
1
Introduction
Uvod

Software metrics determine the degree of
maintainability of software products, which is one of the
important factors that affect the quality of any kind of
software. Furthermore, software metrics provide useful
feedback to the designers to impact the decisions that are
made during design, coding, architecture, or specification
phases. Without such feedback, many decisions are made in
ad hoc manner.

Fenton defines measurement as the process by which
numbers or symbols are assigned to attributes of entities in
the real world in such a way as to describe them according to
clearly defined unambiguous rules [6]. In software
engineering software metrics are the only tools to control
the quality of software. Furthermore, requirement to
improve the software quality is the prime objective, which
promoted the research projects on software metrics
technology. It is always hard to control the quality if the
code is complex. Complex codes always create problems to
software community. It is hard to review, test, maintain as
well as manage such codes. As a consequence, those
handicaps increase the maintenance cost and the cost of the
product. Due to these reasons, it is strongly recommended to
control the complexity of the code from the beginning of the
software development process. Software metrics help to
achieve this goal.

In fact, there are no strict rules, which can prove that
code is good or bad. Several researchers proposed different
criteria for developing the good and quality software.
Although they consider the different aspect of the quality
one thing is common in all the criteria i.e. the code should be
agile [31]. Specially, in object oriented software
developments, which have an extraordinary acceptance in
last two decades, it is a must. In other words, the code should
be written in such a way that it should be reused and
adopted. If code is not agile then it is hard to replace (add or

23

S Misra, F Cafer. .

ISSN 1330-3651

UDC/UDK 004.412:004.43 Python

ESTIMATING COMPLEXITY OF PROGRAMS IN PYTHON LANGUAGE

Sanjay Misra, Ferid Cafer

In this paper, a complexity metric for Python language is formulated. Since Python is an object oriented language, the present metric is capable to evaluate any
object-oriented language. We validate our metric with case study, comparative study and empirical validation. The case study is in Python, Java and C++ and the
results prove that Python is better than other object-oriented languages. Later, we validate the metric empirically with a real project, which is developed in
Python.

Keywords: complexity metric, Python, software complexity, software development

Original scientific paper

U ovom radu formulirana je metrička složenost za jezik Python. Budući je Python objektno orijentiran jezik, postojeća metričnost je u stanju procijeniti bilo koji
objektno usmjeren jezik. Potvrđujemo našu metričnost studijom slučaja, usporednom studijom i empirijskom provjerom valjanosti. Studija slučaja je u Python,
Java i C ++ jeziku, a rezultati pokazuju da je Python bolji od ostalih objektno orijentiranih jezika. Kasnije smo provjerili metričnost empirijski sa stvarnim
projektom, koji je razvijen u Python jeziku.

Ključne riječi: metrička složenost, Python, složenost softvera, razvoj softvera

Izvorni znanstveni članak

Procjena složenosti programa u Python jeziku

Procjena složenosti programa u Python jeziku

Technical Gazette 18, (2011),1 23-32

remove) modules and it will waste the time of software
professionals. It also affects the maintainability aspects.

In the past, researchers proposed their methodologies
for evaluating codes, which were written in procedural
languages [12], such as C. Later, studies focused on object-
oriented (OO) programming languages, e.g. C++ [1, 2, 3]
and Java [35, 36]. Software metrics for other languages and
technologies such as XML and Web services [13, 14, and
24] can also be found in the literature. However, to evaluate
codes written in Python language has not found proper
attention as we were expecting. In fact, today, Python is not
as popular as Java and C++ but due to its unique features, it
is a more comfortable language for software development.
It is gaining popularity day by day in the software
community. Several conferences and workshops devoted to
Python including SciPy 2009 India [16], RuPy '09
Poland [17], FRUncon '09 USA [18], ConFoo.ca 2010
Canada [19], are proving the importance of Python. It is

not the end of the success stories of Python. It is highly
understandable in comparison to other OO languages,
hence less expensive to maintain. Famous enterprises like
Google andYouTube chose to use Python.

One way to evaluate the complexity of the Python code
is through the metrics developed for procedural languages.
However, all the available metrics cover only specific
features of the language. For example, if we apply line of
code then only size is covered, similarly McCabe's
Complexity metrics only cover the control flow of the
program. In general, the metrics applicable to the
procedural languages do not fit to the modern OO languages
such as C++ [3]. Additionally, most of the available metrics
and models for OO languages are applicable when the
object-oriented code is complete or about to complete.
Therefore, they provide information too late to help in
improving the quality of the code. Object oriented approach
requires significant efforts early in development life cycle
to identify objects, classes, attributes operation and their
relat ionship. Encapsulat ions, inheri tance and
polymorphism require the designer to carefully structure the

()
() ()
()

b r o u g h t t o y o u b y C O R EV i e w m e t a d a t a , c i t a t i o n a n d s i m i l a r p a p e r s a t c o r e . a c . u k

p r o v i d e d b y C o v e n a n t U n i v e r s i t y R e p o s i t o r y

https://core.ac.uk/display/20540303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

24

Estimating complexity of programs in ython languageP

Tehni ki vjesnikč ,18, 1(2011) 23-32

design in early phases [32]. Therefore, the available metrics,
which are applicable at the completion of code, are not
applicable in OO environment.

