
Comparative Analysis between Split and HierarchyMap Treemap Algorithms 
for Visualizing Hierarchical Data 

Aborisade D. O. (Corresponding Author) 
Department of Computer Science, College of 

Natural Sciences, Federal University of 
Agriculture, Abeokuta, (FUNAAB) Ogun State, 

Nigeria.  

. 

Oyelade, O. J. 
Department of Computer and Information 

Sciences, Covenant University, Ota, Ogun State, 
Nigeria. 

 

Obagbuwa, I. C. 
Department of Computer Sciences,  

Lagos State University, Lagos, Nigeria.(LASU) 
 
 

Oladipupo, O. O. 
Department of Computer and Information 

Sciences, Covenant University, Ota, Ogun State, 
Nigeria. 

 

 
Obembe O. O. 

Department of Biological Sciences, Covenant 
University, Ota, Ogun State, Nigeria. 

 
 

Ewejobi, I. T. 
Department of Computer and Information 

Sciences, Covenant University, Ota, Ogun State, 
Nigeria. 

             

 
 

Abstract 

 We carried out comparative analysis 
between Split treemap algorithm and a more 
recently introduced treemap algorithm called 
HierarchyMap. HierrachyMap and Split are 
Treemap Visualization methods for 
representing large volume of hierarchical 
information on a 2-dimensional space. Split 
layout algorithm has been developed much 
earlier as an ordered layout algorithm with 
capability to preserve order and reduce 
aspect ratio.  HierarchyMap is a newer 
ordered treemap algorithm developed to 
overcome certain deficiencies of the Split 
layout algorithm. The two algorithms were 
analyzed to compare their rate of 
complexity. They were also implemented 
using object-oriented programming tool and 
compared using a number of standard 
metrics for measuring treemap algorithms. 
Their implementation shows that 

HierarchyMap and Split although maintain 
the same level of data ordering and usability 
but HierarchyMap algorithm has better 
aspect ratio, better readability, low run-time, 
and less number of thin rectangles compared 
to Split treemap algorithm. Since aspect 
ratio is an important metric for determining 
the efficiency of treemaps on 2-D and small 
screens, and the result of the analysis shows 
that HierarchyMap is better efficient than 
Split treemap alagorithm, we conlude that 
HierarchyMap is  more efficient than Split 
treemap algorithm. 

Keywords: Treemap algorithm, Aspect 

ratio, HierarchyMap, 2-D space, Data 

Visualization. 

 

 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

131 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/20540296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I.   Introduction 

Hierarchical structure is a structure 
comprising a series of ordered class of 
elements or entities within a particular 
system. Hierarchical structures such as 
Family structure, a University Structure and 
Manual Directory have been found to be 
very useful in representing information in 
almost all systems of life. Arranging 
information in hierarchical structures has 
also been observed to be more useful in 
bringing out meaning in the system being 
represented to the observer more than other 
known ways of representing it. 
Representations in hierarchical structures 
also help to clearly reveal the relationship 
between the components in the system. Data 
that are modeled into such structures are 
referred to as Hierarchical data. It was later 
observed that Hierarchical structure is only 
efficient for representing small and 
manageable data items. Efforts geared 
towards improving the Visualization of 
hierarchical data especially when 
voluminous data items are involved brought 
to mind the concept of Treemaps in early 
part of the Nineties by [2]. Treemap 
involves turning a tree into a planar space-
filling map. Treemap visualization method 
maps hierarchical information into a 
rectangular 2-dimensional display in a 
space-filling manner such that 100% of the 
designated display space is utilized. [3]. It is 
described as space-filling visualization 
method capable of representing large 
hierarchical collections of quantitative data 
[5]. It works by dividing the display area 
into a nested sequence of rectangles whose 
areas correspond to an attribute of the 
dataset, effectively combining aspects of a 
Venn diagram and a pie chart. With the 
development of algorithm for early treemaps 
like Slice and dice, and Cluster and ordered 
treemap algorithms like Strip, Split and 
HierarchyMap, very large volume of data 

