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The molecular basis of hypertrophic scars
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Abstract

Hypertrophic scars (HTS) are caused by dermal injuries such as trauma and burns to the deep dermis, which are
red, raised, itchy and painful. They can cause cosmetic disfigurement or contractures if craniofacial areas or mobile
region of the skin are affected. Abnormal wound healing with more extracellular matrix deposition than
degradation will result in HTS formation. This review will introduce the physiology of wound healing, dermal HTS
formation, treatment and difference with keloids in the skin, and it also review the current advance of molecular
basis of HTS including the involvement of cytokines, growth factors, and macrophages via chemokine pathway, to
bring insights for future prevention and treatment of HTS.
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Background
Hypertrophic scars (HTS) are considered to be a dermal
form of fibroproliferative disorders that are caused by
aberrant wound healing due to injuries to the deep der-
mis, including burn injury, laceration, abrasions, surgery
and trauma. HTS are red, raised, rigid and can cause
pruritus, pain and joint contracture. HTS formed in the
facial area can cause cosmetic disfigurement, which re-
sult in psychological and social issues [1, 2] (Fig. 1).

The physiology of wound healing in the skin
Wound healing can be divided into four stages:
hemostasis, inflammation, proliferation and tissue re-
modeling [3]. In these four stages, there are complicated
interactions within a complex network of pro-fibrotic
and anti-fibrotic molecules, such as growth factors, pro-
teolytic enzymes and extracellular matrix (ECM) pro-
teins [4, 5].
The first stage is hemostasis, which relates to the clot-

ting cascade and the formation of a provisional wound
matrix. These changes occur immediately after injury
and are completed within hours [6]. Clotting factors
from the injured skin (extrinsic system) and aggregation
of thrombocytes or platelets after exposure to collagen

fibers (intrinsic system) are activated. The exposed colla-
gen also triggers platelets to begin secreting cytokines
and growth factors [7]. The provisional wound matrix
serves as a scaffold structure for the migration of leuko-
cytes, keratinocytes, fibroblasts and endothelial cells.
Platelets induce the vasoconstriction in order to reduce
blood loss followed by secretion of a number of inflam-
matory factors including serotonin, bradykinin, prosta-
glandins and most importantly histamine, which activate
the inflammatory phase.
In the inflammatory phase, polymorphonuclear neu-

trophils (PMNs) are the first inflammatory cells that are
recruited to the inflamed site and are present there for
2–5 days. Several mediators such as tumor necrosis
factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and
interleukin-6 (IL-6) are released by the neutrophils in
order to amplify the inflammatory response [8]. Mono-
cytes are attracted by the inflammatory mediators and
differentiate into macrophages soon after they migrate
into the wound site. The main functions of macrophages
are phagocytosis of pathogens and cell debris as well as
the release of growth factors, chemokines and cytokines
which will push the wound healing process into the next
stage.
The proliferation stage consists of angiogenesis, re-

epithelialization, and granulation tissue formation. The
process of angiogenesis is commenced by growth factors
such as vascular endothelial growth factor (VEGF) re-
leased by activated endothelial cells from uninjured
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blood vessels. The new blood vessels differentiate into
arteries and venules by recruitment of pericytes and
smooth muscle cells [9]. Re-epithelialization is essential
for the re-establishment of tissue integrity, which is en-
sured by local keratinocytes at the wound edges and epi-
thelial stem cells from skin appendages such as hair
follicles or sweat glands [10]. Granulation tissue forma-
tion is the last step in the proliferation phase, character-
ized by accumulation of a high density of fibroblasts,
granulocytes, macrophages, capillaries and collagen bun-
dles, which replace the provisional wound matrix formed
during the inflammation stage. The predominant cells in
this tissue are fibroblasts, which produce types I and III
collagen and ECM substances, providing a structural
framework for cell adhesion and differentiation [11].
Later, myofibroblasts induce wound contraction by
virtue of their multiple attachment points to collagen
and help to reduce the surface area of the scar [12].
The remodeling stage is already initiated while the

granulation tissue is formed. During the maturation of
the wound, type III collagen, which was produced in the
proliferation stage, is replaced by the stronger type I col-
lagen which is oriented as small parallel bundles and

contributes to the basket-weave collagen formation in
normal dermis [13].

