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he paper has as a starting point the work of the philosopher Professor D. Lewis. We provide a detailed presentation and complete
analysis of the sender/receiver Lewis signaling game using a game theory extensive form, decision tree formulation. It is shown that
there are a number of Bayesian equilibria. We explain which equilibrium is the most likely to prevail. Our explanation provides
an essential step for understanding the formation of a language convention. he informational content of signals is discussed and
it is shown that a correct action is not always the result of a truthful signal. We allow for this to be relected in the payof of the
sender. Further, concepts and approaches from neighbouring disciplines, notably economics, suggest themselves immediately for
interpreting the results of our analysis (rational expectations, self-fulilling prophesies).

1. Introduction

he philosopher Professor Lewis [1], writing on the origins
and process of formation of language, discusses signaling
games between a sender, who sends a signal, and its receiver.
In the Lewis formulation the sender is aware of the state of
the world, but the receiver is not. here are a number of
alternative states and nature chooses one at random, that is,
with a certain probability. Once the sender knows the state
chosen, there are various signals that he can use. here is
a number of alternative actions that a receiver can take in
response to the signal received.

Following the speciic actions of the sender and the
receiver there are payofs awarded to both of them. hese
rewards express, for example, the utilities or money, obtained
from the combination of their actions. We note in particular
the games of common interest in which a resolution leads to
optimal payofs for both actors as noted by Skyrms [2].

However this type of analysis is not always complete.
Notably there is little discussion of the case where the action
of the receiver may be appropriate to the state of nature
even if the signal sent is not. here is no discussion of what
happens to the payofs of the two agents when this is the case.
Lewis makes an attempt to discuss what constitutes “true”
and “untrue” signals and responses in a signaling system. We
discuss these issues below.

In terms of informal signaling conventions, Lewis ofers
the simple but illuminating example of a helper, (�), referred
to also as he, standing behind a truck gesturing to the driver,
(�), referred to also as she, to help her steer the truck into a
narrow parking space. We can assume that Nature consists of
the particular position of the truck and of the parking space
and that there are two such combined alternatives each with
probability 1/2.

he signaling behaviour and the action that follows
are what Lewis describes as a “conventional regularity” of
unwritten rules of parking gestures based on experience to
which all parties conform. In terms of the highest payofs the
common interest objective of� and� is to get the truck into
the space. In this situation, as he puts it:

“he helper gestures as he does because he expects
the � to respond as he does, and the � responds
as he does because he expects the helper to gesture
as he does.” (page 127)

his means that the expectations of the actors are self-
fulilling and they both receive their optimal payofs. One
can borrow concepts and approaches from neighbouring
disciplines, notably game theory and economics. hey can
provide a formal interpretation of the outcome in terms
of existing concepts in those areas (rational expectations,
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self-fulilling prophesies) using a ixed-point theorem from
mathematics. We return to this point below.

Of course this is not always the case. A deviation from
this rule, perhaps based on lack of trust, could lead to one
or both of them getting inferior payofs. he issue is to
investigate whether a “correct” interpretation of the signals is
possible which would lead to such an equilibrium position
being reached. In such a situation no one would wish to
independently change his action if all the information was
revealed and moreover the payofs would be optimal.

More formally, in a signaling problem there are the
following alternative states of nature {�1, �2, . . . , ��, . . . , ��}.
hese are observed, let us say, by one sender, who will send a
signal concerning the information received, that is, the state
chosen by nature. he receiver then has to choose an action
without knowing the state of nature. he sender compiles a
set of alternative signals �1, �2, . . . , ��, . . . �� using a function
�� : {��} → {��}. his is an encoding rule according to
Blume [3]. In other words, �� is the function that translates
the states of nature into communicated signals. In order to be
able to identify eventually the state with a signal we require
� ≥ �.

Clearly there will be �!/(� − �)! possible signaling
systems, that is, alternative ��’s functions. Suppose next that
the set of actions available to � are �1, �2, . . . , ��, . . . ��. Given
a signal �� we deine �� : {��/(��)} → {��}. his is a

decoding rule, again according to Blume. he function ��
is designed to translate actions based on a signal received
into a maximum payof for �. he signal received and the
action chosen combined with the state of nature implied by
�� should lead to�’smaximumpayof. (��, ��)will be called
a signaling convention. It is of course true that diferently
designed signaling systems combined with an association
between actions and states of nature could produce the same
result.

Rubinstein, [4, Chapter 2] stresses the diiculty of for-
mulating communicationmodels into game theorymodels as
solutions in the latter are invariant to a change in the names of
the actions that lead to these outcomes; that is, an alternative
convention (���, ���) has the same outcome. In other words
the “sender and the receiver are uncertain about each other’s
language use” [3, page 515].

In the existing literature the prevailing assumption is that
for each state there is one action that has to be selected. If
� takes the “correct” action then maximum payofs will be
received by both� and� irrespective of what the signal sent
by�was (see, e.g., Lewis [1], Pawlowitsch [5], and Huttegger
[6]).

A Nash equilibrium (NE) is a pair of strategies (actions)
of the players which are in terms of payofs best replies to each
other’s. Huttegger distinguishes between strict Nash equi-
libria (i.e., with strictly greater payofs) and nonstrict Nash
equilibria. He argues that it is the former that lead to signaling
systems as they ensure a one-to-one correspondence between
signals and actions.

If there is more than one strict Nash equilibria, then the
appropriate system is selected either through salience Lewis
[1], through “cheap talk” Crawford and Sobel [7], Farrell [8],

or through evolution van Rooij [9, 10]. he latter approach
uses a system of replicator dynamics such as the one used
by Taylor and Jonker [11], in which the frequency of agents
with above average payof increases. However, as Pawlowitsch
shows, replicator dynamics will not always converge to an
evolutionary stable system.

In our paper we move one step further by distinguishing
between a true signal and a correct action. Truthfulness leads
to both � and � receiving their maximum payof. However
a correct action is not always the result of a truthful signal.
� may still “correctly” guess the state of nature although �
sends the “wrong” signal. hen in our model � will receive
the maximum payof but� will not.