sets can be visualized on a 2D space like a 
computer screen with little or no difficulty. 
In this paper, a comparative analysis is made 
between a recently developed ordered 
algorithm called HierarchyMap and using 
metrics such as readability, aspect ratio, run 
time, and number of thin rectangles. The 
remaining sections are organized as follows; 
Section two reported the review of related 
literature, section 3 analyses the complexity 
of the algorithms and compares the two 
treemap algorithms (Split and 
HierarchyMap) using standard treemaps 
metrics, while section 4 discusses the 
implementation and results based on 
standard treemap metrics. 

II.  Related Works 

From the time the idea of Treemaps was first 
conceived and original treemap developed to 
solve the problem of space usage by using 
the full display space to visualize the 
contents of the tree, many algorithms have 
been introduced to display hierarchical 
information structures [2]. These treemap 
algorithms in the order of their introduction 
and successive improvement include Slice 
and Dice, Cluster, Squarified, Pivot by Split 
Size, Pivot by Middle, Split Strip, and 
HierarchyMap treemap  algorithm [8]. Of 
great importance to this paper are the 
ordered treemap algorithms like Pivot by 
middle, Pivot by Split Size, Strip, Split  and 
HierarchyMap  treemaps algorithms. The 
idea that lead to algorithms for ordered 
treemaps is that it is possible to create a 
layout in which items that are next to each 
other in the given order are adjacent in the 
treemap [6] . Treemap algorithm where the 
first step is to choose a special item, the 
pivot, which is placed at the side of  
rectangle R. In the second step, the 
remaining items in the list are assigned to 
three large rectangles that make up the rest 
of the display area. Finally, the algorithm is 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

132 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



then applied recursively to each of these 
rectangles [5]. This algorithm has some 
minor variations, depending on how the 
pivot is chosen. There are three pivot-
selection strategies; the first is the algorithm 
where the pivot with the largest area is 
chosen. The motivation for this choice is 
that the largest item will be the most 
difficult to place, so it should be done first 
[5].The alternate approaches to pivot 
selection are pivot-by-middle and pivot-by-
split-size. Pivot-by-middle selects the pivot 
to be the middle item of the list i.e. if the list 
has n items, the pivot is item number n/2, 
rounded down. The motivation behind this 
choice is that it is likely to create a balanced 
layout. In addition, because the choice of 
pivot does not depend on the size of the 
items, the layouts created by this algorithm 
may not be as sensitive to changes in the 
data as pivot by size.  Pivot-by-split-size 
selects the pivot that will split the list into 
approximately equal total areas. With the 
sub-lists containing a similar area, they 
expected to get a balanced layout, even 
when the items in one part of the list are a 
substantially different size than items in the 
other part of the list. The Strip treemap 
algorithm is a modification of the existing 
Squarified Treemap algorithm [4]. It works 
by processing input rectangles in order, and 
laying them out in horizontal (or vertical) 
strips of varying thicknesses.  It is efficient 
in that it produces a layout with better 
readability than the basic ordered treemap 
algorithm, and comparable aspect ratios and 
stability [5]. The inputs in a Strip treemap 
are the subdivision of rectangle R and a list 
of items that are ordered by an index and 
have given areas. As with all treemap 
algorithms, the inputs are a rectangle R to be 
subdivided and a list of items that are 
ordered by an index and have given areas. A 
current strip is maintained, and then for each 
rectangle, a check is done to know if adding 
the rectangle to the current strip will 

increase or decrease the average aspect ratio 
of all the rectangles in the strip. If the 
average aspect ratio decreases (or stays the 
same), the new rectangle is added. If it 
increases, a new strip is started with the 
rectangle [5]. The result is the Split treemap 
which, like the Pivot, is a partially ordered 
algorithm. It produces a layout where the 
natural ordering of the data set is roughly 
preserved, while in most cases producing 
better aspect ratios than the Pivot and the 
Strip treemaps [6]. 

