic and elastic–plastic pressurized tube. These solutions are obtained by 
small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material 
are assumed to radially vary according to parabolic forms. The plastic model is based on Tresca 
yield criterion, and on its flow rule and ideally plastic material behaviour. Elastic, partially plastic 
and fully plastic stresses are shown and significantly affected by material in-homogeneity. With a  
suitable selection of material parameters, the in-homogeneous elastic-plastic solution reduces to a 
homogeneous one. Chen and Lin [5] carried out the elastic analysis for a thick cylinder as well as 
spherical pressure vessel made of FGMs with an exponentially varying property which has a 
significant role in stress distribution along radial direction. Shao and Ma [24] carried out thermo-
mechanical analysis of functionally graded hollow circular cylinders subjected to mechanical loads 
and linearly increasing boundary temperature. Thermo-mechanical properties of FGM are not  
dependent by temperature, but they continuously vary in radial direction of cylinder. By employing 
Laplace transform techniques and series solving method for ordinary differential equation, it is 
possible to determine solutions for time-dependent temperature and thermo-mechanical stresses. 
Moreover, in Shao and Ma’s work [20] is reported an example of a molybdenum/mullite FGM, 
where material properties exponentially vary. F. Alavi et. al. [1] studied  thermo-elastic behaviour 
of thick functionally graded hollow sphere under combined thermal and mechanical loads. 
Mechanical and thermal properties of FGM sphere are assumed to be functions of radial position. 
Y.Z. Chen, X.Y. Lin [5] propose elastic analysis for a thick cylinder made of FGMs by assuming 
exponential function form for mechanical property. Peng and Li [22] present a method to analyze 
steady-state thermal stresses in a functionally graded hollow cylinder with thermo-elastic 
parameters that varies in radial direction, and the boundary value of a thermo-elastic problem is 
changed into Fredholm integral equation. The distribution of thermal stresses and radial 
displacement are presented,  and the influence of gradient variation of material properties on 
thermal stresses is observed. Nayak, P.; Mondal, S. C. [17] carried out a general analytical solution 
in order to obtain the thermo-mechanical radial, tangential, and effective stresses of a thick 
spherical vessel made of FGMs. Finally, P. Nayak, S.C. Mondal, A. Nandi [18] present an analysis 
of a functionally graded thick cylindrical vessel with radially varying properties in the form of 
displacement, strain and stress for thermal, mechanical and thermo-mechanical loads. Further more, 
these authors validate the method of solution and the results by means of reducing it to those of 
thick cylindrical pressure vessels of isotropic-homogeneous materials. The properties of  material of 
the vessel are assumed to be graded in radial direction based on power-law index function of radius.  
This Chapter aims to determine the displacements, strains, and stresses from the general analytical 
solution of multilayered sphere composed by an arbitrary number of layers constituted by materials 
with generic modulus of elasticity, thermal expansion coefficient and thermal conductivity. Material 
properties are assumed to be temperature-independent and homogeneous in each layer. The 
multilayered sphere is considered as an classical composite material whose properties abruptly vary 
from one hollow sphere to the other. 
 
18.1.  Basic equations for steady-state problem 
Let us consider an multilayered sphere composed by n fictitious hollow spherical phases (Figure 
n.1). The external radius and internal radius of multilayered sphere are denoted by ( )nR and (0)R , 
respectively. The radius at interface between the generic phase i-th and the phase (i+1)-th are 
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denoted with ( )iR . The mechanical and thermal properties of each layer are assumed to be 
homogeneous and isotropic and are denoted with apex (i).  Spherical coordinates r, θ  and φ  are 
used in this analysis. The multilayered sphere is subjected to gradient temperature, between the 
inner and the outer surface, that are eT  and iT , respectively. Moreover, the multilayered sphere is 

subjected to an external constant pressure ep  and an internal constant pressure ip  applied on the 

inner and the outer surface ( )nr R=  and (0)r R= , respectively. Details of multilayered sphere are 
shown in Figure n.1. Afterwards, it is presented a method to solve a mono-dimensional thermo-
elastic problem. The basic thermo-elastic equations for the i-th layer can be expressed as reported 
below: 
 
Strain-Displacement relations: 
In isotropic-thermal elasticity case, the strains are related to the displacements by purely 
geometrical considerations. The multilayered sphere is subjected to spherical symmetric steady-
state temperature loads. Then, in spherical coordinate, the displacement components for generic 
phase are given by: 

 ( )( ) ( ) ( ) ( ), 0, 0, {1,2,... }i i i i
r ru u r u u i nθ φ= = = ∀ ∈  (18.1) 

where we denote with apex 1,2,…n the hollow phases of multilayered sphere. Then,  the strain-
displacement relations take the form: 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ), , 0 {1,2,... }
i i

i i i i i ir r
rr r r

u u
i n

r rθθ φφ θφ θ φε ε ε ε ε ε∂= = = = = = ∀ ∈
∂

 (18.2) 

where ( ) ( ) ( ), , ,i i i
ru u uθ φ  are the radial and circumferential displacements in the i-th layer 

( ( ) ( 1)i iR r R +< < ). The superscript  “i”  represents the i-th layer. 
 
Thermo-elastic stress-strain relations: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 3 2

2
3 2

0; {1,2,... }

i i
i i i i i i i ir r

rr R

i i
i i i i i i i i ir r

R

i i i
r r

u u
T T

r r

u u
T T

r r

i n

θθ φφ

φ θφ θ

σ µ λ λ λ µ α

σ σ µ λ λ λ µ α

τ τ τ

∂= + + − + −
∂

∂= = + + − + −
∂

= = = ∀ ∈

 (18.3) 

where ( ) ( ) ( ) ( ), , ,i i i iTµ λ α  are the Lamè elastic constants, thermo-elastic coefficients and temperature 

in the i-th layer, respectively;  RT  is the reference temperature . Moreover, let us assume that the 

function of the temperature in each phase is given by: 

                                           ( )( ) ( ) {1,2,...., }i iT T r i n= ∀ ∈                                            (18.4) 

 
Equilibrium equations: 
The equations of equilibrium are the same as those of isothermal elasticity since they are based on 
purely mechanical considerations. By applying the hypothesis of the axial-symmetric steady-state 
temperature loads and in absence of the body force, the equilibrium equations become one equation: 

 
( )( ) ( )( ) 2

0 {1,2,... }
i ii

rrrr i n
r r

θθσ σσ −∂ + = ∀ ∈
∂

 (18.5) 

 
Equilibrium and compatibility boundary conditions 
The results obtained until now satisfy the equilibrium and compatibility equations inside each 
generic i-th phase of a composite spherical solid subjected to axis-symmetrical strains or steady-
state temperature loads. Under both the hypothesis of linear isotropic elastic behaviour of the 
homogeneous materials and the assumption of perfect bond at the spherical interfacial boundaries 
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(no de-lamination or friction phenomena), we have now to establish the satisfaction of both the 
equilibrium and the compatibility equations at the boundary surfaces between two generic adjacent 
phases. To obtain this, we will make reference to the generic case, in which multilayered sphere 
constituted by n arbitrary hollow phases (Fig. 12.1). In this framework the following boundary 
conditions be established. In particular, we begin writing the  compatibility equations at the generic 
interface, that is: 

 ( ) ( ) ( 1) ( )( ) ( ) {1,2,... 1}i i i i
r ru r R u r R i n+= = = ∀ ∈ −  (18.6) 

The equilibrium equations at the generic interface are given by: 

 ( ) ( ) ( 1) ( )( ) ( ) {1,2,... 1}i i i i
rr rrr R r R i nσ σ += = = ∀ ∈ −  (18.7) 

The equilibrium equations for the tractions on the inner and the outer spherical boundary surface, 
give: 

 
( ) ( )

(1) (0)

( )

( )

n n
rr e

rr i

r R p

r R p

σ

σ

 = =


= =
 (18.8) 

where ,e ip p  are the pressure applied on the inner and the outer surface of multilayered sphere, 

respectively.   
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Fig. 18.1 -  Multilayered sphere composed by n-hollow spheres  
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Heat conduction equation 
The conduction equation is wrote in hypothesis of the steady-state problem and of the spherical 
symmetric load conditions for each phases of multilayered sphere: 

 
2 ( ) ( )

2

2
0 {1,2,... }

i iT T
i n

r rr

∂ ∂+ = ∀ ∈
∂∂

 (18.9) 

 
Temperature boundary and continuity conditions 
At the interfaces between the phases, the temperature and heat flux is the same. Then, we can write 
the following conditions: 

 

( ) ( ) ( 1) ( )

( ) ( ) ( 1) ( )
( ) ( 1)

( ) ( )
{1,2,... 1}( ) ( )

i i i i

i i i i
i i

T r R T r R
i nT r R T r R

k k
r r

+

+
+

 = = =
 ∀ ∈ − ∂ = ∂ == ∂ ∂

 (18.10) 

on the inner and the outer surface the temperature is equal to eT  and iT , respectively: 

 
( ) ( )

(1) (0)

( )

( )

n n
e

i

T r R T

T r R T

 = =


= =
 (18.11) 

 
18.2.  Multilayered sphere under radial temperature variation and uniform pressure  
Let us consider an multilayered sphere constituted by n-hollow spherical phase as decrypted in 
section 17.1. The equations field in each phase are composed by equilibrium and heat conduction 
equations. By substituting the strain-displacement relations (18.2) in stress-strain relations (18.3) 
and these in equilibrium equations (18.5), we obtain the displacement formulation of the 
equilibrium equations. Then, the equations field to satisfy in thermo-elastic steady-state problem 
with spherical symmetry are given by: 

                          

( )2 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 ( ) ( ) ( )

2 ( ) ( )

2

1 3 2 1

2 1

2
0 {1,2,..., }

i i i i i i
r i i

i i i

i i

d r ud d T d T

dr dr dr drr

d T d T
i n

r d rd r

λ µ να α
µ λ ν

      + +   = =   
   + −     


+ = ∀ ∈


 (18.12) 

By applying the formulas in chapter 15, we determine the displacement solution in each phases of 
multilayered sphere, as reported below: 

 ( )
( )( ) ( ) ( )

( ) 2 ( ) ( ) 2
12 ( ) ( ) 2

3 2
{1,2,...., }

2

ii i i
i i i

r i i

C
u r T r dr C r i n

r r

α λ µ
λ µ

 += + + ∀ ∈ 
+ 

∫  (18.13) 

where ( ) ( )
1 2,i iC C  are constants integration to determine. By integrating the Fourier’s equation 

reported in (18.12), we determine the well know temperature function for steady-state problem in 
each phases: 

 ( )
( )

( ) ( ) 2
1 {1,2,...., }

i
i i A

T r A i n
r

= + ∀ ∈  (18.14) 

where ( ) ( )
1 2,i iA A  are constants integration to determine. Then, the heat flux in each phases is given 

by: 

 
( ) ( )( )

( ) ( ) 2
2

{1,2,..., }
i ii

i i k AdT
q k i n

dr r
= − = ∀ ∈  (18.15) 

By substituting the temperature function (18.14) in equation (18.13), we obtain the explicit 
expression of displacement function:                                   
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( ) ( ) ( )( ) ( )

( ) ( ) ( )2 1 2
1 2 ( ) ( )

3 2
{1,2,... }

3 22

i i ii i
i i i

r i i

C A r A
u C r i n

r

λ µα
λ µ

  += + + + ∀ ∈  
+  

 (18.16) 

By applying the strain-displacement relationship, we determine the non-zero strain components: 

 ( )( )
( )

( ) ( ) ( ) ( )
( ) ( ) 2 1

1 3 ( ) ( )

( ) ( ) ( ) ( ) ( )( )
2 1( ) ( ) ( ) 2

1 3 ( ) ( )

6 2
1 ;

33 2
{1,2,... }

3 2 3 2
;

6 2

i i i i
i i

rr i i

i i i i ii
i i i

i i

C A
C

r
i n

A A rC
C

r
θθ φφ

α λε
µ λ

α λ µ
ε ε

µ λ

  
= − + +  

+  
∀ ∈

+ +
= = + +

 +


 (18.17) 

By applying the stress-strain relationship, we obtain the non-zero stress components: 

          

( )

( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )2 1 2

13 ( ) ( )

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )2 1 2

13 ( ) ( )

4 22
3 2

32

2 4
3 2

32

{

i i i ii i
i i i i i

rr Ri i

i i i ii i
i i i i i i

Ri i

C A A
C T

rr

C A A
C T

rr

i

θθ φφ

µ α µσ λ µ α
λ µ

µ α µσ σ λ µ α
λ µ

   
= − + + − + +   

+    


   = = + + − + +   +   

∀ ∈ 1,2,... }n

 (18.18) 

Finally, by utilizing the expressions of the temperature, heat flux, radial displacement and radial 
stress in each phases, we can write in explicit the boundary conditions for multilayered sphere. For 
our convenience, we use the elastic moduli ( )iE  and ( )iν  as functions of the Lamé coefficients, by 
invoking the well-known following relations: 

 
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

(2 3 )
, .

( ) 2( )

i i i i
i i

i i i i
E

µ µ λ λν
µ λ µ λ

+= =
+ +

 (18.19) 

Then, the compatibility boundary conditions (18.6), become : 

                      

( )

( ) ( 1) ( 1) ( 1) ( ) ( )
( ) ( 1) ( 1) ( )2 2 1 2 1 2
1 1 ( )3 ( ) ( )3 32 2

{1,2,..., 1 }

i i i i i i
i i i i

i i i

C C A A A A
C C

R R R

i n

ζ ζ
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+ +    −− + = + − +   
   

∀ ∈ −

 (18.20) 

where the constant 
( )

( ) ( )
( )

1

1

i
i i

i

νζ α
ν

 +=  
− 

. The equilibrium conditions (18.7) at interfaces between the 

phases, are given by: 
                 

( ) ( ) ( ) ( )
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1 2 1 2
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R
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α α
ν νν ν ν ν
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+ + − + ∀   

   
( ){1,2,..., 1 }i n∈ −

 (18.21)  

where 
( ) ( )

( )
( )1

i i
i

i

Eαψ
ν

=
−

. The equilibrium equations on the external and internal surface of the solid  

(18.8) become: 

 
( ) ( ) ( )

( ) ( ) ( )

(1) (1) (1) (1) (1) (1) (1) (1)
(1)1 2 1 2

(0)(1) (1) (0)3 (1)
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( )1 2 1 2
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3 222 1 2 1 2 1 2
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n eR

nn n n n
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pC E C E E T A A

RR

α ψ
ν ν ν

α ψ
ν ν ν

  
− = − + + +  

− + −  


  − = − + + +  − + −  

 (18.22) 
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The temperature and continuity boundary conditions at interfaces between the adjacent phases  
(18.10) become: 

 ( )
( 1) ( ) ( ) ( 1) ( )
1 1 2 2

( 1) ( 1) ( ) ( )
2 2

0
{1,2,..., 1 }

0

i i i i i

i i i i

A A R A A
i n

k A k A

+ +

+ +

 − + − =  ∀ ∈ −
 − =

 (18.23) 

Finally, it is remains to consider the boundary conditions on the external and internal surface  
related to temperature (18.11): 

 
(1) (0) (1) (0)
1 2

( ) ( ) ( ) ( )
1 2

i

n n n n
e

A R A T R

A R A T R

 + =


+ =
 (18.24) 

The equations (18.20) to (18.24) represents an algebraic system constituted by  4 n×  equations, 
where the unknown parameters  are  4 n×  ,  as reported below: 

 ( ) ( ) ( ) ( )
1 2 1 2, , , {1,2,..., }i i i iA A C C i n∀ ∈  (18.25) 

The algebraic system mentioned above, can be subdivided in two uncoupled algebraic systems: 
(i) the first composed  by equations (18.20), (18.21) and (18.22) ; It is characterized by 

2 n×  equations in 2 n×  unknown parameters  ( ) ( )
1 2, {1,2,..., }i iC C i n∀ ∈  

(ii)  the second composed by equations (18.23) and (18.24); It is characterized by 

2 n× equations in 2 n×  unknown parameters  ( ) ( )
1 2, {1,2,..., }i iA A i n∀ ∈  

In order to solve the first algebraic system (i), it is easy to determine the constants 
( ) ( )
1 2, {2,3..., }i iA A i n∀ ∈ as function of the constants (1) (1)

1 2,A A . By solving the algebraic system 

(18.23), we obtain the following relations: 

 
(1)1

( ) (1) (1) (1) ( ) (1)
1 1 2 2 2( ) ( ) ( 1) ( )

1

1 1 1
; ; {2,3,..., }

i
i i

j j j i
j

k
A A A k A A i n

R k k k

−

+
=

 = + − = ∀ ∈ 
 

∑  (18.26) 

By substituting the equations (18.26) in algebraic system (18.24), fixed  i = n, we determine the 

constants (1) (1)
1 2,A A as reported below: 

 (1) (1) (0)
1 2; ;e i e i

i
T T T T

A T A R
ω ω
− −= − =  (18.27) 

where (1) (0)
( ) ( ) ( 1)

1

1 1 1n

j j j
j

k R
k R R

ω −
=

  = −  
  

∑  is non-dimensional constant parameter for fixed 

number of the phases. Finally, we write the solution in closed form of the algebraic system (i) as 
follows: 

 

( )

( )

( ) ( ) ( ) ( ) ( 1)
1( )

1

( ) ( ) ( 1)
1

( )
2 ( ) ( ) ( 1)( )

1

1 1 1 1

1 1 1
{1,2,..., }

1 1 1
1

i

i i j j j
ji

i e i n

j j j
j

n
e ii

j j ji
j

k R k R R
A T T T

i nk R R

T T
A

k R Rk

−
=

−
=

−
=

   − + −   
   = + −

     −  ∀ ∈    
  −  = −   

   

∑

∑

∑

 (18.28) 

Then, the temperature function in each phases is given by: 

            ( ) ( )
( ) ( ) ( ) ( ) ( 1)

1( )

( ) ( ) ( 1)
1

1 1 1 1 1 1

{1,2,..., }
1 1 1

i

i i j j j
ji

i e i n

j j j
j

rk R k R R
T r T T T i n

k R R

−
=

−
=

    − + −    
    = + − ∀ ∈

   −    

∑

∑
 (18.29) 

In order to solve the second algebraic system (ii), let us consider the  algebraic system composed by 
equilibrium and compatibility conditions (18.20)- (18.21), which can be written as:  
 ⋅ =Q X L�  (18.30) 
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where the vectors ( ) ( ) ( ) ( )(2) (1) (3) (2) ( 1) ( ) ( 1) ( 1)
1 1 2 2 1 1, ,..., ,...,

T
i i n n
i i n n

+ − −
− −

 − − − − L = L L L L L L L L  is characterized 

by following sub-vectors: 

 

( ) ( )

( )( )
( ) 1 ( ) ( )

( )( ) ( )
2 ( )

( )

0
3 2 , {1,2,..., }

1 2
3 2

i i

ii
i i i
i Rii i

i
i

AR T i nE
A

R

ζ ζ

αψ ψ
ν

 
       = + ∀ ∈        − − −   

L  (18.31) 

 

( 1) ( 1)

( 1)( )
( 1) 1 ( 1) ( 1)

( 1)( 1) ( 1)
2 ( 1)

( )

0
3 2 , {1,2,..., }

1 2
3 2

i i

ii
i i i
i Rii i

i
i

AR T i nE
A

R

ζ ζ

αψ ψ
ν

+ +

+
+ + +

++ +
+

 
       = + ∀ ∈        − − −   

L  (18.32) 

and (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors, as reported below: 

 ( ) ( ) ( )
1 2 , {1,2,...., }

Ti i iC C i n = ∀ ∈ X  (18.33) 

The matrix  Q is composed by following  sub-matrices: 

 

(1) (2)
1 1

(2) (3)
2 2

(3) (4)
3 3

( 2) ( 1)
2 2

( 1) ( )
1 1

n n
n n

n n
n n

− −
− −

−
− −

 −
 

− 
 − =
 
 

− 
 

−  

B B 0 0 0 0 0

0 B B 0 0 0 0

0 0 B B 0 0 0
Q

0 0 0 0 B B 0

0 0 0 0 0 B B

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯

⋯

 (18.34) 

where the generic matrices ( ) ( 1),i i
i i

+B B are given by: 

      

( ) ( ) ( ) ( )

( )3 ( )3
( ) ( 1)

( ) ( ) ( 1) ( 1)

( ) ( ) ( )3 ( 1) ( 1) ( )3

1 1
1 1

, ,

2 1 2 1 2 1 2 1

i i

i i
i i i ii i

i i i i i i

R R

E E E E

R Rν ν ν ν

+
+ +

+ +

   
   
   = =
   − −   − + − +      

B B  (18.35) 

are (2 2)×  matrices with nonzero determinant, whose components were already gave above. 
The determinant of the matrices (18.35) is given by: 

           
( )

( )
( )

( )
( ) ( ) ( 1) ( 1)

( ) ( 1)

( )3 ( ) ( )2 ( )3 ( 1) ( 1)2

3 1 3 1
det[ ] 0, det[ ] 0,

2 2 1 2 2 1

i i i i

i i
i ii i i i i i

E E

R R

ν ν
ν ν ν ν

+ +
+

+ +

− −
= ≠ = ≠

+ − + −
B B  (18.36) 

However, in force of the special form of Q derived above, one can rewrite the reduced algebraic 
problem in order to have the solution without recall any numerical strategy. To make this, let us we 
can write the algebraic system (18.30) in follows manner: 

 

(2) (2) (1) (1) (2) (1)
1 1 1 1

(3) (3) (2) (2) (3) (2)
2 2 2 2

( 1) ( 1) ( ) ( ) ( 1) ( )

( 1) ( 1) ( 2) ( 2) ( 1) ( 2)
2 2 2 2

( ) ( ) ( 1) ( 1) ( ) ( 1)
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i i i i i i
i i i i
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 = + −


= + −

= + −

= + −

= + −

B X B X L L

B X B X L L

B X B X L L

B X B X L L

B X B X L L

⋮

⋮











 (18.37) 

By applying an in-cascade procedure, we finally obtain 
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 ( ) ( ) (1) ( ) {2,3,..., }i i i i n= ⋅ + ∀ ∈X Φ X Ψ  (18.38) 

where ( ) ( ),i i
Φ Ψ  are matrix and vector, respectively. The expressions of ( ) ( ),i i

Φ Ψ are given by: 

 ( ) ( ) ( ) ( )( )

1 1( ) ( 1) ( )

1

21 11 1( ) ( ) ( ) ( )
1 1 1 1 1 1

1 1

{2,3,..., }

i
i i j i j

i j i j
j

ji
i i i j i ji i i k i k

i i i i k i k i j i j
j k

i n

− −− + −
− −

=

−− −− − − −− −
− − − − − − − − − −

= =

   = ⋅    


       = ⋅ − + ⋅ ⋅ −          

∀ ∈

∏

∑ ∏

Φ B B

Ψ B L L B B L L
 (18.39) 

where dot stands for scalar product. The equations (18.38)-(18.39) permit to write the generic 
unknowns sub-vector ( )iX  as function of a transferring matrix ( )i

Φ  and vector ( )i
Ψ ,  and the 

unknowns sub-vector (1)X . The problem is hence reduced to an algebraic one in which only the two 
coefficients – collected in (1)X  – related to the first phase have to be determined, by imposing two 
boundary conditions described by the equations obtained above. Therefore, in order to find the two 
unknowns collected in (1)X , it remains to rewrite the boundary conditions (18.22) in matrix form. In 
particular, by applying the equation (18.38) for i n= , we obtain the follows relationship: 
 ( ) ( ) (1) ( )n n n= ⋅ +X Φ X Ψ  (18.40) 
Then, the boundary conditions (18.22), become: 
 (1)⋅ = ϒΡ X  (18.41) 
where the matrix  P and vector ϒ  are given by: 

 ( ) [ ]( )
1 2 1 2, ,

TT Tn = ⋅ ϒ = ϒ ϒ  
P P Φ P  (18.42) 

where 1 2,P P  are two vectors and 1 2,ϒ ϒ  are two scalars, as reported below: 

                  

( ) ( ) ( ) ( )

( )

( )

(1) (1) ( ) ( )

1 2(1) (1) (0)3 ( ) ( ) ( )3
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3 2 22 1 2
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n neR

nn
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R

pE T A A
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ν ν ν ν

α ψ
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α ψ
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   = − = −

− + − +      

 
ϒ = − + + + −  

 
ϒ = − + + + − ⋅ −  

P P

P Ψ

 (18.43) 

Then, by inverting, all the 2 n×  unknown coefficients , we obtain the unknown parameters: 

                                                
{ }

(1) 1

( ) ( ) 1 ( )

,

2,3,...,i i i i n

−

−

 = ⋅ ϒ


= ⋅ ⋅ ϒ + ∀ ∈

X P

X Φ P Ψ

 (18.44) 

By substituting the relationships (18.44) and  (18.28) in equation (18.16), we obtain the explicit 
analytical expression of displacement solution in each phases of multilayered sphere.  
 
18.3.  Parametric analysis for multilayered sphere composed by two phases 
Let us consider a multilayer sphere composed by two hollow spheres. The inner radius of the sphere 

is assumed to be (0)R  and the thickness of any phases is equal to δ . Then, we can write the 
following relationships: 

 ( ) ( )(1) (0) (2) (0) (0)1 , 1 2 , ,R R R R Rξ ξ ξ δ= + = + =  (18.45) 

The multilayered sphere is subjected only the gradient of temperature between the internal and 
external surfaces e iT T T∆ = − , but the internal and external pressure are assumed vanishing. 

We consider four cases :  
(i) variation of Poisson’s ratio in two phases, with fixed values of the Young’s moduli, 

thermal conductivity coefficient and linear thermal expansion coefficient;  



Chapter XXVIII : State-steady problem for multilayered spheres 

F. Carannante 422 

(ii)  variation of Young’s moduli in two phases, with fixed values of the Poisson’s ratio, 
thermal conductivity coefficient and linear thermal expansion coefficient;  

(iii)  variation of linear thermal expansion coefficient in two phases, with fixed values of the 
Young’s moduli, Poisson’s ratio and thermal conductivity coefficient; 

(iv) variation of thermal conductivity coefficient in two phases, with fixed values of the 
Young’s moduli, Poisson’s ratio and linear thermal expansion coefficient;  

Let us assume the following non-dimensional parameter for graphics of the displacement, strain and 
stress functions: 

      
( ) ( )

( ) ( )

( ) ( ) ( )(0)
( ) ( )

( ) (0) (1) (0) (1)

( )( ) ( )( ) 2( ) ( ) ( ) ( ) ( ) ( ) ( )
(1) (1) (1) (1)
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/ 2 / 2

; ; ; ; ;
/ 2

i i i
i ii r rr

r rrn
e i e i e i

ii ii
eqi i i i i i irr

rr eq eq rr
e i

T T ur R
r T u

T TR R T T R T T

T T
θθ θθ

θθ θθ θθ

εε
α α

σε σσε σ σ σ σ σ σ
α β β β

−−= = = =
−− − −

= = = = = −
−

 (18.46) 

where (1)β  is given by follows relationship: 

 ( ) ( )(1) (1) (1) (1)2 1 ;e iE T Tβ α ν  = − −   
 (18.47) 

In the first case (i) let us assume (1) (2) (1) (2) (1) (2), , ,E E k k α α= = = then the only free parameters 
are Poisson’s ratio in two phases. Let us consider six cases in which is fixed Poisson’s ratio of the 

phase (1) (1) 0.3ν = , but in phase (2) the Poisson’s ratio assume the following values: 0, 0.1, 0.2, 
0.3, 0.4, 0.49.  The  Fig. 18.2 shows the radial displacement along radial direction. Fig. 18.3 and 
18.4 show the radial and circumferential strain along radial direction, respectively. In particular, if 

the ratio (2) (1)ν ν increase, then the radial and circumferential strain increase along radial direction 

as shown the figures 18.3 and 18.4. If the ratio (2) (1)ν ν increase, then the radial and circumferential 
stress increase, as shown the figures 18.5 and 18.6. The equivalent stress determines whether 
yielding occurs. For planar isotropy and non-homogeneity in radial direction, the equivalent stress 
based on the Henchy- von Mises criteria is given by follows equation: 

 ( ) ( )i i
eq rrθθσ σ σ= −  (18.48) 

The non-dimensional graphics of the radial displacement, strain and stress as reported below: 

 
Fig. 18.2 -  Non-dimensional radial displacement  along radial direction  ((1) 0.3ν = ) 
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Fig. 18.3 -  Non-dimensional radial strain distribution along radial direction  ( (1) 0.3ν = ) 

 

 
 

Fig. 18.4 -  Non-dimensional circumferential strain  along radial direction  ((1) 0.3ν = ) 
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Fig. 18.5 - Non-dimensional radial stress distribution along radial direction  ( (1) 0.3ν = ) 
 

 
 

Fig. 18.6 -  Non-dimensional circumferential stress along radial direction  ((1) 0.3ν = ) 
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Fig. 18.7 -  Non-dimensional equivalent stress along radial direction  ((1) 0.3ν = ) 
 

In the second case (ii) let us assume (1) (2) (1) (2) (1) (2), , ,k kν ν α α= = = then the only free 
parameters are Young’s moduli in two phases. Let us consider six cases in which are selected the 

different ratio of  the Young’s moduli (2) (1)E E as follows : 0.1, 0.5, 1.0, 2.0, 5.0. Figure 18.9 

shows that  if the ratio (2) (1)E E increase the radial strain decrease in both phases.   

Conversely, Figure 18.10 shows that  if the ratio (2) (1)E E increase the circumferential strain 
increase in both phases. Fig. 18.11 and 18.12 show the radial and circumferential stress along radial 
direction, respectively. As expected, the circumferential stress distribution exhibits significant 
jumps at all interfaces as shown in Fig. 18.12. These discontinuities are due to the differences 
between Young’s modulus. The circumferential stress varies characteristically in each layer in view 
of the occurrence of discontinuities at all interfaces shown in the Fig. 18.12. In particular, if the 

ratio (2) (1)E E increase, the radial, circumferential and equivalent stress increase along radial 
direction as shown the figures 18.11, 18.12 and 18.13. 
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Fig. 18.8 - Non-dimensional radial displacement  along radial direction  
(Young’s moduli variation )  

  

 
 

Fig. 18.9 - Non-dimensional radial strain along radial direction  (Young’s moduli variation ) 
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Fig. 18.10 -  Non-dimensional circumferential strain  along radial direction  
(Young’s moduli variation ) 

 

 
 

Fig. 18.11 - Non-dimensional radial stress along radial direction  (Young’s moduli variation ) 
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Fig. 18.12 -  Non-dimensional circumferential stress along radial direction  
 (Young’s moduli variation ) 

 

 
 

Fig. 18.13 -  Non-dimensional equivalent stress along radial direction  (Young’s moduli variation ) 
 



Chapter XXVIII : State-steady problem for multilayered spheres 

F. Carannante 429 

In the third case (iii) let us assume (1) (2) (1) (2) (1) (2), 0.3, ,E E k kν ν= = = = then the only free 
parameters are linear thermal expansion coefficient in two phases. Let us consider six cases in 

which are selected the different ratio of  linear thermal expansion coefficient (2) (1)α α as follows : 

0.1, 0.5, 0.8, 1.0, 1.5, 2.0. Figure 18.14 shows that if the ratio (2) (1)α α  increase, then the radial 

displacement and circumferential strain increase. Moreover, if the ratio (2) (1)α α  increase, then the 
radial strain increase in phase (2) and decrease in phase (1). The radial and circumferential stress 

increase with ratio (2) (1)α α in both phases.  

 
Fig. 18.14.  Non-dimensional radial displacement along radial direction 

(Linear thermal expansion coefficient variation) 

 
Fig. 18.15 - Non-dimensional radial strain along radial direction  

(Linear thermal expansion coefficient variation) 
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Fig. 18.16  -  Non-dimensional circumferential strain  along radial direction 
 (Linear thermal expansion coefficient variation) 

 

 
Fig. 18.17  -  Non-dimensional radial stress along radial direction  

(Linear thermal expansion coefficient variation) 
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Fig. 18.18.  Non-dimensional circumferential stress along radial direction  

 (Linear thermal expansion coefficient variation) 
 

 
Fig. 18.19 -  Non-dimensional equivalent stress along radial direction  

 (Linear thermal expansion coefficient variation) 
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In the four case (iv) let us assume (1) (2) (1) (2) (1) (2), 0.3, ,E E ν ν α α= = = = then the only free 
parameters are thermal conductivity coefficient in two phases. Let us consider six cases in which 

are selected the different ratio of  thermal conductivity coefficient (2) (1)k k as follows : 0.1, 0.5, 1.0, 

2.0, 5.0. In particular if the ratio (2) (1)k k increase, then the radial displacement and circumferential 
strain increase along radial direction. The maximum value of radial stress is reached in phase (2) if  

(2) (1)k k< . 

 
Fig. 18.20.  Non-dimensional radial displacement  along radial direction  

(Thermal conductivity coefficient variation) 

 
Fig. 18.21  -  Non-dimensional radial strain along radial direction 

 (Thermal conductivity coefficient variation) 



Chapter XXVIII : State-steady problem for multilayered spheres 

F. Carannante 433 

 
 

Fig. 18.22 - Non-dimensional circumferential strain  along radial direction  
(Thermal conductivity coefficient variation) 

 
 

Fig. 18.23 - Non-dimensional radial stress along radial direction  
(Thermal conductivity coefficient variation) 
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Fig. 18.24 -   Non-dimensional circumferential stress along radial direction  
 (Thermal conductivity coefficient variation) 

 

 
 

Fig. 18.25 -  Non-dimensional equivalent stress along radial direction  
 (Thermal conductivity coefficient variation) 
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Fig. 18.26 -  Non-dimensional temperature along radial direction  

 (Thermal conductivity coefficient variation) 
 
Finally, we reported the maximum absolute value of non-dimensional equivalent stress in phase (1) 
and in phase (2) for four case, as reported below: 

(i) Poisson’s variation moduli in both phases; 
(ii)  Young’s moduli and  linear thermal expansion coefficient variation; 
(iii)  Young’s moduli and  thermal conductivity coefficient variation; 
(iv) Thermal conductivity coefficient and  linear thermal expansion coefficient variation; 

 
Fig. 18.27 - Maximum absolute value of  non-dimensional equivalent stress in phase (1)  

- Poisson’s moduli variation - 
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Fig. 18.28 - Maximum absolute value of  non-dimensional equivalent stress in phase (2) 
- Poisson’s moduli variation - 

 

 
 

Fig. 18.29 -  Maximum absolute value of  non-dimensional equivalent stress in phase (1) 
- Young’s moduli and  linear thermal expansion coefficient variation - 
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Fig. 18.30 -  Maximum absolute value of  non-dimensional equivalent stress in phase (2) 
-  Young’s moduli and  linear thermal expansion coefficient variation - 

 

 
 

Fig. 18.31 - Maximum absolute value of  non-dimensional equivalent stress in phase (1) 
- Young’s moduli and  thermal conductivity coefficient variation - 

 



Chapter XXVIII : State-steady problem for multilayered spheres 

F. Carannante 438 

 
 

Fig. 18.32 -  Maximum absolute value of  non-dimensional equivalent stress in phase (2) 
- Young’s moduli and  thermal conductivity coefficient variation – 

 

 
 

Fig. 18.33 -  Maximum absolute value of  non-dimensional equivalent stress in phase (1) 
- thermal conductivity coefficient and linear thermal expansion coefficient variation – 
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Fig. 18.34 -  Maximum absolute value of  non-dimensional equivalent stress in phase (2) 
- thermal conductivity coefficient and linear thermal expansion coefficient variation - 

 
18.4.  Example for multilayered sphere composed by three phases  
In this study, we present some numerical results for the temperature distributions in multilayered 
sphere constituted by three phases, subjected to the considered boundary conditions and the 
resulting displacement and thermal stresses. For the multilayered sphere, the geometry and material 
quantities of the sphere are shown in Table 18.1. The inner radius of the sphere is assumed to be 

(0)R  and the thickness of any phases is equal to δ . Then, we can write the following relationships: 

 ( ) ( ) ( )(1) (0) (2) (0) (3) (0) (0)1 , 1 2 , 1 3 , ,R R R R R R Rξ ξ ξ ξ δ= + = + = + =  (18.49) 

where (0)Rξ δ= represent the ratio between the thickness of any hollow sphere and inner radius. 
Let us consider two cases, in which the boundary conditions at inner and outer surfaces are assumed 
to be : 

 

(1) (0) (1) (0)

(3) (3)(3) (3)
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rr ee
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T r R T T K r R p
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r R pT r R T K

T r R T T K r R p MPa
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r R p MPaT r R T T K

σ
σ

σ
σ

 = = = = ° = = = 
 

= = == = = °  

 = = = = ° = = = −


= = == = = = °





 (18.50) 

In each cases, let us consider three sub-cases, in which are chance the position of materials, as 
reported below:  

(a) phase 1: Stainless steel,    phase 2 : Zinc,                   phase 3 : Aluminium; 
(b)  phase 1: Aluminium,       phase 2 : Stainless steel,    phase 3 : Zinc 
(c)  phase 1: Aluminium,       phase 2 : Zinc,                   phase 3 : Stainless steel; 

In case (i) the multilayered sphere is subjected to an gradient of temperature between inner and 
outer surfaces, but the external load vanishing. In third case (ii) the multilayered sphere is subjected 
to gradient of  pressure between inner and outer surfaces, but the temperature is uniform and equal 
to RT . In total, we studied six cases, in which the ratio ξ  is assumed equal to 0.01. 
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The Fig. 18.36 shows the temperature distributions along the radial direction in the case (i). The 
temperature gradient varies in each layer because of the difference in the thermal conductivity 
coefficients. Fig. 18.37 shows the radial displacement distributions along the radial direction in the 
case (i). In particular in the sub-case (c) the radial displacement assume the minimum value. The 
figures 18.38 and 18.39 show the thermal radial and circumferential strain distribution  along the 
radial direction, respectively. The figures 18.40, 18.41 and 18.42 show the thermal radial, 
circumferential and equivalent stress distribution  along the radial direction , respectively.  As 
expected, the circumferential stress distribution exhibits significant jumps at all interfaces as shown 
in Fig. 18.41. These discontinuities are due to the differences in material properties such as the 
coefficient of linear thermal expansion and Young’s modulus. The circumferential stress varies 
characteristically in each layer in view of the occurrence of discontinuities at all interfaces shown in 
the Fig. 18.41. The equivalent stress assume the minimum values along radius in sub-case (c) respet 
to sub-cases (a) and (b). In other figures we reported the dimensional parameters distribution  along 
the non-dimensional radial direction. 

 
Table 18.1. The geometry and material constants of multilayered  sphere 

 

Case (a)

Case (b)

Case (c)

Fe
Zn
Al

Zinc
Aluminium

Stainless steel=
=
=

Legend

Fe Zn Al

(3)(2)(1)
Zn

ZnAl Fe

Al Zn Fe

Phase

y

z

x

q

f

r
phase (1)

phase (2)

phase (3)

R(0)

R(1)

R(2)

R
(3)

 
 

Fig.  18.35.  Multilayered sphere composed by three phases   
 

 Aluminium Zinc Stainless steel 
2E N m− 

   970 10⋅  9108 10⋅  9215 10⋅  

1 1k W m K− − 
   237 116 30 

ν  0.35 0.25 0.30 
1 1m m Kα − ⋅   623.1 10−⋅  630.2 10−⋅  612 10−⋅  

3kg mρ − 
   2700 7140 7800 

1 1
vc kJ kg K− − ⋅   0.90 0.39 0.46 
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We reported the numerical results for case (i) as follows : 
 

 
 

Fig. 18.36 -   Non-dimensional temperature distribution along radial direction 
 

 
 

Fig. 18.37 -  Radial displacement distribution along radial direction 
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Fig. 18.38 - Radial strain distribution along radial direction 
 

 
 

Fig. 18.39 -  Circumferential strain  along radial direction 
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Fig. 18.40 -  Radial stress distribution along radial direction 
 

 
 

Fig. 18.41 -  Circumferential stress along radial direction 
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Fig. 18.42 -  Equivalent  stress along radial direction 
 
We reported the numerical results for case (ii) as follows : 
 

 
 

Fig. 18.43 -  Non dimensional  radial displacement distribution along radial direction 
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Fig. 18.44 -  Radial strain distribution along radial direction 
 

 
 

Fig. 18.45 -  Circumferential strain  along radial direction 
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Fig. 18.46 -  Radial stress distribution along radial direction 
 
 

 
 

Fig. 18.47 -  Circumferential stress along radial direction 
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Fig. 18.48 -  Equivalent stress along radial direction 
 
18.5.  Conclusions 
In this work, analytical and numerical results for multilayered sphere are obtained. The analytical 
thermo-elastic solution, in closed form, is employed in order to obtain the parametric analyses for 
bi-layer hollow spheres and the numerical results for a spherical tank composed by three phases. 
The temperature, displacement and thermal stress distributions are obtained. This results can be 
applied to mechanical parts, in precision measurement or design of structures. The proposed method 
may be extended to solve a wide range of physical engineering problems. In particular, the 
parametric analyses presented in this paper can be utilized to optimize the designer of a composite 
spherical tank subjected to mechanical and thermal loads. By summarized the results obtained by 
parametric analyses, it is possible to reduce the maximum equivalent stress in a spherical tank by 
utilizing hollow spheres constituted by materials with mechanical and thermal selected properties 
 
18.6.  Nomenclature 
k     thermal conductivity coefficient,   
α     linear thermal expansion coefficient 
E    Young’s modulus 
ν     Poisson’s ratio 

iT    temperature on the inner surface 

eT    temperature on the outer surface  

ip    pressure on the inner surface 

ep    pressure on the outer surface 

,T T  dimensional and non-dimensional temperature 
,r r   dimensional and non-dimensional radial coordinate 
( ) ( ),i i
jk jkε ε  dimensional and non-dimensional  strain components  in generic i-th phase 
( ) ( ),i i
jk jkσ σ  dimensional and non-dimensional stress components  in generic i-th phase 
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( ) ( ),i i
r ru u   dimensional and non-dimensional radial component of displacement in generic i-th phase  
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CHAPTER XIX 
FIRE CURVES AND MATERIAL PROPERTIES AT ELEVATED TEMPERATURE 

 
19.1. Introduction 
Most countries around the world rely on fire resistance tests to determine the performance of 
building materials and structural elements. The time-temperature curve used for a test is called a fire 
curve. There are different types of fire curves that have been established by researchers, viz. ASTM 
E-119 , and Eurocode. In USA, the temperature profile and duration of a standard fire for designing 
and testing purposes is based on the provisions of ASTM E-119. 
ASTM E-119 is the widely recognized standard for fire testing in the United States. The first edition 
was published in 1918, with the most recent published in 2000. Technical committees help in 
setting up a standard, and this standard is revised as technology and understanding changes. There 
has been significant debate on the validity of ASTM E-119 data and methodology due to the recent 
events of 9/11. One has to understand that ASTM E-119 is a guideline for fire safe design of 
buildings and not a predictor of behaviour in an actual fire. Real fires are a function of many 
variables, such as fuel load, thermal radiation, heat flux, ventilation factor, and area of openings 
which are related to the type of construction, building occupancy, and design. The main purpose of 
using the ASTM E-119 protocol is to establish and document the fire rating of different elements of 
a building. The test does not cover flame spread, fuel contribution, or smoke density. ASTM E-119 
describes different strategies for conducting fire tests on the following structural assemblies and 
elements: 

• Bearing walls and partitions 
• Non-bearing walls and partitions 
• Floors and roofs 
• Loaded restrained beams 
• Columns 

 
Lab testing is a very common method for determining the performance of a structural member from 
the view point of fire resistance. The main reason for conducting lab tests is essentially to test a 
structural element in a furnace from the viewpoint of critical temperature and fire endurance time or 
collapse mechanism. The element is then heated according to a standard time-temperature profile 
such as the ASTM E-119 curve. The heating process is continued until failure of the element occurs 
so that specific data can be taken regarding the deflections, stresses, strains, etc. This data however 
is not available to public, and only the critical values are published in the codes. Figure 18.1 
presents a traditional setup of a lab conducted fire test. 
Currently, there are studies being done and revisions are being made for the standard fire test 
procedure . It is suggested by British Steel and the Building research development, 1998, on the 
basis of full scale fire test results at Cardington, UK that the actual temperature of an element when 
tested separately in a furnace is quite different from the temperature of the same element when 
exposed to a fire within a building. This is observed due to the various connections and differences 
in boundary conditions that occur when the beam or an element acts as a part of a frame. However, 
research is ongoing and it will take some time to arrive at a clear conclusion. 
 
19.2. Standard Fire Curves and Furnace Testing 
ASTM E119, Standard Test Methods for Fire Tests of Building Construction and Materials, was 
one of the first tests to be published which looked to establish a fire resistance rating for steel 
members through a prescribed method. This test also served as a basis for the determination of fire 
resistance ratings in other tests such as ISO 834 and various European codes. The basic principle 
behind standard fire resistance testing as it exists today is to expose a single structural member or 
assembly to a standard fire with designated fuel load and intensity. Pass/fail criteria are based upon 
the peak temperature attained at the unexposed surfaced of the test article and/or whether or not the 
test article collapses or distorts in a fashion that allows hot gases to escape (and in the case of E119, 
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whether a wall can withstand the pressure of a hose stream). For most standard tests, specimens are 
tested unloaded and have no maximum deflection that can occur before failure. The most common 
structural elements that are tested are columns, beams, and floor and ceiling assemblies. Elements 
such as joints or connections are rarely tested. A fire resistance rating is then assigned to the 
specimen based on the time it took to fail. It is clear that there are many weaknesses and 
deficiencies in the standard fire test and fire ratings that result from these tests. Several weaknesses 
of the standard fire test are discussed by Bukowski. These include fuel load and the physical 
characteristics of the furnace. Standard fire tests provided the prescriptive ratings that were needed 
when prescriptive design was primarily used but with the shift towards performance-based design, 
other methods must be evaluated. 
The standard exposure was based on fuels that were commonly found in buildings at the time when 
the test was first published in the early 1900s. Modern fuels can result in fires with significantly 
faster growth rates and higher radiative fractions that affect fire spread rate. Another consideration 
is the addition of automatic sprinkler systems which can limit the growth phase of the fire, 
something that is not part of the standard fire exposure today. Bukowski also quotes the Federal 
Emergency Management Agency that "The ASTM El19 Standard Fire Test was developed as a 
comparative test, not a predictive one. In effect, the Standard Fire Test is used to evaluate the 
relative performance (fire endurance) of different construction assemblies under controlled 
laboratory conditions. The physical limitations of the standard furnace is another major weakness of 
this test. A typical furnace only allows for specimens to be tested individually and cannot 
accommodate and include the interaction of structural systems. End restraints and loading 
conditions may not be reproduced effectively in the furnace, thus only the very basic structural 
elements can be tested. Eurocode 1 Part 2 provides data for the design fires used in calculation with 
the Eurocode methods. It contains information for both standard (nominal) and parametric fire 
curves. The main document contains defining equations for three distinct fire curves: standard, 
external and hydrocarbon. In all of the three fire curves described, gΘ  designates gas temperature in 

the fire compartment in degrees Celsius and t is the time in minutes. If each of the curves is plotted 
from 0 to 6000 sec on the same axis, Figure 19.1 is created. One can see from this plot that the 
external and hydrocarbon fires are similar in shape but the hydrocarbon fire curve has temperatures 
75% higher temperature. The standard fire curve is similar in shape and values to other standard 
curves used by ISO and ASTM. The standard fire curve described is almost identical in behaviour 
to the ASTM E119 and ISO 834 standard fire curves. This curve is used as a model for representing 
a fully developed fire in a compartment and is represented by the equation. It is reported below  the 
equations for three distinct fire curves : standard, external and hydrocarbon. 
 
