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Abstract 
The recent advances in Fuel Injection Equipment (FIE) have led to the identification of 

deposits found in the fuel filters and injector equipment. The work carried out here identifies the 
effects of cavitating flows on the physical and chemical properties of diesel fuel in order to try to 
evaluate the mechanism for deposit formation in FIE equipment using optical techniques to 
characterise the cavitating flows. 

Two sets of experiments have been carried out in order to understand the impact of cavitating 
flow on diesel fuels. The first experiment investigated the effects of sustained cavitating flow using a 
fuel recirculation rig. Samples of commercial diesel were subjected to forty hours of intense cavitating 
flow across a diesel injector in a specially designed high-pressure recirculation flow rig. Changes to 
the optical absorption and scattering properties of the diesel over time were identified by the 
continuous measurement of spectral attenuation coefficients at 405 nm by means of a simple optical 
arrangement. Identical diesel samples were maintained at 70 oC for forty hours in a heated water bath, 
in order to distinguish the effects of hydrodynamic cavitation and the regulated temperature on the 
cavitated diesel samples. The commercial diesel samples subjected to high pressure cavitating flow 
and heat tests revealed a response to the flow and temperature history that was identified by an 
increase in the optical attenuation coefficients of the cavitated and heated samples. The contribution of 
cavitating flow and temperature to the variation in spectral attenuation coefficient was identified. It 
was hypothesised that the increases observed in the spectral attenuation coefficients of the cavitated 
commercial diesels were caused by the cavitation affecting the aromatics in the commercial diesel 
samples. The fuels were sent for a GC x GC and particle count analysis and results show significant 
increase in particle number count in the fuels as a result of cavitating flow. An increase in particle 
count to such high magnitudes was not observed for the heat test samples. Qualitative chemical 
modelling results of the pyrolysis of fuel vapour cavities during collapse at high pressures and 
temperatures have shown possible pathways leading to the formation of particulates. The presence of 
aromatics in diesel fuel was considered to be key species to the formulation of soot particles, however 
at extreme pressures and temperature paraffins may also have the propensity to breakdown into 
aromatics and further on to the formation of soot particles as observed by the pathway analysis in the 
modelling in the appendix. 

The second study undertaken involved the analysis of the near nozzle external spray 
dropsizing and atomisation characteristics of fuels with different distillation profiles using LIF-MIE 
image ratios. The LIF-Mie image ratios were simultaneously captured synchronously with the internal 
nozzle hole cavitating flow. Internal nozzle flow and sac observations after needle return have led to 
the conclusions that flow angular momentum is sustained in the sac flow after needle return. This flow 
was observed to have a high angular momentum which reduced over time. During the end of needle 
return, bubbles were observed in the sac hole forming as a result of needle cavitation. These bubbles 
retained the angular momentum of the flow post injection (after needle seal). The vortical motion in 
the sac lead to regions of high and low pressures in the sac volume and thus resulted in suction and 
discharge of bubble in the nozzle holes. The bubbles may have a high propensity of containing a 
mixture of fuel and air vapour whereas the suction and discharge offers a pathway to external gases 
entering the nozzle holes and sac volume. For operating engine conditions this would be post-
combustion exhaust gases re-entering the nozzle holes. The combination of the bubble formation, its 
vortical motion due to the angular momentum of the liquid flow, its composition and high 
temperature, may form ideal conditions for pyrolysis like reactions which may lead to the formation of 
soot particles and deposits in the nozzle hole, sac and needle. Fuels with different distillation profiles 
were investigated to observe their external dropsizing distributions at 350 bar injection pressure. 
Results showed that fuels with lighter fractional compositions which also had lower viscosity 
produced lower Sauter Mean Diameter (SMD) distributions than fuels with higher distillation fractions 
and higher viscosity. Whether this is as a consequence of the distillation profile alone and is not 
influenced by the viscosity differences has not been investigated yet and would form the basis of 
further investigations and publications. 
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Chapter 1 Introduction 

 

In recent years, significant progress has been achieved in the development of diesel fuel 

injection technology. Its biggest advance is a result of the development of efficient high-

pressure common-rail technology which provides flexibility during engine management and 

control over the entire range of engine speeds and fuelling requirements. In direct injection 

diesel engines equipped with a common rail system high injection pressures (up to 2000 bar) 

are used to enhance the spray atomisation and air-fuel formation in the combustion chamber. 

Air-fuel mixtures with high homogeneity result in; shorter ignition delays, low local 

temperatures and low CO and soot emissions, due to the improved energy delivery to the 

piston. As a result, the performance efficiency is significantly affected by the quality of the 

fuel atomization, evaporation and mixing [1].  

 

Recent developments in common rail diesel engine technology still leave space for further 

improvements in its ecological and economical features. One of the possible improvements 

here is to control atomization and mixing of the fuel spray. The characteristics of a fuel spray 

depend on the fuel properties, geometry of the injector and the flow conditions upstream 

(inside) and downstream of the injection nozzle. Two main types of diesel injectors that are 

used in direct injection systems are: valve covered orifice (VCO) injectors and sac-type 

injectors as seen in Figure 1.1. The number and arrangement of nozzle holes, as well as their 

geometries may vary depending on the desirable conditions of operation of diesel engine. 

Computational fluid dynamics provides a useful tool for the prediction of the flow in a diesel 

injector and, thus, design and optimisation of the injection process. Although numerical 

simulations have become more efficient, the experimental method of study is considered more 
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reliable for use in the design of diesel injectors due to the uncertainties in specification of 

many parameters, such as geometry imperfections of real injectors, and also difficulties in the 

numerical modelling of the cavitation phenomena, which always accompanies the flow in 

diesel injectors [2,3]. 

 

  (a)    (b) 

Figure 1.1 Two Types of diesel Injector Nozzles: (a) Valve-Covered Orifice (VCO) and; (b) the Sac Type 

 

Recent developments in diesel engines and fuel injection equipment combined with the 

change to ultra-low sulphur diesel and bio blends have resulted in increased reports regarding 

deposits in injectors and filters [4]. These deposits appear to be more carbon like and more 

granular than deposits seen previously [5]. The deposition of materials within diesel fuel 

injection equipment and the blockage of fuel filters by material phase separating from diesel 

fuels are far from new phenomena. Previously identified causes include [5]: 

 Fuel Adulteration with lubricant oil 

 Additive miss-or over treatment 

 Or bio-fouling. 

 

The observed change in frequency of such occurrences suggests strongly that one or more 

recent changes must be responsible. Possibilities of the candidates responsible are: 

 Higher injection pressure to meet tighter emission requirements and  
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 Shear and/or resulting temperature generated within the injectors. 

 

It should also be noted that in a high pressure common rail engine, fuel is released from the 

high pressure common rail to the low pressure fuel return line through inlet and outlet 

restrictors on the valve control chamber [6]. Dependent upon the pressure drop and orifice 

size involved, there arises the possibility of jetting high pressure liquids into liquids with 

lower pressure, thus generating shear, friction and consequently heat. So far the extent and 

possibility of these effects are not clear. It has been suggested that engineering improvements 

involving increased fuel injection pressure and the resultant high pressures and concomitant 

high temperatures contribute to the observed fouling problem by accelerating fuel aging [5]. 

 

Power 
Setting 

Supply 
Flow (GPH) 

Return 
Flow (GPH) 

Burn 
Rate (GPH) 

Return % 

idle - 5% 

900 

870 30 96.67 
20% 808 92 89.78 
40% 716 184 79.56 
60% 624 276 69.33 
80% 532 368 59.11 
100% 440 460 48.89 

Table 1.1 Table showing the fuel consumption and return rate in gallons per hour of a marine boat engine [7] 

 

In diesel engines, fuel is pumped in a re-circulating loop at a higher volume than actually 

required by the engine. This serves to cool the injectors as well as powering the engine. Fuel 

unused is circulated back into the tank for re-use. Data from a large scale Caterpillar engine 

model 3612 of rated power 4640 bhp and rated speed 900 rpm [8]  shows that when the 

engine is running at a full load the diesel fuel burn rate was 3.55 gallons per minute however 

its supply was 19 gallons per minute thus close to 81% of fuel supply was returned back to the 

tank.  Data from a marine workboat diesel engine shows the supply return and burn rates from 

idle to full power as seen in Table 1.1. Modern common rail direct injection diesel engines 
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operate through the injection of high pressure liquid diesel fuel through magnetic solenoid 

actuated injectors directly into the engine cylinders. The diesel fuel is supplied to the injectors 

at high pressure from the common rail. When the fuel is supplied to the injectors, a proportion 

is injected into the engine, and the balance is returned to the fuel tank. If the engine is 

operated at low/part load, the rail pressure may be as low as 600 bar, and up to 40% of the 

high pressure diesel supplied to the common rail and the injectors may be returned to the fuel 

tank via the fuel return pipes in the pump, common rail, and injectors. However, when the 

engine is operated at high load, and depending on the engine, pump and common rail selected, 

the rail pressure may attain pressures of 1,400 to 2,000 bar. At these high load operating 

conditions, approximately 70% to 80% of the diesel supplied to the common rail and the 

injectors is injected into the engine, with the remainder being returned to the fuel tank [9]. 

Valves on the high pressure pumps, common rail and injectors regulate fuel through small 

orifices to release the high fuel pressure. Fuel flowing through an orifice, from a very high 

pressure environment to a lower pressure environment, results in it undergoing cavitation. 

 

The consequences of returning a significant fraction of the fuel supplied to the injectors back 

to the tank is that the proportion of diesel fuel subjected to repeated high pressure pumping is 

a substantial fraction of the original volume. This implies that a significant proportion of the 

diesel fuel has been re-circulated through the high pressure pump and rail and returned to the 

fuel tank, prior to admission to the engine. 

 

In connection to this, fuel-derived deposits and sediments have been observed to develop at 

the entrance to, and inside the nozzle holes in modern multi-hole diesel injectors [10–14]. 

Indeed, deposits along the needle and on the needle seat have also been discovered [13–15]. 

These deposits are likely to have an impact on the internal flow and the external atomisation 
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of the fuel jets emanating from the nozzle holes [16,17]. Engine performance is significantly 

impacted by the formation of deposits which may lead to increased fuel consumption, loss in 

power, poor driveability and failure to start [12]. 

 

Deposits at the exit of the injector nozzle holes may be formed through the partial oxidation 

and/or pyrolysis of liquid diesel fuel located on the outer surface of the injector body, coming 

into contact with hot combustion gases originating in the cylinder [18–20]. The mechanisms 

for deposit formation inside the nozzle holes, on the needle seat and along the needle are 

presently unknown. 

 

The introduction of ultra-low sulphur diesel fuel, bio fuel blending components and modern 

diesel technology, has led to a rise in the incidence of fuel filter and injector fouling. This 

fouling takes the form of black, granular deposits in the injector and filter systems of modern 

engines. These deposits are carbon in nature with C16-C18 acids/esters present [5,21]. Filter 

deposits are a complex mixture of graphitic carbon, polyaromatics, cycloalkanes, aromatics, 

straight chain and substituted alkanes, acids, and inorganics. The cause is independent of 

whether a bio diesel blend or a straight run diesel is being used and thus they may be as a 

result of the higher thermal and pressure loads that the fuel is subjected to as a result of fuel 

injection equipment. 

 

Cavitating flow is believed to occur in high pressure diesel nozzles during diesel fuel 

injection, to significantly affect the structure and atomisation of the fuel jets emanating from 

the nozzles and entering the engine cylinders [2,22]. Cavitation occurs when the diesel passes 

through or over a restriction, causing a large local pressure gradient and/or shear stress in the 

fluid. If the pressure gradient or shear stress in the fluid causes the local pressure to drop to 
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less than the saturated vapour pressure at the local temperature, then the liquid may begin to 

boil locally, forming local pockets of diesel fuel vapour [23]. Cavitation is also thought to be 

capable of altering injector surfaces though local hydro-erosion and hydro grinding [24]. In 

extreme circumstances, cavitation may cause injector failure [25]. It has been observed 

directly in a number of diesel fuel injection experiments [26–28]. There is anecdotal evidence 

that cavitating flow occurs inside automotive diesel common rail pumps during high pressure 

pumping [29]. Hydrodynamic cavitation is likely to occur near the high pressure cylinder 

valves in the pump, and in the fuel return valves located in the pump, common rail, and the 

injectors. In addition, there is a trend within the diesel fuel injection equipment (FIE) industry 

towards increasing common rail pressures. Indeed, Bosch has developed a 2,500 bar common 

rail fuel injection system [30], while both Denso and Delphi diesel Systems have reported the 

development of 3,000 bar common rail diesel fuel injection systems [31]. The industry trend 

towards larger common rail pressures may begin to affect the diesel fuel subjected to such 

extreme conditions, during pumping, storage and in-flow. This may occur through pyrolysis 

and/or intense cavitating flow, causing chemical re-arrangement and decomposition. This 

may, in turn, lead to deposit formation (sedimentation) and ultimately, to equipment failure.  

 

The effect of cavitation on alkanes was first investigated by Suslick et al. [32]. They 

employed high intensity ultrasound on alkane solutions, and discovered primary products of 

hydrogen, methane, acetylene, and smaller 1-alkenes. They suggested that the reactions in the 

system bore strong similarities to high temperature pyrolysis, and concluded that the principal 

sono-chemical process responsible was C-C bond cleavage with secondary abstractions and 

re-arrangements. This was considered to be the consequence of high temperature regions 

developing in the multi-phase solution as a result of cavitation bubble collapse. Bubbles arise 
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due to the nucleation of small voids or cavities in the liquid. The process of nucleation will be 

discussed later on in Chapter 2. 

The corresponding effects of ultrasound cavitation in diesel has been investigated by Price et 

al. [33,34]. They employed high intensity ultrasound to irradiate a diesel fuel sample, and 

observed the decomposition of saturated alkanes, and identified sonically promoted 

polymerization reactions that led to aromatics forming insoluble sediments (gums), similar to 

those reported by Pedley et al. [35] and Kalitchin et al. [36] as a result of the long term 

storage of diesel. 

 

These investigatory reports [32–34] are about ultrasonic sono-chemistry in liquids. This is a 

recently developing field of chemistry, which involves theoretical, modelling and 

experimental research into the acceleration of reaction rates involving chemical reactions in 

liquid suspensions, solutions and/or pure liquids through the use of intense ultrasound. It is 

believed that intense ultrasonic excitation of a suspension, solution or pure liquid induces the 

formation and collapse of many micro-bubbles within the liquid, which are thought to develop 

very large internal vapour temperatures and pressures during bubble collapse. This process is 

known as ultrasonic cavitation, or ultrasound induced cavitation. Indeed, Suslick et al. have 

reported internal bubble temperature measurements of up to 5,000 K occurring during 

ultrasonic cavitation bubble collapse [37,38]. These observations in ultra-sound cavitation of 

diesel raise the question of whether similar effects occur, and are observable in hydrodynamic 

cavitation of diesel. Furthermore, it is necessary to discover whether high pressure diesel 

common rail fuel injection equipment produce hydrodynamic cavitation internally, and 

whether any such cavitation induces sonochemistry effects on the diesel fuel, resulting in 

deposit formation (sedimentation), similar to that reported earlier. It was therefore considered 

necessary to investigate the conditions that exist in high pressure pumping systems, and their 
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effect on the physical and chemical stability of the diesel fuel (through an analysis of the 

variation of the physical and chemical properties and composition of the fuel). 

The aim of this work was to establish whether hydrodynamic cavitation introduced alterations 

to diesel fuel that could be identified using a simple measurement technique. This led to the 

design and manufacture of a high pressure, continuous re-circulation, cavitating flow rig that 

produced intense hydrodynamic cavitating flow continuously, involving a moderate volume 

of re-circulating diesel. A simple measurement technique for the identification and 

determination of change in composition and rate of change of composition of the diesel 

sample was required to be developed. 

 

In this regard, the measurements and observations reported in Suslick et al. [32] and Price et 

al. [33,34] suggest that ultrasonic cavitation in diesel produces pyrolysis and the formation of 

insoluble sediments. Pyrolysis reactions in diesel necessarily result in the formation of 

primary soot particles (1 nm - 10 nm diameter), which are then able to aggregate to form 

larger soot particles (100 nm - 10 Gm), or bind to other particulates to form other sediments 

[39]. Both of these sets of findings and observations suggest the formation and development 

of soot-like particle suspensions in the diesel fuel samples. These lead to two significant 

hypotheses: (1) hydrodynamic cavitation of diesel will produce similar observable effects to 

those produced by ultrasonic cavitation (suggesting that the mechanisms for inducing the 

pyrolysis sono-chemistry in the diesel samples are similar), and (2) the formation of a 

particulate suspension in the diesel will be detectable using a simple optical extinction 

measurement system. 

 

The second hypothesis required the development of a simple optical extinction measurement 

system, intended to identify and determine variations in the spectral extinction coefficients of 
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the diesel samples as a result of changes in the composition of the samples, and/or the 

formation and development of particle suspensions in the samples, arising out of cavitation 

induced diesel fuel pyrolysis. 

 

The optical extinction measurement system developed and employed in these experiments 

was a simplification of the spectral extinction and scattering method [40,41]. This method is 

used widely in the determination of particle properties in suspensions, colloids and aerosols 

[42,43]. It is also employed in the determination of real and imaginary refractive indices in 

absorptive media [42]. 

 

A number of commercial and non-commercial diesel samples were subjected to continuous 

cavitating flow and exposure to a hot water bath in the course of the experimental work 

reported here. The results obtained from the diesel samples and model diesel samples are 

reported and will be discussed herewith. The commercial diesel samples discussed here 

consisted of newly bought samples, and samples that had been stored separately in diesel 

storage tanks for a year. The model diesel samples tested comprised of a paraffin blend (> 98 

% paraffins), containing zero aromatics and a mixture of the Paraffin blend with biofuel. 

 

A hot water bath was employed in order to separate out the combined effects of cavitation and 

the release of internal compression energy during the diesel flow through the diesel nozzle 

into the receiver. This was in order to identify and separate out the effects of temperature and 

cavitation on the diesel samples.  

 

The second set of experiments were initially conducted for the analyses of diesel fuels of 

different distillation profiles and viscosity, to observe the effect of these variations on the 
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internal nozzle cavitation and its link to the external spray drop sizing distribution and thus 

atomisation characteristics. The prospect of this project was large, however only a few aspects 

have been discussed in the work here. Further analysis from the results obtained will form 

part of future publications. The work carried out here does not distinguish whether the effects 

are as a result of a combination of distillation profile variation and viscosity variation. In the 

fuels analysed, the lighter fuels, had lower viscosity than the heavier fuels and thus in order to 

determine whether the changes in Sauter mean diameter distributions were occurring due to 

the varying distillation profile or varying viscosity profiles, it is important to analyse the 

internal flow images, which is out of the prospect of the work reported here. The study here 

does not distinguish the effects solely to be occurring due to changes in distillation profile of 

the fuels. 

 

During the initial testing some phenomena were observed occurring in the nozzle sac and 

holes that led to a link to the base of this thesis and thus the experimental apparatus, 

methodology and characterisation techniques are presented in this work here. The basis of this 

work from the experiments conducted will concentrate on the phenomena observed inside the 

nozzle sac and holes. Some spray sizing distributions will also be presented for completion. 

The degree of atomisation in the spray is related to its combustion characteristics and thus 

formation of particulates and emissions. The degree of atomisation can be controlled by an 

increase in injection pressure, change in nozzle characteristics and changes in fuel volatility 

and distillation characteristics. Thus the drop sizing distribution of fuels with different 

distillation profiles is also important due to the relationship of the degree of atomisation of the 

fuel to its combustion characteristics and thus particulate formation and emissions. 
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A vortex flow phenomenon was observed at the end of the injection in the sac volume. The 

vortex flow occurred as a result of needle cavitation and continued after the needle had 

returned to seal. Circular bubble movement in the nozzle holes due to the sac vortex flow was 

observed and their effects on the potential of deposit formation inside the nozzle holes, sac 

and needle tip analysed. Deposits have been observed to form in these locations in high 

pressure fuel injection equipment by various authors [12–16,19,21,44–46], however the 

phenomena observed here has not been reported in publications thus far. 

 

The importance of the understanding of deposit formation in diesel high pressure injection 

equipment is of grave importance especially because the recent trend to obtain higher 

pressures results in injectors with smaller nozzle hole diameters and thus the formation of 

deposits in these could be catastrophic due to blockages. 

 

This work is divided into eight chapters. Chapter 2 gives a review on the fuels, cavitation, 

atomisation and measurement techniques. The chapter highlights research carried out by 

various authors in the field, combined with information available from theoretical books. 

Initially the chapter develops an understanding of fuel refinement, and fuel composition and 

its performance parameters before moving on to a review on cavitation and atomisation and 

finally experimental measurement techniques used to characterise cavitating flows. 

 

In Chapter 3 a description of the experimental apparatus, experimental procedures and 

calibration work carried out for the analysis of the effects of prolonged periods of cavitating 

flow on diesel fuel. The results obtained here are described in Chapter 4 with a combination 

of the fuel GC x GC analysis results. In addition to this two merged chemical kinetics models 

have been used to obtain effects of high pressure bubble collapse on the fuel chemical 
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composition and the possible pathways leading to the formation of soot, which are presented 

in Appendix B. The results of the analysis will identify a pathway to the formation of soot 

particles from a derived chemical composition of diesel fuel. Due to the model having no 

validation, as it was compiled by merging two separate models, the results are qualitative and 

are only used to observe possible pathways to the formation of soot. 

 

In Chapters 5 and 6 the experimental setup, apparatus, high speed acquisition setup and 

timing, laser sheet dropsizing setup, experimental methodology and calibration are described 

of the second investigation. The design of an acrylic nozzle used in these studies is described 

here. Chapter 6 also includes the results from the injected mass calibration, manufacturing 

calibration, imaging error analysis and laser profile measurement. These two chapters provide 

an overview of the experimental setup and run procedures with calibration analysis for the 

results to follow. 

 

The results from experiment described in Chapters 5 and 6 are discussed in Chapter 7 giving 

importance to the vortex flow occurring in the sac volume and the resulting rotational bubble 

movement in the sac and linear motion in the nozzle holes. This chapter also describes the 

effects of various fuels of different distillation profiles on their Sauter mean diameter intensity 

distributions and thus atomisation characteristics. 

 

Finally Chapter 8 provides an overall conclusion of the results obtained thus far concluding 

with some ideas of further work in the field. 
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Chapter 2 Literature Review 

 

2.1  Diesel Fuel Background 

 

Diesel fuel keeps the world economy moving. When burnt it produces chemical energy and 

this energy is used in many applications and industries for example in electric power 

generation, road transport, farming, marine shipping, military transportation, rail 

transportation and off-road uses such as mining and construction. Most of these applications 

however use the chemical energy produced and convert it to mechanical power. This section 

will discuss the production, composition, performance parameters of diesel fuel and diesel 

fuelled cars. The review on this section on diesel Fuels has mainly been compiled from [47] 

and other fuel regulatory data and reviews found online. A single reference has been stated as 

work found various sources provided similar accounts through various documents from fuel 

manufacturers and webpages found on the internet. The work describes fuel refinement 

processes from which the reader can gain a brief understanding of the processes involved in 

fuel manufacture and thus its composition. The fuel composition will relate to work found in 

later chapters which include fuels analysis. Fuel performance parameters define how a fuel 

will act in a combustive environment. The work here describes the effects of this performance 

parameters on the fuel properties and how they will affect the propensity of the fuels to 

cavitate, atomise and thus combust. Finally a few alternative fuels are discussed before 

concluding with a section on fuel additives used in the commercial fuels today and how they 

affect the fuel performance. 
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 Refinement from crude oil  2.1.1

 

Diesel fuel is made from petroleum crude oil which is primarily composed of hydrocarbons of 

the paraffinic, naphthenic, and aromatic classes. The petroleum crude oil is refined to produce 

various fuels including diesel, and other oils and waxes. The refining process consists of the 

separation, upgrading and conversion processes. During the initial two stages the feedstock 

crude oil remains otherwise unchanged however the final refining stage changes its molecular 

structure. 

 

The most common separation process is distillation. In the separation process, the feed crude 

oil is separated into two or more components based on a physical property. This physical 

property when distilling is the boiling point. Distillation is a process used to separate wide 

boiling range mixtures into products with narrower boiling point ranges. Initially 

hydrocarbons with low boiling points like propane and butane rise to the top and are removed. 

Gasoline has a slightly higher boiling point and does not rise to the top of the distillation 

chamber. It is drawn off from the side of the column. Kerosene and diesel which have even 

higher boiling points are drawn off successively lower from the column. Refining by 

distillation alone yields too much of the high boiling point hydrocarbons and not enough low 

boiling point ones. In addition to this the quality is often poor. 

 

The upgrading processes improve the quality of the distillates obtained earlier by using a 

chemical reaction to remove compounds present in trace amounts that give them an 

undesirable quality. During the upgrading process undesired components in the hydrocarbons 

past the refining process are removed by a hydrogen treating process. The processes run the 

gamut from mild conditions that remove compounds like olefins, some sulphur and oxygen 
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compounds, to more severe conditions that saturate aromatic rings and remove almost all 

sulphur and nitrogen compounds.  

 

The conversion process fundamentally changes the molecular structure by catalytic cracking 

and hydrocracking. In the cracking process heavy hydrocarbons are broken down into simpler 

molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the 

precursors. Hydrocarbons with higher boiling points are broken down into lower boiling point 

hydrocarbons by subjecting them to a very high temperature.  

 

 
Figure 2.1 The crude oil refining process [48] 
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Figure 2.2 The distillation curves for diesel fuels over a range of fractions from about 150- 360 ºC [47] 

 

In a modern refinery crude oil is fed to the distillation column where the straight run naphtha, 

light and heavy boiling point gasoline, chemical naphtha, kerosene, and diesel are separated at 

atmospheric pressure. The vacuum gas oil (VGO) obtained from the vacuum distillation of the 

atmospheric bottoms are fed to either the fluid catalytic cracking (FCC) unit or the 

hydrocracker. The vacuum distillation resid may be used as a low value, high sulphur fuel oil 

for onshore power generation or marine fuel. The diesel fuel produced by a refinery is a blend 

of all the appropriate available streams: straight run product, FCC light cycle oil and 

hydrocracked gas oil. Figure 2.1 gives an overview of the crude oil refining process. The 

straight run diesel may be acceptable as is, or may need minor upgrading for diesel used in off 

road use. The diesel blends formed have to meet all performance, regulatory and economic 

requirements. Although crude oil can continue up to about 370 ºC, or slightly higher, before 

thermal cracking is liable to occur, diesel fuel mostly comprises of fractions boiling off from 

approximately 250 ºC  to 355 ºC as compared to 15 ºC  to 210 ºC for gasoline [47]. The final 

diesel blend detailed composition will highly depend on the primary crude oil feed and the 

refiner has limited control over it. Figure 2.2 shows the typical distillation curve of 

commercial diesel fuel.   
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 Composition of diesel fuel 2.1.2

 

Diesel fuel is a very complex mixture of thousands of individual compounds, most with 

carbon numbers between 10 and 22. Diesel fuels are commonly mixtures of hydrocarbons of 

class; paraffins, olefins, napthenes and aromatics. Each class of hydrocarbon has different 

physical and chemical properties and thus each blend of diesel fuels is different from another 

relative to each having different proportions of these classes. Important fuel properties like 

boiling point, freezing point, density, heating value, Cetane number and viscosity vary 

depending on their relative proportions of classes of hydrocarbons. 

 

Paraffins have the general formula CnH2n+2, where “n” is the number of carbon atoms (carbon 

number) in the molecule. There are two subclasses of paraffins: normal paraffins and iso-

paraffins. Normal paraffins have carbon atoms linked to form chain-like molecules, with each 

carbon– except those at the ends – bonded to two others, one on either side. Iso-paraffins have 

a similar carbon backbone, but they also have one or more carbons branching off from the 

backbone. Normally decane and 2, 4-dimethyloctane have the same chemical formula, C10H22, 

but different chemical and physical properties as seen in Figure 2.3. Compounds like this, 

with the same chemical formula but a different arrangement of atoms, are called structural 

isomers. 

 

 

Figure 2.3 Paraffins: n-Decane C10H22 and 2, 4-Dimethyloctane C10H22 

 

n-Decane C10H22 2,4-Dimethyloctane 



 

 

18 
 

Naphthene is the term used in the petroleum industry to describe saturated cyclic or ring 

hydrocarbons. The same compounds are also known as cycloalkanes and cycloparaffins. They 

have some of their carbon atoms arranged in a ring as can be observed in Figure 2.4. The 

napthenes in diesel fuel have rings of five or six carbons. Sometimes two or more rings are 

fused together, with some carbons shared by adjacent rings. Napthenes with one ring have the 

general formula CnH2n. 

 

 
Figure 2.4 Napthenes: Butylcyclohexane C10H20 and Decalin C10H18 

 

Olefins are similar to paraffins but have fewer hydrogen atoms and contain at least one double 

bond between a pair of carbon atoms. Olefins rarely occur in crude oil; they are formed by 

certain refinery processes. Like paraffins, olefins with four or more carbons can exist as 

structural isomers. Olefins with one double bond have the general formula CnH2n, the same as 

napthenes as observed in Figure 2.5. 

 

 
Figure 2.5 Olefin: 1-Decene 

 

As with napthenes, some of the carbon atoms in aromatics are arranged in a ring, but they are 

joined by aromatic bonds, not the single bonds found in napthenes. Aromatic hydrocarbon 
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rings contain six carbon atoms. Benzene is the simplest aromatic compound. The benzene 

structure was originally conceptualized as two equivalent structures with alternating single 

and double bonds. Each structure continually transformed itself into the other as the double 

bonds flipped back and forth between different pairs of carbon atoms. Now, we know that all 

the carbon to carbon bonds in benzene are equivalent. The shorthand representation of 

benzene is a hexagon with a circle inside representing the aromatic bonds as in Figure 2.6. 

One-ring aromatics have the general formula CnH2n-6. Polycyclic aromatics are compounds 

with two or more aromatic rings. These rings are fused together, with some carbons being 

shared by adjacent rings.  

 

 
Figure 2.6 Aromatics: Benzene 

 

 
 

Figure 2.7 Aromatics: Naphthalene C10H8, Toluene C6H5.CH3, Anthracene C14H10 
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Paraffins and napthenes are classified as saturated hydrocarbons because no more hydrogen 

can be added to them without breaking the carbon backbone. Aromatics and olefins are 

classified as unsaturated hydrocarbons. They contain carbon to carbon double bonds or 

aromatic bonds that can be converted to single bonds by adding hydrogen atoms to the 

adjacent carbons. When straight-chain olefins are saturated with hydrogen, they become 

paraffins by a process called hydrogenation. When aromatics are completely saturated with 

hydrogen, they become napthenes; when they are partially saturated, they become cyclic 

olefins. Some molecules contain structural features characteristic of two or more hydrocarbon 

classes. For example, a molecule could contain an aromatic ring, a naphthenic ring, and a 

paraffinic chain. Chemists have established a hierarchy of hydrocarbon structural features, 

with aromatics at the top, followed by olefins, napthenes, and paraffins. A compound with 

features of more than one class is placed in the class highest in the hierarchy. So, in our 

example, the molecule is classified as an aromatic.  

 

 
Figure 2.8 Other Aromatics: Butyl benzene C10H14 and 2-Methylnaphthalene C11H10 

 

While carbon and hydrogen are the predominant elements in crude oil, small amounts of 

sulphur, nitrogen, and oxygen are also present. These elements are called heteroatoms 

(“other” atoms). Molecules containing heteroatoms are not classified as hydrocarbons. 

Typical examples found in diesel fuel include dibenzothiophene and carbazole.  
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The effects on emissions of fuel aromatic content were examined by Cuvelier et al [49]. Tests 

were conducted on three cars and two heavy-duty engines, representing a range of typical 

Euro 3/III technologies. One of the cars was equipped with common-rail injection, one with 

unit injectors, and one with an advanced rotary pump. The cars reflected the most advanced 

engine technologies available at the time. One of the heavy-duty engines had a capacity of 7.3 

litres and was equipped with an in-line pump but not exhaust gas recirculation (EGR). The 

other engine had a capacity of 10.6 litres, and was equipped with unit injectors and cooled 

EGR. The Euro 3 Motor Vehicle Emission Group (MVEG) test cycle was used to test the 

cars, and the European Stationary (steady-state) Cycle (ESC) test was used for the heavy-duty 

engines. Fuel effects were generally found to be small compared with engine technology 

effects and between-test variability, and significant fuel effects were difficult to identify. For 

the cars, the effects of changing the fuel aromatic content varied between vehicles. Only one 

vehicle showed significant effects on particulate matter (PM) and NOx; in this case NOx 

emissions decreased and PM emissions increased as aromatics were reduced, however the 

effects were very small. There were no consistent trends in hydrocarbon (HC) emissions, but 

carbon monoxide (CO) emissions tended to decrease with lower aromatic content. As the total 

aromatics effects were small, it was not possible to quantify separately the relative 

contributions from mono-aromatics versus poly-aromatics. The variation in total aromatic 

content of the fuels was very small and thus no significant effects were observed in the 

emissions. In the case of the heavy-duty engines, reducing the aromatic content of the fuel 

reduced HC emissions but had no significant effect on PM, NOx or CO. The researchers here 

did not vary the total aromatics content in the fuels, an increase in one subset of aromatics 

was compensated by a reduction in another and thus no significant effects due to aromatics 

were observed. 
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A study by Emissions, Fuels and Engine Technologies (EPEFE) [50], tested 19 diesel Light 

duty vehicles. They found that reducing poly-aromatics decreased NOx, PM, formaldehyde 

and acetaldehyde emissions, but increased hydrocarbon, benzene and CO emissions. For 

heavy-duty vehicles, reducing poly-aromatics decreased NOx, PM and hydrocarbon emissions 

[51,52].  

 

Doel et al. [53] examined the relationships between fuel composition and exhaust emissions 

of PAHs from a range of diesel and gasoline vehicles and fuels. The testing was separated into 

two phases. Phase 1 of the experiment consisted of tests on Euro 1 and 2 diesel cars, and a 

Euro II heavy-duty diesel engine. A 1994 heavy-duty engine was also tested during Phase 1. 

This engine had an emissions performance close to the Euro II standard, and was considered 

to be typical of the bulk of the European Euro II heavy-duty diesel fleet. Phase 2 consisted of 

tests on Euro 3 and Euro 4 cars. The cars and heavy-duty engines were tested over the NEDC 

and ECE49 cycles respectively. Five diesel fuels were used in Phase 1. These had a PAH 

concentration of between <1% and 12% by mass. Five more diesel fuels were also used for 

the Phase 2 tests, with a PAH concentration of between <1% and 9% by mass. For the 

gasoline engine vehicle tests, two petrol fuels were used in Phase 1, with benzene content of 

0.17% and 1.59% respectively. These were produced by blending fuels to produce a range of 

aromatic and sulphur content, but were both within the specification limits of EN228. In 

Phase 2 a single gasoline fuel with a benzene content of 0.09% was used. This was considered 

to be representative of the 50 ppm sulphur EN228 grade required from 2005. They found 

older diesel vehicles produced higher PAH emissions and were also more sensitive to fuel 

composition than newer or more advanced vehicle. They concluded that the inclusion of 

mono-aromatics increased the emissions of PAHs having two plus rings, but the poly 

aromatics were found to have a greater effect. Reducing the polyaromatic content to zero, did 
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not eliminate the PAH emissions. A significant proportion of these PAHs being formed were 

combustion-derived. All the gasoline cars tested with three-way catalysts gave lower 

emissions of 2+ rings PAH than the older technology light duty diesel vehicles. A variable 

valve timing (VVT) equipped gasoline vehicle was the lowest emitting of all the gasoline 

vehicles tested. 

  

 Diesel fuel performance parameters and effects on engine performance 2.1.3

 

This section will discuss the performance parameters of fuels and their effect on engine 

performance. The performance critical properties to be controlled when fuel is blended are: 

Cetane number, Volatility, Density, Viscosity, Flash point, Sulphur and Waxing tendancy 

[47]. Each of these properties influences engine performance. 

 

Cetane number is a measure of how readily the fuel starts to burn (autoignites) under diesel 

engine conditions. It is a measure of the percentage of Cetane in a mixture of cetane and 

heptamethyl nonane that has the same ignition delay as the fuel under test. Cetane is a straight 

chain normal hexadecane (C16H34) whereas heptamethyl nonane is a multiple branched 

alkane. The cetane number is precisely defined as the percentage n-cetane + 0.15 times the 

percentage of heptamethyl nonane contents of the blend of reference fuel having the same 

ignition quality as the fuel under test. A fuel with high cetane number starts to burn shortly 

after it is injected into the cylinder. Therefore it has a short ignition delay period. A fuel with 

low cetane number resists autoignition and has a longer ignition delay period. Ignition delay is 

important because, if it is too long, the bulk of the charge in the cylinder tends to fire 

simultaneously, causing violent combustion. Although too high a cetane number can cause 

ignition before adequate mixing and thus increase emissions. The actual delay represented by 
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the cetane number is only valid in the engine it was measured and the fuel performance may 

differ in other engines. 

 

Carrying out laboratory engine tests, however is not a convenient method of assessing the 

quality of fuel, so two other criteria are widely used. One is the diesel index and the other 

cetane index. The diesel index computed mathematically is computed by multiplying the 

aniline point of the fuel by (lowest temperature in ºF at which a fuel is completely miscible 

with an equal volume of phenylamine aminobenzene) its API (American Petroleum 

Institution) gravity divided by 100. The Cetane index CI is calculated from API gravity and 

its mid-volatility (mid-boiling point T50 (50% recovery temperature). According to ASTM D 

4737 1988, the cetane index is given by: 

                                                                                                                      

Equation 2.1 

 

Where B=e [-3.5(D-0.85)], D is the specific gravity at 15ºC and Tx represents x% distillation 

temperatures in ºC. 

 

The cetane and diesel indices vary with the hydrocarbon structure and thus the blends need to 

be controlled to be able to set a reasonable cetane number within regulations. In general 

alkanes have high, aromatics, low and napthenes intermediate cetane and diesel indices. A 

value of 50 or above for either diesel or cetane index is an indication that the combustion and 

ignition characteristics of the fuel are good. Very low indices indicate cold starting will be 
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difficult and result in high engine noise. The higher the cetane number, the more complete the 

combustions and the cleaner the exhaust. 

 

Cuvelier et al. [49] examined the effect of cetane number on emissions from the different 

vehicles and engines. Increasing the Cetane Number (from 53 to 58) had no significant effect 

on NOx or PM emissions from either the cars or the heavy-duty engines tested, but it did 

reduce CO and HC emissions (although the reductions were not always significant). No 

differences in emissions were observed between natural cetane fuels and those in which the 

cetane number was boosted using ignition-improving additives. 

 

Volatility  in chemistry and physics refers to the tendancy of a substance to vaporize and is 

directly related to its vapour pressure. High volatility could cause fuel to change from liquid 

to vapour while in the fuel delivery system (vapour lock) and lower the flash point. The flash 

point of a volatile material is the lowest temperature at which it can vaporize to form an 

ignitable mixture in air. A low flash point can have an adverse effect on safety in handling 

and storage. The higher the volatility the more easily complete vaporisation of fuel takes 

place, whereas low volatility components may not burn completely and therefore leave 

deposits and increase smoke. In practice it is the mix of components with different volatilities 

that is important; high volatility components improve cold starting and warm up, while low 

volatility increase deposits, smoke and wear.  

 

Density is significantly important as it is related to the energy content. Injection equipment 

meters fuel on volume basis and any variations in density will affect the power output. 

Density will vary with blends and the proportions of aromatics, napthenes and alkanes in the 
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fuel. Fuels with higher density have a little higher mass flow rate for the same injection 

conditions and thus the mass quantity in the chamber is higher [54,55]. 

 

Viscosity of the fuels affects its spray formation as will be discussed later in the chapter. 

Defined simply, viscosity means resistance to flow or movement. In metric system, centistoke 

is the unit for its measurement. It is function of time taken in seconds for a given volume of 

oil to flow through a calibrated viscometer under specified conditions. Viscosity depends on 

temperature and decreases as the temperature increases, so no numerical value has any 

meaning unless the temperature is specified. In the case of diesel fuels, low viscosity may 

give rise to: - 

(i) Leakage of fuel from pumps and injectors. 

(ii) Abnormal rate of wear of the moving parts of pumps and injectors owing to lack of 

lubricity. 

(iii) Too fine a degree of atomisation with the result that the fuel will not penetrate 

sufficiently far into the compressed air in the cylinder to give the good mixing 

essential for efficient combustion. 

(iv) Overheating of the injector owing to the concentration of the fuel spray and hence 

the flame in a relatively small area around the injector nozzle. 

 

If the viscosity of the fuel is too high, it will impede the flow of fuel to the pump, giving rise 

to poor atomisation and excessive penetration with inefficient combustion of fuel. Suitable 

lower and upper limits are therefore specified for viscosity of diesel fuels. An increase in 

viscosity results in lower velocities inside the sac and orifice in a nozzle, which in turn 

decreases the velocity gradients and lowers cavitation patterns [56]. 
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Waxing tendancy – wax precipitation can render cold starting difficult and subsequently stop 

the engine. In cold conditions small wax content can crystallise out and partially gel a fuel. 

These crystals can block fuel filters interposed between the tank and the injection equipment 

on the engine, and ultimately cause it to stall. The most likely constituents to form wax 

deposits are paraffins. 

 

 Alternative fuels 2.1.4

 

The need to reduce greenhouse gas emissions (GHG) has accelerated efforts to increase the 

use of non- fossil fuels in road transport. Potential substitutes for diesel fuel include: bio 

diesels; Gas To Liquid (GTL) and; Natural Gas. The importance of alternative fuels to the 

work here is due to their mixture in different blends especially GTL and biodiesel. 

 

 Biodiesel 2.1.4.1

In general the term biodiesel covers a variety of materials in fuels made from vegetable oils, 

recycled cooking greases or oils or animal fats; (rape seed methyl ester-RME; sunflower, 

safflower, babacu, corn, cotton, peanut, soya and castor oils). The definition of biodiesel is a 

fuel comprised of mono-alkyl ester of long chain fatty acids derived from vegetable or animal 

fats. Biodiesel is defined by ASTM (American Society for Testing and Materials) as “a fuel 

comprised of mono-alkyl esters of long-chain fatty acids derived from vegetable oils or 

animal fats, designated B100”. The percentage volume of biodiesel in fuel is represented by 

Bx, where x is the percentage volume (100-x = percentage volume of diesel fuel). E.g. a 

100% pure biodiesel is B100. For a B20 fuel, the composition is 20% biodiesel fuel and 80% 

diesel fuel. 
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Vegetable oils and animal fats consist of three fatty acids (hydrocarbon chains of varying 

lengths bonded to glycerol molecule) commonly known as a triglyceride molecule. In a 

process known as transesterification, these triglycerides react with an alcohol, in the presence 

of a base chemical to form fatty acid methyl esters (FAME). Although biodiesel fuel produced 

from transesterification of triglycerides contains numerous individual FAME species, a 

particular fuel is generally dominated by only a few species. Five species typically dominate 

the composition of FAME derived from vegetable oils and animal fats: palmitic acid, stearic 

acid, oleic acid, linoleic acid and linolenic acid [57]. 

 

Biodiesels have zero sulphur content and relatively high cetane numbers. Due to their 

renewable character, GHG emission reduction potential, and a generally favourable life-cycle 

analysis, they are an attractive alternative to petroleum diesel fuel. The production of 

biodiesel can also result in substantially less pollutant emissions and waste by-products. 

However, as production methods and sources of biodiesel vary greatly, there is a large range 

in the CO2 emissions per amount of fuel produced [58]. 

 

There is a general agreement in the literature that biodiesel and its blends decrease exhaust 

emissions of CO and HC [59,60]. This effect is attributed to the oxygen content in biodiesel, 

which enables more complete oxidation in the engine cylinder. The magnitude of the 

reduction varies. Studies have shown that the use of biodiesel tends to result in reduced PM 

emissions [61]. The effect of biodiesel on PM depends on the composition of diesel 

particulates, and it is specific to the engine and the test cycle.  

 

There are however concerns with the use of biofuels, i.e. materials compatibility; potential of 

increased water content and microbial contamination; increase in NOx emissions; impact on 
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low temperature operability if not properly additized; thermal and oxidative stability and; 

filter plugging [62]. The oxidative stability of biodiesel is also worse than the oxidative 

stability of diesel. This is a critical issue in industry because it affects the quality of the fuel 

and the materials in contact with it. The greater the degree of unsaturation in a biodiesel, the 

greater is its susceptibility to oxidation. This is because the hydrogens of the allylic and 

double allylic positions of unsaturated and polyunsaturated alkyl chains are easily oxidized 

[63].  Westbrook [64] has examined the storage stability of the B100. The author reported 

wide variations if insolubles formation, acid number and viscosity increase. The least stable 

samples of biodiesel exhibited unacceptable levels of insolubles and acidity as early as 4-8 

weeks into a 12 weeks storage test. McCormick et al. [65] examined the stability 

characteristics of biodiesel samples that were commercially available at distributors in 2004 

and showed that the stability range results primarily from the differences in fatty acid makeup 

and natural antioxidant content. The presence of higher levels of oxidation products in the 

biodiesel can lead to the formation of insoluble gums and sediment deposits in the fuel 

systems that can influence vehicle operability. This is one of the main concerns for engine and 

fuel injector manufactures. Terry et al. [66] showed that at very high levels of oxidation, 

biodiesel blends can separate into two phases to cause fuel pump and injector operational 

problems or lacquer deposits on fuel system components. Antioxidants improve biodiesel 

oxidation stability and assure its long tern storage stability [64]. 

 

Biodiesel have shown the propensity to cavitate less than diesel fuels [56,67] due to the 

biofuels having higher viscosity than conventional diesel. The higher viscosity results in 

decrease velocity gradient in the nozzle and thus lowering the cavitation patterns. The vapour 

pressure of biodiesel is lower than that of diesel fuel [56]. Cavitation occurs when the local 

pressure is lower than the vapour pressure of the fuel. Hence, reduction in vapour formation 
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can be expected for fuels with lower vapour pressures. Although recent advances in FIE 

equipment result in injection pressures that are very high, the differences in vapour pressure 

values are important for cavitation inception. 