HTS formation
The physiological process of normal wound healing will
not result in HTS formation. However, if abnormalities
occur during the wound healing process, the delicate
balance of ECM degradation and deposition will be dis-
rupted. Either insufficient degradation and remodeling
of ECM due to an imbalance in expression of matrix
metalloproteinases (MMPs) [14] or excessive ECM de-
position caused by increased activity of fibroblasts and
myofibroblasts [15] might lead to HTS formation. One
common mechanism that burn patients often end up
with HTS formation is the chronic inflammation or in-
fection due to the severity of the injury, which prolongs
the wound healing process and leads to excessive scar-
ring [16]. This prolonged inflammatory phase will lead
to HTS formation such as increased vessel and cell num-
ber as well as excessive collagen deposition [17].
It is well accepted that fibroblasts and myofibroblasts

play essential roles in fibrotic diseases due to their abil-
ities to generate excessive collagen in abnormal wound

Fig. 1 Patients with HTS. A 24 year-old white man, 11 months after a 21 % TBSA burn. This patient developed HTS, resulting in cosmetic and functional
problems that included restricted opening of mouth and tight web spaces of fingers that limited range of motion on hands (From Tredget EE, Levi B,
Donelan MB. Biology and principles of scar management and burn reconstruction. Surg Clin North Am. 2014 Aug;94(4):793–815. With permission)
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healing conditions [18, 19]. However, growing evidence
suggests that other cells actively participate in scar
pathogenesis, for example, keratinocytes and mast cells
[20, 21]. When co-cultured with keratinocytes, fibro-
blasts exhibited significant proliferation activity [22].
The proliferation of dermal fibroblasts can also be stim-
ulated by intercommunication of epidermal keratino-
cytes while decreasing the collagen production [23]. The
activated keratinocytes in HTS tissue showed abnormal
epidermal-mesenchymal interactions due to delayed re-
epithelialization and prolonged epidermal inflammation,
indicating that abnormal wound healing such as severe
burn injuries may end up with HTS formation because
the regulation of keratinocytes to fibroblasts is impaired
[24]. However, independently co-culturing layered fibro-
blasts and keratinocytes on collagen-glycosaminoglycan
scaffolds, aiming to assess the influence of keratinocytes
and layered fibroblasts on the characteristics of tissue-
engineered skin, showed that keratinocytes reduced
fibrotic remodeling of the scaffolds by deep dermal
fibroblasts, demonstrating an anti-fibrotic role of kerati-
nocytes on layered fibroblasts in a 3D microenvironment
[25]. In addition mast cells appear to activate fibroblasts
through gap junction intercellular communication
(GJIC), indicating that mast cell-fibroblast GJIC may also
play a role in fibrosis [26]. Eliminating the mast cell or
its GJIC with fibroblasts may prevent HTS formation or
reduce the severity of fibrosis [27]. Mast cells are able to
stimulate the proliferation of fibroblasts by releasing bio-
logical mediators such as histamine, chymase and tryp-
tase via degranulation, which leads to the promotion of
fibrogenesis [28, 29]. Additionally, histamine is able to
enhance the effect on fibroblast migration and prolifera-
tion in vitro [30]. More histamine was found in HTS
mast cells compared to normal skin mast cells after
stimulation by a neuropeptide, substance P [31]. In an in
vivo experiment, histamine was found significantly ele-
vated in the plasma of patients with HTS compared to
age-matched normal volunteers [32]. The elevated hista-
mine can cause vasodilation and itchiness, resulting in
the typical pruritic behavior that severely affects patients
with HTS [33].