Huttegger [12] hints to this possibility by discussing a
case where the sender deliberates about what signal to send,
but the receiver is nonetheless fast or lucky to choose the
right act. However the payofs in this model (and typically
the payofs of any Lewis-based signaling game) assume
a common interest between senders of information and
receivers. Intuitively one would expect that if there is a
distinction between correctness and truthfulness, it would
be easier to reach a unique conventional signaling system
without any need to use salience or some other form of
communication to establish the supremacy of a truthful
signaling system.We reach the surprising conclusion that this
is not the case. We then discuss ways in which a conventional
signaling system may be achieved by reverting to notions
of saliency, communication, or evolution through Bayesiant
updating.

he ideas and analysis in this area lend themselves to a
game theoretical treatment and this is what we discuss below
in the context of a speciic game.he philosophical and game
theoretical economic approach can proit and enrich each
other.

2. A Game Tree Approach

We introduce here the game theoretic analysis by concentrat-
ing on an�/� example which is a detailed elaboration of the
discussion byLewis.he analysis is in terms of an appropriate,
extensive-form tree formulation of a noncooperative, signal-
ing game.he setup is one with asymmetric information.he
player who is informed, that is, the helper here, moves irst to
signal, truthfully or not, his information to the receiver, that
is, the driver. he relevant concepts and ideas are discussed
briely; for details, see, for example, Binmore [13], Osborne
and Rubinstein [14].

Figure 1 gives the simple tree formulation of our game.
his is a game of imperfect information. In the information
set �1, enclosed by a parallelogram, player � does not know
whether she is at nodes �1 or �2. Similarly when � enters
information set �2, she does not know exactly where she is.
Obviously the actions from the nodes of an information set
are identical.

here are two equally probable states of nature; a truck
must move Let (�) or Right (�), each with probability 1/2,
and then two signals can be made by�. hese are “let” and
“right” and they are indicated by � and � from point 1 and by
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�� and �� from point 2. Point 1 appears if “Nature” plays � and
point 2 if i plays �.

On the other hand, � can choose from two alternative
actions having heard the signal but without knowing the state
of nature.herefore she does not knowwhether she is at node
�1 or �2 of �1, when she hears �, neither if she is at node �3
or �4 of �2, when she hears �. In �1 she can choose from
actions �1 and �1 and in �2 from actions �2 and �2. A play of the
game starts from the initial node to a terminal point, where
the game ends. he payofs at the terminal nodes refer to the
payofs of�, the upper number, and of�, the lower number.
he expected payofs for� and� are denoted throughout the
paper by �1 and �2, respectively.

Pure strategies are rules that tell each agent what action
to choose from each information set.hey can be played with
probabilities as mixed strategies. he pure strategies of� are

���, ���, ���, ���, where, for example, ��� means that he plays �,
that is, “let” from point 1 and ��, that is, “right” from point 2.

he pure strategies of � are �1�2, �1�2, �1�2, �1�2 from
information sets �1 and �2, respectively. For example �1�2
means that � plays �1 from information set �1 and �2 from
information set �2.
�’s mixed strategy is �1�2, �1; �1�2, �2; �1�2, �3; �1�2, �4,

where, for example, �1�2 means that � plays �1 from
information set �1 and �2 from information set �2 with
probability �2. Of course �� ≥ 0 for � = 1, 2, 3, 4 and they sum
up to 1. he mixed strategies of� are analogously deined.

We are looking at the idea of an equilibrium in such
a game. he general proof of existence of an equilibrium
in the setup of abstract mathematical spaces is based on
the concept of the ixed point theorem. Under appropriate

technical assumptions, a function from one space to itself has
a ixed point, that is, an element of the domain which maps
onto itself. here are a number of such theorems, depending
on the generality of the mathematical conditions imposed.
Of course in particular explicit examples, like the one we are
investigating, we do not have to go through a formal proof of
existence to conirm an equilibrium.

First we consider the existence of an NE. A number of
players with their own individual sets of (mixed) strategies
are given and payofs depend on everybody’s action. A set of
(mixed) strategies, one for each player is an NE, if for each
player his choice is the best response, in terms of payof, given
the other agent’s action.

he payofs show that when� reveals the “correct” signal
and the correct action (the one corresponding to the actual
state of the world) by � follows, then they both receive a
payof of 1. If � communicates an incorrect signal and this
leads to an incorrect action by�, then both players get 0. If�
chooses an incorrect signal and� reacts counter to the signal
indicated, then� gets 1 for performing the correct action but
� ends up with zero.

We set the probability that�plays �1 in �1 as �1+�2 = 1−�,
while �3 + �4 = � is the probability that � plays �1 in �1,�1+�3 = 1−� is the probability that� plays �2 in �2, and inally�2+�4 = � is the probability that� plays �2 in �2.We note that
1−�, � and 1−�, �, shown in Figure 1, can be also thought of
as behavioural strategies describing how � chooses between
the action from an information set. We shall return to this
immediately below. At this stage 1 − �, � and 1 − �, � give the
speciic way the probabilities �� are combined.

We can use the probabilities attached to the choices from
�1 and �2, described in Figure 1, to fold the tree up, as seen
in Figure 2, given the choices of the strategies and their
probabilities and can calculate the expected payofs of� and
� from let to right of the new terminal nodes as (1 − �, 1 −
�), (0, 1 − �), (0, �) and (�, �). We emphasize that these are
expected payofs of the two agents, conditional on the choice
made by Nature and �. We shall use this information in
considering the possibilities for NE.

Next we consider a perfect Bayesian equilibrium (PBE).
It consists of a set of players’ optimal behavioural strategies,
that is, independent distributions on the nodes of each
information set, and consistent with these are a set of beliefs
which attract a probability distribution to the nodes of
each information set. Consistency requires that the decision
from an information set is optimal given the particular
player’s beliefs about the nodes of this set and the available
information. If the optimal play of the game enters an
information set, the updating of beliefs must be Bayesian.
Otherwise appropriate beliefs are assigned arbitrarily, within
limits, to the nodes of the set. he assignment of beliefs is a
characteristic feature of a PBE.

he proof of existence of a PBE is also based on a
ixed-point theorem. In our explicit example, we can simply
check directly that a set of behavioural strategies satisfy the
properties which characterize an equilibrium.