III.  Method 
Algorithms Complexity Analysis 
This section describes the two treemap 
algorithms (Split and HierarchyMap) and 
their complexity analysis, as its helps to 
compare algorithms to see which one is 
better. 

Split Algorithm: 

 Inputs to the algorithm are an ordered list, L 
={l1, l2,……ln} of items to layout and a 
rectangle, R, in which the items are 
distributed. Weight w(L) is defined to be the 
sum of the sizes of all the elements in the 
list. The algorithm follows a recursive 
process, where L is split into two halves, L1 
and L2, such that w(L1) is as close as 
possible to w(L2). Noting that the ordering 
of the elements must not be changed. L1 and 
L2 are both ordered, and all the elements of 
L1 have an index less than those of L2 to 
give. w(L1) ≈ w(L2) ≈  w(L)/2  and ∀ li∈ L1 , 
∀ lj ∈ L2 : li  ≤ li+1 ≤·lj ≤ lj+1 

α(R) is then defined to be the area of a 
rectangle R. The rectangle R is split, either 
horizontally or vertically depending on 
whether the width is bigger than the height, 
into two sub rectangles, R1 and R2 such that 
their areas corresponds to the size of the 
elements of L1 and L2, that is ;  

   
 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

133 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



  α (R1)         w(L1)     α (R2)    w(L2) 
                =              = 
   α(R)            w(L)  ,   α (R)      w(L) 
      
Hence, recursively layout the contents of L1 
and L2 in R1 and R2 according to the 
algorithm [6]. 

 

 

 

 

 

 

   Figure 1: Split treemap recursion model 

Here the Split treemap algorithm is modeled 
by a recursive tree where each circle 
represents a node (or rectangle R in which 
the items are distributed.) and the number 
written in the circle indicates the items (l1, 
l2,……ln ) to layout. The first node stands for 
the original rectangle R to be sub-divided in 
layouts. The arrows indicate recursive calls 
made between nodes. Since the algorithm 
follows a recursive process, where L is split 
into two halves, L1 and L2, such that w(L1) 
is as close as possible to w(L2). The call to 
the next row shows the division of the first 
set of into 2 halves ( i.e. n / 2). This is 
indicated by the two arrows at the top. In 
turn, each of these also makes calls to the 
next .row for further sub-division of  n / 4 
each, and so forth until all the items are 
displayed. If the total the total number of 
items to be displayed in figure1 is taken to 
be n, and the total number of items in each 
level of the tree is n. The first row contains 
only one call the next row with an array of 
size n, so the total number of elements is n. 

The second row has two calls to the next 
level (row) each of size n / 2. But n / 2 + n / 
2 = n and so again in this row the total 
number of elements is n. In the third row, we 
have 4 calls each of which is applied on an n 
/ 4-sized rectangle, giving  a total number of 
elements equal to n / 4 + n / 4 + n / 4 + n / 4 
= 4n / 4 = n. So again we get n elements. 
Since at each level of the tree rectangle 
displays the items from the input values. For 
example, the left node in level 1 has to 
display n / 2 elements. It splits the n / 2-
sized rectangle into two n / 4-sized 
rectangle, calls recursively to display those 
first two nodes from the left in level 3), then 
displays all. This argument shows that the 
complexity for each row is Θ( n ). And since 
that the number of levels in the is log( n ).   

 

We have log( n ) rows and each of them is 
Θ( n ), therefore the complexity of  Split 
treemap algorithm is Θ( n * log( n ) ). 

