
The Pacific Journal of Science and Technology –213–
http://www.akamaiuniversity.us/PJST.htm Volume 14. Number 2. November 2013 (Fall)

A Metric in Global Software Development Environment.

Lauretta O. Osho, B.Tech.1; Sanjay Misra, Ph.D.2; and Oluwafemi Osho, M.Tech.*3

1
Department of Computer Science, Federal University of Technology, Minna, Nigeria.

2
Department of Computer and Information Sciences, Covenant University, Otta, Nigeria.

3
Department of Cyber Security Science, Federal University of Technology, Minna, Nigeria.

E-mail: femi.osho@futminna.edu.ng*

ABSTRACT

Metrics and measurement techniques for
managing projects in global software development
(GSD) environment. GSD, as a practice, offer a
variety of advantages, as well as limitations. This
paper mathematically models two common
concepts in GSD environment, under the resource
requirements of software development, namely
coherence and collocation. Both terms have been
used informally to explain some results obtained
from on-site studies in respect of speed of project
execution. The logic consists in exploiting the
merits of GSD, whilst mitigating its demerits.
Because this paper would only seek to introduce
the metric, further studies are recommended to
further explore the feasibility of the model, and
possible enhancements to aid its efficiency.

(Keywords: global software development, GSD
environment, measurement techniques, metrics,

coherence, collocation, software engineering)

INTRODUCTION

As the name suggests, global software
development involves the development of
software across globally distributed sites. This
contrasts the traditional one-site location of
software developers. Basically, subcontractors,
third parties suppliers, and in-house developers
work independently in separate geographical
locations, albeit collaboratively to develop a
product [10] [20].

Globally distributed software development offers
some benefits including access to specialized
labor pool, reduced development costs due to
varying labor costs in different countries, proximity
to customers, and round-the-clock development
offered by time-zone differences [5][14].

However, it has its accompanying setbacks.
Language, cultural and communication barriers,
and increased organisational processes
complexity as a result of distance [5][7][8][9] are
some of these. As a matter of fact, GSD projects
have also been found not to be immune to
challenges that often face one-site projects:
budgets and schedule constraints, and failure to
meet overall project targets [11]. These are
understandable considering the fact that distance
does not aid effective communication, especially
among people who hardly know each other.
Thus, globally distributed projects can be
expected to be more challenging to manage [4]. It
therefore becomes necessary, for effective
project control, to have an effective monitoring
and reporting system in place. Measurements
and measurement techniques (metrics) can be
used as means to achieve this end [17].

Measurements and measurement techniques
provide a platform to monitor and control
production, thereby providing some useful basis
for management decision making [1].

SURVEY OF FEW RELATED WORKS

We survey the traditional categories of
measurement techniques, namely process,
product, and resource metrics [6].

Process

Walgers [21] developed the Problem-Goal-
Pattern-Measurement (PGPM) technique, which
is strongly based on the Goal-Question-Metric
approach [2] [6] [19]. In respect to software
development, process pattern implies a general
solution garnered from documented solutions to
problems occurring during software development

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/20540331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:femi.osho@futminna.edu.ng

The Pacific Journal of Science and Technology –214–
http://www.akamaiuniversity.us/PJST.htm Volume 14. Number 2. November 2013 (Fall)

that is applicable to similar development process.
This approach helps select the right pattern to
apply when used. It helps to devise goals for
problems areas requiring advancement. However,
an evaluation of current situation must be
determined.

Herbsleb and Mockus [8] used survey data and
data from the change management system to
model delay extent in a globally distributed
software development organisation. A change
management (CM) system was used to manage
development work. It provides functionality for
code versioning and managing simultaneous
changes structurally.

The delay extent model revealed that it took a
distributed team about two and one-half the time
to complete a work by a collocated team. The
findings were confirmed when the change data
analysis were replicated in a different organization
with dissimilar product and site.

Product

In this section, we consider two amongst the
numerous cognitive complexity measurement
techniques applicable for the maintaining of
quality software.

Misra [15] considered the cognitive weight
complexity measure to rely upon the cognitive
weights of basic control structures. He defined the

total cognitive weight of a software component

as “the sum of cognitive weight of its linear

blocks composed in individuals BCS’S.”
Mathematically, this can be represented by:

Where each block may consists of layers of

nesting BCS’s, and each layer with linear

BCS’s.

He expressed the unit of cognitive weight
complexity measure as “the cognitive weight of
the simplest software component i.e. a linear
structured BCS”, represented mathematically by:

CWCM Cognitive Weight Unit

(CWU)

Shao and Wang [18] defined the cognitive
functional size of a basic software component
that only consists of one method, , as “a

product of the sum of inputs and outputs (N
i/o

)

and the total cognitive Weight.” This they
expressed mathematically as:

The unit of CFS is equivalent to that of the CWU.