By keeping all these issues in mind, in the present work
we are evaluating the complexity of Python code by
identifying all the factors, which may play important roles
in the complexity of the code. It is important to note that
Python is an OO language, it includes most of the features of
other OO languages; however, differences occur in the main
program body. In addition to that, execution and dynamic
typing provide big productivity gains over Java; Python
programs need less extraneous endeavor (i.e. cleaner code)
[21]. In this respect Python is a very useful and important
language and the proper metrics for this language are still
not developed. This factor motivates us to work on it and
produce such a metric, which can cover all the features of
Python as well as cover all the aspects of complexity.
Consequently, a new approach, which is unification of all
the attributes, is presented. As the preliminary work of this
study, the metric is presented in ICCSA 2010 [33]. In the
present work, we extend our conference presentation and
validate our work through empirical validation, which
includes case study, comparative study and applicability on
a real project. Our case study is evaluated in three different
object oriented languages. Furthermore, we apply our
metric on a real project to prove its real applicability and
usefulness.

The paper is organized in the following way. We discuss
the importance of Python language and the available
metrics for this language in Section 2. Following this, we
propose our metric in Section 3. We demonstrate the metric
with a programming example in section 4. We empirically
validate our metric through case study, comparative study
and through a real project in section 5. The conclusion
drawn on this work is in Section 6.

Python is a programming language that lets the
programmer to work more quickly to integrate systems
more effectively [10, 11]. It is a free of charge language for
commercial purpose. It runs on all major operating systems
including Windows, Linux/Unix, Mac OS X, and also has
been ported to the Java and .NET virtual machines [10].
Besides those features, Python is an effective language
especially for the software development for embedded
systems. It can also be used in web development [4, 5]. It is
an ideal language to solve problems, especially on Linux
and UNIX, for building software applications in life science
research and development, and processing in natural
languages [7-9].

In case of embedded system, where inexpensive
components and maintenance are demanded, Python may
provide best solution. With Python, one can achieve these
goals in terms of small size, high reliability and low power
consumption. In addition, the developers who have
background of Java, C and/or Visual Basic [4] can learn it
without major effort. In fact, it offers features of mixture of
programming languages. It provides most of the features of
OO languages in a powerful and simple way.

In addition to these powerful features of this language,
no proper techniques are available to evaluate the quality of
Python code to our knowledge. We could not find a single

2
The literature survey

Pregled literature

S Misra, F Cafer. .

metric in a published form except some online articles [25-
30]. These available articles are related to the available
tools, which are limited to calculate the simple metrics. For
example, Pythius [26] tool calculates the complexity of
Python Code by computing simple metrics such as ratio of
comments to code lines, module and function size.

A

3

Another tool 'snakefood' proposed by Martin Blais [27]
provides the dependency graphs for Python. It can be useful
to calculate McCabe's Cyclomatic complexity for Python
code. Pygenie tool developed by David Stanek [28] also
calculates the McCabe's Cyclomatic complexity for Python
code. Reg Charney has also developed an open source code
complexity measurement tool named as PyMetrics [29]
which is capable of counting the following metrics: block
count, maximum block depth, number of doc strings for
Python classes, number of classes, number of comments,
number of inline comments, total number of doc strings,
number of function doc strings, number of functions,
number of keywords used, number of lines, number of
characters and number of multiple exit functions. Another
tool available online is Pyntch [30]. Pinch PYthoN Type
CHecker) is a static code analyzer which detects possible
run time errors before actually running a code.

ll of the above tools are effective in evaluating the
quality of the Python language only up to an extent. Most of
them are confined to compute simple metrics, which give
only an idea for some specific attributes; none of them are
capable to evaluate majority of attributes in a single metric.

If we analyse object-oriented software, we will find that
software consists of several classes with a main program.
Accordingly, complexity of the object-oriented code
depends on the complexity of the class and the complexity
of main program. It is common observation that most of the
available metrics do not care for the complexity of the main
program in object-oriented systems. In our proposal, we
consider all the factors, which are responsible for increasing
complexity of the class as well as main program. Actually
main program is the main component, which differentiates
Python with other object oriented languages. We will prove
our claims in empirical validation, section 5. Further,
complexity of a system depends on the following factors:
1. Complexity due to classes. Class is a basic unit of object

oriented software development. All the functions are
distributed in different classes. Further classes in the
object-oriented code either are in inheritance hierarchy
or distinctly distributed.Accordingly, the complexity of
all the classes is due to classes in inheritance hierarchy
and the complexity of distinct classes.

2. Complexity due to global factors: The second
important factor, which is normally neglected in
calculating complexity of object-oriented codes, is the
complexity of global factors in main program.

. Complexity due to coupling: Coupling is one of the
important factors for increasing complexity of object-
oriented code.

The other factors like cohesion and methods are
considered the complexity factors inside the class.

Accordingly, we propose that the Complexity of the
Python code is defined as:

(

3
Proposed metric
Predložena metričnost

25Technical Gazette ,18, 1(2011) 23-32

S Misra, F Cafer. .

Software Metric for Python (SMPy)
= CIclass + CDclass+ Cglobal + Ccoupling,

.

:

w

,

w

.

.

(1)

CIclass = Complexity due to Inheritance
CDclass = Complexity of Distinct Class
Cglobal= Global Complexity
Ccoupling= Complexity due to coupling between classes.

