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of TLR4-mediated MAPK/NF-kappa B signaling
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Abstract

Background: Panax Notoginseng flower saponins (PNFS) are the main active component of Panax notoginseng
(Burk) F. H. Chen flower bud (PNF) and possess significant anti-inflammatory efficacy. This study aims to explore the
mechanisms underlying PNFS’ antiflammatory action in RAW264.7 macrophages.

Methods: A cell counting kit-8 assay was used to determine the viability of RAW264.7 macrophages. Anti-inflammation
effects of PNFS in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were measured based on the detection
of nitric oxide (NO) overproduction (Griess method, DAF-FM DA fluorescence assay and NO2

− scavenging assay), and
interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha gene overexpression (real-time PCR and ELISA). Inducible nitric
oxide synthase (iNOS) gene overexpression was determined by real-time PCR and western blotting. iNOS enzyme
activity was also assayed. The mechanisms underlying the suppression of iNOS gene overexpression by PNFS were
explored using real-time PCR and western blotting to assess mRNA and protein levels of components of the Toll-like
receptor 4 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and nuclear factor-kappa B
(NF-kappa B) signaling pathways.

Results: PNFS (50, 100, 200 μg/mL) significantly reduced LPS-induced overproduction of NO (P < 0.001, P < 0.001,
P < 0.001) and IL-6 (P = 0.103, P < 0.001, P < 0.001), but did not affect TNF-alpha overproduction. PNFS (50, 100,
200 μg/mL) also markedly decreased LPS-activated iNOS (P < 0.001, P < 0.001, P < 0.001) and TLR4 gene overexpression
(P = 0.858, P = 0.046, P = 0.005). Furthermore, treatment with PNFS (200 μg/mL) suppressed the phosphorylation of
MAPKs including P38 (P = 0.001), c-Jun N-terminal kinase (JNK) (P = 0.036) and extracellular-signal regulated kinase (ERK)
1/2 (P = 0.021). PNFS (200 μg/mL) inhibited the activation of the NF-kappa B signaling pathway by preventing the
phosphorylation of inhibitor of NF-kappa B alpha (I-kappa B alpha) (P = 0.004) and P65 (P = 0.023), but PNFS (200 μg/mL)
could not activate the LPS-induced PI3K-Akt signaling pathway.

Conclusions: PNFS significantly down-regulated iNOS gene overexpression and thereby decreased NO overproduction
via the inhibition of TLR4-mediated MAPK/NF-kappa B signaling pathways, but not the PI3K/Akt signaling pathway.
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Background
Panax notoginseng (Burk) F. H. Chen flower bud (PNF)
can be used to treat hypertension closely related to in-
flammatory response [1, 2], chemotherapy stomatitis,
pharyngitis and other inflammatory diseases [3–5]. The
methanol extract of PNF was shown to block the NF-
kappa B signaling pathway and alleviate the lipopolysac-
charide (LPS)-induced inflammatory response in murine
macrophages [6].
Panax notoginseng flower saponins (PNFS), extracted

from PNF, were reported to be the main bioactive con-
stituent underlying PNF’s therapeutic effect [7]. Add-
itionally, the flower was shown to contain most of the
total saponin amount, more than is present in the root
[7]. The composition of PNFS is different from that of
Panax notoginseng saponins (PNS), extracted from the
Panax notoginseng (Burk) F. H. Chen (PN) root [7].
PNFS lowered blood pressure in spontaneous hyperten-
sive rats [8, 9]. Additionally, PNFS could relieve the
inflammatory response via diminishing swelling and
decreasing prostaglandin production in carrageenan-
induced rat paw swelling and croton oil-induced mouse
auricle inflammation, induced by proinflammatory
agents [10, 11]. Therefore, the antihypertensive effect of
PNFS might be partially associated with its anti-
inflammatory effect.
Excessive inflammation causes the body to be overex-

posed to inflammatory mediators, e.g., nitric oxide (NO),
tumor necrosis factor (TNF)-alpha and interleukin (IL)-6,
leading to cell necrosis, tissue injury and degeneration,
and consequently, aggravating inflammation. Lipopolysac-
charide (LPS) is a highly proinflammatory endotoxin from
the outer envelope of gram-negative bacteria. Monocyte-
derived macrophages, when stimulated with LPS, produce
excessive inflammatory mediators such as NO, TNF-alpha
and IL-6, in inflammatory response [12–14].
NO significantly influences the regulation of neuro-