Differences between HTS and keloids
HTS and keloids are both caused by abnormal wound
healing and are characterized by pathologically excessive
fibrosis in the skin [34]. Sometimes the differentiation
between HTS and keloids can be difficult and lead to in-
correct identification, which may result in inappropriate
treatment [35].
HTS are mostly caused by trauma or burn injury to

the deep dermis and do not extend beyond the boundary
of the original injury. Keloids can develop after minor

injuries and may even spontaneously form on the sternal
region without obvious injury, which will project beyond
the original wound borders [36, 37]. HTS are red, raised
and mostly linear scar occurred in any regions of the
body while keloids appear as pink to purple, shiny,
rounded protuberances and are commonly seen in ster-
nal skin, shoulder, upper arms and earlobe. HTS usually
appear within a few months of injury, regress in one or a
few years and can cause contracture when joint regions
are affected, whereas, keloids might take years to de-
velop, grow for years and do not cause contracture. Ke-
loids are commonly seen in darker skin population and
have never been reported in albino populations [38].
HTS are characterized by abundant alpha-smooth

muscle actin (α-SMA) producing myofibroblasts to-
gether with more type III collagen than type I collagen.
On the contrary, there is no α-SMA producing myofi-
broblasts and a mixture of type I and type III collagen is
found in keloid tissue [34]. The collagen bundles in ke-
loids are thick, large and closely packed random to epi-
dermis, whereas fine, well-organized parallel to
epidermis collagen bundles are found in HTS [39]. ATP
in keloids remained at higher levels for a long time while
ATP level decreased over time in HTS [40]. An investi-
gation of the expression of three proteins of the p53
family in keloids and HTS showed that the level of p53
proteins was higher in keloids compared to HTS. Protein
p73 was elevated only in HTS and no difference was
found between keloids and HTS of the level of p63 [41].
An in vitro analysis of ECM contraction by fibroblasts
isolated from different scars showed that HTS fibroblasts
had a consistently higher basal level of fibrin matrix gel
contraction than keloid fibroblasts [42]. Despite all these
differences, HTS and keloids possess similar features in-
cluding excessive ECM deposition such as high collagen
content and rich proteoglycan levels within the dermis
and subcutaneous tissue [43]. The treatment for HTS
and keloids are similar but HTS has a better prognosis
for surgical excision because keloids have a much higher
recurrence rates [16].

Complications of HTS
Complications of HTS include pain, pruritus, immobility
of joint region, disfigurement and psychological issues.
Pain and pruritus might not be as devastating as other
complications, but they are significant complaints for
many patients with HTS and they have been shown to
persist for decades. The pain patients with HTS experi-
ence is often neuropathic pain, which is caused by dys-
function in the peripheral or central nervous system due
to the primary injury. The neuropathic pain symptoms
complained by patients with HTS are pins and needles,
burning, stabbing, shooting or electric sensations [44].
The mechanism of pruritus is not well understood, but it
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is associated with histamine, which is released by mast
cells and implicated as a primary mediator of itchiness
[45]. Patients who developed HTS also suffer from re-
duced functional range of motion due to joint contrac-
tures, and disfigurement due to HTS tissue formed in the
visible area of the body, which can lead to psychological
problems or even social issues. A cross-sectional descrip-
tive study showed that patients with HTS suffered from
pain, joint stiffness, handicaps in walking or running up
to on average of 17 years since the severe burn injury
[46]. With all these complications, patients with HTS
have complicated psychiatric disorders, including concern
of body image, anxiety, depression, low self-esteem and
posttraumatic stress. They have needs for psychological
counseling and rehabilitation, especially for those who are
economically disadvantaged or with preexisting mental ill-
ness [47]. However, a study focused on adolescent with
disfiguring burn scars showed that instead of viewing
themselves as less personally competent than unburned
adolescents, they exhibited a similar or higher degree of
self-worth as compared to their peers [48].

Treatments of HTS
The outcome of HTS is quite different because of the varied
injured sites, severity of the injuries, and treatments the pa-
tients receive which leads to a variety of therapeutic strat-
egies between surgeons and hospitals [49]. The effect of
current treatment of HTS is slow and incomplete while be-
ing expensive, time consuming and labor intensive. In 2002,
Mustoe et al. reported a qualitative overview of the available
clinical literature by an international advisory panel of ex-
perts and provided evidence-based recommendations on
prevention and treatment of HTS, which was considered as
an outline for scar management [50]. Surgical excision com-
bined with adjuvant therapies such as steroids, pressure gar-
ments and silicone gel is still the most common current
management [51]. There are similar studies published in
2014 by Gold et al. [52, 53], which tried to standardize scar
management by establishing safe and effective treatment op-
tions in order to apply in routine clinical practice. They con-
ducted a comprehensive search of the MEDLINE database
over the past 10 years and suggested that the most signifi-
cant advances were laser therapy [54] and 5-fluorouracil
[55]. Emerging therapies for HTS were also reported such
as bleomycin [56], onion extract gel [57, 58], and Botulinum
toxin A [59].