Player � uses independent distributions to choose
between the action of the information sets. For example,
she spins a wheel to decide between �1 and �1 in �1 and
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a wheel divided diferently for choosing when she is in �2.
he same principle applies if information sets are singletons,
that is, consist of the single point. his applies to sets 1
and 2 belonging to �. In order to avoid introducing too
much notation, we use again {1 − �, �} and {1 − �, �}, for
the behavioural strategies in �1 and �2, respectively. For
�’s behavioural strategies at points 1 and 2 we shall use
the independent distributions {1 − �, �} and {1 − �,�} for
choosing between � and � and �� and ��, respectively.

In calculating PBEs, the behavioural strategies of�will be
used to fold the tree up, as seen in Figure 2, and the expected
payofs of � and � from let to right of the new terminal
nodes are (1−�, 1−�), (0, 1−�), (0, �), and (�, �). Of course,
as mentioned above, these are expected payofs following the
choice of nature and�.

Our detailed presentation and analysis of themodel show
that there exists more than one equilibria. his forces the
analysis into a further argument for the choice of the most
reasonably expected one.

Finally we note that the structure of ourmodel is such that
there is a complete, one-to-one correspondence between NE
and PBE. In a number of cases, for example, in Section 2.3,
the Nash equilibria are in pure strategies and as such they
imply behavioural strategies as well. Also in all other cases
here the Nash strategies deine beliefs and consistent optimal
behavioural strategies.

2.1. Lack of an NE or a PBE. We now show that for {0 < � <
1, 0 < � < 1}, there is no NE and no PBE either. We point out
that, as it is shown in Appendix B, any such pair �, � can be
realized by a set of feasible ��s. We consider combinations of
strategies.

Proposition 1. For {0 < � < 1, 0 < � < 1}, there is no NE and
therefore no PBE either.

Proof. he proof consists of considering the implications of a
number of cases in which strategies of� and� are combined
and it is given in Appendix A.1.

Next we consider the possibility of a PBE where the
distributions on the choices between the information sets are
taken to be independent of each other. We consider the case
{0 < � < 1, 0 < � < 1}. Suppose that � has chosen some
pair of distributions (�, �) referring, as explained previously,
to decisions from points 1 and 2. As argued above, the pairs
(�, �) and (�, �) are not optimal.Hence there is noPBE either.
In general if there is no NE there is no PBE either. One of
the requirements for obtaining a PBE is that the proposed
strategies are optimal responses to each other.

2.2. he Existence of NE and PBE. We now characterize all
equilibria.

Proposition 2. here exists an NE, and hence a PBE, with
{�, �} on the boundary sections of the feasible set {0 ≤ � ≤
1, 0 ≤ � ≤ 1}.
Proof. he proof consists of considering the implications of
a number of combinations of strategies of � and � and it is
given in Appendix A.2.

Finally we note that under all possible circumstances�1 =1 and �2 = 1 corresponding to � = 0, � = 1 is optimal. It
gives to both players a maximum possible expected payof. In
particular it is precisely then that� obtains this.

We want to consider all possible feasible pairs {�, �}.
It is instructive to look also at the reasons why certain
combinations of strategies do not form an equilibrium. In
Appendix A.3 we analyse a number of cases in which {�, �}
are on the boundary of the feasible set {0 ≤ � ≤ 1, 0 ≤ � ≤ 1}.
hen in Section 2.3 we shall consider the realistic scenario
where both� and� use pure strategies.

2.3. he Calculation of NE and PBE for Pure Strategies of �.
In the end, we are interested in the players making, from
their information sets, decisions with probability one. In
particular we want to analyse the case when � will instruct
�, with probability 1, to turn “let” or “right” and � will
also play a pure strategy. Eventually we want to know which
combination of pure strategies ismost likely to prevail; that is,
whether the signal of� will be truthful and if � will believe
it.

he behavioural assumption is that every agent chooses
his best strategy given the strategy of the other. hat is, in
efect, a reaction function is formed. If each player optimizes
believing, prophesying, a particular strategy for the other, and
the outcome is that there is no reason for anybody to feel
they have predicted wrongly, then we have an equilibrium
which has been obtained rationally. he conirmation of
the predictions takes places where the reaction functions
intersect.

he analysis of the cases in Appendix A.3 implies we are
only let to consider the four corner cases (� = 0, � = 1),
(� = 1, � = 1), (� = 0, � = 0), and (� = 1, � = 0) in Figure 3.
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We shall show that they can all form PBEs. However there
is only one which can reasonably be expected to prevail. In
order to obtain this we need to invoke an extra argument over
and above the conditions for an NE or a PBE.

In analysing Cases 1–4, below, we take each with only
one of the possible strategies for � with which they form
NE. his applies to Case 2 where there exists more than
one such optimal strategy. his allows us to cast the analysis
in terms of a corresponding igure as well. he igures
enable us to explain the formation of the corresponding
equilibrium beliefs, which are attached to the nodes of the
information sets and which are part of the deinition of the
PBE. We also explain the arbitrary, within limits, beliefs
when the equilibrium path does not enter an information
set.

Case 1. {� = 0, � = 1}. his is shown in Figure 4. hese
probabilities imply �3 + �4 = 0 and �2 + �4 = 1. Hence
�2 = 1 and � decides to play �1�2 and the tree folds up into
the smaller one in Figure 4.he best response for� is to play

� from � and �� from �, hence the strategy ���. We write these

pair of strategies as (���; �1�2). To this, the best response by

� is to play �1�2. Hence the pair of pure strategies (���; �1�2),
indicated with double lines, form a unique NE. his follows
from the fact that ��� can only be combined with �1�2, and vice
versa, in order to form an NE.

Next we turn our attention to the existence of a PBE.
We consider the set of pairs of behaviour strategies of �
and � given by ((�, 1; ��, 1); (�1, 1; �2, 1)), where, for example,
(�, 1; ��, 1) means that � at point 1 plays � with probability
1 and at point 2 he chooses �� with probability 1. It is
straightforward to see that these pairs are optimal in the
sense of being a best response by an agent to the behavioural
strategy of the other.

he calculations, through Bayesian updating, of the
conditional probabilities, beliefs, attached to the nodes of �1
and �2 are based on these strategies and it is explained in
Appendix A.4.