Standard temperature-time curve 

 

( )10

10

20 345log 8 1 [ ,min]

8
293.15 345 log 1 [ ,sec]

60

g

g

t C

t
K

Θ = + + °

 Θ = + + °  

 (19.1) 

where gΘ   is the  gas temperature,   t  is the time. The external curve is intended for the outside of 

separating external walls which exposed to the external plume of a fire coming either from the 
inside of respective fire compartment, from a compartment situated below or adjacent to the 
respective external wall. Because the scope of this research is limited to internal compartment fires, 
this fire will not be used in analysis. The equation producing the external fire curve is given by: 
 
External fire curve 
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 (19.2) 
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The  hydrocarbon curve, is used for representing the effects of a hydrocarbon fire and is represented 
from the equation below: 
 
Hydrocarbon curve 
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 (19.3) 

 
ASTM E119 test  is produced from the following equation and is displayed in Figure 19.3: 
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 (19.4) 

Equation proposed by Williams – Leir (1973) is given by: 

 ( ) ( ) ( )5 64
0 1 2 31 1 1 [ ,sec]a t a ta t

g a e a e a e Kθ − −−Θ = + − + − + − °  (19.5) 

Where 1 2 3 4 5 6532, 186, 820, 0.01, 0.05, 0.20,a a a a a a= − = = = =  and 0θ  is the temperature 

ambient. The equation proposed by Fackler (1959) is reported below: 

 ( )0.49
0 774 1 22.2t

g e tθ −Θ = + − +  (19.6) 

In these equations above, the base temperature or ambient temperature 0θ  is not considered to be 

20°C which usually is the current practice. 
 

 
 

Fig. 19.1 - Time-temperature fire curves: Standard, external and hydrocarbon  [°K, sec] 
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Fig. 19.2 - Time-temperature fire curves: Standard, external and hydrocarbon  [°C, min] 
 

 
 

Fig. 19.3 - Time-temperature fire curves: Standard, ASTM E119  and Williams – Leir [°K, sec] 
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Fig. 19.4 -  Time-temperature fire curves: Standard, ASTM E119  and Williams – Leir [°C, min] 
 
19.3.  Parametric Fire Curves 
Compartment condition in an actual fire is an important study in the field of fire protection. 
Numerous curves have been suggested to explain the relation between temperature and time once a 
fire event takes place. It is important to note that factors such as thermal inertia, heat release rate, 
the presence of combustible materials, and the ventilation factor  play a critical role in the 
development of these fire curves. The behaviour of compartment fire is described by three main 
phases, namely, 

1. Growth 
2. Fully developed fire 
3. Decay period 

Figure 19.5 represents the different phases that develop in the case of a compartment fire. 
Growth: Growth is the initial phase of fire development. During this stage, combustion is restricted 
to certain areas of the compartment that may however result in significant localized rises in 
temperature. It may happen that many fires may not surpass this initial stage of fire development, 
due to insufficient fuel loads, limited availability of air supply, or human intervention. 
Fully developed fire: The rate of increase in temperature is directly proportional to the heat release 
rate. Therefore, during this stage there is a large increase in the temperature of the compartment 
with temperatures reaching to about 1000°C. The duration of this phase depends on the volatile 
matter that is present in a compartment. As the rate of generation of volatile material decreases, or 
when there is insufficient heat available to generate such volatiles, the phase begins to cease 
gradually. 
Decay phase: The word “decay” means decrease. As the name clearly suggests, there is a decrease 
in the fire intensity during this phase due to the decrease in the available fuel and the rate of fuel 
combustion. This phase occurs when the quantity of volatile matter continues to decrease and is 
consumed, after the initial stages of fire. 
In addition to the standard fire curves many codes and standards are now including parametric fire 
curves. The concept of parametric fires provides a design method to approximate post-flashover 
compartment fire. A parametric fire curve takes into account the compartment size, fuel load, 
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ventilation conditions and the thermal properties of compartment walls and ceilings. In comparison 
to the standard fire curves, parametric fires provide a more realistic estimate of the compartment 
temperature to be used in the structural fire design of steel members. 
Analyses typically assume that the temperature is uniform within the fire compartment One of the 
most unique characteristics of both the Eurocodes and the Swedish Design Manual is the multiple 
authors who contributed their work to the structural design methods of the codes. The background 
theory of the parametric fire model of BSEN1991-1-2 (The British Standard of Eurocode 1) was 
developed by Wickström inform 1980-1981. Based on the heat balance for a fire compartment, he 
suggested that the compartment fire depended entirely on the ratio of the opening factor to the 
thermal inertia of the compartment boundary. He used the test data of the ‘Swedish’ fire curves to 
validate his theoretical assumptions. Wickström expressed the compartment fire in a single power 
formula for the heating phase, in which the standard fire curve could be attained by assigning a 
ventilation factor of 0.04i m½ and a thermal inertia of 1165 2 1/2/J m s K° . The research conducted 
by Wickström has provided a solid foundation for the future use of parametric curves.  
 

 
 

Fig. 19.5. The behaviour of compartment fire 
 

19.3.1.  European Parametric 
Annex A in EN1991-1-2 contains the guidelines for the use of parametric fires. There are two 
restrictions on the parametric curves provided by this document: 

(1) The temperature-time curves are valid for fire compartments up to 500 mq of floor area, 
without openings in the roof and for a maximum compartment height of 4 m. It is assumed 
that the fire load of the compartment is completely burnt out; 

(2) If fire load densities are specified without specific consideration to the combustion 
behaviour (see annex E), then this approach should be limited to fire compartments with 
mainly cellulosic type fire loads; 

The parametric fire curves in the heating phase can be represented by the equation: 
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 ( )0.2 * 1.7 * 19 *20 1325 1 0.325 0.204 0.472t t t
g e e e− − −Θ = + − − −  (19.7) 

where Θg is the gas temperature in the fire compartment [°C]; t * it the parametric time for 
determining compartment temperature-time response and it is given by: 
 * [ ]t t h= ⋅Γ  (19.8) 
 Γ is the  parameter to calculate parametric compartment temperature-time response. Γ is defined as 
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where, F is  opening factor, and vcρ λ  is thermal inertia of the compartment boundary. 

The cooling phase of this parametric curve is represented by 
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where maxΘ  is the maximum temperature that is reached during the heating phase. 
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And *
maxt  is given by: 
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where ,t dq is  design fire load per unit area of compartment boundary. 

The most influential variable in the parametric fire curve is the opening factor, F. It governs the 
behaviour of the fire and is included in almost all parametric fire equations. The opening factor 
represents the amount of ventilation, and it depends on the area of openings in the compartment 
walls, on the height of these openings and on the total area of the enclosure surfaces. The value of b 
is introduced into the parametric fire equation to account for multiple layers of materials that may 

be present in the enclosure surface. In calculation, vb cρ λ=  and if there are not multiple layers, b 

can be taken as 1. 
With its many variables and multiple equations needed to create both the heating phase of the fire as 
well as the cooling phase. The parametric curve described by EN1991 is a challenging fire curve to 
replicate for use in design and engineering practice. The decay curve of the parametric fire has been 
found not to represent the exponential time-temperature cooling characteristics of the fire tests. This 
can be modified with additional equations, which further add to the complexity of the EN1991 
parametric fire curve.  
 
19.3.2. Swedish Fire Curves 
The design fires presented in The Swedish Design Manual, discussed earlier in this chapter vary 
greatly from those presented in EN1991. To begin, the Manual lists the essential requirements that 
must be taken into consideration in a fire model. These are: 

• The quality and type of combustible material in the fire compartment 
• The form and method of storage of the combustible material 
• The distribution of the combustible material in the fire compartment 
• The quantity of air supplied per unit time 
• The geometry of the fire compartment, i.e. the areas of the floors, walls, ceiling and the 

openings 
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•  The thermal properties of the structural components which enclose the fire compartment 
 
When describing fires scenarios, Section 4 of the Manual refers to two classifications of fully 
developed fires. The focus on these fully developed fires is the ventilation in the compartment, 
which leads back to the opening factor and the geometry of the compartment. In the first type of 
fire, the rate of combustion during the flame phase is determined by the ventilation in the fire 
compartment and can be referred to as a ventilation-controlled fire. For second type of fire process, 
all of the inflowing air is not used up for combustion. Because of this, the ventilation of the fire 
compartment is not the limiting factor as in the first fire process. The primary factors in this fire are 
the properties of the combustible material, primarily the quantity and the particle shape and method 
of storage. This fire can be referred to as a fire-load controlled fire. 
These two types of fires are important background to understand and use the design fires in the 
Manual. For a fire load of a given size, particle shape and storage density, the opening factor plays 
a crucial role in its behaviour. Only when the opening factor is less than a limiting value is the fire 
ventilation-controlled. If the opening factor is greater than the corresponding limiting value, the rate 
of combustion does not increase in proportion to the opening factor. This, once again, changes the 
fire from ventilation-controlled to load-controlled. The design fires used in the Manual are focused 
primarily on the load factor and the opening factor.  The temperature curves that are presented in a 
later portion of section 4 are a focus of the rational fire engineering design method. They have been 
calculated on the assumption that the fire is controlled by ventilation during the flame phase. The 
most widely referenced time–temperature curves for real fire exposure are those of Magnusson and 
Thelandersson. When calibrating their model, Magnusson and Thelandersson manipulated the heat 
release rate to produce temperatures similar to those observed in short duration test fires. 
Magnusson and Thelandersson extrapolated their results to much higher fuel loads and a wider 
range of opening factors than the available test data on which the computer model was calibrated. 
Results produced from Magnusson and Thelandersson on the rational fire engineering design 
method for steel construction can be considered conservative because the fires produce higher 
temperatures than may be existent in the compartment.  For steel, the calculated maximum 
temperature for a member exposed to fire is higher if the calculation is based on the assumption that 
the fire is ventilation-controlled than if it is based on a load- controlled fire. The assumption of 
ventilation controlled fires is extremely important to recognize when comparing the design fires 
used in EN 1991- 1-2 to the design fires provided in this manual. 
Section 4.3.3 of the Manual provides the calculated gas temperature-time curves for a fire 

compartment with different fire loads, q and different opening factors /A h At . In this section, 
there are seven charts, each containing eight temperature curves. Figure 20.6 are examples of a 
chart and its coordinating data for an opening factor of 0.06 m^(1/2). Each chart represents a 
different opening factor and the individual curves on each chart represent a different fire load for 
that opening factor. The charts are followed by the temperature data for each time temperature 
curve. One can see that the larger the opening factor, the greater the maximum temperature 
achieved in the compartment. Within each set of curves for the various opening factors, the greater 
the fire load, the greater the temperatures as well. Of all of the time-temperature curves provided by 
the Manual, the curve with an opening factor of 0.3 and a fire load of 900 [Mcal/mq]/3768 [MJ/mq] 
achieves the highest maximum temperature of 1267 C in the compartment. As previously written 
significant contributions to the development of parametric curves were made by Wickström. Based 
on the heat balance for a fire compartment shown in Figure 19.6, Wickström suggested that the 
compartment fire depended entirely on the ratio of the opening factor to the thermal inertia of the 
compartment boundary. 
He used test data of the Swedish fire curves to validate his theoretical assumptions. By curve-
fitting, Wickström expressed the compartment fire in a single power formula for the heating phase, 
in which the standard fire curve could be attained by assigning a ventilation factor of 0.04 m½ and a 
thermal inertia of 1165 J/mq s½ . Due to the experimental characteristics of the Swedish fire curves, 



Chapter XIX : Fire curves and material properties at elevated temperature 

F. Carannante 458 

the original application of Wickström’s parametric fire curves had limitations such as maximum 
compartment area or thermal inertia of the material. 
 

 
 

Fig. 19.6 - Compartment Heat Balance 

 
Fig. 19.7 -  Swedish Curves, Opening Factor 0.06 

 
19.3.3. BFD Curves 
With the found complexities and inefficiencies of the European parametric curve previously 
described, a simple fire curve was developed by researchers with data obtained from over 142 
natural fire tests. This new curve, known as the ‘BFD curve’ is described extensively by Barnett and 
Clifton in their works. While the European parametric curve consists of at least three equations for 
both the heating  and cooling phases of the fire, there are two basic equations that describe the BFD 
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curve. These are: 

 
( )2
log log

, mz
g a m

c

t t
T T T e where z

S
− −

= + =  (19.13) 

where: gT  is the gas temperature at any time t (C°); aT  is the ambient temperature (C°); mT  is the 

maximum gas temperature generated above aT  (C°); t is the time from start of fire (min); tm is the 

time at which mT  occurs (min); Sc is the shape constant for the time-temperature curve (–). 

With this fire curve, the input parameters are , ,m m cT t S . Changing any of these parameters changes 

the shape of the fire curve. Figures 19.8 through 19.10 below show the effects of each input 
parameter. Figure 19.8 displays the effect of changing maximum temperature, while keeping the 
shape factor and time to maximum temperature constant. This produces curves with higher 
intensities as the maximum temperature increases. Figure 19.9 displays the effects of varying the 
time to maximum temperature while the shape factor and maximum temperature remain constant. 
Finally, Figure 19.10 displays the effects of varying the shape factor while keeping the maximum 
temperature and the time to maximum temperature constant. These graphs show that the shape 
factor, or shape constant determines how long it takes before a fire begins to heat up. The larger the 
shape factor, the shorter the delay time. The input parameters needed for the BFD equation can be 
found in published fire data, design codes or by calculation. The shape constant is a relationship 
between the thermal insulation and the pyrolosis coefficient. For a more accurate prediction of the 
behavior of a fire, the shape constant can be different for both the heating and cooling phases. 
Works of Barnett and Clifton discuss that the development of the BFD curves has proven to fit the 
results of a variety of natural fire test curves more accurately than the European parametric curves. 
This statement will also be shown throughout the results section of this project. Preliminary 
research found that studies had been done to fit the BFD curves to a few samples of the Cardington 
data and 87% of the curves were given one of the highest three ratings for its proximity to the BFD 
curve. This will also be shown in the results of this project. 
 

 
 

Fig. 19.8 -  BFD curves with different values for mT , with fixed values of 100, 0.5m ct S= =  
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Fig. 19.9 -  BFD curves with different values for mt  , with fixed values of 1000, 0.5m cT S= =  

 

 
 

Fig. 19.10 - BFD curves with different values for cS , with fixed values of 1000, 100,m mT t= =  
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19.3.4.  CE 534 curve 
Additional parametric fires that must be addressed are the ‘short duration, high intensity” fire and 
the “long duration, low intensity” fire that were provided through previous coursework in structural 
fire protection and defined in the SFPE Handbook for Fire Protection Engineering. 
Section Four, Chapter 8 of the SFPE Handbook presents the various fire temperature-time relations. 
The chapter divides the temperature course of a fire in an enclosure into three parts: the growth 
period, the fully developed period and the decay period. The decay period ideally represents a linear 
decay in the gas temperature of the enclosure and eventually a decrease in temperature of the 
structural members if no failure occurred. The same chapter of the SFPE Handbook outlines an 
analytical expression for determining characteristic temperature curves: 

 ( ) ( ) ( ) ( )
0.32

0.5
0.1/0.6 3 12 600

250 3 1 1 4 1 10
t FF t t tT e e e e F C

F
− − − −   = − − − + − +     

 (19.14) 

where T is the fire temperature in °C; t is the time in hours; F is the opening factor in 1/2m ; C is the 
constant to account properties of boundary material on the temperature. Using this analytical 
method as well as properties predefined for a short duration, high intensity as well as a longer 
duration, lower intensity fire, time temperature curves can be developed and used in the analysis of 
the steel members. The given descriptions for the behaviours of the two fires are written below. The 
descriptions reflect the three stages of fires previously explained. 
Let us consider  two example : Short duration, high intensity fire and Long duration, lower intensity 
fire. In first case F = 0.12 1/2m and the constant C = 1.0. Calculate and plot the fire temperature as a 
continuous function of time until the time t = 0.50 hours is reached. At time t = 0.50 hours, assume 
that the fire temperature decays at the rate of 20°C per minute, returning to the ambient temperature 
of 20°C. In the second case F = 0.04 1/2m and the constant C = 1.0. Calculate and plot the fire 
temperature as a continuous function of time until the time t = 1.5 hours is reached. At time t = 1.5 
hours, assume that the fire temperature decays at the rate of 20°C per minute, returning to the 
ambient temperature of 20°C. 
 

 
 

Fig. 19.11 - Time Temperature of Short Duration, High Intensity 
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Fig. 19.12 - Time Temperature of Long Duration, Low Intensity 
 
19.4. Material properties at elevated temperature 
This section provides an overview of the thermal properties of steel. These properties were studied 
to facilitate the process of understanding and developing the models. In follows it is reported the 
definitions of mechanical and thermal properties of materials:  

• Density ( ρ ): Density is a physical property of matter. In a qualitative manner density is 
defined as the heaviness of objects with a constant volume. It is denoted ρ  . Common unit 

of density is 3/kg m ; 

• Thermal Conductivity (k): Thermal conductivity is defined as the amount of heat flux that 
would pass through a certain material depending on the temperature gradient over that 
material. Thermal conductivity plays an important role in many heat and mass transport 
phenomena as it is a function of Prandtl number. It is denoted as k. Commonly used units 
are W/mK and cal/sec - cm - °C; 

• Specific Heat ( vc ): Specific heat is an intensive property which means that it is independent 

of the mass of a substance Specific heat is defined as the amount of heat required to raise the 
temperature of one gram of a substance by one degree celcius. It is denoted as vc . Common 

units for specific heat are J/kgK and J/kg°C; 
• Coefficient of Thermal Expansion (α ):The coefficient of thermal expansion is defined as 

the increase or elongation in length occurring in a member per unit increase in temperature. 
It is denoted as α . Commonly used units are in/in/°C, cm/cm/°C; 

• Thermal Diffusivity: Thermal diffusivity is defined as the ratio of thermal conductivity to 
heat capacity. Its values are obtained on the basis of density, thermal conductivity and 
specific heat data for a particular material. It is denoted as ″a ″. Common units are mq/sec, 
cmq/sec, mmq/sec. vk cκ ρ= , where k = thermal conductivity in W/mK; vcρ = volumetric 

heat capacity measured in 3/J m K° . Substances with high thermal diffusivity rapidly adjust 
their temperature to that of their surroundings, because they conduct heat quickly in 
comparison to their thermal 'bulk'; 



Chapter XIX : Fire curves and material properties at elevated temperature 

F. Carannante 463 

• Emissivity: Emissivity of a material is defined as the ratio of energy radiated to energy 
radiated by a black body at the same temperature. It is a dimensionless quantity. It is 
denoted as ″e″. 

 
19.4.1.  Thermal Properties of Steel 
Steel is a metal alloy whose major component is iron, with carbon being the primary alloying 
material. Different quality/grades of steel can be manufactured by varying the amount of carbon and 
its distribution in the alloy . Fire resistant steel is manufactured by adding molybdenum (Mo) and 
other alloying materials . The behaviour of steel when exposed to high temperatures is of critical 
importance for the safety and stability of the building. The temperature rise for a steel member is a 
function of the materials, thermal conductivity and specific heat. Thermal conductivity tends to 
decrease with the increase in temperature while specific heat tends to increase with the increase in 
temperature. The properties are discussed in the following sections with the help of graphs from 
different sources. 
 
Density: The standard value for the density of structural steel proposed by Eurocode 3, Part 1.2 is 
7850 3/kg m . For most calculations and research work density is assumed to be constant with the 
increase in temperature. Hence, a constant value was adopted for the modelling of the beam. 
 
Coefficient of Thermal Expansion: The coefficient of thermal expansion for steel is denoted as sα . 

The thermal elongation is temperature dependent and can be evaluated based on the equations 
proposed in Eurocode 3, Part 1.2. Figure 19.13 presents the plot for thermal expansion versus 
temperature from Bletzacker’s data: 
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 (19.15) 

In simple calculation models the relationship between thermal elongation and steel temperature may 
be consider to be constant. In this case the elongation may be determined from: 
 ( )61.4 10 20T L L Tε −= ∆ = ⋅ −  (19.16) 

In the figure 19.13 is reported the thermal elongation calculated by equation (19.16), also. 
 
Thermal Conductivity: Units for thermal conductivity are W/mK and W/cm°C. The standard value 
for thermal conductivity of steel as suggested by Eurocode 3, Part 1.2  is 54 W/mK at 20°C. 
However, thermal conductivity sk  of steel varies with the change in temperature based on the 

relations established by Eurocode 3, Part 1.2 . 

 ( ) [ ]54 0.0333 20 ,800

27.3 800
s

T T C C
k T

T C

 − ∀ ∈ ° °= 
∀ > °

 (19.17) 

Figure 19.14  represents thermal conductivity values based on Equations (19.17) and approximate 
function of thermal conductivity given by: 
 ( ) 46.710 0.019 [0,1200 ]sk T T T C= − ∀ ∈ °  (19.18) 

The function (19.18) gives the absolute maximum error respect to function (19.17) equal to 14%. 
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Fig. 19.13 -  Thermal elongation of steel as function of temperature  
 

 
 

Fig. 19.14 -   Thermal conductivity of steel as function of temperature  
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Specific Heat : Specific heat for steel is denoted as vc . Units for specific heat are J/kg K. The 

equations suggested by Eurocode 3, Part 1.2 for change of specific heat of steel with temperature 
are presented below: 

 

[ ]
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 (19.19) 

The results of these equations are graphically represented in Figure 19.15. 
 

 
 

Fig. 19.15  -  Specific heat  of steel as function of temperature 
 
Stress-strain relationship: Eurocode 3, part 1.2 , defines the variation of steel mechanical properties 
at high temperature for a heating rate situated between 20°C/min and 50°C/min, and has been 
determine for the temperature between 20°C and 1200°C. The graphical representation of the stress-
strain relation proposed by EuroCode 3, part 1.2, has a linear –elliptic shape and is described by the 
relations reported below.  
In elastic zone the stress-strain relation is given by linear function and the tangent modulus is equal 
to Young’s modulus: 
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( ) ( ) ( )
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 (19.20) 

where ( ) ( )
( )

p
p

T
T

E T

σ
ε =  is the proportional strain and ( )p Tσ  is the proportional stress. In elliptic 

zone the stress-strain relation is given by non-linear function:  
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where ( ) 0.02y Tε =  is elastic limit  strain, ( )y Tσ  is elastic limit stress, and the constants a,b,c are 

given by following relationships: 
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In plastic zone the stress-strain relation is given by: 

 
( ) ( )
( )

( ) ( )
,

,
, 0

y

y t

t

T T
T T

E T

σ ε σ
ε ε ε

ε
=

 ∀ ∈  =
 (19.23) 

where ( ) 0.15t Tε = . In the softening zone the stress-strain relation is given by: 

 ( ) ( ) ( ), 1 ,t
y t u

u t

T T T
ε εσ ε σ ε ε ε
ε ε

  −= − ∀ ∈      −  
 (19.24) 

where ( ) 0.20u Tε =  is the ultimate strain of steel. The elastic limit stress ( )e Tσ , the proportional 

limit, ( )p Tσ , and the shape of the elastic range, have been determined for temperatures situated 

between 20°C and 1200 °C. The following dimensionless parameters are defined: 

 ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ), , ,

20 20 20
pe

y p E
e p

TT E T
K T K T K T

E

σσ
σ σ

= = =  (19.25) 

In table 19.1 there are presented the variations of parameters ( ) ( ) ( ), ,y p EK T K T K T caused by 

temperature increasing, in steps of 100°C. For other temperatures, a linear interpolation is admitted. 
 

( )yK T  1.000 1.000 1.000 1.000 1.000 0.780 0.470 0.230 0.110 0.060 0.040 0.02 0.000 

( )pK T  1.000 1.000 0.807 0.613 0.420 0.360 0.180 0.075 0.050 0.0375 0.025 0.0125 0.000 

( )EK T  1.000 1.000 0.900 0.800 0.700 0.600 0.310 0.130 0.090 0.068 0.045 0.0225 0.000 
T(°C) 20 100 200 300 400 500 600 700 800 900 1000 1100 1200 

 
Table 19.1 -   Effect of temperature on parameters ( ) ( ) ( ), ,y p EK T K T K T  
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Fig. 19.16 - Dependence of parameters ( ) ( ) ( ), ,y p EK T K T K T  versus temperature, 

proposed by Eurocode 3, part 1.2 
 

 
 

Fig. 19.17 - Stress-strain curves as function of temperature, proposed by Eurocode 3, part 1.2 
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Young’s modulus:  When the steel elements and structures are subjected to high temperature (fire) 
they progressively lose their stiffness and carrying capacity because Young’s modulus E and the 
elastic limit eσ  are decreasing. D.T.U. proposes a set of relations referring to steel behaviour in the 

elastic range at high temperatures. According to D.T.U., the variation of Young’s modulus must be 
considered only up to 1000°C, because for grater temperatures, the stele has no mechanical 
resistance. Young’ modulus variation is defined by the relations : 

 ( ) ( )
( )

( ) [ ]

[ ]

1 20 ,600
2000log 1100

20 690 0.69
600 ,1000

53.5
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T
T C C

E T T
K T
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 + ∀ ∈ ° °= = 
− ∀ ∈ ° °

 −

 (19.26) 

where ( )E T  and ( )20E are Young’ modulus at temperature T and 20°C, respectively. 

Moreover, we proposed  an analytical function characterized by  polynomial law of temperature of 
six grade reported below: 
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where 
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Fig. 19. 18 - Young’s modulus  of steel as function of temperature.  
Comparison curves determined by  Eurocode 3, D.T.U. and polynomial law 

 
Proportional stress:  
We proposed an analytical function characterized by  polynomial law of proportional stress reported 
below: 
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where 
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Elastic limit of steel (yielding stress): 
The variation of elastic limit of steel is described by the following relations, according to D.T.U.: 
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where ( )y Tσ  and ( )20yσ are elastic limit of steel at temperature T and 20°C, respectively. 

Moreover, we proposed an analytical function characterized by  polynomial law of elastic limit of 
steel reported below: 
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where 

 
5 7 9

0 1 2 3

11 15 18
4 5 6

0.9997, 2.87 10 , 4.852 10 , 8.137 10 ,

1.478 10 , 9.039 10 , 1.865 10 ,

A A A A

A A A

− − −

− − −

= = ⋅ = − ⋅ = − ⋅

= ⋅ = − ⋅ = ⋅
 (19.33) 

 

 
 

Fig. 19.19a -  Elastic limit of steel as function of temperature- 
Comparison curves determined by  Eurocode 3 , D.T.U. and polynomial law 
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Fig. 19.19b -  Elastic limit of steel (yielding stress) as function of temperature- 
Comparison curves determined by  Eurocode 3 and polynomial law 

 
 

 
 

Fig. 19.20  -  The dependence  between the Poisson’s ratio vs temperature 
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Poisson’s ratio: The variation of Poisson’s ratio with temperature is given by : 

 ( ) [ ]5
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In follows, let us consider the approximate function of Poisson’s ratio versus temperature given by: 
 ( ) [ ]50.276 7.057 10 0,1200s T T T Cν −= + ⋅ ∀ ∈ °  (19.35) 

By utilizing the relation  (19.35) for Poisson’s ratio, the maximum percentage error  obtained 
reaches the value 1.5. 
 
Tangent Modulus: The tangent modulus, ( )tE T , represents the shape of the characteristic diagram 

(relation stress-strain), where it has a non-linear shape, at temperature T. Is variation, produced by 
the temperature increasing, is expressed by the following relations that are graphically represented 
in figure 19.21.  
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where ( )tE T  and ( )20E are Tangent modulus and Young’s modulus at temperature T and 20°C, 

respectively 
 

 
 

Fig. 19.21 - The dependence  between the tangent modulus versus temperature 
 
19.4.2.  Thermal Properties of Concrete 
The numerical values of resistance and properties of the deformation provided in the present 
section are based on both experimental evidence of type stationary (steady state) that 
transient (transient state) and sometimes a combination of the two. In Eurocode 1991-1-2 [1] don’t 
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are explicitly taken into account the effects of viscosity, the models of materials are applicable to 
heating rate between 2°K/min and 50°K/min. For speeds outside of this interval, the validity of the 
values the properties of strength and deformation properties must be explicitly demonstrated. 
 
Density: The variation in density with temperature is influenced by the water flow and is defined as 
follows: 
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 (19.37) 

The density of concrete versus temperature is showed in figure 19.24 and density of concrete at 
20°C is fixed by 2300kg/mc. The change in the volumetric specific heat ( ) ( )pT c Tρ  is illustrated in 

Figure 19.25 for concrete with moisture content equal to 3.0% in weight and density 2300 kg/mc. 
 

 
 

Fig. 19.22 – Density of concrete versus temperature 
 

Coefficient of Thermal Expansion: The thermal deformation of the concrete ( )c Tε can be 

determined with reference the length at 20 ° C as follows: 
Siliceous aggregates: 
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 (19.38) 

Calcareous aggregates: 



Chapter XIX : Fire curves and material properties at elevated temperature 

F. Carannante 473 

 
( )
( )

4 6 11 3

3

1.2 10 6 10 1.4 10 20 805

12 10 805 1200

c

c

T T T C T C

T C T C

ε

ε

− − −

−

 = − ⋅ + ⋅ + ⋅ ° ≤ ≤ °


= ⋅ ° ≤ ≤ °
 (19.39) 

T  is the temperature of the concrete in degrees centigrade. 
 

 
 

Fig. 19.23 - Total thermal expansion of concrete 
 

Thermal Conductivity:  The thermal conductivity k(T) of the concrete can be determined between a 
value lower limit and an upper limit value, as reported below. The value of thermal conductivity can 
be set within the range defined by Appendix national from the lower limit value and the upper limit 
value. Appendix A is compatible with the lower limit. The remaining sections of this Part 1-2 are 
independent by the choice of the thermal conductivity. The upper limit of the thermal conductivity k 
of the ordinary concrete can be obtained from: 

 ( )
2
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 (19.40) 

where T is the temperature of the concrete in centigrade grade and k(T) is thermal conductivity 
measured in [ ]/W m K°  . The lower limit of the thermal conductivity k of the ordinary concrete can 

be obtained from: 
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The variation with temperature of the lower and upper limits of the thermal conductivity of concrete 
is illustrated in Figure 19.24. The average value of thermal conductivity is given: 
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Fig. 19.24 – Thermal conductivity versus temperature 
 
 
Specific Heat : The specific heat ( )pc T  of dry concrete (u = 0%) can be determined for Siliceous 

and calcareous aggregates as follows: 
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where T is the temperature of the concrete in degrees centigrade and ( )pc T  is specific heat 

valuated in ( )J kg K⋅°   . In cases where it is not considered explicitly in the method of calculating 

the content of humidity, the date function for the specific heat of the concrete with aggregates 
siliceous or calcareous can be modelled through a constant value, peak (,p peakc ), placed between 

100°C and 115°C decreasing linearly between 115°C and 200°C. 

( ), 900p peakc J kg K= ⋅°    for moisture content of 0.00% by weight of concrete, 

( ), 1470p peakc J kg K= ⋅°  for moisture content of 1.50% by weight of concrete, 

( ), 2020p peakc J kg K= ⋅°  for moisture content of 3.00% by weight of concrete, 

and a linear relationship between (115 ° C, ,p peakc ) and (200 ° C, 1 000 J / kg K). For other moisture 

content is acceptable linear interpolation. The function specific heat versus temperature and the 
peaks of heat specific are illustrated in figure 19.25 
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Fig. 19.25 - Specific heat ( )pc T  versus temperature for 3 different moisture contents u, equal at 0, 

1.5 and 3.0% by weight for concrete siliceous 
 

 
 

Fig. 19.26 - Volumetric specific heat, ( ) ( )pT c Tρ  versus temperature for the moisture content u= 

0.0% by weight concrete with density 2300 kg/mc 
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Stress strain law for concrete in compression:  The properties of resistance and deformation in uni-
axial compression of concrete at high temperatures must be extrapolated from the reports stress-
strain presented in Figure 19.20. 
The stress-strain relations given in figure 19.20 are defined by two parameters: the compressive 
strength ( )0c Tσ  and  the deformation 0( )c Tε corresponding to ( )0c Tσ . 

The values of each of the parameters are given in table 19.2 as a function of temperatures of the 
concrete. For intermediate values of temperature may be used linear interpolation. The parameters 
specified in table 19.2 can be used for concrete ordinary with siliceous or calcareous aggregates 
(containing at least 80% by weight of calcareous aggregates). 
The values of 0( )c Tσ , that defines the interval of the descending branch can be taken from column 

4 of table 19.2 for ordinary concrete with siliceous aggregates and column 7 of table 19.2 for 
ordinary concrete with limestone aggregates. For thermal actions in accordance with Section 3 of 
EN 1991-1-2 (simulation of real fire), especially when you take into account the branch descending, 
it is recommended that the mathematical model for relations stress-strain of concrete specified in 
Figure 19.20 is modified. It is recommended that a possible increase in concrete strength during the 
step of extinction is not taken into consideration. Mathematical model for the stress-strain 
relationship of concrete in compression at high temperatures are given by: 

 

0
03

0
0

0 0
0

3 ( )
0 ( )

( ) 2
( )

( )
( ) ( ) ( )

( ) ( )

c c
c c

c
cc

cu c
c c c cu
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T
T

T
T

T
T T T

T T

σ ε ε ε
εε
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ε εσ ε ε ε
ε ε

 ≤ ≤     +  
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 − ≤ ≤  − 

 (19.44) 

 

The values of 
( )

( )
0

0 20
c

c

T

C

σ
σ °

, 0( ), ( )c cuT Tε ε  are reported in follows table: 

 

 
Siliceous aggregates         Calcareous aggregates 

 

T(°C) 
 

( )
( )
0

0 20
c

c

T

C

σ
σ °

 
0( )c Tε  ( )cu Tε  

 
( )

( )
0

0 20
c

c

T

C

σ
σ °

 
0( )c Tε  ( )cu Tε  

20 1.00 0.0025 0.02 1.00 0.0025 0.02 
100 1.00 0.004 0.0225 1.00 0.004 0.0225 
200 0.95 0.0055 0.025 0.97 0.0055 0.025 
300 0.85 0.007 0.0275 0.91 0.007 0.0275 
400 0.75 0.01 0.03 0.85 0.01 0.03 
500 0.60 0.015 0.0325 0.74 0.015 0.0325 
600 0.45 0.025 0.035 0.60 0.025 0.035 
700 0.30 0.025 0.0375 0.43 0.025 0.0375 
800 0.15 0.025 0.04 0.27 0.025 0.04 
900 0.08 0.025 0.0425 0.15 0.025 0.0425 
1000 0.04 0.025 0.045 0.06 0.025 0.045 
1100 0.01 0.025 0.0475 0.02 0.025 0.0475 
1200 0.00 0.025 0.0475 0.00 0.025 0.0475 

 
Table 19.2 -Values of the main parameters of the stress-strain relationship of concrete with 

ordinary siliceous or calcareous aggregates at high temperatures 
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Fig. 19.27 - 
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 versus temperature for siliceous and calcareous aggregates 

 

 

Fig. 19.28 - 
( )
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0 20
c
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ε
ε °

 versus temperature for siliceous and calcareous aggregates 
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Fig. 19.29 - 
( )

( )20
cu

cu
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ε
ε °

 versus temperature for siliceous and calcareous aggregates 

 

 
 

Fig. 19.30 - Mathematical model for the stress-strain relationship of concrete with siliceous 
aggregates in compression at high temperatures 
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Fig. 19.31 - Mathematical model for the stress-strain relationship of concrete with calcareous 
aggregates in compression at high temperatures 

 
 
Tensile strength of concrete : It is recommended that the tensile strength of the concrete is generally 
neglected (conservative assumption). If it is necessary to take it into account, using the simplified 
calculation method or advanced, can be used this point. The reduction of the tensile strength 
characteristic of the concrete is allowed as the coefficient , ( )c tk T  specified in the expression 

reported below: 
 , , ,( ) ( )ck t ck t c tT k Tσ σ=  (19.45) 

It is recommended that in the absence of more accurate information to be used the following 
values of , ( )c tk T  (see Figure 19.21): 

 
,

,

( ) 1.00 20 100

100
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c t

k T C T C
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k T C T C

= ° ≤ ≤ °

 − = − ° ≤ ≤ ° 

 

 (19.46) 
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Fig. 19.32 - Coefficient , ( )c tk T  for the decrease of the tensile strength of the concrete , ( )ck t Tσ  to 

high temperatures 
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CHAPTER XX 
TRANSIENT PROBLEMS FOR MULTILAYERED SPHERES 

 
20.0.  Introduction 
The increasing use of composite materials in engineering application has resulted in considerable 
research activity in this area in recent years. An understanding of thermally induced stresses in 
isotropic bodies is essential for a comprehensive study of their response due to an exposure to a 
temperature field, which may in turn occur in service or during the manufacturing stages. Chen and 
Yang [1] discussed the transient response of one-dimensional quasi-static coupled thermoelasticity 
problems of an infinitely long cylinder composed of two different materials. They applied the 
Laplace transform with respect to time and used the Fourier series and matrix operations to obtain 
the solution. Chen and Chen [2] presented a new numerical technique hybrid numerical method for 
the problem of a transient linear heat conduction system. They applied the Laplace transform to 
remove the time-dependence from the governing equations and boundary conditions, and solved the 
transformed equations with the finite element and finite difference method. Ghosn and Sabbaghian 
[3] investigated a one-dimensional axisymmetric quasi-static coupled thermoelasticity problem. The 
solution technique uses Laplace transform. The inversion to real domain is obtained by means of 
Cauchy’s theorem of residues and the convolution theorem. Jane and Lee [9] considered the same 
problem by using the Laplace transform and the finite difference method. The cylinder was 
composed of multilayers of different materials. There is no limit to the number of annular layers of 
the cylinder in the computational procedures. Laplace transform and finite difference methods were 
used to analyze problems. They obtained solutions for the temperature and thermal stress 
distributions in a transient state. Kandil [10] has studied the effect of steady-state temperature and 
pressure gradient on compound cylinders fitted together by shrink fit. Sherief and Anwar [11] 
discussed the problem of an infinitely long elastic circular cylinder whose inner and outer surfaces 
are subjected to known temperature and are traction free. They have neglected both the inertia terms 
and the relaxation effects. Takeuti and Furukawa [12] discussed the thermal shock problem in a 
plate; they included the inertia and thermoelastic coupling terms in the governing equation and 
obtained the exact solution for the thermal shock problem of a plate. Vollbrecht [14] has analysed 
the stresses in both cylindrical and spherical walls subjected to internal pressure and stationary heat 
flow. Zong-Yi Lee [15] presents an quasi-static coupled thermoelastic problems for multilayered 
spheres. Using the Laplace transform with respect to time, the general solutions of the governing 
equations are obtained in transform domain. The solution is obtained by using the matrix similarity 
transformation and inverse Laplace transform. The authors [15] obtain the solutions for the 
temperature and thermal deformation distributions for a transient state. F. de Monte [16] presents 
the transverse eigenvalue problem of non-conventional Sturm–Liouville type associated to the 
steady-state heat conduction in 3-D two-component slabs with imperfect thermal contact. In 
particular, the author [16] describes how the physical insight deriving from the transverse direction 
of six suitable “homogeneous parallelepipeds” inherent to the considered two-layered parallelepiped 
is capable of providing useful and reasonably accurate information about the best bracketing bounds 
(lower and upper) for the roots (eigenvalues) of the transverse eigencondition. Suneet Singh, et 
al.[17] present a new closed form analytical double-series solution for the multi-dimensional 
unsteady heat conduction problem in polar coordinates (2-D cylindrical) with multiple layers in the 
radial direction. Spatially non-uniform, but time-independent, volumetric heat sources are assumed 
in each layer. Separation of variables method is used to obtain transient temperature distribution. 
Prashant K. Jain, et al. [18] present an analytical double-series solution for the time-dependent 
asymmetric heat conduction in a multilayer annulus. Finally, M.kayhani et al. [19] present an exact 
general solution for steady-state conductive heat transfer in cylindrical composite laminates. 
Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series 
coefficients are achieved by solving a set of equations that related to thermal boundary conditions at 
inner and outer of the cylinder, also related to temperature continuity and heat flux continuity 
between each layer. The solution of this set of equations are obtained using Thomas algorithm.  
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In this chapter, the one-dimensional quasi-static uncoupled thermo-elastic problem of a 
multilayered sphere with time-dependent boundary conditions is considered. The medium is without 
body forces and heat generation. The analytical solution is obtained by applying the method of 
separation of variables. 
 
20.1.  Basic equations for time-dependent problem 
Let us consider an multilayered sphere composed of n fictitious layers constituted by n hollow 
spherical phases (Figure n. 18.1). The external radius and internal radius of multilayered sphere are 
denoted by ( )nR and (0)R , respectively. The radius at interface between the generic phase i-th and the 
phase (i+1)-th are denoted with ( )iR . The mechanical and thermal properties of each layer are 
assumed to be homogeneous and isotropic and are denoted with apex (i).  Spherical coordinates r, θ  
and φ  are used in this analysis. The multilayered sphere is subjected to external heat flux that 

varying in the time, characterized by two functions ( ), ( )e iq t q t related to internal and external 

surfaces of solid, respectively. Moreover, the multilayered sphere is subjected to an external 

pressure ( )ep t  and an internal pressure ( )ip t  applied on the inner and the outer surface ( )nr R=  

and (0)r R= , respectively. These pressure are function of variable time. Details of multilayered 
sphere are shown Chapter XVIII (see figure 18.1). Afterwards, it is presented a method to solve a 
mono-dimensional thermo-elastic problem. The basic thermo-elastic equations for the i-th layer can 
be expressed as reported below. In isotropic-thermal elasticity case the strains are related to the 
displacements by purely geometrical considerations. If the composite material is subjected to 
spherical symmetric thermal loads in the time, in spherical coordinate, the displacement 
components for generic phase are given by: 

 ( )( ) ( ) ( ) ( ), , 0, 0, {1,2,... }i i i i
r ru u r t u u i nθ φ= = = ∀ ∈  (20.1) 

where we denote with apex 1,2,…n the hollow phases of multilayered sphere. Then, the strain-
displacement relations take the form: 
 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )

, , , 0 {1,2,... }i i i i i i i i
rr r r r r ru r u i nθθ φφ θφ θ φε ε ε ε ε ε−= = = = = = ∀ ∈  (20.2) 

where ( ) ( ) ( ), , ,i i i
ru u uθ φ  are the radial and circumferential displacements in the i-th layer 

( ( ) ( 1)i iR r R +< < ). The superscript  “i”  represents the i-th layer and the comma represents the partial 
derivate. Thermo-elastic stress-strain relations are given by: 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )
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2 2 3 2

2 2 3 2
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i i i i i i i i i i
rr r r r R

i i i i i i i i i i i
r r r R

i i i
r r

u r u T T

r u u T T

i n
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φ θφ θ

σ µ λ λ λ µ α

σ σ µ λ λ λ µ α

τ τ τ

−

−

= + + − + −

= = + + − + −

= = = ∀ ∈

 (20.3) 

where ( ) ( ) ( ) ( ), , ,i i i iTµ λ α  are the Lamè elastic constants, linear thermal expansion coefficient and 

temperature in the i-th layer, respectively;  RT  is the reference temperature . Moreover, let us 

assume that the function of the temperature in each phase is a function of radius and time as 
reported below: 

                                           ( )( ) ( ) , {1,2,...., }i iT T r t i n= ∀ ∈                                            (20.4) 

The equations of equilibrium are the same as those of isothermal elasticity since they are based on 
purely mechanical considerations. By applying the hypothesis of the spherical symmetric 
temperature loads and in absence of the body force, and neglecting the effect of the inertia, the 
equilibrium equations become one equation: 

 ( )( ) ( ) ( ) 1
, 2 0 {1,2,... }i i i

rr r rr r i nθθσ σ σ −+ − = ∀ ∈  (20.5) 

The results obtained until now satisfy the equilibrium and compatibility equations inside each 
generic i-th phase of a composite spherical solid subjected to spherical symmetric strains or 
temperature loads time-dependent. Under both the hypothesis of linear isotropic elastic behaviour of 
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the homogeneous materials and the assumption of perfect bond at the spherical interfacial 
boundaries (no de-lamination or friction phenomena), we have now to establish the satisfaction of 
both the equilibrium and the compatibility equations at the boundary surfaces between two generic 
adjacent phases. To obtain this, we will make reference to the generic case, in which an 
multilayered sphere is constituted by n arbitrary hollow phase (see Chapter XVIII). In this 
framework the following boundary conditions be established. In particular, we begin writing the  
compatibility equations at the generic interface, that is: 

 ( ) ( ) ( 1) ( )( , ) ( , ) 0, {1,2,... 1}i i i i
r ru r R t u r R t t i n+= = = ∀ ≥ ∀ ∈ −  (20.6) 

The equilibrium equations at the generic interface are given by: 

 ( ) ( ) ( 1) ( )( , ) ( , ) {1,2,... 1}i i i i
rr rrr R t r R t i nσ σ += = = ∀ ∈ −  (20.7) 

The equilibrium equations for tractions on the inner and the outer spherical boundary surface, give: 

 ( ) ( )( ) ( ) (1) (0)( , ) , ( , ) 0n n
rr e rr ir R t p t r R t p t tσ σ= = = = ∀ ≥  (20.8) 

where ( ) ( ),e ip t p t  are prescribed function pressure applied on the inner and the outer surface of 

multilayered sphere, respectively. The equation field for coupled heat conduction problem is written 
in hypothesis of  spherical symmetric load conditions for each phases of prescribed function. 

       ( ) ( ) ( )( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )
, , , , ,

2 3 2 2 {1,2,... }i i i i i i i i i i i
rr r t R r r t

k T r T c T T u r u i nρ α λ µ− −+ = + + + ∀ ∈  (20.9) 

where ( ) ( ) ( ), , ,i i i
Rc k Tρ  are density, specific heat, thermal conductivity coefficient, temperature 

reference for each phases, respectively. Temperature boundary and continuity conditions are written 
at the interfaces between the phases, and on internal and external surfaces of multilayered sphere. 
Then, at interfaces between the phases the following conditions can be write: 

 
( ) ( ) ( 1) ( )

( ) ( ) ( ) ( 1) ( 1) ( )
, ,

( , ) ( , )
0, {1,2,... 1}

( , ) ( , )

i i i i

i i i i i i
r r

T r R t T r R t
t i n

k T r R t k T r R t

+

+ +

 = = = ∀ ≥ ∀ ∈ −
= = =

 (20.10) 

The boundary conditions on the inner and the outer surface impose that heat flux is equal to ( )iq t  

and ( )eq t , respectively: 

 ( ) ( )( ) ( ) ( ) (1) (1) (0)
, ,( , ) , ( , ) , 0n n n
r e r ik T r R t q t k T r R t q t t− = = − = = ∀ ≥  (20.11) 

The initial condition for temperature function is given by: 

 ( 1) ( ); , {1,2,...., }, 0,i i
RT T R r R i n t−= < < ∀ ∈ =  (20.12) 

 where 0 RT T=  is a suitable chosen reference temperature in initial condition (for t = 0). 