HierarchyMap treemap Algorithm 

Inputs to the algorithm as ordered data in 
tree-like form. infotree(treedata  
nodes)=T={t1,t2 ,t3, ……….., tn} and  a 2-D 
space divided into four equal rectangles. 
Step 1: If the number of hierarchical  items 
to be displayed  is zero (i.e. T=0) ,   then no 
display.   
Step 2: If the number of hierarchical items 
to be displayed is 1 (i.e T=1), then            
Set 2-D space to the item Step 3:  If the 
number of items is greater than 1, divide the 
rectangular 2-D space into four equal sizes 
and recursively divided each of the resultant 
item into fours until all items in the list are 
exhausted. Such that  ∀ ti ∈ T1, ∀ tj ∈ T2,  ∀    
     tK ∈T3,…………………………… ∀ tn ∈ Tn  :  ti ≤   
     ti+1≤  tj ≤  tj+1≤  tk ≤  tk+1 

≤……………………………..  tn ≤ tn+1. 

    R 

R/2

R/4  R/4 

R/2 

R/4  R/4

       

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

134 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



Step 4: an attribute of the each hierarchical 
item corresponds to an area of each of the 
nested rectangles defined as area( R) in 
such a manner that their areas correspond to 
the size of the elements of  T1, T2 T3, and T4  
where    area (R1)  ≈ area (R2) ≈ area (R3)  
≈ ……………….area (Rn) [8]. 

 

 

 

 

 

 

 

 

Figure 2: HierarchyMap  treemap 
recursion  model 

In a similar manner, HierarchyMap 
algorithm is represented by a recursive tree 
in figure 2 where each circle represents a 
node (or rectangle R in which the items are 
distributed.) and the number written in the 
circle indicates the items (l1, l2,……ln ) to 
layout. The root node stands for the original 
rectangle R to be sub-divided in layouts. The 
arrows indicate recursive calls made 
between nodes. HierarchyMap  recursively 
processes the display of the items on 
rectangular space by sub-dividing the first 
rectangle R into four parts. T1, T2, T3, and 
T4 where  area (R1)  ≈ area (R2) ≈ area (R3)  
≈ …………area (Rn). The call to the next 
row shows the division of the first set of into 
4 parts ( i.e. n /4). This is indicated by the 
two arrows at the top. In turn, each of these 
also makes calls to the next .row for further 
sub-division of  n / 8 each, and so forth until 
all the items are displayed. If the total the 

total number of items to be displayed is n, 
and the total number of items in each level 
of the tree is 0.5n. For example, the first row 
contains only one call. The second level 
with items of size n and hence has total 
number of elements is 0.5n. The third level 
has two calls to the next level (row) each of 
size n / 4. Since  n /4 + n /4 = 0.5n and so 
again in this row the total number of  

 

 

 

 

 

 

elements is n. In the fourth level, we have 4 
calls each of which is applied on an n / 16-
sized rectangle, giving  a total number of 
elements equal to n / 16 + n / 16 + n / 16 + n 
/16 + n/16+n/16+n/16+n/16= 0.5n, giving us 
0.5n again. Since at each level of the tree, 
rectangle displays the items from the input 
values. For example, the left node in level 2 
has to display n /4 elements. It splits the n / 
4-sized rectangle into two n / 8-sized 
rectangle, calls recursively to display those 
first two nodes from the left in level 3), then 
displays all. This argument shows that the 
complexity for each row is Θ(0.5 n ). And 
since that the number of levels in the is log( 
n ).  We have log( n ) rows and each of them 
is Θ( 0.5n ), therefore the complexity of  
Split treemap algorithm is Θ( n * log(0.5 n ) 
) which is approximately equal to the 
complexity of the split treemap derived 
earlier as Θ( n * log( n ) ). But the constant 
multiplier in the HierarchyMap makes the 
difference. Since the constant multiplier is 
0.5, it means that it grows more slowly than 

R

R/4

R/8  R/8

R/4 

R/8  R/8

R/16  R/16  R/16  R/16 R/16 R/16 R/16 R/16 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

135 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



that of Split treemap and it is better and 
capable of quickly displaying items on 
rectangular space. This shows that the 
derived algorithm for Split is worse than that 
of HierarchyMap. 