 

 Gas to Liquid (GTL) 2.1.4.2

GTL is synthetic diesel fuel produced from natural gas using the Fischer-Tropsch process. 

GTL processes can yield high quality fuels with exceptional properties. It is comprised 

entirely of paraffins, with no aromatic content and in addition to that it is free of sulphur and 

nitrogen. GTL has a significantly higher cetane number than conventional diesel typically 70-

75 depending on the paraffin content. It is compatible with existing fuel technology however a 

lubricant additive must be added due to its poor Lubricity properties. GTL has however not 

seen commercial use because of its high production costs. 

 

 Natural gas 2.1.4.3

Natural gas alternatives to fuel include liquefied natural gas (LNG) and compressed and 

adsorbed natural gas (CNG and ANG). Literature for these can be found from various sources 

however they will not be discussed in great detail here due to their relevance to this work. 

 

 Fuel additives 2.1.5

 

Over the next 10 to 20 years, the efforts to improve efficiency, fuel economy and reduce 

emissions will be the dominant factors driving change in engine and fuel technology. Over 

time, the most effective means of meeting the efficiency and emission goals will become 

clear, however, the direction for change is apparent and some of the first steps required for 

engines and fuel technology are well known. A key factor that is enabling the evolution in 
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both the engine and the fuel is the development of effective fuel additive technology that 

allows for the production and safe distribution of quality transportation fuel and ensures 

optimal engine performance and low fuel consumption. There are a number of commercial 

diesel fuel additives that the petroleum industry may use to meet and maintain diesel fuel 

properties. Additives are not the same as fuel components. Fuel components add volume to 

the fuel and fall into hydrocarbon classes whereas additives are added at very low levels 

usually in parts per million (ppm) and do not add any significant volume to the fuels.  Table 

2.1 shows additive types with their functions. 

 

The most important and widely used additives are cetane enhancing additives, lubrication 

additives, pour depressant and cloud point depressant additives. 

 

Type of additive Function/ Improvement Examples of additives 

Cetane number 

improver 

Improves ignition quality by 

raising cetane number.  

Reduces white smoke during start 

up and produces better start-ups 

2-Ethylhexyl nitrate or other alkyl nitrates are used as the 

compounds are thermally instable and decompose rapidly 

at high temperatures and the products of decomposition 

help initiate fuel combustion and shorten ignition delay 

Lubricity 

improver 

Improve fuel lubricity to produce 

better injections and pump 

lubrication 

Mono acids, amides and esters that contain a polar group 

that is attracted to metal surfaces to form a thin surface 

film of lubrication 

Detergents/ 

Dispersants 

Clean injectors and improve spray 

patterns 

Control deposit formation 

Ash-less polymeric detergent additives composed of polar 

groups that bond to deposits and deposit precursors and a 

non-polar group that would enable dissolution in the fuel 

Antioxidants Extend storage life 

Inhibit oxidation 

Reduce gum and precipitate 

formation 

Phenols and amines such as 2, 6 Di-t-butyl-4-methyl 

phenol and phenylenediamine, are the most commonly 

used antioxidants. Antioxidants work by interrupting the 

chain reaction that are set of when oxygen in the fuel 

reacts with other reactive compounds in the fuel 

Fuel stabilisers Inhibit oxidation  

Extend storage life 

Basic amines such as Dimethylcylohexyl amine are used 

as stabilizers as they react with weakly acidic compounds 

in the fuel to form products that remain dissolved in the 

fuels, but not react any further 
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Type of additive Function/ Improvement Examples of additives 

Metal 

deactivators 

Deactivate copper compounds in 

fuel, thereby promoting longer 

storage life 

Metals like iron and copper already dissolved in the fuels 

accelerate reactions involved in fuel instability and metal 

deactivators such as Disalicylidene-1,2-propanediamine 

(DMD) are used to neutralize this catalytic effect 

Biocides Inhibit bacterial and fungi growth 

Help prevent fuel filter plugging 

Biocides attack bacteria and fungi in the fuels formed as a 

presence of air and water 

Pour point 

depressants 

Improve low temperature 

operability 

Improve cold flow properties 

Polymers are used that can interact with the wax crystals 

that form in diesel fuel when it is cooled. They are usually 

blended before wax has formed in the fuel. The polymers 

mitigate the effect of wax crystals on fuel flow by 

modifying their size, shape, and/or degree of 

agglomeration 

Cloud point 

depressant/supp

ressants 

Reduce temperature at which 

paraffins form wax 

Similar to pour point depressants 

De-icers Prevent fuel lines from freezing Low molecular weight alcohols or glycols are used to 

prevent free water in diesel fuels freezing at low 

temperatures 

Anti-foam 

agents 

Reduce foaming when filling 

tanks 

Organosilicone compounds used in low concentration to 

suppress foam formation 

Smoke 

suppressants 

Promote complete combustions 

Reduce exhaust smoke 

Organo-metallic compounds (based on iron, cerium or 

platinum) to act as combustion catalysts 

Rust preventers Reduce the formation of rust in 

the fuel systems and storage tanks 

Compounds such as sarcosines that attach to metal 

surfaces and from a protective barrier that prevents attack 

by corrosive agents are used 

Demulsifiers/ 

dehazers 

Used to increase the rate if water 

separation from the fuel 

They are surfactants such as resin alkoxylates, modified 

polyols and polyimine alkoxylates that break up 

emulsions formed by the polar compounds in fuel, and 

water, and allow them to separate 

Dyes Identification of diesel for 

regulatory compliance 

Red dye or other dyes to mark certain diesel fuels for 

certain specific uses 

Table 2.1 Table showing the different types of diesel fuel quality and performance improvement additives and their 
functions [52,62,68] 
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 Summary 2.1.6

 

Properties Units 
Limits 

Min Max 

Cetane number  51  

Cetane index  48  

Density @ 15ºC kg/m3 820 850 

Viscosity @ 40 ºC mm2/s 2 4 

Sulphur mg/kg  50 

Total Aromatics % m/m  25 

PAH (di and tri) % m/m  5 

T90 ºC  340 

T95 ºC  355 

Final boiling point ºC  365 

Flash point ºC 55  

Carbon residue % m/m  0.3 

Water mg/kg  200 

Fame % v/v  5 

Ash % m/m  0.01 

Particulate contamination, total mg/kg  10 

Lubricity µm  460 

Table 2.2 Diesel fuel properties for markets with requirements for emission controls or other market demands from 
Worldwide Fuel Charter 2012. [52] 

 

The quality of all the diesel fuels is not the same; they depend largely on the source of the 

crude oil. Refiners have to meet fuel specifications and also be at the top of their market. The 

refiner can use various ways to meet the desired specifications i.e. choice of crude oil, 

refinery process, refinery bleeding, or the use of additives. The balance between refining 

actions and additive use is driven by economics. Some refiners may use no additives at all 

apart from regulatory dyes and still provide high quality fuels. Information is not available on 

what types of additives refiners use specifically obviously due to the reasons known to all. 

Table 2.2 shows a table of regulatory specifications to meet emission controls.  
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A summary of diesel fuel parameters, refining, components and additives has been provided 

in here with the effects of these properties to fuel performance or engine performance. The 

sections to follow will discuss literature on cavitation and atomisation in liquids. 

 

2.2 Cavitation, Atomisation and Spray Break Up 

 

Modern common rail direct injection diesel engines operate through the injection of high 

pressure liquid diesel fuel into the engine combustion chamber. The fuel is normally injected 

through a number of nozzle holes located at the base of an injector. The liquid fuel is 

subjected to large pressure gradients inside the injector and the nozzle passages, which often 

causes local boiling of the fuel to create local pockets of fuel vapour. This type of flow is 

called cavitating flow, and is associated with unstable, unsteady vapour cavities forming 

inside the flowing fuel. This subsection will discuss the cavitation phenomena with links to 

relative literature. It begins with a brief overview of the definition and formation of cavitation 

and concludes with its links to the external spray atomisation. 

 

When a liquid is heated at constant pressure, or when the liquid’s pressure is reduced under 

constant temperature conditions by static or dynamic means, a fluid state is reached ultimately 

at which vapour and gas filled voids become visible and grow due to diffusion and 

vaporisation effects. In the case of heating at constant pressure we call the void formation 

boiling while in the case of reduced pressure at constant temperature it is named cavitation. 

Cavitation can also be described as the formation of vapour or gas cavities within a given 

liquid due to pressure drop. Cavitation is commonly known as the process of formation of 

voids in a liquid due to sudden pressure drop, when the local tension pv – p exceeds the tensile 
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strength of the liquid pv – pcr [69]. The tensile strength of a liquid depends on the presence of 

weak spots in the liquid, which provide the nuclei for the phase transition process. 

 

Cavitation in a more general sense is a process of formation and also consequent collapse of 

bubbles in a liquid under a local decrease in pressure [70]. Due to the inertia of the liquid and 

compressibility of the gas-vapour bubble content, the pressures and temperatures can become 

extremely high inside a bubble under collapse. Depending on the topology of the vapour 

structures in the flow, cavitation can run in a form of travelling bubbles, or vapour pockets, 

extending over the partial length of the nozzle body (cloud and sheet cavitation), or the full 

range of the nozzle body (supercavitation). 

 

Cavitation can occur at millions of locations in a reactor simultaneously and generate 

conditions of very high temperatures and pressures (few thousand atmospheres pressure and a 

few thousand Kelvin temperature) locally, with the overall environment being that of ambient 

conditions [71]. Gogate et. al [71] states four principle types of cavitation namely: 

(i) Acoustic cavitation - using sound waves usually ultrasound (16 kHz-100 MHz) to 

create pressure variations in the liquid.  

(ii)  Hydrodynamic cavitation - pressure variations obtained by using the geometry of the 

system to create velocity variations. 

(iii)  Optic cavitation - produced by photons of high intensity light (laser) rupturing the 

liquid continuum 

(iv) Particle cavitation - produced by a beam of elementary particles, e.g. a neutron beam 

rupturing a liquid. 
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The study here will cover mainly hydrodynamic cavitation, will touch up briefly on acoustic 

cavitation and try and link up the effects of acoustic cavitation to the effects of hydrodynamic 

cavitation on fuel properties and parameters. 

 

 Cavitation bubble dynamics, nucleation, growth and implosion 2.2.1

 

Many observations have proved that the hydrodynamic cavitation occurs in the bulk liquid 

[69] where the vapour-gas bubbles provide the main contribution to the nucleation process. 

Nucleation is the process of the formation of small voids in the liquid.  These voids are then 

convected into a region of low pressure within cavitating flows where they grow explosively 

to macroscopic size and collapse when convected back into a region of higher pressure. Two 

types of nucleation can be defined depending on the nature of the weaknesses, which initiate 

the bubble growth, namely homogeneous and heterogeneous. 

 

Homogeneous nucleation is the process of macroscopic bubble development from small 

voids, which appear in the liquid due to the thermal molecular motion. In classical kinetic 

theory of liquids the thermal motion of molecules is considered as the only mechanism of 

homogeneous nucleation. In pure liquids contained in ideal environments, the nuclei that can 

initiate phase change are microscopic voids caused by thermal motion within the liquid. This 

kind of nucleation is termed homogeneous. In real systems micro-bubbles filled with a gas 

can also initiate homogeneous nucleation. These gas micro bubbles can be present in crevices 

at solid boundaries or small suspended particles.  

 

Contrary to this, in most engineering systems phase transition occurs due to contamination 

associated with the presence of other types of nuclei which are unrelated to the thermal 
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motion of the liquid but occur as a result of the existence of a weakness between the liquid 

and a solid interface. This solid interface can be either the wall of the container or small 

impurities suspended in the liquid. For this reason this kind of nucleation is termed 

heterogeneous. When a liquid is undergoing a constant temperature depressurization, under 

certain conditions, the local pressure can drop below its vapour pressure without any phase 

change occurring. In this case the liquid is in a metastable state and is said to undergo 

“tension” or to be under “tension”, which is essentially the level of pressure drop below its 

saturated vapour pressure it can withstand without phase change. Tension in a liquid prior to 

the occurrence of cavitation is similar to superheat prior to boiling. The conditions that 

influence the outcome of the depressurization are directly related to the existence of 

nucleation sites in the liquid. When there are not sufficient nucleation sites the liquid can 

endure relatively high levels of tension until, due to homogeneous nucleation, the liquid 

ruptures and cavitation takes place. When sufficient nuclei are present, prior to 

depressurization, phase change will take place as soon as the pressure reaches vapour 

pressure. 

 

Cavity nucleation is a complex function of a number of variables including solvent vapour 

pressure, hydrostatic pressure, solution contamination (gas, solid, liquid), surface 

characteristics of solid contaminants (smooth, cratered, etc.), the ratio of heat capacities 

(Cp/Cv) of the dissolved gas, and the ambient solution temperature [72] 

 

Inertial, thermal and gas diffusion effects can drive bubble growth. It is widely accepted that 

bubble growth and collapse in cavitating flows is mainly governed by inertial effects, due to 

the small timescales and bubble sizes. It is in this field of bubble inertial effects that Lord 

Rayleigh [73] pioneered theoretical bubble dynamics by deriving equations for the bubble 
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wall velocity and time of collapse of an empty cavity through energy considerations assuming 

bubble sphericity and constant pressure surrounding the bubble. His analysis despite being 

simplistic set the tone for further research on the behaviour of symmetrical cavities. Plesset 

[74], then formulated the equation of motion for the wall velocity of a spherical bubble by 

dropping the constant surrounding pressure assumption and this equations came to be known 

as the Rayleigh-Plesset equation. 

 

Plesset and Prosperetti [75] carried out a review on the most important works on bubble 

dynamics. They accumulated the vast majority of the most significant research up to then and 

discussed many uncertainties regarding bubble dynamics and its relevance to cavitation. The 

review is in three sections and discusses: behaviour of bubbles which contain contaminant gas 

and can also contain vapour; analysis of features of bubbles that are composed predominantly 

of vapour and; non spherical effects and analysis. Pertinent to the behaviour of gas bubbles 

are many phenomena, some of which are especially critical in acoustic cavitation; these 

include gas diffusion, damping effects which can be sub-divided into viscous, thermal and 

acoustic, and the thermodynamic behaviour of the gas itself inside the bubble during violent 

growth and collapse. For vapour bubbles condensation and evaporation phenomena can affect 

their behaviour, especially when they are collapsing. Finally, non-spherical effects affect their 

collapsing behaviour. Theoretical investigations on these effects are discussed, and the 

method of non-viscous mirror bubble, by which assumes potential flow, is examined as a tool 

to study bubble collapse near a solid wall. The behaviour of pure vapour bubbles is expected 

to be quite distinct from the behaviour of gas or gas and vapour bubbles in cavitation, due to 

above issues. A potential flow describes the velocity field as the gradient of a scalar function: 

the velocity potential. Potential flow is frictionless, irrotational flow. Even though all real 

fluids are viscous, if the effects of viscosity are sufficiently small then the accompanying 
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frictional effects may be negligible. Viscous effects become negligible, for example, for flows 

at high Reynolds number that are dominated by convective transport of momentum. Thus 

potential flow is often useful for analysing external flows over solid surfaces or objects at 

high Reynolds number, provided the flows still remain laminar. Moreover, when the flow 

over a surface has a high Reynolds number, the viscous boundary layer region that forms next 

to the solid body is very thin. Then, to a very good approximation, the presence of the 

boundary layer can be neglected when analysing the potential flow region. That is, the 

potential flow can be assumed to follow the contours of the solid surface, as if the boundary 

layer was not present. In the case of an incompressible flow the velocity potential satisfies 

Laplace's equation. However, potential flows also have been used to describe compressible 

flows. 

 

The collapsing stages of cavitation bubbles appear to be very complex, with many physical 

processes becoming important only during this part of their life-cycle. During a bubble 

collapse the initial hydrodynamic bubble energy is redistributed in at least five different 

channels [76]: a new, subsequent bubble caused by a partial elastic rebound; shockwaves; 

liquid jets; electromagnetic radiation if visible; thermal motions and cold nuclear fusion. The 

rebound bubble distributes its energy in the same channels, when collapsing. The relative 

amount of energy released in each of these energy channels strongly depends on the sphericity 

of the collapsing bubble at its very last stage. This sphericity is in turn determined by the 

presence of boundaries and inertial forces, such as centrifugal forces and gravity. However 

observations in real flows have demonstrated that even single cavitating bubbles are far from 

spherical. This is due the interaction of the bubble with pressure gradients and shear forces in 

the flow or interactions with a solid surface [77]. 
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The frequency of cavitation events increase in space or time such that they begin to interact 

with each other a whole new set of phenomena manifest [69] such as the formation of large 

scale cavitation structures either because of coalescence of individual bubbles or because a 

large region of flow vaporises. Typical large scale structures include vortex cavitation, sheet 

and cloud cavitation which will be discussed later in this section 

 

In order to investigate the chemical consequences of hydrodynamic cavitation (the formation, 

growth and implosive collapse), Suslick et. al [78]  carried out an investigation where they  

introduced a solution of Potassium iodide in purified water saturated by calcium tetrachloride 

at a constant rate into a microfluidizer with a liquid pressure of 1.24 kbar. They varied the 

upstream pressure between 100 and 1500 bar. They had previously conducted tests using 

acoustic cavitation and found out that the sonochemical rates were affected by both the 

polytropic ratio of the dissolved gas and the thermal conductivity of the dissolved gas. The 

former parameter determined the temperature achieved during bubble collapse whereas the 

later was responsible for heat dissipation from the collapsing bubble to the surrounding 

solution. While conducting the hydrodynamic study they fixed the polytropic ratio and varied 

the thermal conductivity. They observed that the rate of formation of reactive species tri-

iodide increased with increase in liquid pressure, whereas it exponentially decreases with 

increase in both thermal conductivity of the dissolved gas. They demonstrated that the 

chemical effects of hydrodynamic cavitation and acoustic cavitation respond identically to 

experimental parameters. However these two are different modes of introducing cavitation 

into a liquid (acoustically or hydrodynamically) and the result they obtained shows that the 

chemical effects from both these processes are similar. This opens up investigations whether 

this is the case for multicomponent chemicals such as diesel fuel.  It is important at this point 
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to introduce the two different methods of inducing cavitation and thus sections 2.2.2 and 2.2.3 

will discuss the literature available from these fields. 

 

 Hydrodynamic induced cavitating flow in injector nozzles 2.2.2

 

Hydrodynamic cavitation as previously mentioned relates to cavitation produced by pressure 

variations obtained by using the geometry of the system to create velocity variations. 

Cavitating flow intensity and structure depend strongly on the Cavitation Number [79]. The 

Cavitation number is defined by the equation (Equation 2.2): 

 

vdown

downup

PP

PP
CN 

  

Equation 2.2 

 

Where CN represents the Cavitation number, Pup is the pressure upstream of the injection hole 

(usually approximated to the injection pressure), Pdown the downstream pressure (usually the 

hole exit pressure) and Pvapour is the vapour pressure of the liquid. Cavitation number is 

directly related to the cavitation intensity- the higher the CN the higher the cavitation 

intensity. 

 

When increasing the cavitation number, cavitating flow assumes different forms: 

(i) Incipient-cavitation: when small bubbles are generated and are present only at the hole 

inlet. The cavitating area appears as a glossy cloud of indistinguishable micro-bubbles 

that collapse much before the hole exit. Incipient cavitation identifies flow conditions 

when hydrodynamic cavitation just appears in the flow, in order to establish the 

boundary between a cavitating and non cavitating flow. 
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(ii)  Transient/Developed cavitation is induced by a slightly higher Cavitation Number. 

The cavitation glossy cloud diffuses along the hole but doesn’t reach the hole exit. 

(iii)  Super-cavitation: the cloud-like cavitation pattern in the hole occupies all its length 

and it’s a typical phenomenon present in injection systems.  

Forms (i), (ii ) and (iii ) are accompanied by certain levels of turbulence in the flow; liquid 

tends to fill the cavitating voids, breaking larger void areas in several tiny micro-bubbles. The 

typical glossiness is given by the mixture of liquid and micro-bubbles into a foam-like state. 

(iv) Hydraulic-flip happens when very high Cavitation Numbers are applied, Reynolds 

numbers are compatible with laminar fluid motion, and when the flow is perfectly 

axially-symmetric with respect to the hole axis. This pattern requires particular 

geometric configurations (single hole nozzles).  

 

The Cavitation and Reynolds numbers, and discharge coefficient are defined by Equation 2.2, 

Equation 2.3 and Equation 2.4 respectively. Cavitation numbers describes the nature of the 

flow. It relates the pressure drop (or dynamic head) to the local static pressures. An increase 

in cavitation number signifies an increase in cavitation intensity. Studies of cavitating flows in 

nozzles have revealed that the cavitation number determines an extent of the region inside the 

nozzle filled with the vapour. The discharge coefficient characterises the amount of losses in a 

real flow with respect to the theoretical limit. Decreasing discharge coefficient means that 

losses are increasing in the flow. 

 


DU Re  

Equation 2.3 
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        √            

Equation 2.4 

 

Re represents the Reynolds number, where U is the liquid velocity of the flow through the 

injection hole, D is the diameter of the injection hole and ν is the kinematic viscosity of the 

fluid. Re is a dimensionless number that gives a measure of the ratio of inertial forces to 

viscous forces.    represents the discharge coefficient, where ρ is the density of the liquid and    is the Bernoulli velocity of the liquid due to pressure differences. 

 

Another important parameter is the conical shape factor (K- factor) defined as a ratio of the 

outlet diameter subtracted from the inlet diameter to the inlet diameter as: 

 

                   

Equation 2.5 [80] 

 

Where Dinlet is the hole inlet diameter and Dexit is the hole exit diameter all given in m. A 

negative K factor represents increasing diameter towards the exit (diverging hole) whereas a 

decrease in K factor represents a hole with decreasing diameter (converging hole). 

 

Recent research in large scale injector studies, for cavitation, has identified two clearly 

distinguishable types of cavitating flow; Geometric cavitation as seen in Figure 2.9 and 

string/vortex cavitation observe in Figure 2.10. Geometric cavitation forms at orifice inlets 

and it is due to the abrupt acceleration of the fuel flow as it enters the nozzle holes. It appears 

to be initiated as dense foam of micro bubbles developing in the liquid phase, which evolve 

into a connected volume of fuels vapour running from the hole inlet to the hole exit.  
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Figure 2.9 Geometry -induced cavitation in a nozzle [81] 

 

In multi-hole injectors cavitation in one nozzle hole can affect the flow in the other. In a sac 

volume of injectors, string or vortex cavitation is observed. String cavitation is a highly 

transient phenomenon which occurs inside the nozzle sac. String formation was attributed to 

the interaction between the high momentum annulus flow and the cross flow, which occurs 

due to the intermittent throttling of individual holes by already existing recirculation zones or 

cavitation at their entry. As a result, the flow conditions at the vortex core lead to the 

formation of a low pressure region and, subsequently, of cavitation bubbles, which coalesce 

immediately into a continuous vapour string [26]. 

 

  
Figure 2.10 String-type cavitation in the sac volume of the sac type nozzle [82]; predicted flow structure inside the 

injection hole of a VCO nozzle [83] 
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In fuel injectors huge pressure drops are encountered within very short distances in the nozzle, 

while the life time of the formed vortical structures is usually only a fraction of the injection 

period (approximately 1 ms for typical engine operating conditions). This is the reason the 

formation and development of such vortical structures has only be studied in enlarged nozzle 

models operating under steady-state conditions as observed by [23,27,84–86]. 

 

At present, a number of experimental works have been published in the literature to determine 

the behaviour of cavitating flows in nozzles and orifices in both real-size and enlarged 

models. These experiments help to identify the structure of cavitating flow, i.e. the pattern of 

two-phase flow and the hydraulic resistance of nozzle, which determine impacts of cavitation 

on the flow and the nozzle performance. 

 

 Investigations of cavitating flow in enlarged model nozzles. 2.2.2.1

To determine the structure of a cavitating flow in a nozzle, hydraulic measurements are 

accompanied by visual observations of the flow inside the nozzle. A difficulty in determining 

the structure of cavitating flow in nozzles appears due to the problem of visualizing the flow 

in real-scale transparent nozzles, due to their small size. This requires the application of 

special methods and equipment. To overcome this difficulty, a scaling theory is applied, so 

that larger models can be used. Arcoumanis, Gavaises and others have identified the 

likelihood of cavitation occurring in the internal fuel flow inside these large scale injectors 

[2,87,88].  

 

One of the most frequently used methods of nozzle investigation is to manufacture transparent 

large scale nozzles (10x-20x) from transparent material in order to allow visualization of the 

internal nozzle flow and the cavitation structures. Moreover, if the liquid medium that is used 
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has the same refractive index as the transparent material of the nozzle then it is possible by 

using LDV to determine the velocity distribution inside the injection holes and the nozzle. An 

early investigation that utilized this technique was that of Arcoumanis et al. [89]. In this study 

a Steady-state flow test rig with enlarged model injector (transparent single-hole nozzle) was 

used along with refractive index matching and LDV. Among the major findings, simulating 

diesel fuel with a mixture of hydrocarbons having the same refractive index as the acrylic 

model nozzle was proven to be a useful tool in characterising the internal nozzle flow in 

diesel injectors. Through a series of parametric studies, the measured flow field provided 

insight into the dependence of the injector flow on nozzle geometry, needle lift and injection 

pressure. These results were concluded to be useful for validating multi-dimensional CFD 

models. 

 

Later on in 1999 Arcoumanis et.al [90] used a steady flow test rig with a 20 times enlarged 

mini-sac nozzle in a closed loop common rail injection test rig with optical access, using a 

working fluid that exhibited similar refractive index to acrylic nozzles. A high-resolution 

CCD camera with high-magnification lenses attached was used for flow visualization 

purposes. A spark-light was used as source of back-illumination; the latter was quite 

important for obtaining fine-detail images of the flow. Needle lift and eccentricity were varied 

as part of a parametric study.  The authors found that needle eccentricity caused cavitation 

inception to move from the upper part of the holes’ entrance to the lower part. The eccentric 

needle created off centred low-pressure regions in the holes that were at an angle to the 

direction of the needle movement. The most interesting find was the strings seen in the sac 

volume which seemed to develop transiently and periodically between adjacent holes. The 

strings interacted with existing cavitation films as they convected into the injection holes 

giving rise to significant flow disturbances and hole to hole variations. The authors also 
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identified different flow types with increase in cavitation numbers namely bubbly flow 

(incipient), pre-film stage (plug-type cavitation) and film stage (separated flow). 

 

Focusing now on cavitation effects in nozzle flow, Soteriou et al. [2] were among the first to 

use large-scale transparent diesel injector nozzles to visualize and understand cavitation 

phenomena in such geometries. A steady-state flow rig was used to investigate the flow in 

real-size simple orifices, in sac-type single hole and in VCO/sac-type multi-hole nozzles; 

additionally it was used to visualize the flow in twenty times enlarged transparent models of 

the above nozzles. A transient injection rig was employed with the real-size multi-hole 

nozzles, in order to investigate unsteady phenomena. Injection into liquid and into gas was 

considered, in order to identify different cavitation patterns. Still imaging was used for 

visualization of the cavitating flow inside the large-scale models and for studying the spray 

behaviour in both real-size and large-scale nozzles. Pressure and flow rate measurements were 

carried out in order to calculate the discharge coefficients of each nozzle. From the authors’ 

experiments it became clear that once the Reynolds and the cavitation number were matched 

simultaneously, between real-size flow conditions and large-scale ones, the same transition 

flow regimes and the same dependence of the discharge coefficient on cavitation number were 

observed. This finding was important since it established a macroscopic link between large-

scale and real-size nozzle cavitation.  

 

Another interesting finding was that in the case of a simple submerged orifice with increase of 

cavitation number choking would occur, whereas for the case of injection into gas transition, 

hydraulic flip would take place; the latter transition in the case of the real-size orifice was not 

so clear due to the unavoidable geometrical asymmetries. The effect of turbulence and 

geometrical asymmetries was identified in the experiments which were carried out with a 
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multi-hole nozzle; even with such a nozzle when the needle was absent and with increasing 

cavitation number there would be transition into a hydraulic flipped state; however no flipping 

was observed even with the needle present. Nevertheless, partial hydraulic flip could be 

present in multi-hole VCO nozzles, which were found to produce asymmetric sprays. Finally, 

it is important to report the authors’ finding that with the presence of cavitation sprays were 

observed to atomize right at the hole exit, which means that cavitation enhanced the 

atomization process. 

 

In order to gain more insight in fundamental cavitating flow characteristics, Soteriou et al. 

1998 [91] using the well-known techniques of Refractive index matching, LDV, pressure 

measurements and Laser light sheet illumination along with still imaging of cavitation; 

investigated scaled up plain orifice nozzle; injection with an un-submerged and submerged 

outlet, attached on a steady-state flow test rig. Due to the enhanced clarity of the flow 

visualization technique, cavitation inception was found to take place in three distinct 

locations; in the separated boundary layer, which is located at the hole entrance, in the 

mainstream flow, close to locations of peak velocity, and within the attached boundary layer, 

which is located downstream of the separated one.  

 

Furthermore it was seen that formation of hole cavitation structures depended on Reynolds 

number of flow upstream of orifice; Laminar flow allowed large voids to form while 

Turbulent flow encouraged formation of small bubbles. On the spray characteristics it was 

found that cavitation within attached boundary layer caused the emerging spray to become 

slightly bushy and increased the spray angle. Increase of cavitation number led to the 

formation of plug-cavitation, which appeared much more dense and turbulent, when 

compared to the structures that had been identified up to that transition. As the cavitation 
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number was increased the plug was seen to extend towards the hole exit; prior to reaching it 

there was a significant increase in the spray angle, and the spray appeared bushy and atomized 

directly at the hole exit. Moreover, when plug cavitation extended to orifice outlet the angle 

and bushiness of spray increased significantly and flow in cavitating plug was more turbulent 

than non-cavitating flow which was believed to be a reason for the improved spray 

development.  

 

Kim et al.[88] tested minisac, VCO and hybrid type large scale-transparent nozzles using 

water as the working fluid, capturing images of the internal flow and spray. The authors’ 

concluded that there was unstable cavitation in the sac volume when the upstream conditions 

were steady, which in turn caused fluctuations in the spray shape and axis. They also observed 

that an increase in sac turbulence occurred as a result of low needle lifts which in turn resulted 

in larger spray cone angles. 

 

Roth et. al [27] in 2002 used a 6-hole large scale transparent minisac and VCO type nozzle in 

both steady state and quasi transient flows. The authors used the test rig described in 

Arcoumanis et. al above, to obtain quantitative information about the flow field inside the 

nozzles using a fixed needle. Using the refractive index matching test rig, LDV measurements 

of the flow in both the VCO and minisac nozzles were captured using high temporal 

resolution imaging cameras. Interesting findings were made due to the fact that cavitation 

strings were found to induce hole cavitation, as they were seen to transport bubble nuclei from 

one hole, where cavitation would have already started, to an adjacent one which wouldn’t be 

cavitating up to that time. They also observed vortex/string flow between the needle, needle 

seat and two adjacent holes in both VCO and minisac nozzles. Needle strings were observed 

for both high and low needle lifts in the minisac nozzle however, they were only observed at 



 

 

50 
 

high needle lifts in a VCO nozzle. The LDV measurements showed that there was an increase 

in turbulence levels in the lower part of the injection hole away from recirculation zones 

which occurred at the hole entry, as the cavitation number increased. The turbulence level was 

seen to die out close to the hole exit and almost resemble lower cavitation number cases. 

 

Later on Andriotis et al.[23] in 2008, visualised and simulated 3-D cavitating flow to 

characterise the formation of cavitation inside transparent replicas of fuel injector valves used 

in low speed two stroke diesel engines. His design incorporated five hole nozzles on both real 

size and large scale models with cylindrical as well as tapered holes operating at various 

needle positions. The real size model nozzle injected into air, whereas the scaled model 

nozzle injected into liquid. Visualisations were made using two high speed cameras observing 

the two-phase flows structures in the nozzles. They revealed formation of unsteady vapour 

structures upstream (strings) of the injection holes inside the nozzle volume which were found 

in areas of flow circulation, originating from either pre-existing cavitation sites at sharp 

corners inside the nozzle or from the suction of outside air downstream of the hole exit, the 

later phenomena occurring in tapered hole nozzles low cavitation and Reynolds numbers were 

found to reduce the formation of string cavitation. Their computational predictions revealed 

that the stings structure formed inside the nozzle volume moved with a low circumferential 

velocity component relative to the nozzle axis. 

 

A lot of information has been gained over the years through experimental studies on enlarged 

transparent diesel nozzles. Nonetheless, it cannot be argued that the actual timescales and 

length scales of cavitation as a phenomenon cannot be scaled, which of course points out the 

need for real-size nozzle experiments. 
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 Real-size and other geometry nozzle flow investigations 2.2.2.2

This section will discuss literature in real size nozzle flows as well as flows in other small 

orifice nozzles diameter 1mm or less which tend to replicate single hole cavitation 

phenomena. Authors investigate simpler geometries than diesel nozzles due to the ease of 

carrying out quantitative measurements and the control of various hole to hole interacting 

phenomena. 

 

Chaves et al. [92] used transparent real-size single-hole axisymmetric nozzles made of glass 

with refractive index matching between fuel and nozzle wall, to study hole cavitation using a 

steady-state flow rig. The authors were able to measure the flow velocity in the centreline of 

the nozzle by cross-correlating two light absorption signals with a laser- two-focus-

velocimeter. The enhancing effect of cavitation on atomization was demonstrated by 

experimenting with a nozzle which on the upper part of the hole entrance was well polished, 

but ruffled in the lower part; the emerging spray appeared smooth in the upper part where no 

cavitation occurred inside the hole, but wrinkled in the lower part where cavitation was 

observed. The cavitation would initiate atomization in the lower part. They investigated that 

above an injection pressure threshold that depended on the nozzle geometry and chamber 

pressure, cavitation appeared at the sharp inlet corner of the nozzle. With increasing injection 

pressure the cavitation reached the nozzle exit (supercavitation). The discharge coefficient 

and the spray angle then level off at a value that was almost independent of any further 

increase of injection pressure. The authors’ were successful in measuring the flow velocity in 

the nozzle hole centreline, close to the hole wall and in the emerging jet centreline. They 

found the centreline velocity inside the hole to be very high (close to the Bernoulli value) 

whereas close to the wall it would correspond to the calculated value of the mean velocity 

with the flow area taken to be at the nozzle hole. From the above the authors concluded that it 
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was wrong to consider that the whole geometric area of the hole is occupied by the cavitating 

liquid. 

 

Badock et. al [3] used a laser light sheet and shadowgraph techniques to investigate cavitation 

phenomena, in the spray hole of real size single hole diesel injection nozzles and the break-up 

at the spray-hole exit, using a test rig that allowed for fully transient injection tests by utilising 

a Bosch common rail system with injection pressures up to 60 MPa. The authors modified the 

metal tip of the injector nozzle and replaced it with a transparent nozzle made from acrylic to 

be able to visualise and correlate the internal flow to the spray. The fuel was injected into a 

chamber that could be pressurised up to 1.5 MPa. They found that the laser sheet technique 

was not suitable to visualise both the internal flow and external spray. They observed that the 

phase boundary between the cavitation occurring and Perspex was limited by the surface 

roughness of the drilled holes. Secondary-break-up created stochastic roughness and wrinkles 

on the surface of the spray, which resulted in multiple light scattering. The latter resembled a 

milky haze lying in front of the observing plane. For this reason they only visualised the near 

exit part of the spray. Quasi-transient imaging of the injection event was done by taking 

images from multiple injections at later time instances, since it was not possible to record 

consecutive images from the same event with sufficient resolution. From the obtained images 

the various stages of cavitation development were analysed; at the beginning of the injection 

large gas bubbles could be observed, which even remained in the orifice during two 

subsequent injection events. An important observation was that continuous liquid core was 

visible at all times and it was surrounded by cavitation films. The authors observed no foam 

or any single accumulation of bubbles occurring. The cavitation films appeared to be irregular 

and quite thin initially, but at the point of highest velocity, these films became more regular. 

The authors observed that during the needle closing dissolved gas in the sac hole and the 
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spray hole in form of large bubbles survived the time between injections. They concluded that 

as the bubbles survived that long they could only possess a very small part of vapour. These 

bubbles would be partly sucked into the sac hole at the start of the injection and compressed 

as the pressure wave of the injection pushed them back out. They caused mushroom like 

structures on the emerging spray. 

 

The above investigations have only been carried out in real size single nozzle hole studies. 

The visualization of the flow in realistic multi-hole diesel nozzles has unfortunately only been 

possible recently when Arcoumanis et al. [93] succeeded in visualizing the flow in one of the 

holes of a modified production conical sac nozzle by removing some of the material by 

accurate machining to ensure the hole characteristics remained the same; and fit a quartz 

window in its position. A CCD camera with a high magnification lenses attached was used to 

capture details of various flow regimes formed inside the injection hole. Due to the fact that 

the experiments were steady-state with a constant needle lift they could only attain moderate 

injection pressures, a limitation imposed by the high pressure pump. Two needle lifts and 

various back pressures were tested with the nozzle submerged, so that they could obtain 

results directly comparable with previously obtained results using the enlarged model. The 

comparison of the measured discharge coefficients showed that for high needle lift there was 

a better agreement between the large-scale and the real-size nozzle. It was confirmed for the 

real-size nozzle that after the onset of cavitation the discharge coefficient drops with 

increasing cavitation number, thus reaching asymptotically a minimum value. The authors’ 

did not find any effects of varying Reynolds number under cavitating conditions. Another 

important finding was that string cavitation was observed in the real-size nozzle, but only in 

the high needle lifts case. Visual comparison of the various flow regimes between the two 

nozzles revealed similarities but also distinct differences. In the real-size nozzle and for low 
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Reynolds and cavitation numbers the observed structures collapsed inside the hole, which is 

in contrast to the large-scale nozzle’s case, by which cavitation structures would always exit 

the hole. Nevertheless, the effect of increasing cavitation number was dramatic in both cases, 

with cavitation in the real-size exiting the nozzle hole in misty form. Finally, another 

important finding was that the observed structure sizes did not scale with the hole size. In the 

real-size nozzle they occupied a relatively larger volume fraction. This would support the 

claim that cavitation as a phenomenon cannot be scaled. 

 

Desantes et al. [94] measured both the mass and the momentum flux of the injected spray 

emerging from a two-hole real-size research VCO nozzle at different pressures. They 

investigated the effects of cavitation on spray momentum and outlet velocity. They used a 

common rail system which could inject up to 1500 bar together with a high-pressure injection 

chamber for their investigations. For the momentum-flux measurements, the spray would 

impinge on a force sensor equipped with a piezo-electric pressure sensor and they would 

assume that the force measured by the sensor would be the same as the momentum flux due to 

conservation of momentum. They observed that when there wasn’t any cavitation inside the 

nozzle holes (low cavitation numbers) the mass flux was found to be proportional to the 

pressure difference across the nozzle, and then when cavitation would initiate there would be 

choking of the flow i.e., the discharge coefficient would decrease. Varying the backpressure 

would not have any effect on the mass flux. The momentum flux, however, was not found to 

choke at any condition, and it continued to depend on the applied pressure difference. 

Nonetheless, no analysis was provided by the authors on what could be the causes for this 

phenomenon. They concluded that the outlet velocity increased when cavitation appeared due 

to the reduction of cross section of the liquid phase in the outlet section of the hole. This 

conclusion was deduced from the mass and momentum flux measurements. They also 
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concluded that there was a reduction in area coefficient of the hole once cavitation appeared 

and this resulted in an increase in the vapour phase in the outlet section of the nozzle hole. 

 

Further on in 2009, Lockett et al. [28,67] employed two modified VCO nozzles to identify 

whether it was possible to employ simple optical techniques to discriminate between 

cavitating flows developed, and the physical attributes responsible. This was one of the first 

experiments to utilise a fully modified injector and recreate the full VCO geometry in 

Perspex, to be able to have a full view of all six holes simultaneously from the bottom view. 

This was also one of the first experiments to utilise high pressure (200-400bar) with Perspex 

nozzles. In contrast to all other reviews this author was looking to distinguish between 

different types of fuels by capturing and carrying out image analysis to correlate the cavitation 

to the fuel types. The fuels analysed had different physical properties and were secretly 

blended. The authors would study the cavitating flow occurring inside the nozzle holes by 

high resolution imaging of white light scattering from the cavitation. They employed a high 

power white light source and a high speed camera. In order to be able to verify their results 

and check for repeatability, they used two different techniques; utilise an unchanged bottom 

surface where the acrylic nozzle would attach (shiny surface) and; an anodised (blackened 

surface). The shiny surface produced bright background images and whereas the anodised 

surface produced dark background images which were processed separately and then 

compared.  

 

A novel optical method for the assessment of diesel nozzle flow was developed in order to 

discriminate between the cavitation volume occupied by different diesel fuels during the fuel 

injection process based on high resolution, fast video photography of elastic scattering of the 

white light from the surface defining the liquid-vapour interface formed during nozzle 
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cavitating flow. They observed that the cavitation scattering area increased as a function of 

rail pressure for all the fuels tested, suggesting that the volume of vapour occupying the 

nozzle passages increased with increase in common rail pressure. They observed fuels 

containing FAME additives produced lower cavitation scattering areas than fuels without 

FAME concluding that the addition of FAME results in lower cavitation. They also observed 

the effects of an increase in cavitation leading to mass choke as the previous authors. 

 

Sou et al.[95] in 2007 visualised cavitation in 2-D nozzles and near nozzle liquid jet using 

high speed cameras to investigate the effects of cavitation on liquid jet under various 

conditions of cavitation and Reynolds number. The nozzles investigated were large scale 2-D 

transparent models of single-hole nozzles with variable geometries. They used either tap 

water or light oil. The techniques used were imaging of internal nozzle flow patterns, 

cavitation structures and near hole exit spray structure with high speed digital video and LDV 

measurements inside the nozzle hole. Among other findings, an interesting relation between 

cavitation and spray structure was defined. Cavitation in 2D nozzles and liquid jet were 

classified into the following regimes: no cavitation and developing cavitation (wavy jet); 

super cavitation (spray); and hydraulic flip (flipping jet). It was also observed that cavitation 

and liquid jet near the nozzle exit were not strongly affected by the Reynolds number but by 

the cavitation number. Finally they concluded that strong turbulence induced by the collapse 

of cavitation clouds near the exit would play an important role in ligament formation. 

However ligaments did not always appear when a collapse took place, and some ligaments 

were also observed to appear when there was no collapse taking place. 

 

Diesel injections with various nozzle geometries were investigated by Bae et.al [80] to obtain 

spray characteristics by optical imaging techniques. Sac and VCO type nozzles with single 
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guided needles coupled with rotary type mechanical pump were compared in terms of 

macroscopic spray development and microscopic behaviour using a common rail system. The 

authors also tested a variety of injection hole geometries, with different size holes and taper 

ratio represented as a K factor, in order to be able to give a conclusion on the best injector 

design. The authors used Mie scattering (spark light source and CCD camera) and 

shadowgraphy (Ar-ion laser and ICCD camera) techniques to observe the macroscopic 

behaviour. The microscopic images acquired by a microscopic lens system, strong light 

source and CCD camera. They observed that higher pressure injections produced smaller 

Sauter-Mean-Diameter (SMD) values, a longer spray-tip penetration due to higher spray 

momentum and had a small effect on spray angle. They found that the dominant variables 

influencing the spray droplet size were the injection pressure and nozzle size. 

 

Blessing et al. [96] investigated the comparison of cavitation effects, spray characteristics and 

mixture formation  when using different injection systems. The authors’ test-rig comprised 

three different diesel injection systems namely: a conventional common-rail system (CR); a 

novel amplifier-piston-common-rail system (APCRS); and a pump-line nozzle system (PLN); 

with transparent metal 1-hole and 6-hole minisac real size geometry nozzles for internal 

nozzle observations and the metal equivalents for the spray investigation. The cavitation 

images were captured by a CCD camera illuminated by a light source using the shadowgraphy 

technique and used to measure the micro cone angle of fuel spray close to nozzle exit, spray 

tip penetration, needle lift, combustion imaging with soot formation inside optically 

accessible engine and then a comparison of CFD results to the experimental results carried out 

with a commercial package. They found that rounding the inlet edges from sac hole into the 

spray hole lead to a higher uniformity of the flow and a reduction in cavitation in the spray 

hole. One of the key findings was that conical shape of injection hole (K-factor) influences 
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cavitation behaviour and thus micro cone angle and spray breakup with 1-hole nozzles. The 

higher the K factor, the smaller the micro cone and spray angle, the less cavitation formation 

& spray break-up and the more tip penetration could be observed. Furthermore, the influence 

of K factor onto cavitation formation was also reproduced with CFD simulations.  

 

Comparison of experimental and CFD results for 6-hole nozzle investigations showed fairly 

good agreement regarding cavitation pattern distribution and development. The flow inside 

the sac volume of the nozzle that was connected to the ‘needle-lift controlled’ CR system was 

identified to be responsible for strong fluctuations of cavities inside the injection holes during 

the early stage of injection, which led to increased micro- cone spray angles. Contrary to this, 

the flow inside the nozzle which was connected to the ‘Pressure controlled’ PLN system 

exhibited more stable flow behaviour and therefore a smaller spray angle. After the early 

stage of injection the compared injection systems showed similar cavitation and spray 

characteristics. The formation of thermal nitrogen monoxide was determined by the rate of 

injection and needle lift control. The performance of the CR system was poor compared to the 

PLN system in these areas since it was characterised by a longer needle opening phase and a 

smaller initial injection rate, these two effects leading to a less favourable air-fuel mixture and 

higher thermal NO production. 

 

Payri et. al [22] carried out a study to find out the influence of cavitation on the internal flow 

and the macroscopic behaviour of a spray in diesel injection nozzles using two bi-orifice, one 

cylindrical and one conical nozzle.  The authors initially determined the nozzle geometries by 

none destructive techniques based on silicon moulds. This was done so that they could 

determine the discharge coefficients and critical cavitation conditions. They initially used a 

cavitation test rig to hydraulically characterise the nozzle in order to determine the discharge 
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coefficient in cavitating and non-cavitating conditions. By controlling a pressure regulator in 

their modified injector cavitation test rig they could determine critical pressures. For 

analysing the macroscopic behaviour of the nozzle they setup a CCD camera illuminated by 

and electronic timed flash, synchronous with the injections. During the hydraulic testing it 

was observed that the critical cavitation conditions depended on the conicity of the nozzles; 

lower conicity and smaller rounding radii cavitates. They also concluded that these nozzles 

(with lower conicity) had lower mass discharge as compared to the larger conicity nozzles. 