 
20.2.  Multilayered sphere exposed to an ambient at zero temperature through a uniform 
boundary conductance 
Let us consider an multilayered sphere constituted by n-hollow spherical phase as decrypted in 
section 20.1. The surface (0)r R=  is kept perfectly insulated while the surface ( )nr R=  is exposed, 
for t >0, to an ambient at zero temperature through a uniform boundary conductance ch . The initial 

temperature (for  t = 0) of the hollow sphere  is 0 RT T const= =  where 0RT > . In this section, we 

determine the heat conduction, displacement and stress function in hollow sphere under decreasing 
of  temperature from  0RT >  until  to zero.  The equations field in each phase are composed by 

equilibrium and heat conduction equations. By substituting the strain-displacement relations (20.2) 
in stress-strain relations (20.3) and these in equilibrium equations (20.5), we obtain the 
displacement formulation of the equilibrium equations. Then, the equations field to satisfy in 
uncoupled thermo-elastic problem with spherical symmetry are given by: 
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 (20.13) 

where ( )iκ  is the thermal diffusivity for generic i-th phase. By solving the Fourier’s equation 
reported in second equation of (20.13) with method separation of variables, and by substituting the 
function of temperature ( )( ) ,iT r t  in first equation of (20.13), and by integration in two time this 

equation respect to variable r , the explicit displacement solution is obtained: 

          ( ) ( ) ( ) ( )( )( ) ( ) ( )
2( ) 2 ( ) ( )

12 ( ) ( ) 2

3 2
, , , {1,2,...., }

2

ii i i
i i i

r i i

f t
u r t r T r t dr r f t i n

r r

α λ µ
λ µ

 += + + ∀ ∈ 
+ 

∫   (20.14) 

where ( ) ( )( ) ( )
1 2,i if t f t  are unknown functions of the time to determine. The heat conduct problem is 

characterized by homogeneous differential equation reported in second equation of (20.13) and 
boundary conditions reported in equations (20.10)-(20.11) and may be treated by the method 
separation of variables. A particular solution of the Fourier’s differential equation is given by: 

 ( ) ( ) ( )( ) ( ) ( ), {1,2,...., }i i iT r t r t i nϕ ψ= ∀ ∈  (20.15) 

By substituting the function (20.15) in Fourier’s heat equation we obtain two ordinary differential 

equations in variable radius and time, separately. The first equation for function ( )( )i rϕ  

 ( ) 1 ( ) 2 ( )2 ( )
, ,2 0;i i i i
rr rrϕ ϕ ω β ϕ−+ + =  (20.16) 

where the coefficient ( ) (1) ( )i iβ κ κ=  and to the following equation for ( )( )i tψ : 

 ( ) 2 ( )2 ( ) ( )
, 0i i i i
t Cψ ω β κ ψ+ =  (20.17) 

The general solution of  (20.17) is:  

 ( )
( )2 ( )2( ) ii
C ti t e ω β κψ −=  (20.18) 

The general solution of  (20.16) is: 

 ( ) ( )( ) ( )( ) 1 ( ) ( )i ii i r i rr r A e B eω β ω βϕ −= +Â -Â  (20.19) 

where ( ) ( ),i iA B  are constants integration and Â  is unit imaginary. The boundary conditions for heat 
problem (20.10) in this case become: 
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 (20.20) 

 The boundary conditions on the inner and the outer surface (20.11) become: 

 (1) (1) (0) ( ) ( ) ( ) ( ) ( )
, ,( ) 0, ( ) ( ), 0n n n n n
r r ck T r R k T r R h T r R t− = = − = = = ∀ ≥  (20.21) 

where and ch  is convection coefficient on surface ( )nr R= . In explicit the equations (20.21) 

become: 
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By first equation of (20.22), we determine (1)B  as function  of  (1)A  as follows: 

 ( ) ( ) (1) (0 )2(1) (0) (1) 2 (1)2 (0)2 (1) RB R R A e ω βω β ω β =   
2 Â

Â + 1+  (20.23) 

The equations (20.20) constituted an homogeneous algebraic system, composed by 2(n-1) 
equations, in unknown parameters ( ) ( ),i iA B  with {1,2,..., }i n∈ ,  which can be written as:  
 ⋅ =Φ X 0  (20.24) 
where (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors, as reported below: 

 ( ) ( ) ( ) , {1,2,...., }
Ti i iA B i n = ∀ ∈ X  (20.25) 

and Φ  is an ( )2 1 2n x n−  rectangular matrix, composed by following  sub-matrices: 
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where ( ) ( 1),i i
i i

+
Φ Φ  are ( )2 2x generic square sub-matrices given by: 
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ω β ω β

+

+

+
+ + + +

  
  = ⋅

− +      

  
  = ⋅

− +      

Φ

Φ

Â

-Â

Â

-Â

Â Â

Â Â

 (20.27) 

The determinant of the matrices (20.27) is given by: 

 ( ) ( ) ( ) ( ) ( 1) ( 1) ( 1) ( )det[ ] 2 0, det[ ] 2 0,i i i i i i i i
i ik R k Rω β ω β+ + += ≠ = ≠Φ ΦÂ Â  (20.28) 

Then, the matrices (20.27) are invertible and by applying an in-cascade procedure, we obtain the 
generic vector ( )iX  as function of vector (1)X :  

     ( ) ( ) (1) {2,3,..., }i i i n= ⋅ ∀ ∈X Γ X  (20.29) 

where ( )i
Γ  is an 2 2x  square matrix  given by : 

 ( )1 1( ) ( 1) ( )

1

{2,3,..., }
i

i i j i j
i j i j

j

i n
− −− + −

− −
=

 = ⋅ ∀ ∈ ∏Γ Φ Φ  (20.30) 

By substituting the solutions (20.29) in boundary conditions (20.22), we obtain vector equations in 

unknown vector (1)X , as reported below: 

 (1)⋅ =Λ X 0  (20.31) 
where Λ  is an  2x2  square matrix  given by : 

                                                                  11 12

21 22

Λ Λ 
=  Λ Λ 

Λ                     (20.32) 

where the components 11 12 21 22, , ,Λ Λ Λ Λ  are reported below: 
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( ) ( )
[ ]

(1) (0) (1) (0)

( ) ( ) ( ) ( )

(1) (0) (1) (0)
11 12

21 22

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 , 1 ,

,

1 , 1 ,
n n n n

R R

n n
n n R n n R nc c

n n

R e R e

h R h R
R e R e

k k

ω β ω β

ω β ω β

ω β ω β

ω β ω β

Λ = − Λ = +

Λ Λ =

    
= − − + − ⋅    
     

Γ

Â -Â

Â -Â

Â Â

Â Â

     (20.33) 

The algebraic system (20.31) admit not trivial solution if the determinant of matrix [ ]Λ  is equal to 

zero. By imposing this condition, we obtain the transcendental equation in unknown parameter ω : 
 [ ] ( )det 0 0g ω= ⇒ =Λ  (20.34) 

 The roots of this transcendental equation (20.34) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding 

eigenfunctions or characteristic functions ( )( )i

m rϕ  are, as calculated above, 

                   

( ) ( ) ( )

( ) ( ) ( )( ) ( )

(1)
(1) (1) (1)

(1) (1)

( )
( ) ( ) (1)

(1) (1)

1
, 1

1
, {2,3,..., }

m m

i i
m m

m r r
mm

m m

i
i m r r i

mm
m m

r
r e e

A A r

r
r e e i n

A A r

ω ω

ω β ω β

ϕ
ϕ β

ϕ
ϕ

 = = ⋅ = 

 = = ⋅ Γ ⋅ ∀ ∈  

X

X

Â -Â

Â -Â

 (20.35) 

The temperature function in any phase can to be written in the follows form: 

          
( ) { } ( )
( ) ( ){ }

(1) 2

( ) ( ) ( ) 2 ( )2

(1) 1 (1) (1)

1

( ) 1 ( ) (1)

1

, , 1

, , {2,3,..., }

m m m

i i i i
m m m

r r t
m

m

r r ti i
m

m

T r t r e e e

T r t r e e e i n

ω ω κ ω

ω β ω β κ ω β

β
∞

−−

=
∞

−−

=

 = ⋅ = 

 = ⋅ Γ ⋅ ∀ ∈  

∑

∑

X

X

Â -Â

Â -Â

 (20.36) 

where the vector (1) (1) (1),
T

m m mA B =  X  and the unknown constant ( )i
mB  depends by (1)

mA  as showed 

equations (20.23). The coefficients (1)
mA  are determined by applying the initial condition (20.12) 

that yields the following relationship: 

 

( )

( )

( 1)

( )

( 1)

2 ( )( ) ( ) 2

1 0 0(1)

2 2( )( ) ( ) 2

1 0 0

sin

sin

i

i

i

i

Rn ii i
v Rm

i R
m

Rn ii i
v m

i R

c T r drd d

A

c r drd d

π π

π π

ρ ϕ θ θ φ

ρ ϕ θ θ φ

−

−

=

=

 
 
  =
 
 
  

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

 (20.37) 

By substituting the function (20.36), in equation (20.14), we obtain in explicit the displacement 
function in any hollow spherical phase: 

              ( )
( )

( )
( )

( ) 2 ( )2

( )

( ) 2 ( ) 2

( )

( ) ( ) ( ) 2 ( ) ( ) 2

1

( ) ( )( ) ( ) ( )

2 ( )2 ( ) ( ) 2 ( ) ( )
1

13 2

2 1

i i
m

i
m

i i
m

i
m

ti i i i i
r m m

m

ri ii i i
m m t

i i i ri i
m m m m

u G r H r P r Q r e

A r e
e

r B r e

κ ω β

β ω
κ ω β

β ω

β ωα λ µ
ω β λ µ β ω

∞
−− −

=

∞
−

=

 = + + + + 

  − ++  +  
 + + +   

∑

∑
Â

-Â

Â

Â

 (20.38) 

where the integration constants ( ) ( ) ( ) ( ), , ,i i i i
m mG H P Q  are determined by applying the boundary 

conditions give by equations (20.6),(20.7) and (20.8). In this case the functions ( )( )
1 ,if t ( )( )

2 ,if t  

reported in equation (20.14) are given by: 

 ( ) ( )( ) 2 ( )2 ( ) 2 ( )2( ) ( ) ( ) ( ) ( ) ( )
1 2

1 1

, ,
i i i i

m mt ti i i i i i
m m

m m

f t G P e f t H Q eκ ω β κ ω β
∞ ∞

− −

= =
= + = +∑ ∑  (20.39) 

In explicit the radial and circumferential stress components are given by: 
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( )( )
( )

( )
( )

( )
( )

2 ( )2 ( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 3

( ) ( ) ( ) ( ) ( ) 3

1

( ) ( )( ) ( ) ( ) ( )
2 3

( )2 ( ) ( ) ( ) ( )

3 2 4

3 2 4

4 3 2

2

i i
m

i
m

i
m

i i i i i i i
rr R

ti i i i i
m m

m

ri ii i i i
m m

mi i i ri i
m m

G T H r

P Q r e

A r e
r

B r e

ω β κ

ω β

ω β

σ α λ µ µ

λ µ µ

ω βα µ λ µ
ω

β λ µ ω β

−

∞
−−

=

− −

−

= + + − +

 + + − +
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+ + − 

∑

Â

Â

ÂÂ

Â

2 ( )2 ( )

1

i i
m t

m

e ω β κ
∞

−
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∑

 (20.40) 

 

( )( )
( )

( )
( )

( )

2 ( )2 ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 3

( ) ( ) ( ) ( ) ( ) 3

1
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( ) ( )

( ) ( ) ( ) ( ) 2 3
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2 3
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3 2 2
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2 3 2
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i
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i i i i i i i
R

ti i i i i
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ri im

i i i i m m
m

i i i i
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G T H r

P Q r e

A
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r

B
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r

θθ

ω β κ

ω β

σ α λ µ µ

λ µ µ

ω β ω βα µ λ µ ω
β λ µ ω β ω β

ω

−

∞
−−

=

= + + + +

 + + + +
 

 − + +
 +

+
+

+ −

∑

Â
Â

( )
2 ( )2 ( )

( )1 ( )

i i
m

i
m

t

m ri

e

r e

ω β κ

ω β

∞
−

= −

 
 
 
 
  −  
 

∑
Â

Â

 (20.41) 

It is important to note that displacement function and stress components in any phases can to be 
subdivided in two parts: firstly constant in time and the second depend of the time. Moreover, the 
tractions on the inner and the outer spherical boundary surface are vanishing and then condition 
(20.8) becomes: 
 (1) (0) ( ) ( )( ) 0, ( ) 0, 0n n

rr rrr R r R tσ σ= = = = ∀ ≥  (20.42) 

The integration constants ( ) ( ) ( ) ( ), , ,i i i i
m mG H P Q  are function of geometrical, mechanical and thermal 

parameters of spherical layers . Moreover ( ) ( ),i i
m mP Q  are function of  constants ( ) ( ), ,i i

m m mA B ω  also. 

We can write the boundary conditions (20.6) and (20.7) in two uncoupled algebraic system as 
reported below: 
 0 0 1,2,....m m m N⋅ = ⋅ = ∀ =Ω Y L , Ω Y L ,� �  (20.43) 

 where the vectors 0, mL L  are given by: 

        ( ) ( ) ( ) ( )(2) (1) (3) (2) ( 1) ( ) ( ) ( 1)
1, 1, 2, 2, , , 1, 1,, ,..., ,.., with {0, }

T
i i n n

j j j j j i j i j n j n j j m+ −
− −

 − − − − ∈ L = L L L L L L L L  (20.44) 

These vector are characterized by following sub-vectors:      

( ) ( )
( ) ( )
( )

( )
(

( )
( )

( )

)

( )

( ) ( ) (

( ) ( 1)
,0 ,0( ) ( ) ( ) ( 1) ( 1) ( 1)

( ) ( )
( )

( )
, 2 ( )3 ( )

) ( )
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0 0
, ,

3 2 3 2

1 1

4 1 4 1
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Ri i i i
R
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R
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ωω
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−
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− +
=
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2 Â

Â Â

Â Â Â Â( )
( ) ( )
( ) ( )

( 1)
( 1)
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(

1)( (
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( )
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i
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i

Ri i i i
R

m m

Ri i
m m

i
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i
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i m
i m i ii i
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e Ae R

R RR Be

ββ

β

ωω
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ω ω
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β βζ
ω β β
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+

+

+ + +−+
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++ +

   
  ⋅  
    

 − +  
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2 Â

Â

2 Â

Â Â

Â Â Â Â

   (20.45) 

where the constant 
( )
( )

( ) ( ) ( )

( )

( )2 ( ) ( )

3 2

2

i i i

i

i i i

α λ µ
ζ

β λ µ
+

=
+

. The unknowns vectors (1) (2) ( )
0 0 0 0[ , ,..., ]n T=Y Y Y Y   and  

(1) (2) ( )[ , ,..., ]n T
m m m m=Y Y Y Y  are composed by  sub-vectors reported below: 

          ( ) ( ) ( ) ( ) ( ) ( )
0 , , {1,2,...., }, {1,2,...., }

T Ti i i i i i
m m mG H P Q i n m N   = = ∀ ∈ ∀ ∈   Y Y  (20.46) 

and Ω  is an ( )2 1 2n x n−  rectangular matrix composed by following sub-matrices: 
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                 [ ]

(1) (2)
1 1

(2) (3)
2, 2

(3) (4)
3 3

( 2) ( 1)
2 2

( 1) ( )
1 1

,

j

n n
n n

n n
n n

− −
− −

−
− −

 −
 

− 
 

− =
 
 
 −
 

−  

Ω Ω 0 0 0 0 0

0 Ω Ω 0 0 0 0

0 0 Ω Ω 0 0 0
Ω

0 0 0 0 Ω Ω 0

0 0 0 0 0 Ω Ω

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯

⋯

 (20.47) 

where the generic matrices ( ) ( 1),i i
i i

+
Ω Ω are given by: 

        
( ) ( ) 2 ( ) ( ) 2

( ) ( 1)

( ) ( ) ( ) ( ) 3 ( 1) ( 1) ( 1) ( ) 3
, ,

3 2 4 3 2 4

i i i i
i i

i ii i i i i i i i

R R R R

R Rλ µ µ λ µ µ

− −
+

− + + + −

   
= =   

+ − + −      
Ω Ω  (20.48) 

are (2 2)×  matrices with nonzero determinant, whose components were already gave above. The 
determinant of the matrices (20.48) is given by: 

                   
( ) ( )( ) ( ) ( 1) ( 1)

( ) ( 1)
( )2 ( )2

3 2 3 2
det[ ] 0, det[ ] 0,

i i i i

i i
i ii iR R

µ λ µ λ+ +
+

+ +
= − ≠ = − ≠Ω Ω  (20.49) 

However, in force of the special form of Ω  derived above, one can rewrite the reduced algebraic 
problem in order to have the solution without recall any numerical strategy. To make this, let us we 
can rewrite two algebraic system (20.43) in follows manner: 

 

(2) (2) (1) (1) (2) (1)
1 1 1, 1,

(3) (3) (2) (2) (3) (2)
2 2 2, 2,

( 1) ( 1) ( ) ( ) ( 1) ( )
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( 1) ( 1) ( 2) ( 2) ( 1) ( 2)
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j j j j

j j j j
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n n n n n n
n j n j n j n j

n n n
n j n j
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−
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=

Ω Y Ω Y L L

Ω Y Ω Y L L

Ω Y Ω Y L L
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Ω Y Ω Y

⋮

⋮

( 1) ( ) ( 1)
1, 1,

{0, }, {1,2,...., }

n n n
n j n j

j m m N

− −
− −






 ∀ ∈ ∀ ∈




 + − L L

 (20.50) 

By applying an in-cascade procedure, we finally obtain 

 
( ) ( ) (1) ( )
0 0 0

( ) ( ) (1) ( )
{2,3,..., }, {1,2,...., }

i i i

i i i
m m m

i n m N
 = ⋅ + ∀ ∈ ∀ ∈

= ⋅ +

Y Σ Y Ψ

Y Σ Y Ψ

 (20.51) 

where ( )i
Σ  is an matrix given by following expression: 

 
1 1( ) ( 1) ( )
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{2,3,..., }
i

i i j i j
i j i j

j

i n
− −− + −

− −
=

  = ⋅ ∀ ∈   
∏Σ Ω Ω  (20.52) 

and the vectors ( ) ( )
0 , ,i i

mΨ Ψ  are reported below: 
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21 11 1( ) ( ) ( ) ( )
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1 1

1 11( ) ( ) ( ) ( )
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∀ ∈ ∀ ∈

∑ L L
 (20.53) 

where dot stands for scalar product. The equations (20.52)-(20.53) permit to write two generic 

unknowns sub-vectors ( ) ( )
0 ,i i

mY Y  as function of a transferring matrix ( )i
Σ  and vectors ( ) ( )

0 , ,i i
mΨ Ψ   

and the unknowns sub-vectors (1) (1)
0 , mY Y . The problem is hence reduced to an algebraic one in which 
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only the four coefficients – collected in (1) (1)
0 , mY Y  – related to the first phase have to be determined, 

by imposing two boundary conditions described by the equations obtained above. Therefore, in 
order to find the four unknowns collected in (1) (1)

0 , mY Y , it remains to rewrite the boundary conditions 

(20.42) in matrix form. In particular, by applying the equations (20.51) for i n= , we obtain the 
follows relationship: 

 ( ) ( ) (1) ( ) ( ) ( ) (1) ( )
0 0 0 , {1,2,...., },n n n n n n

m m m m N= ⋅ + = ⋅ + ∀ ∈Y Σ Y Ψ Y Σ Y Ψ  (20.54) 

Then, the boundary conditions(20.42), become two uncoupled algebraic system: 
 (1) (1)

0 0, {1,2,...., },m m m N⋅ = ϒ ⋅ = ϒ ∀ ∈Π Y Π Y  (20.55) 

where the matrix ,Π and vectors 0, mϒ ϒ  are given by: 

 ( )( )
1 2 0 1,0 2,0 1, 2,, , {1,2,...., },

TT T Tn
m m m m N     = ⋅ ϒ = ϒ ϒ ϒ = ϒ ϒ ∀ ∈     

Π Π Σ Π  (20.56) 

where 1 2,Π Π  are two vectors and 1,0 2,0 1, 2,, , ,m mϒ ϒ ϒ ϒ  are four scalars, as reported below: 
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(0) (0)

0

(1)
(1) (1) (1) (1)

1, 2 (0)3

3 2 , 4 , 3 2 , 4

3 2 ; 3 2 ,

4
1 1m m

T T
n n n n
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 ϒ = + + − − ⋅
 

∀ ∈

Π Ψ
Â ÂÂ

Â Â

(20.57) 

Then, by inverting, all the 2 n×  unknown coefficients , we obtain the unknown parameters: 

                           

( )

( ) { }
( )

( ) { }

1 1
0 0

( ) 1 ( )
0 0 0

1 1

( ) 1 ( )

,

2,3,...,

,
{1,2,...., },

2,3,...,

i i i

m m

i i i
m m m

i n

m N
i n

−

−

−

−

 = ⋅ ϒ


= ⋅ ⋅ ϒ + ∀ ∈

 = ⋅ ϒ ∀ ∈
= ⋅ ⋅ ϒ + ∀ ∈

Y Π

Y Σ Π Ψ

Y Π

Y Σ Π Ψ

 (20.58) 

By substituting the solutions (20.58) in (20.38), we obtain in explicit displacement function. 
For example, let us consider, a spherical tank constituted by two phases under decreasing  
temperature. The phase (1) is constituted by steel and phase (2) by aluminium. It is denoted with 
pedix “s” the parameters of steel and pedix “a” the parameters of aluminium. The mechanical and 
thermal parameters considered for both phases are reported in table 20.1: 
 

 Steel 
(phase 1) 

Aluminium 
(phase 2) 

2E N m− 
   9210 10⋅  970 10⋅  

1 1k W m K− − 
   45 237 

ν  0.30 0.35 
1 1m m Kα − ⋅   612 10−⋅  623.1 10−⋅  

3kg mρ − 
   7800 2700 

1 1
vc J kg K− − ⋅   440 930 

 
Table 20.1 – Mechanical and thermal parameters of Steel and Aluminium 
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The geometrical parameters of spherical tank are (0) 1.00 ,R m= (1) 1.03 ,R m=  
(2) 1.08 ,R m= 250 / ,ch W m K= ⋅° 0 300RT T K= = ° . In this case the graphics function ( )g ω  given 

by equation (20.34) is reported below: 
 

 
Fig. 20.1 -  Function ( )g ω  

 

By fixed  m= 20,  the eigenvalues mω  of  transcendental equation (20.34) and corresponding values 

of constants integration mA  are reported in table 20.2: 

 

 
 

Table 20.2 – Eigenvalues mω  and corresponding values of constants integration mA  

 
 
We reported the graphics of temperature function along the radial direction and in time: 
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Fig. 20.2 -  Temperature function  versus the time 
 

 
 
 

Fig. 20.3 -  Temperature distribution along radial direction 
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Fig. 20.4 - Radial displacement distribution along radial direction 
 
 

 
 

Fig. 20.5 -  Radial stress distribution in time  
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Fig. 20.6 -  Radial stress distribution along radial direction 
 
 

 
 

Fig. 20.7 -  Circumferential stress distribution in time 
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Fig. 20.8 -  Circumferential stress distribution along radial direction 
 
 

 
 

Fig. 20.9 -  Circumferential stress distribution in time with asymptotic values 
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Fig. 20.10 -  Circumferential stress distribution along radial direction with asymptotic values 

 
Finally, we reported an other example related to spherical tank constituted by three phases under 
decreasing temperature. The phase (1) is constituted by titanium, phase (2) by aluminium and phase 
three(3) by steel. The mechanical and thermal parameters considered for three phases are reported 
in table 20.2.  

 Titanium 
(phase 1) 

Aluminium 
(phase 2) 

Steel 
(phase 2) 

2E N m− 
   9108 10⋅  970 10⋅  9210 10⋅  

1 1k W m K− − 
   20 237 45 

ν  0.3 0.35 0.30 
1 1m m Kα − ⋅   611 10−⋅  623.1 10−⋅  612 10−⋅  

3kg mρ − 
   4000 2700 7800 

1 1
vc J kg K− − ⋅   400 930 440 

Table 20.3 – Mechanical and thermal parameters of Titanium,  Aluminium and Steel 
 

The geometrical parameters of spherical tank are: (0) 1.00 ,R m= (1) 1.03 ,R m= (2) 1.06 ,R m=  
(3) 1.09R m= , 280 / ,ch W m K= ⋅° 0 300RT T K= = ° . By fixed  m= 10,  the eigenvalues mω  of  

transcendental equation (20.34) and corresponding values of constants integration mA  are reported 

in table 20.4: 

 
Table 20.4 – Eigenvalues mω  and corresponding values of constants integration mA  
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In this case the graphics function ( )g ω  given by equation (20.34) is reported below: 

 
 
 

Fig. 20.11 -  Function ( )g ω  
 
 
 

 
 

Fig. 20.12 -  Temperature function  versus the time 
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Fig. 20.13 -  Temperature distribution along radial direction 
 
 

 
 

Fig. 20.14 -  Radial displacement distribution along radial direction 
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Fig. 20.15 -  Radial stress distribution in time  
 
 

 
 
 

Fig. 20.16 -  Radial stress distribution along radial direction 
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Fig. 20.17 -  Circumferential stress distribution in time 

 
Fig. 20.18 -   Circumferential stress distribution along radial direction 

 
20.3. Multilayered sphere under uniform heat flux 
Let us consider an multilayered sphere constituted by n-hollow spherical phase as decrypted in 
section 20.1. The inner surface (0)r R=  is kept perfectly insulated while the outer surface ( )nr R=  
is exposed, for t >0, to a constant, uniform heat input 0q . In this section, we determine the heat 

conduction, displacement and stress function in any hollow spherical phases subjected to uniform 
heat input 0q  applied on external surface, starting to initial temperature in solid equal to 

0 RT T const= = . The equations field to satisfy in uncoupled thermo-elastic problem with spherical 
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symmetry are reported in equations (20.13), but in this case the boundary conditions (20.11) 
become: 

 (1) (1) (0) ( ) ( ) ( )
, , 0( ) 0, ( ) , 0n n n
r rk T r R k T r R q const t− = = − = = = ∀ ≥  (20.59) 

and the boundary conditions (20.8) become: 

 ( ) ( ) (1) (0)( ) 0, ( ) 0, 0n n
rr rrr R r R tσ σ= = = = ∀ ≥  (20.60) 

The other boundary conditions reported in section 20.1 not change. By solving the Fourier’s 
equation reported in second equation of (20.13) with method separation of variables, and by 
substituting the function of temperature ( )( ) ,iT r t  in first equation of (20.13), and by integration in 

two time this equation respect to variable r, the explicit displacement solution is reported in 
equation (20.14). In this case, the heat conduct problem involving a non-homogeneous boundary 
condition and, in particular, with the heat input specified over the entire boundary surface. It is 
necessary writing the temperature solution, in any phases of multilayered sphere, in the follows 
form (see Chapter VII and Chapter XV) : 

 ( ) ( ) ( )( ) ( ) ( )
0, , , {1,2,...., }i i i

S CT r t T t T r T r t i nξ= + + + ∀ ∈  (20.61) 

where ξ  is same unknown parameter for any phases of multilayered sphere and the function 

( )( )i
ST r  in generic i-th phase  satisfies the field equations: 

 
2 ( ) ( ) ( 1) ( )

2 ( )

2
;

{1,2,..., }

i i i i
S S

i

d T d T R r R

r d rd r i n

ξ
κ

− ≤ ≤+ =
∀ ∈

 (20.62) 

Moreover the function ( )( )i
ST r  must be satisfy the following boundary conditions : 

 
( )(1)

(1) (0)0, ,Sd T r
k r R

d r
− = =  (20.63) 

 
( )( )

( ) ( )
0, ,

n
Sn nd T r

k q r R
d r

− = =  (20.64) 

 
( ) ( )( ) ( 1)

( ) ( 1) ( ), , {1,2,..., 1}
i i

S Si i id T r d T r
k k r R i n

d r d r

+
+− = − = ∀ ∈ −  (20.65) 

 ( ) ( )( ) ( 1) ( ), , {1,2,..., 1}i i i
S ST r T r r R i n+= = ∀ ∈ −  (20.66) 

 ( )
( )

( 1)

2
( ) ( ) 2 ( )

1 0 0

sin 0

i

i

Rn
i i i

v S
i R

c r T r drd d
π π

ρ θ θ φ
−=

 
= 

  
∑ ∫ ∫ ∫  (20.67) 

where ξ  may be determined either from the boundary conditions (20.63)-(20.67). The function 

( )( ) ,i
CT r t  in generic i-th phase  satisfies the field equations: 

 
( ) ( ) ( )2 ( ) ( ) ( ) ( 1) ( )

2 ( )

, , , , 02 1
;

{1,2,..., }

i i i i i
C C C

i

T r t T r t T r t R r R t

r r tr i nκ

−∂ ∂ ∂ ≤ ≤ ∀ ≥+ =
∂ ∂∂ ∀ ∈

 (20.68) 

Moreover the function ( )( ) ,i
CT r t  must be satisfy the following boundary conditions : 

 
( )(1)

(1) (0),
0, , 0,CT r t

k r R t
r

∂
− = = ∀ ≥

∂
 (20.69) 

 
( )

( ) ( )( , )
0, , 0,

n
n nCT r t

k r R t
r

∂− = = ∀ ≥
∂

 (20.70) 

 
( ) ( )

( ) ( )

( ) ( 1)
( ) ( 1)

( )

( ) ( 1)

, ,
,

, 0, {1,2,..., 1}

, , ,

i i
C Ci i

i

i i
C C

T r t T r t
k k

r R t i nr r

T r t T r t

+
+

+

 ∂ ∂
− = − = ∀ ≥ ∀ ∈ −∂ ∂
 =

 (20.71) 
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 ( ) ( )( ) ( ) ( 1) ( ), , , 0, {1,2,..., }i i i i
C ST r t T r R r R t i n−= − ≤ ≤ = ∀ ∈  (20.72) 

The solutions of differential equation (20.62) is given by: 

 ( ) ( )( ) ( ) 1 ( ) ( ) 26 , {1,2,..., }i i i i
ST r C r D r i nξ κ−  = + + ∀ ∈   (20.73) 

where ( ) ( ), ,i iC D ξ  are 2n+1 unknown parameter to determine. By solving algebraic system 

composed by equations (20.63), (20.64),(20.65) and (20.67), we obtain integration constants ( ), iCξ : 

 

( )
( )

( )2 ( )
( ) ( )3 ( 1)3 ( ) ( )20 0

( ) ( ) ( )3 ( 1)3 ( ) ( ) ( )

1 1

3 4
, , 4 ,

3

n n
i i i n n

n n
i i i i i i i

v v
i i

q R q S
V R R S R

c R R c V
ξ π π

ρ ρ

−

−

= =

= − = − = − =
−∑ ∑

 (20.74) 

where ( )iV  and ( )nS  are volume of  generic i-th phase and external surface of multilayered sphere, 
respectively.   

 

( ) ( )

( )

1
( ) ( ) ( 1)3 ( ) ( ) ( )3 ( 1)3

1( )2
1( ) 0

( )
( ) ( ) ( )3 ( 1)3

1

1
i

i i i j j j j
v i vn

ji
ni

j j j j
v

j

c R c R R
q R

C
k

c R R

ρ δ ρ

ρ

−
− −

=

−

=

 
− + − − 
 =

−

∑

∑
 (20.75) 

where 1iδ  is the Kronecker’s delta. By solving the equations (20.66), we obtain integration 

constants ( )iD  as function of constants ( ), iCξ . For brevity, we don’t reported in explicit the 

expressions of constants ( )iD .  The solution to the problem for CT  is found in much the same says 

way as was followed in section 20.2. The problem is therefore on with homogeneous differential 
equation and boundary conditions and may be treated by the method separation of variables as 
showed in section 20.2. The solutions of differential equation (20.68) is given by: 

 ( ) ( ) ( ) ( ) ( )2 2( ) 1 ( ) ( ), {1,2,..., }
i i i ii i r i r t

CT r t r A e B e e i nω β ω β κ β ω− − = + ∀ ∈  
Â -Â  (20.76) 

where ( ) ( ), ,i iA B ω  are constants parameter to determine, the coefficient ( ) (1) ( )i iβ κ κ=  and Â  is 

unit imaginary. The boundary conditions (20.71) for temperature function  ( )( ) ,i
CT r t  are reported 

below: 

    

( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( 1) ( ) ( 1) ( )

( ) ( ) ( 1) ( 1)

( ) ( )

( ) ( ) ( 1) ( 1)

( ) ( ) ( ) ( ) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( ) ( 1) ( 1)

0

1 1

1 1

i i i i i i i i

i i i i

i i

i R i R i R i R

i i i i R i i i i R

i i i i R i i

A e B e A e B e

A k R e A k R e

B k R e B k

ω β ω β ω β ω β

ω β ω β

ω β

ω β ω β

ω β

+ +

+ +

+ +

+ + + +

− + +

+ − + =

− − − +

+ + − +

Â -Â Â -Â

Â Â

Â

Â Â

Â Â( ) ( 1) ( 1)( 1) ( 1) 0

{1,2,..., 1}

i ii i RR e

i n

ω βω β
+ ++ + −






 =
 ∀ ∈ −

Â

 (20.77) 

The boundary conditions on the inner and the outer surface (20.69) and (20.70) become: 

               
( ) ( )
( ) ( )

(1) (0) (1) (0)

( ) ( ) ( ) ( )

(1) (1) (0) (1) (1) (0)

( ) ( ) ( ) ( ) ( ) ( )

1 1 0

1 1 0
n n n n

R R

n n n R n n n R

A R e B R e

A R e B R e

ω β ω β

ω β ω β

ω β ω β

ω β ω β

−

−

 − + + =


− + + =


Â Â

Â Â

Â Â

Â Â

 (20.78) 

By first equation of (20.78), we determine (1)B  as function  of  (1)A  as follows: 

 ( ) ( ) (1) (0 )2(1) (0) (1) 2 (1)2 (0)2 (1) RB R R A e ω βω β ω β =   
2 Â

Â + 1+  (20.79) 

The equations (20.77) constituted an homogeneous algebraic system, composed by 2(n-1) 
equations, in unknown parameters ( ) ( ),i iA B  with {1,2,..., }i n∈ ,  which can be written as:  
 ⋅ =Φ X 0  (20.80) 
where (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors, as reported below: 
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 ( ) ( ) ( ) , {1,2,...., }
Ti i iA B i n = ∀ ∈ X  (20.81) 

and Φ  is the matrix reported in equation (20.26). As showed in section 20.2, matrix Φ  is 

constituted by components:( ) ( 1),i i
i i

+
Φ Φ , {1,2,..., 1}i n∀ ∈ − and vector ( )iX  is obtained as function of 

vector (1)X (see equation (20.29)). By substituting the solutions (20.29) in boundary conditions 
(20.78), we obtain vector equations in unknown vector (1)X , as reported below: 

 (1)⋅ =Λ X 0  (20.82) 
where Λ  is an  2x2  square matrix  given by : 

                                                                  11 12

21 22

Λ Λ 
=  Λ Λ 

Λ                     (20.83) 

where the components 11 12 21 22, , ,Λ Λ Λ Λ  are reported below: 

                 
( ) ( )

[ ] ( ) ( )

(1) (0) (1) (0)

( ) ( ) ( ) ( )

(1) (0) (1) (0)
11 12

( ) ( ) ( ) ( ) ( )
21 22

1 , 1 ,

, 1 , 1 ,
n n n n

R R

n n R n n R n

R e R e

R e R e

ω β ω β

ω β ω β

ω β ω β

ω β ω β

Λ = − Λ = +

 Λ Λ = − + ⋅  
Γ

Â -Â

Â -Â

Â Â

Â Â

          (20.84) 

The algebraic system (20.82) admit not trivial solution if the determinant of matrix [ ]Λ  is equal to 

zero. By imposing this condition, we obtain the transcendental equation in unknown parameter ω : 
 [ ] ( )det 0 0g ω= ⇒ =Λ  (20.85) 

 The roots of this transcendental equation (20.85) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding 

eigenfunctions or characteristic functions ( )( )i

m rϕ  are reported in equation (20.35). The coefficients 
(1)
mA  are determined by applying the initial condition (20.72) that yields the following relationship: 

 

( )

( )

( )

( 1)

( )

( 1)

2 ( )( ) ( ) 2 ( )

1 0 0(1)

2 2( )( ) ( ) 2

1 0 0

sin

sin

i

i

i

i

Rn ii i i
v sm

i R
m

Rn ii i
v m

i R

c r T r drd d

A

c r drd d

π π

π π

ρ ϕ θ θ φ

ρ ϕ θ θ φ

−

−

=

=

 
 
  = −
 
 
  

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

 (20.86) 

Finally the temperature function  in i-th generic phase ( {1,2,...., }i n∀ ∈ )is given by:  

  ( ) ( )( ) ( ) ( ) ( )2 2
2

( ) ( ) 1 ( ) 1 ( ) ( )
0 ( )

1

,
6

i i i i
m m mr r ti i i i i

m mi
m

r
T r t T t C r D r A e B e eω β ω β κ β ωξξ

κ

∞
−− −

=
= + + + + + +∑ Â -Â  (20.87) 

By substituting the function (20.87) in equation (20.14), we obtain in explicit the displacement 
function in any hollow spherical phase ( {1,2,...., }i n∀ ∈ ) : 

 

( ) ( )
( )

( )
( )

( )
( )

( )

( )

( ) ( ) ( ) 3
( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) 2

2 ( )2 ( ) ( ) 2 ( ) ( )

3 2
3 2

56 2

13 2

2 1

i
m

i
m

i i i

i i i i i i i
r ii i

ri ii i i
m mi i

m m i i i ri i
m m m

r
u G r H r N r M r t C D r

A r e
P r Q r

r B r e

β ω

β ω

α λ µ ξ
κλ µ

β ωα λ µ
ω β λ µ β ω

− −

−

+  
= + + + + + + + +  

 − ++
 + + +
 + + + 

Â

-Â

Â

Â

( ) 2 ( ) 2

1

i i
m t

m

e κ ω β
∞

−

=

 
 
 
  

∑

(20.88)

where the integration constants ( ) ( ) ( ) ( ) ( ) ( ), , , , ,i i i i i i
m mG H N M P Q  are determined by applying the 

boundary conditions given by equations (20.60). In this case the functions ( )( )
1 ,if t ( )( )

2 ,if t  

reported in equation (20.14) are given by: 

 ( ) ( )( ) 2 ( ) 2 ( ) 2 ( ) 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

1 1

, ,
i i i i

m mt ti i i i i i i i
m m

m m

f t G N t P e f t H M t Q eκ ω β κ ω β
∞ ∞

− −

= =
= + + = + +∑ ∑  (20.89) 

In explicit the radial and circumferential stress components are given by: 
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( )( ) ( )
( )

( ) ( )

( ) 2 ( )2 ( )

( ) ( ) ( ) ( ) ( ) ( ) 3 ( ) ( )

( ) ( ) ( ) ( ) ( ) 2 ( ) ( )
( )

0( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) 3

1
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3 2 4

2 3 2 2 2

3 15 22

3 2 4

4 3

i i
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i i i i i i i i
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i i i i i i i
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ti i i i i
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i i
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α µ λ µ ξ λ µ ξ
κ µλ µ

λ µ µ

α µ
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∞
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+  +− + + + − + + 
+  

 + + − +
 

+

∑
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( )
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2 ( )2 ( )

( )

( ) ( )( ) ( )
2 3

( )2 ( ) ( ) ( ) ( )1

2
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i i
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i
m

ri ii i
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mi i i ri im
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A r e
r e

B r e
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ω β κ

ω β

ω βλ µ
ω

β λ µ ω β

∞
−− −

−=

  + ++   
  +  + −   

∑

Â

Â

Â

Â

 (20.90) 

    

( )( ) ( )
( )

( ) ( )

( ) 2 ( )2 ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 ( ) ( )
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3 2 15 22
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i
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D T T t
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∞
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 + + + +
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( )
( ) ( )
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i
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i
ri im
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−
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∑

Â
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Â

Â

 (20.91) 

Moreover, the tractions on the inner and the outer spherical boundary surface are vanishing  and 
then condition (20.8) becomes: 
 (1) (0) ( ) ( )( ) 0, ( ) 0, 0n n

rr rrr R r R tσ σ= = = = ∀ ≥  (20.92) 

The integration constants ( ) ( ) ( ) ( ), , ,i i i i
m mG H P Q  are function of geometrical, mechanical and thermal 

parameters of spherical layers . Moreover ( ) ( ),i i
m mP Q  are function of  constants ( ) ( ), ,i i

m m mA B ω  also. For 

example, let us consider, a spherical tank constituted by two phases under uniform heat flux . The 
phase (1) is constituted by steel and phase (2) by aluminum. The mechanical and thermal 
parameters considered for both phases are reported in table 20.1. The geometrical parameters of 

spherical tank are: (0) 10 ,R m= (1) 10.25 ,R m= (2) 10.50 ,R m= 0 300RT T K= = ° . By fixed m= 20,  

the eigenvalues mω  of  transcendental equation (20.85) and corresponding values of constants 

integration mA  are reported in table 20.5: 

 
Table 20.5 – Eigenvalues mω  and corresponding values of constants integration mA  
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In this case the graphics function ( )g ω  given by equation (20.85) is reported below: 

 
Fig. 20.19 -  Function ( )g ω  

 
 
We reported the graphics of temperature function along the radial direction and in time: 
 
 

 

 
 

Fig. 20.20 -  Temperature function  versus time 
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Fig. 20.21 -  Temperature function  along radial direction 
 
 

 
 

Fig. 20.22.  Radial displacement along radial direction 
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Fig. 20.23  -  Radial stress  versus time 
 
 

 
 

Fig. 20.24 - Radial stress  along radial direction 
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Fig. 20.25 - Circumferential stress  versus time  

 

 
Fig. 20.26 -  Circumferential stress  along radial direction 

 
Finally, let us consider a spherical tank composed by three phases under uniform heat flux. The 
phase (1) is constituted by Titanium, phase (2) by aluminium and phase (3) by steel. The 
mechanical and thermal parameters considered for three phases are reported in table 20.2. The 

geometrical parameters of spherical tank are:(0) 1.00 ,R m= (2) 1.10 ,R m= (3) 1.15 ,R m=  

0 300RT T K= = ° , 2
0 1000 /q W m K= − ⋅° . In this case the graphics function ( )g ω  given by equation 

(20.85) is reported below: 
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Fig. 20.27 - Function ( )g ω  

By fixed  m= 10,  the eigenvalues mω  of  transcendental equation (20.85) and corresponding values 

of constants integration mA  are reported in table 20.6: 

 
Table 20.6 – Eigenvalues mω  and corresponding values of constants integration mA  

 
Fig. 20.28 - Temperature function  versus time 
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Fig. 20.29 -  Temperature function  along radial direction 
 

 
 

Fig. 20.30 - Radial displacement along radial direction 
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Fig. 20.31 -  Radial stress  along radial direction 
 

 
 

Fig. 20.32 -  Radial stress  versus time 
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Fig. 20.33 - Circumferential stress  along radial direction 
 

 
 

Fig. 20.34-  Circumferential stress  versus time 
 
20.4. Multilayered sphere exposed to hydrocarbon fire 
Let us consider an multilayered sphere constituted by n-hollow spherical phase as decrypted in 
section 20.1. The inner surface (0)r R=  is kept perfectly insulated while the outer surface ( )nr R=  
is exposed to conventional fire, for t >0. In this section, we determine the temperature, displacement 
and stress function in multilayered sphere by starting to initial temperature equal to 0 RT T const= = . 
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The equations field to satisfy in uncoupled thermo-elastic problem with spherical symmetry are 
reported in equations (20.13), but in this case the boundary conditions (20.11) become: 

 

(1) (1) (0)
,

( ) ( ) ( ) ( ) ( )
,

( ) 0,
0

( ) ( ) ,

r

n n n n n
r c F

k T r R
t

k T r R h T r R

− = = ∀ ≥
 − = = = − Θ  

 (20.93) 

where FΘ  is the conventional fire curve and ch  is convection coefficient on surface ( )nr R= . In this 

case, we considered Hydrocarbon fire curve given by follows equation (see Chapter XIX): 

 

1 2
0 1 2

0 1 2

3 1 2 1
1 2

[ ,sec]

1373.15 , 729 , 351 ,

2.783 10 sec , 4.416 10 sec ,

t t
F H H e H e K

H K H K H K

ξ ξ

ξ ξ

− −

− − − −

Θ = + + °
= ° = − ° = − °

= − ⋅ = − ⋅

 (20.94) 

and the boundary conditions (20.8) become: 

 ( ) ( ) (1) (0)( ) 0, ( ) 0, 0n n
rr rrr R r R tσ σ= = = = ∀ ≥  (20.95) 

The other boundary conditions reported in section 20.1 not change. By solving the Fourier’s 
equation reported in second equation of (20.13) with method separation of variables, and by 
substituting the function of temperature ( )( ) ,iT r t  in first equation of (20.13), and by integration in 

two time this equation respect to variable r , the displacement solution is reported in equation 
(20.14). In this case, the heat conduct problem involving a non-homogeneous boundary condition 
and, in particular, with the heat input specified over the entire boundary surface. It is necessary 
writing the temperature solution, in any phases of multilayered sphere, in the follows form : 

 ( ) ( ) ( ) ( )1 2( ) ( ) ( ) ( )
0 1 2, , , {1,2,...., }t ti i i i

CT r t H e T r e T r T r t i nξ ξ= + + + ∀ ∈  (20.96) 

The functions ( )( )
1

iT r  and ( )( )
2

iT r  in generic i-th phase  satisfy the field equations: 

 
{ }

2 ( ) ( ) ( ) ( 1) ( )

2 ( )

2
0;

{1,2,..., }, 1,2

i i i i i
j j j j

i

d T d T T R r R

r d r i n jd r

ξ
κ

− ≤ ≤
+ − =

∀ ∈ ∀ ∈
 (20.97) 

Moreover the functions ( )( )
1

iT r  and ( )( )
2

iT r  must be satisfy the following boundary conditions : 

 
( ) { }

(1)
(1) (0)0, , 1,2jd T r

k r R j
d r

− = = ∀ ∈  (20.98) 

 
( ) ( ) { }

( )
( ) ( ) ( ), , 1,2

n
jn n n

c j j

d T r
k h T r H r R j

d r
 − = − = ∀ ∈   (20.99) 

 
( ) ( ) { }

( ) ( 1)
( ) ( 1) ( ), , {1,2,..., 1}, 1,2

i i
j ji i id T r d T r

k k r R i n j
d r d r

+
+− = − = ∀ ∈ − ∀ ∈  (20.100) 

 ( ) ( ) { }( ) ( 1) ( ), , {1,2,..., 1}, 1,2i i i
j jT r T r r R i n j+= = ∀ ∈ − ∀ ∈  (20.101) 

The function ( )( ) ,i
CT r t  in generic i-th phase  satisfies the field equations: 

 
( ) ( ) ( )2 ( ) ( ) ( ) ( 1) ( )

2 ( )

, , , , 02 1
;

{1,2,..., }

i i i i i
C C C

i

T r t T r t T r t R r R t

r r tr i nκ

−∂ ∂ ∂ ≤ ≤ ∀ ≥+ =
∂ ∂∂ ∀ ∈

 (20.102) 

Moreover the function ( )( ) ,i
CT r t  must be satisfy the following boundary conditions : 

 
( )(1)

(1) (0),
0, , 0,CT r t

k r R t
r

∂
− = = ∀ ≥

∂
 (20.103) 

 
( )

( ) ( ) ( )( , )
( , ), , 0,

n
n n nC

c C
T r t

k h T r t r R t
r

∂− = = ∀ ≥
∂

 (20.104) 
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( ) ( )

( ) ( )

( ) ( 1)
( ) ( 1)

( )

( ) ( 1)

, ,
,

, 0, {1,2,..., 1}

, , ,

i i
C Ci i

i

i i
C C

T r t T r t
k k

r R t i nr r

T r t T r t

+
+

+

 ∂ ∂
− = − = ∀ ≥ ∀ ∈ −∂ ∂
 =

 (20.105) 