transmission and inflammatory responses [15, 16]. In
mammals, NO is generated by three different nitric
oxide synthases (NOSs), namely, endothelial NOS
(eNOS), neuronal NOS (nNOS), and inducible NOS
(iNOS) [17]. iNOS, primarily identified in macrophages,
is usually not expressed in normal conditions, but is
expressed when induced by agents such as LPS and
some cytokines [17]. In macrophages stimulated with
LPS, iNOS produces large amounts of NO and exerts
anti-inflammatory effects on the organism by killing
undesired microbes and parasites [18]. However, when
released at the wrong site or produced excessively
in vivo, NO may aggravate inflammation via oxidative
damage to healthy cells and tissues [19, 20]. There-
fore, the suppression of iNOS gene overexpression to
reduce NO overproduction is an important target of
anti-inflammatory drugs.
Toll-like receptor 4 (TLR4) is an essential cell surface
protein on macrophages for LPS recognition [21]. The
interaction between TLR4 and LPS activates two main
intracellular signaling pathways: the mitogen-activated
protein kinase (MAPK)/nuclear factor-kappa B (NF-
kappa B) signaling pathway and the phosphatidylinositol
3-kinase (PI3K)/Akt signaling pathway. Both are in-
volved in iNOS gene expression [13, 22, 23].
This study aims to explore the suppressive effects of

PNFS on proinflammatory mediator overexpression in
LPS-activated RAW264.7 macrophages. Therefore, the
mechanisms by which PNFS inhibits iNOS gene overex-
pression were studied through analysis of the levels of
components of the TLR4, MAPK, PI3K/Akt, and NF-
kappa B signaling pathways.

Methods
Reagents
LPS (Escherichia coli O55:B5) and sulfanilic acid were
bought from Sigma Chemical Co., Ltd. (St.Louis, MO,
USA). Dulbecco’s modified Eagle medium (DMEM) and
fetal bovine serum (FBS) were purchased from Gibco
BRL Co., Ltd. (Grand Island, NY, USA). Cell Counting
Kit-8 (CCK-8) was purchased from Dojindo (Kumamoto,
Japan) and TRIzol was purchased from Invitrogen
(Carlsbad, CA, USA). RevertAid™ First Strand cDNA
Synthesis Kit was purchased from Thermo Scientific
(Waltham, MA, USA). SYBR ®Premix Ex Taq™ (Perfect
Real Time) was purchased from Takara Biotechnology
(Dalian) Co., Ltd (Dalian, China). Ethanol, N-(1-naphthyl)
ethylenediamine dihydrochloride, H3PO4, sulfanilamide,
NaNO2 and hydrochloric acid were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
3-Amino, 4-aminomethyl-2′, 7′-difluorescein, diacetate
(DAF-FM DA) and cycloheximide (CHX) were purchased
from Beyotime (Shanghai, China). Enzyme-linked im-
munosorbent assay (ELISA) kit for TNF-alpha was ob-
tained from R&D Systems (Minneapolis, MN, USA) and
ELISA kit for IL-6 was purchased from BD PharMingen
(San Diego, CA, USA). Antibodies for GAPDH (#2118),
iNOS (#2982), P38 (#8690), P-P38 (#4511), ERK (#4695),
P-ERK (#4370), JNK (#9258), P-JNK (#4668), I-kappa B
alpha (#4812), P-I-kappa B alpha (#2859), P65 (#4764), P-
P65 (#3033), P-Akt (#4056), PI3K (#4255), anti-rabbit IgG,
and HRP-linked antibody (#7074) were purchased from
Cell Signaling Technology (Boston, MA, USA).

PNFS extract
PNF was collected from Wenshan, Yunnan Province,
China, and identified by Dr. Xiuming Cui, Wenshan In-
stitute of Sanqi Research. The voucher specimens were
deposited in the Pharmaceutical Laboratory, College of
Pharmacy, Shanghai University of Traditional Chinese
Medicine. During the preparation of total saponins, we