Before calculating the complexity of Inheritance and
distinct classes, we will estimate the complexity of a class,
which will later become the part of inheritance hierarchy or
of distinct classes. Accordingly, we will first compute the
complexity of a simple class named as Cclass

Cclass can be defined as

Cclass = weight (attributes) + weight (variables) + weight
(structures) + weight (objects) – weight (cohesion) (2)

here, weight of attributes W (attribute) is defined as:

W (attributes) = 4*AND + MND (2.1)

here, AND = Number of Arbitrarily Named Distinct
Variables/Attributes
MND = Number of Meaningfully Named Distinct
Variables/Attributes
Weight of variable W(variables) is defined as:

W(variables) = 4*AND+MND (2.2)

Procjena složenosti programa u Python jeziku

problem if the developer himself evaluates the code.
However, it is not the case in real life. After the system is
developed, especially during maintenance time, arbitrarily
named variables may increase the difficulty in
understanding four times more [20] than the meaningful
names.

Weight of structure W(structures) is defined as:
W(structures) = W(BCS) (2.3)

here, BCS are basic control structure.

Sequences' complexity depends on its mathematical
expression [15]. Functions help tidiness of a code. Also,
they may increase the reusability of the code. However,
each function call disturbs the fluency of reading a code.
Loops are used to repeat a statement for more than one time,
although, they decrease computing performance.
Especially, the more nested loops there are, the more time it
takes to run the code. In addition, human brain has
similarities with computers in interpreting a data [22, 23].
Conditional statements are used to make a program
dynamic. On the other hand, by presenting more
combinations they decrease the easiness of grasping the
integrity of a program. Therefore conditional statements can
be thought to be sequences built up in different possible
situations. If the conditional situations are nested, then the
complexity becomes much higher. The situation in
exceptions is similar. We are assigning the weights for each
basic control structure followed by the similar approach of
Wang [15]. Wang proved and assigned the weights for sub
conscious function, meta cognitive function and higher
cognitive function as 1, 2 and 3 respectively. Although we
followed the similar approach with Wang, we made some
modifications in the weights of some Basic Control
Structures as shown in Tab 1.

Weight of objects W (object) is defined as:
W(object) = 2 (2.4)

Creating an object is counted as 2, because while
creating a function constructor is automatically called.
Therefore, it is the same as calling a function or creating an
object. Here it is meant to be the objects created inside a
class.

Weight of cohesion is defined as:
W(cohesion) = MA/AM (2.5)

here, MA= Number of methods where attributes are used
AM = Number of attributes used inside methods
While counting the number of attributes there is no any
importance ofAND or MND.

Notes:
Function call: during inheritance, calling super class's
constructor is not counted.
Global variable: static attribute is counted as a global
variable.

Cglobal=W (variables+structures+objects) (3)

Weight of variable W(variable) is defined as:
W(variables) = 4*AND+MND (3.1)
The variables are defined globally.

,
w

.

.

,

w
.

.

.

Structures/basic Control Structures (BCS's):

Cglobal can be defined as:

Table 1
Tablica 1.

Values of structures
Vrijednosti struktura

Category Value Flow Graph

Sequence 1

Condition 2

Loop 3

Nested Loop 3 -

Function 2

Recursion 3

Exception 2

Arbitrary and Meaningful Variables and attributes
are one of the causes of complexity. Further, if a variable's
name is arbitrarily given, then the comprehensibility of that
code will be lower [20]. Therefore, variables and attributes
of classes should have meaningful names. Although, it is
suggested that the name of the variables should be chosen in
such a way that it is meaningful in programming, there are
developers who do not follow this advice strictly. If the
variable names are taken arbitrarily, it may not be a grave

26 Tehni ki vjesnikč ,18, 1(2011) 23-32

Weight of structure W(structure) is defined as:
W(structures) = W(BCS)+obj.method (3.2)

here, BCS are basic control structure, and those structures
are used globally. 'obj.method' calls a reachable method of a
class using an object. 'obj.method' is counted as two,
because it calls a function written by the programmer.

Weight of objects W(object) is defined as:
W(objects) = 2 (3.3)

Creating an object is counted as 2, as it is described
above. Here it is meant to be the objects created globally or
inside any function which is not a part of any class.

Notes: Exception: while calculating try catch
statement, only the numbers of "catch"es are counted as 2.
"try" itself is not counted.

There are two cases for calculating the complexity of
the Inheritance classes depending on the architecture:

If the classes are in the same level then their weights are
added.
If they are children of a class then their weights are
multiplied due to inheritance property.

If there are levels of depth in the OO code and level
has classes then the complexity of the system due to
inheritance is given as:

.

w

.

:CIclass can be defined as

�

�

m j
n

The proposed example has eight classes. The
components of our metric for all classes are summarized in
Tab. 2, and non class as global in Tab. 3. Based on these
values we have calculated Cclass, CIclass, CDclass,
Cglobal, coupling values of the system. It is worth to
mention that during the calculation of complexity of
inheritance, we should be careful in computing of CIclass.
We have to add the complexity of the classes at the same
level and only multiply with their parent classes, as shown
in the following computation.

