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Abstract

In this article, we deduce a new family of upper bounds of n! of the form

n! <
√
2πn(n/e)neM

[m]
n n ∈ N,

M[m]
n =

1
2m + 3

[
1
4n

+
m∑
k=1

2m − 2k + 2
2k + 1

2−2kζ (2k,n + 1/2)

]
m = 1, 2, 3, ....

We also proved that the approximation formula
√
2πn(n/e)neM

[m]
n for big factorials

has a speed of convergence equal to n-2m-3 for m = 1,2,3,..., which give us a
superiority over other known formulas by a suitable choice of m.
Mathematics Subject Classification (2000): 41A60; 41A25; 57Q55; 33B15; 26D07.
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1 Introduction
Stirling’ formula

n! ∼
√
2nπ(n/e)n (1)

is one of the most widely known and used in asymptotics. In other words, we have

lim
n→∞

n!en√
2πn nn

= 1. (2)

This formula provides an extremely accurate approximation of n! for large values of

n. The first proofs of Stirling’s formula was given by De Moivre (1730) [1] and Stirling

(1730) [2]. Both used what is now called the Euler-MacLaurin formula to approximate

log 2 + log 3 + ... + log n. The first derivation of De Moivre did not explicity deter-

mine the constant
√
2π . In 1731, Stirling determine this constant using Wallis’ for-

mula

lim
n→∞

22n(n!)2

(2n)!
1√
n
=

√
π .

Over the years, there have been many different upper and lower bounds for n! by

various authors [3-10]. Artin [11] show that μ(n) = ln
n!en

nn
√
2πn

lies between any two

successive partial sums of the Stirling’s series
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B2

1.2.n
+

B4

3.4.n3
+

B6

5.6.n5
+ · · · , (3)

where the numbers Bi are called the Bernoulli numbers and are defined by

B0 = 1,
n−1∑
k=0

(n
k

)
Bk = 0, n ≥ 2. (4)

We can’t take infinite sum of the series (3) because the series diverges. Also, Impens

[12] deduce Artin result with different proof and show that the Bernoulli numbers in

this series cannot be improved by any method whatsoever.

The organization of this article is as follows. In Section 2, we deduce a general dou-

ble inequality of n!, which already obtained in [9] with different proof. Section 3 is

devoted to getting a new family of upper bounds of n! different from the partial sums

of the Stirling’s series. In Section 4, we measure the speed of convergence of our

approximation formula
√
2πn(n/e)neM

[m]
n for big factorials. Also, we offer some numer-

ical computations to prove the superiority of our formula over other known formulas.

2 A double inequality of n!
In view of the relation (2), we begin with the two sequences Kn and fn defined by

fn =
n!en√
2πn nn

e−Kn n ≥ 1, (5)

where

lim
n→∞Kn = 0. (6)

Then we have

lim
n→∞ fn = 1. (7)

Now define the sequence gn by

gn =
fn+1
fn

= eKn−Kn+1+1
(
1 +

1
n

)−n−1/2

, (8)

which satisfies

lim
n→∞ gn = 1 (9)

and

g′
n = gn

d
dn

(
Kn − Kn+1 − (n + 1/2) ln

(
1 +

1
n

))
. (10)

There are two cases. The first case if Kn = an such that

d
dn

(
an − an+1 − (n + 1/2) ln

(
1 +

1
n

))
> 0 (11)
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then we get g′
n > 0 and hence gn is strictly increasing function. But gn ® 1 as n ®

∞, then gn < 1. Hence
fn+1
fn

< 1 which give us that fn+1 <fn. Then fn is strictly decreas-

ing function. Also, fn ® 1 as n ® ∞, then we obtain fn > 1. Then

n! en√
2πn nn

e−an > 1 n ≥ 1 (12)

or
√
2πn (n/e)nean < n! n ≥ 1. (13)

The condition (11) means that the function an - an+1 -(n+ 1/2) ln

(
1 +

1
n

)
is strictly

increasing function also it tends to -1 as n ® ∞. Then

an − an+1 − (n + 1/2) ln
(
1 +

1
n

)
< −1

or

an − an+1 < (n + 1/2) ln
(
1 +

1
n

)
− 1. (14)

The second case if Kn = bn such that

d
dn

(
bn − bn+1 − (n + 1/2) ln

(
1 +

1
n

))
< 0. (15)

Similarly, we can prove that fn < 1. Then

n!en√
2πn nn

e−bn < 1 n ≥ 1 (16)

or

n! <
√
2πn(n/e)nebn n ≥ 1. (17)

The condition (15) means that the function bn - bn+1 - (n + 1/2) ln

(
1 +

1
n

)
is

strictly decreasing function also it tends to -1 as n ® ∞. Then

bn − bn+1 − (n + 1/2) ln
(
1 +

1
n

)
> −1

or

(n + 1/2) ln
(
1 +

1
n

)
− 1 < bn − bn+1. (18)

From the well-known expansion

1
2
ln

(
1 + y
1 − y

)
=

∞∑
k=1

y2k−1

2k − 1

∣∣y∣∣ < 1
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in which we substitute y =
1

2n + 1
, so

1 + y
1 − y

= 1 +
1
n
. Then

(n + 1/2) ln
(
1 +

1
n

)
− 1 =

∞∑
k=1

1
2k + 1

1

(2n + 1)2k
. (19)

Now we obtain the following result

Theorem 1.
√
2πn (n/e)nean < n! <

√
2πn (n/e)nebn n ≥ 1, (20)

where the two sequences an, bn ® 0 as n ® ∞ and satisfy

an − an+1 <

∞∑
k=1

1
2k + 1

1

(2n + 1)2k
< bn − bn+1. (21)

A q-analog of the inequality (20) was introduced in [13].