Peng et al. Chinese Medicine  (2015) 10:15 Page 3 of 11
took three factors into consideration: ethanol concentra-
tion, extraction time, and duration for one extraction
course. The optimum extraction process determined
using an orthogonal experiment design was refluxing
PNF in 14 volumes of 70 % ethanol, three times, for 2 h
each time. The macroporous resin AB-8 (diameter:
height = 1:10; weight: raw material = 1:1.25) was chosen
to concentrate PNF extract, and the concentration of the
raw material was 0.2 g/mL. The extract was washed until
the Molisch reaction disappeared, and then eluted with
three column volumes of 70 % ethanol. Flow rates for
absorption and elution were two column volumes per
hour. Total PNF saponin extract was ready after drying
and quantified to be 95 % pure using a UV spectropho-
tometer (UV 8453, Agilent Technologies, Santa Clara,
CA, USA).
Cell culture
Murine RAW264.7 macrophages were purchased from
the Shanghai Cell Bank of Chinese Academy of Sciences
(China). RAW264.7 macrophages were cultured in
DMEM supplemented with 10 % FBS, 100 U/mL penicil-
lin and 100 U/mL streptomycin. Cells were grown at
37 °C in a humidified incubator with 5 % CO2.
Cell viability
A CCK-8 assay was used to determine the viability of
RAW264.7 macrophages. A total of 1 × 105 cells per well
were grown in triplicate in 96-well plates. Cells were
treated without or with PNFS (0, 25, 50, 100, 200, 400,
800 μg/mL) for 24 h, and then incubated with CCK-8
(20 μL/well) for 1.5 h, after which absorbance at 450 nm
was measured.
Measurement of nitrite overproduction in cell culture
supernatant
The level of nitrite (NO2

−) in the cell culture supernatant,
stably generated during NO reactions, was assessed to
determine the amount of NO production. First, 1 × 105

Raw264.7 macrophages per well were grown in triplicate
in 96-well plates. Cells were treated with LPS (1 μg/mL)
and PNFS at different concentrations (0, 50, 100,
200 μg/mL) for 24 h, or untreated (control). Second,
Griess reagent was prepared by mixing 0.1 % N-(1-
naphthyl) ethylenediamine dihydrochloride (dissolved in
ddH2O) and 1 % sulfanilamide (dissolved in 5 % H3PO4)
in equal volume. Lastly, 100 μL of culture supernatant
and 100 μL of Griess reagent were blended with a
micropipette and set aside for 10 min at room
temperature, then the absorbance at 540 nm was mea-
sured. A NaNO2 standard curve was used to calculate
nitrite concentration [24].
Measurement of intracellular NO production
DAF-FM DA was used to detect intracellular NO pro-
duction. First, 1 × 105 Raw264.7 macrophages per well
were grown in triplicate in 96-well plates. Cells were
treated with LPS (1 μg/mL) and PNFS at different con-
centrations (0, 50, 100, 200 μg/mL) for 24 h, or un-
treated (control). Then, the culture supernatant was
removed and cells were incubated with DAF-FM DA
(5 mM, 100 μL/well) at 37 °C for 20 min. Fluorescence
values (excitation 495 nm, emission 515 nm) were mea-
sured using a Multimode Microplate Reader (Synergy™2,
BioTek, Winooski, Vermont, USA).

NO2
− scavenging assay

`A 5 mL total reaction mixture, containing 3 mL of
NaNO2 (5 μg/mL) and 2 mL of PNFS (50, 100, 200 μg/mL
dissolved by ddH2O) or 2 mL of ddH2O2 was incubated at
37 °C for 30 min. Then, 2 mL of 0.4 % sulfanilic acid (dis-
solved in 20 % hydrochloric acid) was added to the reac-
tion mixture, which was incubated for 5 min. Lastly,
17 ml of ddH2O and 1 ml of 0.2 % N-(1-naphthyl) ethyl-
enediamine dihydrochloride (dissolved in ddH2O) were
added, mixed and incubated for 15 min, and absorbance
at 540 nm was measured [25].

Measurement of IL-6 and TNF-alpha overproduction
Raw264.7 macrophages (1 × 105 per well) were grown in
triplicate in 96-well plates and treated with LPS (1 μg/
mL) and PNFS at different concentrations (0, 50, 100,
200 μg/mL), or untreated (control), for 24 h, to detect
the inhibitory effects of PNFS on pro-inflammatory cyto-
kines produced by LPS-activated cells. Then, culture super-
natants were collected and commercial ELISA kits were
used to measure IL-6 and TNF-alpha concentrations.

Measurement of iNOS enzymatic activity
A total of 1 × 105 RAW264.7 macrophages per well were
grown with LPS (1 μg/mL) in triplicate in 96-well plates
for 24 h. Then, cells were washed and treated with 1 μg/
mL cycloheximide (CHX) and PNFS at different concen-
trations (0, 50, 100, 200 μg/mL) for the next 24 h.
Finally, the culture supernatants were harvested to
detect NO2

− content [24].