They also observed an increase in spray cone angle and velocity coefficient, and a decrease in 

nozzle contraction coefficient, as a result of cavitation. 

 

 Later in 2009, [97] the authors R.Payri et al. carried out similar analysis to the one by F. 

Payri, by using eight steel drilled plates. The drilled holes had different diameters and degrees 

of conicity. They investigated the cavitation phenomena in different geometry nozzles and 

capturing the near nozzles spray behaviour under liquid pressurised ambient conditions using 

an ND:Yag laser for illumination. They observed hysteresis in the cavitation phenomena by 

measuring the back pressure needed for bubbles to appear or disappear while decreasing or 

increasing discharge pressure. They observed that once the cavitation bubbles had appeared, a 

pressure in the chamber higher than the value which corresponds to the conditions of bubbles 

appearing was necessary for its collapse. 

 

 Acoustic cavitation 2.2.3

 

Acoustic cavitation can be defined as any observable activity involving a bubble or a 

population of bubbles stimulated into motion by an acoustic field. A high concentration of 

acoustic energy results in localised stresses and temperature and/or fluid velocities. The high 
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energy acoustic waves create alternating regions of compression and expansion that can form 

cavitation microbubbles. The growth and collapse of these microbubbles focuses and transfers 

energy from the acoustic wave to the vapour inside the bubbles, producing extremely high 

localised pressures and temperatures. Acoustic cavitation is responsible for sonochemistry and 

sonoluminescence the former will be discussed in this section. Sonochemistry is defined as 

the chemistry associated with ultrasound. The focussing of acoustic energy has been seen to 

generate highly reactive free radicals that have been observed to significantly enhance 

chemical processing. During the expansion cycle a sound wave of sufficient intensity can 

generate cavities. A liquid is held together by attractive forces, which determine its tensile 

strength. In order to form a cavity, a large decrease in pressure associated with the expansion 

cycle of the sound wave is required in order to overcome the liquids tensile strength. The 

pressure drop required depends on the type and purity of the liquid [98] and its vapour 

pressure. The tensile strength of liquids is reduced by trapped gas in the crevices of small 

solid particles.  

 

A bubble irradiated with ultrasound continually absorbs energy from alternating compression 

and expansion cycles of the wave. These cause the bubbles to grow and contract, striking a 

balance between the vapour inside the liquid and the surrounding liquid. In some cases the 

bubble will simply oscillate in size and in other cases it will increase in size. When it reaches 

critical size and can no longer absorb any more energy efficiently, the cavity implodes and the 

surrounding liquid rushes in. This implosive environment creates an ideal environment for 

chemical reactions [38,98,99]. The dynamics of cavity growth and implosion are strongly 

dependant on local conditions and the form of the material i.e., whether they are liquids, 

extended solid surfaces in liquids or solid particles in liquids. Suslick in 1983 stated that 

unlike all chemical reactions, most sonochemical reactions decrease in rate with increase in 
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ambient temperature, i.e. the temperature outside the cavity. The higher the ambient 

temperature is the more vapour there will be inside the cavity and this will cushion the 

implosions and lowers the temperature of implosion [32]. The ambient gas dissolved in the 

liquid is quite important because the thermal properties of these gases dissolved may vary and 

hence they may drive the temperatures occurring during implosion. A gas with a poor thermal 

conduction retains the heat of the collapsing cavity and thus generating higher implosion 

temperatures. The chemical effects of ultrasound cavitation have been related to bond 

breaking and radical formation in aqueous solutions forming hydrogen and acetylene and 

hydro-peroxide, hydrogen and hydro-oxy radicals [38,100–102].  

 

In 1983, Suslick et al. [32] studied the chemical effects of high intensity ultrasound on alkane 

solutions using a collimated 20 kHz beam from a titanium horn. Reactions were performed in 

a glass sonification cell under Argon atmosphere. They found that acoustic cavitation on 

alkanes lead to carbon-carbon bond cleavage and radical rearrangements and the peak 

temperatures reached in cavities was controlled by the vapour pressure of the solvent. This 

was considered to be the consequence of high temperature regions developing in the multi-

phase solution as a result of cavitation bubble collapse. The ultrasonic irradiation of decane 

produced hydrogen, methane, acetylene and other smaller 1-alkenes. They compared the 

process to a high temperature pyrolysis like event occurring. During their investigation it was 

found that a decrease in the solvent volatility caused: the intensity of cavitational collapse; the 

maximum temperature reached and; the rate of reaction, to increase. 

 

Price et. al [34,33] have carried out high intensity ultrasound irradiation in automotive grade 

diesel fuels to study the formation of sediments. A filtered fuel sample was used in a 

temperature controlled bath, with 23 kHz ultrasound horn. The later analysed the fuels using 
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gas chromatography – mass spectrometry (GC-MC). They found that the filterability of the 

fuels was affected after only a few hours of ultrasonic treatment. The amount of insoluble 

sediment was shown to increase in a logarithmic scale with relation to the sonification time. 

They also observed the breakdown of alkane components similarly to [32]. The rate of alkane 

break down decreased with increase in carbon chain length and it was negligible at C20. They 

concluded that this was due to the longer chained alkanes having a lower vapour pressure. 

Sonification promoted a polymerization reaction which incorporated nitrogen and other 

aromatic components in the fuels to form insoluble sediments. 

 

Wheat et. al [103] investigated the effects of high intensity ultrasound on polycyclic aromatic 

hydrocarbons PAHs in aqueous solution. Two PAHs were chosen as contaminants i.e. 

biphenyl and phenanthrene, which were to be subject to high ultrasound intensity under a 

cooling bath. At the end the aqueous reaction mixture was placed into a separatory funnel and 

dried before being subject to analysis by Gas chromatography (GC) and Gas 

chromatography/mass Spectrometry (GC-MS). Hydroxyl radical substitution reactions in 

aqueous solutions were the primary constituents formed from hydroxyl groups under high 

intensity ultrasound irradiation. 

 

Cataldo [104] observed that the sonication of benzene and toluene at room temperature caused 

the aromatic rings of the compounds to break down and lead to the formation of acetylene and 

coke. They also conducted sonification on naphthenic hydrocarbons namely decalin and 

tetralin and in both cases a dehydrogenation reaction occurred resulting from intense 

ultrasound at room temperature. Further analysis with Fourier transform infrared (FT-IR) 

showed that the compound produced was not coke but a cross linked polystyrene. Work done 

prior to Cataldo by Zeichmeister et. al and Currell et. al, as cited in their journal had observed 
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the formation of acetylene during the sonification of aromatic compounds like benzene, halo-

benzenes, and heterocyclic compounds. Later work on benzene sonication [105] has also 

shown the formation of chars, and very recently the formation of traces of C60 fullerene was 

detected in sonicated benzene [106].  

 

Katoh et. al [106] used ultrasound irradiation at 600 W and 20 kHz on 150 ml liquid benzene 

and found it produce approximately 1µg of C60 within one hour. Diedrich et. al [105] found 

that the polymers formed had characteristics of char, obtained from low temperature pyrolysis 

of hydrocarbons during ultrasound irradiation. They found that introducing elevated 

temperatures reduced their rate of reaction. The presence of solid impurities had little effect 

on the rate of reaction; however the presence of gas caused the rates of reactions to increase 

when compared to reactions where no gases were present. These lead them to conclude that 

the chemical reactions occurring were as a result of cavitation. 

 

A study by Malykh et.al [107] found the possibility of an appearance of light hydrocarbon 

fractions after experiments on ultrasonic cavitation of model compounds of the middle 

fraction of petroleum such as; hexadecane, decanol, ethylcaprate and colza oil, in spherical 

and cylindrical resonators. They confirmed the appearance of light hydrocarbon fractions and 

colza oil interesterification. Preliminary results showed the cavitation cracking of model 

compounds of crude middle fractions and the conversion of colza oil into corresponding 

etheric fatty acids. 

 

 The results obtained here are suggesting certain chemical effects are likely to occur as a 

result of cavitation. The literature here has shown the impact of ultrasound induced cavitation 

is causing chemical changes. Chemical processes such as cracking and pyrolysis have also 
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been discussed thought to be occurring as a result of ultrasound cavitation. The work here will 

analyse whether hydrodynamic cavitation causes similar chemical effects on diesel fuels. 

 

 Atomisation, spray formation, and break up 2.2.4

 

Spray formation is the introduction of liquid into a gaseous environment through a nozzle 

such that the liquid, through its interaction with the surrounding gas and by its own instability 

breaks up into droplets. The process of atomisation is one in which liquid is disintegrated into 

drops and ligaments by the action of internal and external forces leading to spray formation. 

The process easily occurs if the liquid is present in a form that is more susceptible to 

disintegration i.e. the formation of thin jets or liquid sheets; because they have the highest 

surface energy and thus the greatest instability [108]. The performance of spray systems can 

be optimized and improved by achieving desirable spray properties, for example in engines, 

liquid fuels have to be sprayed into the injection cylinder in a manner that the stoichiometric 

air/fuel ratio is followed. This requires correct atomisation of the liquid fuel such that the 

desired droplet size, number density, velocity and repartition in the combustion chamber are 

obtained. Achieving the above allows an increase in fuel and energy efficiency whereas 

decreasing the emission of pollutants from combusting sprays.  

 

The scientific interest in the fuel injection process has expanded due to an increased desire in 

fuel efficiency and pollutant emission control. In a lot of combustion systems fuels are used in 

their liquid form. Liquid fuels contain more energy per unit volume than gaseous fuels and are 

also easier to store and transport. Normal fuels in their liquid form are not volatile enough to 

produce vapour in the amounts required for ignition and combustion and therefore there is a 

requirement to atomize them into a large number of finer droplets. The atomisation process 
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allows the conversion of the liquid phase into vapour phase. The rate of evaporation of the 

fuels is inversely related to the size of the generated droplets i.e. smaller droplets yield a faster 

rate of evaporation. The surface to volume ratio of smaller droplets is larger than that of larger 

droplets and as evaporation occurs on the gas-liquid interface the decrease in size of the 

droplets enhances evaporation. The evaporation of fuel droplets in a spray involves a 

simultaneous heat and mass transfer processes, in which the heat for evaporation is transferred 

to the drop surface by conduction and convection from the surrounding air or gas, and the 

vapour is transferred by convection and diffusion back into the gas stream. The overall rate of 

evaporation depends on the pressure, temperature, and transport properties of the gas; the 

temperature, volatility, and diameter of the drops in the spray; and the velocity of the drops 

relative to that of the surrounding gas [109]. 

 

Arcoumanis et al. [110] has reported three different atomisation models: (1) Aerodynamic-

induced atomisation: were waves develop on the surface of the liquid jet, and are caused by 

relative motion between the injected fuel and the gas. The Weber number is used to determine 

the growth rate of these waves and the disintegration of the jet into smaller droplets. The 

Ohnesorge number is used for the liquid viscosity effects. (2) Jet turbulence-induced 

atomisation: at fully turbulent flow conditions in the injector nozzle holes, the radial velocity 

component in the jet soon leads to disruption of the surface film, followed by general 

disintegration of the jet. Even when injected into vacuum, the jet will disintegrate under the 

influence of its own turbulence. (3) Cavitation-induced atomisation: where the liquid jet 

emerging from the injection hole disintegrates due to the collapsing of the cavitation bubbles 

present at the exit of the holes. Since the pressure around the emerging jet is much higher than 

the gas pressure inside the cavitating bubbles, these bubbles gradually collapse while they are 

convected by the internal jet turbulence. This process causes perturbation on the surface of the 



 

 

66 
 

liquid jet. The perturbations lead to jet disintegration and formation of smaller droplets at the 

time of total bubble collapse or at the time the bubble reach the jet surface. 

 

In 2000, Smallwood et.al [111] provided a more in depth investigation into the mechanism of 

atomisation. The authors showed that the spray is completely atomised at or near the nozzle 

tip, where nozzle cavitation and turbulence-driven instabilities are the dominant break up 

mechanism. The influence of cavitation is twofold i.e. first the bursting and collapsing vapour 

cavities contribute to the disintegration of liquid masses at the exit of the nozzle hole, 

resulting in a mixture of bubbles and liquid occupying most of the cross sectional area; 

secondly, cavitation increased the turbulence intensity of the flow through the nozzle hole 

thus contributing to the instability of the liquid jet. The instabilities along with pressure 

fluctuations in the nozzle cause variation in the exit velocity of the droplets which resulted in 

temporal and spatial clustering of the droplets in the plume. 

 

Internal cavitating flow occurring inside fuel injectors is believed to produce a number of 

effects on the internal fuel flow in the injector. Nozzle cavitation is believed to reduce the 

injected fuel mass in an unpredictable manner, which can result in poor fuel/air mixture 

formation in the engine, which in turn, can cause unstable combustion, and/or higher engine-

out pollution emissions [2,22,84,94,112]. Nozzle cavitation is believed to affect the 

atomisation of the fuel jets into droplets as the jets enter the engine [88,91,113]. Cavitation 

occurring near injector surfaces may cause surface erosion, and ultimately injector failure 

[25]. Cavitation of the flow through the diesel nozzle has long been considered as a possible 

contributor to the breakup and atomisation process [114]. However it was not until the late 

nineties-early 2000’s that several studies recognized and demonstrated the existence and the 
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influence of nozzle hole cavitation in diesel injection systems [2,92,115] and many have 

studied the effects of nozzle cavitation on atomisation and spray break up after this period.  

 

Relevant properties for atomization Spray illustration Spray characteristics and 
geometrical aspects 

Injected liquid 

 Surface tension 

 Viscosity 

 Density  

 Temperature 

 Composition 

 

 

 

 Nozzle flow rate Ul 

 Radial and axial distances 

r and x 

 Length of liquid core Lc 

 Liquid jet or sheet 

thickness do 

 Distance of penetration Lp 

 Spray angle θ 

 

Liquid flow 

 Injection pressure 

 Injection rate 

 Injection duration 

 Quantity of fuel injected 

 Velocity 

 Turbulence in the liquid 

stream 

Ambient gas 

 Gas temperature 

 Gas density/pressure 

 Gas composition 

Injector 

 Orifice diameter 

 Orifice length 

 Orifice inlet geometry 

 Number of holes 

 Tip geometry (VCO, 

minisac etc.) 

Table 2.3 Most relevant properties for atomization with the related characteristics and geometrical aspects (adapted 
from[111]) 

 

The spray structure is influenced by various parameters including the properties of the 

injected fluid, the properties of the surrounding gas and the characteristics of the injector itself 

[116]. A summary of the properties affecting spray atomisation is seen in Table 2.3. 

Depending on the operating conditions and on the injector design, a wide variety of sprays 

can be produced. A spray is composed of: a liquid core corresponding to the extension of the 

θ 
x 

Lp 

Lc 

do 

r 
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liquid body injected; the multiphase mixing layers characterised by irregular elements and 

large drops and created by atomisation; dispersed flow in which small round drops are well 

formed and; the vaporisation zone where the small droplets are evaporated as seen in Figure 

2.11 [117]. Two main spray regions are defined i.e. the dense spray and the dilute spray 

regions.  

 

The detaching of liquid core into ligaments and drops is known as primary breakup (primary 

atomisation). This occurs due to gas-liquid interfacial instabilities in the liquid core jet in the 

dense spray region. The liquid ligaments and large droplets further breakup into smaller 

droplets due to the interactions between liquid ambient gas or droplet collisions. This is 

known as secondary breakup (secondary atomisation) and occurs in the dilute spray region. 

 

Figure 2.11 Illustration of the spray structure in the atomization regime [117] 

 

The most relevant liquid properties to spray generation are viscosity, surface tension and 

density. The viscosity is a quantity that characterizes a fluid resistance to flow. It is the most 

important liquid parameter to atomization owing to its effect on droplet size, liquid flow rate 

and on the geometrical shape of the spray [118]. As liquid viscosity increases, flow rate is 

generally reduced and the development of instabilities in the liquid core is hindered. As a 

result, the disintegration process is delayed and a spray with a narrow spray angle and large 
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droplets is produced. Liquid viscosity is highly dependent on the temperature and decreases 

generally with increasing temperature [108]. Hiroyasu et.al [116] demonstrated the effect of 

kinematic viscosity and injection pressure of the liquid fuel on the spray cone angle and found 

that the spray angles θ were widened by a reduction in viscosity and an increase in injection 

pressure.  

 

Ghuri et al [119] conducted an investigation to examine the effect of injection pressure and 

fuel type on the spray tip penetration length and the spray cone angle of sprays injected into 

an atmospheric chamber. They observed that the role of fuel viscosity seemed stronger before 

the break-up time than after break-up time. Before the break-up time, the spray had larger 

droplet diameter which meant higher spray momentum to penetrate the ambient air (longer 

break up length). The spray tip penetration developed quicker at the early stage of injection, 

and slower after the break up time when the spray atomization to the smaller droplets 

occurred. Most of the data showed the initial spray tip penetration of diesel fuel was always 

longer than biodiesel fuel. This was caused by the higher initial velocity of the diesel spray as 

consequence of its lower viscosity and density. The higher viscosity of biodiesel fuel resulted 

in higher resistance to break-up. However the higher viscosity also enabled the spray to have 

the higher momentum for a longer time after start of injection. As a result, the biodiesel spray 

could reach slightly longer penetration lengths in comparison to the diesel spray. They also 

concluded that the spray cone angle was mostly affected by changes in viscosity and not by 

changes in injection pressure. Increase in fuel viscosity leads to a decrease in spray cone 

angle. 

 

Jankowski et. al [120] investigated the effects of fuel viscosity and injection pressure on the 

fuel droplet diameter and velocity distribution in a fuel spray in a constant volume chamber 
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using LDV, Phase Doppler Particle Analyser PDPA and PIV laser systems. The authors used 

diesel fuels with different viscosity in common rail powered compression ignition engines, 

varying injection pressure from 50 to 130 MPa. The test results showed that the lower 

viscosity fuels produce smaller droplet diameters than fuels with higher viscosity. They 

performed measurements of droplet velocity using LDV, the droplet diameter using PDPA 

and the droplets distribution using PIV and PDPA. They concluded that the physical process 

of generating the fuel sprays was strongly influenced by fuel viscosity, density and surface 

tension which depend on the fractional constitution and the process of crude oil refining and 

additives. Fuel viscosity affected the injection pressures similarly to those that have been 

discussed earlier. Increase in injection pressure resulted in decrease of droplets diameter. 

They observed a decrease in droplet velocity as the distance from the injection nozzle 

increased being caused as a result of turbulence. 

 

Liquids of high surface tension are more difficult to disintegrate by aerodynamic, centrifugal 

or pressure forces comparing to those of lower surface tension. In general, the surface tension 

decreases as temperature increases for most pure liquids in contact with air. Break up 

processes in general are governed by a balance of energy between inertial forces and surface 

tension. Secondary droplet breakup occurs if the surface tension equals the effective 

aerodynamic force. The Weber number (We) is defined as the ratio of inertia forces to surface 

tension forces as: 

 

             

Equation 2.6 
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Where    is the liquid density,    is the flow velocity of the fluid,    is the characteristic 

length scale of the liquid flow and    is the surface tension of the liquid. The inertial forces 

tend to break apart the liquid core whereas the surface tension forces tend to hold it intact.  

  

The other important dimensionless number of importance during atomisation is the Ohnesorge 

number defines as the ratio of inertial viscous forces to surface tension forces Equation 2.7. 

 

   √       √       
Equation 2.7 

Where    is the liquid viscosity. 

 

The fundamental parameters of the liquid flow are the injection pressure, liquid velocity and 

turbulence in the liquid stream. High pressure injection and high liquid velocity increase the 

formation of instabilities and disturbances at the nozzle exit and increase the atomization 

efficiency. Schweitzer [118] described the three regimes of turbulent flow and their effects on 

atomization as follows: The flow is called laminar when the liquids particles flow in streams 

parallel to each other and to the axis of the tube. When the paths of the liquid particles cross 

each other in a more or less disorderly manner having varying transverse velocity 

components, the flow is turbulent. If the centre of the flow is turbulent, and if its periphery is 

laminar, the flow is defined as semi-turbulent. The Reynolds number, previously defined in 

Equation 2.3 gives a good indication regarding the state of flow at the orifice exit. Spray 

disintegration is linked up with Reynolds number. The higher the Reynolds number the higher 

the level of turbulence in the flow and above a critical Re, a turbulent flow will remain 

turbulent. A laminar flow will turn turbulent if Re is increased, however if constant, a laminar 

flow will stay laminar. The level of turbulence imparted on a liquid flow influences its 
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atomisation process. Hiroyasu et. al [116] conducted an experiment with the aid of 

photographic techniques into the effects of ambient conditions and injection pressures on the 

spray tip penetration. They heated up a constant volume bomb filled with nitrogen to various 

temperatures. They concluded that the spray tip penetration was proportional to time in the 

early stages of injection (incomplete atomised region), and for later stages, they found the 

spray tip penetration was proportional to the square root of time. As a result, the initial stage 

of the spray evolved with a steady tip penetration equal to the injection velocity. During the 

complete atomisation stage, the jet was considered to disintegrate to form a spray with tip 

penetration length proportional to t1/2. 

 

Fath et. al [115] investigated the effects of different injection and chamber pressures for four 

different nozzle geometries on the internal cavitation structures and the spray break up close 

to the nozzle using a 2D measuring technique on the basis of Mie scattering. They concluded 

that the intact liquid core length decreased with an increase in injection pressure. 

 

The density of the surrounding gas (generally air) is the final gas property of importance 

regarding spray formation. For a given distance from the nozzle, the size of droplets is smaller 

at higher air densities than lower air densities and the liquid jet disintegration is more 

efficient. The jet loses velocity more quickly at higher air pressures than at lower air pressures 

with less propagation along the axial axis. As a result, the spray penetration distance, Lp, and 

the liquid core length, Lc, are reduced (see Table 2.3). The spray cone angle also becomes 

wider with air density, changing the geometrical shape of the spray. Hiroyasu et. al [116] in 

their work reported an increase in spray cone angle and a decrease in spray tip penetration due 

to an increase in ambient gas pressure. They also observed that an increase in ambient gas 
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temperature resulted in a noticeable decrease in the spray cone angle which occurred as a 

result of the evaporation of droplets in the spray boundary. 

 

Kennaird et. al [121] investigated the influence of in cylinder charge density varying between 

10 kg/m3 and 50 kg/m3, injection pressure varying between 60-160 MPa and injector nozzle 

geometry on the behaviour of diesel sprays using high speed imaging. They observed that the 

leading edge of the vapour phase penetrated at a similar rate to the liquid core until the liquid 

core had reached its ultimate length. After that the vapour phase continued and penetrated 

deeper into the chamber due to the earlier liquid momentum transfer. They also observed the 

dependency of the vapour penetration on both gas density and injection pressure and that an 

increase in vapour pressure and a decrease in in-cylinder gas density resulted in a greater 

vapour penetration. Similar effects were observed by Naber et. al [122] as reported in the 

paper. Fath et. al [115] in their investigations concluded the liquid core decreased with 

increase in gas pressure. 

 

Laguitton et. al [123] made an attempt to investigate the effects of in-cylinder density and fuel 

injection pressure on liquid penetration, vapour formation and auto ignition delay. They 

utilised two high speed video cameras to achieve pseudo 3D imaging of the spray and of auto 

ignition sites; and Schlieren imaging for the vapour phase analysis. The authors gathered data 

for in cylinder densities in the range of 10 – 50 kg/m3 and injection pressures between 60 and 

160 MPa. They observed that by increasing injection pressures and using small injector 

orifice sizes, the injected diesel droplets reduce in size and had a longer penetration hence 

increasing air utilisation, leading to faster evaporation rates and reduced ignition delay. 

Increasing the in cylinder density causes the spray penetration to reduce, however autoignition 

delay is also reduced, which indicate more favourable conditions for ignition. 



 

 

74 
 

The shape, size and flow state of the initial liquid body injected into a gaseous environment is 

mainly controlled by the nozzle geometry. Depending on nozzle characteristics, either a liquid 

jet or a liquid sheet is generated. The dimension of the liquid core is determined by the size of 

the nozzle orifice. Smaller nozzle orifices give rise to finer atomisation processes. The spray 

cone angle was found to be affected by the length and diameter of the nozzle orifice by 

Chaves et. al [92] and Schmidt et. al [81]. They concluded that an increase in nozzle L/D ratio 

gave rise to a decrease in the spray cone angle. Hiroyasu and Arai [116] reported that an 

increase in tip penetration occurred as a result of an increase in nozzle diameter. Smallwood 

et.al [111] conclude that the orifice diameter was the dominant injection parameter for spray 

penetration distance. Similarly to Hiroyasu they also concluded that a decrease in orifice 

diameter leads to a decrease in liquid penetration distance. 

 

Su et al. [124] indicated that the nozzle configuration has an important effect on the fuel 

atomisation. The configuration included the following factors: the surface area of the nozzle 

hole, the entrance shape of the hole, the number of holes, the length to diameter ratio, the 

orientation of the nozzle holes with respect to the nozzle axis and the sac volume. The authors 

used a mini-sac injector with two types of nozzle hole entrances: sharp-edged and round-

edged inlet. Higher injection pressures resulted in longer spray tip penetrations, narrower 

spray angles and smaller particle sizes for both nozzle entrance shapes. The sharp-edged inlet 

nozzle produced a wider spray dispersion angle, smaller SMD and a smaller value of 

particulate emission, compared to the round-edged inlet tip. 

 

Bae et. al [80,125] investigated the spray characteristics of diesel injectors using various 

nozzle geometries. They observed the spray penetration of the sac nozzle to be lower than the 

VCO type nozzle at various injection conditions. A higher nozzle K factor led to smaller 
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spray penetration and spray angle when injected into atmospheric conditions. These effects 

however did not appear under pressurised environments. 

 

Park et. al [126] investigated the effect of cavitation on the fuel flow and atomisation 

characteristics of bio diesel fuel using two different nozzles with different length to width 

(L/W) ratios. Their visualisation system captured the internal and external flow for 

investigating the formation and development of cavitation inside an orifice, and the internal 

and external flow characteristics were then analysed quantitatively using Reynolds, Weber, 

cavitation numbers and discharge coefficient. They had a droplet measuring system installed 

to measure the effects of cavitation on atomisation by measuring the mean droplet size and the 

axial and radial mean velocity. They revealed that the mean droplet sizes of biodiesel as 

compared to diesel fuel were larger. The droplet sizes became small when it formed the 

cavitation inside the orifice and in the case of the high L/W ratio nozzle; the droplet size was 

smaller than for the nozzle with the low L/W ratio. From these results they concluded that 

cavitation promoted the atomisation of fuels at the nozzle exit. The cavitating rate of biodiesel 

fuel was found to be lower than diesel fuel. When the nozzle L/W ratio was changed from 1.5 

to 3, a higher pressure was required to visualize the occurrence of cavitation. On the basis of 

SMD and velocity measurements the cavitation in the nozzle orifice promoted the atomisation 

of fuels at the nozzle exit. They concluded that the energy generated during the formation, 

growth and rupture of cavitation enhances the energy for the atomisation of fuels. 
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2.3 Measurement Techniques and Diagnostics 

 

So far the reviews on cavitation and atomisation have looked at various authors using a 

number of imaging and optical characterisation techniques. The ones important to this work 

will be reviewed in the current section namely: Mie scattering, Laser Induced Fluorescence 

(LIF), laser Sheet Dropsizing (LSD) and Structured Laser Illumination Planar Imaging 

(SLIPI) 

 

 Mie scattering and light scattering 2.3.1

 

When a particle (such as an atom, a molecule, a liquid or a solid particle) is illuminated by an 

electromagnetic wave, the discrete electric charges (the electrons and protons) are set into an 

oscillatory motion by the electric field of the incident wave. This oscillation causes the 

acceleration of the electric charges, which produces radiation of electromagnetic energy in all 

directions. This new radiation is called scattered radiation [127]. If a particle is divided into 

small regions such as each region is characterized by a dipole moment, then the oscillating 

field will cause the oscillation of the dipoles and a secondary radiation of scattered wavelets 

will be emitted by each region of the particle in all directions as observed in Figure 2.12. 

Scattering is thus the result of the sum of all these wavelets. During the emission of the new 

electromagnetic waves, the scattered wavelets interfere with each other, resulting in several 

preferential final scattering directions. Typically, back scattering and forward scattering are 

the dominant scattering directions. Both the size and the shape of a particle are responsible for 

the interference processes occurring. Depending also on the polarization state of the light an 

incident beam is scattered within preferential directions. 
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Figure 2.12 Light scattering by an induced dipole moment due to an incident electromagnetic wave [128] 

 

The classical theory relating to particle scattering to diameter is called the Mie or more 

properly Lorenz-Mie theory. This theory is derived by solving Maxwell’s equations 

describing electromagnetic radiation for the light scattered by a homogeneous sphere under 

uniform illumination. The theory forms the basis for the measurements of optical, particle 

sizing instruments based on measuring scattered light intensity. The key assumptions are that 

the particle is a sphere and homogeneous (characterised by a single refractive index at a given 

wavelength). The way of describing the light scattered from small spherical particles mainly 

depends on the ratio of the particle size and the wavelength of the incident light.  

 

The dimensionless size parameter, is defined as follows [129] : 

 

       

Equation 2.8 

 

In the equation, d is the particle diameter,  is the laser wavelength and m is the refractive 

index of the particle. For   << 1 the scattering process is described by the Rayleigh scattering, 
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for   >>1 the geometric optics theory applies, whereas For   ≥ 1 the scattering process is 

described by Lorenz Mie theory [127] named after the German physicist Gustav Mie (1869-

1957). It is based on the application of the Maxwell equations on an isotropic, homogeneous, 

dielectric sphere. The model is equally applicable to spheres of all sizes, refractive indices and 

for radiation at all wavelengths. In the Mie formalism, Maxwell's equations are solved in 

spherical coordinates through separation of variables. The incident plane wave is expanded in 

Legendre polynomials so the solutions inside and outside the sphere can be matched at the 

boundary. The solution sought is at a distance much larger than the wavelength, in the so-

called far-field zone. The far-field solution is expressed in terms of two scattering functions 

[130]:  

 

    |∑         [                   ] 
   |  

Equation 2.9 

 

    |∑         [                   ] 
   |  

Equation 2.10 

 

Where     and      represents the angular intensity functions,   represents the scattering 

angle, the functions    and    are angular dependent functions expressed in terms of the 

Legendre polynomials by; 

                    

Equation 2.11 
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Equation 2.12 

 

Where     are the Legendre Polynomials of the first order. The coefficients    and    from 

Equation 2.9 and Equation 2.10 for a perfect sphere are defined as: 

 

                                       

Equation 2.13 

 

                                       

Equation 2.14 

 

where the functions are the Riccati-Bessel functions [127]. The electric field in the far field is 

described by, 

 

[      ]                 [        ] [        ] 
Equation 2.15 

 

Where the matrix [        ] is the amplitude of the scattering matrix, exp (ikz) is the incident 

plane wave and 
            is the outgoing scattering wave. The S-matrix relates the initial state 

and the final state of a physical system undergoing a scattering process. It describes the 

relationship between incident and scattered electric field components perpendicular and 
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parallel to the scattering plane as observed in the "far-field" [127]. The above expression 

simplifies in practical experiments: 

(i) The exponential term,                 is a transport factor that depends on the distance 

between scatterer and observer. If one measures scattered light at a constant distance R 

from the scatterer, for example as a function of angle or orientation of polarization, 

then the transport factor becomes a constant. 

(ii)  The total field (Etot) depends on the incident field (Ei), the scattered field (Es), and the 

interaction of these fields (Eint). If one observes the scattering from a position which 

avoids Ei, then both Ei and Eint are zero and only Es is observed.  

(iii)  For "far-field" observation of Es at a distance R from a particle of diameter d such that 

kR>> nc
2, k =2π/ , nc = d/ , the scattering elements S3 and S4 are equal to zero. 

(iv) Practical experiments measure intensity, I ≤E, E*≥ (1/2)a2, where E = a exp(-iδ), and a 

is amplitude and δ is phase of the electric field.  

Hence for practical scattering measurements, the above equation simplifies to the following: 

 

[      ]          [|  |   |  | ] [        ] 
Equation 2.16 

 

For an unpolarised incident light source through a particle, the particle will scatter light that 

consists of polarised light in the plane of observation, parallel polarisation and perpendicular 

polarisation. The plane of observation is the plane formed by the incident light source 

transmitting. The scattering intensity depends on the polarisation orientation of the incident 

light. The scattered light from the different scattering modes also varied at different scattering 

angles as seen in Figure 2.13. 
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Figure 2.13 Diagram showing the intensity of scattered light from different scattering modes [131]. 

 

Scattering orders, optical depth and scattering regimes are parameters related to media 

containing a collection of scattering particles. The scattering order corresponds to the number 

of times that an individual photon interacts with the droplets (or other scattering particles) 

prior to spray exit. At a scattering order of 0 no interaction occurs, and the photons cross the 

spray keeping their initial direction. The scattering order 1 or single scattering is in optical 

measurement of sprays, the order of interest as the information obtained is directly related to 

the droplet characteristics (e.g. droplets size, concentration). The range of scattering order 

from 2 up to λ is associated to the “snake” photons group (when assuming a forward 

scattering detection). These photons travel a longer path through the spray than the ballistic 

photons and exit the spray along approximately the same axis as the input light with a 

somewhat larger solid angle. Photons scattered more than 10 times are the diffuse photons and 
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exit the medium with a large solid angle after traveling long path in the spray [132]. 

Depending on the value of the optical depth and/or of the average scattering order, the 

scattering of light within a spray can be classified into 3 regimes i.e. single scattering regime 

(Optical depth OD≤1), intermediate scattering regime (2≤OD≥9) and multiple scattering 

regimes (OD≥10). 

 

Planar Mie imaging corresponds to the detection of the elastic light scattered by the droplets 

and the irregular liquid elements of size comparable to the incident wavelength. By definition, 

elastic scattering is the term given when the light scattered from the illuminated particles has a 

wavelength identical to the incident radiation. When the scattered light is characterised by 

different wavelength than the incident radiation the process is known as in-elastic scattering. 

In laser diagnostics of non-combusting sprays Mie scattering is the natural and dominant 

scattering process from the interaction if the incident laser light with various liquids elements 

resulting from atomisation. For spherical and homogeneous droplets of size much bigger than 

the wavelength, the total amount of light elastically scattered in all direction (quantified by the 

scattering cross-section) is found to be linearly dependant to the square of the droplet 

diameter D2. However, considering a given collection angle (e.g. for θ equal 90 or 60 degrees) 

and/or for small particles (D less than 10 µm), this dependence is not valid any longer and 

correction procedures are required [133]. Planar Mie images are generally used to provide 

information related to geometrical aspects of the spray structure. Many researches have used 

this technique to investigate diesel sprays as discussed in the earlier sections. 

 

In spite of its whole field detection, sharp depth of field and simplicity, laser sheet imaging of 

sprays suffers from a number of limitations when the single scattering approximation is no 

longer valid and when intermediate single to multiple scattering regime applies. The first 
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limitation corresponds to the exponential attenuation of laser intensity as photon travel 

through the spray due to scattering and absorption along the incident direction. This is a well-

known phenomenon called laser extinction and it is described in the Beer-Lambert law. 

Secondly the induced signal, regardless of the scattering process involved- elastic or inelastic; 

is reduced between the laser sheet used for illumination and the camera also according to the 

Beer-Lambert relation is referred to as signal attenuation or signal trapping. Finally depending 

on the optical thickness of the spray, photons can experience several scattering events within 

the sample prior to detection (multiple scattering). Errors by multiple scattering depend on the 

average deviation of the trajectory of the detected photons per scatter, and hence on the 

particle size distribution. 

 

 Laser Induced Fluorescence (LIF) 2.3.2

 

Laser induced fluorescence (LIF) is a powerful technique more and more commonly used by 

the chemical physicist for probing gas-phase atomic or molecular species, even in minute 

amounts, and determining their internal states distribution. By absorption of one or several 

photons from the laser beam, the probed species are pumped from an initial state i to an 

excited state e from which radiation is subsequently emitted as transitions take place to final 

states f. All or part of the emitted radiation is detected. Usually, each time it is possible that 

the light is detected at a wavelength different from the laser wavelength to eliminate any 

spurious signal due to scattered laser light [134]. Fluorescence results from a process that 

occurs when certain molecules called fluorophores, fluorochromes, or fluorescent dyes absorb 

light. The absorption of light by a population of these molecules raises their energy level to a 

briefly excited state. As they decay from this excited state, they emit fluorescent light. The 
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process responsible for fluorescence is illustrated by the electronic state diagram in Figure 

2.14. 

 
Figure 2.14 Jablonski diagram illustrating the processes involved in creating an excited electronic singlet state by 

optical absorption and subsequent emission of fluorescence. (1)Excitation; (2) Vibrational relaxation; (3) Emission. 

 

When a photon of energy, h EX, supplied by an external source such as a lamp or a laser, is 

absorbed by a fluorophore, it creates an excited, unstable electronic singlet state (S1’). This 

process is distinct from chemiluminescence, in which the excited state is created by a 

chemical reaction. The excited state of a fluorophore is characterized by a very short half-life, 

usually on the order of a few nanoseconds. During this brief period, the excited molecules 

generally relax toward the lowest vibrational energy level within the electronic excited state 

Figure 2.14. The energy lost in this relaxation is dissipated as heat. It is from this relaxed 

singlet excited state (S1) that fluorescence emission originates. When a fluorochrome 

molecule falls from the excited state to the ground state, light is often emitted at a 

characteristic wavelength. The energy of the emitted photon (h EM) is the difference between 

the energy levels of the two states (Figure 2.14), and that energy difference determines the 

wavelength of the emitted light ( EM). 
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Equation 2.17 

 

where E = the energy difference between the energy levels of the two states during emission 

(EM) of light, h is Planck’s constant, c is the speed of light. 

 

 
Figure 2.15 The probability of transition of a molecule between two energy levels 

 

The Einstein coefficients characterize the probability of transition of a molecule between two 

energy levels E1 and E2 (Figure 2.15). B12 is the induced absorption coefficient, B21 is the 

induced emission coefficient and A21 is the spontaneous emission coefficient. The emission-

induced process E2→E1 occurs at exactly the same rate as the absorption-induced process E1 

→E2, so that B12 =B21. 

The number of molecules in states 1 and 2 is N1 and N2, respectively. These numbers must 

satisfy the Boltzmann Law: 

         [        ]      (    ) 

Equation 2.18 
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Where h is Planck’s constant. The rate of absorption from state 1 to state 2 is N1B12ρ( ), 

where ρ( ) is the energy density incident on the sample at frequency  . The rate of emission 

from state 2 to state 1 is N2 [A21 + B21 ρ( )]. At equilibrium, these two rates are equal, hence 

                                

Equation 2.19 

 

The radiation density   is given by Planck’s black body radiation lawμ 

 

                    

Equation 2.20 

 

The equations above (Equation 2.18 - Equation 2.20) lead to 

 

               

Equation 2.21 

 

The condition for observing induced emission (stimulated emission) is that the population of 

the first singlet state S1 is larger than that of S0. Induced emission is coherent, i.e. all emitted 

photons have the same physical characteristics – they have the same direction, the same phase 

and the same polarization. These properties are characteristic of laser emission. The term 

induced emission comes from the fact that the de-excitation is triggered by the interaction of 

an incident photon with and excited atom or molecule, which induces emission of photons 

having the same characteristics as those of the incident photon [135]. 
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Not every absorbed photon is re-emitted as fluorescence light. There are several processes 

that lead to non-radiative dissipation of the absorbed energy. The ratio of absorbed energy and 

energy of emitted fluorescence photons is called fluorescence quantum yield φF: 

 

                                                            

Equation 2.22 

 

φF measures the fluorescence efficiency. Its value is mostly determined by the molecular 

structure and the environment of the fluorescing dye molecule. 

 

A laser-scanning instrument or a CCD-camera can be used to measure the intensity of the 

fluorescent light and subsequently create a digital image of the sample. Image analysis makes 

it possible to view, measure, render, and quantitate the resulting image.  

 

The inelastic process of laser induced fluorescence is usually caused by the addition of a dye 

or tracer within the injected liquid or by natural fluorescence of the probed species. Some 

liquids of interest i.e. water, alcohols etc., do not fluoresce naturally and required an 

additional dope to be added to them. Fuels contain fluorescing compounds that can be excited 

in the ultra-violet spectral region, however the signal emitted is often difficult to quantify thus 

tracers are added in a manner that the fluorescing signal can selectively detected. LIF 

techniques are used for the visualization of the liquid phase in non-evaporating sprays and for 

the identification of both the liquid and vapour phase in evaporating sprays. The measurement 

of species concentration and temperature is also performed via LIF especially in combusting 

sprays. The principle of the technique is as follows: When the appropriate doped droplets or 

species cross the laser sheet, the incident optical excitation induced produces the emission of 
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an incoherent fluorescence signal which is optically filtered and detected. The signal intensity 

generated is a function of the absorber concentration, the temperature and the ambient 

pressure. In the past, a variety of fluorescent tracers have been used including acetone 

[136,137]; Rhodamine B [138] and Rhodamine 6G [139]. 

 

For small droplets containing the appropriate doping agent at correct concentrations, the 

emission of the fluorescence signal is isotropic and proportional to the incident light intensity. 

In such conditions, and for constant incident radiation, the fluorescence signal is volume 

dependant and linear to D3 for spherical droplets. Increasing the size of the droplets and/or the 

concentration of the tracer leads to an increase in light attenuation within the droplets. In this 

case, the light emitted becomes anisotropic with a dominant back scattering. 

 

To guarantee the proportionality of the Laser Induced Fluorescence (LIF) signal with the 

droplet volume, concentrations of tracer and laser light intensities must be then carefully 

chosen. A main strategy of LIF is to differentiate one phase from the other. This is performed 

by choosing the adequate doping agent which reduces the fluorescence signal in one phase 

while emitting a strong signal in the other.  

 

Since fluorescent dyes are mostly applied in solution, various effects of the solvent must be 

discussed: 

• Line broadeningμ Usually an organic dye molecule consists of many atoms, a fact that would 

lead to a distinctive vibrational line-emission spectrum. However, the solvation shell around 

each fluorescing molecule has a slightly different structure; therefore, the interaction between 

dye and solvent is not uniform. An emission spectrum, where we usually look at a whole 

ensemble of fluorescing molecules, consists of the contributions from each molecule. That 
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leads to strong broadening of the vibrational lines. At very low temperatures when the 

solvation shell cannot change its orientation within the fluorescence lifetime a line spectrum 

can nonetheless be observed.  

• Relaxationμ Electronic excitation leads to spatial expansion of the electron shell. In general 

this means an increased polarizability and decreased excitation energy. It also changes the 

dipole moment and therefore leads to a change in orientation of the nuclei and all the 

surrounding molecules. This process takes place within 10−10 s and is already finished when 

fluorescence occurs. Thus, the energy of the excited state is lowered at the time of emission 

compared to the time of absorption because of the solvent relaxation. The transition from the 

S1 occurs according to the Franck-Condon law to a S0 state with equal nuclear coordinates and 

equal orientation of the solvent molecules. This state is usually not in thermal equilibrium 

with its environment and therefore on a higher energy level then the S0 ground state. Hence, 

the emission maximum always depends on solvent properties, such as viscosity and polarity. 

 

In summary, a suitable tracer should be added to the liquid under investigation either directly 

or through a solvent. When selecting the solvent it should have similar evaporation and mass 

diffusion properties to the fuel it is being added to. It should also have a high fluorescence 

quantum yield when mixed with the tracer, at the excitation wavelength of the laser available. 

 

 Laser Sheet Dropsizing (LSD) 2.3.3

 

Laser Sheet Dropsizing produces instantaneous two dimensional images of spray Sauter Mean 

Diameter (SMD) by combining the well-established laser sheet techniques of Mie scattering 

and LIF. The general expression for the scattered signal S from a droplet of diameter D is 

given by Equation 2.23:  
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Equation 2.23 

 

where C is a constant containing experimental parameters including the laser fluence and 

signal collection solid angle, n is an index of dependence (expected to be constant for a fixed 

temperature). This expression is valid for D>>l (laser wavelength) and neglects any effects of 

Morphology Dependent Resonances. 

 

Laser sheet dropsizing produces two-dimensional images of the Sauter mean diameter (SMD) 

distributions by combining the laser sheet techniques of Mie scattering and LIF [140]. These 

techniques can be used for qualitative and rapid measurement of fuel mass, spray geometry, 

and Sauter Mean Diameter. LSD thus allows a rapid spray characterisation. When a particle is 

illuminated by a laser light source, a portion of the incident light energy is absorbed by the 

excitable molecule that is then radiated as fluorescence (inelastic scattering). The remaining 

portion of the incident light experiences elastic light scattering. A laser induced fluorescence 

image of fluorescence from a fluorophore added to the spray, is captured.  

 

The scattered light in the near forward direction has an angular distribution width, inversely 

proportional to the particle diameter. Figure 2.16 illustrates the different light scattering 

regimes in LSD. 
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Figure 2.16 Different light scattering regimes for a spherical droplet [140] 

 

The LIF signal SLIF will be given by: 

 

         ∑    
    

Equation 2.24 

 

where di is the diameter of the droplet i and CLIF is a calibration constant, which depends on 

the imaging system. The signal S for each pixel will represent the total intensity for all the 

droplets imaged within the measurement volume (pixel). To extract droplet sizes, the number 

of droplets must be known. However, the LIF signal gives the liquid volume fraction 

distribution. 