3 A new family of upper bounds of n!

By manipulating the series
∑∞

k=1

1
2k + 1

1

(2n + 1)2k
to find upper bounds, we get

∞∑
k=1

1
2k + 1

1

(2n + 1)2k

<

m∑
k=1

1

(2k + 1)(2n + 1)2k
+

1
2m + 3

∞∑
k=m+1

1

(2n + 1)2k

<

∞∑
k=1

1

(2k + 1)(2n + 1)2k
+

1

4(2m + 3)n(n + 1)(2n + 1)2m
, m = 1, 2, 3, ....

Let’s solve the following recurrence relation w.r.t n

M[m]
n −M[m]

n+1 =
m∑
k=1

1

(2k + 1)(2n + 1)2k
+

1

4(2m + 3)n(n + 1)(2n + 1)2m
, m = 1, 2, 3, ... (22)

which give us

M[m]
n = M[m]

0 −
n−1∑
i=1

(
m∑
k=1

1

(2k + 1)(2i + 1)2k
+

1

4(2m + 3)i(i + 1)(2i + 1)2m

)

= M[m]
0 −

m∑
k=1

1
2k + 1

(
n−1∑
i=1

1

(2i + 1)2k

)
− 1

4(2m + 3)

n−1∑
i=1

1

i(i + 1)(2i + 1)2m
.

But

n−1∑
i=1

1

i(i + 1)(2i + 1)2m
=

n−1∑
i=1

(
1
i

− 1
i + 1

− 4

(2i + 1)2
− 4

(2i + 1)4
− · · · − 4

(2i + 1)2m

)

=
n − 1
n

− 4
m∑
k=1

n−1∑
i=1

1

(2i + 1)2k
.
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Then

M[m]
n = M[m]

0 − n − 1
4n(2m + 3)

−
m∑
k=1

(
1

2k + 1
− 1

2m + 3

) (
n−1∑
i=1

1

(2i + 1)2k

)
.

The series

∞∑
i=1

1

(2i + 1)2k
= ζ (2k)(1 − 2−2k) − 1,

where ζ(x) is the Riemann Zeta function. By using the relation [14]

ζ (2k) =
(−1)k−122k−1

(2k)!
B2kπ

2k,

where B′
rs are Bernoulli’s numbers. Then

∞∑
i=1

1

(2i + 1)2k
=
(−1)k−1(22k − 1)

2(2k)!
B2kπ

2k − 1.

Hence, we can choose

M[m]
0 =

1
4(2m + 3)

+
m∑
k=1

(
1

2k + 1
− 1

2m + 3

)(
(−1)k−1(22k − 1)

2(2k)!
B2kπ

2k − 1

)
, (23)

which satisfies

lim
n→∞M[m]

n = 0, m = 1, 2, 3, ....

Then

M[m]
n =

1
2m + 3

[
1
4n

+
m∑
k=1

2m − 2k + 2
2k + 1

(
(−1)k−1(22k − 1)

2(2k)!
B2kπ

2k − 1 −
n−1∑
i=1

1

(2i + 1)2k

)]
. (24)

By using the relation

n−1∑
i=1

1

(2i + 1)2k
= −1 − (2−2k − 1)ζ (2k) − 2−2kζ (2k,n + 1/2)

= −1 − (−1)k−1(1 − 22k)
2(2k)!

B2kπ
2k − 2−2kζ (2k,n + 1/2),

we get

M[m]
n =

1
2m + 3

[
1
4n

+
m∑
k=1

2m − 2k + 2
2k + 1

2−2kζ (2k,n + 1/2)

]
. (25)

In the following Lemma, we will see that the upper bound Mm
n will improved with

increasing the value of m.

Lemma 3.1.

M[m+1]
n < M[m]

n , m,n = 1, 2, 3, .... (26)
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Proof. From (25), we get

M[m+1]
n =

1
2m + 5

[
1
4n

+
m∑
k=1

2m − 2k + 2
2k + 1

2−2kζ (2k,n + 1/2)

]

+
1

2m + 5

m+1∑
k=1

1
2k + 1

21−2kζ (2k,n + 1/2).

Then

M[m+1]
n − M[m]

n =
2

(2m + 3)(2m + 5)

[
−1
4n

+
m+1∑
k=1

2−2kζ (2k,n + 1/2)

]

<
2

(2m + 3)(2m + 5)

[
−1
4n

+
∞∑
k=1

2−2kζ (2k,n + 1/2)

]
.