Implementation and Other Analysis 
Metrics 
This section shows the implementation of 
the two algorithms (Split and 
HierarchyMap) and compares them on the 
basis of the standard treemap algorihm 
metrics like Aspect Ratio, Ordering, 
Readability, number of thin rectangles, Run 
time, and Usability. The behavior of each of 
the algorithm is observed with respect to the 
standard metrics when the treemap displays 
no (zero) item (Fig. 3a and Fig. 3b), displays 
between 10-15 items (Fig 4a and Fig 4b), 
displays between 20-25 items (Fig 5a and 
Fig 5b), displays between 30-60 items (Fig 
6a and Fig 6b).  Further discussion of these 
results is found in the remaining part of this 
Section. 
 

 
Figure 3a: Split treemap implementation 
with no item displayed (Aspect ratio is 
2.92) 

 
Figure 3b: HierarchyMap showing nested 
rectangles with no item displayed and 
Aspect Ratio of 1.72) 

 

Figure 4a: Split Treemap with an average 
of 10 and 15 items giving Aspect Ratio 
1.72 
 
 

 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

136 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



Figure 4b: HierarchyMap with an 
average of 10 and 15 items and Aspect 
Ratio of 1.72 
 

 
Figure 5a: Split with an average of 20 to 
25 items displayed maintains Aspect 
Ratio of 1.72   

 
Figure 5b:  HierarchyMap with average 
of 20-25 items displayed (Aspect Ratio 
1.72) 

 
Figure 6a:  Split treemap with an average 
of 30-60 items displayed (Aspect Ratio 
1.72 ) 

 

Figure 6b: HierarchyMap with an 
average of 30-60 items displayed (Aspect 
Ratio 1.72) 
 
IV.  DISCUSSION OF RESULTS  
This section discusses the results of 
implementing the two algorithms 
(HierarchyMap and Strip algorithm) with 
respect to the standard treemap metrics such 
as Aspect ratio, Ordering, Readability, Run 
time, Number of thin rectangles and 
Usability. 
4.0.1 Aspect ratio 

Aspect ratio is the defined as the longest 
side of a rectangle divided by it shortest 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

137 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



side. It is also defined as Max(Width/Height, 
Height/Width) of a rectangle. The lower the 
aspect ratio of a rectangle, the more nearly 
square it is. The aspect ratio for the two 
algorithms were determined using the same 
set of data. The Height/Width of each of the 
rectangles generated by each of the Treemap 
algorithm program are calculated (in cm).  
The result of the calculated values are added 
together and divided by four to get the 
average height and average width. The 
results of the calculated aspect ratios are 
represented in Figure 7 below. 

 
Figure 7: The graph plotted Average 
Aspect Ratio against Number of   Items 
represents the relationship between 
Aspect ratio and the Number of 
rectangles generated in HierarchyMap 
and  Split Treemap  Algorithm.  

The graph shows that HierarchyMap 
Treemap Algorithm has an Aspect ratio of 
1.73 while Split Treemap Algorithm has 
Aspect ratio of about 2.92 when no rectangle 
is displayed. Both treemap algorithms 
maintain Aspect ratio of 1.73 when number 
of rectangles displayed are between 10, 60 
and above in their treemaps. Hence, 
HierarchyMap is observed to have better 
aspect ratio than Split treemap. 
 
4.0.2 Ordering 

Ordering is a metric that determines 
the ability of the algorithm to create a layout 

in which items that are next to each other in 
a given order are placed adjacent to each 
other (Berderson et al., 2002). 
Implementation of HierarchyMap and Split 
treemap algorithms as indicated above in the 
treemaps diagrams show that the two 
algorithms maintain items in the ordered 
manner. 