Western blotting analysis
A total of 1 × 106 RAW264.7 macrophages per well were
grown in 12-well plates and treated with LPS (1 μg/mL)
and PNFS at different concentrations (0, 50, 100,
200 μg/ml) for 24 h, with LPS (1 μg/mL) and PNFS at
different concentrations (0, 200 μg/ml) for 3 h, or un-
treated (control). Then, cells were harvested on ice and
washed once with ice-cold PBS. Lysis buffer with phos-
phatase and protease inhibitors (Sangon Biotech, China)
was added to lyse the cells. After incubating on ice for
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30 min, cell extracts were centrifuged at 14,463 × g in a
refrigerated centrifuge (5418R, Eppendorf, Germany) at
4 °C for 10 min to collect cell total proteins, the amount
of which was quantified using a BCA protein assay kit
(Biomiga, USA). SDS-PAGE (10 %) was used to separate
proteins, which were electro-transferred to PVDF mem-
branes (Millipore, USA). Membranes were blocked with
5 % (wt/vol) dried skimmed milk for 1 h, and incubated
with various specific primary antibodies, namely, anti-
GAPDH, anti-iNOS, anti-P38, anti-P-P38, anti-ERK,
anti-P-ERK, anti-JNK, anti-P-JNK, anti-I-kappa B alpha,
anti-P-I-kappa B alpha, anti-P65, anti-P-P65, anti-PI3K
and anti-P-Akt, to probe corresponding target proteins.
Bound antibodies were detected using peroxidase-
conjugated secondary antibodies, and the amount of
bound antibody was assessed by enhanced chemilumin-
escence (ECL). Relative levels of target proteins were
obtained based on the optical density of electrophoresis
bands with GAPDH serving as an internal control.
Real-time PCR analysis
A total of 1 × 106 RAW264.7 macrophages per well were
grown in 12-well plates and treated with LPS (1 μg/mL)
and PNFS at different concentrations (0, 50, 100,
200 μg/mL) for 24 h, or untreated (control). The Trizol
method [26] was used to isolate total RNA from the cells
in each well. Then, 1 μg of total RNA was reverse tran-
scribed into cDNA, which was amplified by real-time
PCR. The 2-ΔCT method was used to analyze gene ex-
pression and beta-actin mRNA served as an internal
control to quantify the levels of target mRNAs relatively.
The cycling conditions were as follows: hold: 95 °C for
10 s; cycling: 95 °C for 5 s, 60 °C for 30 s, 40 cycles;
melt: 65–95 °C. The sequences of primers used for re-
verse transcription are listed below: iNOS, F: 5′-AAGT-
CAAATCCTACCAAAGTGA-3′, R: 5′-CCATAATACT
GGTTGATGAACT-3′; beta-actin, F: 5′-CATCAC-
TATCGGCAATGAGC-3′, R: 5′-GACAGCACTGTGTT
GGCATA-3′.
TLR4, F: 5′-GGCAGGTCTACTTTGGAGTCATTGC-

3′, R: 5′-ACATTCGAGGCTCCAGTGAATTCGG-3′.
TNF-alpha, F: 5′-GGCAGGTCTACTTTGGAGTCATT
GC-3′, R: 5′-ACATTCGAGGCTCCAGTGAATTCGG-
3′. IL-6, F: 5′-TCAGAATTGCCATTGCACA-3′, R: 5′-
GTCGGAGGCTTAATTACACATG-3′.
Fig. 1 Effect of PNFS on RAW264.7 macrophage viability. Data
were expressed as the mean (SD) of 3 independent experiments.
One-Way ANOVA test was used to analyzed the data and the result
was F = 87.693; P < 0.001. Then, data were counted by SNK and LSD
multiple comparisons to determine the statistical difference between
two groups. The P values represented the statistical differences
between each group and negative control group (without PNFS
treated). *** means P <0.001
Statistical analysis
Data are presented as means (SD). Multiple comparisons
were performed using the one-Way ANOVA test followed
by Student-Newman-Keuls (SNK) and least significant dif-
ference (LSD) tests. P values <0.05 were considered to
represent significant differences between means.
Results
The effect of PNFS on RAW264.7 macrophage viability
To evaluate the effect of PNFS on the viability of
RAW264.7 macrophages, we applied various PNFS con-
centrations (0–800 μg/mL) and performed a CCK-8
assay. PNFS had an obvious cytotoxic effect at 400 μg/
mL (P < 0.001) and 800 μg/mL (P < 0.001), but had no
cytotoxic effect at 200 μg/mL and lower concentrations
on RAW264.7 macrophages (Fig. 1). So we chose the
concentrations at 50, 100, 200 μg/mL for further explor-
ing the anti-inflammatory mechanisms of PNFS.
PNFS suppresses NO overproduction in LPS-stimulated
RAW264.7 macrophages
The inhibitory effect of PNFS on NO overproduction in
LPS-stimulated RAW264.7 macrophages was examined
to evaluate the anti-inflammatory effect of PNFS. Extra-
cellular NO concentrations were assessed by the Griess
method [24] and intracellular NO concentrations were
examined using a DAF-FM DA fluorescence assay. PNFS
(50, 100, 200 μg/mL) markedly decreased extracellular
NO concentrations (P < 0.001, P < 0.001, P < 0.001) and
intracellular NO concentrations (P < 0.001, P < 0.001, P
< 0.001) (Fig. 2a and b). Meanwhile, PNFS (50, 100,
200 μg/mL) did not have a NO2