 ( ) ( )( ) ( ) ( 1) ( ), , , 0, {1,2,..., }i i i i
C ST r t T r R r R t i n−= − ≤ ≤ = ∀ ∈  (20.106) 

  ( ) ( ) ( )1 2( ) ( ) ( ) ( 1) ( )
0 0 1 2, , , 0, {1,2,..., }t ti i i i i

CT r t H T e T r e T r R r R t i nξ ξ − = − − + + ≤ ≤ = ∀ ∈   (20.107) 

The solutions of differential equations (20.97) are given by: 

 
( ) ( )
( ) ( )

( ) ( )
1 1

( ) ( )
2 2

( ) 1 ( ) ( )
1

( ) 1 ( ) ( )
2

{1,2,..., }

i i

i i

r ri i i

r ri i i

T r r C e D e
i n

T r r G e L e

η η

η η

−−

−−

 = +
 ∀ ∈
 = +


 (20.108) 

where ( ) ( ) ( ) ( ), , ,i i i iC D G L  are 4n unknown parameters to determine and parameters ( ) ( )
1 2,i iη η  are given 

by: 

 ( ) ( )1 2
1 2( ) ( )

, ,i i
i i

ξ ξη η
κ κ

= =  (20.109) 

By solving algebraic system composed by 4n equations (20.98) to (20.101), we obtain integration 
constants ( ) ( ) ( ) ( ), , ,i i i iC D G L . For brevity, we don’t reported in explicit the expressions of these 

constants.  The solution to the problem for CT  is found in much the same says way as was followed 

in section 20.2. The problem is therefore on with homogeneous differential equation and boundary 
conditions and may be treated by the method separation of variables as showed in section 20.2. The 
solutions of differential equation (20.102) is given by: 

 ( ) ( ) ( ) ( ) ( )2 2( ) 1 ( ) ( ), {1,2,..., }
i i i ii i r i r t

CT r t r A e B e e i nω β ω β κ β ω− − = + ∀ ∈  
Â -Â  (20.110) 

where ( ) ( ), ,i iA B ω  are constants parameter to determine, the coefficient ( ) (1) ( )i iβ κ κ=  and Â  is 

unit imaginary. In explicit the boundary conditions (20.105) for temperature function  ( )( ) ,i
CT r t  are 

reported in equations (20.77). Moreover the boundary conditions on the inner and the outer surface 
(20.103) and (20.104) can be to rewrite as reported in equations (20.22). By first equation of (20.22)
, we determine (1)B  as function  of  (1)A  as follows: 

 
( ) (1) (0)

2(0) (1)

(1) (1)
2 (1)2 (0)2

R
R

B A e
R

ω βω β
ω β

 
 =
 
 

2 Â
Â +

1+
 (20.111) 

The equations (20.77) constituted an homogeneous algebraic system, composed by 2(n-1) 
equations, in unknown parameters ( ) ( ),i iA B  with {1,2,..., }i n∈ ,  which can be written as:  
 ⋅ =Φ X 0  (20.112) 
where (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors, as reported below: 

 ( ) ( ) ( ) , {1,2,...., }
Ti i iA B i n = ∀ ∈ X  (20.113) 

and Φ  is the matrix reported in equation (20.26). As showed in section 20.2, matrix Φ  is 

constituted by components:( ) ( 1),i i
i i

+
Φ Φ , {1,2,..., 1}i n∀ ∈ − and vector ( )iX  is obtained as function of 

vector (1)X (see equation (20.29)). By substituting the solutions (20.29) in boundary conditions 
(20.22), we obtain vector equations in unknown vector (1)X , as reported below: 

 (1)⋅ =Λ X 0  (20.114) 
where Λ  is an  2x2  square matrix  given by : 

                                                                  11 12

21 22

Λ Λ 
=  Λ Λ 

Λ                     (20.115) 
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where the components 11 12 21 22, , ,Λ Λ Λ Λ  are reported in equation (20.33) 

               
( ) ( )

[ ] ( ) ( )

(1) (0) (1) (0)

( ) ( ) ( ) ( )

(1) (0) (1) (0)
11 12

( ) ( ) ( ) ( ) ( )
21 22

1 , 1 ,

, 1 , 1 ,
n n n n

R R

n n R n n R n

R e R e

R e R e

ω β ω β

ω β ω β

ω β ω β

ω β ω β

Λ = − Λ = +

 Λ Λ = − + ⋅  
Γ

Â -Â

Â -Â

Â Â

Â Â

          (20.116) 

The algebraic system (20.114) admit not trivial solution if the determinant of the matrix [ ]Λ  is 

equal to zero. By imposing this condition, we obtain the transcendental equation in unknown 
parameter ω : 
 [ ] ( )det 0 0g ω= ⇒ =Λ  (20.117) 

 The roots of this transcendental equation (20.117) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to characteristic values 2
m mλ ω= − . The corresponding characteristic 

functions ( )( )i

m rϕ  are reported in equation (20.110). The coefficients (1)
mA  are determined by 

applying the initial condition (20.107) that yields the following relationship: 

 

( ) ( )

( )
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0 0 1 2

1 0 0(1)
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v m

i R
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v m

i R

c r H T T r T r drd d

A

c r drd d

π π

π π

ρ ϕ θ θ φ

ρ ϕ θ θ φ

−

−

=

=

   − + +  
  = −

 
 
  

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

 (20.118) 

Finally the temperature function  in i-th generic phase is given by: 

            
( ) ( ) ( )

( )

( ) ( ) ( ) ( )
1 1 1 2 2 2

( ) ( ) ( ) ( )2 2

( ) 1 ( ) ( ) 1 ( ) ( )
0

1 ( ) ( )

1

,

{1,2,...., }

i i i i

i i i i
m m m

r r r rt ti i i i i
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m m

m

T r t H r C e D e e r G e L e e
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η η η ηξ ξ

ω β ω β κ β ω

− − − −− −

∞
−−

=

= + + + + +

+ + ∀ ∈∑ Â -Â

 (20.119) 

By substituting the function (20.119) in equation (20.14), we obtain in explicit the displacement 
function in any hollow spherical phase: 
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1 2
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                                                                                                                                                   (20.120) 
where the integration constants ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,i i i i i i i i

m mP Q U V W Z N M  are determined by applying 

the boundary conditions given by equations (20.6), (20.7) and (20.95). In this case the functions 

( )( )
1 ,if t ( )( )

2 ,if t  reported in equation (20.14) are given by: 
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 (20.121) 
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In explicit the radial and circumferential stress components are given by: 
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 (20.122) 
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(20.123) 
Moreover, the tractions on the inner and the outer spherical boundary surface are vanishing  and 
then condition (20.8) becomes: 
 (1) (0) ( ) ( )( ) 0, ( ) 0, 0n n

rr rrr R r R tσ σ= = = = ∀ ≥  (20.124) 

The integration constants ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,i i i i i i i i
m mP Q U V W Z N M  are function of geometrical, 

mechanical and thermal parameters of spherical layers . Moreover ( ) ( ),i i
m mP Q  are function of  

constants ( ) ( ), ,i i
m m mA B ω  also. For example, let us consider, a spherical tank constituted by two phases 

under uniform heat flux . The phase (1) is constituted by steel and phase (2) by aluminium. The 
mechanical and thermal parameters considered for both phases are reported in table 20.1. The 

geometrical parameters of spherical tank are: (0) 10 ,R m= (1) 10.05 ,R m= (2) 10.10 ,R m=  

0 293.15 20RT T K C= = ° = ° . By fixed  m= 20,  the eigenvalues mω  of  transcendental equation 

(20.85) and corresponding values of constants integration mA  are reported in table 20.7: 
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Table 20.7 – Eigenvalues mω  and corresponding values of constants integration mA  

 
In this case the graphics function ( )g ω  given by equation (20.85) is reported below: 

 

 
 

Fig. 20.35  -  Function ( )g ω  

 
We reported the graphics of temperature function along the radial direction and in time: 
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Fig. 20.36 -  Temperature function  versus time 
 
 

 
 

Fig. 20.37 -  Temperature function  along radial direction 
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Fig. 20.38 -  Radial displacement along radial direction 
 

 
 

Fig. 20.39 -  Radial stress  versus time 
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Fig. 20.40 -  Radial stress  along radial direction 
 
 

 
 

Fig. 20.41 - Circumferential stress  versus time  
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Fig. 20.42 - Circumferential stress  along radial direction 
 

 
20.5.  Conclusions 
In this chapter, an analytical thermo-elastic solution for spherical solid composed by multiple layers 
subjected to time-dependent boundary conditions, is presented. By applying the hypothesis of 
spherical symmetry are determined the temperature and radial displacement functions in each layer 
of spherical solid. Let us consider three kind of boundary conditions on inner and outer surfaces of 
multilayered sphere. In particular the cases analysed are: i) Multilayered sphere exposed to an 
ambient at zero temperature through a uniform boundary conductance, ii) Multilayered sphere 
exposed to uniform heat flux, iii) Multilayered sphere exposed to hydrocarbon fire. In the case iii) 
multilayered sphere is exposed to heat flux that varies in the time until to zero for t → ∞ . In three 
case studied the circumferential stress present the jumps in interface surface between adjacent 
phases, but the radial stress is continue function, as showed in figures reported in this chapter. 
Numerical evaluation of the series solution shows that a reasonable number of terms are sufficient 
to obtain results with acceptable errors for engineering applications. The technique of solutions 
utilised in case iii) can be developed for determine the transient stress in multilayered tank exposed 
to standard fire. Then, the analytical study presented can be utilized to optimize the designer of a 
composite spherical tank exposed to heat flux that varies in time.  
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CHAPTER XXI 
TRANSIENT PROBLEMS FOR MULTILAYERED CYLINDERS 

 
21.1.  Basic equations for time-dependent problem in plane strain 
In this chapter, the one-dimensional quasi-static uncoupled thermo-elastic problem of a 
multilayered cylinder with time-dependent boundary conditions is considered. The medium is 
without body forces and heat generation. The analytical solution is obtained by applying the method 
of separation of variables. It is considered a multilayered cylinder composed of n fictitious layers 
constituted by n hollow cylinder phases (see Chapter XVII). The external radius and internal radius 
of the multilayered cylinder are denoted by ( )nR and (0)R , respectively. The radius at interface 
between the generic phase i-th and the phase (i+1)-th are denoted with ( )iR . The mechanical and 
thermal properties of each layer are assumed to be homogeneous and isotropic and are denoted with 
apex (i).  Cylindrical coordinates r, θ  and z are used in this analysis. The multilayered cylinder is 
subjected to external heat flux that varying in the time, characterized by two functions 

( ), ( )e iq t q t related to internal and external surfaces, respectively. Moreover, the multilayered 

cylinder is subjected to an external pressure ( )ep t  and an internal pressure ( )ip t  applied on the 

inner and the outer surface ( )nr R=  and (0)r R= , respectively. These pressure are function of 
variable time. Details of multilayered cylinder are shown in Chapter XVII. Afterwards, it is 
presented a method to solve a mono-dimensional thermo-elastic problem. The basic thermo-elastic 
equations for the i-th layer can be expressed as reported below. 
In isotropic-thermal elasticity case the strains are related to the displacements by purely geometrical 
considerations. By applying the hypothesis of plane strain and if the composite material is 
subjected to axial-symmetric thermal loads in the time, in cylindrical coordinate, the displacement 
components for generic phase are given by: 

 ( )( ) ( ) ( ) ( ), , 0, 0, {1,2,... }i i i i
r r zu u r t u u i nθ= = = ∀ ∈  (21.1) 

where we denote with apex 1,2,…n the hollow phases of multilayered cylinder. Then, the strain-
displacement relations take the form: 
 ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )

, , , 0 {1,2,... }i i i i i i i i
rr r r r zz z r rzu r u i nθθ θ θε ε ε ε ε ε−= = = = = = ∀ ∈  (21.2) 

where ( ) ( ) ( ), , ,i i i
r zu u uθ  are the radial, circumferential and axial displacement components in the i-th 

layer ( ( ) ( 1)i iR r R +< < ). The superscript  “i”  represents the i-th layer and the comma represents the 
partial derivate. Thermo-elastic stress-strain relations for i-th phase ( {1,2,... }i n∀ ∈ ) are given by: 

                   

( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )
,

( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
,

2 3 2

2 3 2

3 2 , 0,

i i i i i i i i i i
rr r r r R

i i i i i i i i i i
r r r R

i i i i i i i i i i i
zz r r r R rz z r

u r u T T

u r u T T

u r u T T

θθ

θ θ

σ µ λ λ α λ µ

σ λ µ λ α λ µ

σ λ α λ µ τ τ τ

−

−

−

= + + − + −

= + + − + −

= + − + − = = =

 (21.3) 

where ( ) ( ) ( ) ( ), , ,i i i iTµ λ α  are the Lamè elastic constants, linear thermal expansion coefficient and 

temperature in the i-th layer, respectively;  RT  is the reference temperature. Moreover, let us 

assume that the function of the temperature in each phase is a function of radius and time as 
reported below: 

                                           ( )( ) ( ) , {1,2,...., }i iT T r t i n= ∀ ∈                                            (21.4) 

The equations of equilibrium are the same as those of isothermal elasticity since they are based on 
purely mechanical considerations. By applying the hypothesis of the axial-symmetric temperature 
loads and in absence of the body force, and neglecting the effect of the inertia, the equilibrium 
equations become one equation: 

 ( )( ) ( ) ( ) 1
, 0 {1,2,... }i i i

rr r rr r i nθθσ σ σ −+ − = ∀ ∈  (21.5) 
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The results obtained until now satisfy the equilibrium and compatibility equations inside each 
generic i-th phase of a composite spherical solid subjected to axis-symmetrical strains or 
temperature loads time-dependent. Under both the hypothesis of linear isotropic elastic behaviour of 
the homogeneous materials and the assumption of perfect bond at the spherical interfacial 
boundaries (no de-lamination or friction phenomena), we have now to establish the satisfaction of 
both the equilibrium and the compatibility equations at the boundary surfaces between two generic 
adjacent phases. To obtain this, we will make reference to the generic case, in which an 
multilayered cylinder is constituted by n arbitrary hollow phases (Chapter XVII). In this framework 
the following boundary conditions be established. In particular, we begin writing the  compatibility 
equations at the generic interface, that is: 

 ( ) ( ) ( 1) ( )( , ) ( , ) 0, {1,2,... 1}i i i i
r ru r R t u r R t t i n+= = = ∀ ≥ ∀ ∈ −  (21.6) 

The equilibrium equations at the generic interface are given by: 

 ( ) ( ) ( 1) ( )( , ) ( , ) {1,2,... 1}i i i i
rr rrr R t r R t i nσ σ += = = ∀ ∈ −  (21.7) 

The equilibrium equations for tractions on the inner and the outer cylindrical boundary surface give: 

 ( ) ( )( ) ( ) (1) (0)( , ) , ( , ) 0n n
rr e rr ir R t p t r R t p t tσ σ= = = = ∀ ≥  (21.8) 

where ( ) ( ),e ip t p t  are the pressure applied on the inner and the outer surface of multilayered 

cylinder that are prescribed function only variable time, respectively. The equation field for coupled 
heat conduction problem is written in hypothesis of  axial symmetric load conditions for each 
phases of multilayered cylinder. 

       ( ) ( ) ( )( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( )
, , , , ,

3 2 {1,2,... }i i i i i i i i i i i
rr r t R r r t

k T r T c T T u r u i nρ α λ µ− −+ = + + + ∀ ∈  (21.9) 

where ( ) ( ) ( ), , ,i i i
Rc k Tρ  are density, specific heat, thermal conductivity coefficient, temperature 

reference for each phases, respectively. Temperature boundary and continuity conditions are written 
at the interfaces between the phases, and on internal and external surfaces of multilayered cylinder. 
Then, at interfaces between the phases the following conditions can be write: 

 
( ) ( ) ( 1) ( )

( ) ( ) ( ) ( 1) ( 1) ( )
, ,

( , ) ( , )
0, {1,2,... 1}

( , ) ( , )

i i i i

i i i i i i
r r

T r R t T r R t
t i n

k T r R t k T r R t

+

+ +

 = = = ∀ ≥ ∀ ∈ −
= = =

 (21.10) 

The boundary conditions on the inner and the outer surface impose that heat flux is equal to ( )iq t  

and ( )eq t , respectively: 

 ( ) ( )( ) ( ) ( ) (1) (1) (0)
, ,( , ) , ( , ) , 0n n n
r e r ik T r R t q t k T r R t q t t− = = − = = ∀ ≥  (21.11) 

The initial condition for temperature function is given by: 

 ( 1) ( ); , {1,2,...., }, 0,i i
RT T R r R i n t−= < < ∀ ∈ =  (21.12) 

 where 0 RT T=  is a suitable chosen reference temperature in initial condition (for t = 0). 

 
21.2. Multilayered cylinder exposed to an ambient at zero temperature through a uniform 
boundary conductance 
Let us consider an multilayered cylinder constituted by n-hollow cylindrical phases as decrypted in 
section 21.1. The surface (0)r R=  is kept perfectly insulated while the surface ( )nr R=  is exposed, 
for t >0, to an ambient at zero temperature through a uniform boundary conductance ch . The initial 

temperature (for  t = 0) of the hollow cylinder  is 0 RT T const= =  where 0RT > . In this section, we 

determine the heat conduction, displacement and stress function in hollow cylinder under 
decreasing of  temperature from  0RT >  until  to zero.  The equations field in each phase are 

composed by equilibrium and heat conduction equations. By substituting the strain-displacement 
relations (21.2) in stress-strain relations (21.3) and these in equilibrium equations (21.5), we obtain 
the displacement formulation of the equilibrium equations. Then, the equations field to satisfy in 
uncoupled thermo-elastic problem in plane strain are given by: 
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( )

( ) ( ) ( )
1 ( ) ( ) ( ) ( )

,( ) ( ) ( ) ( 1) ( ), ,

( )( ) ( )
,( ) 1 ( ) ( )

, , ,( ) ( )

3 2 1

2 1 , 0,

{1,2,..., }

i i i
i i i i

r ri i i i ir r

ii i
ti i i

rr r ti i

r r u T
R r R t

i nTc
T r T T

k

λ µ να α
µ λ ν

ρ
κ

−
−

−

    + +  = =       + − ≤ ≤ ∀ ≥    


∀ ∈
+ = =



 (21.13) 

where ( )iκ  is the thermal diffusivity for generic i-th phase. By solving the Fourier’s equation 
reported in second equation of (21.13) with method separation of variables, and by substituting the 
function of temperature ( )( ) ,iT r t  in first equation of (21.13), and by integration in two time this 

equation respect to variable r , the explicit displacement solution is obtained: 

          ( ) ( ) ( ) ( )( )( ) ( ) ( )
2( ) ( ) ( )

1( ) ( )

3 2
, , , {1,2,...., }

2

ii i i
i i i

r i i

f t
u r t rT r t dr r f t i n

r r

α λ µ
λ µ

 += + + ∀ ∈ 
+ 

∫   (21.14) 

where ( ) ( )( ) ( )
1 2,i if t f t  are unknown functions of the time to determine.  

The heat conduct problem is characterized by homogeneous differential equation reported in second 
equation of (21.13) and boundary conditions reported in equations (21.10)-(21.11) and may be 
treated by the method separation of variables. A particular solution of the Fourier’s differential 
equation is given by: 

 ( ) ( ) ( )( ) ( ) ( ), {1,2,...., }i i iT r t r t i nϕ ψ= ∀ ∈  (21.15) 

By substituting the function (21.15) in Fourier’s heat equation we obtain two ordinary differential 

equations in variable radius and time, separately. The first equation for function ( )( )i rϕ  

 ( ) 1 ( ) 2 ( )2 ( )
, , 0;i i i i
rr rrϕ ϕ ω β ϕ−+ + =  (21.16) 

where the coefficient ( ) (1) ( )i iβ κ κ=  and to the following equation for ( )( )i tψ : 

 ( ) 2 ( )2 ( ) ( )
, 0i i i i
tψ ω β κ ψ+ =  (21.17) 

The general solution of  (21.17) is:  

 ( ) 2 ( )2 ( )( ) i ii tt e ω β κψ −=  (21.18) 

The equation  (21.16) is an Bessel differential equation  and the solution is given by: 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
0 0

i i i i ir A J r B Y rϕ β ω β ω= +  (21.19) 

where ( ) ( )( ) ( )
0 0,i iJ r Y rβ ω β ω  are Bessel function, and ( ) ( ),i iA B  are constants integration. The 

boundary conditions for heat problem (21.10) in this case become: 

  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1) ( )
0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

( 1) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( 1)
1 1

0

0

{1,2,..., 1}

i i i i i i i i i i i i

i i i i i i i i

i i i i i i i i

A J R B Y R A J R B Y R

A J R B Y R k

A J R B Y R k

i n

β ω β ω β ω β ω

β ω β ω β

β ω β ω β

+ + + +

+ + + + + +

 + − − =

 + + 
  − + =

 
 ∀ ∈ −

 (21.20) 

 The boundary conditions on the inner and the outer surface (21.11) become: 

 (1) (1) (0) ( ) ( ) ( ) ( ) ( )
, ,( ) 0, ( ) ( ), 0n n n n n
r r ck T r R k T r R h T r R t− = = − = = = ∀ ≥  (21.21) 

In explicit the equations (21.21) become: 

               

( ) ( )
( ) ( )

( ) ( )

(1) (1) (0) (1) (1) (0)
1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
0 0

0

0

n n n n n n n n

n n n n n n
c

A J R B Y R

k A J R B Y R

h A J R B Y R

β ω β ω

ωβ β ω β ω

β ω β ω

 + =

  + +  


  − + =
 

 (21.22) 
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By first equation of (21.22), we determine (1)B  as function  of  (1)A  as follows: 

 ( ) ( )(1) (1) (0) (1) (0) (1)
1 1B J R Y R Aβ ω β ω = −    (21.23) 

The equations (21.20) constituted an homogeneous algebraic system, composed by 2(n-1) 
equations, in unknown parameters ( ) ( ),i iA B  with {1,2,..., }i n∈ ,  which can be written as:  
 ⋅ =Φ X 0  (21.24) 
where (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors, as reported below: 

 ( ) ( ) ( ) , {1,2,...., }
Ti i iA B i n = ∀ ∈ X  (21.25) 

and Φ  is an ( )2 1 2n x n−  rectangular matrix, composed by following  sub-matrices: 

 

(1) (2)
1 1

(2) (3)
2 2

(3) (4)
3 3

( 2) ( 1)
2 2

( 1) ( )
1 1

n n
n n

n n
n n

− −
− −

−
− −

 −
 

− 
 − =
 
 

− 
 

−  

Φ Φ 0 0 0 0 0

0 Φ Φ 0 0 0 0

0 0 Φ Φ 0 0 0
Φ

0 0 0 0 Φ Φ 0

0 0 0 0 0 Φ Φ

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯

⋯

 (21.26) 

where ( ) ( 1),i i
i i

+
Φ Φ  are ( )2 2x generic square sub-matrices given by: 

                           

( ) ( )
( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
0 0( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

( 1) ( ) ( 1) ( )
0 0( 1)

( 1) ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( )
1 1

,

,

i i i i

i
i i i i i i i i i

i i i i

i
i i i i i i i i i

J R Y R

k J R k Y R

J R Y R

k J R k Y R

β ω β ω

β β ω β β ω

β ω β ω

β β ω β β ω

+ +
+

+ + + + + +

 
 =
 
 

 
 =
 
 

Φ

Φ

 (21.27) 

The determinant of the matrices (21.27) is given by: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 0 1

( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( )
0 1 0 1

det[ ] 0,

det[ ] 0,

i i i i i i i i i i i
i

i i i i i i i i i i i
i

k J R Y R Y R J R

k J R Y R Y R J R

β β ω β ω β ω β ω

β β ω β ω β ω β ω+ + + + + + +

 = − ≠
 

 = − ≠
 

Φ

Φ

 

(21.28) 
Then, the matrices (21.27) are invertible and by applying an in-cascade procedure, we obtain the 
generic vector ( )iX  as function of vector (1)X :  

     ( ) ( ) (1) {2,3,..., }i i i n= ⋅ ∀ ∈X Γ X  (21.29) 

where ( )i
Γ  is an 2 2x  square matrix  given by : 

 ( )1 1( ) ( 1) ( )

1

{2,3,..., }
i

i i j i j
i j i j

j

i n
− −− + −

− −
=

 = ⋅ ∀ ∈ ∏Γ Φ Φ  (21.30) 

By substituting the solutions (21.29) in boundary conditions (21.22), we obtain vector equations in 

unknown vector (1)X , as reported below: 

 (1)⋅ =Λ X 0  (21.31) 
where Λ  is an  2x2  square matrix  given by : 

                                                                  11 12

21 22

Λ Λ 
=  Λ Λ 

Λ                     (21.32) 

where the components 11 12 21 22, , ,Λ Λ Λ Λ  are reported below: 
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( ) ( )
( ) ( )
( ) ( )

(1) (0) (1) (0)
11 1 12 1

( ) ( ) ( ) ( ) ( ) ( )
1 021 ( )

( ) ( ) ( ) ( ) ( ) ( )
22 1 0

, ,

,

T
n n n n n n

c n

n n n n n n
c

J R Y R

R J R h J R

R Y R h Y R

β ω β ω

β ω β ω β

β ω β ω β

Λ = Λ =

 −Λ   = ⋅   Λ  −
 

Γ

                 (21.33) 

The algebraic system (21.31) admit not trivial solution if the determinant of  matrix [ ]Λ  is equal to 

zero. By imposing this condition, we obtain the transcendental equation in unknown parameter ω : 
 [ ] ( )det 0 0g ω= ⇒ =Λ  (21.34) 

 The roots of this transcendental equation (21.34) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding  

eigenfunctions or characteristic functions ( ) ( )( ) ( ) ( )i i i
m mm r r Aϕ ϕ=  are, as calculated above, 

              
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1(1) (1) (1) (1)
0 0

1( ) ( ) ( ) ( ) ( ) (1)
0 0

, 1

, {2,3,..., }

m m m mm

i i n n i
m m m mm

r A J r Y r

r A J r Y r i n

ϕ ω ω β

ϕ β ω β ω

−

−

   = ⋅ =  

  = ⋅ ⋅ ∀ ∈   

X

Γ X
 (21.35) 

The temperature function in any phase can to be written in the follows form: 

     
( ) ( ) ( ){ } ( )
( ) ( ) ( ) ( ){ }

(1) 2

( ) 2 ( )2

(1) (1) (1)
0 0

1

( ) ( ) ( ) ( ) (1)
0 0

1

, , 1

, , {2,3,..., }

m

i i
m

t
m m m

m

ti n n i
m m m

m

T r t J r Y r e

T r t J r Y r e i n

κ ω

κ ω β

ω ω β

β ω β ω

∞
−

=
∞

−

=

 = ⋅ = 

 = ⋅ ⋅ ∀ ∈
 

∑

∑

X

Γ X

 (21.36) 

where the vector (1) (1) (1),
T

m m mA B =  X  and the unknown constant ( )i
mB  depends by (1)

mA  as showed 

equations (21.23). The coefficients (1)
mA  are determined by applying the initial condition (21.12) 

that yields the following relationship: 

 

( )

( )

( 1)

( )

( 1)

2 ( )( ) ( )

1 0(1)

2 2( )( ) ( )

1 0

i

i

i

i

Rn ii i
v Rm

i R
m

Rn ii i
v m

i R

c T rdrd

A

c rdrd

π

π

ρ ϕ θ

ρ ϕ θ

−

−

=

=

 
 
  =
 
 
  

∑ ∫ ∫

∑ ∫ ∫

 (21.37) 

By substituting the function (21.36), in equation (21.14), we obtain in explicit the displacement 
function in any hollow cylindrical phase: 

              ( )
( ) ( ) ( )

( ) 2 ( ) 2

( ) 2 ( ) 2

( ) ( ) ( ) 1 ( ) ( ) 1

1

( ) ( ) ( )

( ) ( ) ( ) ( )
0 0( ) ( ) ( ) 2

1

3 2

2

i i
m

i i
m

ti i i i i
r m m

m

i i i

ti i i i
m m m mi i i

m m

u G r H r C r D r e

A J r B Y r e
r

κ ω β

κ ω βα λ µ
β ω β ω

ω β λ µ

∞
−− −

=

∞
−

=

 = + + + + 

 +  + +  +  

∑

∑
 (21.38) 

where the integration constants ( ) ( ) ( ) ( ), , ,i i i i
m mG H C D  are determined by applying the boundary 

conditions give by equations (21.6),(21.7) and (21.8). In this case the functions ( )( )
1 ,if t ( )( )

2 ,if t  

reported in equation (21.14) are given by: 

 ( ) ( )( ) 2 ( )2 ( ) 2 ( )2( ) ( ) ( ) ( ) ( ) ( )
1 2

1 1

, ,
i i i i

m mt ti i i i i i
m m

m m

f t G C e f t H D eκ ω β κ ω β
∞ ∞

− −

= =
= + = +∑ ∑  (21.39) 

In explicit the radial, circumferential and axial stress components are given by: 
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∞
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∑

∑

 (21.40) 
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R
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 (21.41) 
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( ) ( ) ( ) ( ) ( ) ( )
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∞
−

=

= + + +

 +  + − +  +  

∑
 (21.42) 

It is important to note that displacement function and stress components in any phases can to be 
subdivided in two parts: firstly constant in time and the second depend of the time. Moreover, the 
tractions on the inner and the outer cylindrical boundary surface are vanishing and then condition 
(21.8) becomes: 
 (1) (0) ( ) ( )( , ) 0, ( , ) 0, 0n n

rr rrr R t r R t tσ σ= = = = ∀ ≥  (21.43) 

The integration constants ( ) ( ) ( ) ( ), , ,i i i i
m mG H C D  are function of geometrical, mechanical and thermal 

parameters of spherical layers . Moreover ( ) ( ),i i
m mC D  are function of  constants ( ) ( ), ,i i

m m mA B ω  also. We 

can write the boundary conditions (21.6) and (21.7) in two uncoupled algebraic system as : 
 0 0 1,2,....m m m N⋅ = ⋅ = ∀ =Ω W L , Ω W L ,� �  (21.44) 

 where the vectors 0, mL L  are given by: 

        ( ) ( ) ( ) ( )(2) (1) (3) (2) ( 1) ( ) ( ) ( 1)
1, 1, 2, 2, , , 1, 1,, ,..., ,.., with {0, }

T
i i n n

j j j j j i j i j n j n j j m+ −
− −

 − − − − ∈ L = L L L L L L L L  (21.45) 

These vector are characterized by following sub-vectors:      
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, ( )( ) ( ) ( ) ( ) ( ) ( )
1 1

( 1)
,

0 0
, ,

3 2 3 2

2 2

i i
i R i Ri i i i i i

i i i i i i ii i
m mi m

i m ii i i i i i
m mm m

i
i m

T T

R J R R Y R AR

BJ R Y R

α λ µ α λ µ

ω β ω βζ
ω µ ω β µ ω β

ζ

+
+ + +

+

   
= =   

+ +      

   
 = ⋅  
 − −   

=

L L

L

L
( ) ( )

( ) ( )
( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)( 1) ( )

1 1

( 1)( 1) ( ) ( 1) ( 1) ( ) ( 1)
1 12 2

i i i i i i ii i
m m m

ii i i i i i
m mm m

R J R R Y R AR

BJ R Y R

ω β ω β

ω µ ω β µ ω β

+ + ++

++ + + +

   
  ⋅  
 − −   

           (21.46) 

where the constant 
( )
( )

( ) ( ) ( )

( )

( ) ( ) ( )

3 2

2

i i i

i

i i i

α λ µ
ζ

β λ µ
+

=
+

. The unknowns vectors (1) (2) ( )
0 0 0 0[ , ,..., ]n T=W W W W   

and  (1) (2) ( )[ , ,..., ]n T
m m m m=W W W W  are composed by  sub-vectors reported below: 

          ( ) ( ) ( ) ( ) ( ) ( )
0 , , {1,2,...., }, {1,2,...., }

T Ti i i i i i
m m mG H C D i n m N   = = ∀ ∈ ∀ ∈   W W  (21.47) 
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and Ω  is an ( )2 1 2n x n− rectangular matrix composed by following sub-matrices: 

                 [ ]

(1) (2)
1 1

(2) (3)
2, 2

(3) (4)
3 3

( 2) ( 1)
2 2

( 1) ( )
1 1

,

j

n n
n n

n n
n n

− −
− −

−
− −

 −
 

− 
 

− =
 
 
 −
 

−  

Ω Ω 0 0 0 0 0

0 Ω Ω 0 0 0 0

0 0 Ω Ω 0 0 0
Ω

0 0 0 0 Ω Ω 0

0 0 0 0 0 Ω Ω

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯

⋯

 (21.48) 

where the generic matrices ( ) ( 1),i i
i i

+
Ω Ω are given by: 

        ( ) ( )
( ) ( ) 1 ( ) ( ) 1

( ) ( 1)
( ) ( ) ( ) ( ) 2 ( 1) ( 1) ( 1) ( ) 2

, ,
2 2 2 2

i i i i

i i
i ii i i i i i i i

R R R R

R Rλ µ µ λ µ µ

− −
+

− + + + −

   
   = =

+ − + −   
   

Ω Ω  (21.49) 

are (2 2)×  matrices with nonzero determinant, whose components were already gave above. 
The determinant of the matrices (21.49) is given by: 

                   ( ) ( )( ) ( ) ( ) ( ) 1 ( 1) ( 1) ( 1) ( ) 2det[ ] 2 2 0, det[ ] 2 2 0,i i i i i i i i
i iR Rµ λ µ λ− + + + −= − + ≠ = − + ≠Ω Ω   (21.50) 

However, in force of the special form of Ω  derived above, one can rewrite the reduced algebraic 
problem in order to have the solution without recall any numerical strategy. To make this, let us we 
can rewrite two algebraic system (21.44) in follows manner: 

 

(2) (2) (1) (1) (2) (1)
1 1 1, 1,

(3) (3) (2) (2) (3) (2)
2 2 2, 2,

( 1) ( 1) ( ) ( ) ( 1) ( )
, ,

( 1) ( 1) ( 2) ( 2) ( 1) ( 2)
2 2 2, 2,

( ) ( ) ( 1)
1 1

j j j j

j j j j

i i i i i i
i j i j i j i j

n n n n n n
n j n j n j n j

n n n
n j n j

+ + +

− − − − − −
− − − −

−
− −

= + −

= + −

= + −

= + −

=

Ω W Ω W L L

Ω W Ω W L L

Ω W Ω W L L

Ω W Ω W L L

Ω W Ω W

⋮

⋮

( 1) ( ) ( 1)
1, 1,

{0, }, {1,2,...., }

n n n
n j n j

j m m N

− −
− −






 ∀ ∈ ∀ ∈




 + − L L

 (21.51) 

By applying an in-cascade procedure, we finally obtain 

 
( ) ( ) (1) ( )
0 0 0

( ) ( ) (1) ( )
{2,3,..., }, {1,2,...., }

i i i

i i i
m m m

i n m N
 = ⋅ + ∀ ∈ ∀ ∈

= ⋅ +

W Σ W Ψ

W Σ W Ψ

 (21.52) 

where ( )i
Σ  is an matrix given by following expression: 

 
1 1( ) ( 1) ( )

1

{2,3,..., }
i

i i j i j
i j i j

j

i n
− −− + −

− −
=

  = ⋅ ∀ ∈   
∏Σ Ω Ω  (21.53) 

and the vectors ( ) ( )
0 , ,i i

mΨ Ψ  are reported below: 

        

( ) ( ) ( ) ( )( )
( ) ( )

21 11 1( ) ( ) ( ) ( )
0 1 1,0 1,0 1 1,0 1,0

1 1

1 11( ) ( ) ( ) ( )
1 1, 1, 1

1

ji
i i i j i ji i i k i k

i i i i k i k i j i j
j k

j
i ii i i k i k

m i i m i m i k i k
k

−− −− − − −− −
− − − − − − − − − −

= =

− −− − −
− − − − − −

=

      = ⋅ − + ⋅ ⋅ −         

     = ⋅ − + ⋅     

∑ ∏

∏

Ψ Ω L L Ω Ω L L

Ψ Ω L L Ω Ω
( ) ( )( )2

1
1, 1,

1

{2,3,..., }, {1,2,...., }

i
i j i j
i j m i j m

j

i n m N

− − − −
− − − −

=






  ⋅ − 
 

∀ ∈ ∀ ∈

∑ L L
 (21.54) 

where dot stands for scalar product. The equations (21.53)-(21.54) permit to write two generic 

unknowns sub-vectors ( ) ( )
0 ,i i

mW W  as function of a transferring matrix ( )i
Σ  and vectors ( ) ( )

0 , ,i i
mΨ Ψ   
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and the unknowns sub-vectors (1) (1)
0 , mW W . The problem is hence reduced to an algebraic one in 

which only the four coefficients – collected in (1) (1)
0 , mW W  – related to the first phase have to be 

determined, by imposing two boundary conditions described by the equations obtained above. 
Therefore, in order to find the four unknowns collected in (1) (1)

0 , mW W , it remains to rewrite the 

boundary conditions (21.43) in matrix form. In particular, by applying the equations (21.52) for 
i n= , we obtain the follows relationship: 

 ( ) ( ) (1) ( ) ( ) ( ) (1) ( )
0 0 0 , {1,2,...., },n n n n n n

m m m m N= ⋅ + = ⋅ + ∀ ∈W Σ W Ψ W Σ W Ψ  (21.55) 

Then, the boundary conditions(21.43), become two uncoupled algebraic system: 
 (1) (1)

0 0, {1,2,...., },m m m N⋅ = ϒ ⋅ = ϒ ∀ ∈Π W Π W  (21.56) 

where the matrix ,Π and vectors 0, mϒ ϒ  are given by: 

 ( )( )
1 2 0 1,0 2,0 1, 2,, , {1,2,...., },

TT T Tn
m m m m N     = ⋅ ϒ = ϒ ϒ ϒ = ϒ ϒ ∀ ∈     

Π Π Σ Π  (21.57) 

where 1 2,Π Π  are two vectors and 1,0 2,0 1, 2,, , ,m mϒ ϒ ϒ ϒ  are four scalars, as reported below: 

( ) ( )
( ) ( )

( ) ( )

(1) (1) (1) (0) 2 ( ) ( ) ( ) ( ) 2
1 2

(1) (1) (1) ( ) ( ) ( ) ( )
1,0 2,0 2 0

(1) (1)
(1) (1) (1) (1)

1, 1 1
(0) (0

( ) ( )
(

2,

)

2 , 2 , 2 , 2

3 2 ; 3 2 ,

,

T T
n n n n

n n n n
R R

m m m
m

n n

m m
m

m mR R

R R

T T

A J B Y

A

λ µ µ λ µ µ

α λ µ α λ µ

µ ζ β β
ω

µ

ω

ζ
ω

ω

− −    = + − = + −    

ϒ = − + ϒ = − + − ⋅

 ϒ = + 

ϒ =

Π Π

Π Ψ

2

2 ( ) ( )) ( ) ( ) (( ) ( ) ( )
1 1

)
2

, {1,2,...., },
n n

m m
n n n n n

m mR

m N

J B Y Rω ωβ β



 ∀ ∈
  + − ⋅ 

Π Ψ

 (21.58) 

Then, by inverting, all the 2 n×  unknown coefficients , we obtain the unknown parameters: 

                           

( )

( ) { }
( )

( ) { }

1 1
0 0

( ) 1 ( )
0 0 0

1 1

( ) 1 ( )

,

2,3,...,

,
{1,2,...., },

2,3,...,

i i i

m m

i i i
m m m

i n

m N
i n

−

−

−

−

 = ⋅ ϒ


= ⋅ ⋅ ϒ + ∀ ∈

 = ⋅ ϒ ∀ ∈
= ⋅ ⋅ ϒ + ∀ ∈

W Π

W Σ Π Ψ

W Π

W Σ Π Ψ

 (21.59) 

By substituting the solutions (21.59) in (21.38), we obtain in explicit displacement function. For 
example, let us consider, an multilayered cylinder constituted by two phases under decreasing  
temperature. The phase (1) is constituted by steel and phase (2) by aluminium. It is denoted with 
pedix “s” the parameters of steel and pedix “a” the parameters of aluminium. The mechanical and 
thermal parameters considered for both phases are reported in table 21.1: 
 

 Steel (phase 1) Aluminium (phase 2) 
2E N m− 

   9210 10⋅  970 10⋅  
1 1k W m K− − 

   45 237 

ν  0.30 0.35 
1 1m m Kα − ⋅   612 10−⋅  623.1 10−⋅  

3kg mρ − 
   7800 2700 

1 1
vc J kg K− − ⋅   440 930 

 
Table 21.1 – Mechanical and thermal parameters of Steel and Aluminium 
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The geometrical parameters of  multilayered cylinder composed by two phases 

are: (0) 1.00 ,R m= (1) 1.03 ,R m=  (2) 2
01.08 , 50 / , 300c RR m h W m K T T K= = ⋅° = = ° . By fixed m= 20,  

the eigenvalues mω  of  transcendental equation (21.34) and corresponding values of constants 

integration mA  are reported in table 21.2: 

 

 
 

Table 21.2 – Eigenvalues mω  and corresponding values of constants integration mA  

 
In this case the graphics function ( )g ω  given by equation (21.34) is reported below: 
 

 
 

Fig. 21.1 -  Function ( )g ω  

 
We reported the graphics of temperature function along the radial direction and in time: 
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Fig. 21.2 - Temperature function  versus the time 
 
 

 
 

Fig. 21.3 -  Temperature distribution along radial direction 
 
 



Chapter XXI : Transient problems for multilayered cylinders 

F. Carannante 532 

 
 
 

Fig. 21.4  - Radial displacement distribution along radial direction 
 
 

 
 

Fig. 21.5 -  Radial stress distribution in time  
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Fig. 21.6  -  Radial stress distribution along radial direction 
 
 

 
 

Fig. 21.7 -   Circumferential stress distribution in time 
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Fig. 21.8 -  Circumferential stress distribution along radial direction 
 
 

 
 

Fig. 21.9 -  Axial stress distribution in time  
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Fig. 21.10  -  Axial stress distribution along radial direction  
 
21.3. Multilayered cylinder exposed to uniform heat flux 
Let us consider an multilayered cylinder constituted by n-hollow cylindrical phases as decrypted in 
section 21.1. The inner surface (0)r R=  is kept perfectly insulated while the outer surface ( )nr R=  
is exposed, for t >0, to a constant uniform heat input 0q . In this section, we determine the heat 

conduction, displacement and stress function in any hollow cylindrical phases subjected to uniform 
heat input 0q  applied on external surface, starting to initial temperature in composite solid equal to 

0 RT T const= = . The equations field to satisfy in uncoupled thermo-elastic problem with axis-

symmetry and in plane strain are reported in equations (21.13), but in this case the boundary 
conditions (21.11) become: 

 (1) (1) (0) ( ) ( ) ( )
, , 0( , ) 0, ( , ) , 0n n n
r rk T r R t k T r R t q const t− = = − = = = ∀ ≥  (21.60) 

and the boundary conditions (21.8) become: 

 ( ) ( ) (1) (0)( , ) 0, ( , ) 0, 0n n
rr rrr R t r R t tσ σ= = = = ∀ ≥  (21.61) 

The other boundary conditions reported in section 21.1 don’t change. By solving the Fourier’s 
equation reported in second equation of (21.13) with method separation of variables, and by 
substituting the function of temperature ( )( ) ,iT r t  in first equation of (21.13), and by integration in 

two time this equation respect to variable r , the explicit displacement solution is reported in 
equation (21.14). In this case, the heat conduct problem involving a non-homogeneous boundary 
condition and, in particular, with the heat input specified over the entire boundary surface. It is 
necessary writing the temperature solution, in any phases of multilayered cylinder, in the follows 
form (see Chapter VII and Chapter XVII) : 

 ( ) ( ) ( )( ) ( ) ( )
0, , , {1,2,...., }i i i

S CT r t T t T r T r t i nξ= + + + ∀ ∈  (21.62) 

where ξ  is same unknown parameter for any phases of multilayered cylinder and the function 

( )( )i
ST r  in generic i-th phase  satisfies the field equations: 
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2 ( ) ( ) ( 1) ( )

2 ( )

1
;

{1,2,..., }

i i i i
S S

i

d T d T R r R

r d rd r i n

ξ
κ

− ≤ ≤+ =
∀ ∈

 (21.63) 

Moreover the function ( )( )i
ST r  must be satisfy the following boundary conditions : 

 
( )(1)

(1) (0)0, ,Sd T r
k r R

d r
− = =  (21.64) 

 
( )( )

( ) ( )
0, ,

n
Sn nd T r

k q r R
d r

− = =  (21.65) 

 
( ) ( )( ) ( 1)

( ) ( 1) ( ), , {1,2,..., 1}
i i

S Si i id T r d T r
k k r R i n

d r d r

+
+− = − = ∀ ∈ −  (21.66) 

 ( ) ( )( ) ( 1) ( ), , {1,2,..., 1}i i i
S ST r T r r R i n+= = ∀ ∈ −  (21.67) 

 ( )
( )

( 1)

2
( ) ( ) ( )

1 0

0

i

i

Rn
i i i

v S
i R

c rT r drd
π

ρ θ
−=

 
= 

  
∑ ∫ ∫  (21.68) 

where ξ  may be determined either from the boundary conditions (21.64) -(21.68). The function 

( )( ) ,i
CT r t  in generic i-th phase  satisfies the field equations: 

 
( ) ( ) ( )2 ( ) ( ) ( ) ( 1) ( )

2 ( )

, , , , 01 1
;

{1,2,..., }

i i i i i
C C C

i

T r t T r t T r t R r R t

r r tr i nκ

−∂ ∂ ∂ ≤ ≤ ∀ ≥+ =
∂ ∂∂ ∀ ∈

 (21.69) 

Moreover the function ( )( ) ,i
CT r t  must be satisfy the following boundary conditions : 

 
( )(1)

(1) (0),
0, , 0,CT r t

k r R t
r

∂
− = = ∀ ≥

∂
 (21.70) 

 
( )

( ) ( )( , )
0, , 0,

n
n nCT r t

k r R t
r

∂− = = ∀ ≥
∂

 (21.71) 

 
( ) ( )

( ) ( )

( ) ( 1)
( ) ( 1)

( )

( ) ( 1)

, ,
,

, 0, {1,2,..., 1}

, , ,

i i
C Ci i

i

i i
C C

T r t T r t
k k

r R t i nr r

T r t T r t

+
+

+

 ∂ ∂
− = − = ∀ ≥ ∀ ∈ −∂ ∂
 =

 (21.72) 

 ( ) ( )( ) ( ) ( 1) ( ), , , 0, {1,2,..., }i i i i
C ST r t T r R r R t i n−= − ≤ ≤ = ∀ ∈  (21.73) 

The solutions of differential equation (21.63) is given by: 

 ( )( ) ( ) ( ) 2
( )

log , {1,2,..., }
4

i i i
S i

T r C D r r i n
ξ
κ

= + + ∀ ∈  (21.74) 

where ( ) ( ), ,i iC D ξ  are 2n+1 unknown parameter to determine. By solving algebraic system 

composed by equations (21.64), (21.65),(21.66) and (21.68), we obtain integration constants ( ), iDξ : 

 

( )
( )

( )2 ( )
( ) ( )2 ( 1)2 ( ) ( )0 0

( ) ( ) ( )2 ( 1)2 ( ) ( ) ( )

1 1

2
, 1 , 1 2 ,

n n
i i i n n

n n
i i i i i i i

v v
i i

q R q S
V R R S R

c R R c V
ξ π π

ρ ρ

−

−

= =

= − = − = ⋅ − = ⋅
−∑ ∑

 (21.75) 

where ( )iV  and ( )nS  are volume of  generic i-th phase and external surface of multilayer cylinder 
with unitary high, respectively.   