Cclass(Colour)=21
Cclass(Shapes)=7
Cclass(Figure1P)=7
Cclass(Square)=29
Cclass(Circle)=29
Cclass(Figure2P)=11
Cclass(Rectangle)=29
Cclass(Oval)=29

example is given in Fig 1. The complete code for this
program is given in the Appendix A. Further, the
computations of the weights of basic control structures are
also demonstrated inAppendix B (Tab. 10).

.

Estimating complexity of programs in ython languageP S Misra, F Cafer. .

� �
� �

�
�

�
�
	

�

m

j

n

k
jk

1 1

CclassCIclasses (4)

CDclass can be defined as:

����)Class()Cclass(CDclass yx (5)

Note: all classes, which are neither inherited nor
derived from another, are part of CDclass even if they have
caused coupling together with other classes.

Coupling is defined as:

c2Coupling � (6)

c = Number of connections.

()

A method, which calls another method in another class,
creates coupling. However, if a method of a class calls the
method of its super class, then it is not considered to be
coupling. In order to provide a connection there have to be
two entities. It means one connection is in between two
points. Thus, the base number is taken as 2. Another reason
for that is function call has a value of 2; is total number of
connection made from one method to other method(s) in
another class. It is taken as 'to the power', because each
connection makes a significant increment in cognitive
comprehensibility in software.

We have demonstrated our proposed complexity metric
given by equation 1 by a programming example written in
Python language. The class diagram for this programming

c

4
Demonstration of the metric

Demonstracija metričnosti

Figure 1
Slika 1.

Shapes – Class diagram
Oblici –Dijagram razreda

Table 2
Tablica 2

Class complexity
. Složenost razreda

class

a
tt

ri
b

u
te

S
tr

u
ct

u
re

s

v
a

ri
a
b

le

o
b

je
ct

M
A

A
M

co
h

es
io

n

C
cl

a
ss

Colour 0 19 2 0 0 0 0 21

Shapes 2 6 0 0 2 2 1 7

Figure1P 1 8 0 0 2 1 2 7

Square 0 27 0 2 0 0 0 29

Circle 0 27 0 2 0 0 0 29

Figure2P 1 11 0 0 1 1 1 11

Rectangle 0 27 0 2 0 0 0 29

Oval 0 27 0 2 0 0 0 29

27Technical Gazette ,18, 1(2011) 23-32

Procjena složenosti programa u Python jeziku

CIclass=Shapes*(Figure1P*(Square+Circle+Figure2P*(R
ectangle+Oval)))

=7*(7*(29+29+11*(29+29)))
=34104

CDclass=21
Cglobal=24

SMPy=CIclass+CDclass+Cglobal+coupling

=34104+21+24+2
=34165

Calculation is as follows
1. Complexity of each class was calculated. Attributes,

methods, variables, objects, structures, and cohesion
were included.

2. Complexity of global structure was calculated.
Variables, objects, structures, functions, and the main
function were included.

3. Classes were separated as inside inheritance and
distinct.

4. Complexity of inheritance was calculated. Super class
was multiplied by the summation of the classes, which
are derived from it.

5. Complexity of inheritance, complexity of distinct class,
complexity of global structure, and coupling were
summed to reach the result of SMPy.

The empirical validation of the metric is carried out
through a case study, comparative study and application of
metric on a real project. Case study under consideration is
taken into three different languages. We compare our metric
with most popular CK metric suite. The case study,
comparative study and observations on real projects are
demonstrated in section 5.1, 5.2 and in 5.3 respectively.

For the practical applicability of our metric, we chose a
case study. We measure a code, which covers cohesion,
coupling, inheritance, polymorphism, attributes, methods,
variables, etc. This code, which covers most of possible
coding features, is tried in three different languages; C++,
Java, and Python. Its UML figure is given in Fig 1. In other
words, we try to develop a system in three different
languages and then estimate the complexity of the same
system in three different languages. The system is the same,
which we considered for the demonstration of metric in
section 4. We have already calculated the complexity of the
system in ython language in the same section. Now we are
estimating the complexity of the same example in C++ and
Java. Their class complexity and non Class complexity are
given below and in Tab 4 and 5, respectively. Accordingly

4

.

:

.

P

. ,

5
Empirical validation

5.1
Case study

Empirijska provjera valjanosti

Studija slučaja

The metric values for C++
Cclass(Colour)=21
Cclass(Shapes)=7
Cclass(Figure1P)=7
Cclass(Square)=29
Cclass(Circle)=29
Cclass(Figure2P)=11
Cclass(Rectangle)=29
Cclass(Oval)=29

CIclass=Shapes*(Figure1P*(Square+Circle+Figure2P*(R
ectangle+Oval)))

=7*(7*(29+29+11*(29+29)))
=34104

CDclass=21
Cglobal=32

Total complexity of the system in
C++=CIclass+CDclass+Cglobal+coupling

=34104+21+32+2
=34173

Cclass(Colour)=21
Cclass(Shapes)=7
Cclass(Figure1P)=7
Cclass(Square)=29
Cclass(Circle)=29
Cclass(Figure2P)=11
Cclass(Rectangle)=29
Cclass(Oval)=29

4

.

The metric Values for the Java:

S Misra, F Cafer. .

Table 3
Tablica 3.

Non-class complexity
Složenost ne-razreda

Non-Class var+str+obj Complexity

Cglobal 24 24

Table 4
Tablica 4.

Non-class complexity
Složenost ne-r zredaa

Non-Class var+str+obj Complexity

Cglobal 32 32

Table 5
Tablica 5.