Finally, the optimality of the strategies given these beliefs
can be easily checked. Hence ((�, 1; ��, 1); (�1, 1; �2, 1)) form a
unique PBE. Of course it is connected to the NE because pure
strategies imply that the implied behavioural strategies are
played with probability 1 from the relevant information set.
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he expected payofs are calculated as follows:� tells the
truth always and gets �1 = 1/2 × 1 + 1/2 × 1 = 1. � always
makes the correctmove and also gets�2 = 1/2×1+1/2×1 = 1.

We can provide some further explanation with respect to
the expected payofs. As explained earlier a folded-up tree can
be obtained and now we are using the optimal strategies of�
given that � = 0, � = 1. In the folded-up tree of Figure 4 it is
clear the�must use � from point 1 and �� from point 2. he
NE and PBE follow.

In Case 2 below we consider the possibility that�might
decide to send purposely the wrong signal to�. Nowwewant
to consider the possibility that� receives a noisy signal. Let
Nature select a state; the Sender receives this signal with a
noise and this consequently will also be transmitted to the
Driver. For example, if Nature chooses �, the noise consists
of receiving � with probability 0.95 and � with probability
0.05. � sends to � a “let” or a “right” signal. All let signals
end up in the same information set and all the right signals in
a diferent one. �, in her turn, makes a let or a right move.
If the inal choice is correct, then � gets a payof of 1 and �
gets also 1 if he reported the correct signal and 0 if he reported
an incorrect signal. In the latter case� receives an incorrect
signal which he reports truthfully or he misreports a correct
signal. For a small noise the outcome is the same as in Case 1
but for a large noise�will be punished for believing the false
message.

Case 2. {� = 1, � = 0}. his is shown in Figure 5. Hence
�3 + �4 = 1 and �2 + �4 = 0 implying �3 = 1. � decides
to play �1�2 and the full tree folds up into the smaller one in
Figure 5. A best response, (we could have selected the best

response ��� or ��� and Figure 5 would have been adjusted

accordingly), by� is to play ��� and to this the best response

of� is �1�2. Hence the pair of pure strategies (���; �1�2) form an
NE.
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With respect to the existence of a PBE, we consider
the set of pairs’ behaviour strategies of � and � given by
((�, 1; ��, 1); (�1, 1; �2, 1)). It is easy to see that these pairs are
optimal. Namely, they are the best response by an agent to
the behavioural strategy of the other.

he calculations, through Bayesian updating, of the
conditional probabilities, beliefs, attached to the nodes �1
and �2 are based on these strategies. he formulae used are
analogous to the ones in Case 1 and the values are shown in
Figure 5. he optimality of the strategies given these beliefs
can be easily checked. Hence ((�, 1; ��, 1); (�1, 1; �2, 1)) is a PBE.

he expected payofs are obtained as follows.�never tells
the truth and ends up �1 = 0. � makes the correct move
always, by playing the opposite of what� indicates and ends
with an expected payof of �2 = 1. In the folded-up tree of
Figure 5 it is clear that� can use � from point 1 and �� from
point 2. he NE and PBE follow.

We can provide some more detailed explanation with
respect to the expected payofs. In the folded tree, given �’s
choices, a payof of 0 is indicated for � irrespective of his
strategies.he beliefs 0 and 1 in �1 are consistent with� play-
ing �1.his gives expected payof 0×0+1×1 = 1while playing
�1 gives 0 × 1 + 1 × 0 = 0. Hence action �1 is preferable to �1.

Also, the beliefs 1 and 0 in �2 are consistent with �
playing �2. his gives �2 = 1 × 1 + 0 × 0 = 1 while playing �2
gives �2 = 1×0+0×1 = 0. Hence action �2 is preferable to �2.
Case 3. {� = 0, � = 0}. his is shown in Figure 6. hese
probabilities imply �3 + �4 = 0 and �2 + �4 = 0. Hence �1 = 1
and � decides to play �1�2 and the full tree folds up into the

smaller one in Figure 6. he best response for� is to play ���
and to this the best response of � is �1�2. Hence the pair of
pure strategies (���; �1�2) form an NE.

With respect to the existence of a PBE, we consider
the set of behaviour strategies of � and � given by
((�, 1; ��, 1); (�1, 1; �2, 1)). It is again straightforward to see that
these pairs are optimal in the sense of being the best response
by an agent to the behavioural strategy of the other.
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Figure 6

he calculations, through Bayesian updating, of the
conditional probabilities, beliefs, attached to the nodes �1 are
based on these strategies. he formulae used are analogous
to the ones in Case 1 and the values are shown in Figure 6.
We note that the game never enters �2 and, hence, for the
indicated optimal strategy, 1−�, � are arbitrary with � ≤ 1/2.
In the Bayesian formula for updating, since Pr(�3) = Pr(�4) =0, we obtain 0/0.

he optimality of the strategies given the beliefs in �1 can
be easily checked. Hence ((�, 1; ��, 1); (�1, 1; �2, 1)) is a PBE.

he expected payofs are calculated as follows. � plays
either � or ��. Hence he tells the truth once with probability
1/2 and gets expected payof �1 = 1/2 × 1. � plays either �1
or �2. hat is, she makes the correct move once and gets �2=1/2 × 1. In the folded-up tree of Figure 6 it is clear�must
use � from point 1 and he can also use �� from point 2.he NE
and PBE follow.

It is important to note that in this equilibrium the infor-
mational content of �’s signal is zero and hence the (updated)
beliefs of � in �1 are identical to the prior of the state of
nature. As the signal “let” is used by � to communicate
two states (both � and �), it is a homonymous signal using
Pawlowitsch’s terminology. Professor Lewis refers in his book
to inadmissible signals. he signal here which conveys no
information could be considered as an inadmissible one.