− scavenging effect
(Fig. 2c), which would affect the authenticity of NO de-
tection results obtained using the Griess method. In
summary, our experiments showed that PNFS sup-
pressed LPS-stimulated NO overproduction.



Fig. 2 PNFS suppressed NO overproduction in LPS-stimulated RAW264.7 macrophages. a PNFS decreased LPS-stimulated NO overproduction in
culture supernatants. b PNFS reduced LPS-stimulated intracellular NO level. c PNFS had no scavenging effect on NO2

− in vitro. Data in Fig. 2a, b
and c were all expressed as the mean (SD) of 3 independent experiments. One-Way ANOVA test was used to analyzed the data and the results
were F = 227.437; P < 0.001, F = 345.932; P < 0.001 and F = 599.919; P < 0.001, respectively. Then, data in Fig. 2a, b and c were all counted by SNK
and LSD multiple comparisons to determine the statistical difference between two groups. The P values represented the statistical differences
between each group and the corresponding positive control (without PNFS and with LPS or NaNO2 treated). *** means P <0.001
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PNFS suppresses overexpression of IL-6, but exerts no
influence on TNF-alpha in LPS-stimulated RAW264.7
macrophages
To further explore the potential anti-inflammatory role
of PNFS, we observed its effects on the overproduction
of IL-6 and TNF-alpha and the overexpression of IL-6
and TNF-alpha mRNA in LPS-stimulated RAW264.7
macrophages by ELISA and real-time PCR, respectively.
PNFS (50, 100, 200 μg/mL) significantly inhibited IL-6
overproduction (P = 0.103, P < 0.001, P < 0.001) and IL-6
mRNA overexpression (P = 0.006, P < 0.001, P < 0.001)
(Fig. 3a and b). However, PNFS (50, 100, 200 μg/mL)
exerted no influence on TNF-alpha gene overexpression
(Fig. 3c and d).

PNFS significantly inhibits iNOS gene overexpression, but
does not affect iNOS enzymatic activity in LPS-stimulated
RAW264.7 macrophages
We next assessed whether PNFS inhibited NO overpro-
duction by suppressing iNOS gene overexpression using
western blotting and real-time PCR to measure total
proteins and total RNA, respectively. iNOS protein and
mRNA levels were significantly increased after stimu-
lated by LPS, while PNFS (50, 100, 200 μg/mL) appar-
ently inhibited iNOS protein overproduction (P < 0.001,
P < 0.001, P < 0.001) and iNOS mRNA overexpression
(P < 0.001, P < 0.001, P < 0.001) (Fig. 4a and b). This sug-
gested that PNFS could decrease NO overproduction via
inhibiting iNOS gene overexpression.
We then clarified whether PNFS-mediated suppression

of NO overproduction was also caused by lowering
iNOS catalytic activity. LPS (1 μg/mL) was used to acti-
vate RAW264.7 macrophages for 24 h first, then cells
were washed and treated with CHX (1 μg/ml) and PNFS
(0, 50, 100, 200 μg/mL) for the next 24 h. iNOS proteins
had already been induced in 24 h-LPS-stimulated cells,
but their further production was blocked by adding
CHX, which is a translation inhibitor. Therefore, NO
output only depended on the iNOS catalytic activity.
PNFS (50, 100, 200 μg/mL) did not change the nitrite