 

( ) ( )

( )

1
( ) ( ) ( 1)2 ( ) ( ) ( )2 ( 1)2

1( )
1( ) 0

( )
( ) ( ) ( )2 ( 1)2

1

1
i

i i i j j j j
v i vn

ji
ni

j j j j
v

j

c R c R R
q R

D
k

c R R

ρ δ ρ

ρ

−
− −

=

−

=

 
− + − − 
 =

−

∑

∑
 (21.76) 
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where 1iδ  is the Kronecker’s delta. By solving the equations (21.67), we obtain integration 

constants ( )iC  as function of constants ( ), iDξ . For brevity, we don’t reported in explicit the 

expressions of constants ( )iC .  The solution to the problem for CT  is found in much the same says 

way as was followed in section 21.2. The problem is therefore on with homogeneous differential 
equation and boundary conditions and may be treated by the method separation of variables as 
showed in section 21.2. The solutions of differential equation (21.69) is given by: 

 ( ) ( ) ( ) ( ) ( )2 2( ) ( ) ( ) ( ) ( )
0 0, {1,2,..., }

i ii i i i i t
CT r t A J r B Y r e i nκ β ωω β ω β − = + ∀ ∈

 
 (21.77) 

where ( ) ( ), ,i iA B ω  are constants parameter to determine, the coefficient ( ) (1) ( )i iβ κ κ= . The 

boundary conditions (21.72) for temperature function  ( )( ) ,i
CT r t  are reported below: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1) ( )
0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( 1) ( )
1 1

0

0

{1,2,..., 1}

i i i i i i i i i i i i

i i i i i i i i

i i i i i i i i

A J R B Y R A J R B Y R

k A J R B Y R

k A J R B Y R

i n

ω β ω β ω β ω β

β ω β ω β

β ω β ω β

+ + + +

+ + + + + +

  + − + =
 

  + +  
 − + =
 

∀ ∈ −






 (21.78) 

The boundary conditions on the inner and the outer surface (21.70) and (21.71) become: 

                                             
( ) ( )
( ) ( )

(1) (1) (0) (1) (1) (0)
1 1

( ) ( ) ( ) ( ) ( ) ( )
1 1

0

0n n n n n n

A J R B Y R

A J R B Y R

ω β ω β

ω β ω β

 + =


+ =

 (21.79) 

By first equation of (21.79), we determine (1)B  as function  of  (1)A  as follows: 

 
( )
( )

(0) (1)
1(1) (1)

(0) (1)
1

J R
B A

Y R

ω β
ω β

= −  (21.80) 

The equations (21.78) constituted an homogeneous algebraic system, composed by 2(n-1) 
equations, in unknown parameters ( ) ( ),i iA B  with {1,2,..., }i n∈ ,  which can be written as:  
 ⋅ =Φ X 0  (21.81) 
where (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors, as reported below: 

 ( ) ( ) ( ) , {1,2,...., }
Ti i iA B i n = ∀ ∈ X  (21.82) 

and Φ  is the matrix reported in equation (21.26). As showed in section 21.2, matrix Φ  is 

constituted by components:( ) ( 1),i i
i i

+
Φ Φ , {1,2,..., 1}i n∀ ∈ − and vector ( )iX  is obtained as function of 

vector (1)X (see equation (21.29)). By substituting the solutions (21.29) in boundary conditions 
(21.79), we obtain vector equations in unknown vector (1)X , as reported below: 

 (1)⋅ =Λ X 0  (21.83) 
where Λ  is an  2x2  square matrix  given by : 

                                                                  11 12

21 22

Λ Λ 
=  Λ Λ 

Λ                     (21.84) 

where the components 11 12 21 22, , ,Λ Λ Λ Λ  are reported below: 

                                          
( ) ( )

[ ] ( ) ( )
(1) (0) (1) (0)

11 1 12 1

( ) ( ) ( ) ( ) ( )
21 22 1 1

, ,

, , ,n n n n n

J R Y R

J R Y R

ω β ω β

ω β ω β

Λ = Λ =

 Λ Λ = ⋅
 

Γ

                        (21.85) 
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where ( )n
Γ  is given by equation (21.30) with i = n. The algebraic system (21.83) admit not trivial 

solution if the determinant of the matrix [ ]Λ  is equal to zero. By imposing this condition, we obtain 

the transcendental equation in unknown parameter ω : 
 [ ] ( )det 0 0g ω= ⇒ =Λ  (21.86) 

 The roots of this transcendental equation (21.86) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding 

eigenfunctions or characteristic functions ( )( )i

m rϕ  are reported in equation (21.35). The coefficients 
(1)
mA  are determined by applying the initial condition (21.73) that yields the following relationship: 

 

( )

( )

( )

( 1)

( )

( 1)

2 ( )( ) ( ) ( )

1 0(1)

2 2( )( ) ( )

1 0

i

i

i

i

Rn ii i i
v sm

i R
m

Rn ii i
v m

i R

c r T r drd

A

c rdrd

π

π

ρ ϕ θ

ρ ϕ θ

−

−

=

=

 
 
  = −
 
 
  

∑ ∫ ∫

∑ ∫ ∫

 (21.87) 

Finally the temperature function  in i-th generic phase is given by: 

         
( )

( ) ( ) ( ) ( )2 2

2
( ) ( ) ( )

0 ( )

( ) ( ) ( ) ( )
0 0

1

, log
4

{1,2,...., }
i i

m

i i i
i

ti i i i
m m m m

m

r
T r t T t C D r

A J r B Y r e i nκ β ω

ξξ
κ

ω β ω β
∞

−

=

= + + + + +

 + + ∀ ∈
 ∑

 (21.88) 

By substituting the function (21.88) in equation (21.14), we obtain in explicit the displacement 
function in any hollow spherical phase: 

           ( ) ( ) ( ) 2 ( )2

( ) ( ) ( ) ( ) 2
( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
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i i
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i i i i
i i i i i

r i

i i
ti i i i im

m m m m m
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P r A J r B Y r e

r

i n

κ ω β

β ζ ξ
κ

ζ β ω β ω
ω

∞
−

=

    = + + + + + − + +    
    

 
 + + + +  

 

∀ ∈

∑            (21.89) 

where the integration constants ( ) ( ) ( ) ( ) ( ) ( ), , , , ,i i i i i i
m mG H N M P Q  are determined by applying the 

boundary conditions given by equations (21.61). In this case the functions ( )( )
1 ,if t ( )( )

2 ,if t  

reported in equation (21.14) are given by: 

 ( ) ( )( ) 2 ( ) 2 ( ) 2 ( ) 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

1 1

, ,
i i i i

m mt ti i i i i i i i
m m

m m

f t G N t P e f t H M t Q eκ ω β κ ω β
∞ ∞

− −

= =
= + + = + +∑ ∑  (21.90) 

In explicit the radial and circumferential stress components are given by: 
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∞
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1 1
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ω β κω β ω β
∞
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∑

 (21.91) 
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 (21.92) 
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 (21.93) 

Moreover, the tractions on the inner and the outer spherical boundary surface are vanishing  and 
then condition (21.8) becomes: 
 (1) (0) ( ) ( )( ) 0, ( ) 0, 0n n

rr rrr R r R tσ σ= = = = ∀ ≥  (21.94) 

The integration constants ( ) ( ) ( ) ( ), , ,i i i i
m mG H P Q  are function of geometrical, mechanical and thermal 

parameters of spherical layers . Moreover ( ) ( ),i i
m mP Q  are function of  constants ( ) ( ), ,i i

m m mA B ω  also. For 

example, let us consider, an multilayered cylinder constituted by two phases under uniform heat 
flux . The phase (1) is constituted by steel and phase (2) by aluminium. The mechanical and thermal 
parameters considered for both phases are reported in table 21.1. The geometrical parameters of 

multilayered cylinder composed by two phases are:(0) 10 ,R m= (1) 10.25 ,R m= (2) 10.50 ,R m=  

0 300RT T K= = ° 2
0 500 / ,q W m K= − ⋅° .By fixed  m= 20,  the eigenvalues mω  of  transcendental 

equation (21.86) and corresponding values of constants integration mA  are reported in table 21.3 

 

 
 

Table 21.3 – Eigenvalues mω  and corresponding values of constants integration mA  
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In this case the graphics function ( )g ω  given by equation (21.86) is reported below: 

 
Fig. 21.11  -  Function ( )g ω  

 
We reported the graphics of temperature function along the radial direction and in time: 

 
 

 
 

Fig. 21.12 -  Temperature function  versus time 
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Fig. 21.13 -  Temperature function  along radial direction 
 
 

 
 

Fig. 21.14 -  Radial displacement along radial direction 
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Fig. 21.15  - Radial stress  along radial direction 
 

 
 

Fig. 21.16  -  Radial stress  versus time 
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Fig. 21.17  - Circumferential stress  along radial direction 
 
 

 
 

Fig. 21.18 -   Circumferential stress  versus time 
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Fig. 21.19  -  Axial stress  along radial direction 
 
 

 
 

Fig. 21.20   -    Axial stress  versus time 
 
 

21.4.  Multilayered cylinder exposed to hydrocarbon fire 
Let us consider an multilayered cylinder constituted by n-hollow cylindrical phases as decrypted in 
section 21.1. The inner surface (0)r R=  is kept perfectly insulated while the outer surface ( )nr R=  
is exposed to conventional fire, for t >0. In this section, we determine the temperature, displacement 



Chapter XXI : Transient problems for multilayered cylinders 

F. Carannante 545 

and stress function in multilayered cylinder by starting to initial temperature equal to 

0 RT T const= = . The equations field to satisfy in uncoupled thermo-elastic problem with cylindrical 

symmetry and in plane strain are reported in equations (21.13), but in this case the boundary 
conditions (21.11) become: 

 

(1) (1) (0)
,

( ) ( ) ( ) ( ) ( )
,

( ) 0,
0

( ) ( ) ,

r

n n n n n
r c F

k T r R
t

k T r R h T r R

− = = ∀ ≥
 − = = = − Θ  

 (21.95) 

where FΘ  is the conventional fire curve and ch  is convection coefficient on surface ( )nr R= . In this 

case, we considered Hydrocarbon fire curve given by follows equation (see Chapter XIX): 

 

1 2
0 1 2

0 1 2

3 1 2 1
1 2

[ ,sec]

1373.15 , 729 , 351 ,

2.783 10 sec , 4.416 10 sec ,

t t
F H H e H e K

H K H K H K

ξ ξ

ξ ξ

− −

− − − −

Θ = + + °
= ° = − ° = − °

= − ⋅ = − ⋅

 (21.96) 

and the boundary conditions (21.8) become: 

 ( ) ( ) (1) (0)( , ) 0, ( , ) 0, 0n n
rr rrr R t r R t tσ σ= = = = ∀ ≥  (21.97) 

The other boundary conditions reported in section 21.1 don’t change. By solving the Fourier’s 
equation reported in second equation of (21.13) with method separation of variables, and by 
substituting the function of temperature ( )( ) ,iT r t  in first equation of (21.13), and by integration in 

two time this equation respect to variable r, the displacement solution is reported in equation 
(21.14). In this case, the heat conduct problem involving a non-homogeneous boundary condition 
and, in particular, with the heat input specified over the entire boundary surface. It is necessary 
writing the temperature solution, in any phases of multilayered cylinder, in the follows form : 

 ( ) ( ) ( ) ( )1 2( ) ( ) ( ) ( )
0 1 2, , , {1,2,...., }t ti i i i

CT r t H e T r e T r T r t i nξ ξ= + + + ∀ ∈  (21.98) 

The functions ( )( )
1

iT r  and ( )( )
2

iT r  in generic i-th phase  satisfy the field equations: 

 

 
{ }

2 ( ) ( ) ( ) ( 1) ( )

2 ( )

1
0;

{1,2,..., }, 1,2

i i i i i
j j j j

i

d T d T T R r R

r d r i n jd r

ξ
κ

− ≤ ≤
+ − =

∀ ∈ ∀ ∈
 (21.99) 

Moreover the function ( )( )i
ST r  must be satisfy the following boundary conditions : 

 
( ) { }

(1)
(1) (0)0, , 1,2jd T r

k r R j
d r

− = = ∀ ∈  (21.100) 

 
( ) ( ) { }

( )
( ) ( ) ( ), , 1,2

n
jn n n

c j j

d T r
k h T r H r R j

d r
 − = − = ∀ ∈   (21.101) 

 
( ) ( ) { }

( ) ( 1)
( ) ( 1) ( ), , {1,2,..., 1}, 1,2

i i
j ji i id T r d T r

k k r R i n j
d r d r

+
+− = − = ∀ ∈ − ∀ ∈  (21.102) 

 ( ) ( ) { }( ) ( 1) ( ), , {1,2,..., 1}, 1,2i i i
j jT r T r r R i n j+= = ∀ ∈ − ∀ ∈  (21.103) 

The function ( )( ) ,i
CT r t  in generic i-th phase  satisfies the field equations: 

 
( ) ( ) ( )2 ( ) ( ) ( ) ( 1) ( )

2 ( )

, , , , 01 1
;

{1,2,..., }

i i i i i
C C C

i

T r t T r t T r t R r R t

r r tr i nκ

−∂ ∂ ∂ ≤ ≤ ∀ ≥+ =
∂ ∂∂ ∀ ∈

 (21.104) 

Moreover the function ( )( ) ,i
CT r t  must be satisfy the following boundary conditions : 

 
( )(1)

(1) (0),
0, , 0,CT r t

k r R t
r

∂
− = = ∀ ≥

∂
 (21.105) 
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( )

( ) ( ) ( )( , )
( , ), , 0,

n
n n nC

c C
T r t

k h T r t r R t
r

∂− = = ∀ ≥
∂

 (21.106) 

 
( ) ( )

( ) ( )

( ) ( 1)
( ) ( 1)

( )

( ) ( 1)

, ,
,

, 0, {1,2,..., 1}

, , ,

i i
C Ci i

i

i i
C C

T r t T r t
k k

r R t i nr r

T r t T r t

+
+

+

 ∂ ∂
− = − = ∀ ≥ ∀ ∈ −∂ ∂
 =

 (21.107) 

   ( ) ( ) ( )1 2( ) ( ) ( ) ( 1) ( )
0 0 1 2, , , 0, {1,2,..., }t ti i i i i

CT r t H T e T r e T r R r R t i nξ ξ − = − − + + ≤ ≤ = ∀ ∈   (21.108) 

The solutions of differential equation (21.99) is given by: 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 0 1 0 1

( ) ( ) ( ) ( ) ( )
2 0 2 0 2

{1,2,..., }

i i i i i

i i i i i

T r C J r D Y r
i n

T r G J r L Y r

η η

η η

 = + ∀ ∈
= +

Â -Â

Â -Â
 (21.109) 

where Â  is unit imaginary, ( ) ( ) ( ) ( ), , ,i i i iC D G L  are 4n unknown parameters to determine and 

parameters ( ) ( )
1 2,i iη η  are given by: 

 ( ) ( )1 2
1 2( ) ( )

, ,i i
i i

ξ ξη η
κ κ

= =  (21.110) 

By solving algebraic system composed by 4n equations (21.100) to (21.103), we obtain integration 
constants ( ) ( ) ( ) ( ), , ,i i i iC D G L . For brevity, we don’t reported in explicit the expressions of these 

constants. The solution to the problem for CT  is found in much the same says way as was followed 

in section 21.2. The problem is therefore on with homogeneous differential equation and boundary 
conditions and may be treated by the method separation of variables as showed in section 21.2. The 
solutions of differential equation (21.104) is given by: 

 ( ) ( ) ( ) ( ) ( )2 2( ) ( ) ( ) ( ) ( )
0 0, {1,2,..., }

i ii i i i i t
CT r t A J r B Y r e i nκ β ωω β ω β − = + ∀ ∈

 
 (21.111) 

where ( ) ( ), ,i iA B ω  are constants parameter to determine, the coefficient ( ) (1) ( )i iβ κ κ= . In 

explicit the boundary conditions (21.107) for temperature function ( )( ) ,i
CT r t  are reported in 

equation (21.78). Moreover the boundary conditions on the inner and the outer surface (21.105) and 
(21.106) can be to rewrite as reported in equations (21.22). By first equation of (21.22), we 
determine (1)B  as function  of  (1)A  as follows: 

 
( )
( )

(0) (1)
1(1) (1)

(0) (1)
1

J R
B A

Y R

ω β
ω β

= −  (21.112) 

The equations (21.78) constituted an homogeneous algebraic system, composed by 2(n-1) 
equations, in unknown parameters ( ) ( ),i iA B  with {1,2,..., }i n∈ ,  which can be written as:  
 ⋅ =Φ X 0  (21.113) 
where (1) (2) ( )[ , ,..., ]n T=X X X X  collect the unknowns sub-vectors, as reported below: 

 ( ) ( ) ( ) , {1,2,...., }
Ti i iA B i n = ∀ ∈ X  (21.114) 

and Φ  is the matrix reported in equation (21.26). As showed in section 21.2, matrix Φ  is 

constituted by components:( ) ( 1),i i
i i

+
Φ Φ , {1,2,..., 1}i n∀ ∈ − and vector ( )iX  is obtained as function of 

vector (1)X (see equation (21.29)). By substituting the solutions (21.29) in boundary conditions 
(21.22), we obtain vector equations in unknown vector (1)X , as reported below: 

 (1)⋅ =Λ X 0  (21.115) 
where Λ  is an  2x2  square matrix  given by : 

                                                                  11 12

21 22

Λ Λ 
=  Λ Λ 

Λ                     (21.116) 
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where the components 11 12 21 22, , ,Λ Λ Λ Λ  are reported below: 

                                          
( ) ( )

[ ] ( ) ( )
(1) (0) (1) (0)

11 1 12 1

( ) ( ) ( ) ( ) ( )
21 22 1 1

, ,

, , ,n n n n n

J R Y R

J R Y R

ω β ω β

ω β ω β

Λ = Λ =

 Λ Λ = ⋅
 

Γ

                      (21.117) 

Where ( )n
Γ  is given by equation (21.30) with i = n. The algebraic system (21.115) admit not trivial 

solution if the determinant of the matrix [ ]Λ  is equal to zero. By imposing this condition, we obtain 

the transcendental equation in unknown parameter ω : 
 [ ] ( )det 0 0g ω= ⇒ =Λ  (21.118) 

 The roots of this transcendental equation (21.118) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to eigenvalues or characteristic values 2
m mλ ω= − . The corresponding 

eigenfunctions or characteristic functions ( )( )i

m rϕ  are reported in equation (21.111). The 

coefficients (1)
mA  are determined by applying the initial condition (21.108) that yields the following 

relationship: 
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∑ ∫ ∫

∑ ∫ ∫

 (21.119) 

Finally the temperature function  in i-th generic phase is given by: 
         

( ) ( ) ( ) ( ) ( )
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( ) ( )2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 1 0 1 0 2 0 2

( ) ( ) ( ) ( )
0 0

1

,

{1,2,...., }
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=
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 ∑

Â -Â Â -Â

 

                                                                                                                                                  (21.120) 
By substituting the function (21.120) in equation (21.14), we obtain in explicit the displacement 
function in any hollow cylindrical phase: 

           

( ) ( ) ( ) ( )
( ) ( )

1 2

1

2

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) 1 ( ) ( ) ( ) ( )( ) ( ) ( )
0 1 1 1 1 1

( ) ( ) ( ) 1 ( ) ( ) ( ) ( )
2 1 2 1 2

( )

1 33 2

2

i i i
t ti i i i

r

ti i i i ii i i

i i ti i i i i

i
m

Q V Z
u P r U r e W r e

r r r

H r D Y r C J r e

L Y r G J r e

P

ξ ξ

ξ

ξ

η η ηα λ µ
λ µ η η η

−

−

   
= + + + + + +   

   

  + − ++    +  +  −   

+

Â -Â Â

+Â -Â Â

( ) ( ) ( ) 2 ( ) 2
( ) ( )

( ) ( ) ( ) ( )
1 1

1

{1,2,...., }

i i
m

i i
ti i i im

m m m m
m m

Q
r A J r B Y r e

r

i n

κ ω βζ β ω β ω
ω

∞
−

=

 
 + + +  

 

∀ ∈

∑

         (21.121) 

where the integration constants ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,i i i i i i i i
m mP Q U V W Z N M  are determined by applying 

the boundary conditions given by equations (21.97). In this case the functions ( )( )
1 ,if t ( )( )

2 ,if t  

reported in equation (21.14) are given by: 
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( ) 2 ( ) 2
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∞
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∞
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∑

∑
 (21.122) 

In explicit the radial, circumferential and axial stress components are given by: 
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 (21.123) 
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where the constant 
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. Moreover, the tractions on the inner and the outer 

spherical boundary surface are vanishing  and then condition (21.8) becomes: 
 (1) (0) ( ) ( )( ) 0, ( ) 0, 0n n

rr rrr R r R tσ σ= = = = ∀ ≥  (21.126) 

The integration constants ( ) ( ) ( ) ( ), , ,i i i i
m mG H P Q  are function of geometrical, mechanical and thermal 

parameters of spherical layers . Moreover ( ) ( ),i i
m mP Q  are function of  constants ( ) ( ), ,i i

m m mA B ω  also. 

For example, let us consider, an multilayered cylinder constituted by two phases under uniform heat 
flux . The phase (1) is constituted by steel and phase (2) by aluminium. The mechanical and thermal 
parameters considered for both phases are reported in table 19.1. The geometrical parameters of 
multilayered cylinder composed by two phases are: 
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                             (0) (1) (2)
010 , 10.05 , 10.10 , 293.15 20RR m R m R m T T K C= = = = = ° = °  (21.127) 

In this case the graphics function ( )g ω  given by equation (21.86) is reported below: 

 
Fig. 21.21 -   Function ( )g ω  

 
By fixed  m= 20,  the eigenvalues mω  of  transcendental equation (21.86) and corresponding values 

of constants integration mA  are reported in table 21.4: 

 

 
 

Table 21.4 – Eigenvalues mω  and corresponding values of constants integration mA  
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We reported the graphics of temperature function along the radial direction and in time: 
 

 
 

Fig. 21.22  -  Temperature function  versus time 
 
 

 
 

Fig. 21.23  -  Temperature function  along radial direction 
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Fig. 21.24  - Radial displacement along radial direction 
 
 

 
 

Fig. 21.25 - Radial stress  along radial direction 
 
 



Chapter XXI : Transient problems for multilayered cylinders 

F. Carannante 552 

 
 

Fig. 21.26  - Radial stress  versus time 
 
 

 
 

Fig. 21.27  - Circumferential stress  along radial direction 
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Fig. 21.28  - Circumferential stress  versus time 
 

 

 
 

Fig. 21.29  - Axial stress  along radial direction 
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Fig. 21.30  -  Axial stress  versus time 
 
 

 
 

Fig. 21.31  -  Hencky von Mises’s equivalent stress  along radial direction 
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Fig. 21.32  -  Hencky von Mises’s equivalent stress  versus time 
 

21.5.  Conclusions 
In this chapter, an analytical thermo-elastic solution for cylindrical solid composed by multiple 
layers subjected to time-dependent boundary conditions, is presented. By applying the hypothesis of 
plane strain are determined the temperature and radial displacement functions in each layer of 
cylindrical solid. Let us consider three kind of boundary conditions on inner and outer surfaces of 
multilayered cylinder. In particular the cases analysed are: i) Multilayered cylinder exposed to an 
ambient at zero temperature through a uniform boundary conductance, ii) Multilayered cylinder 
exposed to uniform heat flux, iii) Multilayered cylinder exposed to hydrocarbon fire. In the case iii) 
multilayered cylinder is exposed to heat flux that varies in the time until to zero for t → ∞ . In three 
case studied the axial and circumferential stress present the jumps in interface surface between 
adjacent phases, but the radial stress is continue function, as showed in figures reported in this 
chapter. Numerical evaluation of the series solution shows that a reasonable number of terms are 
sufficient to obtain results with acceptable errors for engineering applications. The technique of 
solutions utilised in case iii) can be developed for determine the transient stress in multilayered 
cylinder pipeline exposed to standard fire. Then, the analytical study presented can be utilized to 
optimize the designer of a composite cylindrical pipeline exposed to heat flux that varies in time.  
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CHAPTER XXII 
SPHERICAL TANK FILLED WITH GAS EXPOSED TO FIRE   

 
22.1. Introduction 

A pressure tank is a closed container designed to hold gases or liquids at a pressure substantially 
different from the ambient pressure. The pressure differential is dangerous and many fatal accidents 
have occurred in the history of pressure tank development and operation. Consequently, pressure 
tank design, manufacture, and operation are regulated by engineering authorities backed by 
legislation. For these reasons, the definition of a pressure tank varies from country to country, but 
involves parameters such as maximum safe operating pressure and temperature. Pressure tanks can 
theoretically be almost any shape, but shapes made of sections of spheres, cylinders, and cones are 
usually employed. A common design is a cylinder with end caps called heads. Head shapes are 
frequently either hemispherical or dished (torispherical). More complicated shapes have historically 
been much harder to analyze for safe operation and are usually far more difficult to construct. 
Theoretically almost any material with good tensile properties that is chemically stable in the 
chosen application could be employed. However, pressure vessel design codes and application 
standards (ASME BPVC Section II, EN 13445-2 etc.) contain long lists of approved materials with 
associated limitations in temperature range.  Many pressure tanks are made of steel. To manufacture 
a cylindrical or spherical pressure vessel, rolled and possibly forged parts would have to be welded 
together. Some mechanical properties of steel, achieved by rolling or forging, could be adversely 
affected by welding, unless special precautions are taken. In addition to adequate mechanical 
strength, current standards dictate the use of steel with a high impact resistance, especially for 
vessels used in low temperatures. In applications where carbon steel would suffer corrosion, special 
corrosion resistant material should also be used. Some pressure tanks are made of composite 
materials, such as filament wound composite using carbon fibers held in place with a polymer. Due 
to the very high tensile strength of carbon fibers these tanks can be very light, but are much more 
difficult to manufacture. The composite material may be wound around a metal liner, forming a 
composite over wrapped pressure tank. Other very common materials include polymers such as 
PET in carbonated beverage containers and copper in plumbing. Pressure tanks may be lined with 
various metals, ceramics, or polymers to prevent leaking and protect the structure of the tank from 
the contained medium. This liner may also carry a significant portion of the pressure load. Pressure 
tanks are designed to operate safely at a specific pressure and temperature, technically referred to as 
the "Design Pressure" and "Design Temperature". A tank that is inadequately designed to handle a 
high pressure constitutes a very significant safety hazard. Because of that, the design and 
certification of pressure tanks is governed by design codes such as the ASME Boiler and Pressure 
Vessel Code in North America, the Pressure Equipment Directive of the EU (PED), Japanese 
Industrial Standard (JIS), CSA B51 in Canada, Australian Standards in Australia and other 
international standards like Lloyd's, Germanischer Lloyd, Det Norske Veritas, Société Générale de 
Surveillance (SGS S.A.), Stoomwezen etc.  

In this chapter is studied an spherical tank methane gas-filled exposed to fire characterized by 
hydrocarbon fire curve. The interaction between spherical tank and gas is studied. By applying the 
several hypothesis, we determine approximate analytical thermo-elastic solution for spherical tank. 
By applying the solution, the variation of temperature methane and in spherical tank in time is 
determine. Finally, an example is reported in which an spherical tank with inner radius 0 10R m=  

and thickness s = 2.5cm is considered. Moreover the collapse temperature of spherical tank exposed 
to fire is determined. 
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Figure 22.1-  Spherical tank methane gas- filled   
 

 
Figure 22.2 - Spherical tank model methane gas-filled   
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22.2. Real gas equations 
 
22.2.1.  Ideal gas law and van der Waals equation 
Equations of state play an important role in chemical engineering design and they have assumed an 
expanding role in the study of the phase equilibria of fluids and fluid mixtures. Originally, 
equations of state were used mainly for pure components. When first applied to mixtures, they were 
used only for mixtures of nonpolar (Soave, 1972; Peng and Robinson, 1976) and slightly polar 
compounds (Huron et al., 1978; Asselineau et al., 1978; Graboski and Daubert, 1978). Since then, 
equations of state have developed rapidly for the calculation of phase equilibria in non-polar and 
polar mixtures. The advantage of the equations of state method is its applicability over wide ranges 
of temperature and pressure to mixtures of diverse components, from the light gases to heavy 
liquids. They can be used for the representation of vapour-liquid, liquid-liquid and supercritical 
fluid phase equilibria and they can be also applied to the gas, liquid and supercritical phases without 
encountering any conceptual difficulties. 
Many equations of state have been proposed in the literature with either an empirical, semi-
empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin (1979), 
Gubbins (1983), Tsonopoulos and Heidman (1985), Han et al. (1988), Anderko (1990), Sandler 
(1994) and Donohue and Economou (1995). 
The van der Waals equation of state was the first equation to predict vapour –liquid coexistence. 
Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) improved the accuracy of 
the van der Waals equation by proposing a temperature dependence for the attractive term. Soave 
(1972) and Peng and Robinson (1976) proposed additional modifications for Redlich-Kwong 
equation to more accurately predict the vapour pressure, liquid density, and equilibria ratios. 
Carnahan and Starling (1969), Guggenheim (1965) and Boublik (1981) modified the repulsive term 
of van der Waals equation of state and obtained their accurate expressions for hard sphere fluid. 
Christoforakos and Franck (1986) modified both the attractive and repulsive terms of van der Waals 
equation of state. In addition to modelling small molecules, considerable emphasis has been placet 
recently on modelling long molecules. Based on Prigogine’s (1957) and Flory’s (1965) theory, 
Beret and Prausnitz (1975) and Donohue and Prausnitz (1978) constructed an equation for 
molecules treated as chains of segments, Perturbed-Hard-Chain-Theory (PHCT). To overcome the 
mathematical complexity of PHCT, Kim et al. (1986) developed a simplified version of PHCT 
(SPHCT) by replacing the complex attractive part of PHCT by a simplex expression. To take into 
account the increase in attractions due to dipolar and quadrupolar forces, Vimalchand and Donohue 
(1985) obtained fairly accurate multipolar misture calculations by using the Perturbed Anisotropic 
Chain Theory (PACT). Ikonomou and Donohue (1986) extended the PACT to obtain an equation of 
state which takes into account the existence of hydrogen bonding, that is the Associated Perturbed 
Anisotropic Chain Theory (APACT). 
Advances in statistical mechanics and increase of computer power allowed the development of 
equation of state based on molecular principles that are accurate for real fluids and mixtures. Using 
Wertheim’s theory, Chapman et al. (1990) and Huang and Radosz (1990) developed the Statistical-
Associating-Fluid -Theory (SAFT) which is accurate for pure fluids and mixtures containing 
associating fluids. Recently, various modified versions, such as LJ-SAFT (Kraska and Gubbins, 
1996a & b), SAFT-VR (Gil-Villegas et al., 1997), have been developed. 
The ideal gas law is the equation of state of a hypothetical ideal gas. It is a good approximation to 
the behaviour of many gases under many conditions, although it has several limitations. It was first 
stated by Émile Clapeyron in 1834 as a combination of Boyle's law and Charles's law. It can also 
be derived from kinetic theory, as was achieved (apparently independently) by August Krönig in 
1856 and Rudolf Clausius in 1857. The state of an amount of gas is determined by its pressure, 
volume, and temperature. The modern form of the equation relates these simply in two main forms. 
The temperature used in the equation of state is an absolute temperature: in the SI system of units, 
kelvin. The most frequently introduced form is:  
 pV n RT=  (22.1) 
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where “p” is the pressure of the gas, “V” is the volume of the gas, n is the amount of substance of 
gas (also known as number of moles), “T” is the temperature of the gas and “R” is the ideal, or 
universal, gas constant, equal to the product of Boltzmann's constant and Avogadro's constant. In SI 
units, n is measured in moles, and T in Kelvin. R has the value 8.314472 J/(mol·°K) or 0.08206 
(L·atm)/(mol·°K). How much gas is present could be specified by giving the mass instead of the 
chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The 
chemical amount (n) (in moles) is equal to the mass (m) (in grams) divided by the molar mass (M) 
(in grams per mole):   

 
m

n
M

=  (22.2) 

By replacing n with m / M, and subsequently introducing density ρ = m/V, we get: 

 
M

R RT
p T

M V

ρ= =  (22.3) 

where M

M V
V

nρ
= =  is the molar volume. Defining the specific gas constant specificR  as the ratio 

R/M, 

 specificp R Tρ=  (22.4) 

This form of the ideal gas law is very useful because it links pressure, density, and temperature in a 
unique formula independent of the quantity of the considered gas. Alternatively, the law may be 
written in terms of the specific volume v, the reciprocal of density, as: 

 specificp v R T=  (22.5) 

It is common, especially in engineering applications, to represent the ideal gas constant by the 
symbol R. In such cases, the universal gas constant is usually given a different symbol such as R to 
distinguish it. In any case, the context and/or units of the gas constant should make it clear as to 
whether the universal or specific gas constant is being referred to.  

The van der Waals equation of state, proposed in 1873 (Rowlinson, 1988), was the first equation 
capable of representing vapour-liquid coexistence: 

 
2

2

nRT n a
p

V nb V
= −

−
 (22.6) 

where p represents pressure, T is temperature, V is volume , n the amount of substance (in moles) 
and R is the gas constant. By applying the relationships (22.2), we can rewrite the equation (22.6) in 
follows manner: 
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R T a
p
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−
 (22.7) 

The van der Waals constants a and b are characteristic of the substance and are independent of 
temperature. They are related to the critical temperature and pressure, cT  and cp  by : 

 
2 227

, ,
64 8

c c

c c

R T RT
a b

p p
= =  (22.8) 

The parameter a is a measure of the attractive forces between the molecules and the parameter b is a 
measure of the size of the molecules (hard body term). Both adjustable parameters a and b can be 
obtained from the critical properties of the fluid. The van der Waals equation can be regarded as a 
“hard-sphere (repulsive) + attractive” term equation of state composed from the contribution of 
repulsive and attractive intermolecular interactions, respectively. It gives a qualitative description of 
the vapour and liquid phases and phase transitions (Van Konynenburg and Scott, 1980), but it is 
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rarely sufficiently accurate for critical properties and phase equilibria calculations. A simple 
example is that for all fluids, the critical compressibility predicted by Equation (22.6) is 0.375, 
whereas the real value for different hydrocarbons varies from 0.24 to 0.29. The van der Waals 
equation has been superseded by a large number of other, more accurate equations of state. 
 
22.2.2.  Modification of the Attractive Term 
Many modifications of the attractive term have been proposed. Some of these are listed and 
compared in Table 21.2. Benedict et al. (1940) suggested a multi-parameter equation of state, 
known as the Benedict-Webb-Rubin (BWR) equation: 
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n

V
B RT A C Tn RT bRT a n a n c n

p n n e
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 (22.9) 

where 0 0 0, , , , , , ,A B C a b cα γ are eight adjustable parameters. The BWR equation could treat 

supercritical components and was able to work in the critical area. However, the BWR equation 
suffers from three major disadvantages. First, the parameters for each compound must be 
determined separately by reduction of plentiful, accurate pressure-volume-temperature (PVT) and 
vapour-liquid-equilibrium (VLE) data. Second, the large number of adjustable parameters makes it 
difficult to extend to mixtures. Third, its analytical complexity results in a relatively long computing 
time. 
Perhaps, the most important model for the modification of the van der Waals equation of state is the 
Redlich-Kwong (RK) equation (Redlich and Kwong, 1949). It retains the van der Waals hard-
sphere term but a temperature dependence was introduced in the attractive term: 
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By applying the relationships (22.2), we can rewrite the equation (22.10) in follows manner: 
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For pure substances the equation parameters a and b are usually expressed as: 

 
2 2.50.4278 0.0867

, ,c c

c c

R T RT
a b

p p
= =  (22.12) 

where ,c cT p  are critical temperature and pressure of gas, respectively. 

Carnahan and Starling (1972) used the Redlich-Kwong equation of state to compute the gas phase 
enthalpies for a variety of substances, many of which are polar and/or not spherically symmetric. 
Their results showed that the Redlich-Kwong equation is a significant improvement over the van 
der Waals equation. Abbott (1979) also concluded that the Redlich-Kwong equation performed 
relatively well for the simple fluids Ar, Kr, and Xe (for which the acentric factor is equal to zero), 
but it did not perform well for complex fluids with Non-zero acentric factors. 
The Redlich-Kwong equation of state can be used for mixtures by applying mixing rules to the 
equation of state parameters. It offered remarkable success in improving the van der Waals equation 
with a better description of the attractive term. Joffe and Zudkevitch (1966) showed that substantial 
improvement in the representation of fugacity of gas mixtures could be obtained by treating 
interaction parameters as empirical parameters. The results of the critical properties calculations for 
binary mixtures indicated that adjusting the value of binary interaction parameters in the mixing 
rules of the parameter a of the Redlich-Kwong equation of state could reduce the average error 
levels in the predicted critical properties for most binary mixtures. Spear et al. (1969) demonstrated 
that the Redlich-Kwong equation of state could be used to calculate the gas-liquid critical properties 
of binary mixtures. Chueh and Prausnitz (1967a & b) also showed that the Redlich-Kwong equation 
can be adapted to predict both vapour and liquid properties. Several other workers (Deiters and 
Schneider, 1976; Baker and Luks, 1980) applied the Redlich-Kwong equation to the critical 
properties and the high pressure phase equilibria of binary mixtures. For ternary mixtures, Spear et 
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al. (1971) gave seven examples of systems for which the gas-liquid critical properties of 
hydrocarbon mixtures could be calculated by using the Redlich-Kwong equation of state. The 
results showed that the accuracy of the Redlich-Kwong equation of state calculations for ternary 
systems was only slightly less than that for the constituent binaries. The success of the Redlich-
Kwong equation has been the impetus for many further empirical improvements.  

Soave (1972) suggested replacing the term a T with a more general temperature-dependent term 
a(T), that is: 

 
( )

( )
2n a Tn RT

p
V nb V V nb

= −
− +

 (22.13) 

where 

    ( )
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2 2
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ω ω
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ω is the acentric factor. To test the accuracy of Soave -Redlich-Kwong (SRK) equation, the vapour 
pressures of a number of hydrocarbons and several binary systems were calculated and compared 
with experimental data (Soave, 1972). In contrast to the original Redlich- Kwong equation, Soave's 
modification fitted the experimental curve well and was able to predict the phase behaviour of 
mixtures in the critical region. Elliott and Daubert (1985) reported an accurate representation of 
vapour-liquid equilibria with the Soave equation for 95 binary systems containing hydrocarbon, 
hydrogen, nitrogen, hydrogen sulfide, carbon monoxide, and carbon dioxide. Elliott and Daubert 
(1987) also showed that the Soave equation improved the accuracy of the calculated critical 
properties of these mixtures. Accurate results (Han et al., 1988) were also obtained for calculations 
of the vapour –liquid equilibrium of symmetric mixtures and methane-containing mixtures. 
In 1976, Peng and Robinson (1976) redefined a(T) as: 
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 (22.15) 

Recognising that the critical compressibility factor of the Redlich-Kwong equation ( Zc = 0.333 ) is 
overestimated, they proposed a different volume dependence: 

 
( )
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p
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 (22.16) 

The Peng-Robinson (PR) equation slightly improves the prediction of liquid volumes and predicts a 
critical compressibility of Zc = 0.307 . Peng and Robinson (1976) gave examples of the use of the 
Peng-Robinson equation for predicting the vapour pressure and volumetric behaviour of single -
component systems, and the phase behaviour and volumetric behaviour of binary, ternary and 
multicomponent system, and concluded that Eq.(3.10) can be used to accurately predict the vapour 
pressures of pure substances and equilibrium ratios of mixtures. The Peng-Robinson equation 
performed as well as or better than the Soave -Redlich-Kwong equation. Han et al. (1988) reported 
that the Peng-Robinson equation was superior for predicting vapour-liquid equilibrium in hydrogen 
and nitrogen containing mixtures. The Peng-Robinson and Soave-Redlich-Kwong equations are 
widely used in industry. The advantages of these equations are that they can accurately and easily 
represent the relation among temperature, pressure, and phase compositions in binary and 
multicomponent systems. They only require the critical properties and acentric factor for the 
generalised parameters, little computer time and lead to good phase equilibrium prediction. 
However, the success of these modifications is restricted to the estimation of vapour pressure. The 
calculated saturated liquid volumes are not improved and are invariably higher than the measured 
data.  Fuller (1976) proposed a three parameter equation of state which has the form: 
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with the additional parameter added is denoted as c. At the critical point 
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Fuller's modification contain two features. First, the equation of state leads to a variable critical 
compressibility factor, and second, a new universal temperature function is incorporated in the 
equation making both the a and b parameters functions of temperature. Fuller's equation can be 
reduced to the Soave-Redlich-Kwong and van der Waals equations. If cβ = 0.259921, then we have 

c = 1, aΩ  = 0.4274802 , bΩ = 0.0866404 , cZ = 0.333, and the Soave- Redlich-Kwong equation is 

obtained. If cβ   has a value of 1/3, then c = 0 , aΩ  = 0.421875, bΩ  = 0.125, cZ  = 0.375, and van 

der Waals equation is obtained. Fuller (1976) reported that the proposed modification produced a 
root-mean-square error in saturated liquid volumes of less than 5%. In the majority of cases it also 
improved the vapour pressure deviations of the original Soave-Redlich-Kwong equation. The 
results of calculations indicated that this equation is capable of describing even polar molecules 
with reasonable accuracy. Similar to Fuller's equation, Table 21.1 also shows that a feature of many 
of the empirical improvements is the addition of adjustable parameters. A disadvantage of three 
parameters (or more parameters) equation of state is that the additional parameters must be obtained 
from additional pure component data. They almost invariably require one (or more) additional 
mixing rules when the equation is extended to mixtures. The Peng-Robinson and Soave-Redlich-
Kwong equations fulfil the requirements of both simplicity and accuracy since they require little 
input information, except for the critical properties and acentric factor for the generalised 
parameters a and b. Consequently, although many equations of state have been developed, the 
Peng-Robinson and Soave- Redlich-Kwong equations are widely used in industry, and often yield a 
more accurate representation (Palenchar et al. 1986) than other alternatives. 
 
22.2.3.  Modification of the Repulsive Term 
The other way to modify the van der Waals equation is to examine the repulsive term of a hard 
sphere fluid. Many accurate representations have been developed for the repulsive interactions of 
hard spheres and incorporated into the equation of state. Several proposals have been reported; 
some of them are summarised in Table 21.1. Among them, the most widely used equation is the 
Carnahan-Starling equation. Carnahan and Starling (1969) obtained an accurate expression for 
the compressibility factor of hard spere fluids which compared well with molecular-dynamics data 
(Reed and Gubbins, 1973). The form is: 

 
( )

2 3

3

1

1
c

y y y
Z

y

+ + −=
−

 (22.19) 

with y = b / 4V and b is the volume occupied by 1 mol of molecules. To improve the accuracy of the 
van der Waals equation, Carnahan and Starling (1972) substituted equation (22.19) for the 
traditional term RT / (V − b) resulting in the following equation of state: 
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 (22.20) 

Both a and b can be obtained by using critical properties  ( 2 2 1 10.4964 , 0.18727c c c ca R T p b RT p− −= = ). 

Sadus (1993) has demonstrated that Carnahan-Starling equation can be used to predict the Type III 
equilibria of non-polar mixtures with considerable accuracy. 
The Guggenheim equation (Guggenheim, 1965) is a simple alternative to the Carnarhan-Starling. 
It also incorporates an improved hard-sphere repulsion term in conjunction with the simple van der 
Waals description of attractive interactions. 

 
( )

2

4 2
1

n RT n a
p

VV y
= −

−
 (22.21) 

The covolume ( 10.18284 c cb RT p−= ) and attractive ( 2 2 10.49002 c ca R T p−= ) equation of state 

parameters are related to the critical properties. The Guggenheim equation has been used to predict 
the critical properties of diverse range of binary mixtures (Hicks and Young, 1976; Hurle et al., 
1977a & b; Hicks et al., 1977 & 1978; Semmens et al., 1980; Sadus and Young, 1985a & b; 
Waterson and Young, 1978; Toczylkin and Young, 1977, 1980a & b &c; and Sadus, 1992a &1994). 
Despite the diversity of the systems studied, good results were consistently reported for the gas-
liquid critical locus. The critical liquid-liquid equilibria of Type II mixtures was also represented 
adequately. In contrast, calculations involving Type III equilibria are typically only 
semiquantitative (Christou et al., 1986) because of the added difficulty of predicting the transition 
between gas-liquid and liquid-liquid behaviour. The Guggenheim equation has also been proved 
valuable in calculating both the gas-liquid critical properties (Sadus and Young, 1988) and general 
critical transitions of ternary mixtures (Sadus, 1992a). 
Boublik (1981) has generalised the Carnahan-Starling hard sphere potential for molecules of 
arbitrary geometry via the introduction for a nonsphericity parameter (α). Svenda and Kohler 
(1983) employed the Boublik expression in conjunction with Kihara's (1963) concept of a hard 
convex body (HCB) to obtain a generalised van der Waals equation of state: 
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 (22.22) 

Sadus et al. (1988) and Christou et al. (1991) have used equation (22.22) for the calculation of the 
gas-liquid critical properties of binary mixtures containing nonspherical molecules. The results 
obtained were slightly better than could be obtained from similar calculations using the 
Guggenheim equation of state. Sadus (1993) proposed an alternative procedure for obtaining the 
equatio n of state parameters. Equation (22.22) in conjunction with this modified procedure can be 
used to predict Type III critical equilibria of nonpolar binary mixtures with a good degree of 
accuracy. Sadus (1994) compared the compressibility factors predicted by the van der Waals, 
Guggenheim and Carnahan-Starling hard-sphere contributions with molecular simulation data 
(Alder and Wainwright, 1960, Barker and Henderson, 1971) for one -component hard-sphere fluid 
The results demonstrated that the hard-sphere term of Guggenheim equation is as accurate as 
Carnahan-Starling term at low to moderately high densities. 
 