Non-class complexity
Složenost ne-razreda

Non-Class var+str+obj Complexity

Cglobal 71 71

CIclass=Shapes*(Figure1P*(Square+Circle+Figure2P*(R
ectangle+Oval)))

=7*(7*(29+29+11*(29+29)))
=34104

CDclass=21
Cglobal=71
Total complexity of the system in JAVA= CIclass + CDclass
+ Cglobal + coupling

=34104+21+71+2
=34212

.

.

4

34140

34150

34160

34170

34180

34190

34200

34210

34220

Java C++ Python

Figure 2
Slika 2.

Comparison between languages
Usporedba između jezika

28 Tehni ki vjesnikč ,18, 1(2011) 23-32

programming language. It is built over the Simple
DirectMedia Layer (SDL) library, with the intention of
allowing real-time computer game development without
the low-level mechanics of the C programming language
and its derivatives. This is based on the assumption that the
most expensive functions inside games (mainly the graphics
part) can be completely abstracted from the game logic in
itself, making it possible to use a high-level programming
language like Python to structure the game.

We estimate the complexity of each class
independently. Classes are coupled through two ways:
through inheritances and message calls. The inheritance
hierarchies of the classes coupled through the inheritance
are shown in Fig. 3. Some classes are independent and
therefore not affected due to inheritance and are shown in
Fig. 4.

The data obtained from the above experimentations
provide very valuable information regarding the metrics as
well as the features of the languages. We can very easily
observe that the metric values for classes in all three
languages are the same and are: 21, 7, 7, 29, 29, 11, 29 and
29 for classes Colour, Shapes, Figure1P, Square, Circle,
Figure2P, Rectangle, and Oval. However the complexity for
the whole system in Python, C++ and Java is different and is
34165, 34173 and 34212 respectively (Fig. 2). Here it is
important to note that at the class level the complexity
values are equal and the differences occur at the main
program. This is the reason why the complexity of the same
project is different in three different languages. For the
whole system, the complexity of the system is the least in
python language. It proves the uniqueness of the ython
language.

We compare the proposed metric with well-known CK
metric suite. We apply all the metrics on the classes of the
case study under consideration. The metric values for
different classes are summarised in Tab. 6.

P

5.2
Comparison with the other metrics
Usporedba s drugim metričnostima

In Tab. 7, the complexity of each class is shown. In the
first column the name of the class is given. The metric
values for different parameters which affect the complexity
of the class i.e. attributes, variables, structures, objects and
cohesion are given in column 2 – 7. Cclass is calculated by
the equation 2 .

It is very easy to observe that the complexity of the class
highly depends on its parameter. The highest Cclass is for
Button class, which is 48,6 due to complex structure of its
methods, number of attributes, and number of variable. The
lowest values are for those classes that have simplest
structure, for example the class State, Floortile and Proptile.

The complexity of the non classes, defined as Cglobal is
due to global variables structures and objects and is
computed in Tab. 8. It can be easily observed that global
complexity also plays an important role in increasing the
overall complexity.

()

Estimating complexity of programs in ython languageP S Misra, F Cafer. .

Table 6
Tablica 6.

Comparison between metrics
Usporedba između metričnosti

Class

Metric

S
h

ap
es

F
ig

u
re

1
P

S
q

u
ar

e

C
ir

cl
e

F
ig

u
re

2
P

R
ec

ta
n

g
le

O
v

al

C
o

lo
u

r

WMC(1) 3 2 2 2 2 2 2 2

RFC 3 5 7 7 7 9 9 2

DIT 0 1 2 2 2 3 3 0

NOC 1 3 0 0 2 0 0 0

LCOM 2 2 0 0 2 0 0 0

CBO 0 1 1 1 1 1 1 0

SMpy 7 7 29 29 11 29 29 21

When we compared our metric with CK metric suites, we
found that metric values for SMpy are higher than all the CK
measures. It is because of the fact that SMpy includes all the
parameters, which are responsible for complexity of the
systems. However, all these parameters were calculated
individually in the CK metric suites. In other words we can
say that SMpy is the super set of all the measures proposed
by Chidamber et al.[3].

The practical usefulness of a new measure cannot be
proved without the proper empirical validation which
includes the applicability of the metric on real projects. For
this purpose, we select an open source project available on
the Web. We believe that the open source code is more
beneficial for the readers because they can also evaluate the
project in the same way as the original author does. The
project is a cross-platform set of Python modules designed
for writing video games [34]. It includes computer graphics
and sound libraries designed to be used with the Python

5.3
A real project
Stvarni projekt

Table 7
Tablica 7.