Resource

Boehm et al. [3] proposed the Constructive Cost
Model, termed COCOMO II, for estimating cost
and schedule for projects, which uses the size of
the project, for instance Source Lines of Codes
(SLOC). This is used actually to determine the
effort required to developsoftware. It is expressed
as:

Where, PM = Person Month

This is the number of hours that a person spend
to complete a given task presented in a calendar
month. It is used to directly derive the project’s
cost.

A = 2.94 (for COCOMO II)

Size is estimated by Kilo Source Lines of Code
(KSLOC) measure or unit.

 EM = Effort Multiplier,
 B = 0.91,
 n = 17 (for Post-Architecture Model).

The Pacific Journal of Science and Technology –215–
http://www.akamaiuniversity.us/PJST.htm Volume 14. Number 2. November 2013 (Fall)

Kemere [12] presented an algorithm method
called SLIM, developed by Larry Putnam, used for
approximating project’s efforts and schedule.
SLIM also utilizes SLOC to measure project’s
overall size. It is represented by two equations:
the first for allocating Productivity Parameter (PP),
expressed in man years, which would be required
in the second equation for calculating effort.

Where, represents the amount of effort

required to accomplish a given task in a man-year
unit or measure.

Muhairat et al [17] investigated the effects of
different factors on the accuracy of effort
estimation methods in GSD environments.
Precisely, COCOMO II, SLIM, and ISBSG
methods of estimating projects efforts were
considered. They discovered the estimation
methods were less accurate in determining the
actual time of completion of some software
development projects. The main factor that
affected this outcome included the project
environment. They concluded that developing a
software in a GSD environment always require
more, in effort and time, to complete.

PROBLEM DEFINITION

Successful management of projects evidently
requires knowledge of required resources. But
these resources are often limited. Hence, it is
necessary to adopt a mean of effectively
allocating these limited resources to actualize
project completion. Most software projects are
component-based. The overall completion of a
software project is the cumulative of the time
expended in completing the different software
components. Thus, effective allocation of
resources to each component is very crucial to the
overall completion of any software project.

One of the merits of GSD is access to specialized
labour pool [5] [14], which is an indispensable
asset to any software project. However, GSD
teams have been discovered to produce at a level

up to 50% less than those collocated [13] [17]. As
a matter of fact, as concluded by the delay extent
model in [8], collocated teams could complete a
given task expending just two-fifth of the time it
would take a distributed time. It therefore
becomes necessary to develop a mean to exploit
the advantages GSD provides, whilst mitigating
its demerits.

COHERENCE-COLLOCATION MODEL (CCM)

Based on several studies that have pointed out
the demerits of GSD, a direct consequence of
distance and other differences, Mockus and
Weiss [16] recommended that “tightly coupled
work items that require frequent coordination and
synchronization should be performed within one
site.” Ebert and De Neve [5] advised “building
coherent and collocated teams of fully allocated
engineers.” As a matter of fact, they reported that
collocated teams needed less time, precisely less
than half, to perform a task compared to that
required by distributed teams. Herbsleb and
Mockus [8] also corroborated using their delay
extent model this assertion.

Coherence denotes that the number of work is
split, based on product functionality, that is, it is
component-based. Collocation implies the
tackling of the same set of functionality or
component – coherent tasks – in the same
location site, while full allocation means that
developers are fully engaged in a project without
distraction from other projects [5]. Therefore, we
define Coherence-Collocation Ratio (CCR) as the
average number of coherent and collocated
product developers, who are fully allocated.

The coherence-collocation model can be
categorized as one of the techniques for
measuring resources. This is due to the fact that
it is based on the effort required to develop a
software, which is the sum total of the efforts for
each of the software components.

Basically, the software is broken into different
components, where each component
incorporates one or a group of functionality. This
determines what is called the coherence ratio.
The effort of each component is then determined,
using any of the established means. It is
necessary to note that the efforts may or may not
vary for the different components. All depend on
their sizes. Based on this, the required number of
developers, from the pool of developers, is then

The Pacific Journal of Science and Technology –216–
http://www.akamaiuniversity.us/PJST.htm Volume 14. Number 2. November 2013 (Fall)

allocated fully. These processes are represented
below:

Figure 1: Coherence-Collocation Model.

Mathematical Representation

We assume the following:

i. Every software can be broken into at least
two components. That is, coherence ratio is
always greater than 1 for every software,
and

ii. For each component, the developers are all
collocated (and fully allocated). This means
that collocation ratio equal 1

Consequently, we define the following terms:

 software developers

are located in different sites. In this case, we

may two or more developers collocated in one of
the locations.

From the above, we have the following subsets:

 only one developer is located on a site.

This implies that no two developers are
collocated.

 one or more developers are

collocated.

 all developers are collocated.

 a developer is located on one or

more sites. This happens when a developer
moves between locations.