4.0.2 Readability 

Readability describes the measure of the 
number of times a user eye will have to 
change direction when scanning the treemap 
in order (Berderson et al., 2002). This test is 
used to measure how easy it is to locate a 
particular information between the layouts 
generated by the Split and HierarchyMap 
algorithms. In this experiment, twenty (20)  
persons (users) were carefully selected to 
scan through the treemap generated from the 
implementation of the two algorithms to  
locate a particular information. The time 
taken each of them was presented in Figure 
8. 

 
:  
Figure 8:  Analysis for Readability: 
Average time is plotted against the number 
of users for both Split and HierarchyMap 

 The graph shows that in HierarchyMap, 
readers use less time in most cases to locate 
information compared to Split  treemap 
where more time is used in most cases by 
users to locate information of their choice on 
the treemap. This shows that HierarchyMap 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

138 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



has better readability than Split. This reflects 
the property of the Split layout, which 
changes direction more often than the 
HierarchyMap layouts that use several sub-
lists instead of two. The results from the test 
indicate a slightly worse readability for the 
Split layout.  HierarchyMap gives better 
readability because of the pivot. Assigning a 
pivot and then splitting the list in two, four, 
and then several parts generates a more 
consistent layout than the Split layout, 
which splits the list into two parts. Since the 
layout direction can alter between horizontal 
and vertical every time the list is split, the 
HierarchyMap algorithm is more 
predictable, since all the four sub lists will 
be laid out in the same directions, whereas 
the Split layout, with only two sub lists, will 
change direction more frequently.  

4.0.3 Run Time 

Run time is another important metric for 
evaluating treemap algorithm usability. In 
this case, run time for the implementation of 
the two algorithms is compared. This is done 
ten (10) different times for each algorithm 
on a Laptop Computer with the specification 
such as: Intel® Core ™ 2 CPU T5200, 1.60 
GHz, RAM 1015MB, 32-bit Operating 
System. The readings obtained are presented 
in Figure 9. 

  

Figure 9:  Column graph showing the 
Run-time Analysis for the two Algorithms 

It is observed in Figure 9 above that 
HierarchyMap has a lower run time in all the 
events compared with Split treemap 
algorithm.  

4.0.4 Number of thin rectangles 

Another treemap efficiency metric very 
close to that of aspect ratio is the number of 
thin rectangles. The number of thin 
rectangles in a treemap determines the 
aspect ratio in the treemap. A treemap with a 
high number of thin rectangles has a high 
aspect ratio while a low number of thin 
rectangles has low aspect ratio. Figure 10 
shows the number of thin rectangles 
generated by Split and HierarchyMap 
algorithms for different number of items 
displayed.  

 

Fig. 10     Thin rectangle analysis 

The thin rectangle analysis in Figure 10 
shows that the number of thin rectangles 
generated by Split is more than the number 
of thin rectangles generated by 
HierarchyMap Treemap. Hence, Split has 
high aspect ratio than HierarchyMap 
treemap  

4.0.5 Usability: HierarchyMap treemap 
algorithm by its implementation has been 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

139 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



observed to be capable of generating high 
volumes of hierarchical information on a 2-
D space than Split treemap algorithm. It was 
interesting to  observe  that when the 
number of items to be displayed was more 
than 60, HierarchyMap treemap became 
more stable and did not flicker.Hence, 
HierarchyMap treemap algorithm is more 
efficient than Split algorithm in laying out 
hierarchical data in a 2-D space like a 
Computer screen. 

V. Conclusion and Future Work 

In this work, we compared the efficiency of 
two Ordered treemap algorithms called 
HierarchyMap and Split algorithms 
developed to represent hierarchical  data on 
2-D space.  In comparing the two 
algorithms, the two algorithms were first 
analyzed measure their complexity. Then 
standard treemap algorithm metrics like 
aspect ratio, readability, ordering, usability, 
number of thin rectangles, and run time were 
also used as the basis of comparing them. 
The measure of complexity of the two 
algorithms shows that HierarchyMap is 
more efficient in laying out items on 
rectangular space and results of 
implementation using standard treemap 
algorithms metrics showed that 
HierarchyMap and Split although 
maintained the same level of data ordering 
and usability but HierarchyMap algorithm 
was observed to have better aspect ratio, 
readability, low  Run-time, and less  number 
of thin rectangles compared to Split treemap 
algorithm. Since aspect ratio is one of the 
most important properties when using 
treemaps on 2-D and small screens, 
HierarchyMap can therefore be said to be 
more efficient than the Split treemap 
algorithm. The future effort on this work is 
intended to improve on HierarchyMap 
algorithm to have better ordering and 
usability. 