22.2.4.  Modification of both Attractive and Repulsive Terms 
Other equations of state have been formed by modifying both attractive and repulsive terms, or by 
combining an accurate hard sphere model with an empirical temperature dependent attractive 
contribution. Carnahan and Starling (1972) combined the Redlich-Kwong attractive term with 
their repulsive term: 
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( ) ( )
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+−
 (22.23) 
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Their results (Carnahan and Starling, 1972) demonstrated that this combination improved the 
predication of hydrocarbon densities and supercritical phase equilibria. De Santis et al. (1976) also 
tested equation (22.23) and concluded that equation (22.23) yielded good results for the case of pure 
components in the range spanning ideal gas to saturated liquids. When applied to mixtures for 
predicting vapour-liquid equilibria, good accuracy in wide ranges of temperature and pressare can 
be obtained. 
McElroy (1983) has combined the Guggenheim hard sphere model with the attractive term of the 
Redlich-Kwong equation:  

 
( ) ( )

2

4
1

n RT n a
p

V V nb TV y
= −

+−
 (22.24) 

The accuracy of this equation has not been widely tested.  
Christoforakos and Franck (1986) proposed an equation of state which used the Carnahan-
Starling (1969) expression for the construction of repulsive term and a square well intermolecular 
potential to obtain the contribution of attractive intermolecular interaction to address deficiencies in 
the representation of both attractive and repulsive interactions: 
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where ( )3 m

cb T Tβ = , m is typically assigned a value of 10, and V denotes volume. The other 

equation of state parameters can be derived from the critical properties: 
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2.65025
0.04682 , log 1 ,
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p R
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 (22.26) 

The ε parameter reflects the depth of the square well intermolecular potential and λ is the relative 
width of the well. This equation was successfully applied to the high temperature and high pressure 
phase behaviour of some binary aqueous mixtures (Christoforakos and Franck ,1986). 
Heilig and Franck (1989 & 1990) modified the Christoforakos-Franck equation of state and they 
also employ a temperature-dependent Carnahan-Starling (1969) representation of repulsive forces 
between hard-spheres and a square-well representation for attractive forces, 
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3 2 ( / )

n RT V n V n V n n BRT
p

V V n C B VV n

β β β
β
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 (22.27) 

where ( )Z

c cb b T T= , cb  is the critical molecular volume and z = 0. The B and C terms in Equation 

(22.27) represent the contributions from the second and third virial coefficients, respectively, of a 
hard-sphere fluid interacting via a square-well potential. This potential is characterised by three 
parameters reflecting intermolecular separation (σ), intermolecular attraction (ε/RT) and the relative 
width of the well (λ). The following universal values (Mather et al., 1993) were obtained by solving 
the critical conditions of a one-component fluid, for example, λ = 1.26684, 3 0.24912A cN Vσ =  

(where AN  denotes Avogadro's constant) and 1.51147cRTε = . Accurate calculations of the critical 

properties of both binary and ternary mixtures (Heilig and Franck, 1989 & 1990) have been 
reported. Shmonov et al. (1993) used Equation (22.27) to predict high-pressure phase equilibria for 
the water + methane mixture and reported that the Heilig-Franck equation of state was likely to be 
more accurate than other "hard sphere + attractive term" equations of state for the calculation of 
phase equilibria involving a polar molecule.  
Shah et al. (1994) developed a new equation of state. They used hsZ  and attZ  as the repulsive and 

the attractive contribution to the compressibility, respectively, 
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2 2
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0 00

, ,hs att
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α αα
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 (22.28) 

where 
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represents the molar hard-sphere volume of the fluid, 0 11.2864, 2.8225,k k= =  and e is a constant, 

and a and c are temperature-dependent parameters. A new equation, called the quartic equation of 
state, was formed as : 
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It only needs three properties of a fluid, critical temperature, critical volume, and acentric factor, to 
be specified to reproduce pressure-volume-temperature and thermodynamic properties accurately. 
Although it is a quartic equation and yields four roots, one root is always negative and hence 
physically meaningless, and three roots behave like three roots of an equation. Shah et al. (1994) 
compared their quartic equation with the Peng- Robinson (1976) and Kubic (1982) equations of 
state and concluded that it was more accurate than either the Peng-Robinson or the Kubic equation 
of state. Lin et al. (1996) extended the generalised quartic equation of state, Eq.(3.37) to polar 
fluids. When applied to polar fluids, the equation requires four characteristic properties of the pure 
component, critical temperature, critical volume, acentric factor and dipole moment. They 
calculated thermodynamic properties of 30 polar compounds, and also compared with experimental 
literature values and the Peng-Robinson equation for seven polar compounds. Their results showed 
that various thermodynamic properties predicted from the generalised quartic equation of state were 
in satisfactory agreement with the experimental data over a wide range of states and for a variety of 
thermodynamic properties. The generalised quartic equation of state made good improvement in 
calculating the enthalpy departure, second virial coefficients, and the pressure-volume-temperature 
properties. 
 

 
 

Table 22.1    Summary of Modification of Repulsive term of the van der Waals Equation 
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Table 22.2     Summary of Modification of the attractive term of the van der Waals Equation 
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22.3.  Spherical tank filled with methane gas exposed to fire  
 
22.3.1.  First model: Heat transfer by only thermal convection  
Let us consider a spherical tank with inner radius “ 0R ” and outer radius “ 0R s+ ” – where “s” is the 

thickness of spherical tank -, exposed to conventional fire. The spherical tank contains the methane 
gas with initial pressure 0p  and initial temperature 0T . In this section, we determine the 

temperature, displacement and stress function in hollow spherical tank by starting to initial 
temperature in solid and gas equal to 0 RT T= . Moreover, we determine the variation of pressure and 

temperature in gas as function of the time. Let us assume the following hypothesis: 
1)  Heat transfer by only thermal convection (this hypothesis is don’t apply for high temperature)  
2)  Spherical tank is characterized by homogeneous material : steel with specific heat coefficient sc  

and density  sρ  constant respect to temperature; 

3)  The gradient of temperature along thickness of spherical tank are negligible and then ( )s sT T t= . 

The thickness “s” is more less to radius 0R : 0s R≪ ; 

4)  Spherical tank is subjected to Hydrocarbon fire curve  given by: 

 
0.167 2.5

60 60293.15 1080 1 0.325 0.675 [ ,sec]
t t

F e e K
− − 

Θ = + − − ° 
 

 (22.31) 

5) Ideal gas law,  Van der Waals and Redlich-Kwong equation of state are considered for methane 
gas. Let us consider the average temperature and pressure of gas as functions only variable time: 

( )g gT T t= , ( )g gp p t=  
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 (22.32) 

We consider the specific heat of gas gc  constant respect to variation of temperature. Moreover, the 

variation of volume of spherical tank is negligible and then average density of gas gρ  is constant 

respect to temperature.   
6)  The variation of Young’s modulus respect to temperature considered (see chapter XIX) is given 
by follows relationship: 
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where 
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 (22.34) 

7)  The variation of steel elastic limit of stress considered (see chapter XIX) is described by the 
following relations: 
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where 
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8)  The approximate function of Poisson’s ratio versus temperature considered (see chapter XX) is 
given by: 
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 ( ) [ ]50.276 7.057 10 0,1200T T T Cν −= + ⋅ ∀ ∈ °  (22.37) 

9)  The stress-strain relationship is perfectly elastic until elastic limit of stress. 
 
The differential equation related to heat conduction and the corresponding boundary conditions are 
reported below. By applying divergence theorem, the Fourier’s equation becomes: 

 2 v

V V S V

T
k T div dV ds c dV

t
ρ ∂∇ = − = − ⋅ =

∂∫ ∫ ∫ ∫q q n  (22.38) 

where k T= − ∇q  is heat flux, n in unit vector orthogonal at surface of spherical tank, V and S are 
volume and surface of solid, respectively. By applying the second and third hypothesis (2)-(3), we 
can rewrite the equation (22.38) for gas phase and spherical tank as follows: 
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 (22.39) 

where ,i eq q  are heat fluxes on inner and outer surfaces of spherical tank, respectively. By applying 

the first hypothesis (1) reported above, heat transfer by only thermal convection is given by: 

 ( ) ( ) ( ) ( ), ,i i s g e e s Fq h T t T t q h T t t = − = − Θ     (22.40) 

where ,e ih h  are convection coefficients for outer and inner surfaces of spherical tank, respectively 

These parameters assume the following values: ( ) ( )2 250 / , 9 /e ih W m K h W m K= ⋅° = ⋅° . 

( )F tΘ  represent the function of fire curve given by (22.31). We can rewrite the function ( )F tΘ  in 

follows form: 
 ( ) 1 2

0 1 2 [ ,sec]t t
F t H H e H e Kξ ξΘ = + + °  (22.41) 

where the coefficients 0 1 2 1 2, , , ,H H H ξ ξ  are  reported :  

                     3 2
0 1 2 1 21373.15, 729, 351, 2.78 10 , 4.17 10 ,H H H ξ ξ− −= = − = − = − ⋅ = − ⋅  

By substituting the relationship (22.40) in to first equation (22.39) we obtain: 
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By neglecting the term 2s  in equation (22.42) ( 0s R≪  ), we obtain the follows expression: 
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The second equation (22.39) for methane gas  becomes: 
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By solving the equation (22.44) respect to ( )sT t , we obtain: 

 ( ) ( ) ( )0

3
g g g

s g
i

c R d T t
T t T t

h dt

ρ 
= +  

 
 (22.45) 

By substituting the equation (22.45) in to (22.42), we obtain the differential equation in only 
unknown function ( )gT t : 

 
( ) ( ) ( ) ( ) 1 2

2

2 1 0 1 22

g g t t
g F

d T t d T t
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d t d t
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1 2,B B  are constants given by following relationships: 
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By solving the differential equation (22.46), we obtain the average temperature in gas ( )gT t : 

 ( ) 1 2 1 2
0 1 2 3 4

t t t t
gT t H C e C e C e C eω ω ξ ξ= + + + +  (22.48) 

where the integration constants 1 2,C C  are to determine and the constants 3 4 1 2, , ,C C ω ω  are given 

by: 
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By substituting the function (22.48) in equation (22.45), we obtain the temperature in spherical 
tank: 
 ( ) 1 2 1 2

0 1 2 3 4
t t t t

sT t H D e D e D e D eω ω ξ ξ= + + + +  (22.50) 

where the integration constants 1 2 3 4, , ,D D D D are reported below: 
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By imposing the initial conditions for spherical tank and gas, we determine the integration constants 

1 2,C C  : 
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Moreover, the temperature functions  ( ) ( ),g sT t T t  assume an asymptotic value for t → ∞ : 

 ( ) ( ) ( ) 0lim lim limg s F
t t t

T t T t t H
→∞ →∞ →∞

= = Θ =  (22.53) 

By applying the procedure examined in section 15.3, it is possible to determine displacement 
component ( ),ru r t , strain and stress components in spherical tank as reported below. The 

displacement function ( ),ru r t is given by: 

 ( ) ( )2
1 2r

g t
u g t r

r
= ⋅ +  (22.54) 

For the spherical tank of inner radius 0R  and outer radius 0R s+  the functions of time ( )1g t  and 

( )2g t  must  be determined from the condition that : 

 ( ) ( ) ( )0 0, 0,rr g rrr R p t r R sσ σ= = = + =  (22.55) 

where ( )gp t  is pressure of methane gas exercised on inner surface of spherical tank. The pressure 

of gas can be to determine by applying the equations of state for real gas examined in section 21.2. 
In this case the volume of spherical tank remain constant with increase of temperature and then the 
density of gas is constant. In this paragraph, let us consider three different equation of state for 
methane gas: i) ideal gas law, ii) Van der Waals equation of state, iii) Redlich-Kwong equation of 
state. By applying ideal gas law  (22.3), the pressure is given by: 

 ( ) ( )g
g g

R
p t T t

M

ρ
=

ɶ

 (22.56) 
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8.314472 / ( )R J mol K= ⋅°ɶ  is is the ideal, or universal, gas constant, and M is the molar mass of 
gas. We can rewrite the formula (22.56) in follows manner: 

 ( ) ( ) ( ) ( ) ( ) ( )
, where , , ,g c g g

g g g g
c c c

RT T t p t
p t T t T t p t

p M T p

ρ
χ χ= ⋅ = = =

ɶ
ɶ ɶɶ ɶ   (22.57) 

where ,c cT p  are critical temperature and pressure of gas, respectively.χ , ( )gT tɶ and ( )gp tɶ  are no-

dimensionless parameters.  By applying Van der Waals equation of state (22.7) and equation (22.8), 
we obtain the pressure of gas as reported below: 

                                                    ( ) ( ) 28 27

8 64g gp t T t
χ χ
χ

 = − − 
ɶɶ  (22.58) 

By applying Redlich-Kwong equation of state (22.11) and equation (22.12), we obtain the pressure 
of gas: 
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In this case the equation (22.57),(22.58),(22.59) furnish the same values in the range of temperature 
considered for fire curves. From the strain-displacement relation and Hooke’s law the non-zero 
stress components are: 
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By substituting the stress functions (22.60) in boundary conditions (22.55), we determine the 
unknown functions ( )1g t  and ( )2g t : 
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 (22.61) 

Finally, the displacement solution for a spherical tank  is : 
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The strain components are: 
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The stress components are:  

 

( )
( )

( )
( )

3 3
0 0

2
0 0

3 3
0 0

2
0 0

1 ,
3

1
1 ,

23

g
rr

g

p t R R s

rs s R R s

p t R R s

rs s R R s
θθ φφ

σ

σ σ

 + = −   + +     

 + = = +   + +     

 (22.64) 

The equivalent stress of Hencky von-Mises is given by: 
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The maximum and minimum values of equivalent stress are given by: 
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By equating the relations (22.66) and (22.35), it is possible to determine the collapse point of 
spherical tank (figure 21.16). Moreover, it is possible determine temperature collapse in spherical 
tank (figure 21.17) and collapse temperature in gas methane (figure 21.18). 
For example, let us consider a spherical tank with inner radius 0 10R m=  and thickness s = 2.5 cm. 

The thermal property of steel and methane gas are reported below: 
3 3 5
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In this case collapse of spherical tank is characterized by following parameters : 
 43min, max[ ] 65.85 , 777.13 , 689.27 ,C eq s gt MPa T C T Cσ= = = ° = °  (22.67) 

By applying the procedure reported above we determine temperature distributions versus time in 
spherical tank and in methane gas (figure 21.3) 
 

 
 

Figure 22.3 - Temperature profiles versus time:   
Hydrocarbon fire curve, spherical tank and gas methane 
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Figure 22.4 -  Radial displacement along radius direction 
 

 

 
 

Figure 22.5 - Radial strain along radius direction 
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Figure 22.6 - Circumferential strain along radius direction 
 
 

 
 

Figure 22.7 - Radial stress along radius direction 
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Figure 22.8  -  Circumferential stress along radius direction 
 

 
 

Figure 22.9  - Hencky von-Mises’s equivalent stress along radius direction 
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Figure 22.10  - Collapse point of spherical tank 
 

 
 

Figure 22.11  -  Collapse Temperature of spherical tank 
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Figure 22.12 -  Collapse temperature in gas methane 
 
 

22.3.2.  Parametric analyses for spherical tank exposed to fire  
In this section, a parametric analyses is conducted for determine the temperature, average gas 
pressure and Hencky-von Mises’s equivalent stress at collapse of spherical tank. The parameters 
considered are thickness and radius of spherical tank, but the properties of tank not change. 
Moreover, we make a comparison between parameters at collapse (temperature, maximum 
equivalent stress and  time) for three different gases: Methane, Hydrogen and Oxygen. The physical 
parameters of these gases are reported in table 22.3. By applying the procedure showed in section 
22.3, it is possible to note that the collapse occurs before if the tank is filled with oxygen compared 
to hydrogen and methane (figure 22.13). The average gas pressure at collapse increases with 
increasing thickness of spherical tank (figure 22.16). The Hencky-von Mises’s equivalent stress at 
collapse decrease with increasing thickness. The average pressure in the gas to collapse is greater if 
the gas contained in the tank is oxygen. Finally, we note that in figure 22.13 to figure 22.17, 
Methane and Hydrogen assume values almost equal although two different gases, while the oxygen 
assumes completely different values. 
 

 ρ  
vc  M 

cT  cp  

 3/kg m  ( )/J kg K⋅°  /kg mol °K MPa 

Methane ( 4CH ) 0.656 1735.4 316 10−⋅  191.1 4.64 

Hydrogen ( 2H ) 0.08988 10183 32 10−⋅  33.3 1.30 

Oxygen ( 2O ) 1.429 658 316 10−⋅  154.8 5.08 

 
Table 22.3 - Physical parameters of Methane, Hydrogen and Oxygen 

 
 



Chapter XXII : Spherical tank filled with gas exposed to fire 

F. Carannante 578 

 
 

Figure 22.13 -  Collapse instant versus thickness of spherical tank 
 

 
 

Figure 22.14 -  Tank temperature at collapse versus thickness of spherical tank 
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Figure 22.15 - Average gas temperature at collapse versus thickness of spherical tank 
 

 
 

Figure 22.16 -  Average gas pressure at collapse versus thickness of spherical tank 
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Figure 22.17 -  Maximum Hencky-von Mises’s equivalent stress at collapse versus thickness of 
spherical tank 

 
 

22.3.3.  Second model: Heat transfer by thermal convection and thermal radiation 

Let us consider a spherical tank with inner radius “ 0R ” and outer radius “ 0R s+ ” – where “s” is the 

thickness of spherical tank -, exposed to conventional fire, as described in section 22.3.1. The 
spherical tank contains the methane gas  with initial pressure 0p  and initial temperature 0T . In this 

section, we determine the temperature, displacement and stress function in hollow spherical tank by 
considering thermal convection and thermal radiation. Thermal radiation is energy emitted by 
matter as electromagnetic waves due to the pool of thermal energy that all matter possesses that has 
a temperature above absolute zero. Thermal radiation propagates without the presence of matter 
through the vacuum of space. Thermal radiation is a direct result of the random movements of 
atoms and molecules in matter. Since these atoms and molecules are composed of charged particles 
(protons and electrons), their movement results in the emission of electromagnetic radiation, which 
carries energy away from the surface. In this case, it is don’t possible to neglect thermal radiation 
because spherical tank is subjected to high temperature. The relations (22.40) become: 
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σ ε
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 (22.68) 

where , resσ ε  are Stefan-Boltzmann costant = ( )8 2 45.67 10 /W m K−⋅ ⋅ °  and  emissivities of inner 

and outer surfaces. By substituting the relations (22.68) in equation (22.39) and neglecting terms 
2s , we obtain for spherical tank : 
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 (22.69) 

and for methane gas: 
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σ ε
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 (22.70) 

The numerical solution of differential equations (22.69) and (22.70) in unknown functions 

( ) ( ),s gT t T t , furnishes the collapse temperature of spherical tank. For example, let us consider a 

spherical tank with inner radius 0 10R m=  and thickness s = 2.5 cm. The thermal property of steel 

and methane gas are reported in section 21.3.1. In this case collapse of spherical tank is 
characterized by following parameters : 
 17 min, max[ ] 69.71 , 768.86 , 745.58 ,C eq s gt MPa T C T Cσ= = = ° = °  (22.71) 

By comparison the first and second  model, we note that collapse temperature in tank and in gas 
assume values almost equal, but instant of collapse is different. In particular, if we consider heat 
transfer by thermal radiation and thermal convection, instant of collapse occurs before respect to 
case in which thermal radiation is neglected. We reported the graphics of functions ( ) ( ),s gT t T t  and 

comparison with solution reported in section 21.3.1. Moreover, we reported the comparison 
between first and second model of elastic solution obtained .  

 

 
 

Figure 22.18 -  Temperature profiles versus time: Hydrocarbon fire curve, spherical tank and gas 
methane (heat transfer by thermal radiation and thermal convection) 
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Figure 22.19 - Temperature in steel versus time (Comparison between first and second model) 

 
 

 
 

Figure 22.20 - Average gas temperature versus time (Comparison between first and second model) 
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Figure 22.21 -  Maximum radial displacement versus time  
(Comparison between first and second model) 

 
 

 
 

Figure 22.22  - Maximum radial strain versus time 
(Comparison between first and second model) 
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Figure 22.23 -  Maximum circumferential strain versus time 
(Comparison between first and second model) 

 
 

 
 

Figure 22.24 -  Average gas pressure versus time 
(Comparison between first and second model) 
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Figure 22.25 -  Maximum circumferential stress versus time 
(Comparison between first and second model) 

 
 

 
 

Figure 22.26 -   Maximum equivalent stress versus time 
(Comparison between first and second model) 
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Figure 22.27 -  Collapse point of spherical tank 
(heat transfer by thermal radiation and thermal convection) 

 
 

 
 

Figure 22.28 -  Collapse Temperature of spherical tank 
(heat transfer by thermal radiation and thermal convection) 
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Figure 22.29  -  Collapse temperature in gas methane 
(heat transfer by thermal radiation and thermal convection) 

 
22.4. Conclusions 
In this chapter is reported an approximate analytical thermo-elastic solution for spherical tank 
methane gas-filled exposed to hydrocarbon fire. The interaction between spherical tank and internal 
gas is studied. By applying a suitable simplified hypothesis on the mechanics of problem, we 
determine the analytical thermo-elastic solution for spherical tank. In this study we reported two 
analytical model that simulate the interaction between spherical tank and methane gas. In the first 
model, let us consider that heat transfer occurs by only thermal convection, but in second model the 
heat transfer occurs by thermal convection and thermal radiation. In this chapter, we determine the 
temperature, displacement and stress function in hollow spherical tank exposed to hydrocarbon fire. 
Moreover, we determine the average temperature and average pressure in methane gas, as function 
of time. The stresses in spherical tank increases over time because the fire increases the average 
temperature and pressure in the methane gas. By applying the Henchy von Mises’s criterion for 
steel tank, we determine the temperature of the collapse itself, taking into account the reduced 
strength of steel with temperature. The maximum Hencky-von Mises’s equivalent stress in spherical 
tank, at collapse, assume almost same value in both analytical models. Conversely, the collapse 
temperature calculated in the first model is less than that calculated in accordance with the second 
model. Finally, instant collapse of the tank calculated with the first model takes place much later 
than estimated with the second model. In conclusions, it is very important to consider heat transfer 
by thermal convection and thermal radiation, for determine the instant of collapse of tank exposed 
to fire. Conversely, the maximum Hencky-von Mises’s equivalent stress in spherical tank, can be to 
determine by neglecting the heat transfer by thermal radiation. 
 
22.5.  References 
[1] Ana,-Diana Ancas and D. Gorbanescu (2006), Theoretical models in the study of temperature 
effect on steel mechanical properties, Buletinul institutului politehnic Din Iasi, Tomul LII (LVI), 
Fasc. 1-2, 2006, Construct II. Arhitectura. 
[2] Alavi,F., Karimi, D., Bagri, A., (2008). An investigation on thermo-elastic behaviour of 
functionally graded thick spherical vessels under combined thermal and mechanical loads.  Journal 
of Achievements in Materials and Manufacturing Engineering, vol. 31,  Issue 2., pp. 422-428 
[3] Ahmet, N. E.; Tolga, A. (2006): Plane strain analytical solutions for a functionally graded 
elastic plastic pressurized tube. Pressure vessels and piping, 83, pp. 635–644. 



Chapter XXII : Spherical tank filled with gas exposed to fire 

F. Carannante 588 

[4] Benedict, M., Webb, G. R. and Rubin, L. C. (1940). An Empirical Equation for thermodynamic 
Properties of Light Hydrocarbons and Their Mixtures. I. Methane, Ethane, Propane and Butane. J. 
Chem. Phys. 8, 334-345. 
[5] Boley, B.A.,Weiner, J.H., Theory of thermal stresses, Dover publications, inc. Mineola, New 
York 
[6]  Boublik, T. (1970). Hard-Sphere Equation of State. J. Chem. Phys., 53, 471-473. 
[7] Boublik, T. (1981). Statistical Thermodynamics of Nonspherical Molecule Fluids. Ber. 
Bunsenges. Phys. Chem. 85, 1038-1041. 
[8] Carnahan, N. F. and Starling, K. E. (1969). Equation of State for Nonattracting Rigid Spheres. J. 
Chem. Phys., 51, 635-636. 
[9] Carnahan, N. F. and Starling, K. E. (1972). Intermolecular Repulsions and the Equation of State 
for Fluids. AIChE J., 18, 1184-1189. 
[10] Chakrabarty, J. (1998): Theory of Plasticity. McGraw Hill, New York. 
[11] Chen, Y. Z,; Lin, X. Y. (2008): Elastic analysis for thick cylinders and spherical pressure 
vessels made of functionally graded materials. Computational Materials Science, 44, pp.581–587. 
[12] Christoforakos, M. and Franck, E. U. (1986). An Equation of State for Binary Fluid Mixtures 
to High Temperatures and High Pressures. Ber. Bunsenges. Phys. Chem., 90, 780-789. 
[13] Delfosse, D.; Cherradi, N.; Ilschner, B. (1997): Numerical and experimental determination of 
residual stresses in graded materials. Composites, part B, 28B, pp. 127-141. 
[14] Fraldi, M., Nunziante, L., Carannante, F. (2007), Axis-symmetrical Solutions for n-plies 
Functionally Graded Material Cylinders under Strain no-Decaying Conditions, J. Mech. of Adv. 
Mat. and Struct. Vol. 14 (3), pp. 151-174 - DOI: 10.1080/15376490600719220 
[15] M. Fraldi, L. Nunziante, F. Carannante, A. Prota, G. Manfredi, E. Cosenza (2008), On the 
Prediction of the Collapse Load of Circular Concrete Columns Confined by FRP, Journal 
Engineering structures, Vol. 30, Issue 11, November 2008, Pages 3247-3264 -  DOI: 
10.1016/j.engstruct.2008.04.036  
[16] Fraldi, M., Nunziante, L., Chandrasekaran, S., Carannante, F., Pernice, MC. (2009), Mechanics 
of distributed fibre optic sensors for strain measurements on rods, Journal of Structural 
Engineering, 35, pp. 323-333, Dec. 2008- Gen. 2009 
[17] M. Fraldi, F. Carannante, L. Nunziante (2012), Analytical solutions for n-phase Functionally 
Graded Material Cylinders under de Saint Venant load conditions: Homogenization and effects of 
Poisson ratios on the overall stiffness, Composites Part B: Engineering, Volume 45, Issue 1, 
February 2013, Pages 1310–1324 
[18] Fuller, G. G. (1976). A Modified Redlich-Kwong-Soave Equation of State Capable of 
Representing the Liquid State. Ind. Eng. Chem. Fundam., 15, 254-257. 
[19] Guggenheim, E. A. (1965). Variations on van der Waals’ Equation of State for High Densities. 
Mol. Phys., 9, 199-200. 
[20] Heilig, M. and Franck, E. U. (1989). Calculation of Thermodynamic Properties of Binary 
Fluid Mixtures to High Temperatures and High Pressures. Ber. Bunsenges. Phys. Chem. 93, 898-
905. 
[21] Heilig, M. and Franck, E. U. (1990). Phase Equilibria of Multicomponent Fluid Systems to 
High Pressures and Temperatures. Ber. Bunsenges. Phys. Chem., 94, 27-35. 
[22] Ibrahim, H.; Tawfik, M.; Al-Ajmi, M. (2006): Aero-thermo-mechanical characteristic of 
functionally graded material panels with temperature dependant material properties. ICFDP 8, 
ASME conference, Sharm El-Sheikh, Egypt. 
[23] Koizumi, M. (1997): FGM activities in Japan. Composites, part B, 28B, pp. 1-4. 
[24] Lekhnitskii, S. G., (1981), Theory of Elasticity of an Anisotropic Body, Mir, Moscow. 
[25] Liew, K. M.; Kitipornchai, S.; Zhang, X. Z.; Lim, C. W. (2003): Analysis of the thermal stress 
behaviour of functionally graded hollow circular cylinders. Solids and Structures, 40, pp. 2355–80. 
[26] Lutz, M. P.; Zimmerman, R. W. (1996): Thermal stresses and effective thermal expansion 
coefficient of a functionally graded sphere. Thermal stress,19, pp. 39-54. 



Chapter XXII : Spherical tank filled with gas exposed to fire 

F. Carannante 589 

[27] McElroy, P. J. (1983). Association Parameters for Fluid Mixture Property Estimation. 
CHEMECA 83: Aust. Chem. Eng. Conf., 11th, 449-454. 
[28] Mèthode de prèvision pour le calcul du comportement an fen des structures en acier. D.T.U., 
Rev. Constr. Methal., 3 (1982) 
[39] Nayak, P.; Mondal, S. C. (2011): Analysis of a functionally graded thick cylindrical vessel with 
radially varying properties. Engineering science and technology, 3, pp.1551-1562. 
[30] Nayak, P.; Mondal, S. C., Nandi, A.,(2011), Stress, strain and displacement of a functionally 
graded thick spherical vessel, International Journal of Engineering Science and Technology 
(IJEST), Vol. 3 No. 4;  
[31] Noda, N.; Hetnarski, R. B.; Tanigawa, Y. (2003): Thermal Stresses. Taylor and Francis, New 
York. 
[32] Nunziante, L., Gambarotta, L., Tralli, A., Scienza delle Costruzioni, 3° Edizione, McGraw-
Hill, 2011, ISBN: 9788838666971 
[33] Obata, Y.; Noda, N. (1994): Steady thermal stress in a hollow circular cylinder and a hollow 
sphere of a functionally gradient materials. Thermal stress, 17, pp. 471-487. 
[34] Ozisik, M. N. (1985): Heat Transfer. McGraw Hill, New York. 
[35] Peng, X. L.; Li, X. F. (2010): Thermo-elastic analysis of a cylindrical vessel of functionally 
graded materials. Pressure vessels and piping, 87, pp. 203-210. 
[36] Peng, D. Y. and Robinson, D. B., (1976). A New Two-Constant Equation of State. Ind. Eng. 
Chem. Fundam., 15, 59-64. 
[37] Redlich, O. and Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V: An Equation 
of State. Fugacities of Gaseous Solutions. Chem. Rev., 44, 233-244. 
[38] Shah, V. M., Bienkowski, P. R. and Cochran, H. D. (1994). Generalized Quartic Equation of 
State for Pure Nonpolar Fluids. AIChE J., 40, 152-159. 
[39] Shah, V. M., Lin, Y. L., Bienkowski, P. R. and Cochran, H. D. (1996). A Generalized Quartic 
Equation of State. Fluid Phase Equilib ., 116, 87-93. 
[40] Shao, Z. S. (2005): Mechanical and thermal stresses of a functionally graded hollow circular 
cylinder with finite length. Pressure vessel and piping, 82, pp.155-163. 
[41] Shao, Z. S.; Ma, G. W. (2008): Thermo-mechanical stresses in functionally graded circular 
hollow cylinder with linearly increasing  boundary temperature. Composite Structures, 83, pp.259–
265. 
[42] Soave, G. (1972). Equilibrium Constants from a Modified Redlich-Kwong Equation of State. 
Chem. Eng. Sci., 27 , 1197-1203. 
[43] Soave, G. (1984). Improvement of the van der Waals Equation of State. Chem. Eng. Sci., 39, 
357-369. 
[44] Soave, G. (1992). A New Expression of q(α) for the Modified Huron-Vidal Method. Fluid 
Phase Equilib., 72, 325-327. 
[45] Soave, G., Bertucco, A. and Vecchiato, L. (1994). Equation of State Group Contributions from 
Infinite-Dilution Activity Coefficients. Ind. Eng. Chem. Res., 33, 975-980. 
[46] Structural Fire Design, Draft Modified Clauses, Eurocode 3, part 1.2, CEN/TC 250/SC3/N11 
(1993) 
[47] Tutuncu N, Ozturk M. (2001): Exact solutions for stresses in functionally graded pressure 
vessels. Composites, part B, 32, pp. 683- 686. 
[48] You, L. H.; Zhang, J. J.; You, X. Y. (2005): Elastic analysis of internally pressurized thick-
walled spherical pressure vessels of functionally graded materials. Pressure vessel and piping, 82, 
pp.347-354. 
[49] Zimmerman, R. W.; Lutz, M. P. (1999): Thermal stresses and thermal expansion in a 
uniformly heated functionally graded cylinder. Thermal stress, 22, pp. 177-188. 
[50] Zong -Yi Lee (2004): Coupled problem of thermo-elasticity for multilayered spheres with time-
dependent boundary conditions. Journal of Marine Science and Technology, Vol. 12, No. 2, pp. 93-
101  
 



Chapter XXIII : Thermal stress in insulated pipelines 

F. Carannante 590 

 CHAPTER XXIII 
THERMAL STRESS IN INSULATED PIPELINES 

 
23.1.  Introduction 
In recent years, new demands for insulated pipes operating at higher temperatures of up to 
approximately 150°C have indicated that there is a need to qualify the insulation material to 
withstand thermal degradation as well as the physical stresses incurred on buried pipeline systems at 
these temperatures. One of the few standards for evaluating pipe insulated with polyurethane foam 
operating at high temperatures is the European Standard EN 253. However, this standard was based 
on the requirements of the district heating industry and does not reflect some of the potential 
differences in materials of construction or service environments being proposed for pipelines.   
Selection of piping system is an important aspect of system design in any energy consuming 
system. The selection issues such as material of pipe, configuration, diameter, insulation etc have 
their own impact on the overall energy consumption of the system. Piping is one of those few 
systems when you oversize, you will generally save energy; unlike for a motor or a pump. Piping 
system design in large industrial complexes like Refineries, Petrochemicals, Fertilizer Plants etc are 
done now a day with the help of design software, which permits us to try out numerous possibilities. 
It is the relatively small and medium users who generally do not have access to design tools use 
various rules of thumbs for selecting size of pipes in industrial plants. These methods of piping 
design are based on either “ worked before” or “educated estimates”. Since everything we do is 
based on sound economic principles to reduce cost, some of the piping design thumb rules are also 
subject to modification to suit the present day cost of piping hardware cost and energy cost.  
There are many reasons for insulating a pipeline, most important being the energy cost of not 
insulating the pipe. Adequate thermal insulation is essential for preventing both heat loss from hot 
surfaces of ovens/furnaces/piping and heat gain in refrigeration systems. Inadequate thickness of 
insulation or deterioration of existing insulation can have a significant impact on the energy 
consumption. The material of insulation is also important to achieve low thermal conductivity and 
also low thermal inertia. Development of superior insulating materials and their availability at 
reasonable prices have made retrofitting or re-insulation a very attractive energy saving options. 
The insulated pipelines constituted by composed material can be consider as multilayered cylinder. 
Multilayered cylinder are important non-homogeneous materials designed to work in a high-
temperature environment. A number of research works have been carried out for thermo-elastic 
problems of multilayered structures. Obata and Noda  studied the one-dimensional steady thermal 
stresses in a functionally graded circular hollow cylinder and hollow sphere by use of a perturbation 
method. By introducing the theory of laminated composites, Ootao and Tanigawa treated the three-
dimensional transient thermal stresses of functionally graded rectangular plates due to partial heat 
supply, and analyzed the piezo-thermo-elastic problem of a functionally graded rectangular plate 
bonded to a piezoelectric plate. Kim and Noda researched the two-dimensional unsteady thermo-
elastic problems of functionally graded infinite hollow cylinders by using a Green’s function 
approach. Jabbari et al. derived analytical solutions for one-dimensional steady-state thermo-elastic 
problems of functionally graded circular hollow cylinders in the case of material models expressed 
as power functions of r, and treated the two-dimensional thermo-elastic problems of the functionally 
graded cylinder by using the Fourier transform. Erashlan obtained analytical solutions for thermally 
induced axisymmetric and elastic–plastic deformations in non uniform heat-generating composite 
tubes. Liew et al. obtained analytical solutions of a functionally graded circular hollow cylinder by 
a novel limiting process that employs the solutions of homogeneous circular hollow cylinders. Shao 
and Wang derived analytical solutions of mechanical stresses of a functionally graded circular 
hollow cylinder with finite length. Ma and Wang investigated the nonlinear bending and 
postbuckling behaviour of a functionally graded circular plate subjected to thermal/mechanical 
loadings based on classical plate theory. In their studies, the material properties were considered as 
both temperature dependent and temperature independent. 
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Besides, most studies are conducted on thermal insulation systems in order to evaluate material 
performance under representative conditions of pressure, temperature and ageing media, as studied 
by Choqueuse et al. and Gimenez et al. Up to now, just few experimental recent studies deal with 
thermal performance evaluation on large-scale multilayered insulated pipelines submitted to severe 
conditions. Such upscale structure tests were performed by Haldane et al., in the Heriot–Watt and 
TNO Institute of Applied Physics work, who developed a direct measurement system to determine 
in-situ the thermal characteristics of insulated pipes submitted to hydrostatic pressures up to 145 
bar, internally heated with circulating oil (up to 140 °C) and with external cooling at 8 °C. Finally, 
Bouchonneau et al. present the numerical and experimental characterizations of an industrial 
multilayered insulated pipeline tested in service conditions.  
In this chapter, the industrial insulated pipeline is modelled as multilayered cylinder, subjected to 
mechanical and thermal loads. By using a multi-layered approach based on the theory of laminated 
composites, the solutions of temperature, displacements, and thermal/mechanical stresses in 
multilayered cylinder are presented. The material properties are assumed to be temperature-
independent and radially dependent, but are assumed to be homogeneous in each layer.  Steady-
state thermo-elastic problem of multilayered cylinder subjected to axis-symmetric thermal and 
mechanical loads is considered. In order to obtain analytical solutions of temperature, 
displacements, and stresses for the two-dimensional thermo-elastic problem, the cylinder is 
assumed to be composed of  n fictitious layers in the radial direction. The material properties of 
each layer are assumed to be homogeneous. 
By applying the analytical thermo-elastic solution reported in Chapter XVII, a parametric analysis 
is conducted for study the mechanical behaviour of a industrial insulated pipeline composed by 
three phases: steel, insulate coating, and outer layer made of polyethylene to protect the insulation 
(see figure 23.1). Finally, it is presented numerical example by considering three types of materials 
for insulate coating: (1) Expanded Polyurethane; (2) Laminate glass; (3) Syntatic foam.  
In this model, the insulate coating is not selected, but a parametric analyses is conducted varying the 
Young’s modulus, Poisson’s ratio, thermal conductivity and linear expansion coefficient. In this 
analyses the maximum equivalent stress of Hencky- von Mises is determined in steel phase and in 
insulate coating.  Finally, is reported a numerical example in which the insulate coating is 
composed by polyurethane rigid foam. 
 
23.2. Design of radius and thickness for insulated pipelines according to EN 253 
Insulation materials are classified into organic and inorganic types. Organic insulations are based on 
hydrocarbon polymers, which can be expanded to obtain high void structures. Examples are 
thermocol (Expanded Polystyrene) and Poly Urethane Form(PUF). Inorganic insulation is based on 
Siliceous/Aluminous/Calcium materials in fibrous, granular or powder forms. Examples are Mineral 
wool, Calcium silicate etc. Properties of common insulating materials are reported below: 

• Calcium Silicate: Used in industrial process plant piping where high service temperature and 
compressive strength are needed. Temperature ranges varies from 40 C to 950 C; 

• Glass mineral wool: These are available in flexible forms, rigid slabs and preformed pipe 
work sections. Good for thermal and acoustic insulation for heating and chilling system 
pipelines. Temperature range of application is –10 to 500 C; 

• Thermocol: These are mainly used as cold insulation for piping and cold storage 
construction; 

• Expanded nitrile rubber: This is a flexible material that forms a closed cell integral vapour 
barrier. Originally developed for condensation control in refrigeration pipe work and chilled 
water lines; now-a-days also used for ducting insulation for air conditioning; 

• Rock mineral wool: This is available in a range of forms from light weight rolled products to 
heavy rigid slabs including preformed pipe sections. In addition to good thermal insulation 
properties, it can also provide acoustic insulation and is fire retardant. 
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Fig. 23.1 – a) Multilayered cylinder composed by n-hollow cylinders ; b) Cross section of insulated 

pipeline composed by three phases   
 
The thermal conductivity of a material is the heat loss per unit area per unit insulation thickness per 
unit temperature difference. The thermal conductivity of materials increases with temperature. So 
thermal conductivity is always specified at the mean temperature (mean of hot and cold face 
temperatures) of the insulation material. Generally, the industrial insulate pipeline is composed by 
three phase: (1) steel pipe, (2) insulate coating, and (3) external casing. The minimum dimensions 
of thickness of the steel pipe and casing are prescribed in European Standards EN 253, as function 
of nominal outside diameter. In particular the diameter of steel pipe shall be in accordance with 
Table 2 of EN 253 which is derived from EN 10220. The nominal wall thicknesses of steel pipe 
shall be in accordance with EN 10220 with a minimum as indicated in Table 2 of EN 253. It is 
possible to determine an analytical curve that furnished the minimum values of thickness as 
function of inner radius of steel pipe. This curve fitting the values given by EN 253 as reported 
below (the parameters are valuated in m): 

 (1) 2 (0)7 10 /10 [ ]R mδ −= ⋅   (23.1) 

where (1)δ and (0)R are thickness and inner radius of phase (1) that correspond to steel pipe, 
respectively. Analogous it is possible to determine the analytical curve that furnished the minimum 
values of thickness as function of maximum radius of casing . This curve fitting the values given by 
EN 253 as reported below: 

 (3) 2 (2)5 10 /10 [ ]R mδ −= ⋅  (23.2) 

where (3)δ and (2)R are thickness and inner radius of phase (3) that correspond to casing, respectively. 
By applying the relationship (23.1) and (23.2), the expressions of radius of single phases are given 
by: 
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By applying the expressions (23.3), the geometrical parameters of insulate pipeline depends only 
two parameters (0)R  and (2)δ . The maximum radius of casing and minimum radius of pipe steel are 
708.5mm and 8.65mm, respectively, as reported in EN 253.  The inner radius (0)R  of steel pipe and 
thickness of insulate coating (2)δ can to vary in following ranges:.  
 (0) 3 (2)[8.65 10 ,0.69 ], [0,0.7 ],R m m mδ−∈ ⋅ ∈  (23.4) 

If the inner radius (0)R  is fixed , the thickness (2)δ must be satisfy the follows inequality: 

 ( )(2) (0) (0) 5/20 0.708 7 10R Rδ −≤ ≤ − + ⋅  (23.5) 

If the thickness (2)δ  is fixed , the inner radius (0)R  must be satisfy the follows inequality: 

 ( )3 (0) (2) 5 5 (0) (2)8.65 10 0.7 3.5 10 7 49 4 10m R Rδ δ− −  ⋅ ≤ ≤ − − ⋅ − + + ⋅ −
  

 (23.6) 

 
23.3.   Parametric analysis of insulated pipeline composed by three phases 
In this section a industrial insulated pipeline is modelled by multilayer cylinder composed by three 
hollow cylinders (Figure n.1). The materials that characterised the insulated pipeline are steel 
(phase 1) the insulated coating  (phase 2), and polyethylene to protect the insulation (phase 3), 
respectively. In according to European Standards EN 253, the inner radius and thickness of pipeline 
and polyethylene jacket  are fixed by applying the limitation reported in table 2 of European 
Standards EN 253. The mechanical and thermal property of steel and polyethylene jacket  are 
reported in table n.1, but varying the properties of insulated coating. The inner radius of steel pipe 
and thickness of insulate coating are fixed: (2)

0 0.20 , 0.20R m mδ= = . Two load conditions are 

considered: (a) pipeline subjected to gradient of temperature between the internal and external 
surfaces int extT T T∆ = − ; (b) pipeline subjected to only internal pressure. These load conditions are 

analysed separately. In particular, for first load condition (a), two sub-cases are considered in which 
are varying only two parameters and other are fixed : (i) variation of Poisson’s ratio and Young’s 
modulus, with fixed values of the thermal conductivity coefficients and linear thermal expansion 
coefficients; (ii) variation of Young’s moduli and linear thermal expansion coefficient, with fixed 
values of the Poisson’s ratio and thermal conductivity coefficients.  In second load condition (b)  is 
studied one case where the parameters vary are  Poisson’s ratio and Young’s modulus.  
The equivalent stress determines whether yielding occurs. For planar isotropy and non-homogeneity 
in radial direction, the equivalent stress based on the Henchy- von Mises criteria is given by follows 
equation: 

 ( ) ( ) ( )
1 22 2 2( ) 1 2 ( ) ( ) ( ) ( ) ( ) ( )2i i i i i i i

eq rr rr zz zzθθ θθσ σ σ σ σ σ σ−  = − + − + −  
 (23.7) 

The following non-dimensional parameters for the maximum absolute value of non-dimensional 
equivalent stress are assumed: 
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                                    ( ) ( )
int int, 0 ,i i

eq eq e i Rp for p and T T Tσ σ= ≠ = =  (23.9) 

In figures 23.2, 23.3, 23.4, 23.5, 23.6, 23.7, 23.8, 23.9, 23.10 are reported the maximum values of 
the non- dimensional equivalent stress calculated by  formulas (23.8) and (23.9) in steel pipe, 
insulate coating and polyethylene jacket, respectively. Figures 23.2, 23.3, 23.4, 23.5, 23.6, 23.7 are 
related to load condition (a) characterized by gradient of temperature between inner surface of steel 
pipe and external surface of polyethylene jacket. Figures 23.2, 23.3, 23.4 are determined by varying 
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only Poisson’s ratio and Young’s modulus. These figures show that by increasing Young’s modulus 
of insulate coating, the maximum values of the equivalent stress increase in steel pipe, but 
remaining practically constant in polyethylene jacket and insulate coating. Moreover, by increasing 
the Poisson’s ratio of insulate coating, the maximum values of the equivalent stress increase in all 
three phases. If insulated coating is composed by auxetic material with negative Poisson’s ratio, the 
maximum equivalent stress in steel pipe, insulted coating and polyethylene jacket  reduces 
sensibility. Figures 23.5, 23.6, 23.7 are determined by varying only Young’s modulus and linear 
thermal expansion coefficient. These figures show that by increasing Young’s modulus of insulate 
coating, the maximum values of the equivalent stress increase in steel pipe, but remaining 
practically constant in polyethylene jacket and insulate coating. Moreover, by increasing linear 
thermal expansion coefficient of insulate coating, the maximum values of the equivalent stress 
increase in all three phases. Figures 23.8, 23.9, 23.10 are related to load condition (b) characterized 
by internal radial pressure in insulated pipeline. These figures are determined by varying only 
Poisson’s ratio and Young’s modulus.  By increasing Young’s modulus in insulate coating, the 
maximum equivalent stress decrease in steel pipe and polyethylene jacket, but increase in  insulate 
coating. By decreasing the Poisson’s ratio in insulate coating, maximum values of equivalent stress 
increase in polyethylene jacket and insulate coating, but decrease in steel pipe. For negative values 
of Poisson’s ratio in insulate coating, the maximum equivalent stress reduce sensibility in steel pipe, 
but increase polyethylene jacket and insulate coating. The mechanical behaviour of insulated 
pipeline is different for two load conditions (a) and (b) considered.  
 

 
 

Fig. 23.2 - Maximum value of  non-dimensional equivalent stress in steel pipe (phase n.1). Insulate 
pipeline subjected to gradient temperature - Poisson’s ratio and Young’s modulus variation  
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Fig. 23.3 - Maximum value of  non-dimensional equivalent stress in insulated coating (phase 2). 
Insulate pipeline subjected to gradient temperature  - Poisson’s ratio and Young’s modulus 

variation  
 

 
 

Fig. 23.4 - Maximum value of  non-dimensional equivalent stress in polyethylene jacket (phase 3). 
Insulate pipeline subjected to gradient temperature  - Poisson’s ratio and Young’s modulus 
variation  
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Fig. 23.5 - Maximum value of  non-dimensional equivalent stress in steel pipe (phase n.1). Insulate 
pipeline subjected to gradient temperature - Young’s modulus and linear thermal expansion 
coefficient variation – 
 

 
 

Fig. 23.6 - Maximum value of  non-dimensional equivalent stress in insulated coating (phase 2). 
Insulate pipeline subjected to gradient temperature  - Young’s modulus and linear thermal 
expansion coefficient variation – 
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Fig. 23.7 - Maximum value of  non-dimensional equivalent stress in polyethylene jacket (phase 3). 
Insulate pipeline subjected to gradient temperature  - Young’s modulus and linear thermal 
expansion coefficient variation – 

 
 

Fig. 23.8  Maximum value of  non-dimensional equivalent stress in steel pipe (phase n.1). Insulate 
pipeline subjected to internal radial pressure - Poisson’s ratio and Young’s modulus variation  
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Fig. 23.9  Maximum value of  non-dimensional equivalent stress in insulated coating (phase 2). 
Insulate pipeline subjected to internal radial pressure  - Poisson’s ratio and Young’s modulus 
variation - 
 

 
 

Fig. 23.10  Maximum value of  non-dimensional equivalent stress in polyethylene jacket. Insulate 
pipeline subjected to internal radial pressure  - Poisson’s ratio and Young’s modulus variation – 
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23.4.  Numerical example for insulated pipeline structure  
In this section is reported a numerical examples for insulated pipeline constituted by three phases: 
steel pipe, insulate coating and polyethylene jacket. Numerical example are development by fixing 
thermal and mechanical properties of insulate coating for different materials. The mechanical and 
thermal property of steel and polyethylene jacket are reported in table n.1. The non-dimensional 
equivalent stress, calculated by applying formulas (23.8) and (23.9), is evaluated for three types of 
materials that characterized the insulate coating: (1) Expanded Polyurethane; (2) Laminate glass; (3) 
Syntatic foam. The mechanical and thermal properties of these materials are reported in table n.2. In 
three cases studied the inner radius of steel pipe and thickness of insulate coating are 
fixed: (2)

0 0.10 , 0.30R m mδ= = . Figure 23.11 shows the equivalent stress versus the radius in steel 

pipe. If insulate coating is constituted by laminate glass - case (2) -  the non-dimensional equivalent 
stress of Hencky von-Mises assume values more less respect to other cases (1) and (3) studied, 
because liner thermal expansion coefficient of laminate glass is more less of expanded polyurethane 
and syntatic foam. Figure 23.12 shows non-dimensional equivalent stress versus the radius in 
insulate coating. If insulate coating is constituted by expanded polyurethane – case (1) - the non-
dimensional equivalent stress assume values more than respect to other cases (2) and (3) studied. 
Finally, figure 23.13 shows non-dimensional equivalent stress versus the radius in polyethylene 
jacket. If insulate coating is constituted by laminate glass - case (2) -  the non-dimensional 
equivalent stress of Hencky von-Mises assume values more less respect to other cases (1) and (3). 
Then, if laminate glass is utilized as insulate coating, the equivalent stress in steel pipe and in 
polyethylene jacket are reduced  respect to other two cases examined. 
 