Class complexities
Složenost razreda

Class

A
tt

ri
b

u
te

s

S
tr

u
ct

u
re

s

V
ar

ia
b

le
s

O
b

je
ct

s

M
A

A
M

C
o
h

es
io

n

C
cl

as
s

GameObject 1 1 0 0 1 1 1 3

MapObject 7 27 12 0 1 6 0.1 46,1

Level 2 18 10 0 2 2 1 31

level_zero 1 1 0 0 1 2 0,5 2.5

level_one 3 52 4 1 1 2 0,5 60,5

ImagedObject 2 6 0 0 0 0 0 8

PropTile 0 1 0 0 0 0 0 1

ActorTile 2 3 1 1 0 0 0 7

Sphere 9 9 7 1 2 5 0,4 26,4

Background 1 2 2 0 0 0 0 5

FloorTile 0 1 0 0 0 0 0 1

Cement 3 2 0 0 0 0 0 5

Grass 3 8 1 0 1 1 1 13

Curb 3 2 0 0 1 1 1 6

Void 3 8 3 0 1 1 1 15

Widget 3 24 5 0 4 6 0,6 32,6

Button 10 32 6 0 6 9 1 48,6

DirectionButtons 2 15 4 0 2 2 0,6 22

ViewPort 5 9 0 0 3 5 0,6 14,6

GameObjects 3 7 0 0 3 3 1 11

Clock 11 24 4 0 4 7 0,5 39,5

State 0 1 0 0 0 0 0 1

CyclePath 8 50 6 0 4 8 0,5 64,5

29Technical Gazette ,18, 1(2011) 23-32

There are different class hierarchies in this project. The
first class hierarchy is shown in Fig. 3. In this hierarchy two
classes Button and DirectionButtons are on the same level
and inherited from class Widget. Due to the effect of this
inheritance the complexity of the class Widget is computed
as follows;

Widget(Button + DirectionButtons)
=32,6(48,6 + 22)
=2301,5

Another class hierarchy which includes 15 classes is
shown in Fig. 4. The class Gameobject is at the top of the
hierarchy. The complexities of each class under inheritance
are given in Tab. 9. The complexity due to inheritance is
computed as 275591,1. The demonstration of the
calculation for inheritance is given in the following
paragraphs.

.

Procjena složenosti programa u Python jeziku

Based on the different complexity values due to
different factors the overall complexity of this project is
computed as:

SMPy = CIclass + CDclass + coupling + Cglobal
SMPy = 279327,2.

The above computation proves the applicability of
SMPy on real life applications. This also proves that not
only one factor is responsible for the complexity of the
whole code but also there are several factors, which plays
the important role in increasing the overall complexity of
the code. It is worth mentioning that all these factors are not
new but up to now these factors have not been unified for
complexity calculation purpose. The complexities for all
these factors like inheritance, coupling, methods, are
computed independently in the available complexity
metric. It is our first attempt to unify all of them in a single
metric. In addition, we tried to implement it on the project
written in Python. In section 5.1, our experimentation
proves that Python is comparatively a better language for
the OO software development.

There are many metrics for evaluating the quality of
codes written in different languages. However, no efforts
have been done to propose metrics for Python, which is an
important and useful language especially for the software
development for the embedded systems. In this present
work, we are trying to investigate all the factors, which are
responsible for increasing the complexity of code written in
Python language. Accordingly, we have proposed a unified
metric for this language. Practical applicability of the metric
is demonstrated on a case study. We have also validated our
work with empirical validation study by applying it on real
project. We hope that the present work will attract the
attention of the researchers and practitioners who are
working in OO domain, especially those using Python.

As a future work, we aim to provide a list of common
words (meaningful names) in object oriented languages and
in particular programming language, which can be used for

6
Conclusion

Zaključak

S Misra, F Cafer. .

Table 8
Tablica 8.

Global omplexity
Globalna složenost

c

Non-Class var+str+obj Complexity

Cglobal 1304 1304

Figure 3
Slika 3.

Inheritance 1
Nasljedstvo I

Figure 4
Slika 4.

Inheritance 2
Nasljedstvo 2

Class Complexity

Widget 32.6

Button 48.6

DirectionButtons 22

GameObject 3

MapObject 46.1

ImagedObject 8

Level 31

Background 5

FloorTile 1

PropTile 1

level_zero 2.5

level_one 60.5

Cement 5

Grass 13

Curb 6

Void 15

ActorTile 7

Sphere 26.4

Table 9
Tablica 9.

Complexity of classes inside inheritance
Složenost klasa unutar nasljedstva

GameObject[MapObject(Level(level_zero + level_one))
+ ImagedObject(Background + FloorTile(Cement + Grass
+ Curb + Void) + Proptile(ActorTile(Sphere)))]
=3[46,1(31(2,5+60,5)) + 8(5 + 1(5 + 13 + 6 + 15) +
1(7(26,4)))]
=275591,1

The different complexities for the project are
summarised as follows:

CIclass=277892,6
CDclass=130,6
coupling=0
Cglobal=1304

.

.

30 Tehni ki vjesnikč ,18, 1(2011) 23-32

naming the variables and attributes, while writing the code.

7
References

Literatura

[1] Costagliola, G.; Tortora, G. Class points: An approach for the
size Estimation of Object-oriented systems. IEEE
Transactions on Software Engineering, 31, 1(2005) 52-74.

[2] Misra, S.; Akman, I. Weighted Class Complexity: A Measure
of Complexity for Object Oriented Systems. Journal of
Information Science and Engineering, 24 (2008) 689-1708.

[3] Chidamber, S. R.; Kermer, C. F. A Metric Suite for object
oriented design. IEEE Transactions Software Engineering,
SE-6(1994) 476-493.

[4] http://www.Python.org/about/success/carmanah/
[5] Lutz, M. Learning Python, 4th Edition, Ebook, Safari Books

Online, September 2009, Publisher: O'Reilly Media
[6] Fenton, N. E.; Pfleeger, S. L. Software Metrics: A Rigorous

and Practical Approach, 2nd Edition Revised ed. Boston:
PWS Publishing, 1997.