Fig. 3 PNFS suppressed the gene overexpression of IL-6, but exerted no influence on TNF-alpha in LPS-stimulated RAW264.7 macrophages. a, b
PNFS reduced LPS-stimulated IL-6 overproduction and IL-6 mRNA overexpression in RAW264.7 macrophages. c, d PNFS exerted no influence on
LPS-stimulated TNF-alpha overproduction and TNF-alpha mRNA overexpression in RAW264.7 macrophages. Data in Fig. 3a, b, c and d were all
expressed as the mean (SD) of 3 independent experiments. One-Way ANOVA test was used to analyzed the data and the results were F = 766.150;
P < 0.001, F = 124.746; P < 0.001, F = 212.919; P < 0.001 and F = 7.939; P = 0.001, respectively. Then, data in Fig. 3a, b, c and d were all counted by
SNK and LSD multiple comparisons to determine the statistical difference between two groups. The P values represented the statistical differences
between each group and the corresponding positive control (without PNFS and with LPS treated). ** means P < 0.01 and *** means P < 0.001
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levels in cells (Fig. 4c). This suggested that PNFS did not
affect the iNOS enzymatic activity in LPS-stimulated
RAW264.7 macrophages.

PNFS significantly inhibits the overexpression of
LPS-stimulated TLR4 mRNA in RAW264.7 macrophages
iNOS gene expression is mainly induced via activation
of the TLR4 signaling pathway. Total RNA was sepa-
rated for real-time PCR to detect the inhibitory effects
of PNFS (0, 50, 100, 200 μg/mL) on LPS-induced TLR4
overexpression in macrophages. PNFS (100, 200 μg/mL)
significantly inhibited LPS-induced TLR4 mRNA over-
expression (P = 0.046, P = 0.005) (Fig. 5).

PNFS markedly suppresses activation of LPS-stimulated
MAPK signaling pathway in RAW264.7 macrophages
Based on the results described above, PNFS (200 μg/mL)
had no cytotoxic effect on RAW264.7 macrophages and
showed the best anti-inflammatory efficacy. RAW264.7
macrophages were treated with LPS (1 μg/ml) and PNFS
(0, 200 μg/mL) for 3 h. Then, western blotting was used
to detect the levels of phospho-P38 (P-P38), phospho-
ERK1/2 (P-ERK1/2) and phospho-JNK (P-JNK), along
with the corresponding total P38, ERK1/2 and JNK. LPS
obviously increased MAPKs activation by increasing the
phosphorylation of P38, ERK1/2 and JNK in LPS-
stimulated RAW264.7 macrophages. The overproduction
of P-P38, P-ERK1/2 and P-JNK was markedly inhibited by
PNFS (200 μg/mL) and the average inhibition rates were
45 %, 56 % and 23 % (P = 0.001, P = 0.021, P = 0.036), re-
spectively (Fig. 6a, b and c). By contrast, PNFS (200 μg/
mL) did not significantly affect the production of total
P38, ERK1/2 and JNK. These results demonstrated that
PNFS was able to reduce iNOS gene overexpression by
inhibiting the activation of MAPK signaling pathway.

PNFS does not activate the LPS-stimulated PI3K/Akt
signaling pathway in RAW264.7 macrophages
iNOS gene expression can be suppressed via activating
the PI3K/Akt signaling pathway [27]. In this study, the



Fig. 4 PNFS significantly inhibited the iNOS gene overexpression, but did not affect iNOS enzymatic activity in LPS-stimulated RAW264.7 macro-
phages. a PNFS inhibited the LPS-stimulated iNOS protein overproduction in RAW264.7 macrophages. b PNFS suppressed the LPS-stimulated
iNOS mRNA overexpression in RAW264.7 macrophages. c PNFS did not affect LPS-stimulated iNOS enzymatic activity in Raw264.7 macrophages.
Data in Fig. 4a, b and c were all expressed as the mean (SD) of 3 independent experiments. One-Way ANOVA test was used to analyzed the data
and the results were F = 1611.288; P < 0.001, F = 414.434; P < 0.001 and F = 110.064; P < 0.001, respectively. Then, data in Fig. 4a, b and c were all
counted by SNK and LSD multiple comparisons to determine the statistical difference between two groups. The P values represented the statistical
differences between each group and the corresponding positive control (without PNFS and with LPS treated). *** means P < 0.001
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effects of PNFS on the LPS-stimulated PI3K/Akt signal-
ing pathway in RAW264.7 macrophages were evaluated.
After cells were incubated with LPS (1 μg/mL) and
PNFS (0, 200 μg/mL) for 3 h, we used western blotting
Fig. 5 PNFS significantly inhibited the overexpression of LPS-stimulated
TLR4 mRNA in RAW264.7 macrophages. Data were expressed as the
mean (SD) of 3 independent experiments. One-Way ANOVA test was
used to analyzed the data and the result was F = 5.705; P = 0.003. Then,
data were counted by SNK and LSD multiple comparisons to determine
the statistical difference between two groups. The P values represented
the statistical differences between each group and the corresponding
positive control (without PNFS and with LPS treated). * means P < 0.05
and ** means P < 0.01
to measure the levels of PI3K and phospho-Akt (P-Akt)
(Thr308). PNFS (200 μg/mL) did not affect levels of
PI3K or P-Akt (Thr308) (Fig. 7a and b), suggesting that
the PI3K/Akt signaling pathway might not be involved
in the mechanism by which PNFS suppresses iNOS gene
overexpression.