 

 
 

Fig. 23.11 - Non-dimensional equivalent stress in steel pipe vs radius. Insulate pipeline subjected to 
gradient temperature  -  case (1): Expanded Polyurethane; case (2): Laminate glass; case (3): 
Syntatic foam;  
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Fig.  23.12 - Non-dimensional equivalent stress in insulate coating vs radius. Insulate pipeline 
subjected to gradient temperature  -  case (1): Expanded Polyurethane; case (2): Laminate glass; 
case (3): Syntatic foam;  
 

 
Fig.  23.13  - Non-dimensional equivalent stress in polyethylene jacket vs radius. Insulate pipeline 
subjected to gradient temperature  -  case (1): Expanded Polyurethane; case (2): Laminate glass; 
case (3): Syntatic foam;  
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  Steel pipe Polyethylene jacket 

2E N m− 
   9210 10⋅  90.7 10⋅  

1 1k W m K− − 
   45 0.40 

ν  0.30 0.42 
1 1m m Kα − ⋅   51.2 10−⋅  42.25 10−⋅  

 
Table 23.1 - Mechanical and thermal parameters of steel and polyethylene   

 

  
2E N m− 

   ν  
1 1k W m K− − 

   1 1m m Kα − ⋅   

Expanded Polyurethane 90.025 10⋅  0.49 0.017 41.25 10−⋅  

Laminate glass 926 10⋅  0.28 0.036 51.9 10−⋅  

Syntatic foam 91.10 10⋅  0.32 0.165 55.0 10−⋅  
 

Table 23.2 - Mechanical and thermal parameters of  following materials: 
 (1) Expanded Polyurethane; (2) Laminate glass; (3) Syntatic foam;  

 
23.5.  Conclusions 
In this study, analytical and numerical results for a multilayered cylinders were obtained. The 
analytical thermo-elastic solution in closed form is employed to obtain the parametric analyses for 
insulated pipeline. In particular, the parametric analyses presented in this paper can be to utilized 
for to optimize the designer of the industrial insulate pipeline subjected to mechanical and thermal 
loads. By summarized the results obtained, it is possible reduce the maximum equivalent stress in 
insulate pipeline by utilizing the multilayer hollow cylinders constituted by insulated coating with 
selected mechanical and thermal property. When the insulate pipeline is subjected to only gradient 
temperature with insulated coating composed by auxetic material (negative Poisson’s ratio), the 
maximum equivalent stress in steel pipe, insulated coating and polyethylene jacket reduces 
significantly. Moreover, maximum equivalent stress reduces in steel pipe, coating and jacket if 
linear thermal expansion coefficient of insulate coating assume values close to that of steel.  In the 
case of insulate pipeline subjected to only radial pressure, insulated coating with negative Poisson’s 
ratio reduces maximum equivalent stress only in steel phase, but increases the value in other two 
phases. The temperature, displacement and thermal stress distributions obtained in this model, can  
be applied to mechanical parts in precision measurement or design useful structural applications. 
Finally, the proposed method may be readily extended to solve a wide range of physical engineering 
problems. 
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CHAPTHER XXIV 
ANALYTICAL PREDICTION OF THE ULTIMATE COMPRESSIVE STRENGHT IN 

CYLINDRICAL CONCRETE SPECIMENS CONFINED BY F.R.P. 
 
24.1.  Introduction 
The present chapter establishes a constructive method for obtaining closed-form elastic and post-
elastic solutions for multilayered cylinder, constituted by an isotropic central core and n arbitrary 
cylindrically orthotropic hollow phases. To this purpose, in Chapter IX. it is developed a 
mathematical procedure aimed to construct exact elastic solutions for multilayered cylinder, 
constituted by n cylindrical hollow phases and a central core, each of them modelled as linearly 
elastic, homogeneous and isotropic (Figure 24.1). Under the hypotheses of axis-symmetrical 
boundary conditions and perfectly bonded phases, analytical solutions for self-equilibrated axial 
forces applied at the extremities of the object are derived, in a completely general way, that is for 
arbitrary elastic moduli and number of phases. The approach is based on a specific choice of Love’s 
bi-harmonic scalar functions ( ) ( , )i r zχ , [13], where (i) stands for the generic i-th phase. As already 
proved by some of the Authors in a previous work [14] with reference to a more general case, the 
field differential equations involving partial derivatives reduce to a set of Euler-like ordinary one-
dimensional uncoupled differential equations, that can be analytically solved by means of an in 
cascade technique. As a consequence, the continuity conditions for displacements and stresses at 
the interfaces become algebraic: the whole set of boundary conditions can be then written in a 
matrix form and solved straightforwardly [14]. 
In the Chapter XII. the above described strategy is generalized to multilayered cylinder constituted 
by cylindrically orthotropic hollow phases, by invoking the classical Complex Potential Theory for 
anisotropic materials [10] and using a suitable rearrangement of the equations suggested by Ting 
[12]. In this way, due to the permanency of the axis-symmetry of the problem, an strategy 
analogous to that constructed for isotropic multilayered cylinder is obtained and the Boundary 
Value Problem (BVP) is hence reduced again to an algebraic one, governed by a matrix whose 
order is depending upon the number of hollow phases and whose coefficients are explicitly related 
to the geometrical and mechanical parameters of the object. Afterwards, in the Chapter XII, this last 
procedure is specialized to an multilayered cylinder composed by two-phase, constituted by an 
isotropic core and a surrounding hollow cylindrically orthotropic phase, by explicitly furnishing the 
elastic solutions in terms of stress, strain and displacement fields for the case of axial forces applied 
at the ends of the solid. With the aim of studying cylindrical concrete specimens reinforced by 
means of Fibre Reinforced Polymeric sheets in compression, the elastic solutions found in the case 
analysed in Chapter XII are extended to the post-elastic range, by investigating the evolution of the 
stress field when the core phase is characterized by an Intrinsic Curve or Schleicher-like elastic-
plastic response with associate flow rule and the cylindrically orthotropic hollow phase obeys to an 
elastic-brittle Tsai-Hill anisotropic yield criterion. The choice of these post-elastic behaviours is 
suggested by experimental evidences reported in literature for these materials, as well as the 
cylindrical orthotropy of the hollow phase intrinsically yields to consider several perfectly bonded 
FRP layers as an equivalent one, interpreting their overall mechanical response by invoking the 
theory of homogenization and the mechanics of composites [15]. At the end, a numerical example 
application to cylindrical concrete specimens reinforced with Carbon FRP is presented, by 
furnishing a predictive formula – derived from the previously obtained analytical solutions - for 
estimating the overall collapse mechanism, the concrete ultimate compressive strength and the 
confining pressure effect. The results are finally compared with several experimental literature data, 
highlighting the very good agreement between the theoretical predictions and the laboratory 
measurements. 
 
24.2. Closed-form solutions for multilayered cylinder composed by isotropic phases 
In this section is reported exact closed-form elastic solutions for isotropic multilayered cylinder 
under special axis-symmetrical boundary conditions, that is axial forces applied at the extremities of 
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the solid. In Chapter IX  it is investigated about a class of axis-symmetrical solutions for 
multilayered cylinder, called there non-decaying solutions, characterised by the following form of 
the Love’s function: 

 
4

( ) ( )

0

( , ) ( ) , {0,1,2,..., }i k i
k

k

r z z f r i nχ
=

= ∀ ∈∑  (24.1) 

where ( ) ( )i
kf r  are unknowns to be determined. By conditioning (24.1) to satisfy field and boundary 

equations at the interfaces between adjacent phases, it is possible to prove (see Chapter XI) that the 
Love’s function (24.1) represents the complete set of elastic solutions producing zzε  not depending 

on the radial coordinate r : as a consequence, this set of solutions was called zzε -non-decaying , in 

the sense that - passing from a phase to another phase in the radial direction of multilayered 
cylinder - the axial strain results always uniform. In Chapter IX it is also shown that the loads able 
to generate this special situation are reducible to any possible combination of the following cases: 
self-equilibrated axial forces zN  applied at the ends of multilayered cylinder; anti-plane uniform 

shear tractions 0τ  prescribed on the cylindrical external surface of the solid; linearly varying with z 

pressures, 0 1( )p z p p z= + , applied on the cylindrical boundary. In the subsequent section, it will be 

then developed the elastic solution associated to the same loads, in the framework of anisotropic 
materials, for multilayered cylinder composed by cylindrically orthotropic hollow phases. The core 
of these orthotropic cylinders will remain isotropic: this assumption explains the presentation of the 
isotropic elastic solutions before to extend the results to the orthotropic case and is motivated by a 
mechanical consistency requirement. For seek of brevity, remanding to the reader to the Chapter IX 
for the mathematical passages, the elastic solution for the isotropic core phase is only reported in 
explicit. In particular, it is possible to prove that – in the case of axial load applied at the object ends 
- by excluding the terms affected by 1r −  and log r  appearing for the generic i-th hollow phase, for 
the cylindrical core phase we find the displacement in the following general form: 
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where the superscript “(0)” stands for the core-phase and (0)
/n kC  are algebraic coefficients to 

determine by means of the equilibrium and compatibility conditions at the interfaces. By applying 
the strain-displacement and stress-strain relationship for isotropic material, we obtain the stresses in 
the core phase: 
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 (24.3) 

The results obtained above satisfy the equilibrium and compatibility in terms of field equations, that 
is inside each generic i-th phase of multilayered cylinder. Under the assumption of  elastic response 
and perfect bond at the cylindrical interfacial boundaries (no de-lamination or friction phenomena), 
we have now to establish the equilibrium and the compatibility at the interfaces between two 
generic adjacent phases, as well as the equilibrium with the prescribed loads on the external 
boundary. In particular, due to the axis-symmetry of the problem, these conditions reduce to 
equating radial and axial displacement components at each interface, as well as the radial and anti-
plane shear stresses. These last stress components have to be also vanishing on the external 
cylindrical surface of the object, while the stress ( )i

zzσ  emerging at the multilayered cylinder 
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extremities must be equal to the overall force zN . As analytically shown in the subsequent section, 

the whole set of boundary conditions generates a linear algebraic problem. 

r

phase i-th (cladding)

central core

y

x

z

Multilayered cylinder

θ

 
Figure 24.1  -  Sketch of multilayered cylinder 

 
24.3.  Elastic solutions for multilayered cylinder composed by cylindrically orthotropic phases 
Let us consider an multilayered cylinder composed by an isotropic core and n orthotropic 
surrounding cylindrical hollow phases, also called jackets in what follows: { , , }r zθ  are the principal 
directions of the material cylindrical orthotropy and the load is the same of the previous isotropic 
case. It is worth to highlight that the axis-symmetry of the problem is therefore still present, but the 
core is the sole phase for which we can recall the obtained solutions in terms of displacements and 
stresses, being the Love’s function not representative of a possible solution for cylindrically 
orthotropic BVPs. In the case that the material of hollow phases possesses cylindrically orthotropy, 
then the linearly elastic constitutive relation of  the ith phase, in the Voigt notation, is: 
 ( )i

k kj jCσ ε=  (24.4) 

where stress and strain vectors and the Elasticity matrix are respectively:  
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 (24.5) 

By applying the procedure illustrated in Chapter XII for multilayered cylinder composed by 
cylindrically orthotropic phases, we obtain for i-th generic hollow phase that circumferential 
displacement component vanishes (( ) 0iuθ = ), but other displacement components are given by:  
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By using the compatibility equations, the displacement (24.6) furnishes the strains: 
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Moreover, from the constitutive law (24.5), the non-zero stress components assume the following 
form: 
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It is worth to note that the found solution results able to also represent, as particular cases, the 
situations where isotropy or different types of transverse isotropy occur, as showed in Chapter XII.  
 
24.4. Boundary conditions at the interfaces and on the external surface 
By making reference to an multilayered cylinder made of a central isotropic core and to n∈N  
arbitrary surrounding hollow cylindrically orthotropic phases, subjected to axial load zN , the 

displacement field for the core is obtained by equation (24.2): 
 (0) (0) (0) (0) (0)

0, 0,r r zu r u u zθε ε= = =  (24.11) 

where (0) (0) (0) (0) (0)
2/1 0 0 2/2 1, , 0.r C Cε µ ε ε ε= = = =  By applying the equations (24.3), we obtain non-

zero stress components for core phase: 

 ( ) ( )(0)(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) ( ) (0)
0 0,2 2 2 ,r

i
rr zz rθθσ σ ε λ ε µ λ σ ε µ λ λ ε= + += + = +  (24.12) 

The displacement components for the i-th generic phase are given by equations (24.6). The 
displacements and the stress above obtained satisfy the field equations in each phase of the object. 
Then, it remains to consider the boundary conditions at the interfaces, where perfect bond is 
assumed, and the equilibrium on the lateral cylindrical surface (zero tractions) and at the ends, 
where axial forces are applied. 
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The unknown algebraic parameters to determine are below summarized:  
 (0) (0) ( ) ( ) ( )

0 0 1 2, , , , .i i i
r C Cε ε ε  (24.13) 

In particular, the first two coefficients in (24.13) represent the unknowns related to the core, while 
the other ones, whose number is 3 n× , represent the unknown parameters corresponding to the 
hollow phases. Hence, the total number of unknowns is (2 3 )n+ × , which equals the number of 
algebraic equations to solve, as described in Chapter XII. Indeed, as we will show in the following, 
the boundary equations at the interfaces are three, while the boundary conditions on the external 
cylindrical surface and on the end basis are two. With references to Chapter XII the algebraic 
system to solve is characterized by boundary conditions at the interfaces and on the external 
surface, as reported below: 
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where ( )iR  is the outer radius of the generic i-th phase and zN∓  are the axial forces applied on the 

bases 0,z z L= = , respectively. The explicit expressions of equations (24.14) is reported in Chapter 
XII.  
 
24.5. Closed-form elastic solutions for multilayered cylinder composed by two cylindrically 
orthotropic phases 
Let us now consider an multilayered cylinder constituted by an isotropic central core, Figure 24.2, 
and a sole cylindrically orthotropic surrounding phase or jacket, under axis-symmetrical boundary 
conditions characterized by axial forces acting at the extremities of the object. As a matter of fact 
this one is a particular case of great utility for many applications, as will be shown later. 
In this case, the displacements for the two phase are represented by the equations  (24.11) and 
(24.6) respectively, while (24.12) furnishes the stress within the core and (24.8),(24.9),(24.10) give 
the stresses inside the hollow phase. In the following, we will denote with the apices “0” and “1” 
the quantities related to the core and to the jacket phase, respectively. 
In order to obtain the analytical solution of the problem in explicit form, we should solve the 
algebraic system corresponding to the boundary conditions (24.14), for determining the five 
unknown coefficients (0) (1) (0) (1) (1)

0 0 1 2{ , , , , }r C Cε ε ε . The  solution of algebraic system (24.14) 

particularized for multilayered cylinder composed by isotropic central core and cylindrically 
orthotropic jacket phase is reported in paragraph 12.3 (Chapter XII). 
 
24.6. Closed-form non-linear solutions for multilayered cylinder composed by two 
cylindrically orthotropic phases 
The interest in the elastic and post-elastic analysis of multilayered cylinder covers many 
engineering fields. The pipelines for transport of liquids are layered shells in the form of hollow 
cylinders, where the local buckling, large displacements and elastic-plastic phenomena are the main 
responsible of the failure mechanism occurring in the sub-marine applications. In biological tissues, 
hierarchical structures of muscles and arterial walls, as well as the osteons – base unit of the cortical 
bone – exhibit multilayered cylinder like architectures at the micro-scale level and often analytical 
solutions are required for deriving their overall linear and non-linear homogenized constitutive 
behaviour, useful for studying mechanical interactions with prosthesis devices or for predicting 
growth phenomena. 
Moreover, in the last years, due to the increasing interest in the restoration of concrete civil 
structures, many experimental and theoretical applications have been carried out on the modelling 
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of the elastic and post-elastic mechanical response of structural concrete elements reinforced by 
means of Aramidic, Glass or Carbon-Fiber Reinforced Polymeric sheets (AFRP, GFRP, CFRP): in 
this context, to estimate the confining effects of these kind of reinforcements and quantitatively 
predict the increasing strength of concrete beams and columns constitutes the most important goal. 
In this framework, many efforts have been made: Wu, Lu and Wu [23] studied strength and 
ductility phenomena in concrete cylindrical specimens reinforced by FRP tissues, by obtaining 
some interpolating curves able to fit a number of experimental results; Wu, Wu and Lu [24] also 
presented a design-oriented stress-strain law for concrete prisms confined with FRP composites; 
Xiao and Wu [25], in one of the pioneer works, analyzed compressive behaviour of FRP concrete 
specimens, and several other papers have been presented in literature on this topic, for example by 
Green et al [26], Karabinis and Rousakis [27], Li [28], Prota et al [29]. In this framework, the 
present section is aimed to determine the post-elastic response of multilayered cylinder composed 
by two phases, analytically, in order to use the results for predicting ultimate strength and confining 
pressures at the interface between the isotropic core and the hollow anisotropic jacket phase, when 
the object is stressed by compressive axial forces. The approach is developed in a completely 
general way: however, the above described constituent phases can be identified with concrete and 
FRP sheets, these ones being homogenized over the total number of layers (see Figure 24.2). In 
particular, with reference to the literature data, the concrete material is modelled as elastic-plastic, 
with associated flow rule, and both the cases of Schleicher and Intrinsic Curve Yield Criteria are 
considered. On the other hand, the FRP phase is assumed to be elastic-brittle, with Tsai-Hill 
(modified Tsai-Wu-Hill) Limit Domain. These selected failure domains allow to consider the 
different compressive and tensile strength in the concrete and the anisotropy of the failure modes in 
the FRP ([15], [26] and [27]). 

 
Figure 24.2 - Multilayered cylinder composed by two phases under axial load zN   
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24.6.1.  Preliminary remarks: qualitative results for bi-layer cylinder elastic response  
Due to the closed-form elastic solutions obtained in the previous section, it is possible to establish 
the statements summarized in what follows, on the base of which the non linear solutions will be 
constructed. 

1. When bi-layer cylinder is loaded by compressive axial forces, the stress and strain fields in 
the concrete – both in the linear and in the non-linear range – are everywhere uniform. In 

particular, the radial stress equates the hoop one, i.e. ( ) ( )c c
rr pθθσ σ= = , where p  represents 

here the confining pressure at the interface between concrete and FRP. 
2. Due to the axis-symmetry of both the elastic and inelastic problems, the maximum value of 

all the stress components is contemporary reached at the interface between concrete and 
FRP: this means that – independently from the chosen failure criterion – the crisis starts 
there (i.e., crack propagation, as well as brittle rupture). 

3. The obtained analytical solution shows that the mean slope of the hoop stresses within the 
FRP, is weakly variable across the overall thickness t  of the FRP, where – with reference to 

the above approach -  ( 1) ( )

1 1

( )
n n

i i
i

i i

t t R R+

= =
= = −∑ ∑ , n  being the total number of FRP layers 

(Figure 24.2). As a consequence, in analogy with the classical isotropic case of thin tubes 
under internal uniform radial pressures, thanks to the averaged equilibrium, it is consistent 
to assume 1( ) ( )f c f c cr R r R t pR tθθ θθσ σ −= = + =≃ , where f and c apexes stand for FRP and 

concrete core, respectively. It is worth to note that this last consideration doesn’t mean that 
the radial stresses in the FRP are neglected. More precisely, f

rr pσ =  at the interface 

represents a significant stress component on the overall strength of the jacket, and not only a 
load as in the theory of shells. The reason of this influence can be easily understood if one 
considers the anisotropy of the strength, that is the compressive strength in the FRP radial 
direction and the tensile strength in the hoop (fibres) direction. The confining pressure is 
then involved in the brittle failure by the Tsai-Hill criterion, p playing the role of a driving 
parameter in the evolution of the stress path along the Plastic Surface related to the concrete 
phase (Figure 24.3). 

 
By following a Limit Analysis step-by-step procedure, it will be then possible to follow the post-
elastic behaviour and the increasing compressive strength of the concrete by involving the sole 
stress state in the object. Moreover, as we will show in what follows, the approach leads to an 
analytical formula able to fit with very good agreement the experimental tests reported by several 
authors [19] showing that the compressive ultimate strength is a function of the geometrical ratio 

1cR t−  and of the ultimate stresses in both concrete and FRP, only. 
 

24.6.2. Aniso-strength elastic-plastic materials: the concrete core phase 
 
Determination of the Intrinsic Curve 
In order to obtain the explicit expression of the intrinsic curve in the σ τ−  Mohr plane for a 
material with different tensile and compressive strengths, we have to first consider the Mohr circles 
corresponding to the uniaxial tests in tension and compression and then enveloping, for example 
with a parabola, these limit circles, by imposing then that any other possible limit circle be tangent 
to this curve. To make this, let us consider the uniaxial compressive stress state characterized by the 
maximum eigenvalues (in modulus) equal to the ultimate compressive strength cσ ; the Mohr circle 

equation is: 

 
2 2

2

2 4
c cσ σσ τ + + = 

 
 (24.15) 
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Figure 24.3 - Illustration of the 3-D Schleicher yield surface and its projection in the{ }zzp σ−  

plane: limit stress vector σσσσ  and related post-elastic admissible path. 
 
By applying the same line of reasoning, the uni-axial tensile strength tσ  gives: 

 
2 2 2 2

2

2 4 4
t t cσ σ α σσ τ − + = = 

 
 (24.16) 

where the real parameter (0,1)α ∈  represents the ratio between tensile and compressive strengths, 
whose values are usually lower than the unity. As said before, by choosing as intrinsic curve a 
parabola in the σ τ−  Mohr plane, this has to be tangent to the two crisis circles, with its vertex 
placed at tσ σ= . Hence, let be 

 2 2
0 0t ca aσ τ σ τ ασ= + = +  (24.17) 

the equation of this parabola (Figure 24.4). The intersection points with the compressive crisis circle 
(24.15) are obtainable by solving the following algebraic system: 
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 (24.18) 

whose solutions are characterized by the four roots: 
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The tangency condition to the compressive crisis circle is furnished by: 
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The equation (24.17) becomes: 
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Moreover, it is necessary to establish that the parabola be tangent to the tensile crisis circle (24.16), 
too, so that: 
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whose roots are: 
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Then, by imposing that: 
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and by using the results (24.24) and (24.20), it remains to search the range of 0a  for obtaining the 

intrinsic curve satisfying the following inequality: 

 
( )1 2 11

0
c c

α α α
ασ σ

+ + +
− ≥  (24.25) 

which means that the parabola describing the intrinsic curve never intersects in more than one point 
the compressive and tensile crisis circles. In other words, the inequality (24.25) means the root 
(24.20) be greater than that (24.24). Numerical computation yields to obtain the interval of 
admissible values of α , that is (0, 0.3949)α ∈ . This is consistent with the major part of real 
materials exhibiting different compressive and tensile strengths. 
It is now useful to explicitly obtain the equation of the generic Mohr crisis circles tangent to the 
intrinsic curve corresponding to stress states where { , }rr zzpθθσ σ σ= = , with 0zz pσ < < , being 

this the case under analysis. Hence, by writing the generic Mohr circle defined by negative 
eigenvalues { 0, 0, }rr I II zz IIIp p pθθσ σ σ σ σ σ= = < = = < = <  as follows 
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and then by solving the algebraic system: 
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the four real roots of (24.27) are given by: 
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The tangency condition requires that: 

 ( ) ( )22
0 01 2 2 0zz c zza p a pσ ασ σ+ − − − + =  (24.29) 

from which we obtain: 
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By selecting the second root zzσ  into (24.30) and substituting the above obtained expression of 0a  

we have: 

 ( )( ) 2 ( )zz c c cp pσ σ α σ α ασ= + Φ − Φ −  (24.31) 

which constitutes the closed-form relationship between the compressive crisis value zzσ  and 

0rr pθθσ σ= = < , being ( ) ( ) ( )2 1 1 2 0, (0,1)α α α α αΦ = + − + < ∀ ∈ . The equation (24.31) can 

be then regarded as the constitutive non-linear evolution law of a stress state characterized by 
{ , }rr zzpθθσ σ σ= = , with 0zz pσ < < . 

 
Alternative Schleicher Criterion 
 
The Schleicher criterion assumes as plasticity surface, in the eigenvalues stress space, a paraboloid 
surface whose axis is coincident with the hydrostatic axis, obtained by modifying the classical 
Huber-Hencky-Von Mises yield surface by means of the introduction of the first invariant of the 
stress tensor σσσσ , 1( ) trJ =σ σσ σσ σσ σ . Then, two uniaxial strength parameters are introduced, 0 t cσ σ≤ < , 

representing the tensile and compressive strength, respectively. The yield surface f  is then 
described by the following equation: 

 ( ) ( )1 2, , , 0t cf J J σ σ =  σ σσ σσ σσ σ  (24.32) 

where the well-known second invariant of the stress is ( )2 I II II III III IJ σ σ σ σ σ σ= + +σσσσ  and 

{ , , }I II IIIσ σ σ  represent the eigenvalues of the stress tensor σσσσ . The explicit form of f  is: 

 ( ) ( ) ( ) ( )( )2 2 2
2 2I II II III III I t c I II III t cσ σ σ σ σ σ σ σ σ σ σ σ σ− + − + − − − + + =  (24.33) 

that reduce to the Huber-Hencky-Von Mises criterion when t cσ σ= . Due to the specific form of the 

stress within the concrete core phase, it is useful to write the Schleicher criterion in the plane 

IIIp σ− , (Figures 24.3, 24.4c and 24.4d), where { , }I rr II III zzpθθσ σ σ σ σ σ= = = = =  and – as 

considered for the intrinsic curve case - t cσ ασ= . The equation of the parabola in the plane 

IIIp σ−  reads: 

 ( ) ( )( )2 21 2 0zz c zz cp pσ σ α σ ασ− + − + − =  (24.34) 

Hence, from this equation, we can easily derive the expression of the stress zzσ  as function of p , 

that gives the relation between these stress components when the stress vector, represented in the 

IIIp σ−  plane, belongs to the yield surface (see Figures 24.3, 24.4c and 24.4d): 

 ( )
2

1 1
3 1

2 2zz c c cp p
α ασ σ σ α σ

 − +   = + − − +    
     

 (24.35) 
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  Analytical form of the Intrinsic curve criterion:
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Figure 24.4a - Intrinsic curve in the { }zzp σ−  plane 
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Figure 24.4b - Intrinsic curve showing the two crisis tensile and compressive circles in the Mohr 
plane, with the generic enveloped crisis circle  
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Figure 24.4c - Schleicher criterion in the { }zzp σ−  plane 
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Figure 24.4d - Comparison between Schleicher criterion and Intrinsic curve in the { }zzp σ−  plane  
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24.6.3. Tsai-Hill anisotropic criterion: elastic-brittle composite materials (FRP jacket phase) 
In order to characterize the yield surface for inelastic composite materials, several proposals are 
presented in literature, based on both experimental tests and theoretical approaches invoking the 
non-linear theory of the homogenization, see Christensen [19], Debotton [30], Voyiadjis and 
Thiagarajan [31]. The difficulty of representing the limit condition for such of materials is related to 
the fact that their elastic anisotropy, due to the presence of planes of material symmetry observed at 
the micro-scale level (fiber direction in a matrix, arrangement of the solid phases in the 
representative volume element, etc.) reflects strength anisotropy in the plastic, damage or brittle 
post-elastic behaviour, too. This kind of induced inelastic anisotropy is generally highlighted by 
means of the exhibition of both different compressive and tensile strengths in a given direction and 
directional-depending strengths. Obviously, all possible combinations of these inelastic anisotropies 
could appear in the non-linear response of the material, as well as only aniso-strength or directional-
depending strengths can be exhibited. 
For the present study case, that is the cylindrical two-phase FGM with fiber-reinforced hollow 
jacket phase, as suggested in literature by Christensen [19] and Nanni [32], it results sufficiently 
accurate to assume for the elastic-brittle behaviour of the FRP jacket the Tsai-Hill criterion, here 
specialized for plane stress states { 0, 0}rr p θθσ σ= < >  which take place in the case of increasing 

axial compressive force acting on the central core ends of the object. Rigorously speaking, as 
obtained above from the elastic solution, the stress in the jacket phase is three-dimensional, due to 
the presence of zzσ . Parametric evaluation of the ratio between this stress component and the other 

two ones in radial and circumferential directions, say rrσ  and θθσ , shows that the weight of zzσ  in 

the jacket can be neglected if compared with the other two ones. This authorizes us to consider 
substantially plane the stress state in the FRP. The Tsai-Hill domain can be written as follows: 

 

2 22

2
1yy xx yy xyxx

xxu yyu xxu xyu

σ σ σ τσ
σ σ σ τ

    
+ − + ≤             

 (24.36) 

where { , }xxu yyuσ σ  represent the compressive radial strength and the ultimate tensile strength, 

respectively, while xyuτ  is the ultimate shear stress.  
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Figure 24.5 - The two graphics illustrated in the present figure are intended to highlight the 
difference in the estimating the confining pressure for heavily FRP confined concrete specimens, by 
using the proposed model and the empirical one by Xiao and Wu [25]. In particular, the first 
graphic (top) shows the deviation between the pressure obtained by means of the present model 
(dashed curve) and the pressure calculated by Xiao and Wu (continuous curve), when the overall 
FRP thickness for a fixed radius of the concrete specimen varies (abscissa). The second graphic 
(bottom) shows the same comparison of above, with reference to the variation of the FRP radial 
ultimate stress, for a selected tensile strength of the FRP. 
 
Moreover, we here assume , , 0,xx II yy I rr xyθθσ σ σ σ σ σ τ= = = = =  so that the equation (24.36) 

takes the form: 

 
2 2

2
1rrrr

u ru u

θθ θθ

θ θ

σ σ σσ
σ σ σ
   

+ − ≤   
   

 (24.37) 

where { , }yyu ru xxu uθσ σ σ σ= = . Also, let set ru uθσ β σ= , where, for fiber-composite materials, 

(0,1)β ∈ . By recalling the conditions derived from the sensitivity analysis of the elastic solutions 
and from the overall equilibrium equation written on a generic element of the jacket phase of 
multilayered cylinder (see the statements 1., 2. and 3. highlighted in the preliminary remarks), it is 
possible to write: 

 ( ) ( )rr

R R p
r R r R p

t tθθσ σ
ω

= = = ≡ =  (24.38) 

By recalling that, as said before, the maximum values of the stresses in the hollow phase is reached 
at the interface between core and jacket, by virtue of the assumption of elastic-brittle behaviour of 
the composite material, the crisis has to appear wherever at the interface r R= , being R  the radius 
of the concrete phase. Hence, the substitution of (24.38) into (24.37) gives: 

 
2

2 2

1 1 1
1

u

p

θσ ω β ω
   + − ≤   

  
 (24.39) 
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where /t Rω = . From the equation (24.39) it is then possible to obtain the crisis pressure p , e.g. 
confining stress at the interface, as follows: 

 
( )2 2

( , )
1

u
up θ

θ
σ βω σ β ω

ω β ω
= − = − Ψ

+ −
 (24.40) 

where ( ) ( ) 1/22 2 2 2[ 1 ] 0, { , } (0,1), ( , ) 1ω β ω ω β β ω ω β ω β ω
−

 + − > ∀ ∈ Ψ = − + −  . 

It is worth noting that the formula (24.40) represents the effective value of the confining pressure 
and it results to be an explicit function of the ratio between the overall thickness of the FRP sheet 
and the concrete cross section radius, /t Rω = , of the ratio /ru uθβ σ σ= of the radial and 

circumferential FRP strength parameters characterizing the Tsai_Hill criterion, and explicitly of the 
FRP tensile strength uθσ . This evidence yields to compare the proposed value for the confining 

pressure (24.40) with the usual empirical formula, such as that reported in the work by Xiao and 
Wu [25], which on the contrary, by utilizing the Mariotti's assumption, starts from a simplified 
hypothesis on the FRP failure (that is the absence of the influence of the compressive radial 
stresses) and leads to p  as confining pressure. Thus, with reference to the estimation of the 
confining pressure, the difference between the proposed model and that above mentioned suggested 
in [25] is represented by the factor ( , )β ωΨ  appearing in (24.40). From the engineering point of 
view, this means that the present approach highlights a non-linear sensitivity of the confining 
pressure to the parameters ω  and β . Figure 24.5 shows the deviation between the two formulae. 
 
24.6.4.  Overall post-elastic behaviour of bi-layer cylinder: Core and Jacket phases 
In order to predict the overall strength of the FGM under analysis, we can substitute (24.40) into 
(24.31), for the Intrinsic Curve, or into (24.35), for the Schleicher Criterion. By following this way, 
it is then possible to relate - in a very useful closed-form - the actual ultimate compressive strength 

( )c
zzσ  in the core phase to the sole set of geometrical and mechanical parameters, that is the 

geometrical ratio, 1t Rω −= , the strength ratios, 1 1{ , }t c ru uθα σ σ β σ σ− −= = , the compressive strength 

of the core, cσ , and the tensile strength of the hollow phase, uθσ , as follows: 

 ( ) ( )( ) ( , ) 2 [ ( , ) ]c
zz u c c u cθ θσ σ β ω σ α σ α σ β ω ασ= − Ψ + Φ − − Φ Ψ +  (24.41) 

for the case in which the concrete obeys to the Intrinsic Curve, and 

 ( )
2

( ) 1 1
( , ) 3 ( , ) 1

2 2
c

zz u c c u cθ θ
α ασ σ β ω σ σ σ β ω α σ

 − +   = − Ψ + − Ψ − +    
     

 (24.42) 

for the case where the core phase obeys to the Schleicher Criterion. 
Finally, due to the form of the equations (24.41) and (24.42), it is possible to summarize the 
expression of the actual ultimate compressive strength ( )c

zzσ  as written down: 

 ( ) ( )( )
1 2 3( , ) 2 [ ( , ) ( ) ]c

zz u c c u cθ θσ σ β ω σ ξ α σ ξ α σ β ω ξ α σ= − Ψ + − − Ψ +  (24.43) 

where a suitable setting of “transferring” coefficients 1 2 3{ , , }ξ ξ ξ  yields to reduce the equation 

(24.43) to both the Intrinsic Curve (24.41) and Schleicher (24.42) cases. The specific values of 
these coefficients are reported in Table 24.1. Equation (24.43) can be then utilized in many practical 
engineering applications, for example the case of circular concrete columns reinforced with FRP, 
for quantitatively estimating the benefits of the confining effect directly in terms of overall 
increasing compressive stress on the concrete specimen. 
In order to show the actual capacity of the proposed formula (24.43) of fitting with very accuracy 
the experimental results, for example those recently obtained by Wu et al [23] for a wide range of 
cylindrical concrete specimens confined with several types of FRP tissues, in Figures 24.6a, 24.6b, 
24.6c and 24.6d are illustrated four cases. 
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 Intrinsic Curve Schleicher Criterion 

1( )ξ α  ( )αΦ  ( )1 / 2α −  

2( )ξ α  ( )αΦ  ( )3 / 4 ( 1)α −  

3( )ξ α  α  [ ]2(1 ) / 12( 1)α α + −   

 
Table 24.1  - Transferring coefficients ( )iξ α  in equation (24.43) 

 
The graphics are all plotted in a typical two-dimensional space, where on the abscissa is reported 
the so-called technical dimensionless modulus of Carbon-FRP, defined as ratio between the 
ultimate radial stress at the interface concrete-FRP, 1

rr u t Rθσ σ −=  (extreme confining pressure) and 

compressive uniaxial strength in the concrete, cσ , while the ordinate axes are referred to the values 

of the ratio /u
zz cσ σ . As detailed in the captions of the Figure, the graphics compare Wu et al 

experimental data (bold dots) and their corresponding numerical interpolations (continuous lines) 
with the analytical curves obtained by means of the present approach and formula (24.43)(dashed 
curves), for different concrete compressive strengths cσ  and selected geometrical and mechanical 

parameters. In both the cases of high and common CFRP moduli (Figures 24.6a, 24.6b, 24.6c and 
24.6d) and by using the Schleicher and Intrinsic Curve criteria, the results show how the analytical-
based predictions are very close with the experiments. 
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Figure 24.6a - Comparison between experimental data (Wu & Lu), numerical interpolating (Wu & 
Lu) and proposed analytical curves for estimating the ultimate compressive strength in the 
concrete. The horizontal axes represent the so-called CFRP modulus, and the graphic is showed for 
common Carbon FRP sheet  and for concrete modelled with Schleicher criterion 
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Figure 24.6b. Comparison between experimental data (Wu & Lu), numerical interpolating (Wu & 
Lu) and proposed analytical curves for estimating the ultimate compressive strength in the 
concrete. The horizontal axes represent the so-called CFRP modulus, and the graphic is showed for 
common Carbon FRP sheet and for concrete modelled with Intrinsic curve 
 
24.6.5.  On the estimation of the FRP hoop strain at failure 
Another interesting result emerging from the proposed approach is constituted by the possibility of 
using it for explaining the variation of the effective strain at failure of FRP jackets, that is different 
to the strain at failure measured from tests in direct tension or split-disk tests. In fact, many works 
(for example, Xiao and Wu [25]) noted a discrepancy between the effective (hoop) strain at failure 
of FRP jackets and that measured from tests in direct tension. In some cases, depending on both the 
overall thickness and the modulus and strength of the FRP sheets, this difference seems to be 
varying from 20% up to about 50%. On the base of the present model, it is possible the forecast of 
the circumferential strain until brittle failure of the FRP, and therefore to explain the experimentally 
observed strain discrepancy. Here the key role is played by the fact that the resulting stress field in 
the FRP is three-dimensional, that is characterized by a very low value of the axial stress, say zzσ , 

and the contemporary presence of (compressive) radial stresses and (tensile) hoop stresses. 
Moreover, by neglecting the axial stress, these main stress components vary along the overall 
thickness of the FRP sheets: in particular, at the interface concrete/FRP both the radial and hoop 
stress components are present (the radial stresses being the confining pressures), while at the 
external cylindrical surface, due to the absence of applied radial pressure, the sole circumferential 
stress does not vanish. Also, from engineering point of view, it is possible to note that a not 
significant hoop stress variation along the FRP thickness is revealed.  
Therefore, obeying the assumed Tsai-Hill criterion, the brittle crisis - and thus the crack propagation 
phenomenon - starts from points placed at the concrete/FRP interface and there the actual yield 
stress level at failure is characterized by the contemporary presence of two main stress components, 
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that is a compressive radial stress and a tensile hoop stress, the last one being obviously less than 
the ultimate tensile stress measured from direct tension tests.  As a consequence, the hoop strain at 
the interface shall be greater than that calculated in presence of the sole hoop stress when it equates 
the FRP tensile strength, because - by virtue of the constitutive anisotropic law - the hoop strain is 
increased by the cogent compressive radial stress. On the contrary, at the external surface, where the 
hoop strain can be directly measured, the absence of radial stresses and the presence of 
circumferential stresses lower than the ultimate FRP tensile strength determine a decrease of the 
hoop strain at the failure. Thus, this explains the observed strain discrepancy.  
The Figure 24.7 illustrates the possible variation of the hoop strain on the FRP external cylindrical 
surface with the ultimate radial strength of the FRP (reported on the abscissa) and also when 
different Young's moduli and number of FRP layers (1, 2 and 3 sheets each one of 0.381 mm) are 
considered. It is evident how, making variable these parameters, possible significant reduction of 
the strain at failure can be registered, respect to that waited by thinking to the uniaxial test. 
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Figure 24.6c - Comparison between experimental data (Wu & Lu), numerical interpolating (Wu & 
Lu) and proposed analytical curves for estimating the ultimate compressive strength in the 
concrete. The horizontal axes represent the so-called CFRP modulus, and the graphic is showed for 
high Carbon FRP sheet and for concrete modelled with Schleicher criterion 
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Figure 24.6d - Comparison between experimental data (Wu & Lu), numerical interpolating (Wu & 
Lu) and proposed analytical curves for estimating the ultimate compressive strength in the 
concrete. The horizontal axes represent the so-called CFRP modulus, and the graphic is showed for 
high Carbon FRP sheet and for concrete modelled with Intrinsic curve. 

 
Figure 24.7 -  Analytical prediction of the ratio between actual failure hoop strain on the FRP 
external cylindrical surface and ultimate FRP strain with varying ultimate radial strength of the 
FRP (reported on the abscissa). The twelve curves illustrated in the graphics can be distinguished 
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in three groups, as is shown by the figure. Each of the four curves belonging to a selected group has 
been obtained by considering four corresponding possible FRP Young's moduli in the fiber 
direction. The three groups are then carried out by setting in the model 1, 2 and 3 FRP sheets, each 
one of 0.381 mm. The main result is therefore related to the increase of the difference between 
ultimate uniaxial strain and actual strain at failure with the increasing number of FRP layers 
 
24.6.6. Assessment and design formulae for concrete columns confined by FRP sheets 
 

Assessment formula:  
With the aim of obtaining a design formula of practical interest in civil engineering applications, we 
can recall the equation (24.43), making reference – for example - to the Schleicher criterion for 
modeling the concrete. By substituting in (24.43) the values collected in Table 24.1, we obtain: 

 
( )

( )
( )

2
( )

2 2 2 2

3 1( 1) 1

2 2
uc u c

zz c c

tt

t R R t t R R t

θθ σ β ασ β σ α ασ σ σ
β β

 −− +  = − + − +  
  + − + − 

 (24.44) 

As already said, the formula (24.44) can be regarded as an assessment formula, helpful for directly 
estimating the ultimate compressive strength of a cylindrical concrete specimen confined by FRP, 
when geometrical and mechanical parameters of both the constituent materials are prescribed. In 
Figure 24.8, the stress-strain relationship for heavily confined concrete specimens is also illustrated, 
making reference to different numbers of layers and elastic moduli of the FRP sheets. 
 
Design formulae: 
On the other hand, the closed form of (24.44) allows us to obtain two design formulae able to give 
in output either the minimum overall thickness of the FRP sheet or the desired increase of the load 
capacity. To make this, we define another parameter, say ( ) / 1c

zz ck σ σ≡ > , representing the ratio 

between the expected compressive concrete strength (due to the confining effect of the FRP) and 
the unconfined (FRP-free) concrete compressive strength. By inverting (24.44) we obtain the design 
formula in terms of FRP overall thickness: 

 
( )( )

( )
2 2 2

2 2

4 4

2

R
t

βξ βξ β ξ ξ

β ξ

− + + −
=

−
 (24.45) 

where 

 ( ) ( )1 1 1 3c

u

k k
θ

σξ α α α
σ

 = + − − + − −
 

 (24.46) 

Following a complementary way, by invoking the formula (24.45), it is possible to obtain the  
strength-increasing  coefficient  k as design parameter, that is as function of  FRP thickness t  and 
varying compressive unconfined concrete strengths cσ , writing: 

 ( )
2

1 11 1
3 1

2 2
u u

c c

k
σ σα α α
σ σ

− + = + Ψ + + − Ψ 
 

 (24.47) 

where – as already above defined - ( ) 1/ 22 2t t R R tβ β
−

 Ψ = + −  . 

Figure 24.9. collects  the curves giving the thickness t  necessary to obtain two times the unconfined 
compressive concrete strength ( 2k = ), as function of the tensile FRP strength, for a selected set of 
geometrical and mechanical parameters, (i.e.: 15 , 0.1, 0.02R cm α β= = = ).  
Figure 24.10 shows the graphic of k versus thickness t, for some usual compressive concrete 
strength values.  
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Figure 24.8 – Stress-strain relationship for heavily confined concrete: the post-elastic branches are 
calculated for different possible FRP Young's moduli in the fibre direction and FRP layers. The 
mean slope of the quasi-linear ultra-elastic branches increases with the number of FRP sheets and 
with the FRP Young's modulus, determining - in some cases - ultimate compressive concrete 
strengths greater more than two times the compressive stress of the unconfined concrete 
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Figure 24.9 - Graphic showing the overall thickness of the FRP sheet as function of FRP tensile 
strength, for different values of unconfined compressive concrete strength 



Chapter XXIV: Ultimate compressive strength in cylindrical concrete specimens confined by F.R.P. 

F. Carannante 625 

0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

3

3.5 k

t (cm

/(kg cm2)c

250

300
350
400
450

=
=

0.1

0.02

=2k

=15cmR
0

)
 

 
Figure 24.10 - Graphic showing the increasing coefficient k as function of the overall FRP 
thickness t, for different values of unconfined compressive concrete strength.  
 
24.7. Numerical example: complete elastic and post-elastic solutions of Carbon-FRP 
cylindrical concrete specimens under compression  
The following numerical example is illustrated for showing the applicability of the proposed 
strategy to practical problems, by determining the elastic and post-elastic solutions in explicit form 
for a cylindrical concrete specimen confined with FRP. The example makes reference to the 
experimental results obtained by Xiao and Wu [25]. 
Since we already showed that there are no significant differences in the quantitative response of the 
concrete when Schleicher or Intrinsic Curve criteria are adopted for modelling its post-elastic 
behaviour (Figures 24.4a and 24.4c), the application is specialized to the Schleicher-like plastic 
response. 
 
24.7.1. Elastic response  
In order to fix the ideas, let us consider a cylindrical concrete specimen whose core diameter is D, 
characterized by elastic constants ( ) ( ),c cE ν  and with compressive strength 0c cfσ = . Let this 

specimen be confined by means of three layers of FRP tissue with unidirectional arrangement of the 

fibres, each of one with thickness 0.0381 cmit =  and be 
3

1
i

i

t t
=

=∑  the overall thickness of the hollow 

phase that we here consider as one, in terms of homogenization. Due to the orientation of the carbon 
fibres embedded into the polymeric matrix, the FRP is considered as an orthotropic material, whose 
useful elastic coefficients – in the cylindrical reference system – are , , , , ,rr zz r rz zE E Eθθ θ θν ν ν  . 

It is important to emphasize here that the elastic moduli for the composite FRP were obtained by 
means of an homogenization technique, based on the knowledge of the mechanical parameters of 
the constitutive materials and their corresponding volume fractions. In particular, as suggested by 
the literature, the Young’s moduli rrE  and Eθθ  are referred to the Reuss and Voigt estimations 
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respectively, being zzE  lower than rrE  for taking into account the specific contact conditions 

between two adjacent layers of FRP sheets.  