 
VI.  References 

[1]  Bruggemann-Klein, A. and D. Wood. 
Drawing Trees nicely with Tex. Electronic 
Publishing, 2(2):101–115, 1989. 
[2]B. Johnson and B. Shneiderman. 
Treemaps: A space-filling approach to the 
Visualization of Hierarchical  Information 
Structures. In Proc. of the 2nd International 
IEEE Visualization Conference,  pages 284–
291, October 1991. 
[3]  B. Shneiderman. Tree visualization with 
treemaps:A  2-D space-filling approach. 
ACM Transactions on Graphics, 11(1):92–
99, September 1992. 
[4]  Bruls S., M., Huizing, K., and  Van  
Wijk, J.,  2000. Squarified treemaps. In 
Proceedings of  the Joint Eurographics and 
IEEETCVGSymposiumonVisualization(VisS
ym), 33–42. 
[5]  Bederson, B., Shneiderman, B., and 
Wattenberg, M. 2002. Ordered and quantum 
treemaps: Making effective use of 2D space 
to display hierarchies. ACMTransactions on 
Graphics 21, 4, 833–854. 
 [6] B. Engdahl, 2005. Ordered and 
Unordered Treemap Algorithms and Their 
Applications on  Handheld Devices.  
Master’s Thesis in Computer Science at the 
School of Computer Science and 
Engineering,Royal Institute of Technology 
year 2005. 
 [7]   D.E. Knuth. Fundamental algorithms. 
Art of computer programming. Volume 1. 
Addison-Wesley,  Reading, MA, 1973. 
 
 [8]  D. O. Aborisade  and  O.J. Oyelade.  
HierarchyMap: A New Approach to 
Treemap Visualization of  Hierarchical 
Data. Global Journal of Computer Science 
and Technology.Vol. 9 Issue 5,Online ISSN-
0975-4172,Print ISSN 0975-4350. Pages 77-
81. January, 2010. 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

140 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



   [9]   G.W. Furnas. Generalized fisheye 
views. In Proc. of ACM CHI’86, Conference 
on Human 
           Factors in computing systems, pages 
16–23, 1986. Herman H,  Maurer.  Data 
Structures  
           and Programming Techniques.  
Prentice- All Incorporation. 1977. 
  [10]  J. Bingham and S. Sudarsanum. 
Visualising large hierarchical clusters in  
             Hyperbolic space. Bioinfomatics 
Chapter 16:pg. 660-661, 2000. 
  [11]    Malin Koksal, Visualization of 
threaded discussions forums on hand-held   
            devices, Masters Thesis at NADA, 
2005.  

  [12]   Russel Winder and Graham Roberts,  
Developing Java Software, John   Wiley & 
Sons.  
          1998. 
  [13]  S.K. Card, G.G. Robertson, and J.D. 
Mackinlay. The information visualizer, an 
            Information workspace. In Proc. of 
ACM CHI’91, Conference on Human 
Factors in  
            Computing Systems, pages 181–188, 
1991. 
 
    [14]  Wattenberg,  M. 1999. Visualizing 
the stock market. In Extended Abstracts on 
Human Factors in Computing Systems 
(CHI), ACM Press, 188–189. 