 

An image is also captured using the elastic Mie scattering from the laser sheet incident on the 

spray. Since the fluorescence is red shifted, the two images can be taken without interference 

from the other scattering process. For liquid systems, the fluorescence signal is red-shifted 
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with respect to the laser wavelength and a spectral filter is used to discriminate it from the 

Mie scattered light. The elastic signal SMIE is given by: 

 

         ∑    
    

Equation 2.25 

 

providing all the droplets scatter in the Mie regime. The ratio of intensity measured by one 

pixel in the LIF image, to the intensity measured by the same pixel in the Mie image is then 

given by:                  ∑        ∑         

Equation 2.26 

 

which is proportional to the Sauter Mean diameter SMD D32 defined by: 

 

     ∑        ∑         

Equation 2.27 

 

Thus by dividing the two images, a map of SMD distributions in the image plane is generated 

with high spatial resolution. The principle advantage of the laser sheet drop sizing technique 

is its ability to characterise dense sprays [140]. The above equations do not hold around the 

immediate vicinity of the nozzle exit, since the signals are not well defined due to the 

presence of ligaments.  
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According to Jermy et. al [141] the technique originates in a suggestion by Yeh et al. [142] 

and has been implemented by Yeh et al.[143], Sankar et al. [144], Le Gal et al. [140], and 

Lockett et. al [145]. Both Sankar and Le Gal used Mie-scattering calculations to confirm that, 

if morphology dependent resonances are neglected, the diameter-squared dependence of the 

Mie signal holds. Both authors validated the technique experimentally against PDA 

measurements in polydisperse sprays of moderate density. Le Gal et al. [140] and Domann et. 

al [133,146,147] checked the diameter dependence of the Mie and LIF signals experimentally, 

using streams of uniformly sized droplets and droplet-resolved imaging. This confirmed the 

diameter-squared dependence of the Mie signal, but showed that the assumption of a diameter 

cubed dependence of planar laser induced fluorescence (PLIF) signal held only at certain 

fluorophore concentrations. Domann and Hardalupas [146] developed a more sophisticated 

scattering calculation, which incorporates viewing angle and collecting aperture effects, and 

calculated both Mie and PLIF signals by ray tracing internal light paths, successfully 

reproducing the experimentally observed non uniform spatial distribution of fluorescence 

inside the droplet. In considering techniques for measuring droplet sizes in dense water 

sprays, LSD appears to offer accuracy in spray cores which are too dense for accurate PDA 

measurement. Since the technique can use a pulsed laser with a higher power than the 

continuous wave laser required for PDA measurements, it is expected to suffer less from 

signal attenuation by secondary scattering in the spray. The LSD technique measures a ratio 

of two intensities, and this measurand is expected to be more robust in the optically complex 

environment of a dense spray than the modulation phase difference measured by PDA. 

Further, the two intensities, PLIF and Mie, are each affected in a similar manner by sources of 

interference viz. non uniformity of the laser sheet profile and secondary scattering by the 

spray between the object plane and the camera. These interfering effects will to some degree 

cancel when the ratio of the images is taken. 
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PDA measurements of known size droplets are required for the calibration of SMD data. 

Since it is a laser sheet technique, mapping of the spray can be realised rapidly. Nevertheless, 

this technique is only capable of measuring Sauter mean diameters and the maximum 

measurable diameter is around 20 m. Jermy et al [141] measured droplet diameters in a 

dense spray of ~20-m water droplets by two optical techniques. In the core of the spray, they 

found that PDA suffers from signal attenuation resulting in overemphasis of larger droplets. 

LSD appeared to perform better with the data agreeing with more reliable PDA measurements 

and preserving the expected spray symmetry indicating that the LSD technique will perform 

more reliably than PDA in dense sprays. 

 

 Structured Laser Illumination Planar Imaging (SLIPI) 2.3.4

 

The techniques described above in sections 2.3.1 - 2.3.3 although use different properties of 

light scattering; they are all based on the single scattering approximation i.e. assuming that the 

detected photons have experienced only one scattering event prior to arrival at the detector. 

This assumption remains valid when the number density of the particles is low and the total 

photon path length within the probed medium is short. However, within optically thick media 

a large amount of photons are multiply scattered and the single scattering assumption is no 

longer valid. The multiple scattering blurs and attenuates the recorded images, introducing 

significant uncertainties in the detected optical signal.  

 

Kristensson and Berrocal [148] investigated the possibility of suppressing the multiple 

scattering by employing structured illumination in a planar laser configuration on a dilute 

flow of water droplets generated by a nebulizer. This review is based on a technique 

developed by these authors to correct for multiple scattering. Structured illumination had been 
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used previously in fluorescence microscopy for image improvements and was first 

demonstrated for back scattering by Neil et al [149]. Neil et al. in their work presented an 

extremely simple modification to the conventional microscope illumination system that 

permitted optically sectioned images to be obtained and hence volume rendering of the thick 

structures in lily pollen grain to be obtained. However they found the specimens examined 

with their technique were substantially similar to those obtained with laser based confocal 

microscopes. This study was however for a static object where time was not a restrictive 

parameter. On the contrary the investigation of dynamic flows requires motion to be frozen in 

time. 

 

Structured illumination is based on intensity modulation, in the spatial domain, of the 

excitation light, which can be created by projecting a grating onto the sample of interest. This 

enables blurring effects from multiple scattering to be suppressed in the image post 

processing. The main idea is that photons that have experienced several scattering events 

within the sample will lose the modulation information while singly scattered photons will 

not. Illuminating a grating leads to an image I(x,y) according to: 

                        

Equation 2.28 

 

The light collected I (x,y) is divided into two different images denoted IC and IS. IC would 

contain both singly and multiply scattered light and represents the conventional planar Mie 

image of the sample under investigation. IS contains mainly singly scattered photons and 

represents the structured laser illumination image. In the equation the cosine term defines the 

fringe pattern which must be removed to obtain the true IS image. This is achieved by 

recording three images with relative spatial phases (ϕ0) 0, 2π/3 and 4π/3 denoted as I1, I2 and 
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I3 respectively. These images correspond to a modulation shift of a third of a period between 

each image. 

 

   √  [                     ]  ⁄  

Equation 2.29 

 

             

Equation 2.30 

 

 
Figure 2.17 Optical arrangement to obtain line grating from a frequency doubled ND:Yag 532nm laser [150] 

 

 
Figure 2.18 Illustration of the imaging part of the experimental setup together with three successive recorded images  

I1, I2 and I3 [148]. 
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Figure 2.19 Comparison between IC and IS with a single nebuliser for dilute flow of water droplets [148] 

 

The authors successfully demonstrated a new SLIPI technique for two phase flow 

visualisation in optically dense flows such as atomizing sprays where the single scattering 

theory no longer applies. They observed reduction in multiple scattering in images by a factor 

of 9 with the added benefit of an improved image contrast. 

 

Berrocal and Kristensson [151–153] used the SLIPI technique to analyse dense regions of 

water and fuel sprays. They concluded that the 44% of light emission arising from secondary 

emission could be removed in a region where secondary breakups occurred. They also 

reported an increase in contrast as they had earlier. The technique enabled a more accurate 

accounting of the effects from laser extinction and could be implemented to other planar laser 

diagnostics, .i.e. planar liquid laser induced fluorescence and simultaneous Mie/LIF 

measurements. They also describe the SLIPI technique suitable for single shot images and for 
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averaged images. The capabilities of SLIPI could extend to studying primary and secondary 

breakup as well as full disintegration of the injected liquid if the images of the dense media 

are obtained at short enough time intervals enough to freeze the flow motion [153].  By 

recording data at successive depths with the SLIPI technique within an atomizing spray, light 

losses due to laser extinction and signal attenuation could be compensated for by post 

processing calculations and the Beer-Lambert law and an estimation of the local extinction 

coefficient is extracted within the three dimensions of an inhomogeneous cloud of droplets. 

[150,154]. 

 

 Summary of measurement techniques 2.3.5

 

Many different measurement techniques for spray diagnostics and characterisation have been 

developed, each with its own advantages and constraints. It is clear that no single 

measurement method is totally satisfactory. The hypothesis developed in Chapter 1 was that 

hydrodynamic cavitation will result in similar effects as ultrasound cavitation in diesel fuels in 

forming particulates in suspension. In this case, an incident beam of light passing through the 

suspension will result in the particles scattering and absorbing the light resulting in a change 

in transmissivity of the light through the suspension. This technique is developed from the 

Beer-Lambert law which is discussed later in Chapter 3. 

 

A non-intrusive measurement technique which is capable of measuring distribution of droplet 

sizes along a spray was required for the second set of analysis. The SLIPI technique is able to 

perform measurements for two phase flow visualisation in optically dense flows. However at 

the time the technique was relatively new and not much was known about it. The major 

concern was using this technique when it was in its early stage of development. For the above 
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reasons, the Laser Sheet Dropsizing (LSD) technique was opted for as it could measure the 

Sauter mean diameter distributions along the spray for a rapid spray characterisation. LSD 

appears to offer better accuracy in spray cores which are too dense for accurate Phase Doppler 

Anemometry (PDA) measurement and it is also capable of measuring spray distributions, 

whereas PDA is a point based measurement system [146]. The LSD technique requires a 

calibration to be performed by PDA measurements in order to mathematically quantify the 

results; however for a comparative analysis no calibration is required. The added advantage of 

the LSD system is that the images captured can be analysed collectively or individually i.e. 

collectively as a ratio of LIF/MIE images or individually as LIF and MIE light scattered 

images of the spray.  For these reasons the LSD technique was selected to be used as the 

optical diagnostic tool for the measurement of spray distributions. 

 

Due to a LIF based measurement system already in use on the spray it could not be replicated 

to characterise in-nozzle cavitation scattering unless a different source of fluorescence was 

added to the fuels and excited at a wavelength far apart from the current setup with LSD. The 

other drawback was the material of manufacture of the nozzle. Other researchers have used 

the elastic scattering technique in which the elastic white light scattering arising from the 

cavitation occurring in the nozzles is captured. This method will be used to characterise the 

flow in the nozzle holes. For the purpose of this thesis only a small part of the in-nozzle flow 

has been analysed. 
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Chapter 3 Effects of Sustained Hydrodynamic 

Cavitating Flow – Experimental and 

Calibration Tests Setup and Methodology 

 

Modern common rail direct injection diesel engines operate with high pressure injection of 

diesel fuel into the engine combustion chamber.  The injection of the diesel fuel occurs 

through small nozzle holes, located at the base of the injector.  The actuation of the injector 

normally occurs through the forced movement of an electronically controlled injector needle, 

which is retracted as a result of activating a magnetic solenoid, or piezo-electric circuit, 

located inside the injector body.  Diesel fuel maintained at high pressure in a common 

reservoir (called the common rail), is then able to flow into the injector, along the injector 

annulus, and out of the exposed injector nozzles into the engine. 

 

A high pressure diesel pump is employed to maintain the diesel fuel at high pressure in the 

common rail.  Modern common rail diesel pumps are capable of maintaining rail pressures in 

the operating range of 2,000 bar – 3,000 bar.  The high rail pressure is maintained through 

phased multiple piston and one-way valve operation in the pump.   

 

The diesel fuel contained in the pump and the common rail may experience cavitation during 

pumping and flow past sharp edges, creating localised vapour cavities.  This type of flow is 

called cavitating flow, and is associated with unstable, unsteady vapour cavities forming 

inside the flowing fuel. Once formed, the vapour cavities may evolve in a number of different 

ways.  They may attach themselves to particles in the flow, or onto adjacent surfaces.  They 
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may grow or shrink in size, depending on internal temperature and pressure change due to 

flow conditions. 

 

When vapour cavities collapse as a result of rapidly increasing local fluid pressure, the 

internal vapour temperature can rise to very large values as a result of local adiabatic 

compression.  Consequently, complex hydrocarbon molecules found in diesel fuel may 

undergo pyrolysis reactions during cavitation bubble collapse.  As a result, diesel fuel may 

experience a significant change in composition if exposed to sustained re-circulating 

cavitating flow. 

 

As a result of these considerations, Shell Global Solutions began a research programme to 

investigate the impact of sustained hydrodynamic cavitating flow on the composition of diesel 

fuel.  As part of this programme, Shell had funded a sub-programme to investigate the impact 

of sustained flow induced cavitation on the composition of diesel fuel. 

 

The City University London research team designed and purpose-built a re-circulating flow 

cavitation rig, employing a continuous flow high pressure pump and a 5 hole diesel injector.  

Changes in composition in the diesel fuel due to hydrodynamic cavitation occurring across the 

injector and the high pressure pump are to be identified by the detection of time-dependent 

changes in the spectral transmissivity and linear attenuation coefficient of the diesel sample, 

measured continuously at 405 nm. The linear attenuation coefficient is a quantity that 

characterises how easily a material or medium can be penetrated by a beam of light. A large 

attenuation coefficient means that the beam is quickly weakened as it passes through the 

medium, whereas a small attenuation coefficient means that the medium is relatively 

transparent to the beam. 
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New diesel Fuels Aged diesel Fuels Model Fuels 

BP Luton 29-01-11 

Texaco Leagrave 29-01-11 

Tesco Dunstable 29-01-11 

Total Luton 29-01-11 

Shell Flitwick 15-01-11 

ESSO A1 29-01-11 

BP Toddington 07-01-10 

Texaco Milton Keynes 09-01-10 

Tesco Flitwick 07-01-10 

Total 09-01-10 

 Paraffin blend 

Paraffin-FAME mixture 

(ParaffinB20) 

Table 3.1 List of New and aged commercial fuels 

 

The experimental programme undertaken involved the continuous measurement of sample 

spectral transmissivity over a sustained period, conducted on 10 commercial pump diesel 

bought from various fuel vendors, and a further 2 fuels which were paraffin based. Four of the 

commercial fuels were aged over a year. Of the paraffin based fuels one comprised of a 

paraffin blend of C8 to C26, whiles the second was a B20 diesel comprising of 80% paraffin 

blend and 20% fatty acid methyl ester (FAME) on a volume to volume ratio. The list of the 

fuels is seen in Table 3.1. In each test the diesel fuel test samples were exposed to sustained 

hydrodynamic cavitating flow for a period of 40 hours and the time resolved laser reference 

and transmission power intensities of the beam recorded. The experiment was continually 

monitored throughout the 40 hour run to ensure a stable injection pressure was maintained. 

 

Further calibration tests were carried out to observe the effects of temperature on the change 

in spectral transmissivity and linear attenuation coefficient of the fuels. A water bath was 

employed in order to separate out the combined effects of cavitation and the release of 

internal compression energy during the diesel flow through the diesel nozzle into the receiver. 

This would identify and separate the magnitude of temperature and cavitation effects on the 

spectral transmissivity and linear attenuation coefficient of the fuels.  

 



 

 

104 
 

Corrections were then made to the laser intensity signals detected to take into account the 

laser absorption in the beam filter/splitter, the fused silica glasses and aluminium mirrors and 

obtain the corrected laser intensities of the beam inlet and outlet at the fuel. The description of 

the cavitation rig, the experimental programme and calibration tests are detailed below. 

 

In order to quantify the overall chemical compositional changes, a 2D-Gas Chromatography 

(GC x GC) was be carried on the samples of fuels tested. This will be discussed in the chapter 

to follow. 

 

3.1 Experimental Setup 

 

The setup consisted of the cavitation rig which was linked to an external optical cylinder as 

shown in Figure 3.1. The set up consisted of two different elements, one being the continuous 

flow rig and the other the optical setup, i.e. the laser detector setup at the optical cylinder to 

measure the reference and transmission laser power measurements which will be discussed in 

section 3.2. This section details the continuous flow rig set up and describes the purpose of 

the analysis. 

 

 Overview of the continuous flow rig setup 3.1.1

 

The purpose of the experimental setup was to ensure a continuous flow of diesel fuel at high 

pressures through an injector nozzle with controlled pre-injection temperature. The setup 

consisted of a low pressure pump feeding diesel from a fuel tank through a 5 µm nylon fuel 

filter, then into a fixed displacement high pressure pump. The low pressure pump provided a 

head of a ~0.3 - 1.4 bar to feed the high pressure pump and an optical cylinder, at 550 bar 
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injection pressure. A diversion was created aft of the filter to feed fuel to an optical cylinder. 

The Dynex 1318H-10 high pressure pump was driven by a 4.2 kW variable speed motor. The 

motor can be driven to speeds up to 1800 r/min. The diesel fuel would then flow through a 

pressure gauge into a 5-hole injector and released into a fuel filled cylinder maintained at 

atmospheric pressure, flowing upwards into a heat exchanger. The Bosch 5 hole asymmetric 

nozzle had nozzle diameters of 0.22 mm. 

 

The fixed displacement high pressure pump could provide flow rates up to 4.5 L/min at 1800 

r/min measured for water glycol fluid with a viscosity of 1.9 cSt. The pump could provide 

pressures up to 630bar. This information was available in the pump specifications. The 

volume flow rate of the fuel circulating with an average density of 835 kg/m3 can be 

estimated by calculating the Bernoulli velocity of the flow past five 0.22 mm diameter nozzles 

using    √                  , where       is the delivery pressure,       is the pressure at the 

receiving vessel and       is the density of the fuel. Finally the volume flow rate  ̇            , where    is the Bernoulli velocity, A is the cross sectional area of the 5 holes and    

is the coefficient of discharge. Using an estimated discharge coefficient of 0.8 (which is 

typical of diesel nozzles at approximately 550 bar pressure), an average diesel fuel density of 

835kg/m3, and a pressure difference equal to 549 bar,   can be calculated to be 362.625 m/s 

and  ̇ approximately 3.31 ± 0.01 L/min. 

 

A pressure relief valve was installed aft of the high pressure pump to relief pressure surges 

back to the tank and prevent overpressures causing damage to the injector nozzles and body, 

and the high pressure piping. The relief valve could be manually set to the required maximum 

pressure. This could be done by first fully closing the valve then running the high pressure 

system and adjusting the pressure dial until there was no change on the pressure gauge. For 
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the experiments the relief valve was set to open at 630 – 650 bar and would empty into the 

tank. 

 

The injector used was a pressure actuated 5-hole asymmetric nozzle with an inclined hole 

setup. The 5 holes were arranged asymmetrically and followed an inclination. The injector 

used is found in Mercedes Sprinters between years 1998 and 2000. The nozzle hole diameters 

for a new nozzle are 0.22 mm. As we required a continuous flow and not a pulsed flow the 

needle had been taken out of the injector to allow a continuous flow of fuel. The presence of 

the needle caused pressure surges in the high pressure pipes which travelled back into the 

pump. Figure 3.2 shows how the injector was setup vertically upright and injected into a 15 

cm long cylinder. As observed in the image, just the tip of the nozzle, where the injection 

holes were located, was in the cylinder.  

 

If the whole nozzle was in the cylinder as seen in Figure 3.4 there would be a possibility of 

stagnant fuel remaining in the bottom of the cylinder and re-circulating for long periods of 

time without joining the main flow of fuel. The current setup ensures all the liquid flows up 

and out of the cylinder. The high pressure cavitating fuel flow in the current setup will ensure 

all the liquid is pushed up into the cooler and back into the tank where the cycle can continue 

again.The motor speed required, to maintain an injection pressure of 550 bar at 70 °C, varied 

depending on the different diesel viscosities to between 1300 - 1600 rpm. The required 

injection pressures were achieved by manually adjusting the motor speed to reach the desired 

pressure after which it was read using a laser tachometer once the temperature had stabilised. 
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Figure 3.1 Overview of the continuous cavitating flow rig experimental setup 

 

 
Figure 3.2 Injector setup 

 

Upright injector with a 5-hole nozzle 

5-hole injector nozzle injecting into cylinder 

Cylinder empty drain 
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Figure 3.3 A section view of the optical cylinder 

 

 
Figure 3.4 Raised nozzle in cylinder 

 

 

Fuel flow aft of the filter was split to go into the high pressure pump and the optical setup. A 

section view of the optical viewing cylinder is shown in Figure 3.3. Fuel was fed into the 

cylinder from the bottom. It would then flow into the 1 cm width optical measuring section 

and out from the top, after which the fuel returned to the tank.  
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Figure 3.5 Fused Silica window insertion and sealing 

 

The optical cylinder consisted of an aluminium body which was sealed with 3 mm thick 

optical grade fused silica windows on both sides using an aluminium end plate. This allowed 

for access to shine the laser through a 1 cm width of fuel. The windows were compressed with 

an aluminium plate and 6 M6 screws equally placed to ensure an equal compression force on 

the windows. Very thin polypropylene gaskets were used at the intersection between the 

aluminium plate and the fused silica, and between fused silica and the viewing cylinder in 

order to seal well and prevent any fuel leakages between intersections as seen in Figure 3.5. 

 

There were four draining points in the high pressure cavitation rig. One drain valve under the 

fuel filter drains the tank, the low pressure pump, the fuel filter, the recirculation piping and 

the optical cylinder and piping. The second drain valve on the entry into the high pressure 

pump drains the high pressure pump and the low pressure piping from the filter to the high 

pressure pump entry. The third drain valve located on the high pressure exit of the high 

pressure pump drains the fuel in the high pressure piping between the high pressure pump and 

Polypropylene Gaskets 

Fused Silica Window 

End Plate to 

Compress and Seal 
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the injector nozzle. The final drain point on the cylinder where the injector is located as seen 

in Figure 3.2 drains the cylinder, and the heat exchanger. 

 

The continuous flow rig could hold up to 5 litres of fuel when full but for the purpose of the 

experiment 3.5 litres was used which was just above the minimum amount of fuel as a safety 

precaution in case of bursts or leaks. The setup ensured a continuous flow of diesel through 

the injector nozzle and optical cylinder.  

 

Before running at high pressures, all the pipe work, pump, heat exchanger and cylindrical 

chamber aft of the injector were filled with the fuel to be tested using the low pressure pump. 

The recirculation valve was used at this stage, when filling up the system, to re-direct fuel 

flow and also to remove air bubbles from the system and the optical cylinder.  

 

 Electronics, safety and temperature control 3.1.2

 

The low pressure feed pump had to be turned on prior to the high pressure pump as the later 

required suction feed. To prevent damage to the high pressure pump an electronic cut-off was 

fitted to the low pressure pump that would prevent the high pressure pump running without 

feed. In case the feed pressure dropped drastically while the high pressure pump was running, 

they would both be cut-off. The cut off was set to 0.1 bar feed pressure. 

 

The injection pressure was controlled by manually adjusting the motor speed by two dials, 

one for coarse and the other for fine adjustments of pressure. The adjustments showed up on 

the pressure gauge which measured from 1 - 1000 bar in increments of 10 bar. The pressure 

could be set with an error of ± 5 bar.  
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The reduction in pressure from injection, 550 bar, to aft injection, ~2 bar, will induce 

cavitation and thus boiling and increase the temperature of the fuel. The preponderance of this 

energy caused by the pressure drop is absorbed in the creation of vapour cavities. The induced 

cavities undergo formation, growth and implosive collapse.  The collapse causes the internal 

vapour temperatures to be released into the surrounding liquid. A temperature control is 

required to prevent large rises in temperatures which would create no base for investigation 

and would destroy the experimental apparatus. It is essential to control the pre-injection 

temperature by cooling the flow aft of injection. A thermocouple attached to high pressure 

piping before the injector and temperature control system was used to control the pre-injection 

temperature by using the heat exchanger aft of injection to cool fuel. The temperature control 

system allowed sufficient fresh water flow to cool the fuel aft of the injector and maintain a 

controller set temperature. The cooling followed a cycle and controlled the pre-injection 

temperature to approximately +1 and -4 degrees of the set temperature. The cooled diesel 

would then flow back into the tank and the cycle continued.  

 

3.2 The Beer-Lambert Law and the Optical Setup 

 

The optical viewing set up was based on the Beer-Lambert Law of transmissivity through 

liquids. The Beer-Lambert Law or the Beer-Lambert-Bouger law relates the absorption of 

light to the properties of the material through which the light is travelling through. The 

transmission It of a light beam with the intensity Io travelling through a substance is 

logarithmically dependent on the linear attenuation coefficient α and the distance it travels 

through the substance (path length) ℓ as seen in Equation 3.1. 
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Equation 3.1 

 

The transmissivity of the light is given as: 

 

                     

Equation 3.2 

 

Thus, 

                         
Equation 3.3 

 

and therefore the attenuation coefficient α is given as, 

 

                      

Equation 3.4 

 

For a time resolved α, 

                        

Equation 3.5 

 

The linear attenuation coefficient α is a quantity that characterises how easily a medium can 

be penetrated by a beam of light. The linear attenuation coefficient and the absorption 

coefficient are usually used interchangeably. However in situations where large amounts of 

light is being scattered as it passes through the medium, they differ as the light can both be 

absorbed and scattered. In this case, the absorption coefficient would measure how quickly a 
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beam of light would lose intensity due to absorption, whereas the attenuation coefficient 

would measure the total loss of narrow beam intensity including scattering. 

 

α is comprised of the scattering coefficient αsc and the absorption coefficient αabs i.e. α = αsc + 

αabs. The linear attenuation coefficient α is related to the complex refractive index of the 

sample (specified by n = m + ik) by the relation 

 

              

Equation 3.6 

 

where  is the wavelength of the incident light [127]. In these experiments, the overall 

refractive index of the diesel samples is comprised of the overall refractive index of the blend 

of aliphatics, aromatics and additives making up the liquid content, taken together with the 

overall refractive index of any particles in suspension. The overall linear attenuation 

coefficient can be expressed in terms of a sum over the respective scattering and absorption 

terms 

                                  

Equation 3.7 

 

Where,                            are the scattering and absorption coefficients for the liquid 

and the particle suspension respectively.  

 

The linear attenuation coefficient will vary according to how many molecules there are in the 

in the path length of the beam. The larger the number of absorbing species, the larger the 
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attenuation or absorption coefficient. α is a function of the photon energy of light and the 

density and composition of the medium it passes through. 

 

Path lengths through the fluid of 1 cm are usually accustomed. The light passing through a 

medium will follow an exponential decay law and the larger the path length the larger the 

decay in light. The light entering a liquid is proportional to that absorbed as a result of the 

chemical and physical characteristics of its contents, to the concentration of the absorbing 

medium and the length of the absorbing path. This study uses this law to present an analysis 

of the chemical changes in diesel fuel as a result of continuous cavitation cycles by using a 

405 nm laser to characterise the cavitating flow. 

 

A low power 405 nm World Star Tech. laser is passed through a beam splitter to reflect 10% 

of light to a reference detector measuring the reference intensity. The 90% transmitted 

through the splitter passes through the optical viewing cylinder and out, where it is reflected 

onto a transmission detector via an aluminium mirror. The transmission detector will measure 

the light after it has passed through 1 cm of fuel. The optical setup will enable the 

measurement of transmissivity of UV light through the fuel. 

 

The laser detectors commissioned were Laserpoint low power & 

energy sensors with high sensitivity, low noise and a high 

resolution measuring laser powers between 10 µW-200 mW. The 

detectors used a USB interface to record directly onto a computer 

or laptop via hardware boxes and PC-Link software. The program 

contained the possibility to calibrate under different light conditions before operation and also 

provide X10 measurement gain to enhance measurement flexibility of low power readings to 

Figure 3.6 Laser power 
detector 
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20 µW resolution. The software package logged 1-minute averaged laser power 

measurements for up to 12 hours non-stop, and the minimum and maximum powers per 

minute. 

 

 
Figure 3.7 PC-Link Interface and the results produced for each detector. 

 

Initially the raw transmission and reference readings will be used to a plot transmissivity 

versus time relationship of each fuel. The one minute Pavg (mW) measurements will be 

averaged over 15 minutes for both detectors before the analysis. 

 

Each of these optical components will have their own absorption coefficients and these will 

later be calculated and calibrated to finally determine the intensity of light entering and 

exiting the fuel. This will be carried out in section 3.5. An overview of the setup can be seen 

in Figure 3.8. While running the analysis the laser detector setup was calibrated and kept 

under a box cover to prevent external light sources affecting the reference and transmission 

detector readings. 
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Figure 3.8 Laser-Detector setup with laser path through 1cm width of fuel at the optical viewing cylinder 
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3.3 Experimental Methodology 

 

Each fuel in Table 3.1 was run for 40 hours over 4 days, i.e. 10 hours per day. Before each 

fuel was filled in the rig a flushing procedure with 95% hexadecane was carried out to prevent 

high levels of different fuels mixing. Following this a fuel filling procedure was used, 

followed by fuels experimental run procedure. After the 40 hour analysis was complete a 

drain procedure was followed. The laser power measurements were taken using power 

measurement software which was provided with the detectors to read a dual system. These 

procedures will be explained in this section, and they were carried out for all fuels. The fuel 

flushing, filling and draining procedures were followed whenever a fuel change was required, 

whenever a fill/drain was required whether it be for the flushing fuel or experimental fuel. 

 
1. BP Toddington (Aged) 
2. Texaco Milton Keynes (Aged) 
3. Texaco Leagrave 29-01-11 
4. Tesco Flitwick 07-01-10(Aged) 
5. Tesco Dunstable 29-01-11 
6. BP Luton 29-01-11 
7. Shell Flitwick 15-01-11 
8. Total Luton 29-01-11 
9. ESSO A1 29-01-11 
10. Total 09-01-10 (Aged) 
11. Paraffinic fuel 
12. ParaffinicB20 

Table 3.2 Fuel analysis sequence 
 
 
 For each fuel, a new fuel filter and a new 5-hole nozzle were used. The reason for using a 

new nozzle was to keep consistency in the analysis. Cavitation in the nozzles causes the holes 

to wear out. Worn out holes will result in a flow with less cavitation intensity due to the sharp 

inlets to the nozzles being smoothened out. Using an old nozzle would create a different 

cavitation start profile and the cavitation intensity per test invalidating the results comparison. 

A flush filter was used during flushing procedure.  
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 Fuel filling and draining procedure for analysis of fuels 3.3.1

 

The correct volume of fuel/flushing fuel was filled up. A volume of 3.5 L of fuel was used to 

fill up the cavitating flow rig for fuel analysis. The fuels were always filled up in new bottles 

to be poured into the cavitation rig. Initially approximately two litres was poured into the rig 

to soak the filter, fill the filter housing and piping circuit. The low pressure pump was run to 

fill up the optical viewing device. The rest of the fuel was poured into the rig and the rest of 

the piping circuitry and components were filled up. 

 

Once the injection cylinder starts to fill the high pressure pump was switched on and run at 

about 10 – 20 bar to fill up the cylinder and cooler, the fuel would then flow back into the 

tank. Once circuitry and components were full, the high pressure pump was switched off and 

the fuel was circulated in the system using the low pressure pump. 

 

In order to remove air bubbles, the recirculation valve was opened and closed immediately 

and bubbles were seen rising from the optical cylinder. Once the bubbles ceased appearing, 

the procedure of opening and closing the valve was ended. The fuel was circulated around the 

system for about 30 minutes to ensure no bubbles present and those present had escaped from 

the loosely screwed tank top. 

 

Leak checks were carried out and all piping and extraction valves were checked to be shut. 

The tank level was checked to ensure a sufficient amount above the tank level sensor. A lot of 

fuel was not filled because if a leakage or burst appeared, only a small amount would empty 

before the electronics shut down the system because of low fuel. During draining, all 

electrical equipment was shut off and isolated. The first drain point was the under the filter. 



 

 

119 
 

This drain point as mentioned earlier would drain the tank, low pressure pump, filter and the 

optical cylinder. About 2 - 2.2 L of fuel was drained from this section. 

 

The second draining point was at the injection cylinder. This would drain the cylinder and 

heat exchanger of fuel. To ensure the heat exchanger was drained fully, inert nitrogen at very 

low pressure was fed into the tank and the entry sealed. The only exit valve open for the 

nitrogen to leave the pressurized rig was the injection cylinder exit valve. The nitrogen would 

flow through from the tank to the heat exchanger and push the fuel out and into the cylinder to 

drain valve. This was done until no fuel was seen pouring from the heat exchanger back into 

the cylinder and exiting the valve. 

 

Fuel was then drained from the high pressure exit and then the low pressure entry into, the 

high pressure pump. This would conclude the draining. The last 3 drain points would drain 

approximately 0.8 – 1 L in total. A total of 2.8 - 3.2 L was drained and the rest would be in 

the filter. The fuel drained was then labelled correctly. 

 

 Experimental analysis run procedure  3.3.2

 

Once the fuel was filled by following the fill procedure with 3.5 L of fuel and circulated 

through the system, a 200 ml pre analysis sample was acquired from the filter drain valve. 

This would give an initial analysis sample for chemical analysis. The pre-injection 

temperature is set to 55 degrees on the temperature control. The low pressure pump is 

switched on and an initial laser power reading is obtained, and then the high pressure pump is 

run. The pressure is slowly dialled up to 550 bar. Once the temperature reaches 55 degrees, 

one temperature cycle is allowed and once the cycle completes the temperature is increased to 
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the analysis temperature 69 degrees. The heat exchanger and the temperature control follows 

a cooling cycle as mentioned earlier. When the temperature reaches 69 degrees a further two 

cycles are allowed and then the time is noted for the laser power readings to commence. The 

analysis is run continuously for the rest of the day for 10 hours unless a shutdown occurs at 

which the time is taken and restart done. 

 

The analysis run procedure is followed for the 40 hours, i.e. 4 days of analysis. During high 

pressure run, the tank cap was left loosely open, that is open to atmosphere. Once the 10 hours 

of run time are up the system was shut down and the fuel cooled overnight. The next day the 

run analysis procedure was restarted.  

 

 Flushing procedure 3.3.3

 

Initially two sets of 95% hexadecane of 3.5 L each were filled, flush one and flush two. Two 

flushes were carried out per flushing procedure, using first the flush one then the flush two. 

During filling and emptying flushes, the fill and drain procedures are followed. 

 

Each flush was run for 30 minutes between 300 - 400 bar injection pressure and 40 degrees 

pre injection temperature. As expected the flush one would deteriorate faster than flush two. 

The transmission laser power was monitored before each flush set and once the power 

reached approximately 7 mW the flush one was discarded and replaced with flush two fuel 

and a new flush two of 95% hexadecane filled up. The initial transmission power reading for 

the pure unused 95% hexadecane was 11 mW. This gives a change of about 36% deterioration 

in flush one before it is changed. 
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3.4 Diesel Heating Calibration  

 

Changes in fuel composition may also be affected by high temperatures. On one hand the high 

temperature facilitates the rate of cavitation whereas on the other it may be causing thermal 

decomposition in the fuel. The experiments were run at high temperatures thus a heat 

calibration was carried out to investigate the effects of high temperature on the fuel 

transmissivity and its linear attenuation coefficient and to try to separate out the effects of 

temperature to cavitation. Fuel samples were heat tested and then the laser transmission 

profile measures and the heat tested fuel sample later sent for 2D- GC analysis. The results of 

the heat calibration were to be later compared with the cavitation analysis results and further 

the chemical analysis to provide further conclusions. This section explains the setup and 

methodology used to carry out the heating calibration.  

 

In order for a spectral attenuation analysis carried out on a heated fuel sample for comparison 

to the sustained cavitating flow analysis, a similar measurement methodology would have to 

be followed. However the fuel cannot be heated in the cavitation rig and thus the fuels have to 

be heated externally and then poured back in to the rig in order to obtain a comparable 

analysis of measurements. The sample fuel to be heat tested would first have to be poured in 

the rig and passed though the optical chamber to record its initial transmissivity. The fuel 

would then be emptied out from the rig into bottles which were placed in a modified urn to 

carry out the heat tests. Once the heat tests were complete, the sample was poured back into 

the rig to obtain a 40 hour heat test transmissivity measurement of the fuel. When carrying out 

both sets of transmissivity measurements in the rig, the fuel was only circulated past the 

optical chamber using the low pressure pump at approximately 0.5 bar gauge pressure. The 

high pressure pump was not switched on and thus no cavitating flow conditions took place. 
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The objective of the test was to heat and maintain the fuels at 70° C for 40 hours and poured 

back into the continuous flow rig for the laser transmission power signals to be acquired. Heat 

tests were carried out per fuel sample and in each tests new fuel samples of each test fuel were 

used. The heat tests employed the same time chronology to the parent analysis that is, 10 

hours per day over 4 days.  

 

For some of the fuels 3.5 L of fuel was heated up as the flow rig required this minimum 

amount to run the low pressure pump. This fuel amount would be filled into the rig and 

circulated with just the low pressure pump on, without running the high pressure pump. 

During the measurements carried out for these fuels, the injector was present however 

because the fuel was only circulated using the low pressure pump (at 0.5 bar gauge pressure), 

no cavitation would be induced past the injector. Later on, an adjustment was made to the 

continuous flow rig, where the high pressure side and the injector were isolated and thus the 

rig required a lesser amount of fuel to fill. For the rest of the fuels only 2.5 L was used for the 

heat test analysis. The fuel would flow from the filter back to into the tank. The adjustments 

were carried out once the cavitation analysis had ended. 

 

Due to unfortunate circumstances there was not enough stock fuel of BP Toddington aged and 

thus heating tests were not carried out of this fuel.  

 

 Heating calibration setup and methodology 3.4.1

 

It is quite dangerous to heat fuels to temperatures up to 70 °C; a safe way had to be employed 

to keep the fuel vapours from developing and contacting a possible ignition source. The best 

way was to use a water bath with an adjustable temperature controller. A tea urn was modified 
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to contain a level gauge and a K-type thermocouple. A temperature control box allowed the 

heating temperature to be set and controlled to within 1 °C. The level gauge was employed as 

a safety device if the water evaporated beyond the level of fuel.  

 

    
Figure 3.9 Heat calibration setup with modified tea urn and bottles used for the heat tests 

 

Figure 3.9 shows the heating urn setup used to heat the fuel. In the image the blue lines are 

water fill levels and the red lines are fuel fill levels in the bottle. The water was always filled 

above the level of the fuel in the bottles. The urn could take either two 2.5L bottles or a 2.5 L 

and a 1.5 L bottle. A bottle stand was manufactured for that the glass bottles were not in direct 

contact with the heating unit base. Winchester glass bottles were used with modified caps to 

allow breathing to match the parent experiment breathing where the cap was loosely left open. 

The breathing will also be an advantage in that it will prevent excessive pressure build up 

inside the glass bottles. 1 mm diameter tubing was attached to each cap and leads to a 

ventilation duct to prevent pressure build up in the bottles. 

Bottle caps fitted with breathing 
lines 

Water fill level 

Bottles fuel fill level 

Bottle stand 

Urn base 

Heating unit – controlled by an 

external temperature control unit 
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Before the heat tests were carried out the 0 hour laser reference and transmission power 

readings were measured by pouring fuel at room temperature into the continuous flow rig and 

circulating it at low pressure at about 0.5 bar gauge pressure. Clean bottles were filled up with 

the fuels to test. During the tests, 3.5 L of fuel was used. One 2.5 L and 1 L bottle were filled 

up. During the tests which had 2.5 L bottles, two clean bottles were filled up with different 

fuels for example one filled with Shell and the other with Texaco and heat test conducted 

simultaneously in the urn. This enabled double the testing rate as otherwise heat tests would 

require a week’s time per fuel analysis. Approximately 30 minutes water warm-up time to 

70ºC was allowed. The water would reach the set temperature in 20 minutes and then a further 

10 minutes were allowed to regulate the temperature evenly in the urn. Once the test was 

over, the bottles were taken out of the urn. Overnight, the bottles would be taken out of the 

urn to cool off, which would compare to the cavitation rig being switched off and the fuel 

undergoing the cavitation cooling overnight. When the test ended they were allowed to cool 

for a day before they were poured back into the rig at room temperature to measure their 40 

hour reference and transmission power readings. This was carried out for all fuels apart from 

BP Toddington. 

 

3.5 Laser Intensity Absorption/Transmission Calibration  

 

In the laser-detector setup discussed in section 3.2, it is essential to calculate the laser 

intensity at the beam entry and at the beam exit to the fuel. The reference and transmission 

detector readings are available but the components that the laser beam travels through have 

their own transmission factors and the beam will decrease in intensity past each. The 

calculation is an approximation relative to these reference and transmission intensities 

acquired.  The laser power reference and transmission readings previously obtained can be 
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used to obtain a reference transmissivity but have to be calibrated and the exit and entry laser 

intensities calculated if the linear attenuation coefficient of the laser light at 405 nm through 

the fuel is to be calculated precisely. The beam splitter transmissivity, the fused silica window 

transmissivity and the aluminium mirror transmissivity are to be calculated and replaced in 

Equation 3.1 to calculate the linear attenuation coefficient α. 

 

The optical calibration procedures and results can be found in Appendix section A.1. The time 

resolved linear attenuation coefficient for the commercial fuels can be calculated using 

Equation 3.8 which is the same as Equation A.7 in the appendix. 

 

     (            )         

Equation 3.8 

 

As the setup was adjusted for the two paraffinic model fuels used the time resolved linear 

attenuation coefficient was recalculated as in Equation 3.9 which is the same as Equation A.8 

in the appendix. 

 

     (            )         

Equation 3.9 

 

These two equations will be used further on in the next chapter to determine the fuels 

attenuation profiles  
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Chapter 4 Effects of Sustained Hydrodynamic 

Cavitating Flow - Results from Experimental 

Analysis and Chemical Analysis of Fuels 

 

Visible light absorption is known to all of us, because this is what causes objects to be 

coloured. Visible light lies in the wavelength range of 400 - 700 nm. When light is absorbed 

by a material, valence (outer) electrons are promoted from their normal (ground) states to 

higher energy (excited) states. The promotion of electrons to different energy levels is not 

restricted to electromagnetic radiation in the visible part of the spectrum; it can also occur in 

the ultraviolet region. 

 

Valence electrons can generally be found in one of three types of electron orbitals: 

(i)  Single, or σ, bonding orbitals; 

(ii)  Double or triple bonds (π bonding orbitals); and 

(iii)  Non-bonding orbitals (lone pair electrons). 

 

Sigma bonding orbitals tend to be lower in energy than π bonding orbitals, which in turn are 

lower in energy than non-bonding orbitals. When electromagnetic radiation of the correct 

frequency is absorbed, a transition occurs from one of these orbitals to an empty orbital, 

usually an antibonding orbital, σ* or π* as seen in Figure 4.1. The exact energy differences 

between the orbitals depend on the atoms present and the nature of the bonding system. Most 

of the transitions from the bonding orbitals are too high a frequency (too short a wavelength) 
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to measure easily, so most of the absorptions observed involve only π→π*, n→σ* and n→π* 

transitions [155–157]. 

 π→π* in alkenes 

 n→π* in molecules with carbonyl groups (ketones, aldehydes). 

 n→σ* in amines or alcohols 

 σ →σ* in alkanes (at vacuum UV- wavelength) [157]. 

 

Equations relating to absorption and the Beer-Lambert Law having developed in the 

preceding chapter, and calibrations have been carried out to obtain the reference laser power 

entering and exiting the fuel sample cell to enable the calculation of the spectral attenuation 

coefficient. The spectral attenuation coefficient is useful as it is independent of path length. 

The spectral attenuation coefficient is strongly influenced by the nature of the solvent, and for 

organic compounds, by the degree of substitution and conjugation. 

 

 

 
Figure 4.1 Electron transitions in ultraviolet/visible spectroscopy[155] 

 



 

 

129 
 

Many organic molecules absorb ultraviolet/visible radiation and this is usually because of the 

presence of a particular functional group. These groups that actually absorb the radiation are 

called chromophores. However there are various factors affecting the absorption: 

(i) The solvent-the absorption in a polar solvent will be at a longer wavelength (lower 

energy, hence lower frequency) than in a non-polar solvent because the dipole-dipole 

interaction reduces the energy of the excited state more than the ground state. 

(ii)  Degree of conjugation-if carbon chain length is increased, the maximum wavelength 

absorption peak shifts slightly to a higher wavelength because the energy of the 

excited state is reduced. The longer the conjugated carbon chains in the absorbing 

system, the greater the intensity of absorption. 

(iii)  Acid-base indicators-absorption is advantageous in the acid-base indicators as a small 

change in the chemical structure of the indicator molecule can cause a change in the 

chromophores and it will absorb in different parts of the visible spectrum. 

 

The absorption of visible or near ultraviolet light (> 2000A) only occurs when certain groups 

are present in the molecule. Examples of such groups, called chromophores, are: 

 

 

Figure 4.2 Examples of groups of chromophores [158] 

 

It will be noticed that each of these groups possess an alternation of single and double bonds. 

In a coloured compound these groups occur conjugated with other double bonds. Although a 
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coloured molecule has many such conjugated double bonds, the colour does not depend upon 

the number of there alternations alone. The colour is strongly influenced by the way in which 

the chromophores are bound together i.e. upon the structure of the entire molecule [158]. 

 

In the work here, a single wavelength beam is being used and its absorption across various 

diesel fuels being cavitated over long periods of time being measured and used to calculate 

the spectral attenuation coefficient of the each fuel over time. This chapter analyses the results 

obtained from the optical arrangement of the long term cavitation experiment and the 

corresponding fuel heating tests carried out to subtract the effect of high temperature. Samples 

of the fuel were later sent for GC x GC analysis and will provide further information of the 

effects of hydrodynamic cavitation to the physical and chemical properties of the fuels. 

 

4.1 Long Term Cavitation Experimental Results 

 

 Effects of temperature rise on the transmission signal 4.1.1

 

During the beginning of the experimental analysis on each day the temperature of the fuel was 

raised from room temperature to 69 ºC. It was observed that the transmittance of the 405 nm 

light through the fuel increased with increase in temperature. The change in transmittance for 

each fuel was different and dependant on the chromophores present in the fuel and the fuel 

temperature at the optical cell. Laser power reference and transmission readings were 

obtained at room temperature before the start of the experiment each day over the four days.  

 

A temperature cycle was caused as an effect of cooling the fuel aft injection depending on its 

temperature prior to injection. As a result of this cooling temperature cycle, the temperature in 

the optical cell would vary between 55 – 65 ºC. As a result of this temperature variation, a 
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corresponding synchronised cycle was observed on the laser transmission through the fuel. As 

the temperature increased from 55 – 65 ºC, so would the power transmitted through the fuel 

and vice versa. This was observed for all fuels.   

 

The reference and transmission readings at the optical cell temperature were obtained from 

the minute averaged readings saved during the course of the experimental analysis. The 

normalised laser power was calculated by a ratio of the transmission against reference for a 

selected hour in the middle of the cavitation run in a specific day. This cycle was observed to 

match the temperature of the fuel entering the optical cell however further quantitative 

analysis cannot be provided as the results were not synchronously recorded. For a quantitative 

analysis a precise temperature and a small time variation is required with a synchronous 

measurement of laser reference and transmission readings. The measurements taken here for 

the experiment were one minute averaged and thus the reference and transmission laser power 

has been averaged over the minute. Qualitatively the study is viable as the changes occurred 

were observed however they cannot be precisely quantified. 