Review
Molecular basis of HTS
Cytokines in HTS formation

Interleukin-1 alpha (IL-1α) and TNF-α inhibit HTS
Interleukin-1 (IL-1) has two subtypes, IL-1α and IL-1β.
IL-1α was found to promote the release of MMPs, activate

MMP-1 and stimulate the degradation of ECM [60, 61].
Thus, decreased levels of IL-1α may lead to ECM accumu-
lation and HTS. The expression of IL-1α was found sig-
nificantly lower in HTS than in normal skin from patients
following breast reduction surgery [62]. Quite different
from IL-1α, IL-1β is found to be over-expressed in HTS
compared to normal skin [63].
TNF-α participates in the early inflammation stage

and the ECM remodeling phase. TNF-α is also believed
to cause fibrosis together with IL-1β [64]. However,
TNF-α expression was shown to be decreased in HTS
compared to normal skin, which indicated that TNF-α
may be important for wound healing and HTS might be
partially a consequence of a decreased amount of TNF-α
[65]. Another experiment demonstrated that TNF-α
could suppress transforming growth factor beta-1 (TGF-
β1)-induced myofibroblasts phenotypic genes such as α-
SMA at the mRNA level as well as at the Smad signaling
pathway of TGF-β1 [66].

Inappropriate release of IL-6 leads to HTS IL-6 is also
involved in the wound healing process. It is one of the
major regulators of cells stimulation, angiogenesis and
ECM synthesis [67]. IL-6 could also cause fibrotic diseases
such as pulmonary fibrosis and scleroderma [68, 69]. In
addition, IL-6 was reported to be highly expressed in
fibroblasts from HTS tissue compared to normal fibro-
blasts, influencing scar formation by modulating fibro-
blasts [70]. In order to further investigate the function of
IL-6, fibroblasts from HTS were treated with IL-6. Results
showed an absence of any up-regulation of MMP-1 and
MMP-3, indicating that suppression of MMPs may play a
role in the excessive accumulation of collagen formed in
HTS [71]. In fetal fibroblasts, there was less IL-6 produced
compared to adult fibroblasts and the addition of exogen-
ous IL-6 caused scar formation instead of scarless wound
healing [72]. However, IL-6 knock-out mice showed de-
layed wound healing [73].

Interleukin-10 (IL-10) plays an important role in scarless
wound healing by regulating pro-inflammatory cyto-
kines IL-10 is produced by T helper cells and it could
mediate the growth or functions of various immune cells
including T cells and macrophages. It has been estab-
lished that IL-10 acts as a key anti-inflammatory cyto-
kine, which could limit or terminate the inflammatory
processes [74]. Neutralizing antibodies of IL-10 were ad-
ministered into incisional wounds in mice and the results
demonstrated an inhibited infiltration of neutrophils and
macrophages and an over-expression of monocyte
chemotactic protein-1 (MCP-1), IL-1β, TNF-α [75] and
IL6 [76]. This is supported by another study that IL-10
significantly inhibited lipopolysaccharide (LPS)-induced
IL-6 production at a transcriptional level [77]. A study
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tried to evaluate whether IL-10 could change the inner-
vated conditions of full thickness excisional wounds cre-
ated on the dorsal surface of CD1 mice. The results
showed only temporary changes during the wound heal-
ing process but no significant changes at 84 days after
treatment. However, wounds treated with IL-10 recov-
ered similarly to normal skin compared to the wounds
treated with PBS [78]. Another experiment reported
that scar appeared in IL-10 knockout fetal mice com-
pared to scarless wound healing in the control group
[79]. A more recent study showed that IL-10 could pro-
vide an optimal environment for fetal and postnatal
scarless wound healing [80]. A similar study also over-
expressed IL-10 but in adult murine wounds. The results
showed that increased IL-10 reduced inflammation, colla-
gen deposition and created improved wound healing con-
ditions [81].