PNFS significantly inhibits activation of the
LPS-stimulated NF-kappa B signaling pathway in
RAW264.7 macrophages
To further explain the mechanisms underlying the in-
hibition of iNOS gene overexpression by PNFS, we
studied the effects of PNFS on activation of the NF-
kappa B signaling pathway. After cells were treated
with PNFS (0, 200 μg/mL) and LPS (1 μg/mL) for
3 h, we used western blotting to examine the phos-
phorylation of I-kappa B alpha and P65 and the pro-
duction of corresponding total I-kappa B alpha and
P65. The production of P-I-kappa B alpha and P-P65
were significantly enhanced after cells were challenged
with LPS for 3 h (P = 0.019, P = 0.007). Treatment
with PNFS (200 μg/mL) apparently inhibited the over-
production of P-I-kappa B alpha and P-P65 and the average
inhibition rates were 38 % and 30 % (P = 0.004, P = 0.023),
respectively (Fig. 8a and b). However, PNFS (200 μg/mL)



Fig. 6 PNFS markedly suppressed the activation of LPS-stimulated MAPK signaling pathway in RAW264.7 macrophages. a PNFS suppressed the
P38 activation in LPS-stimulated RAW264.7 macrophages. b PNFS suppressed the ERK1/2 activation in LPS-stimulated RAW264.7 macrophages. c
PNFS suppressed the JNK activation in LPS-stimulated RAW264.7 macrophages. Data of the production of P-P38, total P38, P-ERK1/2, total ERK1/2,
P-JNK and total JNK were all expressed as the mean (SD) of 3 independent experiments. One-Way ANOVA test was used to analyzed the data
and the results were F = 45.104; P < 0.001, F = 0.322; P = 0.736, F = 7.330; P = 0.024, F = 1.019; P = 0.416, F = 11.180; P = 0.009 and F = 2.144; P = 0.198,
respectively. Then, data of the production of P-P38, total P38, P-ERK1/2, total ERK1/2, P-JNK and total JNK were all counted by SNK and LSD multiple
comparisons to determine the statistical difference between two groups. The P values represented the statistical differences between each group and
the corresponding positive control (without PNFS and with LPS treated). * means P < 0.05, ** means P < 0.01 and *** means P < 0.001
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had no obvious effect on the production of total I-kappa B
alpha and P65. These results suggested that PNFS could re-
duce iNOS gene overexpression by inhibiting NF-kappa B
activation.
Discussion
Our study demonstrates, for the first time, the suppres-
sive effects of PNFS on LPS-stimulated NO overproduc-
tion and iNOS gene overexpression in RAW264.7
macrophages. These results also partially show the
mechanisms underlying the anti-inflammatory effects of
PNF, and provide a theoretical basis for the clinical treat-
ment of inflammatory diseases with PNF.
When macrophages are stimulated with LPS, they

become activated and then release various proinflam-
matory factors and cytokines such as IL-6, TNF-alpha
and NO, whose excessive production results in exten-
sive tissue damage and pathological changes. PNFS
could significantly reduce NO and IL-6 overproduc-
tion, but did not exert any influence on TNF-alpha
gene expression. As the inhibitory effect of PNFS on
NO was more apparent than on IL-6, we focused on
NO in this study.