 

 
Figure 4.3 Normalised laser power against time (minutes) for Total Luton showing the variation of laser transmission 
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Figure 4.4 Normalised laser power against time (minutes) for Tesco Dunstable and Esso A1 showing the variation of 

laser transmission 

 

 
Figure 4.5 Normalised laser power against time (minutes) for the Paraffinic Model Fuel showing the variation of laser 

transmission 

 

Figure 4.3 to Figure 4.5 show the changes in minute averaged normalised laser power over an 

hour of Total Luton, Esso A1, Tesco Dunstable and the paraffinic model fuel for an hour. The 

results show the effect of the cooling cycle on the measurements obtained. The temperature of 

the fuel exiting the heat exchanger is a factor that affects these cyclic variations. This in turn 

depends on the fuel thermal conductivity and the temperature of the coolant entering the heat 
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exchanger. The cycle time of the heat exchanger varied with the water inlet temperature, its 

flow rate and the temperature of the surrounding air and thus these curves and not purely 

cyclic as some temperature cycles may last longer than others. The other factor affecting the 

temperature of the fuels is the temperature gradient occurring throughout the rig. 

 

It was observed that for all fuels the temperature cycle caused by the effect of the cooling post 

injection caused a synchronous change in transmission of laser power through the fuels. 

During analysis of the cavitation laser reference and transmission readings the one minute 

averaged will be averaged over 15 minutes to try and average out the effect of temperature on 

laser power transmission through the fuel. The full temperature cycle lasted between three to 

four minutes. The cycle seen in the figures above lasts four minutes this matched the cooling 

cycle observed. The maximum and minimum normalised laser power readings are 0.79 ± 0.01 

and 0.75 ± 0.01 in Figure 4.3; 1.76 ± 0.01 and 1.72 ± 0.01 for Esso A1, 1.65 ± 0.01 and 1.61 ± 

0.01 for Tesco Dunstable, in Figure 4.4; and 8.71 ± 0.01 and 8.66 ± 0.01 in Figure 4.5.  

 

The cyclic variations occurring in the paraffinic model fuel is inconsistent in comparison to 

the commercial diesel fuels showing relatively sinusoidal cycles. These occurred due to the 

rate of heat exchanger performing inconsistently during the analysis of this fuel. This may 

have occurred due to the temperature or feed of the water supply varying largely as it was 

being used by elsewhere. 

 

There are various factors that could affect the cooling cycle: 

 The heat capacity of the fuel. The higher the heat capacity the higher the heat energy 

required to result in the same temperature difference. Thus the cooling cycle will take 

longer for higher heat capacity fuels. 
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 The temperature of the surrounding air in the room. If the air is cooler then the rig will 

lose more heat to the surrounding air and thus affect the cooling cycle time. 

 The temperature of the inlet water supplied to the heat exchanger. The cooler the water 

at inlet to the heat exchanger the shorter the cycle and thus the cooler the temperature 

of the fuel exiting at the end of the heat exchanger. 

 The inlet volume flow rate of water at the heat exchanger. If the volume flow rate is 

low the cooling cycle will be longer. 

 

For the above reasons precise synchronous measurements of the temperature at inlet to the 

optical cell and the laser reference and transmission readings have to be carried out at shorter 

time periods, i.e. one second measurements, to obtain a quantitative conclusion. 

 

The absorption spectra of molecules in the near visible to ultraviolet spectral region are 

known to change with temperature [158–161]. Among many kinds of temperature-dependent 

interactions, an interaction due to hydrogen bonding is the one most often encountered in 

usual absorption experiments [162].  A change in transmittance can be caused by a change in 

concentration of the absorbing species and this in turn may relate closely to the colour of the 

liquid. Grubb et.al [160] derived the term thermochromism for the change in colour of organic 

compounds with temperature. The following three important factors may be considered as 

causes of temperature dependant change in the absorption spectra [162]: 1) temperature effect 

on the refractive index of the solvent; 2) temperature effect in the Boltzmann distribution 

among vibrational and rotational energy levels of a solute molecule and 3) temperature 

dependant interactions among molecules in the system 
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 Experimental analysis - 40 hours cavitation 4.1.2

 

One-minute averaged laser power measurements for the diesel samples that were subjected to 

cavitating flow tests were converted to fifteen minute averages. The continuous fifteen minute 

averaged laser transmission power data were ratioed against the synchronous reference laser 

power measurements, producing normalised transmission laser power data that would be 

independent of power fluctuations in the source 405 nm diode laser. A fifteen minute average 

was carried out to the raw one minute averaged intensity reference and intensity transmission 

data obtained during the experiment in order to average out the temperature variation 

occurring over the optical cylinder as a result of cooling and thus affecting the laser 

transmission as discussed in 4.1.1 above. The fifteen minute averaged results were then 

normalised with respect to the intensity reference signal and plot on a graph against run time. 

 

Figure 4.6 Normalised transmitted laser power as a function of cavitation time (hours) for 

Shell Flitwick carried out to check optical setup consistency.Figure 4.6 to Figure 4.10 shows 

graphs of normalised transmission laser power profiles through the optical cell containing 1.1 

cm thick layer of sample test fuel flowing upward through the cell, as a function of time 

during the forty hour cavitation test period. The first of the graphs shows the commercial 

diesel fuel tests whereas the second graph shows the model diesel fuels. The third curve 

consists of a combination of the above and the fourth graph consists of aged fuel test results. 

The graph in Figure 4.6 shows a consistency check carried out to in order check the 

repeatability of the measurements obtained. At this point the normalised transmission profiles 

have been displayed separately due to the reduced stability of diesel fuels over long term 

storage [36,163]. This will be discussed in detail further on. The fuels all show different 

transmitted laser profiles as a function of cavitation run time. 
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Figure 4.6 Normalised transmitted laser power as a function of cavitation time (hours) for Shell Flitwick carried out 
to check optical setup consistency. 

 

 
Figure 4.7 Normalised transmitted laser power as a function of cavitation time (hours) for NEW 6 commercial diesel 

samples  
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Figure 4.8 Normalised transmitted laser power as a function of cavitation time (hours) for 2 Paraffin-based Model 
diesels. 

 

 

Figure 4.9 Normalised transmitted laser power as a function of cavitation time (hours) for 6 NEW commercial diesels 
samples and two paraffin-based model diesels 
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Figure 4.10 Normalised transmitted laser power as a function of cavitation time (hours) for 4 AGED commercial 
diesels 

 

The normalised laser transmission obtained in Figure 4.6 is for Shell Flitwick run over forty 

hours on two separate occasions in order to check the laser power and optical measurement 

system consistency. Although carried out in exactly the same methodology, the consistency 

check run the second time utilized the same injector nozzle as the first case. The nozzle may 

have been worn out and thus the cavitation occurring over the injector nozzle may not be the 

same magnitude as the one run with a new nozzle. The reduction in cavitation magnitude 

occurring will have lower chemical consequences on the fuel and thus the normalised laser 

transmission will be higher. This is clearly observed in the graph as both curves start of at the 

same point and follow the same pattern to the end. The difference in normalised laser 

transmission at 1.25 hours and at 40 hours is 0.2 ± 0.1. The optical setup and measurements 

thus provide consistent results from fuel to fuel and the results obtained are comparable. The 

gaps in the histories of these graphs relate to day to day running. There are four sets of lines 

per fuel representing each day the fuel was run for 10 hours in the cavitation rig. 
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The normalised values at the beginning of the cavitation tests as observed in all graphs are 

different because the fuels individually have different attenuation coefficients depending on 

the concentration of absorbing species present in them. Shell Flitwick had the lowest 

normalised laser transmission signal at 0.58 ± 0.01 and is therefore lowest on the graph. A 

low normalised laser transmission relates to a large number of 405 nm laser power absorbing 

species present in the fuel. Of the commercial fuels, BP Luton had the highest laser 

normalised laser transmission signal at 2.43 ± 0.01. A high normalised laser transmission 

signal indicates a lower amount of 405 nm laser power absorbing species present in the fuel.  

The paraffin based model diesel was transparent to the incident laser light at 405 nm and had 

a normalised laser transmission between 8.83 ± 0.01 and 8.77 ± 0.01. In addition the model 

diesel attenuation coefficient was observed to remain unchanged over the forty hour 

cavitation period. There was negligible change in its absorption over the forty hour period. 

The initial glich seen in the curve at 2 hours is due to an emergency shut down and restart that 

had to be carried due to a fire alarm response. The fuel had then started to cool before it was 

restarted following the sequence to raise the temperature  to 69 degrees. In contrast to this, all 

of the commercial diesel samples (fresh and aged) produce a decrease in normalised laser 

transmission power with time during the cavitation. The model diesel containing 20% RME 

produced a different variation. All the commercial diesels decreased in laser power 

transmission, whereas the RME-model diesel produced an increase in laser power 

transmission as a result of cavitation over time.  

 

Figure 4.11 shows the overall changes in percentages as a result of the fuel under going forty 

hours of cavitation run time. From the bar plot showing percentage changes due cavitation run 

time in the rig, it can be observed that the model fuel under goes very little change in 

transmitted laser power over the forty hour period. By contrast the rest of the commercial 
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fuels produce a relative decrease in normalised transmitted power. Some of the aged fuels 

produce a large decrease in normalised transmitted laser power. The model diesel fuel 

containing RME produced a large increase in normalised transmitted laser power. 

 

 

Figure 4.11 Percentage change in normalised transmitted laser power as a result of 40 hours cavitation 

 

Two of the aged fuels display larger decreases in normalised laser transmission. One that 

sticks out and different to the rest of the commercial fuels is BP Toddington. In contrast to all 
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which levels out, the aged BP sample produces a linear decrease throughout the forty hours 

cavitation period. BP Toddington aged changed -46.6% ± 0.1%, whereas TEXACO MK 

changed -44.2% ± 0.1%. TESCO Flitwick and TOTAL aged produced changes in normalised 
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fuel instability maybe a factor creating this larger changes in optical transmission as a result 

of long term cavitation.  

 

At the start of each day, there is a small rise/fall in laser transmission over time before the 

results stabilise. This was observed as an effect of temperature stabilisation during the start of 

the experiment and depended on the thermal properties of the fuels. For some of the 

commercial fuels a small rise in normalised laser transmission was observed at the start of 

each day until the 4 litre capacity of the rig had attained a stable temperature and a uniform 

temperature gradient entered the optical cylinder. The paraffinic model based fuels, BP Luton 

and ESSO A1 displayed a fall in normalised laser transmission at the start of each day until 

temperature stabilisation was achieved. This effect cannot be pinpointed as an effect of 

paraffins as the model fuel was comprised of paraffins and olefins.  

 

 

Figure 4.12 Self-Normalised Transmitted laser power as a function of cavitation time (hours) for 6 NEW commercial 
diesels samples and two paraffin-based model diesels. 
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Figure 4.13 Self-Normalised Transmitted laser power as a function of cavitation time (hours) for 4 AGED commercial 
diesel samples 

 

 

Figure 4.14 Self-Normalised Transmitted laser power as a function of cavitation time (hours) for 4 NEW commercial 
diesel samples and 2 AGED commercial diesel samples that have similar profiles. 
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The true scale of the change in normalised transmission power for all fuels can be observed in 

Figure 4.12 and Figure 4.13. These graphs show the relative variation in laser transmission 

through the respective diesel samples as a function of time and were determined by 

normalising the transmission profiles with the corresponding normalised transmission laser 

power at the beginning of the cavitation tests. From these it can be observed that the paraffinic 

model fuel under went negligible changes over forty hours of cavitation, -0.7 % ± 0.1%. The 

fresh commercial diesel fuels show a decrease in normalised laser transmittion over prolonged 

cavitation. TEXACO Leagrave overgoes the maximum overall change of -33.5% ± 0.1% 

whereas ESSO A1 displays the lowest change over the forty hours of cavitation with a change 

of -7.8% ± 0.1%.  

 

In contrast to the other commerical fuel results the paraffinic-B20 model fuel displays an 

increase of 55.1% ± 0.1%. As the paraffinic model fuel without RME displayed no change in 

normalised laser transmission, the increase displayed by the RME containing paraffinic fuel 

can be pinpointed to the effects of RME. The effects of long term cavitation to the RME 

causes the amount of absorbing species contained within it to decrease and thus the 

normalised laser transmission increases. A discussion with scientists at Shell Global Solutions 

came up with the same conclusion with their analysis of the effects of ultrasound cavitation on 

RME containing fuel. Further investigation lead them to conclude that naturally occuring 

antioxidants in RME called tocopherols [164] are getting destroyed as a result of the impact of 

the sustained cavitation. It lead us to believe that these species was the major absorbing 

species in this mixture and thus its destruction would cause a decrease in laser power 

absorption and an increase in normalised laser transmission with prolonged periods of 

cavitation as seen in these figures. Visually observing the samples before and after the 
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cavitation gave further evidence as the after sample had gone much lighter after forty hours of 

cavitation. 

 

The major issues with the usage of biodiesel are its susceptability to oxidation upon exposure 

to oxygen in the ambient air. This susceptibility is due to its content of unsaturated fatty acids 

chains. The oxidation process has been known to influence the stability of bio-fuels with 

factors such as the presence of air, light, elevated temperature, extraneous materials present in 

the container material, peroxides and antioxidants, as well as the size of the surface area 

between the biodiesel and air [165]. Approaches to improving the biodiesel oxidative stability 

include the delibrate addition of antioxidants. RME contains naturally occuring tocopherols 

and their destruction would result in its stability being compromised. However these naturally 

occuring and delibrately added antioxidants are probably getting destroyed by the effect of 

cavitation induced bubble collapse. The European diesel fuel standard EN 590:2009 includes 

diesel blends with up to 7 % (v/v) FAME [166].  

 

So far it has been observed that prolonged cavitation has not affected  the normalised laser 

power transmission through paraffinic model fuel diesel at 405 nm. The effects of prolonged 

cavitation on Rapeoilmethylester (RME), which is a fatty acid methyl ester (FAME), based 

paraffinic fuel have also been observed. It can be concluded that the presence of FAME 

causes and increase in normalised laser power transmission due to the destruction of the 

absorbing species contained in the FAME. Some fuels display a similar relative decrease of 

normalised transmitted laser power over time. Seen in Figure 4.14, SHELL Flitwick and Aged 

Total Luton produce a similar relative profile, whereas TESCO Dunstable, TESCO Flitwick 

(Aged), BP Luton and Total Luton also produce a relatively similar profile respectively. The 

magnitudes of the changes occuring in these fuels over the forty hours of cavitating run time 
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are the same, in the first set -15% ± 1% and in the second   -25% ± 1%. The relative changes 

may be similar however the overall chemical changes occuring within the fuel may differ 

greatly due to the total concentration of absorbing species differing in each of these fuels and 

that is why they do not match up in Figure 4.7. The graphs in Figure 4.13 and Figure 4.14 

were just plot to obtain an overal relative magnitude of change for comparison purposes 

between the fuels.  

 

 Spectral attenuation coefficient α 4.1.3

 

The equations obtained in section 3.5 as a result of the calibration of the optical system have 

been employed to calculate the spectral attenuation coefficients for all of the diesel samples as 

a function of the cavitation time. The results obtained are shown in Figure 4.15 to Figure 4.17. 

The paraffin blend model diesel was revealed to have an unchanged 405 nm spectral 

attenuation coefficient of 0.008 cm-1 ± 0.008 cm-1 during the cavitation period. Fresh 

commercial diesel fuels display a variation of spectral attenuation coefficients. SHELL 

Flitwick as expected from the normalised transmitted laser power has the highest spectral 

attenuation coefficient beginning at 2.38 cm-1 ± 0.01 cm-1, increasing to 2.53 cm-1 ± 0.01 cm-1 

at the end of the forty hour cavitation period. BP Luton had the lowest spectral attenuation 

coefficient beginning at 1 cm-1 ± 0.01 cm-1, increasing to 1.26 cm-1 ± 0.01cm-1 at the end of 

the forty hour cavitation period.  

 

The rest of the Fresh commercial fuels as seen from the figures had spectral attenuation 

coefficients between these beginning and end values. The point to note however is that the 

spectral attenuation coefficients all increase and are inversely related to the fuels normalised 

transmitted laser power. The spectral attenuation coefficient displays the measure of 
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absorption of radiation, as a function of frequency or wavelength, due to its interaction with 

the sample. The sample absorbs energy. The spectral attenuation coefficient quantifies the 

amount of 405 nm light absorbing species present in the fuel samples and provides a 

comparison to how this varies with time as a result of the cavitation it undergoes. Initially at 

the beginning of the experiment the amount of 405 nm light absorbing species present in the 

fuels determines it spectral attenuation coefficient at start. As a result of cavitation in the 

commercial diesel fuels, the amount of absorbing species increases and thus there is an 

increase in spectral attenuation over cavitation run time.  

 

 

Figure 4.15 The Spectral Attenuation Coefficient (cm-1) as a function of cavitation run time (hours) for New 
Commercial diesel Samples 
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Figure 4.16 The Spectral Attenuation Coefficient (cm-1) as a function of cavitation run time (hours) for New 
Commercial diesel Samples and the Paraffin based Model Sample 

 

 

Figure 4.17 The Spectral Attenuation Coefficient (cm-1) as a function of cavitation run time (hours) for Aged 
Commercial diesel Samples 
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Due to the fact that all the commercial fuels have different concentrations of absorbing 

species present in them, they have varying spectral attenuation coefficients at the beginning.  

Also observed is how the spectral attenuation coefficient of the RME - model fuel changes as 

a result of long exposure to cavitation. Commercial fuels containing RME or other biodiesel 

based contents maybe undergoing whole lot of formation and destruction of absorbing 

species. However due to the fact that commercial fuels only contain a maximum of 7% 

biodiesel fuels, the magnitude of the destruction of the absorbing species may not be as high 

as seen with the RME - model fuel which contained 20% RME. The results observed here 

consist of an overall timeline of the absorbing species. A rise in spectral attenuation 

coefficient shows that the rate of production of 405 nm absorbing species is greater than its 

destruction. 

 

 Separating effects of temperature and cavitation 4.1.4

 

All the fuels were subject to 40 hours discontinuous heat test replicating their run time on the 

cavitation rig apart from BP Toddington aged due to enough sample being unavailable. The 

tests were carried out to investigate the effects of high temperature on the chemical 

composition or rather the normalised transmitted laser power and signal attenuation 

coefficients to enable separate out the combined effects of cavitation and high temperature on 

the diesel samples. Although the release of internal compression energy due to cavitation in 

the diesel flow was responsible for the increase in temperature, the control temperature had 

been set at high temperature and thus the experimental results would show a combined effect 

of the raised temperature and cavitation effects on the diesel fuel. Therefore the diesel fuels 

were heated over forty hours synchronously in a water bath following the discontinuous 

profile. The laser transmission was denoted of the fuels before being placed in water bath as a 
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reference. After the 40 hours were complete the heated fuel was placed back into the 

cavitating flow rig and circulated at low pressure through the optically accessible cell at 

ambient temperature conditions. As there was no way of providing a full forty hour timeline 

similar to the cavitation experiment, only percentage changes with respect to the initial 

sample are provided from the results obtained. These will be compared with the percentage 

changes occurring as a result of the cavitation experiment with respect to the initial sample at 

zero hours. The results of the 40 hours discontinuous heat tests are displayed in Figure 4.18 

 

 
Figure 4.18 Percentage change in normalised transmitted laser power as a result of 40 hours discontinuous heat test 

 

The overall percentage changes in normalised transmitted signal can be observed for each fuel 

with respect to its initial normalised transmitted laser power. SHELL Flitwick and TOTAL 

Luton produce the maximum decrease in transmitted power after heat test at 34.7 % ± 0.1 % 

and 38 % ± 0.1 % respectively. TEXACO Leagrave, model diesel+B20 and TEXACO MK 

show and increase in transmitted laser power of 26.9 % ± 0.1 %, 2.2% ± 0.1 % and 0.2% ± 

0.1 % respectively. An increase in transmitted laser power corresponds to a decrease in the 

concentration of absorbing species in the fuel whereas decrease in transmitted laser power 
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corresponds to an increase in concentration of the absorbing species. The model diesel sample 

changed the least at 2.9% ± 0.1 %. 

 

 

Figure 4.19 Percentage change in normalised transmitted laser power as a result of 40 hours cavitation and 
discontinuous heat test comparison 

 

Figure 4.19 shows the comparison of the percentage changes from the cavitation experiment 

and the heat test with respect to their initial normalised transmitted laser power. In most cases 

the forty hour cavitating flow experiment related results cause a change larger in magnitude 

than that caused by the result of the forty hours of discontinuous heat test apart from SHELL 

Flitwick, ESSO A1, and TOTAL Luton. When comparing these results it can be noted that the 

changes caused by the forty hour cavitating flow are different to those caused by the 

discontinuous heat test. Overall for the majority of the fuels, the effects of the forty hours 

discontinuous heat tests can be subtracted from the effects of the forty hours cavitating flow to 

differentiate their effects. Two of these fuels namely SHELL Flitwick and TOTAL Luton had 

the lowest normalised transmitted powers and may have had additional absorbers been added 
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in by the manufacturers as fuel additives in the form of either winter fuel additives or fuel 

performance additives. ESSO A1 had the minimum changes observed to its spectral 

attenuation coefficient over the 40 hours of cavitation. 

 

These fuels were all bought over winter months and different kinds of winter diesel fuel 

additives are added to stop the fuel from gelling and forming waxy deposits. The additives 

lower the temperature characteristics of the fuel. These additives may vary between fuel 

manufactures and may contain different amounts of absorbing species apart from aromatics 

and FAME species identified as absorbers here. These may react differently to cavitating flow 

and to temperature. The chemical composition of the fuel also determines the amount of 

additives added. Apart from the winter fuel additive, fuel manufacturers also add a lot of 

different secretive additives in their fuels to improve its performance. The hypothesis is that 

the different fuel additives added to the fuels may cause different effects to the amount of 

laser power being absorbed by the fuel as a result of different absorbing species present in the 

fuels. These additional fuel additives may be behaving in a different manner under cavitating 

flow conditions and as a result of heating. The different types of additives to fuels have been 

discussed in section 2.1.5. However this is just a hypothesis and nothing can be concluded by 

just looking at these figures as the story lies within the fuel composition and chemistry. 
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4.2 Experimental Results Summary 

 

The composition of modern crude oil derived fuel is approximately 70 - 75% paraffins, and 

25-30% aromatics consisting of 23 - 26% mono-aromatics, 2 - 3% di-aromatics, and 1% tri-

aromatics [167,168]. Considering that the paraffinic model diesel was comprised of 100% 

paraffins and olefins, and that the forty hour cavitation period had no measurable effect on the 

405 nm spectral attenuation coefficient The absence of any variation in the 405 nm spectral 

attenuation coefficient suggests that any compositional changes in the paraffins and olefins 

comprising the model diesel caused by the forty hour cavitation period had no effect on the 

overall spectral attenuation of the model diesel. The addition of RME to the model diesel 

produced results in conflict with the commercial diesel spectral attenuation results and thus 

the presence of bio-diesel/RME can also be excluded as producing an increase in spectral 

attenuation coefficient. However, the presence of biodiesel/RME may be inhibiting the overall 

effects by initially having additional absorbing species which are destroyed thereafter as a 

result of the effects of high local pressure and temperature release as a result of cavitation 

bubble collapse. This suggests that the rate of increase in absorbing species causing the 

increase in spectral attenuation at 405 nm is due to the presence of aromatics in the fuel. 

 

The results from the experimental analysis using the 405 nm laser transmission through the 

fuels and monitoring their changes with time have shown that the concentration of the 

absorbing species increases with increase in time of the sustained cavitating flow. An increase 

in the concentration of the absorbing species results in a reduced power being detected at the 

fuel exit through a constant cross section in reference to its actual power being transmitted. 

This has been noted for all fuels. 
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The majority of the heat tests results show that the high temperature of the cavitating flow is 

maintained at may be a reason for an increase in spectral attenuation of the diesel fuels during 

the cavitating flow however cavitation in itself is also causing changes in the diesel fuel 

composition and properties as observed in the results comparison. It is not clearly observed 

using the results above however a chemical analysis would provide conclusive results of the 

changes occurring within the diesel fuel both chemically and physically. The results obtained 

from the sustained cavitating flow analysis in comparison to the heat test analysis show that 

the effects of the lowest temperature maintained in the rig does not have the same effects as 

the sustained cavitating flow results and thus leads to the conclusion that the thermal reactions 

may increase the reaction rate of the formation of absorbing species but are not the sole cause 

for the changes that have been observed in the sustained cavitating flow measurements. 

 

Simple aromatics have a propensity to form complex poly-aromatic hydrocarbons (PAHs), 

leading to the formation of small soot-like particles suggesting the hypothesis that the increase 

in spectral attenuation coefficients of commercial diesels with cavitation time is caused by the 

aromatics comprising in the diesels undergoing pyrolysis like reactions during cavitation to 

form a particle like suspension, hence increasing the absorptivity of the cavitated samples. 

 

The hypothesis also explains why some of the aged diesel samples both produced larger 

relative variations in their respective spectral attenuation coefficients than those produced 

from the fresh diesel samples. They would have been more susceptible to aromatic pyrolysis 

to form particulates than the fresh commercial diesel samples, due to their reduced fuel 

stability as a result of long term storage [35,36,163].  
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The results shown here give an indication of possibilities of the chemical changes occurring in 

the fuels. These changes can be pinpointed to the aromatics and FAME content of the fuel. 

However to come to a conclusion a chemical analysis of the fuels has to be conducted in order 

to derive the species present in the fuels before and after experimental analysis of cavitating 

flow and the heat tests. So far no physical attributes have been denoted and a chemical 

analysis would also give a firm conclusion to the effects of the cavitating flow on the physical 

properties of the fuels. Because the formation of soot-like particles is suspected, a particulate 

count could further this hypothesis to viable conclusion. Different changes are observed as a 

result of sustained cavitation and heat tests however in some cases the overall changes 

occurring as a result of the heat test exceed the relative changes occurring as a result of 

sustained cavitating flow. Different chemical changes maybe occurring to the fuels via the 

two processes and thus resulting in changes to different absorbing species. At this point 

further conclusions can only be obtained by performing a chemical analysis. However the 

study carried out here on analysing the normalised transmitted signal and spectral attenuation 

coefficient provide good histories of how changes in the concentration of the 405 nm 

absorbing species with time. 

 

4.3 Two Dimensional - Gas Chromatography (GC x GC) 

 

Chromatography was introduced by Martin and Synge in 1941 as a technique based on 

partitioning of chemical compounds between two liquid phases [169]. A possibility of a 

gaseous mobile phase was suggested at this time and actually introduced in 1952 to be known 

as Gas Chromatography [170]. Their work signalled the first time compounds could be 

separated chromatographically on the basis of their volatility and has become one of the most 

important and widely applied analytical techniques in modern chemistry. 
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Chromatography is a technique used to separate mixtures of compounds, so that the individual 

components can be identified and/or quantified. The mixture being analysed is dissolved in a 

fluid called the mobile phase (gas) which is then forced through an immobile, immiscible 

stationary phase. The mobile gas at first was nitrogen; recently helium and hydrogen are also 

used. A list of the stationery phases is provided in [171]. The phases are chosen such that 

components of the sample have differing solubility in each phase. A component which is quite 

soluble in the stationary phase will take longer to travel through it than a component which is 

not very soluble in the stationary phase but very soluble in the mobile phase. As a result of 

these differences in mobility, sample components will become separated from each other as 

they travel through the stationary phase. GC uses columns: narrow tubes packed with the 

stationery phase, through which the mobile phase gas is forced. The mixture is transported 

through the column by continuous addition of the mobile phase gas. This process is known as 

elution. A detector then monitors the composition of the gas stream as it emerges from the 

column carrying separated components. 

 

The quality of the separation achieved by the whole system can be that of the column only 

and thus it is at the centre of the analytical gas chromatograph. Earlier packed columns were 

used; however their resolution was limited by their length, which is itself restricted by the 

pressure drop occurring as a result of gas flow. This restriction was removed by the invention 

of capillary columns. In a capillary column, the stationery phase is coated on the inner wall, 

either as a thin film or impregnated into a porous layer on the inner. The differing paths taken 

by solute molecules as they pass through the non-uniform bundle of capillaries is replaced by 

a single channel. It has the advantage over packed columns of greatly increased separation 

efficiency, lower operating temperature and better separation efficiency in equal times. The 

downside of the capillary columns is that they have small amounts of stationery phase which 
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limits their capacity. This can be corrected by special sample-introduction methods (on 

column, loop type and programmed temperature vaporization) and sensitive detectors (flame 

ionisation detector, mass spectrometer, helium ionisation detector, flame photometric detector 

etc.) [172]. Columns are recently being made from fused silica. 

 

In a flame ionisation detector (FID), the effluent undergoes combustion in a 

hydrogen/synthetic air flame which ionizes the analyte molecules. Ions and free electrons are 

formed in the flame. The charged particles produce a measurable current flow in the gap 

between two electrodes in the detector. The resulting current flow is of greater strength than 

the signal produced by the pure carrier gas and the fuel gas flame alone. This signal 

differential provides information about the sample. The current is proportional to the ion 

formation which depends on the composition of the separated sample. FID is preferred for 

general hydrocarbon analysis with detection from 0.1 ppm to almost 100%, but also for 

organic substances containing hydrocarbons and for volatile organic compounds  

 

GC can be applied to the analysis of mixtures, which contain compounds with boiling points 

from near zero to over 700 K, or which can be heated sufficiently without decomposition to 

give a vapour pressure of a few millimetres of mercury (mmHg) [172]. GC fails when under 

complex mixtures. This is caused by the limited peak capacity of any chromatographic 

column. Bands travelling along the column undergo broadening. As a result, the number of 

individual bands that can be fully resolved at the outlet of the column is finite, even if the 

initial injection band width is infinitely small. This fundamental limitation cannot be 

overcome by simply modifying the chromatographic parameters. The only solution to the 

problem is to subject the sample separated by the GC column to additional separation based 

on a different mechanism, which results in two-dimensional separation.  
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Comprehensive two-dimensional gas chromatography (GC x GC) is one of the most powerful 

analytical tools for the analysis of organic compounds in complex matrices. There must be 

two orthogonal GC columns in the system that are coupled by some interface or modulator 

that is capable of either sampling or collecting the effluent from the first column and 

periodically introducing it to the second column. The interface must perform its task of 

sampling/collecting followed by injection at a rate that allows the original first dimension 

separation to be preserved. The technique is based on collecting continuous samples from a 

GC column and periodic injection, through a modulator, of small portions of the samples 

collected into a second GC column of different properties. The first column samples the 

components in time creating a primary retention time axis, then presenting them to the 

secondary column either individually or in greatly simplified sub mixtures. The secondary 

column provides an independent analysis of the dispersed sample eluting from the first 

column and disperses simplified sub-mixtures along a secondary retention time axis. This 

modulator collects material for a certain period of time, and then injects the entire fraction 

that it has collected into the second dimension column as a short chromatographic pulse. It 

then collects another fraction of effluent from the first column while the previous fraction is 

being separated on the second dimension column. This process of effluent collection and 

injection repeats itself throughout the entire analysis [173]. The secondary column disperses 

the sample along an axis orthogonal [174] to the first columns retention time axis to form a 2-

D data space. The process is repeated at a rate fast enough that each peak from samples 

coming out of the first column is sampled at least three times with a flow modulator, 

preserving the separation achieved in the first column and providing samples for analysis in 

the secondary column. Results from the analysis have to be converted from the linear form to 

a 2-D representation using software algorithms.  
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Orthogonality occurs when two different and independent separation mechanisms are used. It 

is ideally achieved when there is no correlation between the retention in each of the columns. 

For example, separation on the first column may be achieved as a result of boiling points 

whereas in the second column medium polar, polar or shape selective separation can occur, 

resulting in two separation methods. In practice however perfect orthogonality is not 

achieved. From the example above the separation in the second column is partially achieved 

as a result of boiling point differences. The amount of orthogonality is however enough to 

separate very complex mixtures. 

 

A modulator is the most important instrumental device in GC x GC [175]. Modulation is 

necessary to transfer the sample from the first column to the second, acting as a continuous 

injector for the second column. The main aims of the modulator are to trap/accumulate and 

refocus narrow adjacent fractions of the first column effluent and release them rapidly into the 

second column [176]. An overview of modulators used in GC x GC is also given in 

[175,176]. Without the modulator to sample the first column/dimension periodically, the 

bands may recombine in the second column and coelute at the detector or they may change 

their elution order. This will render the system to perform a 1D-GC analysis [177]. 
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Figure 4.20 Block diagram of a GC x GC system. (a) injector; (b) primary column; (c) column connectors (at least one 
is necessary; multiple may be required depending on the exact configuration); (d) GC x GC interface; (e) secondary 

column; (f) detector; (g) optional division for secondary oven 

 

Figure 4.20 shows a schematic of a GC x GC system obtained from [177]. Figure 4.21 also 

from the same reference gives representations of how GC x GC data is obtained. The 

observation at the detector is a series of second-dimension chromatograms that elute one after 

the other from the secondary column. If each peak sample is sampled at least 3 times, it will 

show up in at least 3 consecutive second dimension chromatograms. This data is usually plot 

on a 3 Dimensional plot and then displayed as a top down view in the form of a contour plot 

with primary retention time plot in the x axis and secondary retention time plot on the y axis. 

The peaks appear as spots of varying colour or contour lines. This is all done by software 

algorithms provided for analysis. The software usually uses the modulation period of the 

interface and the times to which pulses t1, t2 and t3 occur as seen in Figure 4.21, to slice the 

original chromatographic signal into its component second dimension chromatograms. The 

chromatograms are then aligned side by side to from the GC x GC retention plane which is 

plotted as seen in Figure 4.21 (D). Methods of calculating retention time are given in the 

reference. The resulting image for the GC x GC analysis can be seen in Figure 4.22. 
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GC x GC displays many advantages as discussed by Phillips et.al [174]. First, peak capacity is 

very larger than one dimensional GC i.e. the number of peaks that can be separated in either 

one or two dimensions is high. The peak capacity is ideally the product of the peak capacity 

of each column. Second, the retention in the second dimension is independent thus a measure 

of the secondary molecular property. Third, each compound/substance is identified by two 

independent retention measures and can be distinguished and identified better. Fourthly, the 

2D chromatograph provides a more complete picture 

 

 

Figure 4.21 The interpretation of GC x GC data and generation of contour plots. (A) The raw GC x GC 
chromatogram consisting of a series of short second dimension chromatograms. t1, t2, and t3 indicate the times when 

injections to the second dimension column occurred. The computer uses these injection times to slice the original 
signal into a multitude of individual chromatograms (B). These are then aligned on a two dimensional plane with 

primary retention and secondary retention as the X and Y axes, and signal intensity as the Z-axis (C). When viewed 
from above, the peaks appear as rings of contour lines or colour-coded spots (D). 
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GC x GC finds applications in many areas, including; petroleum analysis, environmental 

analysis, forensics and many others. Vendeuvre et. al [178] and Mühlen et.al in 2006 [179] 

use comprehensive two-dimensional gas chromatography to characterise samples derived 

from petrochemicals. Westhuzen et.al in 2010 uses GC x GC on the analysis of Fisher-

Tropsch oil products [180]. 

 

 
Figure 4.22 GC x GC analysis with FID of light cycle oil obtained from thermo electron corporation-Flavio Bedini. 
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4.4 GC x GC and Particle Counter Analysis and Results 

 

Mixtures of hydrocarbons, such as those resulting from oil refining processes, i.e. diesel fuels 

form extremely complex molecules. The almost invariably contain very large numbers [181] 

of different components on all or most of the following classes: 

(i) Saturated hydrocarbons (together known as alkanes or paraffins, and consisting of n-

alkanes and branched alkanes; the latter are also called iso-alkanes) 

(ii)  Cyclic alkanes (known as napthenes and consisting of mono-, di- and multi-cyclic 

structures with various degrees of substitution) 

(iii)  Aromatics (consisting of mono-, di- and multi-ring structures with various degrees of 

substitution) 

(iv) Components containing heteroatoms, such as sulphur, nitrogen, or oxygen. The first is 

easily the most abundant and it is present in several component classes (sulphide, 

disulphides, mercaptanes, thiophenes) 

(v) Unsaturated hydrocarbons (known as alkenes or olefin, possibly divided into n-

alkenes, iso-alkenes, cyclic alkenes, etc.) 

(vi) Combined structures (components, that cannot be classifies in one of the above 

classes, containing for example, both aromatic and naphthenic rings). 

Unsaturated hydrocarbons do not occur in natural oils, but they are formed in substantial 

amounts in thermal and catalytic cracking processes. 

 

It is quite complex to analyse all these compounds together and thus the GC x GC was carried 

out to identify different classes of hydrocarbon mixtures in the fuels, i.e. paraffins, aromatics 

(mono-, di- and tri-), FAME and residuals. In addition to this, a particle count analysis was 

carried out to the ‘before’ and ‘after’ experimental fuel samples. The particle counter would 
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place the hypothesis discussed previously that soot/particulates were being formed as a result 

of aromatics pyrolysis like effect. Other physical properties of the fuels obtained from the 

results will also be analysed, i.e. density, flash point and viscosity. 

 

The instrument used for the GC x GC analysis was an Agilent HP7890 GC, with dual column 

capability with a flame ionisation detector FID. The two columns used were (a) a boiling 

point column and (b) a column separating via polarity, thus giving 2D GC, boiling point 

separation on the x axis and polarity (double bonds) separation on the y axis. Switching 

between the two columns took place via a micro fluidic switch which was situated in the GC 

oven. An FID is a scientific instrument that measures the concentration of organic species in a 

gas stream. The operation of the FID is based on the detection of ions formed during 

combustion of organic compounds in a hydrogen flame. The generation of these ions is 

proportional to the concentration of organic species in the sample gas stream. Hydrocarbons 

generally have molar response factors that are equal to number of carbon atoms in their 

molecule, while oxygenates and other species that contain heteroatoms tend to have a lower 

response factor. The sample gas is introduced into a hydrogen flame inside the FID. Any 

hydrocarbons in the sample will produce ions when they are burnt. Ions are detected using a 

metal collector which is biased with a high DC voltage. The current across this collector is 

thus proportional to the rate of ionisation which in turn depends upon the concentration of HC 

in the sample gas. Carbon monoxide and carbon dioxide are not detectable by FID.  

 

The software package used to evaluate the data produced was developed by a company called 

ZOEX. The results carried out here both of the GC x GC and particle count were done at 

SHELL GLOBAL SOLUTIONS using their equipment. Their scientists performed the 

measurements and provided the results back to us. In the analysis the changes are calculated 
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by subtracting the tests results minus the results of the fresh sample before experiment (Test 

sample results – Result of sample before test). The relative changes have been calculated as                                                                                    . The tests samples are obtained from the GC 

analysis of the sustained cavitation and heat test fuels after 40 hours each whereas the initial 

results sample are the GC results of the samples obtained prior to these tests.  

 

The results will also show repeatability as dotted lines in the plots. The repeatability (r) is the 

variation in measurements taken by the instrument on the same sample under same 

conditions. Repeatability conditions occur when analyses are performed by the same analyst 

on the same day with the same instrument in the same laboratory. The relative standard 

deviation (RSD), or coefficient of variance, is used to compare the uncertainty between 

different measurements of varying absolute magnitude. The RSD is calculated from the 

standard deviation (σ), and is commonly expressed as a percentage (%): 

        ̅        

Equation 4.1 

 

where σ is the standard deviation of measured data and  ̅ is arithmetic mean of the data. 

These measurements have not been performed here but are available with the measurement 

equipment specifications. 
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 Change in physical properties 4.4.1

 

Fuel Name 
Density 

(g/cm
-3

) 

Flash point 

(°C) 

Viscosity 

(cSt) 

BP Luton 0.8323 61.0 2.471 

Esso A1 0.8331 60.0 2.175 

Shell Flitwick 0.8392 60.0 2.699 

Tesco Dunstable 0.8333 67.0 2.832 

Texaco Leagrave 0.8323 59.0 2.513 

Total Luton 0.8325 66.0 2.723 

AGED    

BP Toddington 0.8324 60.0 2.643 

Tesco Flitwick 0.8338 67.0 2.645 

Texaco MK 0.8286 63.0 2.502 

Total Luton 0.8382 62.0 2.824 

Table 4.1 Physical properties of the initial commercial fuel samples before the tests were carried out 

 

Various physical properties of the diesel fuels were obtained from the analysis, namely: 

density, flash point and viscosity. The effects of forty hours cavitating flow and forty hours 

heat test on the physical properties of the fuel will be compared is the section to follow. Table 

4.1 shows the density (g/cm-3), flash point (ºC) and viscosity (cSt) of the commercial diesel 

fuel samples obtained prior to the experimental analysis of forty hours cavitating flow and 

forty hours heat test. 

 

 Density 4.4.1.1

The density of a fuel can indicate certain fuel composition ranges. This information can 

provide predictions of fuel economy, power, deposits, wear and exhaust smoke [62]. For 

example, a diesel fuel with increased density contains more energy per gallon (heating value). 

Such a fuel would tend to improve fuel economy. However an excessively high density could 

result in increased engine deposits and smoke. Density however is not the sole determining 

factor in predicting such performance parameters, but it is a useful test as it can be performed 
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very easily by a hydrometer. SHELL Flitwick and TOTAL Luton Aged have the highest 

initial density at 0.8392 g/cm-3 and 0.8382 g/cm-3 respectively as seen in Table 4.1. 

 

 
Figure 4.23 Change in Density (g/cm-3) for commercial fuels as a result of forty hours of cavitating flow 

 

 
Figure 4.24 Changes in Density (g/cm-3) for commercial fuels as a result of forty hours of discontinuous heat tests 

 
 
Figure 4.23 and Figure 4.24 show changes in density in g/cm-3 for all the commercial diesel 

fuels as a result of forty hours cavitating flow tests and forty hours of discontinuous heat tests 

with a %RSD of ±0.0005. The dashed lines on these graphs and the graphs to follow in this 

chapter represent measurement repeatability in %RSD. The changes in density were 
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calculated by subtracting the density obtained from the test from the density of the initial 

sample tested.  It can be observed that the changes in density occurring as a result of the forty 

hours of cavitating flow are different to the ones observed from the forty hours heat tests.  

 

There is no consistent change observed in the case of the forty hours cavitating flow. The 

density of 5 commercial fuels increases whereas it decreases for the rest. The largest change 

occurring in BP Toddington of which increased by 0.0009 g/cm-3 and in SHELL Flitwick 

which decreased in density by 0.0007 g/cm-3. 

 

The changes in density from the forty hours heat test show a more consistent change. All fuels 

increase in density as a result of forty hours of discontinuous heat tests apart from TEXACO 

MK which decreases in density by 0.0007 g/cm-3 as a result of forty hours of discontinuous 

heat tests. The maximum increase in density occurred in TESCO Flitwick of 0.0024 g/cm-3. 

 

Overall, the changes in density of the commercial fuels as a result of forty hours of cavitating 

flow and heat tests were very small but a change nonetheless. Both experiments displayed 

different changes occurring in density as a result of the processes undergone under cavitation 

and under heat tests. The relative changes in density with respect to the initial value before the 

tests were very small in the ranges of less than 0.01 % (BP Toddington) for the cavitating 

flow tests and 0.3 % (TESCO Flitwick) for the heat tests. However these are both aged 

samples. 
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Figure 4.25 Relative percentage changes in density of the commercial diesel fuels with respect to the initial density 

prior to sustained cavitation and heat tests. 

 

Figure 4.25 show the relative percentage changes of both 40 hour sustained cavitating flow 

and 40 hour heat tests. The results show no consistent change in density over the samples 

tested. Depending of the constituents of the fuels, various changes maybe occurring in the 

fuels and this will be different per fuel. The highest relative change in density observed was 

0.288 % ± 0.001% in TESCO Flitwick aged. Apart from TEXACO MK results, all the other 

sustained heat test results show a positive relative change. There is a 50:50 count for the 

sustained cavitation results where half show positive changes whereas the other half undergo 

negative changes in density. 

 

Injection equipment as mentioned earlier meters fuel on a volume basis and thus any 

variations will affect the power output. Fuel with higher density will have a higher mass flow 

rate for the same injection conditions. However the data here suggests a very small change in 

density and thus the effects may not be significant. 
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 Flash point 4.4.1.2

Flash point of a fuel is important in connection with its safety, storage and handling. The 

minimum flash point standard as observed in Chapter 2 for diesel fuels is 55 ºC. The flash 

point of a fuel does not directly affect its engine performance. The flash points displayed 

below have repeatability of 1.8 ºC and as guidance the dotted lines have been placed on the 

graph. The results in Figure 4.26 show a positive change in flashpoint as a result of forty 

hours of cavitating flow with a %RSD of ±1.8. BP Luton undergoes no change in flash point 

as a result of forty hours of cavitation. The maximum change observed is by SHELL Flitwick 

of 3 ºC.  

 

 
Figure 4.26 Change in Flash Point (ºC) for commercial fuels as a result of forty hours of cavitating flow 

 

The results in Figure 4.27 show changes in flashpoint as a result of forty hours of 

discontinuous heat tests. The results display changes in flash point are lower than those 

displayed by the forty hours cavitation tests. In contrast the flash point of BP Luton changed 

by 0.5 ºC as a result of forty hours heat test to no changes occurring over the forty hours 

cavitating flow. Negative changes are also observed in the aged fuels, the flash point of 

TEXACO MK and TESCO Flitwick decreases by 0.5 ºC and 1.5 ºC respectively. 
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Positive relative changes in flash point were observed from Figure 4.28 apart from the results 

obtained form 40 hour heat tests for TESCO and TEXACO aged fuels. The maximum relative 

change observed is 5 % ± 0.001% by SHELL Flitwick. All sustained cavitation results show a 

positive relative increase in flash point. 

 

 

Figure 4.27 Changes in Flash Point (ºC) for commercial fuels as a result of forty hours of discontinuous heat tests 

 

 
Figure 4.28 Relative percentage change in flash point of the commercial diesel fuels with respect to the initial flash 

point prior to sustained cavitation and heat tests. 
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As the initial flash points of all fuels started off higher than the 55 ºC limit and most of the 

changes displayed an increase in flash point, the fuels would still deemed to be safe for 

storage and handling either in the fuel tank of the car or otherwise. 