Growth factors in HTS formation

Transforming growth factor-β (TGF-β) plays a pivotal
role in HTS formation TGF-β is one of the most im-
portant growth factors that regulate tissue regeneration,
cell differentiation, embryonic development and regula-
tion of the immune system [82–84]. Recent studies
showed that TGF-β not only involves in normal wound
healing process but also contributes to fibroproliferative
disorders such as pulmonary fibrosis [85] and HTS [86].
TGF-β has three isoforms, TGF-β1, transforming growth
factor-beta 2 (TGF-β2) and transforming growth factor-
beta 3 (TGF-β3) [87]. Shah et al. used the neutralizing
antibody to TGF-β1 and TGF-β2 in cutaneous wounds
of adult rodents and found reduced cutaneous scarring
formation [88]. A subsequent study from Shah reported
that exogenous addition of TGF-β3 to cutaneous rat
wounds reduced scarring, indicating that TGF-β1 and
TGF-β2 were related to cutaneous scarring while TGF-
β3 should be considered as a therapeutic agent against
scarring [89]. A more recent study treated the rabbit ear
wounds with anti-TGF-β1, 2, 3 monoclonal antibodies at
different time points of wound healing and early injec-
tion of antibodies showed delayed wound healing while
the injections of middle or later time points remarkably
reduced HTS formation, which implicated the indispens-
able roles of TGF-β1, 2, 3 in early stage of wound heal-
ing [90]. The transcriptional factor forkhead box protein
O1 (FOXO1) has recently been found to be important as
a regulator in wound healing. It exerts its effect through
regulation of TGF-β1 expression from oxidative stress.
The absence of FOXO1 reduced TGF-β1 expression and
led to impaired re-epithelialization of wounds [91].
Many studies indicate that aberrant TGF-β expression

plays a pivotal role in HTS formation. For example, a
previous study showed that the serum level of TGF-β1

was up-regulated locally and systemically in burn pa-
tients and a significant clinical improvement in scar
quality and volume was obtained after interferon-
alpha2b (IFN-α2b) therapy, which was associated with
normalization of serum TGF-β1 [92]. Treatment of IFN-
α2b and interferon-gamma (IFN-γ) to site-matched HTS
and normal fibroblasts showed antagonized TGF-β1 pro-
tein production, down-regulation of TGF-β1 mRNA
levels [93]. Tredget et al. made superficial partial-
thickness ear wound and full-thickness back wounds on
a transgenic mouse over-expressing TGF-β1 in order to
investigate the endogenous derived TGF-β1 on wound
re-epithelialization. The findings suggested that over-
expression of TGF-β1 speeded the rate of wound closure
in partial-thickness wounds; whereas, over-expression of
TGF-β1 slowed the rate of wound re-epithelialization in
full-thickness wounds [94]. Another study created super-
ficial and deep horizontal dermal scratch experimental
wounds on the anterior thigh of adult male patients in
order to characterize the related expression of TGF-β1
and TGF-β3. HTS formed after injuries to the deep der-
mis while superficial wounds healed with minimal or no
scarring. Higher TGF-β1 and lower TGF-β3 expression
was found in deep wounds compared to superficial
wounds, suggesting the pivotal role of TGF-β1 in HTS
formation [95].

Connective tissue growth factor (CTGF) acts as a
downstream mediator of TGF-β1 signaling pathway
and involves in HTS formation CTGF, also know as
CCN2, is a pleiotropic cytokine that is induced by TGF-
β1 in dermal fibroblasts and is considered to be a down-
stream mediator of TGF-β1 [96]. The main role of
CTGF is to interact with signaling proteins such as
TGF-β1 for the regulation of cell proliferation, differenti-
ation, adhesion, ECM production and granulation tissue
formation [97, 98]. This collaboration between CTGF
and TGF-β1 has contributed to the pro-fibrotic proper-
ties of TGF-β1 confirming the role of CTGF for TGF-β1
induction as a co-factor of gene expression.
The expression of CTGF was found increased in cul-