Materials Young’s modulus Poisson’s ratio Material Strength 

Concrete  
Core 

( ) 2313237cE kg cm−=  
( ) 0.18.cν =  

2
0

2
0

438

/10 43.8
c c

t c

f kg cm

f kg cm

σ
σ

−

−

= =

= =  

FRP sheet  
homogenized  
parameters 

4 2

6 2

3 2

3 10 ,

1.05 10 ,

6 10

rr

zz

E kg cm

E kg cm

E kg cm

θθ

−

−

−

= ×

= ×

= ×

 

0.32,

0.35,

0.32.

r

rz

z

θ

θ

ν
ν
ν

=
=
=

 
4 2

2 2

1.577 10

1.3 10
xxu

yyu

kg cm

kg cm

σ
σ

−

−

= ×

= ×
 

Table 24.2 - Mechanical properties of concrete and FRP (Diameter of specimen: 15.2D cm= ) 
 
Then, by taking into account the values of the geometrical and mechanical parameters above 
introduced, collected in Table 24.2, and by applying the elastic solution reported in paragraph 24.3 
and 24.4, the constant integrations are given by : 

                          
( ) 9 ( ) ( ) 8

0 0

( ) 3 ( ) 3
1 2

3.124 10 , 1.757 10 ,

1.70 10 , 1.70 10 ,

c c j
r z z

j j
z z

N N

C N C i N

ε ε ε− −

− −

= − ⋅ = = ⋅

= − ⋅ = − ⋅
                              (24.48) 

where zN  is the axial force applied at the ends of the object.  By virtue of the results above 

obtained, the displacement field for the concrete core phase becomes: 
 ( ) 9 ( ) ( ) 83.124 10 , 0, 1.757 10c c c

r z z zu N r u u N zθ
− −= − ⋅ = = ⋅  (24.49) 

from which the following strains in concrete are written down: 
 ( ) ( ) 9 ( ) 83.124 10 , 1.757 10 ,c c c

rr z zz zN Nθθε ε ε− −= = − ⋅ = ⋅  (24.50) 

It is worth to note that, in the elastic range, the axial strain in the z direction is about one order of 
magnitude greater than that of  the corresponding radial and circumferential strain components, 
while two orders of magnitude characterize the ratio between the axial stress and the radial and 
hoop ones in the concrete core: 
 ( ) ( ) 5 ( ) 31.62 10 , 5.51 10 .c c c

rr z zz zN Nθθσ σ σ− −= = ⋅ = ⋅  (24.51) 

By using these results, the displacement field  for the jacket orthotropic phase is: 

 
( )( ) 12 3 5.84 5.84

( ) ( ) 8

8.38 10 1.70 10

0, 1.757 10

j
r z

j j
z z

u r r r N

u u N zθ

− − −

−

 = − ⋅ − ⋅ − 

= = ⋅
 (24.52) 

As a consequence, the non-zero strain components in the FRP are: 

 

( ) 12 3 6.84 13 4.84

12 3 6.84 14 4.84

( ) 8

8.38 10 9.93 10 4.82 10 ,

8.38 10 1.70 10 8.247 10 ,

1.757 10 ,

j
rr z

z

j
zz z

r r N

r r N

N

θθ

ε

ε

ε

− − − −

− − − −

−

 = − ⋅ + ⋅ − ⋅ 

 = − ⋅ − ⋅ − ⋅ 

= ⋅

 (24.53) 

and the non-zero stress components are: 

 

( ) 5 6.84 8 4.84

( ) 5 6.84 8 4.84

( ) 4 6.84 9 4.84

3.79 10 288.43 1.575 10 ,

3.79 10 1814.64 9.204 10 ,

1.08 10 17.11 1.27 10 ,

j
rr z

j
z

j
zz z

r r N

r r N

r r N

θθ

σ

σ

σ

− − −

− − −

− − −

 = ⋅ + − ⋅ 

 = ⋅ − − ⋅ 

 = ⋅ + − ⋅ 

 (24.54) 

As it will be highlighted in the following, differently from the concrete phase, in the FRP the hoop 
stress reaches an outstanding value respect to the axial one. It is worth to note that, without FRP 
phase, the ultimate strength of concrete would be ( )

0
c

zz cfσ =  and then its limit load should become: 

 ( ) 3 25.51 10 438 79523c
zz z zN kgcm N kgσ − −= ⋅ = ⇒ =  (24.55) 
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where the obtained value of zN  represents the limit compressive load of the un-reinforced concrete 

element. On the contrary, as a consequence of the confining effect due to the presence of the FRP, 
we will see that both the elastic limit and the ultimate collapse axial force of the restored cylindrical 
concrete specimen significantly increase. 
 
24.7.2.  Post-elastic response 
As already shown above, the post-elastic response of the concrete element starts in presence of the 
limit value of the axial force (24.55). For increasing values of zN  the concrete is in plastic condition 

and the stresses have to follow the path belonging to the limit domain (Figure 24.3). On the 
contrary, the FRP is still in the elastic range. Due to the specific form of the stress tensor within the 
concrete core phase 

 

0 0 0 0

0 0 0 0

0 0 0 0

I

II

zz III

p

p

σ
σ

σ σ

   
   = =   
      

σ  (24.56) 

it is more useful to restrict the Schleicher criterion to the plane ( , )IIIσp , as represented in Figure 

24.6. Here p  is the vector bisector of the angle between axes ( , )I IIσ σ .                          

By assuming for the present case 0 0{ /10, }t c c cf fσ σ= = − , equation (24.34) finally becomes:   

 ( )2 2 2
0 0 02 3.6 4 2 1.8 0.2 0c zz zz c zz cp p f f fσ σ σ− + + − − =  (24.57) 

In Figure 24.11 are also illustrated the linear and non linear stress path curves in the plane ( , )zzσp . 

There, it can be noted the increase of the effective compressive strength of the concrete, due to the 
contemporary presence of  the confining stresses rr pθθσ σ= = . The elastic limit force is then 

obtainable: 

 ( )( )56.04 10 80306 7915 0 80306el el el
z z zN N N kg−⋅ − + = ⇒ =  (24.58) 

In particular, the intersection point of the linear path with the Schleicher curve, in this plane, is 
characterized by the following coordinates: 
 2 2 2

01.30 / , 442.48 / 438 /zz cp kg cm kg cm f kg cmσ= = > =  (24.59) 

to which corresponds the axial limit load  80306el
zN kg= . Behind the load 80306el

zN kg= , the 

relationship between ( )c
zzσ  and p  becomes non linear and the stress path is constrained to run on the 

Schleicher curve, as shown in Figure 24.11. By setting ( ) /c
zz z cN Aσ = , with 2 / 4cA Dπ= , and 

substituting the axial stress ( )c
zzσ  into the equation (4.12), we obtain the new form (The notation 

adopted here for the circumferential and radial stresses ( ) ( )c c
rr pθθσ σ= =  is motivated by the fact that 

– for the equilibrium also in the non linear range, the radial stresses emerging at the interface 
between concrete and FRP jacket have to be equal and so, being this radial stresses technically 
called confining pressures, it results helpful to identify those stress components with the pressure 
p . Also, the possibility of writing p  as a function of the axial force zN  leads to directly estimate 

the ultimate load of multilayered cylinder and then its compressive capacity) of the pressure p  as a 
function of the force F into the elastic-plastic range, driven by the FRP confining effect: 

 0 0 0

3.6 3.82
2.97

4 4
z z

c c c
c c

N N
p f f f

A A

 
= + − + 

 
 (24.60) 

It is worth to note that, as the load zN  increases, after the stress vector has touched the Schleicher 

curve, the structural element shows an elastic-plastic response, in the sense that the stress in the core 
runs along the limit yield boundary domain, while the FRP is still in elastic conditions. In order to 
follow the evolution of the mechanical response in the FRP phase, we note that the axial stress ( )j

zzσ  

remains constant, with a value practically vanishing if compared with the radial and hoop stresses 



Chapter XXIV: Ultimate compressive strength in cylindrical concrete specimens confined by F.R.P. 

F. Carannante 628 

( )j
rrσ , ( )j

θθσ  present in the jacket  (( ) 24j
zz kg cmσ −=  for the case at hand). Into the FRP phase, the 

displacements, the strains and the stresses are still deducible from the equations above obtained, 
wherever being the stresses in the elastic range. However, it is necessary to rewrite the boundary 
conditions in terms of the stresses as follows: 

 
( )

( )

( ) ( )

2
( ) ( ) ( )

0

( ) 394.2 34.39 147.62

( ) 0, 14.66

j

c

j c z z
rr

c c

R
j j j

rr zz

R

N N
r R

A A

r R rdrd
π

σ

σ σ θ


= = + − +



 = = =


∫ ∫

 (24.61) 

By solving the system respect to the unknown parameters ( ) ( ) ( )
0 1 2, ,j j jC Cε , we obtain their values as 

functions of the axial load zN , that is: 

 

( )

( ) 8 3 3
0

( ) 3
1

( ) 3
2

0.023 7.99 10 1.89 10 147.62 5.51 10

43584 0.61 3803 147.62 5.51 10

43584 0.61 3803 147.62 5.51 10

j
z z

j
z z

j
z z

N N

C N N

C N N i

ε − − −

−

−

= + ⋅ − ⋅ + ⋅

= − − + + ⋅

= − − + + ⋅

 (24.62) 

Substitution of  (24.62) into the expressions of the strains gives:  

 

( )
( )

( ) 6.84 3

4.84 5 7 3 10

5 7 3 10

( ) 6.84 3

254741 22227 147.62 5.51 10 3.56

1.10 10 9.49 10 147.62 5.51 10 1.52 10

1.10 10 9.02 10 147.62 5.51 10 1.44 10

43584 3803 147.62 5.51 10

j
rr z z

z z

z z

j

r N N

r N N

N N

rθθ

ε

ε

− −

− − − −

− − − −

− −

= − + ⋅ + +

+ − ⋅ + ⋅ + ⋅ − ⋅ +

− ⋅ + ⋅ + ⋅ − ⋅

= − + + ⋅( )
( )4.84 6 7 3 11

5 7 3 10

( ) 7 3 3

0.61

1.86 10 1.62 10 147.62 5.51 10 2.60 10

1.10 10 9.02 10 147.62 5.51 10 1.45 10

0.023 3.03 10 1.89 10 147.62 5.51 10

z z

z z

z z

j
zz z z

N N

r N N

N N

N Nε

− − − −

− − − −

− − −

− +

+ − ⋅ + ⋅ + ⋅ − ⋅ +

− ⋅ + ⋅ + ⋅ − ⋅

= + ⋅ − ⋅ + ⋅

 (24.63) 

as well as the stresses become: 

 

( )
( )

( ) 6.84 9 8 3

4.84 6 3

3 4

( ) 6.84 10 9

7.40 10 103475 6.46 10 147.62 5.51 10

0.36 4.97 10 0.031 147.62 5.51 10

49.71 4.08 147.62 5.51 10 6.55 10

4.33 10 604800 3.77 10 147.62 5.51

j
rr z z

z z

z z

j
z

r N N

r N N

N N

r Nθθ

σ

σ

− −

− −

− −

−

= ⋅ + − ⋅ + ⋅ +

+ − − ⋅ + + ⋅ +

+ − + ⋅ + ⋅

= − ⋅ − − ⋅ + ⋅( )
( )

( )

3

4.84 5 3

3 4

( ) 6.84 8 7 3

4.84 7 3

10

2.07 2.90 10 0.181 147.62 5.51 10

49.71 4.08 147.62 5.51 10 6.54 10

4.39 10 6137 3.83 10 147.62 5.51 10

0.029 4.01 10 2.5 10 147.62 5.51 10

z

z z

z z

j
zz z z

z

N

r N N

N N

r N N

r N

σ

−

− −

− −

− −

− − −

+

+ − − ⋅ + + ⋅ +

+ − + ⋅ + ⋅

= ⋅ + + ⋅ + ⋅ +

+ − − ⋅ + ⋅ + ⋅( )3

3 3141.68 11.64 147.62 5.51 10 1.87 10

z

z z

N

N N− −

+

− + ⋅ + ⋅

 (24.64) 
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The final goal is now to determine the load zN  producing the collapse of the FRP, say the limit load 

under which the whole concrete specimen collapses. To make this, as detailed in the previous 
section, we use for the FRP sheet the elastic-brittle criterion based on the Tsai-Hill yield surface, 
written in the plane of the significant principal stresses ( )j

rrσ  and ( )j
θθσ . The explicit form of this 

criterion is rewritten down: 

 

22

2
1I II I II

xxu yyu xxu

σ σ σ σ
σ σ σ

  
+ − ≤       

 (24.65) 

where , ,I II rrθθσ σ σ σ≡ ≡  and  { , }xxu yyuσ σ  represent the uniaxial compressive strength of the fibre 

and the tensile strength in the radial direction of FRP, respectively. For the present case, by 
considering the values suggested by literature for the FRP [27], it was estimated: 
 4 2 2 21.577 10 , 1.3 10 ,xxu yyukg cm kg cmσ σ− −= × = ×  (24.66) 

where, as it will be considered later, the ultimate strength yyuσ  has to be assumed variable in the 

range 2 21.3 10 ,4.0 10yyuσ  ∈ ⋅ ⋅  , due to some variability of the experimental measures related to the 

dependence of this parameter on the in situ practical application and manufacturing of the FRP 
tissue. The assumption of brittleness of the FRP, in agreement with the experience of laboratory 
tests, and the axial-symmetry of the problem, lead to limit the analysis of the failure of the 
orthotropic jacket phase at those points where the overall stress state in the FRP reaches the Tsai-
Hill yield surface, that is at the interface between concrete and first layer of FRP material. Thus, by 
equating there the radial stresses, and by involving the adopted anisotropic criterion, we obtain the 
following collapse load, 115306ult

zN kg= , in correspondence of which the strains and stresses in 

the jacket assume the values: 

 
3 3 3

2 2 2

4.01 10 , 12.75 10 , 5.03 10 ,

67.29 / , 13460 / , 10.28 /
rr zz

rr zzkg cm kg cm kg cm

θθ

θθ

ε ε ε
σ σ σ

− − −= − ⋅ = ⋅ = − ⋅

= − = = −
 (24.67) 

As numerical example, we also report the corresponding critical values for the case in which the 
ultimate strength of the FRP in radial direction changes: 
 2 215770 / , 400 / ,xxu yyukg cm kg cmσ σ= =  (24.68) 

 from which, by following an analogous procedure, we calculate a collapse load determining the 
brittle failure of the FRP, equal to 119895ult

zN kg= , while the strain and stress component at this 

state are: 

 
3 3 3

2 2 2

4.61 10 , 14.62 10 , 5.57 10 ,

77.13 / , 15435 / , 10.61 /
rr zz

rr zzkg cm kg cm kg cm

θθ

θθ

ε ε ε
σ σ σ

− − −= − ⋅ = ⋅ = − ⋅

= − = = −
 (24.69) 

Moreover, we also report the corresponding critical values for the case in which the ultimate 
strength of the FRP in radial direction changes: 
 2 215770 / , 50 / ,xxu yyukg cm kg cmσ σ= =  (24.70) 

from which, by following an analogous procedure, we calculate a collapse load determining the 
brittle failure of the FRP, equal to 103056ult

zN kg= , while the strain and stress component at this 

state are: 

 
3 3 3

2 2 2

2.48 10 , 8 10 , 3.65 10 ,

42.19 / , 8441 / , 9.42 /
rr zz

rr zzkg cm kg cm kg cm

θθ

θθ

ε ε ε
σ σ σ

− − −= − ⋅ = ⋅ = − ⋅

= − = = −
 (24.71) 

Finally, it is important to note that, if the concrete is confined by means of three layers of FRP 
tissue, exhibits an increasing of its compressive limit load of about the 70 %. This kind of effect is 
already well known from the qualitative point of view and quantitatively registered by several 
authors by means of laboratory tests. Also, the obtained solution furnishes predictions about the 
strain fields very closely to the experimental tests [25]. It is worth to also highlight that this 
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increasing compressive strength can be significantly greater, if the number of FRP sheets and the 
tensile strength of the tissue increase (see Figure 24.8 and [19]). It is easy to verify that the same 
result, in terms of ultimate compressive strength of the concrete, can be reached straightforwardly if 
the predicting formula (24.43) is considered, by setting the parameters as assumed in the present 
example. 

 
 

Figure 24.11 - Schleicher yield criterion in the two-dimensional space 33{ }pσ − : stress vector at 

the elastic limit and admissible stress path on the plastic boundary domain. 
 
24.7.3.  Direct estimating of the FRP overall thickness by using the proposed design formulae 
In order to complete the example application, in the following it will be shown the technical 
procedure for designing the thickness t  of the FRP sheet confining a cylindrical concrete specimen. 
To make this, let us assume the following geometrical and mechanical parameters: 
  15 , 250 / , 2, / 0.1, / 0.02, 16000 /c t c yyu u uR cm kg cmq k kg cmqθ θσ α σ σ β σ σ σ= = = = = = = =  

For the present case, formula (24.46)  gives ( )( )1 1 1 3 0.00606c

xxu

k k
σξ α α α

σ
 = + − − + − − =
 

, 

and - by substituting ξ  into (24.45), it is easy to verify that the thickness 0.095t cm= . Thus, one 

can note that the initial unconfined compressive load was 
2

176715
4

ult
z c

D
N kg

π σ= = , while – due 

to the obtained FRP thickness, the final ultimate compressive load is actually increased, reaching 
two times the initial value, that is: 2 353430 .ult ult

z zN N kg= =  
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24.8. Conclusions 
In the present chapter it is developed a mathematical strategy able to obtain analytical elastic and 
post-elastic solutions for multilayered cylinder composed by cylindrically orthotropic phases, 
constituted by a central isotropic core and n hollow anisotropic phases. The treatment of the 
problem within the elastic range is formulated by invoking the classical Complex Potential Theory 
for anisotropic materials and using a suitable rearrangement of the equations. In this way, due to the 
axis-symmetry of both the object geometry and the load condition, the Boundary Value Problem 
(BVP) is reduced to an algebraic one, governed by a matrix whose order is depending upon the 
number of hollow phases and whose coefficients are explicitly related to the geometrical and 
mechanical parameters of the object. Afterwards, with the aim of studying cylindrical concrete 
specimens reinforced by means of Fibre Reinforced Polymeric sheets in compression, the found 
elastic solutions are extended to the post-elastic range, by investigating the evolution of the stress 
field when the core is characterized by an Intrinsic Curve or Schleicher-like elastic-plastic response 
with associate flow rule and the cylindrically orthotropic hollow phase obeys to an elastic-brittle 
Tsai-Hill anisotropic yield criterion. By following a Limit Analysis step-by-step procedure, an 
analytical predictive formula for estimating the overall collapse mechanism, the concrete ultimate 
compressive strength and the confining pressure effect are derived, showing that the compressive 
ultimate strength is a function of the geometrical ratio 1cR t−  and of the ultimate stresses in both 
concrete and FRP, only. The results are finally compared with several experimental literature data, 
highlighting the very good agreement between the theoretical predictions and the laboratory 
measurements. The opinion of the Authors is that this strategy can be usefully adopted for designing 
new FRP concrete elements or as assessment tool in the treatment of restored civil structures, as 
well as for performing sensitivity analyses in other more general contexts 
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CHAPTER XXV 
METALLIC PIPELINES INSULATED BY CERAMIC MATERIAL 

 
25.1.  Introduction 
FGM components are generally constructed to sustain elevated temperatures and severe temperature 
gradients. Low thermal conductivity, low coefficient of thermal expansion and core ductility have 
enabled the FGM material to withstand higher temperature gradients for a given heat flux. 
Examples of structures undergo extremely high temperature gradients are plasma facing materials, 
propulsion system of planes, cutting tools, engine exhaust liners, aerospace skin structures, 
incinerator linings, thermal barrier coatings of turbine blades, thermal resistant tiles, and directional 
heat flux materials. Continuously varying the volume fraction of the mixture in the FGM materials 
eliminates the interface problems and mitigating thermal stress concentrations and causes a more 
smooth stress distribution. Extensive thermal stress studies made by Noda reveal that the weakness 
of the fiber reinforced laminated composite materials, such as delamination, huge residual stress, 
and locally large plastic deformations, may be avoided or reduced in FGM materials (Noda, 1991). 
Tanigawa presented an extensive review that covered a wide range of topics from thermo-elastic to 
thermo-inelastic problems. He compiled a comprehensive list of papers on the analytical models of 
thermo-elastic behavior of FGM (Tanigawa, 1995). The analytical solution for the stresses of FGM 
in the one-dimensional case for spheres and cylinders are given by Lutz and Zimmerman (Lutz & 
Zimmerman, 1996 & 1999). These authors consider the non-homogeneous material properties as 
linear functions of radius. Obata presented the solution for thermal stresses of a thick hollow 
cylinder, under a two-dimensional transient temperature distribution, made of FGM (Obata et al., 
1999). Sutradhar presented a Laplace transform Galerkin BEM for 3-D transient heat conduction 
analysis by using the Green's function approach where an exponential law for the FGMs was used 
(Sutradhar et al., 2002). Kim and Noda studied the unsteady-state thermal stress of FGM circular 
hollow cylinders by using of Green's function method (Kim & Noda, 2002). Reddy and co-workers 
carried out theoretical as well as finite element analyses of the thermo-mechanical behaviour of 
FGM cylinders, plates and shells. Geometric non-linearity and effect of coupling item was 
considered for different thermal loading conditions (Praveen & Reddy, 1998, Reddy & Chin, 1998, 
Paraveen et al., 1999, Reddy, 2000, Reddy & Cheng, 2001). Shao and Wang studied the thermo-
mechanical stresses of FGM hollow cylinders and cylindrical panels with the assumption that the 
material properties of FGM followed simple laws, e.g., exponential law, power law or mixture law 
in thickness direction. An approximate static solution of FGM hollow cylinders with finite length 
was obtained by using of multi-layered method; analytical solution of FGM cylindrical panel was 
carried out by using the Frobinus method; and analytical solution of transient thermo-mechanical 
stresses of FGM hollow cylinders were derived by using the Laplace transform technique and the 
power series method, in which effects of material gradient and heat transfer coefficient on time-
dependent thermal mechanical stresses were discussed in detail (Shao, 2005, Shao & Wang, 2006, 
Shao & Wang, 2007). Similarly, Ootao and Tanigawa obtained the analytical solutions of unsteady-
state thermal stress of FGM plate and cylindrical panel due to non-uniform heat supply (Ootao & 
Tanigawa, 1999, 2004, 2005). Using the multi-layered method and through a novel limiting process, 
Liew obtained the analytical solutions of steady-state thermal stress in FGM hollow circular 
cylinder (Liew & et al., 2003). Using finite difference method, Awaji and Sivakuman studied the 
transient thermal stresses of a FGM hollow circular cylinder, which is cooled by surrounding 
medium (Awaji & Sivakuman, 2001). Ching and Yen evaluated the transient thermoelastic 
deformations of 2-D functionally graded beams under non-uniformly convective heat supply (Ching 
& Yen, 2006). By using the Hermitian transfinite element method, Mohammad Azadi et al., 
nonlinear transient heat transfer and thermoelastic stress analyses are performed for thick-walled 
FGM cylinder which materials are temperature-dependent. Time variations of the temperature, 
displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results 
obtained considering the temperature-dependency of the material properties. In this paper those 
results are the temperature distribution and the radial and circumferential stresses are investigated 
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versus time, geometrical parameters and index of power law (N) and then they are compared with 
those derived based on temperature independency assumption. Two main novelties of this research 
are incorporating the temperature-dependency of the material properties and proposing a numerical 
transfinite element procedure that may be used in Picard iterative algorithm to update the material 
properties in a highly nonlinear formulation. In contrast to before researches, second order elements 
are employed. Therefore, proposed transfinite element method may be adequately used in problems 
where time integration method is not recommended because of truncation errors (e.g. coupled 
thermo-elasticity problems with very small relaxation times) or where improper choice of time 
integration step may lead to loss of the higher frequencies in the dynamic response. Also, 
accumulated errors that are common in the time integration method and in many cases lead to 
remarkable errors, numerical oscillations, or instability, do not happen in this technique. 
In this chapter it is reported a analytical thermo-elastic solution in closed form for bi-layer hollow 
cylinder subjected to time-dependent boundary conditions. It is assumed that each hollow cylinder 
is composed by a homogeneous and thermo-isotropic material, characterized by different 
mechanical and thermal parameters, i.e. modulus of elasticity, thermal expansion coefficient and 
thermal conductivity. Moreover, these material properties in each hollow cylinder are assumed to be 
temperature-independent. In other words, the bi-layer hollow cylinder is considered as a classical 
composite material whose properties abruptly vary from one hollow cylinder to the other. In 
particular, it is obtained a new analytical solution for a bi-layer hollow cylinder, constituted by two 
phases: Ceramic (3 4Si N ) and Metal ( 6 4Ti Al V− − ) subjected to heat flux on inner surface.  

 
25.2.  Bi-layer hollow cylinder in plane strain: Basic equations 
In this paragraph, the one-dimensional quasi-static uncoupled thermo-elastic problem of a bi-
layered cylinders with time-dependent boundary conditions is considered. The medium is without 
body forces and heat generation. The analytical solution is obtained by applying the method of 
separation of variables. It is considered a solid composed of 2 fictitious layers constituted by 2 
hollow cylinder phases. The external radius and internal radius of the bi-layer hollow cylinder are 

denoted by (2)R and (0)R , respectively. The radius at interface between the phase 1 and the phase 2  

is denoted with (1)R . The mechanical and thermal properties of each layer are assumed to be 
homogeneous and isotropic .  Cylindrical coordinates r, θ  and z are used in this analysis. The bi-
layer hollow cylinder is subjected to constant heat flux on internal surface, but convection condition 
on external surface is considered. The initial temperature (for  t = 0) of the hollow cylinder  is 

0 RT T const= =  where 0RT > . In isotropic-thermal elasticity case, the equations field to satisfy in 

uncoupled thermo-elastic problem in plane strain are given by: 

      
( )

( ) ( ) ( )
1 ( ) ( ) ( ) ( )

,( ) ( ) ( ) ( 1) ( ), ,

( )( ) ( )
,( ) 1 ( ) ( )

, , ,( ) ( )

3 2 1

2 1 , 0,

{1,2}

i i i
i i i i

r ri i i i ir r

ii i
ti i i

rr r ti i

r r u T
R r R t

iTc
T r T T

k

λ µ να α
µ λ ν

ρ
κ

−
−

−

    + +  = =       + − ≤ ≤ ∀ ≥    


∀ ∈
+ = =



       (25.1) 

where (1) (2),κ κ  are the thermal diffusivity for phase (1) and (2), respectively. By solving the 
Fourier’s equation reported in second equation of (25.1) with method separation of variables, and 
by substituting the function of temperature ( )( ) ,iT r t  in first equation of (25.1), and by integration 

in two time this equation respect to variable r , the explicit displacement solution is obtained: 

          ( ) ( ) ( ) ( )( )( ) ( ) ( )
2( ) ( ) ( )

1( ) ( )

3 2
, , , {1,2,...., }

2

ii i i
i i i

r i i

f t
u r t r T r t dr r f t i n

r r

α λ µ
λ µ

 += + + ∀ ∈ 
+ 

∫   (25.2) 

where ( ) ( )( ) ( )
1 2,i if t f t  are unknown functions of the time to determine. The boundary conditions at 

interface surface ( (1)r R= ) between two phases to satisfy, as showed in Chapter XXI, are given by: 
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(1) (1) (2) (1)

(1) (1) (2) (1)

( , ) ( , )
0

( , ) ( , )

r r

rr rr

u r R t u r R t
t

r R t r R tσ σ

 = = = ∀ ≥
= = =

 (25.3) 

The bi-layer hollow cylinder is not loaded on the inner and the outer cylindrical boundary surfaces. 
Then, the equilibrium equations for the tractions on boundary surface are give: 

 (1) (0) (2) (2)( , ) 0, ( , ) 0 0rr rrr R t r R t tσ σ= = = = ∀ ≥  (25.4) 

Temperature boundary and continuity conditions are written at the interfaces between two phases of 
bi-layer hollow cylinder: 

 
(1) (1) (2) (1)

(1) (1) (1) (2) (2) (1)
, ,

( , ) ( , )
0,

( , ) ( , )r r

T r R t T r R t
t

k T r R t k T r R t

 = = = ∀ ≥
= = =

 (25.5) 

Moreover, the bi-layer hollow cylinder is subjected to uniform heat input 0q  applied on internal 

surface (0)r R= , starting to initial temperature in composite solid equal to 0 RT T const= = , while 

the surface (2)r R=  is exposed, for t >0, to an ambient at 0T  temperature through a uniform 

boundary conductance ch : 

 

(1) (1) (0)
, 0

(2) (2) (2) (2) (2)
,

( , ) ,
0

( , ) ( , )

r i

r e c R

k T r R t q q
t

k T r R t q h T r R t T

− = = = ∀ ≥
 − = = = = −  

 (25.6) 

The initial condition for temperature functions is given by: 

 ( ) ( 1) ( ); , {1,2}, 0,i i i
RT T R r R i t−= < < ∀ ∈ =  (25.7) 

 where 0 RT T=  is a suitable chosen reference temperature in initial condition (for t = 0). 

 
25.3.  Uncoupled thermo-elastic analysis in bi-layer hollow cylinder 
In this case, the heat conduct problem involving a non-homogeneous boundary condition and, in 
particular, with the heat input specified over the entire boundary surface. It is necessary writing the 
temperature solution, in both phase of bi-layer, in the follows form (see Chapter VII and Chapter 
XXI) : 

 ( ) ( ) ( )( ) ( ) ( )
0, , , {1,2}i i i

S CT r t T T r T r t i= + + ∀ ∈  (25.8) 

where the functions ( ) ( )(1) (2),S ST r T r  satisfy the field equations: 

 
2 ( ) ( )

( 1) ( )
2

1
0; , {1,2}
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r d rd r

−+ = ≤ ≤ ∀ ∈  (25.9) 

and these functions must be satisfy the following boundary conditions, also : 
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  − = − = 

 (25.10)  

The functions ( ) ( )(1) (2), , ,C CT r t T r t  satisfy the field equations: 

 
( ) ( ) ( )2 ( ) ( ) ( ) ( 1) ( )

2 ( )

, , , , 01 1
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{1,2}

i i i i i
C C C

i

T r t T r t T r t R r R t

r r tr iκ

−∂ ∂ ∂ ≤ ≤ ∀ ≥+ =
∂ ∂∂ ∀ ∈

 (25.11) 

and these functions must be satisfy the following boundary conditions, also : 
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 (25.13) 

The initial condition for temperature functions becomes: 
 ( ) ( )( ) ( ) ( 1) ( ), , , 0, {1,2}i i i i

C ST r t T r R r R t i−= − ≤ ≤ = ∀ ∈  (25.14) 

The solutions of differential equation (25.9) is given by: 
 ( )( ) ( ) ( ) log , {1,2}i i i

ST r C D r i= + ∀ ∈  (25.15) 

where (1) (1) (2) (2), , ,C D C D  are 4 unknown parameters to determine. By solving algebraic system 

composed by equations (25.10), we obtain integration constants (1) (1) (2) (2), , ,C D C D : 
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= + = − 

 

 (25.16) 

The solution to the problem for CT  is found in much the same says way as was followed in Chapter 

XXI. The problem is therefore on with homogeneous differential equation and boundary conditions 
and may be treated by the method separation of variables as showed in Chapter XXI. The solutions 
of differential equation (25.11) is given by: 

 ( ) ( ) ( ) ( ) ( )2 2( ) ( ) ( ) ( ) ( )
0 0, {1,2}

i ii i i i i t
CT r t A J r B Y r e iκ β ωω β ω β − = + ∀ ∈

 
 (25.17) 

where ( ) ( ), ,i iA B ω  are constants parameter to determine, the coefficient ( ) (1) ( )i iβ κ κ= . The 

boundary conditions (25.12) for temperature function  ( )( ) ,i
CT r t  are reported below: 
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 (25.18) 

The boundary conditions on the inner and the outer surface  (25.13) become: 

                                             
( ) ( )
( ) ( )

(1) (1) (0) (1) (1) (0)
1 1
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1 1
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 (25.19) 

By first equation of (25.19), we determine (1)B  as function  of  (1)A  as follows: 

 
( )
( )

(0) (1)
1(1) (1)

(0) (1)
1

J R
B A

Y R

ω β
ω β

= −  (25.20) 

The equations (25.18) constituted an homogeneous algebraic system, composed by 2 equations, in 
unknown parameters (1) (1) (2) (2), , ,A B A B ,  which can be written as:  
 ⋅ =Φ X 0  (25.21) 
where (1) (2)[ , ]T=X X X  collect the unknowns sub-vectors, as reported below: 
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 ( ) ( )1 2(1) (1) (2) (2), ,
T T

A B A B   = =   X X  (25.22) 

and Φ  is an 2 4x  rectangular matrix, composed by following  sub-matrices: 

 (1) (2)
1 1

 = − Φ Φ Φ  (25.23) 

where (1) (2)
1 1,Φ Φ  are ( )2 2x  square sub-matrices given by: 
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The determinant of the matrices (25.24) is given by: 
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Then, the matrices (25.24) are invertible and we obtain the vector (2)X  as function of vector (1)X :  
     (2) (1)= ⋅X Γ X  (25.26) 
where Γ  is an 2 2x  square matrix  given by : 

 
1(2) (1)

1 1

−
 = ⋅ Γ Φ Φ  (25.27) 

By substituting the solutions (25.26) in boundary conditions (25.19), we obtain vector equations in 
unknown vector (1)X , as reported below: 

 (1)⋅ =Λ X 0  (25.28) 
where Λ  is an  2x2  square matrix  given by : 

                                                                  11 12

21 22

Λ Λ 
=  Λ Λ 

Λ                     (25.29) 

where the components 11 12 21 22, , ,Λ Λ Λ Λ  are reported below: 
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The algebraic system (25.28) admit not trivial solution if the determinant of matrix [ ]Λ  is equal to 

zero. By imposing this condition, we obtain the transcendental equation in unknown parameter ω : 
 [ ] ( )det 0 0g ω= ⇒ =Λ  (25.31) 

The roots of this transcendental equation (25.31) are an infinite number such, denoted here by 

, 1,2,....m m Nω =  leading to characteristic values 2
m mλ ω= − . The corresponding characteristic 

functions ( ) ( )(1) (2)
,m mr rϕ ϕ  are, as calculated above, 
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The temperature function in two phases can to be written in the follows form: 
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where the vector (1) (1) (1),
T

m m mA B =  X  and the unknown constant (1)
mB  depends by (1)

mA  as showed 

equations (25.20). The coefficients (1)
mA  are determined by applying the initial condition (25.7) that 

yields the following relationship: 
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Finally the temperature functions  in two phases are given by: 
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By substituting the functions (25.35), in equation (25.2), we obtain in explicit the displacement 
function in any hollow cylindrical phase: 

    

( ) ( ) ( ) 2 ( ) 2

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
1

1
log

2 2

{1,2}
i i

m

i i i
i i i i

r

i i
ti i i i im

m m m m m
m m

H r
u G r C D r

r

Q
P r A J r B Y r e i

r
κ ω β

β ζ

ζ β ω β ω
ω

∞
−

=

  = + + + − +  
  

 
 + + + + ∀ ∈  

 
∑

 (25.36) 

where the constant ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 2i i i i i i iζ α λ µ β λ µ   = + +     and the integration constants 
(1) (1) (1) (1) (2) (2) (2) (2), , , , , , ,m m m mG H P Q G H P Q  are determined by applying the boundary conditions given 

by equations (25.3) and (25.4). In this case the functions ( )( )
1 ,if t ( )( )

2 ,if t  reported in equation 

(25.2) are given by: 
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In explicit the radial, circumferential and axial stress components are given by: 
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It is important to note that displacement function and stress components in both phases (1) and (2) 
can to be subdivided in two parts: firstly constant in time and the second depend of the time.  
The integration constants ( ) ( ) ( ) ( ), , , {1,2}i i i i

m mG H C D i∀ ∈  are function of geometrical, mechanical and 

thermal parameters of spherical layers . Moreover ( ) ( ),i i
m mC D  are function of  constants ( ) ( ), ,i i

m m mA B ω  

also with apix {1,2}i ∈ .We can write the boundary conditions (25.3) and (25.4) in two uncoupled 
algebraic system as reported below: 
 0 0 1,2,....m m m N⋅ = ⋅ = ∀ =Ω W L , Ω W L ,� �  (25.41) 

 where the vectors 0, mL L  are given by: 

                                                    ( ) ( )(2) (1) (2) (1)
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T T
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These vector are characterized by following sub-vectors:      
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The unknowns vectors (1) (2)
0 0 0[ , ]T=W W W   and  (1) (2)[ , ]T

m m m=W W W  are composed by  sub-vectors 

reported below: 
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and Ω  is an 2 4x  rectangular matrix composed by following sub-matrices: 

                                                        [ ] (1) (2)
1 1 , = − Ω Ω Ω  (25.45) 

where the generic matrices (1) (2)
1 1,Ω Ω are given by: 
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are (2 2)×  matrices with nonzero determinant, whose components were already gave above. The 
determinant of the matrices (25.46) is given by: 

                             
( ) ( )(1) (1) (2) (2)

(1) (2)
1 1(1) (1)2

2 2 2 2
det[ ] 0, det[ ] 0,

R R

µ λ µ λ+ +
= − ≠ = − ≠Ω Ω  (25.47) 

However, in force of the special form of Ω  derived above, one can rewrite the reduced algebraic 
problem in order to have the solution without recall any numerical strategy. To make this, let us we 
can rewrite two algebraic system (25.41) in follows manner: 
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1 0 1 0 1,0 1,0
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By solving the equations (25.48), we finally obtain 
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The problem is hence reduced to an algebraic one in which only the four coefficients – collected in 
(1) (1)
0 , mW W  – related to the first phase have to be determined, by imposing two boundary conditions 

described by the equations obtained above. Therefore, in order to find the four unknowns collected 
in (1) (1)

0 , mW W , it remains to rewrite the boundary conditions (25.4) in matrix form as reported below: 

          (1) (1)
0 0, {1,2,...., },m m m N⋅ = ϒ ⋅ = ϒ ∀ ∈Π W Π W  (25.50) 

where the matrix ,Π and vectors 0, mϒ ϒ  are given by: 

         [ ]1 2 0 1,0 2,0 1, 2,, , {1,2,...., },
T TT

m m m m N   = ϒ = ϒ ϒ ϒ = ϒ ϒ ∀ ∈   Π Π Π  (25.51) 

where 1 2,Π Π  are two vectors and 1,0 2,0 1, 2,, , ,m mϒ ϒ ϒ ϒ  are four scalars, as reported below:                         
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 (25.52) 

Then, by inverting the equations (25.50), we obtain the 4 unknown coefficients 
(1) (1) (1) (1), , ,m mG H C D as reported below 

                                                       ( ) ( )1 11 1
0 0, ,m m

− −= ⋅ ϒ = ⋅ ϒW Π W Π  (25.53) 

By substituting the solutions (25.53) in (25.36), we obtain in explicit displacement function. 
 
25.4.  Numerical application: Metallic pipeline internally coated with ceramic material 
Let us consider, a composite circular cylinder constituted by two phases subjected to uniform heat 
input 0q  applied on internal surface (0)r R= , starting to initial temperature in composite solid equal 

to 0 RT T const= = . The external surface (2)r R=  is exposed, for t >0, to an ambient at 0T  

temperature through a uniform boundary conductance ch . The initial temperature (for  t = 0) of the 

bi-layer hollow cylinder  is 0 RT T const= =  where 0RT > . The phase (1) is constituted by Ceramic 

( 3 4Si N )  and phase (2) by Metal ( 6 4Ti Al V− − ). It is denoted with apix “1” the parameters of 
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Ceramic and apix “2” the parameters of Metal (see figure 25.1). The mechanical and thermal 
parameters considered for both phases are reported in table 25.1. 
 

 phase n.1: 
Ceramic 
( 3 4Si N ) 

phase n.2: 
Metal 

( 6 4Ti Al V− − ) 

2E N m− 
   9348.43 10⋅  9122.557 10⋅  

1 1k W m K− − 
   1.209 13.723 

ν  0.24 0.29 
1 1m m Kα − ⋅   65.872 10−⋅  67.579 10−⋅  

3kg mρ − 
   4429 2370 

1 1
vc J kg K− − ⋅   555.110 625.297 

 
Table 25.1 – Mechanical and thermal parameters of Ceramic and Metal 

 

ur

uθ
y

x

phase (1)

phase (2)

Ceramic

Metal 

3Si N4

Ti-6Al-4V

( )

( ) r

R(0)

R(1)

R(2)

qi q0=
qe hc= T(r=R(2)

)[ -T0]

rr =0

rr (r=R
(2)
)=0

(r=R
(0)) θ

 
 

Figure 25.1 – Metallic pipelines insulated by ceramic phase 
 
The geometrical parameters of  bi-layer hollow cylinder are : 

(0) (2) (1) (0) (2) (0)1
12.7 , 25.4 , 16.93 ,

3
R mm R mm R R R R mm = = = + − =   

The uniform heat input 0q  applied on internal surface (0)r R= , uniform boundary conductance ch  

and the initial temperature are reported below: 
2 2

0 08 / , 1000 / , 300c Rh W m K q W m T T K= ⋅° = = = °  
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In this case the graphics function ( )g ω  given by equation (25.31) is reported below: 

 

 
 

Figure 25.2  -   Function ( )g ω  

 
By fixed  m= 20,  the roots mω  of  transcendental equation (25.31) and corresponding values of 

constants integration mA  are reported in table 25.2: 

 

 
 

Table 25.2 – Roots mω  and corresponding values of constants integration mA  



Chapter XXV : Metallic pipelines insulated by ceramic material 

F. Carannante 643 

 
 

Fig. 25.3 -  Temperature function  versus time 
 

 
 

Fig. 25.4 - Temperature function  along radial direction for t = 0.0, 0.5, 1.0, 1.5, 2.0min 
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Fig. 25.5 – Heat flux function  along radial direction for t = 0.0, 30s, 30min,  t → ∞ ,  
 
 
 
 

 
 

Fig. 25.6 -  Radial displacement along radial direction  for t = 0.0, 0.5, 1.0, 1.5, 2.0min 
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Fig. 25.7  -  Radial stress  versus time  
 
 
 
 

 
 

Fig. 25.8  -    Radial stress  along radial direction for t = 0, 10, 20, 30sec 
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Fig. 25.9   -  Radial stress  along radial direction for t = 0.0, 0.5, 1.0, 1.5, 2.0min 
 
 
 
 
 

 
 

Fig. 25.10  -  Radial stress  along radial direction for t = 0, 10, 20, 30, 60min, t → ∞  
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Fig. 25.11   -   Circumferential stress versus time 
 
 
 

 
 
 

Fig. 25.12  -  Circumferential stress  along radial direction for t = 0, 10, 20, 30, 60min, t → ∞  
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Fig. 25.13 -  Circumferential stress along radial direction for t = 0.0, 0.5, 1.0, 1.5, 2.0min 
 
 
 

 
 
 

Fig. 25.14   -  Axial stress versus time 
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Fig. 25.15 -  Axial stress along radial direction for t = 0, 10, 20, 30, 60min 
 
25.5.  Conclusions  
In this chapter it is reported a new thermo-elastic solution in close form for bi-layer hollow cylinder 
under time-dependent boundary conditions. In particular, the external surface (2)r R=  of bi-layer 
hollow cylinder is exposed, for t >0, to an ambient at 0T  temperature through a uniform boundary 

conductance ch , while the inner surface is exposed to constant heat flux in time. By applying the 

analytical solution, we obtain temperature profile along radial direction for different values of time, 
as reported in figure 25.4. The gradient of temperature in ceramic phase (1) is greater than that 
metallic phase (2) because (2) (1)k k> . The sign of radial stress in ceramic and  metal phases vary in 
the time, as showed in figures 25.6, 25.7, 25.8, 25.9. In the first 2 minutes, the radial stress 
component is negative (compression), in both phases. Successively, by increasing the variable time, 
radial stress component becomes positive (traction), in both phases. In the first 2 minutes, in metal 
phase, the hoop stress is positive (traction), but successively the hoop stress becomes negative in 
each point (compression). In ceramic phase the hoop stress component assumes a approximately bi-
triangular profile, along radial direction until to 10 minutes. Then, by increasing the variable time, 
the hoop stress component becomes positive (traction) in any points of ceramic phase.   
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CONCLUSIONS 
In the present thesis is furnished a general approach to construct exact termo-elastic solutions for 
multilayered cylinders and spheres, subjected to mechanical and thermal load. These solutions 
are utilized for several engineering applications and we report some applications in last analyze 
chapters of present thesis. The relevant results obtained in this thesis are reported below:  
 

1) By applying the analytical solutions for multilayered cylinder subjected to DSV load 
conditions, reported in chapter X, were calculated  axial, bending, torsion and shear 
stiffness of the solid considered. The axial stiffness kε  , bending stiffness kχ  , shear 

stiffness kγ  are not equal to the sum of stiffness of single  phases, as so far usually assumed 

in simplified procedures, but strongly dependent on values of Poisson’s moduli and on 
geometrical parameters; 

2) In chapter XVII and XVIII are reported the steady-state problem for multilayered cylinder 
and sphere subjected to gradient of temperature and pressure between the inner and the 
outer surface, respectively. The Henchy von-Mises’s equivalent stress in bi-layered cylinder 
and sphere, is more influenced by ratio of linear thermal expansion coefficient of two 
phases, respectively. 

3) In chapter XX and XXI are reported the transient problems for multilayered sphere and 
cylinder subjected to three type of time dependent boundary conditions, respectively. In 
particular, is reported the thermal analyses of spherical tank, composed by two hollow 
spherical layers, exposed to hydrocarbon fire. 

4) In chapter XXII it is studied a spherical tank methane gas-filled exposed to fire 
characterized by hydrocarbon fire curve. By applying a suitable simplified hypothesis on the 
mechanics of problem, it is determine the analytical thermo-elastic solution for spherical 
tank. In  particular, are reported two analytical model that simulation the interaction between 
spherical tank and methane gas. In the first model, let us consider that heat transfer occurs 
by only thermal convection, but in second model the heat transfer occurs by thermal 
convection and thermal radiation. The collapse temperature and maximum Henchy von-
Mises’s equivalent stress at collapsed are determined in both models considered. 

5) In chapter XXIII, an industrial insulated pipeline is modelled as multilayered cylinder, 
subjected to internal pressure and gradient of temperature between inner and outer surfaces. 
By applying the analytical solutions reported in this chapter, it is showed that maximum 
Hencky von Mises’s equivalent stress in three phases of pipeline is more influenced by 
Poisson’s ratio and linear thermal expansion coefficient of insulate coating. 

6) In chapter XXIV it is analyzed a cylindrical concrete specimen under axial force within 
Fibre Polymeric Reinforcing sheets. The elastic solutions found in Chapter XII are here 
extended to the post-elastic range. The evolution of the stress field when the core phase is 
characterized by an Intrinsic Curve or Schleicher-like elastic-plastic response with associate 
flow rule and the cylindrically orthotropic hollow phase obeys to is shown the elastic-brittle 
Tsai-Hill anisotropic yield criterion. This analytical model furnished a predictive formula  
for estimating the overall collapse mechanism, the concrete ultimate compressive strength 
and the confining pressure effect. 

7) In chapter XXV it is reported an analytical thermo-elastic solution in closed form for bi-
layer hollow cylinder subjected to time-dependent boundary conditions. In particular, it is 
obtained a new analytical solution for a metallic pipelines internally coated with ceramic 
material, constituted by two phases: Ceramic (3 4Si N ) and Metal ( 6 4Ti Al V− − ) subjected 

to heat flux on inner surface. 
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