 

 Viscosity 4.4.1.3

 
Figure 4.29 Change in Viscosity (cSt) for commercial fuels as a result of forty hours of cavitating flow 

 

 
Figure 4.30 Change in Viscosity (cSt) for commercial fuels as a result of forty hours of discontinuous heat tests 

 

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

 V
is

co
si

ty
 (

 c
S

t)
 

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

 V
is

co
si

ty
 (

 c
S

t)
 nd 



 

 

172 
 

Viscosity of diesel fuels is an important property and impacts the performance of fuel 

injection systems. If too low, it may cause excessive wear and power loss in injector pumps 

due to injector or pump leakages. If too high, it may cause too much pump resistance and 

adversely affect fuel spray patterns. The minimum and maximum viscosity as per 

requirements for emission control are 2 mm2/s and 4 mm2/s respectively. 1 mm2/s is equal to 1 

cSt. 

 

Figure 4.29 show the effects on viscosity due to forty hours of cavitating flow with a %RSD 

of ±0.016. All changes occurred were positive increases in viscosity. The maximum changes 

in viscosity as a result of forty hours cavitation were displayed by BP Luton, TESCO 

Dunstable, TEXACO Leagrave, TOTAL Luton (new), TESCO Flitwick and TEXACO MK in 

excess of 0.03 cSt. 

 

 
Figure 4.31 Relative percentage changes in viscosity of the commercial diesel fuels with respect to the initial viscosity 

prior to sustained cavitation and heat tests. 

 

Figure 4.30 shows the effects on viscosity due to forty hours of heat tests. All changes 

occurring hear are also positive but are very low in comparison to the effects on viscosity due 
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to forty hours cavitation. The maximum change in viscosity observed as a result of forty hour 

heat test was in BP Luton of 0.032 cSt. 

 

Sustained cavitating flow causes relatively higher changes in viscosity when compared to the 

40 hour heat test results as seen from Figure 4.31. There is a positive relative change observed 

in both test cases for all fuels and no changes were observed from the ESSO A1 heat test 

result. 

 

The changes in viscosity observed are all positive and because all the fuels had an initial 

viscosity above the minimum 2 cSt, they are still within the requirements for emission control 

and market demand. Temperature may have had some effect in the increase in viscosity of the 

fuels; however the impact of cavitating flow still caused more increase in viscosity of the 

commercial fuels than the impact of temperature only. The effects of high fuel viscosity have 

been discussed in Chapter 2. Effects of viscosity on internal nozzle cavitation and atomisation 

are well known and have been discussed in the same chapter. An increase in fuel viscosity 

would result in reduction in cavitation in nozzle passages due to resistance of flow. Increase 

in viscosity also results in thinning of spray angles, and lower spray tip penetration. Fuels of 

lower viscosity also result in smaller droplet diameters than fuels with higher viscosity as 

observed by [120]. 

 

Viscosity is a measure of a fluid’s resistance to flow. It describes the internal friction of a 

moving fluid. A fluid with large viscosity resists motion because its molecular composition 

gives it a lot of internal friction. A fluid with a low viscosity flows easily because its 

molecular composition results in very little friction when it is in motion. The changes in 

chemistry of the fuels are discussed in the section 4.4.2 below.  Section 4.4.3 discusses the 
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formation of particles as a result of these experiments. It is thought that a change in 

composition of the fuels and the formation of particles is the result of the increase in viscosity 

observed of the fuels. The formation of particles in the fluid maybe resulting in an increased 

internal friction in a moving fluid and thus it has a higher viscosity. 

 

 Chemistry and chemical structure 4.4.2

 

The two dimensional plots obtained from the GC x GC analysis contained individual species 

in each sample are too complex to identify in all the individual peaks and thus the samples are 

generically classified i.e. by aromatic, FAME, paraffins and residuals as mentioned previously 

based on percentage peak volumes. This was done by the company carrying out the analysis.  

Software enables the creation of class and subclass regions in the acquired chromatogram 

based on retention times. Classification then grouped the compounds into the structure based 

chemical classes and quantified peak/compound groups precisely by peak areas. The 

chromatograms showed retention time in the first dimension in the x axis and retention time in 

the second dimension in the y axis. The compounds classifications were then colour coded to 

enable easy determination. The aromatics were further classified into mono-, di- and tri- 

aromatics. The FAME was identified by ester components present.  

 



 

 

175 
 

  

 
Figure 4.32 Figures obtained from the GC x GC analysis of Shell Flitwick A-initial sample, B- forty hours cavitating 

flow sample an C- forty hour discontinuous heat test sample. 

 

Figure 4.32 shows the results of SHELL Flitwick obtained from the initial sample, the sample 

after forty hours cavitation and the sample after forty hours of discontinuous heat test. The 

bubbles were colour coded: Green represented paraffin species; blue/dark blue represents 

aromatic species. The FAME species were labelled in (B). This was carried out for all the 

diesel fuel samples apart from the 2 model fuels. The model fuels could not be sent to 

analyses due to non-disclosure of its detail composition. As it is observed from these figures, 

it is very complex to identify specific species and how they change over the different tests. 

This is the reason for their grouping. This does take out the quantitative analysis of each 

component, but gives us an overview of what is happening to the overall classes of 

A 
B 
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compounds. The peak area percentages of each class were obtained and will be displayed in 

the later sections of this chapter.  

 

 
Figure 4.33 The initial composition of the fuels prior to cavitation Obtained from the GC x GC peak area (%v) 

 

Figure 4.33 shows the initial diesel sample before experiment peak area percentages (%v) for 

all the commercial diesel fuels in their classes. The fuels consist on average 71 % paraffins, 

23 % aromatics, 5 % FAME and 1 % residuals on a volume to volume (v/v) basis. Table 4.2 

shows the initial aromatics breakdown in the fuels before any tests were carried out. The table 

shows the percentage mono-aromatics, di-aromatics and tri(+)aromatics in the fuels. The fuels 

contain between 21-30 %v/v total aromatics 
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Fuel Name Mono aromatics 
(% v/v) 

Di aromatics 
(% v/v) 

Tri (+) aromatics 
(% v/v) 

Total aromatics 
(% v/v) 

BP Luton 23.4 2.7 0.3 26.4 
Esso A1 22.1 4.9 0.3 27.3 
Shell Flitwick 24.8 4.6 0.5 29.9 
Tesco Dunstable 19.2 2.3 0.2 21.7 
Texaco Leagrave 22.8 3.1 0.4 26.3 
Total Luton 18.6 2.4 0.3 21.3 
AGED     
BP Toddington 20.6 2.2 0.3 23.1 
Tesco Flitwick 19.6 2.4 0.3 22.3 
Texaco MK 20.6 2.2 0.3 23.1 
Total Luton 20.7 3.3 0.4 24.4 

Table 4.2 Initial Aromatics composition break down of the commercial diesel fuels obtained from the GC x GC 
analysis 

 

 Paraffins 4.4.2.1

 
Figure 4.34 Relative changes in Paraffins (%v) for commercial fuels based on GC x GC peak area as a result of forty 

hours of cavitating flow 

 

Figure 4.34 shows the changes in paraffin composition due to the effects of cavitating flow. 

The results show that most commercial fuels display an increase in the percentage volume of 

paraffins as a result of the effect of sustained cavitating flow. BP Toddington, an aged fuel, 

shows a large decrease in paraffins by 3.56 % volume as a result of sustained cavitating flow. 

The percentage volume has been determined by the percentage peak area occupied by 

paraffins as a result of GC x GC on the samples before and after cavitation. The largest 
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increase in paraffins is by TESCO Dunstable (1.20 %v) and TEXACO MK Aged (1.28 %v). 

TESCO Flitwick aged and BP Luton displayed negligible changes in paraffins as a result of 

forty hours of sustained cavitating flow. 

 

 

Figure 4.35 Relative Change in Paraffins (%v) for commercial fuels based on GC x GC peak area as a result of forty 
hours of discontinuous heat tests 

 

Figure 4.35 shows the changes in paraffins from GC x GC peak area percentage obtained of 

the heat tests on the commercial fuels. The results show no relation to the results obtained of 

the change in paraffins as a result of forty hours of sustained cavitating flow. SHELL Flitwick 

underwent a large decrease in the percentage volume of paraffins (-3.54%v) as a result of 

discontinuous heat tests. The same amount of decrease was observed by BP Toddington as a 

result of forty hours of sustained cavitating flow. TEXACO MK and TEXACO Leagrave 

underwent the similar changes in percentage volume of paraffin in both cases but had an 

increase/decrease as a result of heat tests by 0.16 % v and 0.1 %v respectively. 
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Figure 4.36 Relative percentage change with respect to the initial percentage volume in Paraffins of the commercial 

diesel fuels prior to sustained cavitation and heat tests. 

 

Figure 4.36 shows the relative percentage changes in paraffins to the original composition. 

The results show quite different changes in paraffins as a result of cavitation and heating tests 

of the commercial diesel fuels. This depends on the chemical reactions occurring and whether 

there is formation or consumption of paraffins from other species. It is observed that the 

changes show a large decrease in relative percentage volume of paraffins as high as 4.87 % ± 

0.01 % occurring as a result of sustained cavitation in aged BP Toddington and 5.03 % ± 0.01 

% as a result of 40 hours of heat tests in SHELL Flitwick. The maximum increase in relative 

percentage of paraffins occurred as a result of 40 hours heat test in Texaco MK aged which 

also showed the highest positive change in paraffins as a result sustained cavitation.  

 

Paraffins show a relatively small change as a result of both sustained cavitation and heat tests 

carried out apart from aged BP Toddington as a result of cavitation and SHELL Flitwick as a 

result of heating.  These two fuels display a surprisingly large result. Unfortunately the tests 

could/cannot be repeated to verify the results. If the results are correct then the changes in 

paraffins may be due to various factors i.e. fuel stability of the aged fuel undergoing 
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cavitation; the composition of paraffins in the fuel (iso-, n-, cyclic); or possibly lighter 

paraffin fractions content in both fuels which may have evaporated during the tests. There is 

also a possibility that heavier fractions may have broken down into lighter fractions as a result 

of the tests and these lighter fractions may have evaporated during the tests. The exact 

paraffin content in the fuels is not known and thus it is not possible to exactly identify the 

cause of the large change in paraffin of the two fuels. Cyclo-paraffins generate less 

unsaturated low boiling point hydrocarbons than n-paraffins and form relatively more 

benzene, thought to be the result of dissociation of C-H bonds in the direct benzene formation 

process [182]. For the Naphthene and iso-paraffinic hydrocarbons, the temperature at the start 

of decomposition is lower than for n-paraffins, and decomposition ratio is higher. The lower 

fraction hydrocarbon content formed as a result of thermal decomposition, increases in all 

fuels and there are differences in the temperature where it begins to decrease as well as in the 

start of formation temperature, the quantity and the temperature of the start of reductions for 

the different compounds. The cause is thought to have been due to different compositions of 

paraffin content i.e. n- paraffins, iso-paraffins, napthenes; in the fuels 

disintegrating/decomposing into aromatics/lighter fraction paraffins. 

 

 Mono-aromatics 4.4.2.2

Figure 4.37 shows the change in aromatics obtained from the GC x GC peak area as a result 

of forty hours sustained cavitating flow with a %RSD of ± 0.59. The results show a 

significant decrease in relation to the initial composition of mono-aromatics for all the fuels 

up to 0.9 % v for SHELL Flitwick and 0.8 %v for BP Luton. A decrease is observed for all 

commercial fuels in mono-aromatics between 0.3 % v to 0.9 %v. The only increase observed 

is in aged TEXACO MK by 0.1 %v. 
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Figure 4.37 Change in Mono-Aromatics (%v) for commercial fuels as a result of forty hours of cavitating flow 

 

 
Figure 4.38 Change in Mono-Aromatics (%v) for commercial fuels as a result of forty hours of discontinuous heat 

tests 
 

The heat tests conducted on the fuels show an overall increase in the percentage volume of 

mono-aromatics as observed in Figure 4.38. The largest increase in percentage volume of 

aromatics was observed in aged TESCO Flitwick of 1.8 %v. The increases in mono-aromatics 

varied from 0.4 %v in Aged TOTAL Luton to 1.8 %v in TESCO Flitwick. The only decrease 

observed was in BP Luton (0.1 %v), ESSO A1 (0.1 %v) and SHELL Flitwick (0.3 %v). 
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Figure 4.39 Relative percentage change with respect to the initial percentage volume in mono-aromatics of the 

commercial diesel fuels prior to sustained cavitation and heat tests. 
 

The changes observed in mono aromatics as a result of forty hours of cavitation defers from 

the changes occurring as a result of forty hours of discontinuous heat tests which once again 

suggest that they are undergoing totally different chemical changes. This is seen by the 

comparison of Figure 4.37 to Figure 4.38. As a consequence of hydrodynamic cavitation, the 

mono- aromatics content in the fuel is observed to decrease for all the fuels, however the 

change is not consistent as a consequence of the heat test. The results from the heat tests are 

observed to cause small changes either negative or positive for the new fuels and positive for 

the aged fuels. This suggests that they may be undergoing different chemical processes. The 

repeatability of both results is 0.59 %v as marked on the graphs by the dotted lines. 

 

Relative percentage changes in mono aromatics composition can be observed in Figure 4.39. 

Fuels tested from the sustained cavitating flow analysis display negative relative changes of 

up to 3.63 % ± 0.01 % with respect to the original composition by volume. The increase in the 

formation of mono aromatics was observed in the results from TESCO Flitwick aged of 4.84 

% ± 0.01 %. This however was the only change occurring from heat tests analysis that 

resulted in a large change in mono aromatics than sustained cavitation results. 
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 Di-aromatics 4.4.2.3

 
Figure 4.40 Change in Di-Aromatics (%v) for commercial fuels as a result of forty hours of cavitating flow 

 

The effect of forty hours of cavitation on the di-aromatics can be observed in Figure 4.40 with 

a %RSD of ±0.37. The effect of long periods of cavitation causes the percentage volume of 

di-aromatics in the commercial fuels to decrease. No change was observed in TESCO 

Dunstable, and aged BP Toddington, TESCO Flitwick and TEXACO MK. A decrease was 

observed in all the other commercial diesel fuels: BP Luton, SHELL Flitwick, TEXACO 

Leagrave and TOTAL Luton decreased by  0.2 %v; ESSO A1 and aged TOTAL Luton 

decreased by 0.1%v. This is a large significant decrease in comparison to their original 

percentage volumes prior to the heat and cavitation tests being carried out which were in the 

range of between 2.2 %v to 4.9%v. TOTAL Luton, TEXACO Leagrave and BP Luton show 

changes of 8.33 % ± 0.01 %, 6.45 % ± 0.01 % and 7.41 % ± 0.01 % respectively in di-

aromatics with respect to the values before tests. SHELL Flitwick, ESSO A1 and aged 

TOTAL Luton undergo changes of 4.35 % ± 0.01 %, 2.04 % ± 0.01 % and 3.03 % ± 0.01% 

respectively on di-aromatics with respect to the values before tests. 
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Figure 4.41 Change in Di-Aromatics (%v) for commercial fuels as a result of forty hours of discontinuous heat tests 

 

 
Figure 4.42 Relative percentage change with respect to the initial percentage volume in di-aromatics of the 

commercial diesel fuels prior to sustained cavitation and heat tests. 

 

The results obtained from the GC x GC analysis of the forty hours heat tested samples 

undergo changes in di-aromatics observed in Figure 4.41.  BP Luton and aged TOTAL Luton 

decreases in percentage volume of di aromatics by 0.2 %v and 0.1 %v, whereas Aged Tesco 

Flitwick shows an increase in the percentage volume of di-aromatics by 0.1 %v. BP Luton 

and aged TOTAL Luton undergo the same magnitude of changes as observed in the GC x GC 

tests of the forty hour cavitating flow samples testing changes in di-aromatics. 
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Similarly to the changes observed in the consumption of mono-aromatics as a result of 

sustained cavitating flow, the di-aromatics composition also undergoes relative decreases in 

percentage which relate to the consumption of di-aromatics as seen in Figure 4.42. The fuels 

undergoing heat tests did not have large changes and most of them had no changes at all in the 

composition of di-aromatics. 

 

 Tri (+)-aromatics 4.4.2.4

 
Figure 4.43 Change in Tri-Aromatics (%v) for commercial fuels as a result of forty hours of cavitating flow 

 
 
The results obtained from the GC x GC analysis of the commercial fuels samples showing 

changes in tri(+)aromatics as a result of forty hours cavitating flow are seen in Figure 4.43 

with a %RSD of ±0.13. Only two fuels undergo changes in percentage volume of tri (+) 

aromatics as a result of cavitating flow and these are TOTAL Luton and TEXACO MK Aged. 

These changes are significantly high when compared to the initial values before cavitation of 

these fuels. Both fuels undergo 33.33 % ± 0.01 % when compared to their GC x GC results of 

the initial commercial fuel samples. The results show no other fuels underwent any changes in 

tri (+) aromatics as a result of forty hours cavitating flow. 
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Figure 4.44 Change in Tri-Aromatics (%v) for commercial fuels as a result of forty hours of discontinuous heat tests 

 

 
Figure 4.45 Relative percentage change with respect to the initial percentage volume in tri (+)-aromatics of the 

commercial diesel fuels prior to sustained cavitation and heat tests. 
 

The results obtained from the GC x GC analysis of the commercial fuels samples showing 

changes in tri (+) aromatics as a result of forty hours of heat tests are seen in Figure 4.44. 

Four fuels are observed to undergo changes in tri (+) aromatics as a result of forty hours of 

heat tests and these are: BP Luton and SHELL Flitwick showing increase in percentage 

volume of tri (+) aromatics by 0.2 %v and 0.1 %v respectively; and TOTAL Luton (new) and 

aged TEXACO MK decreasing in percentage volume of tri (+) aromatics by 0.1 %v each. 
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A large amount of tri (+) aromatics were formed as a result of 40 hours of heat test as seen in 

Figure 4.45. TOTAL Luton new and Texaco MK aged show similar changes in tri (+) 

aromatics over both experimental analysis. 

 

 FAME 4.4.2.5

The changes in percentage volume of FAME obtained from the GC x GC peak area 

percentages of the commercial fuels as a result of forty hours of cavitation is shown in Figure 

4.46. FAME found in biodiesel occupy a region that is also populated by numerous cyclic 

alkanes and mono-aromatics found in petroleum. Fortunately, the intensities of the petroleum 

hydrocarbon peaks are far lower than the intensities of the FAME peaks, even for blends with 

low biodiesel content. This allows the FAMEs to be accurately quantitated by modulation 

processes during the GC measurement [183]. The commercial fuels undergo large changes in 

the FAME peak area percentage and thus percentage volume. All commercial fuels undergo a 

decrease in percentage volume of FAME as a result of forty hours of cavitating flow apart 

from ESSO A1 which shows a very small increase of 0.05 %v. The largest change in 

percentage volume occurs in aged TESCO Flitwick of 0.83 %v. BP Luton, TESCO Dunstable 

and BP Toddington undergo a decrease in percentage volume by 0.33% each, however in 

comparison to the GC x GC peak areas of the initial samples before cavitation they undergo a 

percentage change of 10.25 % ± 0.01 %. Aged TESCO Flitwick changes by 25.78 % ± 0.01 

%. SHELL Flitwick, TEXACO Leagrave, TOTAL Luton, aged TEXACO MK and aged 

TOTAL Luton decreased in percentage volume of FAME by 0.2 %v, 0.37 %v, 0.12 %v, 

0.23%v and 0.11 %v respectively. The changes in percentage in FAME with respect to before 

cavitation are 6.21 % ± 0.01 %, 11.49 % ± 0.01 %, 3.73 % ± 0.01 %, 7.143 % ± 0.01 % and 

3.42 % ± 0.01 % respectively. 
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Figure 4.46 Change in FAME (%v) for commercial fuels based on GC x GC peak area as a result of forty hours of 

cavitating flow 
 

 
Figure 4.47 Change in FAME (%v) for commercial fuels based on GC x GC peak area as a result of forty hours of 

discontinuous heat tests 

 

In contrast to the results obtained from the GC x GC analysis of FAME after forty hours 

cavitation, the commercial fuels show an increase in FAME as a result of forty hours of heat 

tests as observed from Figure 4.47. The largest increase observed in percentage volume of 

FAME was in TESCO Flitwick of 0.45%v. BP Luton and new TOTAL Luton showed similar 

changes in FAME percentage volume increase of 0.33 %v and 0.33 %v respectively. ESSO 

A1, TESCO Dunstable, TEXACO Leagrave and aged TEXACO MK undergo increases in 
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percentage volume of FAME of 0.06 %v, 0.2 %v, 0.13 %v and 0.09 %v respectively. SHELL 

Flitwick underwent a decrease in percentage volume of FAME by 0.01 %v as a result of forty 

hours of heat test. 

 

 
Figure 4.48 Relative percentage change with respect to the initial percentage volume in FAME of the commercial 

diesel fuels prior to sustained cavitation and heat tests. 

 

The largest relative change in FAME occurred in aged TESCO Flitwick which decreased in 

composition of FAME by 8.74 % ± 0.01 % as a result of sustained cavitation tests as seen in 

Figure 4.48. 

 

 Residual 4.4.2.6

The effects on the percentage volume of residuals in commercial diesel samples as a result of 

forty hours of cavitation are shown in Figure 4.49. The results show aged BP Toddington had 

the largest change of 5.41 %v in residuals as a result of forty hours of cavitation.  The rest of 

the fuels had less than 1 %v change in residual composition as a result of forty hours of 

cavitation. The overall changes in residual volume with respect to the percentage volume of 

residual in the initial fuel sample before cavitation was extremely high. The relative increase 
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in BP Toddington was 4339.84 % ± 0.01 % whereas the relative increase for aged TESCO 

Flitwick aged TOTAL Luton and new BP Luton was 100.99 % ± 0.01 %, 26.60 % ± 0.01 % 

and 91.67 % ± 0.01 % respectively. ESSO A1, SHELL Flitwick, TESCO Dunstable, 

TEXACO Leagrave and aged TEXACO MK had a relative decrease in residual percentage 

volume with reference to its initial volume prior to cavitation by 0.93 % ± 0.01 %, 24.56 % ± 

0.01 %, 18.82 % ± 0.01 %, 20.00 % ± 0.01 %, and 37.98 % ± 0.01 % respectively. 

 

 
Figure 4.49 Change in Residual (%v) for commercial fuels based on GC x GC peak area as a result of forty hours of 

cavitating flow 

 

The effects on the percentage volume of residuals in commercial diesel samples as a result of 

forty hours of discontinuous heat test are shown in Figure 4.50. The results show the 

maximum change occurred in SHELL Flitwick which increase in percentage residual 

composition by 4 %v. the rest of the fuels had an increase/decrease of residual volume by less 

than 1 %v. the relative changes in percentage volume with respect to the initial volume of 

residuals before cavitation was not as high in magnitude as seen in the results of the cavitation 

tests. SHELL Flitwick, BP Luton, and aged TESCO Flitwick increased in relative residual 

volume by 233.92 ± 0.01 %, 75 % ± 0.01 % and 4.95 % ± 0.01 % respectively. ESSO A1, 

TESCO Dunstable, TEXACO Leagrave, TOTAL Luton, and aged TEXACO MK decreased 
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in relative percentage volume by 23.15 % ± 0.01 %, 55.91 % ± 0.01 %, 56.76 % ± 0.01 %, 

12.75 % ± 0.01 % and 50.39 % ± 0.01 % respectively. ESSO A1, TESCO Dunstable, 

TEXACO Leagrave and aged TEXACO MK underwent larger relative changes in residual 

composition as a result of forty hours of heat tests than those in forty hours of cavitating flow. 

Aged TOTAL Luton displayed no changes in residual volume as a result to forty hours of heat 

tests.  

 

 
Figure 4.50 Change in Residual (%v) for commercial fuels based on GC x GC peak area as a result of forty hours of 

discontinuous heat tests 

 

 
Figure 4.51 Relative percentage change with respect to the initial percentage volume in residual of the commercial 

diesel fuels prior to sustained cavitation and heat tests. 
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The changes in residuals can be seen in Figure 4.51, which shows increases as large as 400% 

in residual volume as a result of sustained cavitation tests. Most of the Aged fuels have 

resulted in large changes in residual volume when compared to the newer fuels. 

 

 Overall changes in chemical composition 4.4.2.7

The overall changes in composition of paraffins, Mono-aromatics, di-aromatics, tri (+)-

aromatics, FAME and residual volume as a result of forty hours of cavitating flow and forty 

hours of heat tests can be observed in Figure 4.52 and Figure 4.53 respectively. It can be 

observed from the charts that the chemical changes occurring as result of forty hours of 

cavitating flow are different to the changes chemical composition caused by 40 hours of heat 

tests. The increased temperature in the cavitating flow may be increasing the rates of reaction 

occurring but the changes are not solely due to the elevated temperature maintained.  

 

 

 
Figure 4.52 Overall change in hydrocarbons and residuals (%v) for commercial fuels obtained from the GC x GC 

analysis as a result of forty hours of cavitating flow 
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Figure 4.53 Overall change in hydrocarbons and residuals (%v) for commercial fuels based on GC x GC peak area as 
a result of forty hours of discontinuous heat tests 

 

From Figure 4.52, the maximum change in composition occurring due to sustained cavitating 

flow is in BP Toddington Aged where there is a large increase in residual volume and a 

relatively large decrease in paraffins composition observed. The maximum change in 

composition occurring due to sustained elevated temperatures occurs in SHELL Flitwick 

which undergoes an increase in its percentage composition of residuals and a decrease in 

percentage composition of paraffins. 

 

 Particle number 4.4.3

 

Particle analysis was carried out using a Spectrex LPC-2200 laser particle counter which 

makes measurements based on the principle of near-angle scattering. A revolving laser beam 

is passed through walls of a glass container; any particles present in the fuel sample cause the 

beam to scatter. The extent of scattering is proportional to the number and size of the 
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particles. The mode of operation is shown schematically in Figure 4.54, with details of the 

laser optics given in Figure 4.55. 

 

 
Figure 4.54 Schematic showing the operation of the Spectrex LPC-2200 particle counter. 

 
 

 
Figure 4.55 Details of the laser optics in the Spectrex LPC-2200 particle counter. 

 

The instrument can determine the number and size of particle in the 0.5 to 200 µm range, 

although only particles between 1 and 100 µm are detected reliably and sized with a suitable 

level of precision. The standard operating procedure for the analyser involves: 

(i) Agitating the sample on a mechanical shaker at 300 rpm for 1 minute 

(ii)  Wiping the sample vial with propan-2-ol to remove any marks and finger grease 

(iii)  Allowing for settling of any air bubbles 
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(iv) Measuring the particle count over the 1-100 µm range three times and taking mean 

values. 

 

Sample dilution becomes necessary if the particle count exceeds, 1000 cm-3. When the 

particle number concentration is higher than this there is a risk of overlap between particles in 

the third dimension (i.e. closer to or further from the detector) which may lead to two or more 

small particles being counted as a single particle. Then dilution of the fuel is needed to reduce 

the particle count this is done using chromatography grade n-heptane which has a very low 

background particle count (<20cm-3). The dilution factor is automatically corrected for by the 

instruments software. 

 

The results obtained from the particle analysis are shown in Figure 4.56. The figure shows 

particle number concentration in cm-3 against the different commercial fuels for three sets of 

data obtained: a) from the commercial fuels before tests carried out; b) the results after the 

forty hour cavitation tests and; c) the results after forty hours of heat tests.  

 

The results of particle number concentration from the initial results show a very low 

concentration for all the fuels. The highest particle number concentration was observed in the 

aged BP Toddington sample of 46554 cm-3 and TESCO Dunstable of 10829 cm-3. Two of the 

new fuels and one aged fuel had results above 1000 cm-3: SHELL Flitwick (5872 cm-3); new 

TOTAL Luton (7437 cm-3) and aged TEXACO MK (6000 cm-3). All the rest of the fuels had 

initial sample particle number concentration below 1000 cm-3. 

 

The particle number concentration increases largely as a result of forty hours of cavitation as 

observed in the figure. As a result of forty hours of cavitation, BP Toddington had a final 
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particle number concentration of 232,064 cm-3, whereas TOTAL Luton and TESCO 

Dunstable had final particle counts after forty hours of cavitation of 151,663 cm-3 and 106,175 

cm-3 respectively. These results are real and not changes or relative results. All commercial 

fuels apart from ESSO A1 and SHELL Flitwick show increases in particle number. However 

this may be due to the particle counter system not being able to efficiently count particles 

above 100 µm. The fuels may have had larger particles present in them. BP Luton, TEXACO 

Leagrave and aged TEXACO MK had similar particle counts after forty hours of cavitation of 

47,915 cm-3, 47,248 cm-3 and 43,676 cm-3 respectively. Aged TESCO Flitwick and aged 

TOTAL Luton showed particle number counts of 21,979 cm-3 and 8,628 cm-3 respectively 

after forty hours of cavitating flow. 

 

The magnitude of particle number concentration for most fuels is much higher due to the forty 

hours of cavitation than the forty hours of heat test. The results from the heat tests show a low 

concentration of particle number concentration of particle size between 1-100 µm, whereas 

the forty hours cavitating flow results show a much higher particle number concentration of 

particle size 1 - 100 µm. There is a high probability that the particles formed as a result of 

forty hours of cavitation could have been larger than 100 µm due to coagulation of particles 

resulting in larger sizes. 
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Figure 4.56 Particle numbers of commercial fuel obtained:  a) Initial/Before Tests; b) After Forty Hours Cavitating 

flow and; c) After Forty Hours Heat Test 
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4.5 Overall Discussion and Conclusions of Experimental Results 

 

In the Table 4.3 and Table 4.4, the nomenclature of the measuring parameters is as follows: 

CNTP – 40 hours of sustained Cavitation Normalised Transmitted Power results, HNTP - 40 

hours of Heat test Normalised Transmitted Power results, ρ- Density, VC - VisCosity, FP - 

Flash Point, PF - ParaFfins, FAM – FAME, MA- MonoAromatics, DA – DiAromatics, TA - 

Tri(+)Aromatics, R – Residuals, PC – Particulate Count. The results are a summary of the 

previously seen experimental analysis, GC x GC and Particulate count results for 40 hours 

sustained cavitation analysis and 40 hours of heat test analysis compiled together. 

 

Fuel Name 

Experimental 
results 

 
GC x GC and Particulate count 

 

(% change w.r.t. 0 
hours) 

(% change w.r.t. initial sample) (∆) 

CNTP 
HNT

P ρ VC FP PF FAM MA DA TA R PC 

Model -0.66 -2.91 
NR 

Model + B20 55.11 2.21 

  

BP Luton -24.64 -5.70 0.05 1.25 0.00 -0.18 -10.25 -3.42 -7.41 0.00 91.67 46,941 

Esso A1 -7.84 -10.81 -0.06 0.60 3.33 1.44 1.55 -2.71 -2.04 0.00 -0.93 -200 

Shell Flitwick -16.30 -34.71 -0.08 0.30 5.00 0.72 -6.21 -3.63 -4.35 0.00 -24.56 -5,535 

Tesco 
Dunstable 

-24.71 -16.39 0.05 1.24 2.99 1.68 -10.25 -2.60 0.00 0.00 -18.82 95,345 

Texaco 
Leagrave 

-33.48 26.86 -0.02 1.43 3.39 0.72 -11.49 -2.63 -6.45 0.00 -20.00 46,354 

Total Luton -23.69 -38.04 -0.02 1.25 3.03 0.44 -3.73 -1.61 -8.33 -33.33 15.69 144,216 

  
BP 

Toddington 
-46.56 NR 0.11 0.68 3.33 -4.87 -10.25 -1.94 0.00 0.00 439.84 185,510 

Tesco Flitwick -25.88 -3.15 0.04 1.36 1.49 0.04 -25.78 -2.04 0.00 0.00 100.99 21,333 

Texaco MK -44.18 0.18 -0.04 1.32 1.59 1.77 -7.14 0.49 0.00 -33.33 -37.98 37,677 

Total Luton -14.86 -6.60 0.02 0.42 3.23 0.79 -3.42 -1.45 -3.03 0.00 26.60 8,081 

Table 4.3 Table showing a summary of the changes from the experimental analysis, the 2D GC results and the particle 
count analysis for fuels from the 40 hours sustained cavitation analysis 
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Fuel Name 

Experimental 
Results 

GC x GC and Particulate count 

(% change w.r.t. 0 
hours) 

(% change w.r.t. initial sample) (∆) 

CNTP HNTP ρ VC FP PF FAM MA DA TA R PC 

Model -0.66 -2.91 
NR 

Model+B20 55.11 2.21 

 
BP Luton -24.64 -5.70 0.12 1.30 0.82 -1.49 9.94 -0.43 7.41 66.67 75.00 478.99 

Esso A1 -7.84 -10.81 0.01 0.00 0.83 0.96 5.94 -0.45 0.00 0.00 -23.15 -41.77 

Shell Flitwick -16.30 -34.71 0.04 0.11 2.50 -5.03 -1.28 -1.21 0.00 20.00 233.92 82.68 

Tesco 
Dunstable 

-24.71 -16.39 0.01 0.42 2.24 0.66 2.98 0.00 0.00 0.00 -55.91 -91.71 

Texaco 
Leagrave 

-33.48 26.86 0.00 0.76 2.54 0.58 2.79 2.19 0.00 0.00 -56.76 9.01 

Total Luton -23.69 -38.04 0.06 0.44 0.76 -2.08 4.95 4.84 0.00 -33.33 -12.75 -86.14 

 
BP 

Toddington 
-46.56 NR NR 

Tesco 
Flitwick 

-25.88 -3.15 0.29 0.15 -2.24 -2.02 8.74 9.18 -4.17 0.00 4.95 33.34 

Texaco MK -44.18 0.18 -0.08 0.76 -0.79 1.99 1.99 3.40 0.00 -33.33 -50.39 129.26 

Total Luton -14.86 -6.60 0.05 0.04 0.81 0.00 0.00 1.93 3.03 0.00 0.00 726.27 

Table 4.4 Table showing a summary of the changes from the experimental analysis, the 2D GC results and the particle 
count analysis for fuel from the 40 hours heat test analysis. 

 

The model fuel which consisted of mainly long chained paraffins some olefins underwent the 

least changes as a result of 40 hours sustained cavitation. This leads to the conclusion that the 

sensitivity of the paraffin contents in the fuels to the attenuation results is not high and thus 

paraffins are the least affected by sustained cavitation.  

 

Sustained cavitation resulted of the model fuel+B20 shows positive changes and thus this 

relates to a decrease in absorptivity of the laser power through the fuel. Considering the model 

fuel underwent very little change, these effects can be pinpointed to be caused by the FAME 

content in the fuels. As mentioned previously, oxygenates in the FAME are being destroyed 

and thus leading to an increase in 405nm laser transmissivity. However changes observed in 

signal transmissivity as a result of 40 hours of cavitation tests lead to a decrease in 
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transmissivity of the 405nm laser. From the above, the paraffin and FAME content cannot be 

held accountable for these changes in transmissivity with time. It is observed from the 2D- 

GC analysis that changes in FAME as a result of 40 hours of cavitation are relatively higher 

than the other fuel components, however from the model fuel results obtained, the decrease in 

laser transmissivity and thus an increase in laser attenuation through the fuels is not caused by 

the FAME content. The FAME content in fuel has shown an increase in fuel transmissivity 

and a decrease in laser attenuation through it. Overall changes in laser transmissivity and laser 

attenuation may have been lowered by the FAME content in the rest of the fuels. 

 

The relative changes occurring as a result of cavitation are different to those caused by 

heating only as can observed in both Table 4.3 and Table 4.4. Thus it can be concluded that 

the high initial temperature set for the fuels is not the sole cause of the changes in 

transmissivity and laser spectral attenuation through the fuels. However the temperature may 

be acting as a catalyst to increase the rates of reactions occurring in the fuels. 

 

All the commercial fuels show a decrease in laser transmissivity and an increase in laser 

attenuation through then during the 40 hours of sustained cavitation. A large decrease in the 

aromatic content of the fuels is also observed as a result of the cavitation. However the 

number of particles in the fuels is increasing the largest relative to the initial sample particle 

counts. These counts are in the orders of thousands as a result of cavitation compared to a few 

hundreds as a result of heat tests. This is the major finding of this work that fuels are forming 

large number of particles as a result of sustained cavitating flow and this is purely not an 

effect of heat but an effect of cavitation bubble collapse on the chemical change in the fuels. 

The added heat maybe increasing the rate of formation of the particles; however is not the 

sole cause of its formation as observed in the results. Many authors have related the formation 
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of these particles to the aromatic species as seen in Appendix B. The cause of the changes in 

spectral attenuation and laser transmissivity through the fuels can be identified as been caused 

by a decrease in aromatics leading to the formation of large PAHs and further on particulates 

and soot. 

 

It is important to know the pathways to the formation of particulates from the aromatic 

species and thus Appendix B will show the pathways from chemical kinetics which maybe be 

involved in the formation of particulates from both aromatics and paraffins as combustion of 

solely paraffinic fuels have also been observed to for soot and particulates in the exhaust 

although not as high as commercial diesel fuels containing aromatics. The pathways analysis 

is carried out by using two combined kinetic models which has not been validated, however 

the pathways leading to the formation of soot (BIN in the models) can be used to approximate 

the possible pathways to the formation of soot 

 

The particle counter could only measure accurately particles of sizes between 1- 100 µm. 

Very small and very large particles may not have been included in this count. Some of the 

fuels, i.e. Shell Flitwick and ESSO A1 showing negative particle counts may have been an 

effect of additives in the fuels suppressing the formation of particles and this may have led to 

formation of smaller particles in the fuels; smaller than the capability of the machine to be 

able to produce a count. 
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Chapter 5 Simultaneous External Spray Sizing 

and Nozzle Hole and Sac Imaging - 

Experimental Apparatus and Calibration 

 

In the preceding chapters the effect of cavitation and cavitation bubble collapse on different 

diesel fuels has been discussed. The subsequent chapters will discuss effects of fuel density 

and distillation profile on its SMD distribution and thus its atomisation. The atomisation 

profiles are relative to the external spray drop size distribution. The degree of atomisation in 

the spray is related to its combustion characteristics and thus formation of particulates and 

emissions. The degree of atomisation can be controlled by increase in injection pressure, 

change in nozzle characteristics and changes in fuel volatility and distillation characteristics. 

The objective of this study was to obtain a spray drop-size distribution of fuels with varying 

distillation profiles. The Fuels of different distillation profiles (High, gap and low) were 

provided by Shell Global solutions with an objective of obtaining their drop size distribution 

using optical characterisation techniques. The quality of diesel spray is very important in 

direct injection diesel engines. The spray characteristics are strongly influenced by the nature 

of flow inside the injection hole [124]. The internal flow is largely dependent on the presence 

of the cavitation phenomenon [2,92]. Payri et. al [22] carried out an investigation on the 

influence of cavitation on the internal flow and the macroscopic behaviour of the spray in 

diesel injection nozzles. Cavitation and turbulence generated inside the nozzle is known to 

influence the primary breakup of the fuel, especially in the near nozzle region. However it is 

unknown how properties of the fuel affect the in nozzle cavitation and thus the external 

atomization and spray formation. 
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Initially the purpose of this work was to correlate the external spray formation to the internal 

nozzle hole cavitation. However the scope of this work contained a large dataset and thus for 

the purpose of the work here, this analysis will not be carried out. The internal nozzle images 

will still be used to analyse a phenomena which was observed in the sac of the nozzle. This 

will be discussed later on. The work here covers this analysis and the fuel SMD distribution 

analysis for the three fuels. 

 

Synchronised white light scattering images from the internal nozzle scattering were captured 

simultaneously with the spray images. This chapter aims to describe the high pressure 

injection rig and the laser-sheet dropsizing optical setup. The fuels had to be seeded with 

Rhodamine-B which would then be excited by a 527 nm laser sheet and the fluorescence 

captured at > 560 nm. Mie scattering from the spray would also simultaneously be captured 

on the same camera, on different halves of its sensor. The seeding is briefly described here so 

that the reader is familiar with the seed before it is explained in detail after the high pressure 

rig setup.  

 

A second camera would capture white light scattered from fuel cavitation inside the injector 

holes and sac simultaneously and thus the spray captured can be linked to the internal nozzle 

cavitation occurring. Each fuel was repeated with a new minisac nozzle tip made from acrylic 

to maintain consistency. Also the tips were reused for the next fuel as to calibrate the 

manufacture. The experimental setup will be discussed in detail in this chapter. 
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5.1 High Pressure Injection Rig 

 

 Fuel delivery system 5.1.1

 

The function of the fuel injection system was to introduce accurately a quantity of fuel into 

the injector, at a predetermined rate and pump angle position. The high pressure injection rig 

described here was custom manufactured at City University and could generate injection 

pressures of up to 600 bar. A schematic of the rig can be seen in Figure 5.1. The fuel was 

delivered from the tank to the high pressure pump by an electrical fuel pump. After filtration 

the fuel flowed into the high pressure pump. The high pressure pump was driven by an 

electric motor running at 1490 rev/min (24.833 rev/s) directly coupled. The fuel here was 

compressed (300-1800 bar) and then discharged to the common rail. Fuel accumulated under 

high pressure in the common rail and from there, it was injected into the atmosphere each 

time the injector opened.  

 

The injection is controlled by an external control box which sent a discharge signal to the 

injector electronic driver unit. Independent control of the number of skip cycles (injection 

rate), injection duration, number of injections per cycle and injection delay was achieved by a 

custom built controller unit. The injector timings and the electronic control unit will be 

discussed in detail later in this chapter. A Kulite ETMER-1-375M-3500BARSG pressure 

transducer installed prior to the injector measures the pressure during discharge. The 

transducer had a rated pressure of 3500 bar SG (Sealed Gauge), a sensitivity of 1.189 mV/bar 

and a zero balance of 500 mV ± 50 mV. The zero balance was acquired prior to each test and 

the required pressure calculated to narrow down the zero balance error. A modified Denso 

injector was used for the experiments and the modifications are described in 5.1.3.   
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Figure 5.1 Schematic of the high pressure injection rig 
 

Past the filter, there was a valve to select the direction of the flow either back into the tank or 

into the high pressure pump. The flow back into the tank was required as a vent during the 

filling/emptying procedures. The high pressure pump, common rail and injector had fuel 

return lines back into the tank. The return line on the high pressure pump and the common rail 

was to relief pressure and excess fuels back into the tank during pumping and when the rig 

was stopped. The return line on the injector was for excess fuel not injected to return back to 

the tank. This line was also used as fuel sampler to collect fuel during experimental analysis. 

This fuel sample obtained would be later calibrated for its fluorescence yield to be able to 

form a comparison between the fuels 

 

The common rail pressure is measured by a high pressure gauge attached to the common rail. 

The fuel pressure at the common rail is controlled by an adjustable pressure control valve. 
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The pressure control valve is located on the common rail. It can be adjusted to the required 

pressure measured on the gauge attached to the common rail and relieved back into the tank. 

The pressure control valve is adjusted to the required injection pressure by reading the output 

from the pressure transducer and opening/closing the valve as required. 

 

The temperature of the fuel at the inlet of the high pressure pump could be monitored. A K-

type thermocouple was mounted in the pump to measure the inlet fuel temperature into the 

pump. This was displayed on the rig. The thermocouple was also connected to a cooling 

system which passed cold mains water into a cylindrical input into the tank to cool the fuel as 

required and dumped the heated water to a sink. The temperature could be set between 40 and 

70 degrees centigrade at the control. By cooling the fuel in the tank, cold fuel would enter the 

high pressure pump. It was ideal to cool the tank because all the high pressure discharge 

would flow into the tank. When the common rail was not charged all of the high pressure 

liquid would empty into the tank and circulate back into the pump. 

 

 
Figure 5.2 Needle lift and injection pulse obtained by Dr. Liverani [184] using the modified Denso injector and EDU 
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An electronic injector driver sent a high voltage square wave pulse to a magnetic solenoid, 

located in the injector. The switching of the magnetic solenoid actuated the injector needle, 

allowing high pressure fuel to pass through the injector. The mean time-resolved needle lift 

for this type of injector was measured using an inductive sensor, and is shown on the timing 

diagram presented Figure 5.2. This profile was measured in [67,184] using the same injector 

and electronic driver unit for providing the same voltage pulses to drive the injector and can 

be utilised during this study. 

 

The needle lift appeared to be gradual with an approximately constant lift rate of 0.118 

mm/ms for approximately 4 ms, followed by a short period of approximately 0.3 ms in the 

neighbourhood of maximum lift, followed by an approximately constant rate of needle return 

for a period of approximately 1.6 ms. The needle reached its final seal position at 

approximately 6 ms after the electronic start-of-injection signal. This lift profile was due to 

the relatively low common rail pressure of 200 – 400 bar, and is typical for engines operating 

at idle, or low/part load, when the common rail pressure remains relatively low (400 – 600 

bar). 

 

The injectors employed in this study were designed for maximum rail pressures of 

approximately 1200 – 1400 bar. During high load operation, the high fuel pressure normally 

facilitates the development of a large needle lift rate. The needle normally reaches its highest 

point within 0.5 ms, and remains open at its highest position until the magnetic circuit is 

turned off. 

 

Initially it was decided to use a very fine 5 micron stainless steel filter element in order to 

prevent large particles damaging the pump. But during pre-tests sample mixtures were 
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prepared with Rhodamine-B and fuel with different mixtures. But the Rhodamine seemed to 

disappear somewhere and did not appear in injections. A bright pink fluid placed into the rig 

was injected much lighter in colour (very light pink). This was troubling as somehow the 

Rhodamine-B was getting lost and may have been coagulating somewhere. It was discovered 

after some careful thought that flow past the metal filter was creating a potential and the 

Rhodamine was attracted to this and thus stuck to the metal filter. On removing the metal 

filter and dipping it into Ethanol, a bright pink mixture formed which only became lighter 

only after 3 flushes of Ethanol ~ 1 L per flush. The filter was then changed to a polypropylene 

filter. This filter would initially be soaked in 1 L of 120 mg/L Rhodamine-Fuel solution so 

that it had been discoloured and would not be dyed further by the experimental fuel. 