Component-wise, we have the following:

 Coherence ratio (this is the number of

components, tasks, or sets of functionality that
make up the software). This simply implies that,

, i.e., it is finite.

 individual component, task or

set of functionality.

 coherence-collocation ratio,

i.e., number of fully allocated developers for each
component, task or set of functionality.

We can deduce that, assuming the result of
Herbsleb and Mockus [6], to achieve the same
completion time for a software component,

, where (that is, no two

developer of the software component are located
in the same site).

The total number of software developers,

We assume that the number of developers that
would be assigned for each software component
should be determined by the estimated effort
required or the complexity of the software
component. We therefore say that number of
developers is a function of software component.
This is represented as:

If we consider our software components in terms
of complexity, using, say the cognitive weight
complexity measure (CWCM) [15], we say that:

Where

The Pacific Journal of Science and Technology –217–
http://www.akamaiuniversity.us/PJST.htm Volume 14. Number 2. November 2013 (Fall)

 is the number of product developers required

per Cognitive Weight Unit (CWU), and is

the cognitive weight complexity measure of the
entire software.

On the other hand, if we consider the components
in terms of required completion effort, using SLIM
[3], we would have that:

Where,

(SLOC is Source Lines of Code, and PP is known
as the Productivity Parameter).

 is the number of product developers required

per unit estimated effort, and is the

required effort for the entire software.

ANALYSIS OF MODELS

Looking at the two variations of the coherence-
collocation ratio, that is, equations (9) and (11),
the latter equation seems to be easier to deal with
considering the fact that amount of effort required
can be estimated more easily than one can
calculate the complexity measure while the
software is yet to be developed. Hence, we adopt
equation (11). Combining therefore equations (11)
and (12), we have that the coherence-collocation
ratio is given as:

For example, according to David A. Wheeler [22],
assuming conventional proprietary means were
used to develop the Red Hat distribution of the
Linux operating system, 8,000 man-years would

have been required. If we further assume a
developer size of 500, we simply have that the
number of product developers required to expend
a unit effort (in man-years) is:

If our coherence ratio, , and we assume

different values to represent the estimated effort

required for each component, , that

is, , the coherence-collocation ratio for

each component should be required as tabulated
below:

Table 1: Determination of Coherence-Collocation
Ratio per Product Component Estimated Effort.

1 800 50

2 1200 75

3 2000 125

4 1200 75

5 800 50

6 2000 125

CONCLUSION

The main thrust of the coherence-collocation
model suggests that parts of software should be
outsourced or handled by teams, partners or
organizations that guarantee collocation and full-
allocation of developers. The model can be
optimised to determine the best mix of
developers, since it utilises effort needed vis-à-
vis the amount of developers available. However,
it must be emphasised, the developers for a
particular component must be collocated and fully
allocated.

Collocating developers can reduce significantly
the cost of projects since the issue of
communication gap between developers handling
similar component of the project is virtually
eliminated. Also, being fully allocated can help
avoid distractions that would have emanated as a
result of multi-component development.

The Pacific Journal of Science and Technology –218–
http://www.akamaiuniversity.us/PJST.htm Volume 14. Number 2. November 2013 (Fall)

REFERENCES

1. Basili, V.R. 1992. “Software Modeling and

Measurement: The Goal/Question/Metric
Paradigm”.

2. Basili, V.R., G. Caldiera, and H.D. Rombach. 1994.
“The Goal Question Metric Approach”.
Encyclopedia of Software Engineering, 528-532.
John Wiley & Sons: New York, NY.

3. Boehm, B.W., C. Abts, A.W. Brown, S. Chulani,
B.K. Clark, E. Horowitz, R. Madachy, D.J. Reifer,
and B. Steece. 2000. Software Cost Estimation
with COCOMO II. Printice-Hall: Princeton, NJ.

4. Da Silva, F.Q.B., C. Costa, A.C.C. França, and R.
Prikladinicki. 2000. “Challenges and Solutions in
Distributed Software Development Project
Management: A Systematic Literature Review”. In:
Proceedings of International Conference.

5. Ebert, C. and P.De Neve. 2001. “Surviving Global
Software Development”. IEEE Software.
March/April, 2011.

6. Fenton, N.E. and S.L. Pfleeger. 1998. Software
Metrics: A Rigorous and Practical Approach. PWS
Publishing: Boston, MA.

7. Herbsleb, J.D. and D. Moitra. 2001. “Special Issue
on Global Software Development”. IEEE Software.
18(2) (March/April 2001).

8. Herbsleb, J.D. and A. Mockus. 2003. “An Empirical
Study of Speed and Communication in Globally
Distributed Software Development”. IEEE
Transactions on Software Engineering. 29(6):481-
494.

9. Herbsleb, J.D., A. Mockus, T.A. Finholt, and R.E.
Grinter. 2003. “An Empirical Study of Global
Software Development: Distance and Speed”.