Now

∞∑
k=1

2−2kζ (2k,n + 1/2) =
∞∑
k=1

∞∑
r=0

2−2k

(n + r + 1/2)2k

=
∞∑
r=0

∞∑
k=1

2−2k

(n + r + 1/2)2k

=
∞∑
r=0

⎡
⎢⎢⎢⎣ 1

1 −
(

1

(2n + 2r + 1)2

) − 1

⎤
⎥⎥⎥⎦

=
∞∑
r=0

1
4(n + r)(n + r + 1)

=
1
4

∞∑
r=0

[
1

n + r
− 1

n + r + 1

]

=
1
4n

.

Then

∞∑
k=1

2−2kζ (2k,n + 1/2) =
1
4n

. (27)

and hence

M[m+1]
n − M[m]

n <
2

(2m + 3)(2m + 5)

[
−1
4n

+
∞∑
k=1

2−2kζ (2k,n + 1/2)

]

<
2

(2m + 3)(2m + 5)

[−1
4n

+
1
4n

]
< 0.

The following Lemma show that M[1]
n is an improvement of the upper bound

1
12n

.
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Lemma 3.2.

M[1]
n <

1
12n

(28)

Proof. From Eq. (25), we have M[1]
n =

1
20n

+
1
30

ζ (2, n + 1/2) . By using (27), we

obtain

1
n
=

∞∑
k=1

22−2kζ (2k,n + 1/2)

= ζ (2, n + 1/2) +
∞∑
k=2

22−2kζ (2k,n + 1/2).

Then

ζ (2, n + 1/2) <
1
n

which give us that

1
30

ζ (2, n + 1/2) +
1

20n
<

1
30n

+
1

20n
=

1
12n

.

4 The speed of convergence of the approximation formula
√
2πn (n/e)neM

[m]
n

for big factorials
In what follows, we need the following result, which represents a powerful tool to mea-

sure the rate of convergence.

Lemma 4.1. If (wn)n≥1 is convergent to zero and there exists the limit

lim
n→∞ nk(wn − wn+1) = l ∈ R (29)

with k > 1, then there exists the limit:

lim
n→∞ nk−1wn =

l
k − 1

This Lemma was first used by Mortici for constructing asymptotic expansions, or to

accelerate some convergences [15-21]. By using Lemma (4.1), clearly the sequence (wn)

n≥1 converges more quickly when the value of k satisfying (29) is larger.

To measure the accuracy of approximation formula
√
2πn (n/e)neM

[m]
n , define the

sequence (wn)n≥1 by the relation

n! =
√
2πn(n/e)neM

[m]
n ewn ;n = 1, 2, 3, .... (30)

This approximation formula will be better as (wn)n≥1 converges faster to zero. Using

the relation (30), we get

wn = lnn! − ln
√
2π − (n + 1/2) ln n + n − M[m]

n

Mahmoud et al. Journal of Inequalities and Applications 2012, 2012:27
http://www.journalofinequalitiesandapplications.com/content/2012/1/27

Page 7 of 9



Then

wn − wn+1 = (n + 1/2) ln(1 + 1/n) − 1 +M[m]
n+1 − M[m]

n

By using the relations (19) and (22), we have

wn − wn+1 =
∞∑

k=m+1

1
2k + 1

1

(2n + 1)2k
− 1

4(2m + 3)n(n + 1)(2n + 1)2m

=
∞∑

k=m+3

1
2k + 1

1

(2n + 1)2k
− (5 + 2m + 8n + 8n2)(2n + 1)−4−2m

4n(n + 1)(15 + 16m + 4m2)

Then

lim
n→∞ n2(m+2)(wn − wn+1) =

−1
(2m + 3)(2m + 5)22m+3

; n,m = 1, 2, 3, ... . (31)

Theorem 2. The rate of convergence of the sequence wn is equal to n-2m-3, since

lim
n→∞ n2m+3wn =

1

(2m + 3)2(2m + 5)22m+3
.

In 2011, Mortici [22] shows by numerical computations that his formula

n! ∼
√
2πn(n/e)ne

1

12n +
2
5n = μn

(32)

is much stronger than other known formulas such as:

The following table shows numerically that our new formula λn,1 =
√
2πn (n/e)neM

[1]
n

has a superiority over the the Mortici’s formula μn.

n! ∼
√
2π

(
n + 1/2

e

)n+1/2

= βn (Burnside [23])

n! ∼
√
2πe−nnn+1√
n − 1/6

= δn (Batir [24])

n! ∼ √
(2n + 1/3)π (n/e)n = γn (Gosper [25])

n! ∼ √
π 6

√
8n3 + 4n2 + n + 1/30 (n/e)n = ρn (Ramanujan [26])

n |n! -μn| |n! - ln,1|

10 0.0252281 0.00641793

25 1.1 × 1015 2.8 × 1014

50 6.8 × 1052 1.7 × 1052

100 6.5 × 10144 1.4 × 10144
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