[7] Bird, S.; Klein, E.; Loper, E. Natural Language Processing
with Python, 1st Edition , Ebook, Safari Books Online, June
2009, Publisher: O'Reilly Media

[8] Gift, N.; Jones, M. J. Python for Unix and Linux System
Administration, 1st Edition Ebook, Safari Books Online,
August 2008, Publisher: O'Reilly Media

[9] Model, M. L.; Tisdall, J. Bioinformatics Programming Using
Python, 1st Edition, Ebook, Safari Books Online, July 2009,
Publisher: O'Reilly Media

[10] Python Programming Language, cited 04.10.2009
Available from: http://www.Python.org/

[11] Lutz, M. Programming Python, 3rd Edition Ebook, Safari
Books Online,August 2006, Publisher: O'Reilly Media

[12] Misra, S.; Akman, I. Unified Complexity Metric: A measure
of Complexity, Proc. of National Academy of Sciences
SectionA. (2010) In press.

[13] Basci, D.; Misra, S. Data Complexity Metrics for Web-
Services, Advances in Electrical and Computer Engineering,
9, 2(2009), pp. 9-15.

[14] Basci, D.; Misra, S. Measuring and Evaluating a Design
Complexity Metric for XML Schema Documents, Journal of
Information Science and Engineering, 25 (2009), pp. 1415-
1425.

[15] Wang, Y.; Shao, J. A New Measure of Software Complexity
Based On Cognitive Weights. Can. J. Elec. Comput. Engg.,
(2003) 69-74.

[16] SciPy.in 2009, cited 16.10.2009
Available from: http://scipy.in/

[17] Rupy 2009, cited 10.11.2009
Available from: http://rupy.eu/

[18] FrontRangePythoneersUc09, cited 05.10.2009
Available from:
http://wiki.python.org/moin/FrontRangePythoneersUc09

[19] Confoo.Ca Web Techno Conference, cited 14.11.2009
Available from: http://www.confoo.ca/en

[20] Kushwaha, D. S.; Misra, A. K. Improved Cognitive
Information Complexity Measure: A Metric That Establishes
Program Comprehension Effort. SIGSOFT Software
Engineering Notes 31, 5(Sep. 2006), 1-7.

[21] DMH2000 C/Java/Python/Ruby, cited 15.10.2009
Available from: http://www.dmh2000.com/cjpr/

[22] Neuroscience – Brain vs. Computer, cited 17.10.2009
Available from:
http://faculty.washington.edu/chudler/bvc.html

[23] Computer vs. The Brain, cited 17.10.2009
Available from:
http://library.thinkquest.org/C001501/the_saga/sim.htm

[24] Basci, D.; Misra, S. Entropy metric for XML DTD
documents. SIGSOFT Softw. Eng. Notes 33, 4(Jul. 2008), 1-
6.

,

, ,1

,

.

,
.

.

.

.

,
.

.

.

,

Estimating complexity of programs in ython languageP S Misra, F Cafer. .

[25] Python Code Complexity Metrics And Tools available from:
http://agiletesting.blogspot.com/2008/03/Python-code-
complexity-metrics-and.html

[26] Pythius Homepage, cited 03.10.2009
Available from: http://pythius.sourceforge.net/

[27] Python Dependency Graphs, cited 08.11.2009
Available from: http://furius.ca/snakefood/

[28] Measuring Cyclomatic Complexity f Python Code available
at:
ht tp: / /www.traceback.org/2008/03/31/measuring-
cyclomatic-complexity-of-Python-code/

[29] PyMetrics, cited 21.09.2009
Available from: http://sourceforge.net/projects/pymetrics/

[30] Yusuke Shinyama, cited 06.10.2009
Available from:
http://www.unixuser.org/~euske/python/index.html

[31] Andersson, M.; Vestergren, P. Object-Oriented Design
Quality Metrics, Uppsala Master's Theses in omputer
Science 276, 2004-06-07, ISSN 1100-1836

[32] Babsiya, J. Davis, C. G. A hierarchical model for object
oriented design quality assessment, IEEE Transactions on
Software Engineering, 28, 1 2002 , pp. 4-17.

[33] Misra S. Ferid C. A Software Metric for Python Language,
Proc. of ICSSA2010, (2010).

[34] http://jtauber.com/pyso/
[35] Dufour, B.; Driesen, K. Hendren, L. Verbrugge, C. Dynamic

metrics for java. SIGPLAN Notics, 38, 11(2003) 149-168.
[36] Mäkelä, S.; Leppänen, V.Asoftware metric for coherence of

class roles in Java programs. In Proceedings of the 5th
nternational Symposium on Principles and Practice of

Programming in Java(PPPJ '07), 272(2007) 51-60.

.

.

o

.

.

C
.