Authors’s Profile

Aborisade Dada Olaniyi is a PhD  student 
and Lecturer in the Department of Computer 
Science, College of Natural Sciences, 
Federal University of Agriculture, 
Abeokuta, Ogun State, Nigeria. He bagged 
his first degree in in B.Sc Mathematical 
Sciences (Computer Science option) in 2000 
from University of Agriculture, Abeokuta, 
Ogun State, Nigeria and Msc in Computer 
Science of the University of Ibadan, Oyo 
State, Nigeria in 2007. His research interests 
are in the area of  Human Computer 
Interaction (HCI)  and Computer 
Information Security. He’s a member of  
Microsoft Information Technology 
Academy (MITA)  and Nigeria Computer 
Society (NCS). 

Oyelade Olanrewaju Jelili recieved his 
Bachelor degree in Computer Science with 
Mathematics (Combined Hons) and M.Sc 
degree in Computer Science from Obafemi 
Awolowo Univ ersity, Ile-Ife, Nigeria. He 
obtained his Ph. D in Covenant University, 
Ota, Nigeria. Dr. Oyelade, O. J.  is a senior 
faculty member in the department of 
Computer and Information Sciences, 
Covenant University, Ota, Nigeria. His 

research interests are in Bioinformatics, 
Clustering, Fuzzy logic and Algorithms. He 
is a member of International Society for 
Computational Biology (ISCB), Africa 
Society for Bioinformatics and Computational 
Biology (ASBCB), Nigeria Society of 
Bioinformatics and Computational Biology 
(NISBCB), the Nigerian Computer Society 
(NCS), and Computer Professional 
Registration Council of Nigeria (CPN). 

Obagbuwa Ibidun Christiana is a lecturer 
in the Department of computer science, 
Lagos state University Ojo, Lagos state, 
Nigeria. She obtained her first degree (B.Sc 
Computer Science) in 1997 from University 
of Ilorin, Ilorin, Kwara state. She proceeded 
to University Of PortHarcourt, Rivers state 
and obtain  Degree of master in Computer 
science  in 2005. She is currently working 
on her  Doctoral degree (PhD) in Computer 
science. Her area of specialization include 
Computer security, Computational 
intelligence/softcomputing,Telecommunicati
on & Networking and Databases. She is 
happily married with Three children. She is 
a member of  Nigeria Computer Society 
(NCS), and Computer Professionals 
(Registration Council) of Nigeria (CPN) 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

141 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 



Oladipupo O. O. recieved her Bachelor 
degree in Computer Science in University of 
Ilorin and M.Sc degree in Computer Science 
from Obafemi Awolowo Univ ersity, Ile-Ife, 
Nigeria. She obtained her Ph. D in Covenant 
University, Ota, Nigeria. Dr. Oladipupo, O. 
O. is a senior faculty member in the 
department of Computer and Information 
Sciences, Covenant University, Ota, Nigeria. 
Her research interests are in Artificial 
Intelligence, Data Mining, and Soft 
Computing Technique. She is a member of 
Nigerian Computer Society (NCS), and 
Computer Professional Registration Council 
of Nigeria (CPN). 

Itunuoluwa Ewejobi received her 
Bachelor’s degree (First Class honours) in 
Computer Science and M.Sc degree in 
Computer Science from Covenant 
University, Ota, Nigeria. She is a Ph.D 
student in the Bio-informatics research 
group of the Department of  Computer and 
Information Sciences, Covenant University, 
Nigeria. She is currently on a a DAAD 
(German Academic Exchange Service) 
Sandwich Scholarship at the Ruprecht-Karls 
Universität,Heidelberg, Germany to carry 
out some part of her Ph.D research titled 
“Transcription Factor(s)-Target Detection 
in the malaria parasite Plasmodium 
falciparum”. Her research interests include; 
Artificial Intelligence, Transcriptomics and 
Modeling of biological systems and 
Algorithms. 

(IJCSIS) International Journal of Computer Science and Information Security, 
Vol. 11, No. 3, March 2013

142 http://sites.google.com/site/ijcsis/ 
ISSN 1947-5500 