tured fibroblasts from HTS, keloids and chronic fibrotic
disorders [99]. In addition, cultured fibroblasts from
HTS showed an increased expression of CTGF after
stimulation by TGF-β [100]. In order to evaluate the role
of CTGF in HTS formation, a rabbit animal model was
established by Sisco at el. Antisense therapy was used to
inhibit the expression of CTGF. Real-time reverse tran-
scription polymerase chained reaction demonstrated an
increased expression of CTGF in scar tissue and de-
creased CTGF expression after the intradermal injection
of antisense oligonucleotides. The study showed that in-
hibition of CTGF in different times in wound healing
has a substantial effect on reducing HTS [101]. Another
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experiment used CTGF small interfering RNA (siRNA)
to successfully block the increase in CTGF mRNA levels
and the result demonstrated that CTGF could regulate
the gene expression of ECM, tissue inhibitor metallopro-
teinases and partial function of TGF-β1 [102]. In order
to elucidate the pathophysiological function of CTGF,
CTGF knock-out mice were used in the experiment and
those mice died immediately after birth due to malforma-
tion of the rib cages. As well, the embryonic fibroblasts
from this animal model showed an inability of adhesion
and α-SMA formation. All these results suggest that CTGF
functions in ECM adhesion and production [103, 104].
Taken together, CTGF acts as a downstream mediator

of the TGF-β1 signaling pathway, directly involved in
ECM synthesis and assists with TGF-β1 in the pathogen-
esis of HTS.

Platelet-derived growth factor (PDGF) is essential to
wound healing and the over-expression of PDGF is im-
portant in the formation of HTS PDGF has five iso-
forms, including PDGF-AA, PDGF-AB, PDGF-BB,
PDGF-CC and PDGF-DD which function via the activa-
tion of three transmembrane receptor tyrosine kinases
(RTKs) [105]. PDGF is produced by degranulated plate-
lets in the early phase of the wound healing process and
it is also secreted by macrophages during the prolifera-
tive phase of wound healing [106]. In wound healing-
impaired mice, the expression of PDGF and their recep-
tors decreased [107]. Moreover, PDGF showed reduced
expression in chronic human non-healing ulcers com-
pared to the fresh surgically created acute wounds [108].
All these studies support the important role of PDGF in
wound healing. However, PDGF also has an important
role in several fibrotic diseases including scleroderma,
lung and liver fibrosis by promoting the growth and sur-
vival of myofibroblasts [109]. PDGF was found to medi-
ate the deposition of collagen in fibroblasts and it was
highly over-expressed in both the epidermis and the der-
mis of HTS. Over-production of collagen was not only
related to high levels of TGF-β1, but also with increased
expression of PDGF [110]. Another experiment showed
that PDGF stimulated myofibroblast formation and in-
creased TGF-β receptor I (TGF-βRI) and TGF-β receptor
II (TGF-βRII) expression [111].
Although there are a lot of studies showing that PDGF

plays a role in the pathogenesis of HTS, the exact mo-
lecular mechanism is still unknown.

Inhibitory effect of basic fibroblast growth factor
(bFGF) on HTS via the regulation of collagen produc-
tion, myofibroblast differentiation and TGF-β receptor
expression Fibroblast growth factors (FGFs) are a large
family of growth factors that consist of 22 members with
similar structural polypeptide. They have four receptors,

which are transmembrane protein tyrosine kinases
[112, 113]. Among the growth factors that play roles in
wound healing, bFGF is particularly important [114].
bFGF is produced by keratinocytes and is found in the
early stages of wound healing. It stimulates growth and
differentiation of several types of cells, such as fibroblasts
[115]. In a rat model, bFGF was detected in granulation
tissue including regenerated epidermis and newborn capil-
laries [116]. As well, bFGF was found to promote wound
healing by stimulating angiogenesis and granulation tissue
proliferation [117]. However, bFGF might inhibit the
granulation tissue formation by promoting apoptosis [118]
and affect tumor growth [119].
Evidence for the importance of bFGF in the pathogen-

esis of HTS was provided by Tiede et al. that bFGF re-
duced α-SMA expression by inhibiting myofibroblast
differentiation and it also decreased TGF-βRI and TGF-
βRII expression [111]. In a rabbit HTS ear model, bFGF
was applied everyday for three months and the wounds
showed decreased collagen expression and increased
MMP-1 expression such that bFGF appeared to have a
negative effect on scar formation [120]. In humans bFGF
was administered to acute incisional wounds after sutur-
ing and the patients remained free from HTS [121].
Hepatocyte growth factor (HGF) and MMP-1 have been
demonstrated to have an anti-scarring effect [122]. In a
more recent study, the expressions of HGF and MMP-1
were highly regulated in bFGF treated HTS and normal
fibroblasts. The highly regulated MMP-1 expression
might contribute to the increase of type I and type III
collagen degradation, which leads to reduced scar forma-
tion. In vitro, bFGF treatment significantly decreased
scar weight and the amount of collagen in nude mice
that underwent human scar tissue transplantation [123].
Therefore, bFGF can inhibit HTS formation and the
mechanism might be related to the regulation of colla-
gen production, myofibroblast differentiation and inhib-
ition of TGF-β receptor expression.