Fig. 7 PNFS did not activate LPS-stimulated PI3K/Akt signaling pathway in RAW264.7 macrophages. a PNFS had no effect on PI3K production in
LPS-stimulated RAW264.7 macrophages. b PNFS had no effect on P-Akt (Thr308) production in LPS-stimulated RAW264.7 macrophages. Data in
Fig. 7a and b were both expressed as the mean (SD) of 3 independent experiments. One-Way ANOVA test was used to analyzed the data and
the results were F = 0.999; P = 0.422 and F = 0.157; P = 0.858, respectively. Then, data in Fig. 7a and b were both counted by SNK and LSD multiple
comparisons to determine the statistical difference between two groups. The P values represented the statistical differences between each group
and the corresponding positive control (without PNFS and with LPS treated)
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NO is produced via decomposition of L-arginine in a
reaction catalyzed by NOSs. eNOS and nNOS are con-
stitutively expressed, while iNOS is mainly synthesized
by activated macrophages [28]. When stimulated with
LPS, iNOS gene expression is increased and macro-
phages release excessive NO. PNFS could evidently re-
duce LPS-stimulated NO overproduction via potent
inhibition of iNOS gene overexpression, instead of sup-
pressing iNOS enzymatic activity.
Fig. 8 PNFS significantly inhibited the activation of LPS-stimulated NF-kapp
IkappaBalpha activation in LPS-stimulated RAW264.7 macrophages. b PNFS
Data of the production of P-IkappaBalpha, total IkappaBalpha, P-P65 and total
One-Way ANOVA test was used to analyzed the data and the results were F =
P = 0.941, respectively. Then, data of the production of P-IkappaBalpha, total Ik
multiple comparisons to determine the statistical difference between two gro
group and the corresponding positive control (without PNFS and with LPS tre
TLR4 triggers activation of MAPK/NF-kappa B signal-
ing pathways to induce iNOS gene overexpression [29],
and the TLR4-mediated signaling pathway also rapidly
activates the PI3K/Akt signaling pathway to negatively
regulate iNOS gene expression [23, 30]. PNFS had an
obvious suppressive effect on LPS-activated TLR4
mRNA overexpression, suggesting that PNFS could in-
hibit the overproduction of NO and the overexpression
of iNOS by blocking the TLR4 signaling pathway.
aB signaling pathway in RAW264.7 macrophages. a PNFS inhibited the
inhibited the P65 activation in LPS-stimulated RAW264.7 macrophages.
P65 were all expressed as the mean (SD) of 3 independent experiments.
11.172; P = 0.009, F = 0.146; P = 0.867, F = 8.793; P = 0.016 and F = 0.062;
appaBalpha, P-P65 and total P65 were all counted by SNK and LSD
ups. The P values represented the statistical differences between each
ated). * means P < 0.05 and ** means P < 0.01
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MAPKs transduce signals from the cell surface to the
nucleus after being activated by various extracellular
stimuli [31]. There are three parallel MAPK signaling
pathways in mammalian cells, the P38 signaling path-
way, the extracellular signal-regulated kinase (ERK) sig-
naling pathway and the c-Jun N-terminal kinase (JNK)
signaling pathway [32]. NF-kappa B, a common tran-
scription factor, regulates various genes encoding inflam-
matory mediators and acts an important downstream
target of MAPK signaling pathways in inflammatory and
immune responses [33, 34]. NF-kappa B-activating stimuli,
such as LPS and proinflammatory factors, induce I-kappa
B phosphorylation, leading to their rapid degradation
through the ubiquitin–proteasome pathway. As a result,
NF-kappa B is translocated to the nucleus, and phosphor-
ylated P65 (P-P65), which is a subunit of NF-kappa B, trig-
gers iNOS gene expression [35]. PNFS significantly
suppressed the I-kappa B alpha phosphorylation and deg-
radation induced by LPS, thereby inhibiting NF-kappa B
activation and reducing P65 phosphorylation. Addition-
ally, PNFS attenuated LPS-induced phosphorylation of all
three MAPKs studied. These findings suggest that PNFS
inactivated P38, ERK1/2 and JNK, and then suppressed
the NF-kappa B signaling pathway to prohibit iNOS gene
overexpression.
PI3K catalyzes the generation of phosphatidylinositol

3, 4, 5-triphosphate (PIP3), and then PIP3 induces phos-
phorylation of Akt [36]. The generation of phospho-Akt
(P-Akt) indicates the activation of the PI3K/Akt signal-
ing pathway. PI3K is a negative regulator of iNOS gene
expression [27]. The suppression of PI3K gene expres-
sion augments LPS-stimulated iNOS production in mac-
rophages [23]. PNFS did not affect LPS-activated PI3K
generation or P-Akt (Thr308) levels, indicating that
PNFS did not suppress iNOS gene overexpression via
activation of the PI3K/Akt signaling pathway.

Conclusions
PNFS significantly down-regulated iNOS gene overex-
pression, and thereby decreased NO overproduction via
the inhibition of TLR4-mediated MAPK/NF-kappa B
signaling pathways, but not the PI3K/Akt signaling
pathway.
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