 

 The injection control unit 5.1.2

 

The pump had an encoder fitted that would output a pulse every 5 degree rotation. This was 

necessary to control timing of injections to occur at a selected pump angle each time in order 

to prevent large fluctuations in pressure. This signal was sent to the control unit and the 

injections were triggered by controlling the number of skips of the pump revolution. The skip 

rate could be manually set on the control unit. A skip rate of 8 (skip 8 revolution and inject) 

was used during the experimental acquisition which provided and injection rate of 3 Hz. One 

revolution of the pump took 40.268 ms, thus an injection occurred every 322.144 ms. The 

injection duration would also be set manually on the control unit, ranging from 1 - 5.5 ms.  

 

The control box, on receipt of the injection signal, would send a dialled delay signal to the 

injector of the size of the duration set. The injection delay between the start pulse and the 

pulse sent to the injector could be set between 100 - 500 s. So once the trigger was received 



 

 

210 
 

the injection would start after the set delay. The start pulse would be the start trigger and 

synchronisation pulse for image acquisition and synchronisation for the cameras and 

synchronisation of the laser fire pulse at 10 kHz.  

 

The pump encoder signal was the master signal for the control box and it would provide the 

synchronised injection, laser and camera signals with respect to the pump angle. The outputs 

for the laser and camera synchronisation were set to 10 kHz with respect to the rise of the 

TTL signal.  The unit was used to provide acquisition signals for the cameras and 

synchronised trigger signals at 10 kHz to synchronise the laser. 

 

 Optically accessible injector nozzle design 5.1.3

 

The injector nozzle is of the most important parts of a diesel engine. Nozzle geometry affects 

spray characteristics and therefore atomisation behaviour [22]. In order to perform real size 

analysis on the nozzle holes they have to be modified to be optically accessible. The injector 

nozzle was modified to have its holes machined out and replicated in clear acrylic to enable a 

good view of the internal holes. 

 

(a)     (b) 

Figure 5.3 (a) Non-modified nozzle (b) Modified nozzle with new tip 
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In [184] a mini-sac tip with the exact internal dimensions as the section cut was designed and 

manufactured. The same internal nozzle hole and minisac dimensions are used, but the 

exterior has been modified to a 4 profile nozzle. The hole angles have also been modified 

from 12.5 degrees to 25 degrees. Figure 5.4 shows the nozzle previously used and Figure 5.5 

shows the redesigned 4 profile nozzle. In both figures the nozzle hole diameter/length (d/l) 

ratio at hole centreline is 0.134 ± 0.001. The nozzle hole diameter is 0.136 ± 0.001 mm and 

the nozzle hole length 1.018 ± 0.001 mm. The difference between them is the length of the 

lower end as seen in Figure 5.4 is slightly longer due to the outer surface having a cylindrical 

cut, whereas in Figure 5.5 it has been profiled so that the hole is symmetrical about its centre. 

 

 
Figure 5.4 (a) Exterior image of the Mini-sac tip used previously (b) The interior image of the tip previously used 

 
Figure 5.5 (a) Image showing current nozzle design (b) Nozzle interior image showing increased nozzle hole angle 

b a 

a b 

Hole Hole 2 
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Only two of the nozzle holes can be viewed for best results these two holes are designed to be 

manufactured on opposite faces marked hole 1 and 2 in Figure 5.5 (b). It can be observed in 

Figure 5.4 (b), that a nozzle hole angle of 12.5 degrees from the horizontal caused part of it at 

the inlet to be obstructed. The nozzle hole angle was doubled from 12.5 degrees from the 

horizontal, to 25 degrees. This was carried out to have a better view of the whole nozzle and 

especially the inlet from the sac to the holes. The side view in Figure 5.5 (b) shows the 

modified nozzle with full side view. As seen both hole 1 and 2 can be viewed fully from the 

side. 

 (a)   (b) 
Figure 5.6 (a) Exit of the previous nozzle (b) the exit of the new nozzle hole 

 

 

Figure 5.7 A representation of the nozzle hole exit profile of an actual injector 

 

The nozzle hole lengths have also changed in the new design and are more closely matched to 

real size nozzles. The previous nozzles holes ended horizontally and this is not the case for 

real size injector nozzle holes. These holes end at an angle to the horizontal making near 

perfect cylindrical holes. The changes in design are shown in Figure 5.6. Figure 5.7 shows the 

nozzle hole exit on non-modified mini-sac injector nozzle.  
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Figure 5.8 Injector tip transparent image 

 

Figure 5.8 shows other modifications made to the exterior of the nozzle. The nozzle was made 

to be a 4 profile nozzle from the previous 2 profile. Section A in the figure has been 

unmodified. Its dimensions and size are the same as the previous design as this section 

attaches to the same injector nozzle used previously. Any modifications to part A would mean 

the attachment section in the nozzle on the injector would have to be modified or else it would 

not seal properly.  

 

Part B is a rectangular section and has been modified to suit the current nozzle angle. The 

longer side reaches the edges of the two holes that could be viewed. The shorter side has been 

shortened to prevent the other four nozzle holes to be covered by a roof. If it was the same 

size as the longer length it would cover the top of the other four holes and would create a roof 

over the spray. This could cause changes to the geometric cavitation inside the nozzles and 

the changes may affect the two holes in view and the spray atomisation. 

A 

B 

D 

C 
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Part C refers to the nozzle hole exit modification discussed earlier. Part D is an extension to 

prevent the spray hitting the spray cone and the attachment unit to compress it onto the 

modified injector. The spray cone design is discussed in detail later. The overall length of the 

new modified injector tip was the same as the old injector tip which was 3 mm. 

 

Initially during redesign of the injector nozzle an error was made and the design had slightly 

longer holes because of their position on the sac. This was realised after they had been 

manufactured. The error was corrected and the nozzles re-manufactured. However during 

initial testing, the entire correct aspect ratio nozzles were consumed/fractured due to pressure 

testing. It was decided that the slightly larger aspect ratio nozzles to be used due to time and 

manufacture expense. If consistently used, the comparison of the data would be unaffected. 

During testing, the combination of 400 W focused white light heat, nozzle compression and 

the force of injection the nozzles would deteriorate after about 500 injections.  The actual d/l 

ratio was 0.134 ± 0.001, whereas the larger length nozzle d/l ratio is 0.126 ± 0.001. The later 

was used throughout this study. Figure 5.9 shows the differences between the two nozzles. 

 
Figure 5.9 RHS original hole length of the nozzle, LHS larger hole length of the nozzle. 

 

After manufacture the nozzles were placed under great scrutiny to identify the best nozzles by 

looking at features such as; hole alignment from the bottom and side, hole entry into the sac, 

hole parallelism and hole exit, before they were selected to be used. Nearly 60 - 70% of the 
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nozzles were discarded. In total the larger aspect ratio nozzles used in the test were 

manufactured thrice. The manufacture of the first 2 sets was the same (hole hand drilled), but 

the third had to be changed slightly due to unavailability of certain core components required 

for manufacture. 

 

The holes which were previously hand drilled required a precision drill bit of 0.136 mm. The 

bits used in the first two manufactures had a shank and could be held well in a chuck. 

Unfortunately these drill bits were unavailable and ceased from being manufactured. Custom 

manufacturing them would be prohibitively expensive. The new drill bits in the market of 

diameter 0.136 mm did not have a shank as seen in Figure 5.10 and thus could not be held 

well by a chuck and would also bend on impact to the acrylic due to the force of drilling. It 

was then decided to machine these 6 holes by holding the drill bit in a CNC machine for 

accuracy and control of the force at drilling. But this did not suceed as the hole drilled would 

start curving after a certain point and would therefore not be parallel. Finally a solution came 

up. Drill bits with a shank were still available in 0.13 mm size. These were used to pre-drill 

the holes and the holes would be re drilled with the 0.136 mm thin drill. The pre-drilling 

would prevent the 0.136 mm thin drill bending. This process was carried out on a CNC 

machine for accuracy of hole location during the double drilling.  The nozzles marked in 

alphabets are from the first to manufactures whereas the nozzles marked in Roman numeral 

are from the third manufacture. 

 

 (a)      (b) 

Figure 5.10 (a) drill with no shank (parallel) (b) drill bit with shank 
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Prior to the experiment, the nozzles went through thorough scrutiny to check for correct 

features and to select the best nozzles as mentioned earlier. Initially the nozzles were polished 

at the two perpendicular sides to the holes to be imaged and the bottom surface. This was 

done to optimize the light entering the nozzle and also to get better images. The polishing was 

done on rotating polishers initially with 1micron paste to coarse polish then with a 0.5 micron 

solution for finer polishing. The nozzles were imaged over a microscope at 4X zoom to look 

at the internal hole structures from the base and from the two sides and a 10X zoom to look at 

the hole diameters and shape at exit.  

 

 
Figure 5.11 (a) unpolished side showing grains (b) polished side 

 

  
Figure 5.12 (a) Unpolished Bottom surface (b) polished bottom surface 

 

(a) (b) 

(a) (b) 
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Figure 5.13 Microscopic images from the side and bottom of discarded acrylic nozzles (non-selected) 

 

 

 
Figure 5.14 Microscopic images of the selected acrylic nozzles 

 

Figure 5.13 and Figure 5.14 shows the criteria for acrylic nozzle selection. The holes in 

Figure 5.13 were observed to be entering the sac at different levels whereas images taken 
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from the bottom show holes not being parallel and some larger than others. Figure 5.14 shows 

the criteria for a near perfect nozzle. As seen nozzle holes are entering at the same height in 

the sac and they are symmetrical and parallel from the bottom images. The holes also have a 

circular exit. These are the criteria used for selection as nozzle geometry has a significant 

effect on the in-hole cavitation and in turn its external spray formation and structure. 

 

It is also important to determine a way to seal the injector nozzle tip to injector. Glues will not 

help due to the high pressure force causing the temperatures to rise. It would be difficult to 

apply and during compression it may spread into the inside of the Mini-sac and also cause 

thickness geometry on contact and possibly block the holes. The only other feasible way is to 

use compression forces. Previous users [184] have used high spring constant springs 

compressed by screw mechanism to provide a compression force. The effect of using a spring 

is that sudden high pressure forces cause small movements in the spring which tend to cause 

leaks and movement of the injector nozzle tip. Once the impact of the start of the injection is 

gone and the injection force is stable, there is a constant force application. The screw 

mechanism also causes slight errors as it would have to be tightened in order to produce a 

compression on the spring to overcome the force of injection without any exact measure. 

 

It is critical to the experimental setup and to obtain good images to have a good system to seal 

the nozzle tip to the injector nozzle. The fuel injection pressure for experimental analysis is 

set to 350bar. To calculate the forces on face E which in the inner circle of the face (diameter 

- 1.597 mm) a 1.5 safety factor was used by increasing the pressure in the calculation to 550 

Bar.  Using the standard pressure formulae (force per area), the force of fuel impacting the 0.8 

mm diameter minisac would be 99 N. A mass of approximately 10 kg will be acting on the 
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small surface and thus a good compression system will be required to attach the nozzle tip to 

the modified injector. 

A double acting hydraulic cylinder which uses a controllable air pressure via pressure 

regulator to control a piston attached to a rod was used to provide a compression force to seal 

the nozzle tip onto the injector nozzle.  

 

 
Figure 5.15 Principles of a compact cylinder 

 

        (       )     

Equation 5.1 

 

Figure 5.15 shows the basic principles of a double acting hydraulic cylinder. Equation 5.1 

represents the force-pressure relationship of the double acting cylinder on the rod side. In the 

equation F represents the rod pull force, P is the pressure in the cylinder (rod side), d1 is the 

rod diameter and d2 is the piston diameter. Table 5.1 shows the dimensions of the hydraulic 

air ram.  

 

Piston Rod Diameter (d1) 16 mm 

Piston Diameter (d2) 40 mm 

Piston Stroke 50 mm 

Table 5.1 Notable dimensions for the double acting ram 
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Due to a balancing screw, the force that was required to compress the nozzle tip doubles to 

200 N. This is because due to the position of the balance screw being located the same 

distance between the centres of the injector and ram, on the opposite side. It will take half the 

force created by the ram; hence the force is doubled so the half needed for the nozzle tip 

compression (99 N) still acts on it. The pressure required to produce a force of 200 N using 

the dimensions in Table 5.1 and Equation 5.1 is 2 bar.  

 

 
Figure 5.16 Image representation of the double acting hydraulic ram 

 

A fork section which held a cuboid Fused Silica glass section was attached to one end of the 

hydraulic air ram. The other end was attached to the injector holder mount. The Fused Silica 

cuboid was designed to fit firmly into the fork section and flush with the conical injector tip 

stand. Further discussions of the fork cuboid section are continued in the assembly. 

 

 Injector nozzle assembly and spray extraction 5.1.4

 

A rigid injector design was necessary in order to mount the injector horizontally at high 

pressure. The other important criterion to be taken into consideration is that, all the 

Guide rods 

Piston rod 

Fork section 
mounted here 

Injector holder 
mount here 
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components namely; the injector and mount, injector nozzle tip and hydraulic pressure ram, 

would not be in the path of the fuel spray to be imaged. If any of these were in the fuel spray 

path then it would hit these components and rebound back. This would influence the spray 

imaging and cause misinterpretation of results. The injector mount was therefore designed to 

stand at an angle of 60 degrees from the horizontal from one side as observed in Figure 5.17. 

One fuel spray was required to be spraying vertically upwards at an angle of 25 degrees. This 

other spray opposite would spray downwards, and the rest to the sides. The spray directed 

downwards would hit the double acting hydraulic air ram attached below the injector to the 

same mount. As the sprays are at 60 degrees to each other it was essential to rotate the mount 

at 60 degrees as will be observed and discussed later in the assembly section. The injector was 

then clamped into this mount and held firmly.  The whole mount was firmly screwed to an 

optical table. 

 

 
Figure 5.17 Injector holder mount 



 

 

222 
 

 
Figure 5.18 Assembly of fuel injection components  

 

 
Figure 5.19 Assembly showing 2D spray path 
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Figure 5.20 Assembly showing all 6 sprays directed out of the page 

 

Figure 5.18 shows the assembly of the components all mounted. A 2D representation of the 

fuel spray path can be observed in Figure 5.19. As discussed earlier in the injector mount 

design, the spray downwards in Figure 5.19 would hit the hydraulic air ram and thus the 

mount had to be angled at 60 degrees. Figure 5.20 shows all the 6 fuel sprays, spraying out of 

the page. All 6 sprays paths do not collide with any parts/components mounted, thus there will 

be no rebounds of spray droplets covering any optics. 

 

The cuboid compress section and the conical nozzle tip stand observed in Figure 5.19 are 

made from acrylic and Fused Silica respectively. Both these components had to be optically 

accessible as they were in the white light path into the acrylic injector nozzle. The later was 

made in fused silica to prevent it from burning as it was near the focal point of the laser sheet 

 

The fuel spray contains Rhodamine-B which is a skin irritant and also causes breathing 

difficulties if inhaled. The fuel spray atomises into a very fine aerosol which will be spread in 
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the air and breath easily. A fuel spray exhaust extract design was created to use an exhaust 

tunnel to draw the fuel spray through an air filter (to filter the Rhodamine by dyeing the 

element) then in to the exhaust tunnel. The design had 6 holes which would be lined up with 

the six sprays from the injector nozzle tip. It was also designed so that at least 2 cm of the 

spray length could be captured with the laser sheet dropsizing camera. 

 

The design of the extract was mostly dependent on the distance away from the injector nozzle 

tip. Placing it further back would mean increasing its diameter due to the spray penetration 

causing a wider spray cone angle. The spray angle would also increase, and thus the side flaps 

would have to be thicker. An optimum distance was determined that enabled a 2 cm spray to 

be viewed and the spray also to be captured before the spray and spray cone angle got too 

wide. The inner radius of the extract was 60 mm. This was optimised to collect all the spray 

exiting whereas giving ample space for the Laser sheet dropsizing optics and large 

magnification of the inside of the nozzle for the imaging of the internal flow.  

 

Each hole in the extract was connected to pipe. All six pipes were connected to a suction 

being created by a compressor drawing air from the cell past an air filter in an exhaust tunnel. 

This would filter out the fuel and the Rhodamine-B. The clean air is then extracted to the 

exhaust tunnel. The air filter would be changed often to ensure the air was not contaminated. 

The hole in the centre of the fuel spray exhaust extract is a cut out to allow passage to white 

light which will illuminate the acrylic nozzle. 
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Figure 5.21 Fuel spray exhaust extract  

 

 

 
Figure 5.22 Fuel sprays into the six extract holes. 
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5.2 High Speed Image Acquisition and Optical Setup 

 

The fuel was seeded with Rhodamine-B as the fluorescing particle. The nozzle and 

corresponding spray to be imaged will be set to spray at an angle of 25 degrees from the 

vertical. The setup uses: 

 10 kHz Pegasus Nd:YLF Laser at 527 nm, 1.5 mm beam diameter, ~1mJ per pulse, 

Gaussian profile and a pulse width of 180 ns at Full Width Half Maximum (FWHM). 

The laser had an energy stability of <1% rms after a 10 minute warm up. The laser is 

used to illuminate about 2 cm of the external fuel spray which has been seeded with 

Rhodamine-B.  A microscopic lens setup will be used to form about 2 cm width of 

laser sheet which will be directed perpendicular to the centre of the spray. 

 400W ARRILUX 400 "Pocket PAR" white light source. The white light is used to 

illuminate the acrylic injector nozzle from its bottom. It will create a good illumination 

inside the nozzle holes which will be captured from the side. 

 2 x Photron SA1.1 cameras at 10 kHz. 1 camera is going to image a combination of 

the Laser Induced Fluorescence (LIF) scattering and Mie Scattering images of the 

external spray (LSD Camera). The second camera will capture the white light elastic 

scattering from the insides of the nozzle simultaneously (INF camera). Both cameras 

will use an 85 mm Nikon lens. The two cameras will take synchronised images 

throughout the injection with a delay between the laser firing and the image 

acquisition set with a delay to prevent laser illumination interfering with the internal 

nozzle imaging. 
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 Laser sheet dropsizing of external spray 5.2.1

 

Laser induced fluorescence/Mie scattering also known as Laser Sheer Dropsizing (LSD) was 

proven to be a useful diagnostic for the measurements of Sauter Mean Diameter (SMD) in 

non-evaporating sprays. It is a method to determine the two dimensional droplets size 

distribution in a spray and is different from the point-wise measurement techniques such as 

Phase Doppler Anemometry (PDA).  The principles of LSD have previously been discussed 

in the literature review. 

 

Rhodamine-B doped fuel would be injected upwards at an angle of 25 degrees from the 

vertical. The Rhodamine in the fuel will excited at 527 nm for the LIF images. This section 

will discuss the laser optics and the image acquisition optics. The laser optics section 

discusses the formation of the laser sheet and its direction towards the sprays exiting 

vertically upwards with and angle of 25 degrees. This is followed by the discussion of the 

doubling optics which take light scattered from the spray and split it into LIF and MIE by 

filtering and then focussed on different halves of the LSD camera. 

 

 Laser optics 5.2.1.1

The laser was initially brought to the height at which it would be angled into the spray at by 

periscope like arrangement with two mirrors. To maximise the reflection of the laser beam it 

was ensured that the beam would contact the mirror at its centre.  The sheet forming optics 

used within this study consisted of a planar convex lens and 2 cylindrical lenses. The laser 

beam first enters a 1 m focal length planar convex lens to create a converging beam. The 

beam then passes onto a -25 mm planar concave cylindrical lens where it forms into a 

diverging vertical sheet. A +150 mm cylindrical lens expands the beam sheet from about 2 
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mm high to 12 mm. This lens is located closer to the planar concave cylindrical lens to 

produce a gently expanding beam. The divergence and height of the beam could be varied by 

adjustments on the sheet forming optics. Fine adjustments were made by rotating thumb 

wheels on the lens mounts and adjusting the distance between the final 2 lenses to achieve the 

optimum beam sheet. The sheet travelled a distance of ~50 cm from the final cylindrical lens 

to the spray position and increased from ~12 mm to ~20 mm in height. The sheet is then 

reflected by a mirror onto the spray path. The sheet at the spray was approximately 20 mm 

high and 0.2 mm wide at focus.  

 

To ensure maximum potential of the laser sheet, proper positioning of the mirrors and the 

sheet forming optics are essential. Furthermore, failure in correct positioning of the optics 

results in a Non-Gaussian beam profile. By careful alignment, the laser beam will follow the 

central axis of lens in the sheet forming optics. Once sheet was positioned and set the optics 

were tightened so they could not be moved. It was critical that these sheet forming and 

directing optics were not move during the experiment. 

 

 Image doubler, filters and LSD camera 5.2.1.2

The current study involves simultaneous imaging of LIF and MIE scattering methods and for 

this reason an image doubling, filtering and acquisition of two views of the same subject on a 

single image, with each view being individually filtered to provide LIF and Mie images on 2 

halves of a single image. The optics consisted of a beam splitter, a 527 nm band pass filter 

with neutral density filter for attenuation, an aluminium mirror and a high OD neutral density 

filter as mirrors and a 550 nm long pass filter with a neutral density filter for light attenuation.  
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The light scattered from the spray would first pass a 50:50 Beam splitter. 50% pass and 50% 

reflect. The pass light would go through onto an aluminium mirror which reflected it passed 

an OD 0.3 neutral density filter and a 527 nm band pass filter. The light would then travel 

through an OD 2 neutral density filter onto one half of the camera. Both neutral density filters 

on this half were to attenuate the intensities to the correct signals to be captured in the camera. 

 

Figure 5.23 The image doubler, filter and camera setup 

 

The reflected light would pass through a 550 nm long pass filter and neutral density filter OD 

0.3 to attenuate the intensity of the light and then reflected by an aluminium mirror onto the 

OD 2 neutral density filter and onto the other half of the camera. The images were attenuated 

such that the Mie spray image and the LIF spray image had similar intensities, the LIF 

attenuated to intensity slightly lower. 
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Figure 5.23 shows the image doubler setup with the camera. The figure shows the principles 

and pathways of the separated light which are then filtered and directed on different halves of 

the camera sensor. 

 
Figure 5.24 Laser sheet illuminating the spray 

 

The LSD camera had a Nikon 85 mm f1.4 camera lens, reverse coupled to 65 mm extension 

tubes. The images captured had a resolution of approximately 28 µm/pixel. The resultant 

image was of magnification 0.7. For the experimental acquisition, the lens was set f1.4, the 

camera setup to image 1024 x 512 pixels acquired at a synchronised delay of 30 µs from the 

INF camera at a frame rate of 10 kHz, an exposure of 370 ns, and a dynamic range of 12 bits 

(0 - 4095). During the experiments the camera would be set to acquire 100 frames (10 ms) per 

acquisition pulse. This would produce approximately 17 frames prior to injection, 50 frames 

(5.0 ms) during the injection and 33 frames post injection. 
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 Elastic scattering inside nozzle holes 5.2.2

 

Continuous white light obtained from a collimated Arri 400W POCKET PAR lamp was 

passed through a hot mirror to direct away ‘Hot’ UV light and then into a 150 mm diameter 

planar convex lens with 50 cm focal length. The converging light was reflected using a 45 

degrees mirror on to a 50 mm diameter biconvex lens with 150 mm focal length, passed 

through the fuel extract and then the compressing cuboid and the fused silica conical section 

and focused onto the acrylic injector nozzle. Figure 5.25 shows and overview of the setup. 

Back-scattered light obtained from the cavitating diesel in the nozzle passages was reflected 

onto a high speed Photron SA1.1 camera (INF camera) using a Nikon 85 mm f1.4 camera 

lens, reverse coupled to 230 mm extension tubes. This arrangement facilitated high resolution 

imaging of approximately 8 m/pixel. The INF camera was configured to obtain 768 pixel x 

768 pixel images with a 1µs shutter speed and the camera lens at f2.4 taking images at a 

frame rate of 10 kHz. The use of this camera in this manner facilitated real-time capture of 

individual injection events. Figure 5.26 shows a view of the image that would be captured by 

the INF camera. The camera was configured to begin capturing images synchronous with the 

leading edge of the electronic pulse sent to the injector with a 500 s delay. On receipt of the 

trigger pulse, the camera took 150 frames at 10 kHz frame rate for 15 ms duration. Each 

frame had exposure duration of 1.0 s. The camera also provided a 30 µs general out- delay 

signal for the start of acquisition of the LSD camera. 
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Figure 5.25 The internal nozzle hole flow imaging setup 

 

 
Figure 5.26 Image the INF camera would capture. 

 

Initially images were set to be obtained over 10ms duration, but during testing there seemed 

to be a lot of large and small cavities forming when the needles had subsided. They may have 

been formed by cavitation in the small passage created when the needle is near seated. These 

cavities behaved in a violent vortex like structure in the sac when the needle had subsided. 
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This motion had high angular velocity initially which decayed with time. Small cavities were 

also seen either going down the holes towards the sac or out wards towards the exit in the two 

holes in focus. The bubbles either travelled in the same direction i.e. both towards the sac or 

both towards the hole exit, or in opposite directions i.e. either one towards the sac and the 

other towards the exit. This phenomenon was seen as interesting and thus the time to image 

was increased from 10ms from the trigger input to 15ms. This would give approximately 14 

frames prior to injection, 50 frames during injection and about 86 frames after injection to 

capture this phenomenon. However due to the synchronised LSD camera only being able to 

store 10914 frames at 1024 x 512 pixels, the internal nozzle flow images were taken in 2 sets 

of 50 injections each. 

 
 

During pre-experimental setup it was seen that the laser illumination was causing interference 

with the white light illumination. But because they both had very short exposure they could be 

set to capture one after the other. The INF (internal nozzle flow capturing) camera was set to 

be the master and it provided a 30 µs delay trigger for the LSD (dual image LIF-MIE 

capturing) camera. This would enable capture of the internal nozzle flow pre- laser fire.  

Calculating the Bernoulli velocity at 350 bar to be 295 m/s for a fuel with density of 801.9 

kg/m3, in 30 µs the spray would travel approximately 10 mm and thus the cavitation observed 

in the middle of the nozzle would be captured in the middle of the external spray for the same 

frame number. 
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5.3 High Speed Data Acquisition and Control 

 

 Synchronisation and control setup 5.3.1

 

A reference synchronisation clock at 10 kHz was provided to the INF camera. The clock was 

synchronised to the start trigger. A delayed sync out of 30 µs was output from the INF camera 

and fed to synchronise the laser at a delayed clock. This was done to stop the laser light 

interfering with the internal nozzle imaging. During initial tests it was established that the 

laser firing in synchronisation with the INF camera acquisition was affecting the quality of the 

images. The delay would mean that the laser fired 30 µs plus the internal camera delay to 

translate a sync output, of 160 ns. This delayed sync signal was also sent to a pulse generator 

where the sync to the LSD camera could be varied to up to 5 µs. 

 

During setup it was discovered that the SA1.1 cameras wait for a sync pulse and then a trigger 

pulse to start acquisition. The variable delay was necessary to synchronise LSD camera 

acquisition to the laser firing. The delay sync out signal from the INF camera and the variable 

delay signal were sent to an oscilloscope. The laser was then fired and a delay between the 

signals was obtained for when the laser started to brighten the images and again when the 

image started to dim. This was known as the laser ON and laser OFF signals. The variable 

sync was set to the average of these two delay times obtained which was approximately 1.6 - 

1.7 µs from the start of the laser pulse for 370 ns exposure duration. This was checked prior to 

each test before images were obtained to see whether the LSD camera exposure and the laser 

firing timing were precise. 
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Figure 5.27 Synchronisation set up 

 

The control box provided a trigger signal at 10 kHz synchronous with the start of injection. 

This was input into the INF camera TTL trig in. The camera provided and output to the TTL 

trig in (TTL trig out) which was input into the LSD camera. This set the acquisition start 

times of both cameras to the start of the TTL for the injection pulse.  
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Figure 5.28 Start, injection, camera and laser synchronisation signals 

 

 Acquisition setup 5.3.2

 
The injection duration pulses and the laser fire pulses were recorded on to a PC by NI data 

acquisition systems 200,000 sample per second for 6.0 ms duration from the start of injection 

for every injection. Data was recorded every 5 s equalling to 3000 samples over the 6ms 

period (200,000 samples/second).  

 

Both the LSD and INF cameras were set to output their exposure digital pulses. The pressure 

transducers produced an analogue voltage signal which had to be calibrated to convert it into 

pressure. These together with the digital laser pulse signal and the injector trigger signal were 

30µs 

Variable delay 

Start TTL pulse 

Injection 
start pulse 

INF camera sync in. 
LSD/INF camera 

trigger in 

30µs 
delayed 

laser sync 

 Variable 
LSD camera 

sync in 

500 µs 

4.0 ms 



 

 

237 
 

recorder in an excel comma separated file via a LabView code written to acquire data 

synchronously on the rise of the injection pulse. Both camera exposure pulses were expanded 

to a pulse width of 25 µs from their rise position so that they could be registered by the 

acquisition cards. The INF camera had an exposure pulse width of 1 µs whereas the LSD 

camera had an exposure pulse width of 370 ns. These pulses would have been missed 

otherwise as we were recording every 5 µs.  

 

 
Figure 5.29 Data acquisition of laser pulse, camera exposure pulse, injection pulse and pressure analogue. 
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Chapter 6 Simultaneous External Spray Sizing 

and Nozzle Hole and Sac Imaging - 

Experimental Methodology 

 

It is important to employ a consistent methodology during experimentation to enable correct 

comparison of data. This chapter provides a description of the diesel fuels used, the details for 

the fluorescent dye and seeding, the experimental methodology followed and finally the 

calibration work necessary is described. The calibration work was done to check nozzle 

manufacturing consistency and also mass injection variation per set. The laser profile across 

the imaging zone and the fuels fluorescence profile are also provided. 

 

6.1 Fuels and Fluorescent Seeding 

 

Fuels named A, B, D and a paraffinic model fuel were provided by Shell Global Solutions. 

The data for fuels A, B and D are known however their paraffinic model fuel is a secret blend 

and is only shown in this thesis as it was used for nozzle manufacture calibration. Information 

for this fuel can be approximated from its distillates between branched and linear chains of C8 

- C26. From this data it is assumed the distillation range lies between 200 – 360 ºC. Table 6.1 

shows some of the known physical properties of the fuels. From the table it can be noted that 

Fuels A and B have the highest densities with B having the higher viscosity. Paraffinic model 

fuel and Fuel D have lower densities. Fuel D has the lowest flash point and this can be further 

seen in its d profile. From the fuels, A is a fame free fuel with no additives. Fuel B is a ‘gap’ 

fuel, that is, some fractions around the 40 - 60% distillation point are missing being referred 
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to as the gap. This is observed by the sudden rise in the distillation profile of fuel B between 

the 40 - 60% distillation points in Figure 6.1. Fuel D is kerosene based fuel. 

 

Fuel Name 
Density @ 15°C IP 365 

(kg/m3) 
Flash point IP 34    

(°C) 
Viscosity @ 40°C IP 71     

(mm2/s) 

A (Fame Free) 825 
 

2.078 
B 826.1 56.5 2.102 
D 800.3 45 1.664 

Paraffinic model fuel 780 - - 

Table 6.1 Physical properties of the fuel samples to be tested 

 

Fuels A and B have a high distillation profile and will be referred to has heavy fuels (Boiling 

range between 150 – 350 ºC). Fuel D has a low distillation profile with a boiling range 

between 150 - 210 ºC and is thus referred to as the light fuel. 

 

In order to obtain quantitative results from the fluorescence, it has to come from a single 

component. The simultaneous detection of the fluorescence from various species leads to a 

complicated dependence of the integrated signal intensity on the variables of that species such 

as species concentration, temperature, pressure and local gas composition [157]. Various 

fluorescing compounds may also differ in boiling points, diffusion and transport coefficients. 

Therefore systems are preferred where the fluorescence signal can be attributed to a single 

species for a quantitative LIF analysis. 
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Figure 6.1 Distillation curves of the fuels A, B and D. 
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To generate fluorescence, excitation laser light delivered to the spray emerging from the 

injector must be within the absorbance spectrum of the dye. The closer the excitation 

wavelength is to the peak absorption wavelength of the dye, the greater the excitation 

efficiency. Optical filters that are suitable for the emission profile of the tracer dyes are then 

used to refine the emitted fluorescence such that only desired wavelengths are passed on to 

the imaging camera. The key was matching a tracer dye with a suitable excitation source and 

emission filter to obtain optimal detection efficiency. 

 

The fluorescent tracer dye chosen was Rhodamine B (RhB) with an excitation wavelength at 

543 nm and an emission wavelength of 568 nm in Ethanol [185].  Selecting a filter near the 

emission peak of the tracer dye generally improves the sensitivity and linear range of the 

measurement. A 560 nm long pass filter is used on the fluorescence channel. A long pass 

filter passes light longer than its specified wavelength and rejects all light shorter than that 

wavelength. The reason for selection of a 560 nm long pass filter is that we would like to 

separate out the Mie scattering at 527 nm. The chemical formula of RhB is C28H30N2O3. Its 

molecular structure is shown in Figure 6.2. 

 

 

Figure 6.2 Molecular structure of RhB 

 

RhB was not readily soluble in the diesel fuels provided thus a solvent matching the mid-

distillation profiles was selected to premix it before being added to the fuels. The selection of 
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the solvents depended on its boiling point match to approximately the mid-distillation profile 

of the fuels to be tested. 1-Decanol was selected as a pre-mixer solvent for fuels A, B and 

paraffinic model fuel as it matches their distillation profiles. 1-Octanol was selected as a pre-

mixer solvent for fuel D because of its lower distillation profile. The relevant properties of the 

solvents are given Table 6.2. The solvents were purchased from Sigma-Aldrich and the data 

had been obtained from the product data sheets provided. The different solvents used may 

cause the fluorescence yields to differ and will thus be a yield calibration of the mixtures will 

be performed. 

 

Solvent 1-Decanol 1-Octanol 

Chemical Formula CH3(CH2)9OH CH3(CH2)7OH 

Initial Boiling Point (ºC) 231 196 

Density @ 25 ºC (kg/m3) 829 827 

Table 6.2 Physical properties of dye solvents obtained from Sigma Aldrich 

 

The RhB would be mixed into these solvents using an ultrasound bath to break up and 

completely dissolve it. The concentration of RhB to be used was determined during the pre-

testing period. For a 12bit image (0 - 4095 counts) the Mie image count was initially 

attenuated to give a maximum between 3200 - 3500 counts. Solvents of different dye 

concentrations were then mixed into the fuel until it matched this and then was attenuated to 

be slightly lower (about 3000 - 3200 counts) by using a neutral density filter of attenuation 

0.03.  

 

The optimum concentration of RhB in solvent was 0.6 g/L (stock solution). This was then 

mixed to a ratio of 4:1 (fuel:stock) to create a mixture with an overall dye concentration of 

120 mg/L in fuel. The fuel had overall 20% solvent and 120 mg/L dye concentration. 1 litre (± 
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2.5 ml) of solvent is measured using a measuring cylinder and poured into a bottle. 600 mg of 

RhB powder is then measured using a measuring scale with readout of 1mg and an accuracy 

of ± 0.5 mg. The dye was then poured into the solvent and then left in an ultrasound bath to 

breakup lumps of the dye powder and dissolve in the solvent for 30 - 60 minutes. The final 

solvent-dye solution is 1 litre of stock solvent solution with a dye concentration of 0.6 g/L. 

This would later be mixed to 4 litres of fuel to create a final dye concentration of 120 mg/L 

and a fuel to solvent ratio of 4:1. Four out of the five litres would be used for experimental 

analysis. The remaining one litre was used to pre-soak the fuel filters so that it absorbs and 

discolours RhB dye to saturation and not further absorbing any dye from the fuel-solvent 

mixture for the analysis. 

 

6.2 Experimental Methodology 

 

It was important for the experimental analysis and to be true to the results that there was 

minimum fuel to fuel change contamination. The steps here show how this was minimised by 

applying the correct procedures of filling, emptying and flushing the rig from fuel to fuel 

changes. 

 

 Fuel fill and empty 6.2.1

 

The system was filled in from the tank mouth. There were three empty points; one under the 

filter and the second was the injector return. The third was controlled by a 3 way valve which 

fed the fuel from the high pressure pump and common rail return either into the tank or to an 

external empty (controlled by the valve). This was vital when flushing out the high pressure 

pump and common rail containing previous fuel. The fuel filter capacity was 1.1 litres, the 
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common rail 15 ml and the high pressure pump case volume 150 ml. The full capacity of the 

tank was 2.5 litres. As there was a heat exchanger inside the tank a minimum level was set 

just for fuel to be filled just above the heat exchanger. This volume is approximately 1.1 litres. 

It was estimated that the un-drainable piping/components in the rig held approximately 300 

ml. This was made up of 150 ml in the high pressure pump, 15ml in the rail and 

approximately 100 ml in the piping. The piping volume has been exaggerated by 50%. 

 

For filling procedures, the 3-way valve was set to empty externally to a large measuring 

cylinder. The fuel filter was then changed to either the metal filter for a flush or a new filter 

for analytical fuel. 4 litres of analytical/flush fuel would be filled into the rig and the initial 

mixture of previous and current fuel would empty out and not back into the tank by running 

the feed pump. Air was released from the system by switching the control valve to return the 

low pressure feed to empty externally rather than go into the high pressure pump. The high 

pressure pump was then switched on and the pump and rail flushed to empty externally to a 

volume of 500 ml. This was done by constantly charging and discharging the rail to empty 

externally through the 3 way valve. Once approximately 500 ml of fuel was pumped out from 

this valve, it was switched back to empty into the tank. 

 

For emptying procedures, the fuel would be drained from the empty valve under the filter. 

This would drain from; the tank, the filter, the piping into the high pressure pump, and the 

circulation piping. The injector return line was also emptied. For flush fuels, a sample was 

taken and the rest discarded as waste. The analytical fuels emptied were marked and stored 

away. 
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 Rig flush 6.2.2

 

The maximum contamination was estimated to be 300 ml. The rig would first be flushed with 

4.2 L of unmixed fuel. The unmixed fuel would be the next analytical fuel i.e. if analytical 

fuel is Fuel A, an unmixed Fuel A would be used to flush out the previous fuel in the rig. The 

maximum contamination in the flush sample would be (300/4000 ml) 7.5%. Four litres of 

analytical fuel is then filled into the rig, as the rig filling procedure above. The maximum 

contamination in the analytical fuel of previous fuels is now (7.5% x 300 ml) 21 ml in 3.8 L 

of fuel which is 0.55%. 

 

Once the fill procedure was complete as 6.2.1 above, the high pressure pump would circulate 

the rig for 1hour constantly while charging and discharging the rail manually to ensure a 

thorough mix of the fuel in the rig.  

 

In order to ensure the fuel being injected was the analytical/current flush fuel a series of 7500 

injections were carried out with injection duration of 5ms. Injector return fuel was collected 

throughout the injection sequence but only kept as samples for the final 2500 injections. This 

was observed closely to match the initial fuel poured into the rig (whether seeded or un-

seeded). This process was carried out for both the flush and analytical fuels. The injections 

would be carried out with the injection spray exhaust switched on.  

 

Injection pressure 

(bar) 

Injection duration 

(ms) 

Injection Skip rate 

(count) 

Injector-trigger delay 

(µs) 

Injections per cycle 

(count) 

150 5.0 8 (3Hz) 400 150 

Table 6.3 Variables setting during flush 
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 Analysis procedure 6.2.3

 

Once the previous fuel was flushed out and the next/new analytical solution mixture prepared 

and filled into the high pressure rig, its analysis would commence. A brand new filter element 

and acrylic injector nozzle tip were employed for each fuel set. For the Shell analysis 

measurements for each fuel were conducted at an injection pressure of 350 and 250 bar. The 

dataset of the later and a comparison between the two pressure sets will form part of a paper 

which will be published separately. This thesis will dwell on the 350 bar injection pressure 

fuel analysis. 

 

The first step was setting up the injector nozzle holes such that the spray from the hole under 

investigation is in line with the laser sheet. This was done by lightly screwing on the 0.136 

mm drill bits with a shank into the hole. Once placed on the injector body and lightly held in 

place by the compression system, the nozzle could be rotated by means of a mini spanner 

specifically designed to fit the along the rectangular cross section of the tip. It would then be 

rotated as required and aligned with the laser sheet. The position of the laser sheet remained 

untouched. Once the drill bit was in place, the laser was run a very low power to check the 

alignment with some photo paper placed in the path past the bit to note the position of the bit 

relative to the laser. The drill bit inserted would model the spray injected. When aligned the 

laser sheet illuminating the paper would look have a very small bright green section and then 

a dark section covered shaded by the drill bit and then another small green section as pictured 

in Figure 6.3. This figure is only an animation of what this looked like unfortunately a camera 

photograph could not be taken. The alignment of the spray to the laser sheet would later be 

tested by imaging a few pilot injections. 
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 Figure 6.3 Aligned drill bit in nozzle to laser sheet 

 

While the drill bit was still in place, the INF and LSD camera focus were checked by turning 

on the white light. This was just a check as it turned out no change was required for all 

analysis from what it was refined to and set during pre-testing. The drill bit was then taken off 

the nozzle. The fused silica cone well aligned on the tip, it was compressed. The air pressure 

required to seal as discussed previously was regulated to 3.5 bar. Once this pressure was set 

this was not changed until the end of testing. Changing this pressure would cause the cone to 

misalign on the injector nozzle and thus having to further recalibrate the camera and obtain 

new background images. 

 

The injection control unit settings were adjusted as required. For experimental analysis, the 

number of injection would be set to 100 injections for a laser only analysis and to 50 

injections for a laser plus white light analysis. The trigger-injection delay set to 500 µs and 

the revolutions skip rate set to 8. The synchronisation transfer units and the pulse generator 

were switched on. The cameras then synced with the 10 kHz sync pulse. Both cameras were 

set to their image size and exposure settings (Table 6.4). The lens F-stop was then full closed, 

the lens covered and calibrated for zero light. Laser pulse is then aligned to the LSD camera 

exposure timing by turning the laser onto full power, noting the laser appear and disappear 

delays by adjusting the manual delay on the pulse generator. The laser appear/disappear could 

Laser sheet hat like 

effect when aligned 

Shadow created by 

the drill bit. 
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be seen on the LSD camera. An average of these values obtained and laser fire-LSD camera 

exposure signal adjusted to the average value on the pulse generator. This ensured the laser 

pulse and the LSD camera exposure were synced.  

 

Software Settings INF camera LSD Camera 

Exposure 1/1000000 1/2700000 

Frame size 768 x 768 1024 x 512 

Camera lens setting 85mm f 2 85mm f 1.4 

Sync in Sync pulse from control box Delayed e sync from INF camera 

Sync out delay 30µs - 

Trigger out To LSD camera - 

Exposure out To NI acquisition To NI acquisition 

Table 6.4 Camera inputs and software settings 

 

Injection 

pressure (bar) 

Injection 

duration (ms) 

Injection Skip rate 

(count) 

Injector-trigger 

delay (µs) 

Injections per cycle (count) 

350 4.0 8 (3Hz) 500 
100 (Laser only), 

50 x 2 (Laser + white light) 

Table 6.5 Pressure and injector control input  

 

Laser only background obtained next for the LSD camera with the laser on full power. This 

was followed by laser + white light backgrounds for both INF and LSD cameras with both the 

laser and white light on full power setting. 

 

A zero pressure voltage reading was obtained for the pressure transducer via the NI 

acquisition system. This was in the range of 500 mv ± 50mv. The pressure setting for 350 bar 

injection pressure was calculated taking into account the sensitivity of the transducer which 

was 1.189 mV/BAR. The injection pressure was regulated to this value.  
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To check everything was up to speed a couple of pilot injections were carried out to check the 

spray-laser sheet alignment and focus on the LSD camera and the internal flow focus on the 

INF camera. During the injection process, injection spray exhaust suction was switched on. 

Data would be obtained for 100 injections at 350 bar, 4.0 ms for the laser only condition, with 

the corresponding inlet temperature to the high pressure pump. The images saved, and then 

data obtained in two sets of 50 injections at 350 bar, 4.0 ms for the laser + white light 

condition. The fuel inlet temperature to the high pressure pump was noted throughout the 

injections for both conditions. This would conclude the data and image acquisition for the 

analysis for a brand new nozzle. 

 

The injector nozzle used in the previous fuel analysis was then placed in and aligned. 

Injections were carried out at 350 bar 4.0 ms for laser only and laser + white light with 50 

injections per conditions. As an example, the nozzle used in the current fuel would be used in 

the next fuel as a calibration nozzle. This was carried out so that the effect of variations in 

nozzle profile could be minimised between fuels analysed. The nozzle manufacture and 

selection will later be calibrated. 

 

Fuel name B A D Paraffinic model fuel 

Nozzle Nozzle B Nozzle E Nozzle P Nozzle J 

Calibration nozzle Nozzle F Nozzle B Nozzle K Nozzle x 

Table 6.6 Fuel chronology and nozzle used. 

 

Table 6.6 shows the fuel analysis order and the corresponding new and previous fuel nozzles 

used. Note that the exact order is not as above as the order only shows the fuels with 

publishable data, there were 4 other classified fuels tested. Sometimes data could not be 

obtained for the internal nozzle flow for the calibration nozzle as it burst during the laser only 
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testing. The calibration nozzles here are only used for viewing purposes and final checks to 

look at the spray profile with a nozzle used on the previous fuel and a new fuel and to check 

whether they were comparable. Manufacturing consistency calibrations on the sprays were 

carried out using four new nozzles using the paraffinic model fuel and the results on the spray 

analysis will be discussed later. 

 

6.3 Calibration 

 

 Laser profile 6.3.1

 

In order to measure the laser profile a high concentration fuel-RhB solution was diluted with 

more fuel in order to prevent the laser power from attenuating highly in the imaging region 

and have enough seeds to create fluorescence but not to over-seed so that the laser power is 

absorbed in the mixture over a shorter length. The solution of paraffinic fuel mixture with 

rhodamine B in solution with decanol was diluted with additional diesel fuel to create a 56 ml 

overall mixture of paraffinic fuel with 4% Decanol and 24 mg/L rhodamine B.  

 

The mixture was placed in a 2 cm x 2 cm x 45 cm laser profile cuvette. The cuvette was 

placed in the laser path in the location approximately where the injections would be captured. 

The laser was run at full power, 10 kHz to capture approximately 3500 images varying with 

time. The images were averaged to produce a laser Gaussian profile. Figure 6.4 shows the 

Gaussian nature of the laser sheet profile captured with the laser entering from the right hand 

side at an angle of 25 degrees from the horizontal (similarly to the spray imaging).  
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Figure 6.4 Mean laser profile at 10 kHz, 1mJ/pulse laser power. 