Macrophages involve in HTS formation via Stromal cell-
derived factor 1 (SDF-1)/CXCR4 chemokine pathway
Significant more mast cells, fibrocytes and macrophages
were found in nude mice that received human split
thickness skin graft (STSG) compared to nude mice that
received human full thickness skin graft (FTSG) in vivo,
where HTS formation was found on both mice 2 months
after the grafting with more scar observed in mice that
received STSG, suggesting that inflammatory cells and
bone marrow-derived fibrocytes might play critical roles
in HTS formation in this human HTS-like nude mouse
model [124]. A sequent study showed increased grafted
skin thickness, increased number of myofibroblasts, de-
creased decorin and increased biglycan expression, posi-
tive staining of human leukocyte antigen in STSG
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grafted skin that formed persistent scars, which showed
morphologic, histologic and immunohistochemical
consistency with human HTS [125]. This animal model
provides a means to study HTS and test new novel treat-
ment options. Although there is not an ideal animal
model that can be directly translated into human sub-
jects to clearly explain the molecular basis of HTS for-
mation, the human HTS-like nude mouse model is
closer to the perfect animal model because the survived
human skin grafts possess the genetic and histological
properties of human HTS.
SDF-1 is found to be a potent chemokine that attracts

lymphocytes and monocytes by binding exclusively to its
receptor, CXCR4 [126–128]. Studies focused on the
functions of SDF-1/CXCR4 signaling have suggested that
it involves not only in the tumor metastasis and
vascularization but also in the pathogenesis of fibroproli-
ferative diseases [129, 130]. Recent studies found up-
regulated SDF-1 expression in the HTS tissue and serum
of the burn patients as well as increased number of
CD14+ CXCR4+ cells in the peripheral blood mono-
nuclear cells, which suggested that SDF-1/CXCR4 sig-
naling could recruit these CXCR4+ cells such as
monocytes to the prolonged inflamed injured site and
contribute to HTS formation [131]. In order to further

verify the role of SDF-1/CXCR4 signaling in HTS forma-
tion, the CXCR4 antagonist CTCE-9908 was used to in-
hibit the SDF-1/CXCR4 effect on the human HTS-like
nude mouse model. The study showed that CTCE-9908
significantly attenuated scar formation and contraction,
reduced the number of macrophages in the tissue, which
was differentiated and replenished by CXCR4 expressing
monocytes in the circulation [132]. These findings sup-
port the role of SDF-1/CXCR4 in HTS formation and
suggest an important role of macrophages in HTS
formation.
Macrophages were first discovered by a Russian scien-

tists, Élie Metchnikoff, in 1884 [133]. They are differenti-
ated from newly recruited monocytes from the
circulation. They are considered to play a vital role in
the whole wound healing process because recent studies
showed that impaired wound healing was associated
with decreased number of macrophage infiltration at the
injured site [134, 135]. However, pathological function-
ing of macrophages in the abnormal wound healing
process can lead to disordered wound healing, including
the formation of HTS [136]. Macrophages have two phe-
notypes, classically activated macrophages or the so
called M1 macrophages and alternatively activated mac-
rophages or the so called M2 macrophages [137].