Case 4. {� = 1, � = 1}. his is shown in Figure 7. hese
probabilities imply �3 + �4 = 1 and �2 + �4 = 1. Hence �4 = 1
and � decides to play �1�2 and the full tree folds up into the
smaller one in Figure 7. he best response for� is to play ���
and to this the best response of � is �1�2. Hence the pair of
pure strategies (���; �1�2) form an NE.

With respect to the existence of a PBE, we consider
the set of behaviour strategies of � and � given by
((�, 1; ��, 1); (�1, 1; �2, 1)). It is again straightforward to see that
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these pairs are optimal in the sense of being the best response
by an agent to the behavioural strategy of the other.

he calculations, through Bayesian updating, of the
conditional probabilities, beliefs, attached to the nodes �2 are
based on these strategies.he formulae used are analogous to
the ones in Case 1 and the values are shown in Figure 7. he
game never enters �1 and, hence, for the indicated optimal
strategy, 1 − �, � are arbitrary with � ≥ 1/2. In the Bayesian
formula for updating, since Pr(�1) = Pr(�2) = 0, we obtain
0/0.

he optimality of the strategies given the beliefs in �2 can
be easily checked. Hence ((�, 1; ��, 1); (�1, 1; �2, 1)) is a PBE.

he expected payofs are calculated as follows. � plays
either � or ��. Hence he tells the truth oncewith probability 1/2
and gets expected payof �1 = 1/2 × 1.� plays either �1 or �2
that is, shemakes the correctmove once and gets�2 = 1/2×1.
In the folded-up tree of Figure 7 it is clear that�must use ��
from point 2 and he can also use � from point 1. he NE and
PBE follow.

Again, the informational content of �’s signal is zero
in this Bayesian equilibrium and we have ended up with a
homonymous signal as described by Pawlowitsch.

It is important to note that also in this equilibrium the
informational content of �’s signal is zero and hence the
(updated) beliefs of � in �1 are identical to the prior of the
state of nature. his completes the analysis of Case 4.

Next, as we mention in Case 5a in Appendix A.3 the
pair ��� and {0 < � < 1, � = 0} is an NE for any
such �, and hence a PBE can be formed. We now look at
corresponding adjustments to Figure 6. In the smaller graph,
the irst payof vector will now be (1 − �, 1 − �) and the third
one (0, �). Correspondingly, in the bigger graph, coming out
of information set �1 there will also be double line on �1. his
means that � from point 1 will result in payofs (1 − �, 1 − �)

and �� from point 2 will imply payofs (0, �). his will only
reduce the payof of�.he players’ beliefs stay the same.his
equilibrium requires that � spins a wheel to decide between
�1 and �1 from �1 but equally well, for the point of view of
her payof, � can play {� = 0, � = 0} or {� = 1, � = 0} as
explained in Case 5a. So there is no advantage to her, at all, in
taking a more complicated decision of spinning a wheel.

Finally, we show in Case 6b in Appendix A.3 that the pair
��� and {� = 1, 0 < � < 1} is an NE for any such � and
hence a PBE can be formed. he corresponding adjustments
to Figure 7 will be as follows. In the smaller graph, the second
payof vector will now be (0, 1 − �) and the fourth one
(�, �). Correspondingly, in the bigger graph, coming out of
information set �2 there will also be double line on �2. his
means that � from point 1 will result in payofs (0, 1 − �)
and �� from point 2 will imply payofs (�, �). his will only
reduce the payof of�. he players’ beliefs stay the same. As
mentioned before, this equilibrium requires that � spins a
wheel to decide between �2 and �2 at �2, but equally well, for
the point of view of her payof, � can play {� = 1, � = 1}
or {� = 1, � = 0} as explained in Case 6b. So there is no
advantage to her, at all, in taking amore complicated decision
of spinning a wheel.

2.4. Comparing Equilibria. Examining Cases 1–4 established
above, we see that we have an information revelation prob-
lem. It is only in Case 1, where � = 0 and � = 1, that the
signals of� reveal to� the true state of the nature. In Case 2,
where � = 1 and � = 0, player� always misreports the state
and � responds by doing exactly the opposite of what she is
told to do. While one should stress that this also is a perfect
equilibrium for the game, it does imply zero expected payof
for�. He is punished for lying.

In the equilibria of Cases 3 and 4 player �’s signals do
not reveal anything about the state of the nature and the
driver � sets her expectations in accordance with the prior
probabilities. he resulting equilibrium expected payof for
� is inferior to that when he tells the truth.

Both players know that inconsistent announcements by
� will lead to wasteful outcomes that will hurt him. Hence
a truthful announcement may follow. his can result from
cheap talk exchanges between the players, in which it was
agreed that the message sent by the sender will be truthful,
Binmore [13, 15], Rasmusen [16], and Barrett [17]. he incen-
tives of � and � are compatible. Player � can reasonably
expect, and correctly guess, that� has an interest to observe
the agreement and tell the truth. She comes to this conclusion
on the basis of the structures of the payofs and thus uses
an extra argument for choosing among the four PBEs. his
is over and above the arguments which establish equilibrium
strategies. Hence we need, as Lewis argued, salient properties
to establish the prevalence of a conventional signaling system,
as the inferior payofs to H are not enough to establish such a
unique system.

he equilibrium in Case 1 is the most likely to prevail.
� knows that if he plays � only when he sees � and �� only
when he sees �, then�will prefer to play �1�2 rather than, for
example, �1�2. his means that it is in the interests of � for
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his signaling actions to be truthfully revealing of the state of
nature.