10. Hyysalo, J., P. Parviainen, and M. Tihinen. 2006.
“Collaborative Embedded Systems Development:
Survey of State of the Practice”. In: 13th Annual
IEEE International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS
2006). IEEE, 2006. 1-9.

11. Ilincic, R. 2008. “Examining Agile Management
Methods and Non-Agile Management Methods in
Global Software Development Projects”.
Engineering Management Master’s Theses. Paper
1. http://hdl.handle.net/2047/d10018591.

12. Kemere, C.F. 1987. “An Empirical Validation of
Software Cost Estimation Models”. In:
Communications of ACM. 30(5):416-429.

13. Kormeren, R. and P. Parvianen. 2007. “Philips
Experiences in Global Distributed Software
Development”. Empirical Software Engineering.

12(6):647-660.

14. Lanubile, F., D. Damian, and H.L. Oppenheimer.
2003. “Global Software Development: Technical,
Organizational, and Social Challenges”, ACM
SIGSOFT Software Engineering Note, 28(6) Nov.
2003.

15. Misra, S. 2006. “A Complexity Measure Based on
Cognitive Weights”. International Journal of
Theoretical and Applied Computer Sciences.
1(1):1–10.

16. Mockus, A. and D.M. Weiss. 2001. “Globalization
by Chunking: A Quantitative Approach”. IEEE
Software. 18(2):30–37.

17. Muhairat, M., S. Aldaajeh, and R.E. Al-Qutaish.

2010. “The Impact of Global Software
Development Factors on Effort Estimation
Methods”. European Journal of Scientific
Research. ISSN 1450-216X 46(2):221-232.

18. Shao, J. and Y. Wang. 2012. “A New Measure of
Software Complexity Based on Cognitive
Weights”. Retrieved on July 2, 2012, from
www.ucalgary.ca/icic/files /icic/59-JECE-IEEE919.pdf

19. Solingen, van, R. and E. Berghout. 1999. The
Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software
Development. McGraw-Hill Publishing Company:
Maidenhead, UK, ISBN: 0077095537

20. Tihinen, M., P. Parviainen, R. Kommeren, and J.
Rotherham. 2011. “Metrics in Distributed Product
Development”. The Sixth International Conference
on Software Engineering Advances.

21. Walgers, M.M. 2007. “Towards a Method for
Improving Globally Distributed Software
Development Using Quantitatively Measurable
Process Patterns (The Problem-Goal-Pattern-
Measurement Approach)”. Twente Student
Conference on IT. Enschede (June 25, 2007).

22. http://en.wikipedia.org/wiki/Source_lines_of_code

ABOUT THE AUTHORS

Osho Lauretta Oluwafemi, is a postgraduate
student of Computer science in the Department
of Computer Science, Federal University of
Technology, Minna, Nigeria. She holds a B.Tech.
degree in Mathematics/Computer Science. Her
research interests include cloud computing and
software development.

http://hdl.handle.net/2047/d10018591
http://www.ucalgary.ca/icic/files%20/icic/59-JECE-IEEE919.pdf
http://en.wikipedia.org/wiki/Source_lines_of

The Pacific Journal of Science and Technology –219–
http://www.akamaiuniversity.us/PJST.htm Volume 14. Number 2. November 2013 (Fall)

Sanjay Misra, is a Professor of Computer
Engineering in the Department of Computer and
Information Sciences, Covenant University, Otta,
Nigeria. He holds an M.Tech. degree in Software
Engineering from Motilal Nehru National Institute
of Technology, Allahabad India and a D.Phil. from
the University of Allahabad, India. He is the author
of more than 100 papers and has chaired several
annual international workshops. Presently, he is
Chief Editor of an International Journal of Physical
Sciences and International Journal of Computer
Science and Software Technology and serves as
Editor/Associate Editor/Editorial Board Member
for several journals of international repute. His
current research covers the areas of software
quality, software measurement, software metrics,
software process improvement, and software
project management, object oriented
technologies, XML, SOA, Web Services, and
cognitive informatics.

Osho Oluwafemi, is currently an Assistant
Lecturer in the Department of Cyber Security
Science, Federal University of Technology, Minna,
Nigeria. He holds a B.Tech. degree in
Mathematics/Computer Science and an M.Tech.
degree in Mathematics. Before joining the
institution, he served as Head of the IT
Department of one of the leading mortgage banks
in Nigeria. His research interests include
information security, data mining/machine
learning, and software development.

SUGGESTED CITATION

Osho, L.O., S. Misra, and O. Osho. 2013. “A
Metric in Global Software Development
Environment”. Pacific Journal of Science and
Technology. 14(2):213-219.

 Pacific Journal of Science and Technology

http://www.akamaiuniversity.us/PJST.htm