Fig. 2 The roles of monocytes and polarized macrophages in HTS formation. We hypothesize that monocytes in the blood are recruited to the
injured site via the SDF-1/CXCR4 signaling pathway and differentiate into polarized macrophages. The polarized M1 and M2 macrophages then
exert their functions via various signaling pathways and involve in wound healing and HTS formation
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Mahdavian et al. reported that M1 and M2 macrophages
have distinct opposite functions in the wound healing
process [136]. M1 macrophages can induce MMP-1 se-
cretion and promote ECM degradation while M2 macro-
phages can secret large amount of TGF-β1, which can
stimulate myofibroblast transformation and lead to ECM
deposition. It is also hypothesized that prolong inflam-
matory phase will attract more macrophages and those
macrophages will initially be more pro-inflammatory M1
phenotype and then switch to a more pro-fibrotic M2
phenotype due to more intense stimuli from the micro-
environment [138]. The most distinct difference between
M1 and M2 macrophages is that in M1 macrophages
the arginine metabolism is shifted to nitric oxide and
citrulline while in M2 macrophages it is shifted to
ornithine and polyamines [139]. Growing evidence
suggests that M2 macrophages are not constituted by
a uniform population but can be further subdivided
into M2a, M2b and M2c subsets [140]. M2a macro-
phages are induced by IL-4 and IL-13, which are
involved in the anti-parasitic immune response and
are considered to be pro-fibrotic. M2b macrophages
are induced by IL-1β, LPS and immune complexes
while M2c macrophages are induced by IL-10, TGF-β
and glucocorticoids [141]. The fourth type, M2d
macrophages, are characterized by switching from a
M1 phenotype into an angiogenic M2-like phenotype,
which termed M2d by Leibovich et al. [142].
Although studies suggest a close relationship between

SDF-1/CXCR4 signaling and macrophage infiltration in
the formation of HTS, more studies on the interaction
between the two is still needed. Meanwhile, the roles of
macrophage phenotypes in different phases of abnormal
wound healing, like HTS-like nude mouse model, are to
be investigated. Here we hypothesize that the mono-
cytes, CXCR4 expressing cells in the circulation, will be
attracted to the injured site via the SDF-1/CXCR4 sig-
naling pathway due to concentration difference between
the circulation and local tissue as well as the chemotac-
tic effect of SDF-1. The monocytes then differentiate
into M1 macrophages (NF-κB and STAT1 signaling
pathways) and M2 macrophages (STAT3 and STAT6 sig-
naling pathways) [143]. M1 macrophages secret pro-
inflammatory cytokines such as IFN-γ, IL-1β, TNF-α, IL-
6, IL-8 and generate reactive oxygen and nitric oxide
through the activation of nitric oxide synthase 2 (NOS2).
On the other hand, M2 macrophages inhibit the NOS2
activity via the activation of arginase-1. The distinct op-
posite and complementary functions of M1 and M2 mac-
rophages will eventually lead to normal wound healing.
However, in prolonged inflammatory environment such as
wounds from a patient who suffered from severe thermal
injury, large amounts of TGF-β1 can be produced to-
gether with increased myofibroblast proliferation, which

will result in ECM deposition and finally HTS formation
(Fig. 2).

Conclusions
In this review, four phases of normal wound healing are
discussed before outlining the pathogenesis of HTS, il-
lustrating the delicate balance of ECM deposition and
degradation which influences the outcome of the wound
healing process. Differentiating HTS from keloids is also
important because the clinical and molecular mecha-
nisms are different leading to distinct therapeutic out-
comes. HTS formation is a dynamic, complex process
that involves interactions between multiple factors such
as inflammatory cells, cytokines, growth factors, and
chemokines. Keratinocytes and mast cells are considered
to be involved in HTS formation. The role of cytokines
such as IL-1, TNF-α, IL-6 and IL-10 as well as growth
factors such as TGF-β, CTGF, PDGF and bFGF in HTS
formation were discussed. Despite the complexity of
HTS, more attentions are drawn to the molecular and
cellular mechanism of HTS for technological and scien-
tific advances such as the establishment of new animal
models and in vitro techniques. Growing studies are fo-
cusing on the roles of polarized macrophages in HTS
formation and it is suggested that polarized macro-
phages actively participate in HTS formation via the
SDF-1/CXCR4 signaling pathway. A preliminary experi-
ment conducted by our laboratory confirmed potential
roles of M2 macrophages in HTS formation. A subse-
quent study of specific depletion of M2 macrophages by
Cre-LoxP technology on our human HTS-like nude
mouse model together with the study of the roles of mo-
lecular precursors mentioned above might provide novel
findings and potential new treatment and prevention of
HTS.
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