It is important to note that an aligned interest between the
Helper (sender) and the driver (receiver), as found in much
of the existing literature, would make the former careless in
terms of the truth as he would consider his payof dependent
on the inal outcome which is determined by the actions of
the Driver. his makes the formation of a convention less
likely since Cases 1 and 2 would become equally credible.his
can be seen by looking at Case 2 (Figure 5) and changing the
payofs in the folded tree for � to 1 in � and 1 in ��. In other
words the formation of a clearly distinguishing language
convention becomes more problematic. Hence an aligned
interest (payof-wise) between � and � is less adequate for
the formation of a conventional signaling system.

herefore we can deine what is meant by “truth” and a
true signal. In our example, if the convention is set as the one
where �� corresponds to � and � corresponds to � then any
other signaling system used is punishing at least one of the
agents with a lower payof, even if it results in a possible PBE.
We return to this point in the following section.

he structure of the game, the payofs, and the rationality
of the players are common knowledge. Using the idea of
rational expectations from economic theory one could argue
as follows. Both players, � and �, make rational decisions
taking fully into account all the information which is com-
mon knowledge. he implications of their various strategies
are clearly laid out. he players make rational predictions,
prophesies, of each others’ actions and on this basis they
act themselves. In the rational expectation equilibrium that
results, that is, in the particular PBE, the predictions, that
is, the players’ beliefs, are conirmed. he prophesies of the
players are self-fulilling.

Lewis argues that there is no a priori meaning to signals.
In contrast Farrell argues that words (or gestures) do have a
ixed external meaning. A receiver will believe that the sender
will send him true information unless he has good reason to
deceive him. In cheap-talk games speech serves the purpose
of reinforcing a particular action and provides the beginning
of an evolutionary rationale for choosing a particular equi-
librium. here are of course other approaches; for example,
Parikh [18] argues that it is the low of information in a game
theoretic context that leads to the determination of meaning
of words and gestures. his helps to select an equilibrium.

Of course, in deciding among the four PBEs examined
above, � must ind a way to communicate with � that he
intends to be truthful. Clearly this is done on the basis of
the expected payof of the sender of the signal. � will rightly
assume that � will want to do the best for herself in terms
of payofs and thus play ���. Hence there is an alignment of
preferences as discussed in Crawford and Sobel.

3. Further Discussions and Conclusions

3.1. Discovering and Updating the Informational Content of
Signals. We try to place, briely, our analysis in a wider
context of the literature. In the Lewis signaling game
the sender and the receiver learn how to play through

experiencing successes and failures in repeated rounds of
the game. his leads to the evolution of a signaling game,
for example, a “convention.” his signaling system evolves
through reinforcement learning. It takes the form of rewards
for correct choices by the receiver for both of the agents. he
accumulation of these rewards leads to the updating by the
receiver of the probabilities of the states of nature. Skyrms [19]
follows Lewis’s work and develops, in efect, the dynamics of
repeated games. He explains how individuals can converge to
a common convention setting that indicates which signal is to
be sent in a particular situation, as well as the receiver’s action
for each type of signal communicated by the sender.

In a later article, Skyrms [2] stresses the importance of
the informational content of transmitted signals in updating
beliefs. Nature chooses the state and then sends signals
to intermediary receivers (senders). hey can convey the
information received to other agents through actions in the
form of communicated signals. he informational content
of signals alters the prior probabilities of states, as a result
of the receiver updating his/her beliefs. his updating that
takes place relative to the initial prior probability of a state
of nature determines the informational content carried by a
signal. Intuitively, the lower the prior probability, the higher
the informational content of an accurate signal, that is, one
that is more likely to be representative of the true state of
nature.

In Barrett’s article, instead of through rewards, updating
takes the form of adding balls to the sender’s urn. hese
correspond to a signal that leads the receiver to take an action
that matches the actual state of the world. Balls are also added
to the receiver’s corresponding action. Clearly such a case
makes no distinction between true signals and correct actions
because, in contrast to Farrell’s approach, words or gestures
have no predetermined external meaning. Hence the action
alone determines the truthfulness of the signal. Originally the
balls in the urns correspond to the prior probabilities of the
diferent states of nature. he adding of balls to the signal
and action urns changes the relative proportion of balls in
each urn and we have a process of continuous updating. his
results in the formation of a matching law (Herrnstein [20]).

Here we adopt amore formal approach. In Appendix A.4,
using the Bayesian formula, we saw the mathematical for-
mulation of updating beliefs held by the receiver in light of
the signal received. If one wanted, as an extension of the
current analysis, to work within a framework of repeated
games with signals received each period, one could use
a Bayesian updating reiterating process. his would adjust
beliefs regarding the evolving trustworthiness of a repetitive
signal, concerning the probability of a speciic state of nature,
��.

Consider, for example, the formula

� = Pr (�� | �, �0, �) = �0
�0 + �� (1 − �0) . (1)

� indicates the informational content of the signal for a given
state of nature. It has prior �0, starting time “0,” a running
time of � periods, a learning speed convergence parameter
0 < � < 1, and a cumulative experience cardinality �, where
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� = ∑�−1�=0 ℎ�. When ℎ� = 1 for each period, the signal leads

to a correct action and if ℎ� = 0, then it does not.
his updating formula is in efect an extension of the

Bayesian updating used in this paper and could be more
appropriate for a mathematical formulation of a repeated
game. his dynamic formula in which � tends to 1 could
be considered as a background to the completed process in
which our presentation rests.

he simple example analysed in this paper leads to a
number of diferent PBEs. As shown in our analysis it is
suicient to consider the four equilibria corresponding to
pure strategies. he game suggests a “coding” that may
imply a “true signal” mechanism (Case 1), or a “correct
action” signalingmechanism (Case 2), or amechanismwhere
the messages do not convey any information. he receiver
performs the same action regardless of the signal (Cases 3
and 4). While a true signal is mutually rewarding, a correctly
guessed state of nature is not. Hence the helper has an
incentive to signal the true state of nature. his is what is
referred to as a “truthful mechanism design” Aggarwal et al.
[21].

As Barrett argues, one may think of even more complex
games. For example, there may be four states of nature each
occurring with an equal prior probability, two senders, one
receiver, and two signals, for example, 0 and 1. he senders
coordinate their actions and can send four types of binary
signals {��} : {00, 01, 10, 11}. he receiver is aware of which
sender each signal originates from. However, the receiver
needs to understand (learn) the correspondence between
states and signals.

An accumulation of conirmations of states through
rewards and punishments can lead to the formation of a
convention that takes the form of a language. his will
accelerate and signiicantly improve the chances of a perfect
signaling game. We could view the punishment reference as
the equivalent to our sender not getting a payof because his
signal was not truthful.