;

()
, ; ,

; ;
,

I
,

Appendix

A. Code

Dodatak

//Shapes program written in C++ to illustrate the usability of
the proposed metric
#include <iostream>
#include <string>
using namespace std;
// Colour
class Colour{

void stars(int limit);
public:

static char c;
void getColour();

};
void Colour::getColour(){

if (c=='s')
cout<<"Yellow"<<endl;

else if (c=='c')
cout<<"Violet"<<endl;

else if (c=='r')
cout<<"Red"<<endl;

else if (c=='o')
cout<<"Orange"<<endl;

else
cout<<"White"<<endl;
stars(5);

}
void Colour::stars(int limit){

int outer_loop, inner_loop;
for (outer_loop=limit; outer_loop>0; outer_loop--){

for (inner_loop=1; inner_loop<=outer_loop;
inner_loop++)

printf(“*”);
printf(“\n”);

}

31Technical Gazette ,18, 1(2011) 23-32

S Misra, F Cafer. . Procjena složenosti programa u Python jeziku

}
// -----------
char Colour::c;

class Shapes {
public:

Shapes(int px, int py):x(px),y(py) {}
int x, y; //position
virtual string type() = 0;
virtual void info() {

cout << endl << "figure: " << type() << endl;
cout << "position: x=" << x << ", y=" << y <<

endl;
}

};
class Figure1P : public Shapes {
public:

Figure1P(int px, int py, int r):p1(r),Shapes(px, py) {}
int p1;
virtual void info() {

Shapes::info();
cout << "property 1: p=" << p1 << endl;

}
};
class Square : public Figure1P {
public:

Colour *its_colour;
Square(int px, int py, int r):Figure1P(px, py, r) {}
virtual string type() {

Colour::c='s';
its_colour->getColour();
return "square";

}
};
class Circle : public Figure1P {
public:

Colour *its_colour;
Circle(int px, int py, int r):Figure1P(px, py, r) {}
virtual string type() {

Colour::c='c';
its_colour->getColour();
return "circle";

}
};
class Figure2P : public Figure1P {
public:

Figure2P(int px, int py, int w, int
h):p2(h),Figure1P(px, py, w) {}

int p2;
virtual void info() {

Figure1P::info();
cout << "property 2: p=" << p2 << endl;

}
};

class Rectangle : public Figure2P {
public:

Colour *its_colour;
Rectangle(int px, int py, int w, int h):Figure2P(px, py,

w, h) {}
virtual string type() {

Colour::c='r';
its_colour->getColour();
return "rectangle";

}
};

class Oval : public Figure2P {
public:

Colour *its_colour;
Oval(int px, int py, int w, int h):Figure2P(px, py, w, h)

{}
virtual string type() {

Colour::c='o';
its_colour->getColour();
return "oval";

}
};
// Freeing memory
void freeRAM(Shapes *objs[], int i){

delete objs[i];
}
// --------------
int main(void) {

Shapes **objs = new Shapes*[5];
// creating objects
objs[0] = new Circle(7, 6, 55);
objs[1] = new Rectangle(12, 54, 21, 14);
objs[2] = new Square(19, 32, 10);
objs[3] = new Oval(43, 10, 4, 3);
objs[4] = new Square(3, 41, 3);
bool flag=false;
do {

cout << endl << "We have 5 objects with
numbers 0..4" << endl;

cout << "Enter object number to view
information about it " << endl;

cout << "Enter any other number to quit " <<
endl;

char onum; // in fact, this is a character, not a
number

// this allows user to enter letter and quit...
cin >> onum;
// flag -- user have entered number 0..4
flag = ((onum >= '0')&&(onum <= '4'));
if (flag)

objs[onum-'0']->info();
}while(flag);
for(int i=0;i<5;i++)

freeRAM(objs,i);
delete [] objs;
return(0);

}

B:

Table 10

Tablica 10.

Values/weights of basic control structures W(BCS)
(given in Tab 1) for all classes of the case study

Vrijednosti/težine osnovnih kontrolnih struktura W BCS)
(datih u Tab 1) za sve .

.
(

. razrede analiziranog slučaja

Class

Values of all

categories

except

condition

and loop

Condition Loop Total

Colour 2 4*2 3*3 19

Shapes 6 0 0 6

Figure1P 8 0 0 8

Square 27 0 0 27

Circle 27 0 0 27

Figure2P 11 0 0 11

Rectangle 27 0 0 27

Oval 27 0 0 27

32 Tehni ki vjesnikč ,18, 1(2011) 23-32

Estimating complexity of programs in ython languageP S Misra, F Cafer. .

:

Classes like , , , have
higher structural statement complexity due to function calls.
Each function call has a weight of 2 BCS, but additionally,
the complexity weight of the called function should be
included, too.

For example
has only 1 sequence structure. However, it

calls ' and method. Due to each call
(2+2) is added. Total makes up 5. Moreover, the
has a complexity weight of 1 and the method has a
complexity of 2. Thus, (5+1+2) makes up 8 which is

's class complexity.
Similar example can be observed also with the

class. calls 's and
also 's method. Even though each function
call is weighted as 2, after adding Figure2P's constructor
and 's structural complexities, total class
complexity of becomes higher.

Square Circle Rectangle Oval

Figure1P
Shapes constructor info

constructor
info

Figure1P

Rectangle Rectangle Figure2P constructor
Colour getColour

Colour getColour
Rectangle

Authors' addresses
Adrese autora

Prof. (Dr.) Sanjay Misra

Ferid Cafer

E
Department of Computer Engineering
Faculty of ngineering
Atilim Uíversity, Ankara
Turkey

Software Engineer
Servus Bilgisyar, Ankara
Turkey