One can note that there may be cases where there is
plentiful information about the states in the signals, but zero
information in the act that will be chosen by its receiver.
his applies if the receiver always performs the same act
irrespective of the signal.his case has been explored in depth
in the economics literature of herding behaviour.

As an example of this, in the formation of investment
cascades there is no longer reinforcement learning. he
actions performed by the receiver of a private signal (for
example, a signal whether or not to invest in a particular
project which may be either a good (proitable) or bad
(loss making) investment) are no longer an indicator of
her private information. Instead, a potential investor follows
the same act as his/her predecessors irrespective of what
his/her private information indicates. (See, e.g., Bannerjee
[22], Bikhchandani et al. [23], Choi et al. [24], and Welch
[25].) his is a case of signal jamming.

3.2. Concluding Remarks. It is remarkable how neighbouring
disciplines such as philosophy on the one hand and game
theory and economics on the other can come close to

the understanding and analysis of important issues. he
philosophical and mathematical rigours complement each
other. his is the motivation of our discussion.

In this paper we analyse in detail, from the point of view
of game theory, the signaling game discussed by Professor
Lewis. Our approach is diferent from, but complementary
to, his. We place the model in a rigorous game theory,
extensive-form decision tree framework and analyse the
perfect Bayesian equilibria, as well as the Nash equilibria. We
explain and then deploy well-established game theory ideas
and concepts. he game tree that we set up appears, in terms
of moves, information sets, and payofs, to be simple but the
complete analysis of equilibria is involved.

We provide a discussion of the informational content and
signiicance of the signals and the formation of beliefs in
each of the above equilibria. We invoke a further argument
to explain that one particular equilibrium, out of the four
existing ones, is the most likely to prevail. his is an essential
step for understanding the formation of a language conven-
tion. Furthermore we distinguish between a true signal and
a signal that leads to a correct action in terms of the payofs
received by the receiver and the sender. A true signal will lead
to a correct action but a correct action is not necessarily the
result of a true signal.

In the introduction we used a quote from the work of
Professor Lewis, which sums up the expected reactions of
the two players in a situation where signals are used. he
interpretation and analysis of this quote lead us naturally to
the well-known concepts of rational expectations and self-
fulilling prophesies of economic theory. hese ideas refer
to a situation in which the rational decisions of agents are
locked in at a ixed point. As optimal reactions to each other’s
actions they conirm themselves. We employ the speciic
terminology for equilibria used in game theory. Our detailed
calculations of the equilibria bring out the complexities
behind the statement by Professor Lewis and conirm it.

Appendices

A.

A.1. Proof of Proposition 1. We refer to Figure 1 and in par-
ticular Figure 2. he Cases 1–4 in the appendix are diferent
from the cases with the same numbers discussed in the text.
We shall consider irst the combinations of the pure strategies
of� with the open set of (�, �) in Figure 3.

Case 1. ��� and {0 < � < 1, 0 < � < 1}.
here is no NE.� will change to ���.

Case 2. ��� and {0 < � < 1, 0 < � < 1}.
here is no NE.� will change to � = 0, � = 1.

Case 3. ��� and {0 < � < 1, 0 < � < 1}.
here is no NE.� will change to ���.

Case 4. ��� and {0 < � < 1, 0 < � < 1}.
here is no NE.� will change to ���.
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Also it is clear that there is no NE with {0 < � < 1, 0 <
� < 1} in which � uses a mixed strategy. Any such strategy
will be a combination of the above cases and therefore it will
not be optimal for�.

A.2. Proof of Proposition 2. We shall consider all cases in
detail. We can argue considering Figure 2.

(i) Strategies ��� and 0 ≤ � ≤ 1, � = 0 form an NE. For

� �= 0 it is not an NE.� can play ���.
(ii) Strategies ��� and � = 0, � = 1 form an NE. here is

no other NE which corresponds to ���.
(iii) Strategies ��� and � = 1, � = 0 form an NE. here is

no other NE which corresponds to ���.
(iv) Strategies ��� and � = 1, 0 ≤ � ≤ 1 form a NE. For

� �= 1 it is not an NE;� can play ���.
Now we can consider the possibility of mixed strategies

for �. We note that ��� cannot be mixed with any other

strategy for�. On the other hand ���, ��� and ��� can bemixed
and form a NE with � = 1, � = 0. We have for the individual
strategies and the expected payofs, �1 and �2, of � and �
respectively,

(i) ��� and� = 1, � = 0 is anNEwith�1 = 0 and�2 = 1/2,
(ii) ��� and � = 1, � = 0 is an NE with �1 = 0 and �2 = 1,
(iii) ��� and � = 1, � = 0 is an NE with �1 = 0 and �2 =1/2.
From (i)–(iv) above, it follows that only pure strategies ���,

���, and ��� can be mixed and this is possible only for � = 1,
� = 0. he expected payofs will be mixed accordingly.

Next we consider the possibility of mixing the strategies
of� for ixed strategies of�.

(iv) (���; � = 0, � = 0), (���; � = 1, � = 0), and (���; 0 < � <
1, � = 0) are all NE and in all circumstances �2 = 1/2.

More explicitly, for probabilities �1, �2, �3 we have the overall
expectations

�1 (�1 = 12 , �2 =
1
2) + �2 (�1 = 0, �2 =

1
2)

+ �3 (�1 = 12 (1 − �) , �2 =
1
2) .

(A.1)

(v) (���; � = 1, � = 0), (���; � = 1, � = 1), and (���; � =
1, 0 < � < 1) are all NE and in all circumstances �2 =1/2.

Explicitly, for probabilities �1, �2, �3 we have the overall
expectations

�1 (�1 = 0, �2 = 12) + �2 (�1 =
1
2 , �2 =

1
2)

+ �3 (�1 = 12�, �2 =
1
2) .

(A.2)

It remains to consider the possibility of an NE consisting
both of a mixed strategy for � and one for �. he mixed
strategy of � will consist of a combination of her strategies,
each taken with a positive probability. Every such strategy
taken together with the given mixed strategy of � will be
optimal. But as we saw above mixed strategies of� can only
be combined with {� = 1, � = 0}. So either this is the
case or� uses a pure strategy. Both circumstances have been
analysed above.

he characterization of the PBEs follows easily from the
NE above. It is possible to ind the implied beliefs which will
be consistent with the behavioural strategies. For the corner
cases of {�, �} this is done in detail in Section 2.3.

A.3. Lack of Equilibrium in Speciic Cases. We want to
consider all possible feasible pairs {�, �}. First we analyse all
cases in which {�, �} are on the boundary of the feasible set
{0 ≤ � ≤ 1, 0 ≤ � ≤ 1}.
Case 5a. {0 < � < 1, � = 0}.

� will play either ��� or ���; that is, he must play � from
point 1. We distinguish between two subcases. If� plays ���,
then � will change to � = 0 and � = 1, and therefore there is
no NE.

However the pair ��� and {0 < � < 1, � = 0}
is an NE for any such �. Neither � nor � can change
his/her strategy unilaterally to improve his/her payof. his
equilibrium requires that� plays �2 from �2 and spins a wheel
to decide from information set �1 between �1 and �1; equally
well, for the point of view of her payof,� can play {� = 0, � =
0} or {� = 1, � = 0}. So there is no advantage to her, at all,
in taking a more complicated decision of spinning a wheel.
We also note that {� = 0, � = 0} gives a higher payof to �,
although this is not the concern of�.

Next we consider the possibility of a mixed strategy for

�. No such strategy could contain either ��� or ��� with a
positive probability because � can change that part of his
mixed strategies and become better of. So the only possibility

is for strategy ��� and ��� to be mixed. But then � can change
to {� = 0, � = 0} and become better of.

Case 5b. {0 < � < 1, � = 1}.
here is no NE. � will play � from point 1. We consider

the pair of strategies ��� and {0 < � < 1, � = 1}. hen �
will change to ���. Consider now the pair of strategies ��� and
{0 < � < 1, � = 1}. hen� will change to {� = 0, � = 1}.

Suppose now that � forms a mixed strategy consisting,

with some positive probabilities, of the pure strategies ���,
���, or ���. hen� can change that part of his mixed strategy
and become better of. herefore there is no NE with mixed
strategy for� either.

Case 6a. {� = 0, 0 < � < 1}.
here is no NE. If the pair of strategies is ��� or ��� and

{� = 0, 0 < � < 1}, then� will change to ���. If the strategies
are ��� and {� = 0, 0 < � < 1}, then � will change to {� =
0, � = 1}. Finally if they are ��� and {� = 0, 0 < � < 1}, then�
will change to ���.
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Suppose now that � forms a mixed strategy consisting,

with some positive probabilities, of ���, ���, or ���. But then�
can change that part of his mixed strategy and become better
of.herefore there is noNEwithmixed strategy for� either.

Case 6b. {� = 1, 0 < � < 1}.
Now we distinguish among the following subcases.

If the strategies are ��� and {� = 1, 0 < � < 1}, then there is
no NE because� will change to � = 0, � = 1. If the strategies
are ��� and {� = 1, 0 < � < 1}, then� will change to ���. If the
strategies are ��� and {� = 1, 0 < � < 1}, then � will change
to ���.

However, the pair ��� and {� = 1, 0 < � < 1} is
an NE for any such �. Inspection of the graphs reveals that
given the strategy of the other player, neither � nor � can
change strategy and improve his/her payof.his equilibrium
requires that � plays �1 from �1 and spins a wheel to decide,
from information set �2, between �2 and �2; equally well, for
the point of view of her payof, � can play {� = 1, � = 1}
or {� = 1, � = 0}. So there is no advantage to her, at all,
in taking a more complicated decision of spinning a wheel.
We also note that {� = 1, � = 1} gives a higher payof to �,
although this is not the concern of�.

We now look at the possibility of a mixed strategy for

�. No such strategy could contain either ��� or ��� with a
positive probability because � can change that part of his
mixed strategy and become better of. So the only possibility

is for strategies ��� and ��� to bemixed. But then� can change
to {� = 1, � = 1} and become better of.

A.4. he Bayesian Updating of Conditional Probabilities. he
calculations, through Bayesian updating, of the conditional
probabilities, beliefs, attached to the nodes of �1 and �2 in
Figure 4 are based on these strategies.

Consider information set �1. he let-hand-side node is
denoted by �1 and the right-hand-side one by �2. We wish to
calculate the beliefs attached to these nodes by �. Using the
Bayesian formula for updating beliefs, (see; e.g., Glycopantis
et al. [26]), we can calculate these conditional probabilities.
We know that �1 is entered only if� plays � or ��. Hence

Pr (�1/�)
= Pr (�/�1) × �� (�1)
Pr (�/�1) × Pr (�1) + Pr (��/�2) × Pr (�2)

= 1 × 1/2
1 × 1/2 + 1 × 0 = 1.

(A.3)

Similarly we obtain the conditional probability Pr(�2/��) = 0.
On the other hand �2 is entered only if � plays either �

or ��. he let-hand-side node is denoted by �3 and the right-
hand-side one by �4. Hence

Pr (�3/��)

= Pr (��/�3) × Pr (�3)
Pr (��/�3) × Pr (�3) + Pr (�/�4) × Pr (�4)

= 1 × 0
1 × 0 + 1 × 1/2 = 0.

(A.4)

Similarlywe obtain the conditional probability Pr(�4/�) =1.

B.

We consider here the following linear system:

�1 + �2 = 1 − �,
�3 + �4 = �,
�1 + �3 = 1 − �,
�2 + �4 = �,

(B.1)

where 0 ≤ � ≤ 1 and 0 ≤ � ≤ 1.he question is whether there
is always a nonnegative solution for arbitrary � and �.

he family of solutions is given by

�4 = �,
�3 = � − �,
�2 = � − �,

�1 = 1 − � − � + �,

(B.2)

where � must be nonnegative and must also satisfy � ≤ �, �
and � ≥ � + � − 1. here is a range of � that satisies these
relations as long as min(�, �) ≥ max(� + � − 1, 0) which is
always true. It is straightforward to show that all solutions are
of this form.

he result here is used in the text with explicit reference.
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