 

This profile has been produced here as a completion for the results obtained, however it will 

not be used in the basis of the worked produced here. The results shown here are on the basis 

of the dropsizing which shows a LIF to MIE ratio. Correcting both the LIF and MIE images 

with the laser profile is essentially causing itself to divide out and thus there is no real need 

for the correction, both the LIF and Mie image will be produced from the same profile and 

thus dividing them outright without the laser profile correction does not change the final 

outcome. 

 

 Fuel fluorescence yield profile 6.3.2

 

The mixture calibration is important for the basis of this work, as the fluorescence yield of a 

fluorophore changes depending on the solution they are in. The work here required 3 sets of 

mixture calibrations, i.e. fluorophore-decanol mixture in diesel FDD, fluorophore octanol 

mixture in light diesel FOLD and fluorophore- decanol mixture in purely paraffinic fuel FDP. 

A similar set up to the laser profile was used however; the measurements were obtained at 

Effect of 
laser at 
cuvette 
entry 
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low laser power as the original mixtures used during the experiment and collected from the 

injector return were used during this procedure. The sheet forming optics were taken out and 

thus the laser at the imaging plane was no longer a sheet. After the measurements were done 

per set, the laser power was measured using a power meter to be able to calibrate the final 

yield profile against laser power.  

 

Mixtures were filled into the cuvette and placed in the line of the laser-imaging path and 

similar place where the sprays were imaged, a low power laser sheet produced and images of 

the fluorescence yield obtained at lens f-stop of f16. The f stop was increased to reduce the 

aperture, as there as high amounts of fluorescence scattering at the lower f stop and this was 

producing images which were saturating in pixel intensity. An average of a 1000 images 

obtained per set was carried out. The images were then compared to each other with the RhB 

mixture in diesel Fuel A as the reference.  The yield images per fuel set had small amounts of 

translation which was corrected before being divided by the fluorescence yield image of fuel 

A.  

 

 
Figure 6.5 Fluorescence yield observed in FDD, FOLD and FDP fuels (used during experimental analysis. 

 

The images captured showed high fluorescence scattering at the entry to the cuvette however 

this decreased further down. For this reason a high intensity region was selected for Fuel A-

Laser beam 
entry into 
the fuel 
filled cuvette 
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RHB mixture, and the same region was selected for the rest of the translated yield images and 

an average intensity in this region obtained for all the sets. These average ratios would be 

compared between the fuels and a calibration constant calculated. FOLD and FDD yields 

were obtained at the same laser power at 360 mw, FDP yield was obtained at a laser power of 

340 mw and it was thus adjusted linearly to match a corresponding yield at 360 mw. FDD 

mixtures thus required no calibration. The FOLD and FDP fuels fluorescence images were 

calibrated with ratios found in Table 6.7. 

 

 FOLD/FDD FDP/FDD 
Calibration ratio (power corrected) 1.04 1.7 

Table 6.7 Fluorescence yield calibration ratios for the fluorescence yield of Rhodamine B in different mixtures. 

 

 Nozzle manufacture consistency calibration 6.3.3

 

Four new nozzles were used for the purpose of the manufacturing calibration to check nozzle 

manufacture consistency and how it affects the external spray sizing. The validation was done 

to check whether there was variation in injections between different nozzles used as a result of 

manufacture. A new nozzle was used for every set of fuels and could not be re-used for every 

fuel case as a result of nozzle wear. A nozzle manufacture consistency check was carried out 

to observe the variation and repeatability of the sprays from each new nozzle manufactured.  

Previously the nozzles had undergone a selection procedure; however their performance and 

repeatability factors of the different nozzles have not been tested as certain aspects, for 

example the nozzle hole entry sharpness and  hole roughness, cannot be measured. Thus a 

calibration was performed to check how 4 new nozzles, which had passed the previous stage 

of selection, performed using the same fuel under the same injection conditions. 
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Four sets of nozzles were used with a single set of fuel at 350 bar to analyse the effects of 

manufacture. Henceforth these will be referred to as cases 1-4, referring to the nozzles used. 

The nozzles were brand new, polished on the sides and checked for hole accuracy. For the 

purpose of calibration and wear, and because a calibration was also required for the internal 

nozzle flow, the tests were carried out with laser and white light conditions, i.e. both laser + 

white light were on but the laser was adjusted relative to its acquiring camera post white light 

camera acquisition, so that there was no interference from the laser to the internal nozzle 

acquisition. A full analysis was carried out as described in 6.2.3.  50 injections were carried 

out for each case. 

 

The external spray images obtained were analysed and Sauter mean diameter distributions 

obtained for each case, time resolved over the 50 injections. For SMD distributions between 

intensity of 0 and 1.5, frequencies over 100 SMD bins (between 0-1.5 SMD) were obtained 

which showed a frequency of the SMD in each bin size. A time resolved intensity frequency 

was obtained over the number of injections. For example over the hundred injections 

containing 100 frames per injection, the bin number frequencies obtained in each set of 

frames over the hundred injections was cumulatively summed. The frequencies obtained per 

bin in frame 1 injection 1, were added to frame 1 injection2, frame 1 injection 3 and so on. 

Each bin size frequency was then divided by the sum of the frequencies over 100 bins per 

frame to compensate for the overall spray sizing and to enable comparison between cases. A 

time resolved intensity frequency distribution was obtained per frame over the number of 

injections which was then divided by the total sum of frequencies in each frame. The results 

were then plot for time steps 2.1 - 2.4 ms (frames 25 - 29) at the start of injection, 3.9 – 4.5 ms 

(frames 43 - 50) at peak lift condition and 5.1 – 5.5 ms (frames 56 - 60) at the end of 

injection.  
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Then for each bin size from 1 – 100, the average was obtained per bin over the four nozzles, 

i.e. an average of bin 1 to 100 in nozzles 1-4 per frame. These were then plot with their 

standard deviation. This result would show how the injections deferred between the four 

different nozzles used. Total frequency sum per frame related time resolved intensity 

frequency for frame 49 (4.5ms) can be observed in Figure 6.6. 

 

 
Figure 6.6 Total cumulative frequency relative time resolved intensity frequency distributions of SMD obtained at the 

peak needle lift at 4.4 ms for cases 1 – 4 

 

The corresponding mean and standard deviation chart can be observed in Figure 6.7 below. 

 
Figure 6.7 Mean and standard deviation analysis on Figure 6.6 
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The full range of charts can be observed in section Appendix C. From Figure 6.6 it can be 

denoted that the peaks occurring over the cases are in very close bin proximity and the mean 

and standard deviation images obtained show the variation of the sprays injected from 

different nozzles from their combined mean. Figure 6.7 shows a mean and standard deviation 

calculated using data from all cases at each time step per bin intensity i.e. the mean and 

standard deviation at each time step at individual bin intensities of the combined frequencies 

of all the cases. The same was carried out for the remaining time steps. This analysis would 

produce a mean distribution of all four cases. The standard deviation graph shows a sudden 

drop. This occurs at the point where the frequencies in all for cases are matching of closely 

their mean frequency.  

 
Frame Time (ms) Maximum Standard deviation 

26 2.1 0.003962168 

27 2.2 0.004059841 

28 2.3 0.00456388 

29 2.4 0.004976035 

30 2.5 0.00508287 

43 3.8 0.003570223 

44 3.9 0.003773651 

45 4 0.003202199 

46 4.1 0.003460236 

47 4.2 0.003648961 

48 4.3 0.003598789 

49 4.4 0.002896895 

50 4.5 0.003672651 

56 5.1 0.003754758 

57 5.2 0.003878625 

58 5.3 0.003120713 

59 5.4 0.002697834 

60 5.5 0.00336565 

Table 6.8 Maximum standard deviation values obtained at the beginning, maximum and end sections of needle lift. 

 

Table 6.8 shows the maximum standard deviations obtained per time resolved intensity 

frequency distribution at various points in the injection cycle i.e. start of injection (26-30 ms), 

peak lift(43-50 ms) and end of injection (56-60ms). The time resolved intensity frequency 
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distributions as shown in the appendix will be compared to the ones obtained from the 

experimental analysis of fuels and thus a conclusion obtained of whether the changes 

occurring in sprays are as a result of the nozzle manufacture inconsistency or from the 

changes in distillation properties of the fuels. If the time resolved intensity frequency 

distributions obtained from the nozzle consistency data are matching or are relatively similar 

to the time resolved intensity frequency distributions obtained from the fuels analysis the 

conclusion will lead to the fact that the changes in fuel are not causing significant changes in 

the fuel spray. However if they are significantly different this would lead to the conclusion 

that the fuels are causing these changes in spray Sauter mean diameter.  

 

 
Figure 6.8 Time resolved mean pressure distributions for cases 1-4 over the 50 injections. 

 

Figure 6.8 shows the pressure distributions for the case 1 – 4 over 50 injections at 350 bar. 

The pressure distributions were a maximum of ± 5 bar of the average of the four cases at each 

time step. 
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 Injected fuel mass measurement and consistency 6.3.4

 

With the current setup of the injector and nozzle requiring compression, it is difficult to 

capture/collect all of the spray from all 6 holes and obtain its mass. Even if a method 

established, each test would require a brand new nozzle to be able to consistently match mass 

injected between fuels as mass injected from nozzles having gone through different number of 

injections would be inconsistent due to the short life time of the nozzles at high pressures. 

Furthermore the manufacture of the nozzles was very expensive and time strenuous.  

 

Replacing the modified injector nozzle body for the original non modified full metal body 

would make it much easier to measure the fuel mass injected as the need for the compression 

ram, cone and compression acrylic is no more. A lot more space is created to be able to fit a 

small bottle onto the injector and collect the spray. However because of modifications on the 

nozzle angle and the hole length from the original this would not replicate the correct mass 

injected. If a way to measure the mass injected using the acrylic nozzle was determined, a few 

tests could be run with two different fuels and compared to the mass injected from the full 

metal body injector for the same two fuels. A constant factor could be obtained by comparing 

the mass injected from the acrylic nozzle and the mass injected by the full metal body nozzle. 

This constant factor could be used to estimate the mass injected by the acrylic nozzle already 

having the mass injected by the metal nozzle. 

 



 

 

260 
 

 
Figure 6.9 Drawbacks to spray capture with the modified nozzle body setup 

 

Collecting all the liquid injected would require the collector being compressed together with 

the cone and nozzle onto the injector body (placed between the cone and compression cube). 

Also it would have to be closed off so that none of the fuel being injected would be lost. It 

should also be able to sustain the momentum of the spray and not rupture. A rigid body like a 

bottle if placed, but one which is small enough and has a flat base would have to be custom 

manufactured. This would be quite expensive plus it would be extremely difficult to contain 

the liquid when removing the bottle after the injections. Careful thought lead to the discovery 

of another use for a condom. It fit the specifications perfectly and 2 or 3 could be combined 

for reinforcement. They are highly elastic and would stretch to take the impact of the spray. 

They could be wrapped around the injector and the mouth tied so no spray escaped.  

 

 

 

 

Hindrance caused by air 

ram, compression fork, 

compression cube and cone 

for the placement of the 

collector. 

Collector has to be 
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Figure 6.10 Soda bottle cap on the injector body 

Fuels 

 

Density @ 15oC 

Fuel only using IP 

365 

(kg/m3) 

Estimated Density 

Fuel +20% 

Decanol/Octanol 

(kg/m3) 

Estimated Density 

Fuel + 20% 

Decanol/Octanol+120mg/l RhB 

(kg/m3) 

A 825 825.94 826.06 

B 826.1 826.82 826.94 

D 800.3 805.64 805.76 

Paraffinic model fuel 780 789.94 790.06 

Table 6.9 Fuel-Solvent mixture density (fuel only, fuel plus solvent, analytical mixture) 

 

Four new nozzle tips manufactured in the 3rd batch would be used to measure the mass 

injected for two different fuels (2 new nozzles per fuel) and then the nozzle body replaced by 

the non-modified body and mass injected measured. The two would then be compared and a 

constant factor obtained to be able to estimate the mass injected from the modified nozzle tip 

from the injected mass measured of the non-modified nozzle body. The mass injected from 

the rest of the fuels would be measured using the non-modified injector nozzle body. The 

non-modified nozzle body is a fully metal nozzle with no modifications made to adapt the 

acrylic nozzle. Table 6.9 shows the estimated densities of the Fuel-solvent mixtures with and 

without RhB.  

 

  Injected fuel mass measurement using an acrylic nozzle (modified 6.3.4.1

injector) 

A pre-weighed soda bottle cap was cut to fit 

over the modified nozzle body. This would 

reduce the impact of the momentum of the 

spray onto the condom walls. Pre weighed 

unrolled condoms with the cone were held onto 
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the cube and the air ram pressurised minimally to be able to move the cube, cone and 

condoms onto the tip. The cone was aligned so that its base fit concentrically with the base of 

the pre-weighed acrylic nozzle tip. The condoms were then unwrapped to fit around the cone, 

minisac tip and soda bottle cap. They were fully unwrapped and tied at the mouth with a small 

breathing pipe. The breathing pipe would allow air in the setup to escape once liquid from the 

injection filled up the space. No spray escaped. The condoms were set to form a sac like 

feature on the bottom surface so that the liquid condensed from the spray would collect here. 

The injections were carried out at high pressure pump inlet temperatures of 24-29ºC.  The air 

ram was set to compress and release just before the injections were started and as soon as they 

were complete to prevent prolonged compression rupturing the condoms. 

 

Injection 

pressure (bar) 

Injection 

duration (ms) 

Injection Skip rate 

(count) 

Injector-trigger 

delay (µs) 

Injections per cycle (count) 

350 4.0 8 (3Hz) 500 
100 (Paraffinic model fuel) 

50  (Fuel A) 

Table 6.10 Pressure and control box settings for injected mass measurements 

 

Injector control box and pressure settings were set as seen in Table 6.10 to replicate the spray 

analysis. The pressure throughout the injections was recorded using NI software for 6.0ms 

duration on receipt of every injection pulse, as done during the spray analysis. The exhaust 

extraction was turned on in case of condom rupture. Both Fuels used for this test had been 

mixed with 20% Solvent and 120mg/l RhB. 
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Figure 6.11 Modified nozzle injector-condom injected mass collection setup 

 

Mass injected per 100 injections-Nozzle viii (g) 5.204 

Mass injected for 100 injections-Nozzle ix (g) 5.187 

Total Mass for 200 injections (g) 10.391 

Mass per injection (mg) 51.955 

Table 6.11 Mass injected for analytical Paraffinic model fuel using the acrylic nozzle (modified injector) 

 

The vapour-liquid mixture was allowed to settle for 15 minutes before being taken off the 

injector. The condom containing the minisac nozzle tip, cone and bottle cap were taken off 

and weighed. The mass injected was obtained by subtracting this mass by the initial empty 

mass of the components. The measurements were obtained for analytical paraffinic model fuel 

and Fuel A. Two nozzles (viii and ix) were used during the paraffinic model fuel tests. Each 

nozzle was wrapped around with 2 condoms and 100 injections carried out. Table 6.11 shows 

the results per acrylic nozzle and the overall mass per injection from 6 holes. Figure 6.12 

shows the similarity of the time resolved injection pressure profiles of both nozzle used. 

2-3 condoms Condom placed 
between cone and 

cube 
 

Injected fuel 
collected 

Vent pipe 
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Figure 6.12 Time resolved average injection pressure profile for acrylic nozzle viii and ix used in injected mass 

measurements of paraffinic model fuel - solvent mixture 
 

When testing Fuel A with a 2 condom combination wrapping the nozzle, it seemed to be 

bursting for both 50 and 100 injections per set and thus 3 condom combinations were used 

and the test carried out in sets of 50 injections as seen in Table 6.12. There may be two 

reasons for these: 

1. Either the fuel is reacting with the condoms and causing weakness at points of impact 

2. Or the heavier Fuel A has a larger spray momentum due to its higher density and this 

is causing the rupture 

 

Mass injected per 50 injections - Nozzle iv (g) 
Set 1   2.781 
Set 2   2.802 

Mass injected per 50 injections - Nozzle i (g) 
Set 1   2.788 
Set 2   2.801 

Total Mass for 200 injections (g) 11.172 

Mass per injection (mg) 55.86 

Table 6.12 Mass injected for analytical Fuel A using the acrylic nozzle (modified injector) 

 

During the mass injected tests for Fuel A using the acrylic nozzles it is seen that the mass 

injected increases per nozzle set as the number of high pressure injections carried out using 
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that nozzle increases. For both nozzles iv and i, the mass for the first 50 injections was lower 

than the second 50 injections by on average 0.34 mg/injection (0.017g over 50 injections). 

This may be due to the amount surface roughness in the holes caused during the drilling 

process during manufacture decreasing as a result of the cavitating flow. The in-hole surface 

friction increases cavitation in the holes and the cavitation occurring in turn choked the flow 

resulting in a decrease in injected mass. Once this surfaces are smoothed out by the in-hole 

cavitating flow occurring during the injections the mass injected increases by approximately 

0.6% per set of 50 injections. The decreased cavitation caused by the wall surfaces 

smoothening is also accompanied by a very small decrease in the time resolved injection 

pressure profile as seen in Figure 6.12. 

 

 
Figure 6.13 Time resolved average injection pressure profile for acrylic nozzle iv and i used in injected mass 

measurements of Fuel A - solvent mixture containing RhB 

 

 The hole smoothing is causing the surface are of the holes to increase and thus the pressure to 

decrease especially seen during high needle lift. This observation holds for both nozzles used 

for this test. During testing, to minimise the effects of this phenomena on the results, the total 
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number of injections were kept to a maximum of 200 injections per nozzle. This phenomenon 

would occur during testing however the effects over time would be comparable between 

nozzles (fuels tested) as observed here. New nozzles were used for each test and at the same 

injection pressure they would degrade similarly and thus the results obtained using a new 

nozzle for each fuel would be comparable. Figure 6.13 shows the time resolved pressure 

profile for the injections carried out using fuel A.  

 

The case is also replicated in the paraffinic model fuel tests. Nozzle viii underwent 50 more 

injections at the beginning due to an error of not setting the correct pressure on the air ram. 

Nozzle viii went through initial 50 injections where the injector had not been sealed correctly. 

A further 100 injections were done after resetting with new set of condoms and the mass 

measured. Nozzle ix underwent 100 injections straight. This may be the reason for the 0.017g 

difference between the two sets. If each set of 50 injections as seen with the mass injected 

results of Fuel A injects 0.017g more, this may be occurring at the start of the paraffinic 

model fuel study where the ram was not pressurised correctly and thus the difference over the 

2 nozzles as seen in Table 6.11. There was not any significant injection pressure variation 

between these nozzle tests as seen in Figure 6.12 and thus this difference cannot be a result of 

injection pressure variations.  It is not known what the relationship is with further increments 

with 50 injections. This result is consistent with the difference in the first two sets of 50 

injections. 

 

 

 

 



 

 

267 
 

 Injected fuel mass using a non-modified injector 6.3.4.2

Fuels A B D Paraffinic model 

fuel 

Viscosity - Fuel only (mm2/s) 2.078 2.102 1.664  

Density @ 15ºC [IP 365] (kg/m3) 825 826.1 800.3 780 

Density of Fuel solvent mixture (kg/m3) 826.06 

(+120mg/l 

RhB) 

826.82 805.64 789.94 

Mass injected per 100 injections- Set1  

(g)  

7.019 6.939 7.127 6.688 

Mass injected per 100 injections-Set2  

(g) 

7.017 6.939 7.127 6.696 

Total Mass (g) 14.036 13.878 14.254 13.384 

Mass per injection (mg) 70.18 69.39 71.27 66.92 

Volume per 200 injections (ml) 16.992 16.785 17.693 16.943 

Volume per injection (ml) 0.08496 0.08392 0.08846 0.08472 

Table 6.13 Fuel injected mass using non modified nozzle 

 

The modified nozzle was replaced by the original non-modified nozzle and injections carried 

out for all the fuels with a modified bottle in place to capture all the spray. The injections 

were carried out in two sets of 100 injections for all the fuels and mass injected weighed, as 

shown in Table 6.13. As the rig contained Fuel A-Solvent mixture containing 20% Decanol 

and 120mg/L RhB, this was carried out first and thus it is the only mixture to contain RhB for 

these measurements. The rest of the fuel solutions were mixed with 20% solvent as previously 

done during the LSD tests but without RhB. From the Table 6.13, Fuel D had the highest 

injected mass whereas paraffinic model fuel had the lowest. In comparison, all fuels injected 

approximately 17ml over the 200 injections. 
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 Injected fuel mass consistency 6.3.4.3

A consistency check was performed on the non- modified injector nozzle to test its injected 

mass consistency over a number of sets. Fuel A mixed with 20% solvent containing 0.6 g/l 

RhB was used as the test mixture.  Five sets of 100 injections were carried out at 350 bar 

pressure and 4.0 ms injection duration and the injected mass calculated for each set. Injected 

mass was calculated by subtracting the empty bottle mass from its containing 100 injections. 

The results from the five sets are shown in Table 6.14. 

 

Injection set 1 2 3 4 5 

Mass injected per 100 injections (g) 7.018 7.017 7.018 7.018 7.022 

Mass injected per injection (mg) 0.07018 0.07017 0.07018 0.07018 0.07022 

Average fuel per injection  (mg) 0.070186 

Consistency per injection (%) -0.00855 -0.0228 -0.00855 -0.00855 0.0484 

Table 6.14 Injected mass consistency of Fuel A mixture using the non-modified injector. 

 

The results show the non-modified nozzle had an injection consistency of ± 0.05% per 

injection which in turn would give rise to a maximum difference in 0.04 µg per injection over 

five sets of 100 injections at 350 bar injection pressure and 4.0 ms injection duration. 

Comparing these results with Figure 6.14, it is seen that the results from set 5 had a lower 

injection pressure whereas set 2 had a slightly higher average injection pressure over the 100 

injections. Increase in pressure causes an increase in cavitation and this may choke the mass 

flow in the nozzles thus injecting a lower mass. Thus at constant pressures as seen in sets 1, 3 

and 4, the non-modified injector produced a consistent mass injection.  
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Figure 6.14 Average time resolved injection pressures acquired during Fuel A injected mass consistency 

measurements using the non-modified injector nozzle 

 

The consistency of the mass injected using the modified injector nozzle with the acrylic tip 

end has been covered above in 6.3.4.1. Table 6.11 and Table 6.12 show the consistency of 

two different nozzles. For the acrylic nozzles it is not possible to obtain an injection 

consistency of a longer period of time however the mass injected can be calibrated for various 

nozzles. The nozzle holes in the acrylic nozzles erode as a result of cavitation as discussed 

above and thus each set of injections will have a slightly higher injected mass. It is important 

to keep the nozzle usage within its limits to prevent error induced as a result of a change in 

nozzle profile. For this reason injections at 350 bar injection pressure were carried out first. 

Fuels could thus be matched due to the nozzles having to go through a similar wear. Table 

6.14 shows that for each fuel, the mass injected for each nozzle per set of injections is similar. 
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 Imaging errors (signal to noise ratio) on spray images 6.3.5

 

For any electronic measuring system, the signal-to-noise ratio (SNR) characterizes the quality 

of a measurement and determines the ultimate performance of the system. With a CCD 

(charge-coupled device) image sensor, the SNR value specifically represents the ratio of the 

measured light signal to the combined noise, which consists of undesirable signal components 

arising in the electronic system, and inherent natural variation of the incident photon flux. 

Because a CCD sensor collects charge over an array of discrete physical locations, the signal-

to-noise ratio may be thought of as the relative signal magnitude, compared to the 

measurement uncertainty, on a per-pixel basis. Photon noise (sometimes referred to as shot 

noise) results from the inherent statistical variation in the arrival rate of photons incident on 

the CCD. Photoelectrons generated within the semiconductor device constitute the signal, the 

magnitude of which is perturbed by fluctuations that follow the Poisson statistical distribution 

of photons incident on the CCD at a given location. The photon noise, or measurement 

variation, is therefore equivalent to the square-root of the signal. 

 

                                 
Equation 6.1 

 

where sig is mean of the background-subtracted intensity and STDsignal is the standard 

deviation, or noise, contained by the background subtracted intensities.  

 

In order to calculate the SNR a highest intensity region of 25 x 25 pixels of ten consecutive 

images from the laser profile images were selected. The mean and standard deviation of the 



 

 

271 
 

intensity in that region was determined and the SNR calculated using Equation 6.1 for the 

selected section in the 10 images. 

 

 
Figure 6.15 Region selected from the laser profile images sequence for SNR ratio calculation 

 

A key feature of Poisson statistics is that the standard deviation is equal to the square-root of 

the number of individual particles. That is, if there are P particles in each pixel, the mean is 

equal to P and the standard deviation is equal to √P. This makes the signal-to-noise ratio equal 

to P/√P, or simply, √P. Thus the number of photons can be calculated as;  

 

     √                               
Equation 6.2 

 
 

Image 

number 1 2 3 4 5 6 7 8 9 10 

Mean 1174.62 1201.53 1172.41 1197.78 1181.03 1193.39 1172.22 1187.07 1184.97 1169.65 

STD 17.58 17.98 17.01 18.45 18.45 17.95 18.37 16.81 17.66 17.86 

SNR 66.80 66.84 68.91 64.93 64.00 66.47 63.81 70.63 67.10 65.50 

Photons 4461.91 4467.21 4748.23 4215.38 4096.53 4417.91 4071.15 4989.27 4502.07 4290.15 

Table 6.15 Mean STD, SNR and Photons count for the base analysis of the laser profile 
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Table 6.15 shows the results from the base analysis of the laser profile. The results are from 

each image where the mean and standard deviation were calculated over the 25 x 25 pixels 

per image. Table 6.16 shows the mean and standard deviation compiled over the 10 images 

with data points 25 x 25 x 10. 

Mean 1183.468 

STD 20.83226 

SNR 56.80937 

Photons 3227.305 

Table 6.16 The overall Mean STD, SNR and photon count from the 25 x 25 pixels over 10 images 

 

The laser profile was carried out with a diluted solution of paraffinic fuel-decanol mixture and 

thus will require adjustment to match the experimental concentration of dye. The number of 

photons can be adjusted linearly to match the experimental concentration of dye in fuel by a 

constant factor i.e. (120 mg/l)/(0.024mg/l) = 5000 and a SNR ratio recalculated. A linear 

adjustment can also be made for the fluorescence yield in different solutions i.e. decanol-fuel 

and octanol-fuel mixtures. The current calculation was for a FDP mixture. Table 6.7 shows 

the conversion factors from a FDD to a FOLD and FDP mixture. The factor to convert from a 

FDP to a FDD is 1/1.7. The photons and the corresponding SNR are then recalculated. The 

photons from FDD are then used to calculate the photons in the FOLD mixture and followed 

by the SNR. Noise could be determined by determining the inverse of the SNR. 

 

Table 6.17 show the photons, SNR and Noise over the 10 images corrected for the fuel type 

FDD. 
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DECANOL-FUEL Photons SNR Noise 

1 13123266 3622.605 0.000276 

2 13138847 3624.755 0.000276 

3 13965373 3737.027 0.000268 

4 12398191 3521.106 0.000284 

5 12048605 3471.11 0.000288 

6 12993841 3604.697 0.000277 

7 11973972 3460.343 0.000289 

8 14674314 3830.707 0.000261 

9 13241396 3638.873 0.000275 

10 12618085 3552.194 0.000282 

Overall 9492072 3080.921 0.000325 

Table 6.17 Photons, Signal to noise ratio and Noise for a FDD mixture 

 

OCTANOL-FUEL Photons SNR Noise 

1 13648197 3694.35 0.000271 

2 13664401 3696.54 0.000271 

3 14523988 3811.04 0.000262 

4 12894119 3590.84 0.000278 

5 12530550 3539.85 0.000282 

6 13513595 3676.08 0.000272 

7 12452931 3528.87 0.000283 

8 15261286 3906.57 0.000256 

9 13771052 3710.94 0.000269 

10 13122809 3622.54 0.000276 

Overall 9871755 3141.93 0.000318 

Table 6.18 Photons, Signal to noise ratio and Noise for a FOLD mixture 

 

Table 6.18 show the photons, SNR and Noise over the 10 images corrected for the fuel type 

FDD. The numbers in the tables are for a 25 x 25 pixel region. The overall parameter has been 

calculated by compiling the full range of data i.e. 25 x 25 pixels x 10 images and determining 

the mean intensity and its standard deviation for both mixture cases.  

 

The results show a signal to noise ratio in the range of 3200. i.e. for every 3200 signal counts 

there is 1 noise count. In comparison to the photons level captured, the noise level is relatively 

low. Some degree of noise is always present in any electronic device that transmits or receives 
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a "signal." For digital cameras, the signal is the light which hits the camera sensor. Even 

though noise is unavoidable, it can become so small relative to the signal that it appears to be 

non-existent. The signal to noise ratio (SNR) is a useful and universal way of comparing the 

relative amounts of signal and noise for any electronic system; high ratios will have very little 

visible noise whereas the opposite is true for low ratios.  

 

The ratio determined here is high and thus the noise is very low. A good comparative measure 

is the decibel range. Images are considered excellent if their decibel range is above 30 db 

[186]. Decibels can be calculated by determine the log10 of the SNR and multiplying it by 10. 

Thus the FDD mixture image overall result has a decibel value of 34.89 db and the FOLD 

mixture image has a decibel value of 34.97 db. This results show the quality of the images is 

good with a very low noise. 
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Chapter 7 Sac Vortex Flow Effects and 

External Spray Drop Sizing 

 

7.1 In-Nozzle and Sac Flow Analysis 

 

For the basis of this work and its relation to deposit formation inside injector nozzle holes, the 

in-nozzle flow analysis consists of phenomena observed occurring towards the end and post 

injection only. The observations made show possible in-nozzle deposit formation mechanisms 

which have not been observed so far. The analysis is mostly qualitative and efforts have been 

made to quantify certain parameters where possible. 

 

Figure 7.1 Image defining needle profile with annotations (reproduction of Figure 5.2) 
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Figure 7.1 shows the needle lift profile and terms that will be used in conjunction with the 

needle profile throughout this chapter. The images were acquired at 10 kHz. Needle lift began 

on the TTL trigger pulse, 500 µs after the image acquisition trigger pulse thus 5 images were 

obtained prior to injection. The profile has been discussed in the preceding chapters. The 

needle is observed to start moving at around frame 13, which represents a time of 0.8 ms after the 

injection trigger signal, however spray only emerges at frame 18 in both internal nozzle and 

external dropsizing images representing a time of 1.3 ms after injection trigger. The injection 

continues until the 65th frame which represents the 6 ms after injection trigger. The spray in the 

LSD images resides at the 64th frame as the needle returns – close to sealing, and the cavitation in 

the nozzle holes has resided. Internal nozzle images were captured in sets of 150 frames where 

frames 1-5 were pre-injection trigger, 6 - 65 were of the injection and 66 - 150 were of post 

injection bubble movement. External nozzle images were captured in sets of 100 where 1 - 5 

frames were pre-injection trigger images, 6 - 65 were injection images and 66 - 100 were blank 

images post injection.  

 

 

Figure 7.2 Dimensions of the nozzle sac and holes (measurements are in mm with a tolerance of ±0.01mm) 
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Figure 7.2 shows real measurements of the injector tip geometry with the dimensions of the 

sac and the nozzle holes. This was captured on the INF camera with a resolution of 

~8µm/pixel. 

 

 Sac vortex flow post injection 7.1.1

 

During the end of the needle return, bubbles were observed to be forming in the sac. These 

bubbles were not observed during the injection. Similar bubbles in the sac region and nozzle 

hole region have been observed by Badock et. al [3]. They describe them as dissolved gas 

bubbles. They appear just as the needle seals any further flow of fuel into the sac during the 

end of its return phase. The bubbles then form a circumferential vortex flow inside the sac 

which initially has high radial velocity but then quickly subsides with time post injection, as 

angular momentum of the flow decreases. Flow around the needle and in the sac has vorticity 

[23,26,27,82–86,187] and the bubbles retain the angular momentum resulting from this 

vorticity when the needle has sealed on to the minisac tip. The bubbles are formed as a result 

of needle cavitation occurring during the end stages of needle return. When the needle is just 

about to seal, very small gaps between the needle and the injector body/the minisac tip occur 

which result in the formation of the bubbles observed. At 5.6 ms from injection no bubbles 

appear however in the next frame which displays images at 5.7 ms from injection bubbles 

start forming as a result of needle cavitation. At this point the needle is approximately 0.02 

mm from its end of travel. The bubbles are two phase mixtures of fuel and fuel vapour. 
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Figure 7.3 Images from 5.7 - 6 ms injection lift time (left to right),  for Fuels A, B  and D showing the formation of 
bubbles in the sac depicted by the bright spots occurring in the sac due to elastic scattering of white light from the 

bubble surfaces [Scale:  1cm=0.23mm] 

 

The images in Figure 7.3 are unprocessed images of fuels A, B and D between times 5.7 – 6 

ms during the end of needle return. Processing the images by background light subtraction 

resulted in the needle shape profile and the sac volume profile to become close to invisible 

and thus to preserve their existence the images have been produced unedited. In the image for 

5.7 ms of fuel A, the green full profile is the sac volume, whereas the red dotted dash profile 

is showing the needle shape and finally the yellow dashed profiles are the nozzle holes. Two 

of the four nozzle holes are directed towards the foreground of the image whereas the other 

two are the nozzle holes in focus injected along the image plane. The images show the 

formation of bubbles in the sac at the final stages of needle return (near closure), due to the 

very small gaps between needle and the minisac tip body. This small gap results in needle 

cavitation as seen in the 5.8-6 ms images for all fuels. At 5.7 ms no bubbles are seen in the sac 

5.7 ms 5.8 ms 

5.9 ms 6.0 ms 

Fuel D 
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and in the next step they appear due to needle cavitation. The bubbles are visible as they 

surface scatter light elastically and are seen as the white sections in the sac. During images 5.8 

– 6 ms the needle has not fully sealed and thus the amount of bubbles in the sac volume 

increase up to this point until the needle has fully sealed the fuel flow from the sac volume. 

 

There was a lot of saturation of light in the sac because of large amounts of light been 

scattered by the bubbles and thus it was not possible to determine variation of bubble sizes in 

the sac. Toward the bottom of the sac (hemispherical section) at entry to the focused white 

light the bubbles scattered highly and thus the images show saturated regions in this sections. 

The other issue of this angle of capture is that the size of the bubbles in the background of the 

images would appear slightly smaller than when they would appear in the foreground of the 

image and their focus and definition would also differ. Thus it was not possible to carry out a 

review of the diameters of theses bubbles 

 

The liquid fuel in the sac post injection had an angular momentum. Due to the formation of 

bubbles in the sac, this motion was observable due to the fuel motion transporting these 

bubbles formed.  As a result of this motion the bubbles would collide with each other and 

coalesce as seen in Figure 7.4. This phenomenon was captured during the later stages when 

the vorticity in the sac is subsiding due to the bubble movement being traceable. The images 

shown are successive images at 10 kHz observed on three separate occasions.  
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Figure 7.4 Growth/coagulation of bubbles in the sac volume as a result of coalescence (images are continuous frames 
at 10 kHz observed for different injections), [Scale (1&2) 1cm=0.23mm, Scale (3) 1cm = 0.26mm] 
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The angular momentum of the liquid fuel in the sac transporting these bubbles is an important 

parameter to be able to quantify its vorticity. It is possible to be able to determine the flow 

vorticity in the sac by determining the vorticity of the bubble it is carrying. Immediately post 

injection, the flow angular momentum is too high for the image acquisition speed and thus the 

bubbles cannot be tracked individually. There are various factors that are disadvantageous for 

this view of capture in order to measure the flow vorticity i.e. the saturation of light intensity 

at the sac and; the centre of vorticity and the direction of vorticity cannot be identified. Thus it 

has not been possible to obtain a quantifiable angular momentum of the flow. 

 

 In -nozzle hole bubble flow 7.1.2

 

 
Figure 7.5 Description of flow directions to be used with regards to in-nozzle bubble formation and flow. 

 

During the end of the injection period, bubbles are also seen to appear in the nozzle holes. 

They may be formed as a result of the reduction in flow velocity reducing the amount of shear 

in the liquid entering the nozzles and thus nucleation resulting in the formation of large 
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bubbles; or as a result of bubbles appearing from needle cavitation entering the nozzle holes. 

The bubbles would initially have outward momentum as a result of the initial direction of the 

flow; however this would quickly change in some cases and result in the flow coming back 

towards the sac volume or continue flowing out. Figure 7.5 shows the flow descriptions that 

will be used in the bubble movement analysis in both vertically upwards and downwards 

injecting nozzle holes. 

 

 

 
 
 

Figure 7.6 The formation of bubbles in the nozzle holes during the end of needle return (5.8 - 6 ms) and the initial 
momentum of bubble travel in both holes (6.1 - 6.5 ms) being out ward. (Left to right 5.8 -6.5 ms) [Images scale 

1cm=0.568mm] 
 

Figure 7.6 shows the formation of the bubbles in the nozzle holes and their initial flow 

momentum driving them outwards in both nozzle holes. The 5.8 ms image shows similar 

structure to Rayleigh breakup however occurring inside the nozzle holes as a result of 
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axisymmetric surface waves formed by the interaction of primary disturbances in the liquid 

and surface tension forces at low velocities. These bubbles appear due to a reduction in flow 

velocity (as a result of the needle nearing closure) reducing the shear stress in the liquid and 

with the low shear stress acting on the liquid, bubbles are formed rather than cavities which 

occur at high flow velocity (thus higher shear stress on the liquid). This is the initial formation 

of the bubbles as observed in the 5.8 and 5.9 ms images. At 6.0 ms the injector seals and thus 

any bubbles appear after this maybe as a result of bubbles in the sac volume flowing into the 

nozzles. 

 

Once these bubbles had formed their initial momentum would be outward as due to the flow 

momentum of the liquid carrying these bubbles being in that direction, however sometimes a 

sudden change in momentum would be observed that would pull the bubbles back into the 

nozzle hole. If this was the case the bubbles travelled with a velocity that dampened down 

synchronous to the flow with vorticity occurring in the nozzle holes. Bubbles would either 

continue with their momentum exiting the hole or return back in towards the sac volume. The 

observations of the bubble movement were not always the same and could not be predictable 

i.e. sometimes the bubbles in both holes move outwards, sometimes they both move inwards 

and at other times they move in opposite directions to each other (i.e. top hole being sucked 

inwards into the sac whereas bottom hole bubble outwards and vice versa). The movements 

however were synchronous to the vorticity inside the sac volume and as soon as this 

dampened down so did the bubble movements in the sac volume. This leads to the hypothesis 

that the flow with vorticity ω (          ) contains regions of high and low pressure 

gradient. Regions of low pressure tend to cause suction in the nearby holes whereas the 

regions of higher pressures result in ejections/outward motion. The suction may be of very 
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low pressure however it is enough to cause the change in momentum of a bubble travelling 

outwards and pull it inwards. 

 

 

 
 
 

Figure 7.7 Continuation of images in Figure 7.6 from 6.5 - 13.5ms (left to right) in times steps of 1 ms, showing bubble 
motion in nozzle holes inwards towards sac volume [Images scale 1cm=0.568mm] 

 

Figure 7.7 shows a continuation of the sequence of images see in Figure 7.6 from 6.5 ms in 

steps of 1 ms to 13.5 ms (6.5 ms post injection). The previous set shows outwards movement 

of bubble flow in both top and bottom nozzle holes, however as observed in Figure 7.7 

bubbles in both holes change direction and flow inwards to the sac volume. The bubble in the 

top hole ceases motion after about 10.5 ms however the bottom hole bubble continues its 

journey inward towards the sac slowly as the fluid in the sac rotates. The sizes of the bubbles 

vary as seen in the figures. The top hole bubble is elliptical, of diameter 16 pixels ± 1 pixel 

6.5 ms 9.5 ms 

13.5 ms   10.5 ms 

1 cm 
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(~131 micron) along the nozzle diameter and elongating 50 pixels ± 1 pixel (~404 micron) 

across the hole length. The bottom bubble is more spherical of diameter 16 pixels ± 1 pixel 

(~131 micron) covering the hole diameter. 

 

 

 
 
 

Figure 7.8 Bubble formation in sac and nozzles between 5.8 – 6.7 ms (left to right) showing bubble exit and re-entry 
and final exiting top hole [Images scale 1cm=0.542mm] 

 

Figure 7.8 shows an observation were the bubble in the top hole initially exited the sac 

volume at 6.5 ms time and then re-entered the sac at 6.6 ms to re-exit at 6.7ms and continue 

flowing outwards as observed in Figure 7.9. 

 

The bubble in the top hole seen in Figure 7.8 and Figure 7.9 is initially covering the length of 

the nozzle hole before it is pushed out. These images show bubble movement in opposite 

5.8 ms 6.2 ms 

6.3 ms 6.7 ms 

1 cm 
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directions. The bubble in the top hole moves outwards, however the bubble in the bottom hole 

moves inwards towards the sac volume and is quite close to re-entering the sac volume. More 

bubbles appear from the exit of the bottom hole flowing inwards towards the sac. 

 

 

 
 

Figure 7.9 Continuation of Figure 7.8 between 6.8 -14.8 ms (left to right) in time steps of 1ms showing bubble 
movement in opposite directions [Images scale 1cm=0.542mm] 

 

In Figure 7.10 bubbles entering the nozzle hole are observed as a consequence of the angular 

momentum of the flow in the sac volume, these bubbles enter the hole 2 ms after the end of 

injection and move outwards of the nozzle hole. A bubble in the bottom hole travels close to 

the sac volume. 

 

 

 

6.8 ms 10.8 ms 

11.8 ms 14.8 ms 

1 cm 
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Figure 7.10 Images taken 2 ms after end of injection showing bubble entry from sac volume into top hole in steps of 
0.5 ms (left to right) [image scale 1cm=0.59mm] 

 

Some bubbles were observed flowing back into the sac in both top and bottom holes. Figure 

7.11 and Figure 7.12 show suction of bubbles into the sac volume in the top and bottom holes 

respectively. 

  

8 ms 9.5ms 11 ms 

11.5 ms 13 ms 14.5 ms 

1 cm 
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Figure 7.11 Observations showing bubbles re- entering the sac volume in the top hole taken from 6 ms – 10 ms (on 
needle seal) in steps of 0.5ms (left to right) [Image scale 1cm =0.32mm] 

 

 

 

 

6 ms 6.5ms 7.5 ms 

8 ms 8.5 ms 9.5 ms 

7 ms 

9 ms 

10 ms 

1 cm 
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Figure 7.12 Observations showing bubbles re- entering the sac volume in the bottom hole taken from 6.3 ms – 7.8 ms 
(on needle seal) in steps of 0.5ms (left to right) [Image scale 1cm =0.248mm] 

 

 Statistical analysis of bubble travel 7.1.2.1

In order to get an overview of the travelling bubbles in each holes, a statistical analysis was 

carried out to determine: 

 Percentage of bubbles travelling inwards per nozzle hole 

 Percentage of bubbles travelling outwards per nozzle hole 

 Proximity to the nozzle hole entrance 

 Direction of bubble travel comparison in both holes (opposite travel, both inwards and 

both outwards.). 

 

Initially a post processor programme developed by BETA CAE systems [188] with videos 

compiled between 6.0 ms and 14.5 ms (needle return to end of recording) of the end of 

injections was used. The post processor allowed tracking of selected bubble movements and 

produced x and y coordinates outputs of the motion of the bubble. Each video per fuels A, B 

and D was uploaded on to the post processor. The bubbles selected per hole (i.e. top and 

bottom holes) and then allowed the software to track its motion. The software would then 

1 cm 
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output x and y coordinates from start to finish of the bubble track. BubTop(x,y)(t) which is the 

top hole bubble travel with time and BubBot(x,y)(t) the bottom hole bubble travel with time. 

 

 

Figure 7.13 Hole inlet and outlet positions definition per hole 

 

Bubbles were selected per hole when their boundary could be best defined. Using the time 

varying coordinate output from the post processor, change in bubble displacement was 

calculated between each subsequent time step. For the top hole, if the bubble increased in y 

coordinate with time it was termed to be positive, whereas a decrease in y coordinate with 

time was termed as negative. For the bottom hole, and increase in y coordinate would result in 

negative travel whereas a decrease in y coordinate would result in positive travel. Positive 

travel refers to travel out of the holes whereas negative travel refers to bubble travel towards 

the sac, for both top and bottom nozzle holes.  

 

InTop (x,y) 

OutTop (x,y) 

InBot (x,y) 

OutBot (x,y) 

Nozzle 
Length 

(x) 

(y) 
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 √[                               ]  [                               ]  

Equation 7.1 

 

Where ∆d represents the change in displacement, superscript i refers to number of frames (85 

to 150), superscript n refers to the injection event, superscript f represents the fuel name, 

subscript hole refers to the hole (top or bottom), Bub  represents the coordinates of the 

bubble at time t and t+1. After the calculation in Equation 7.1 a check of the y coordinates in 

both holes was carried out and if negative travel with relation to the previous logical 

statements determining negative travel, the result of ∆d would be multiplied by -1. The 

overall displacement would be obtained for each hole (top and bottom) and the changes in 

displacements summed per injection event as in Equation 7.2.  

                            ∑            

Equation 7.2 

 

The result from Equation 7.2 would be put through another logical to test to check whether 

the number was positive or negative to depict the direction of travel. The numbers were then 

summed to obtain an overall percentage of injections travelling outwards or inwards during 

the end of injection events per nozzle hole depicted by their overall displacement being either 

negative or positive. Holes with no bubbles observed were subtracted and presented 

separately. 
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Equation 7.3 

 

Injection sequence 
summation (n)  

Result Logic Logic interpretation 

n >0 1 Positive travel (outwards) 
n <0 0 Negative travel (inwards) 
n - - No bubble 

Table 7.1 Logic interpretation for the summation of overall displacement per injection 

 

From Equation 7.3, results positive were summed and an overall positive percentage obtained, 

the negative motion was obtained by subtracting the injections with no bubbles observed from 

the positive displacement bubbles. 

 

The logic obtained in Equation 7.3 was then compared for both top and bottom holes. The 

logics were summed per injections and then another logical analysis performed on the 

summation obtained. 

                                                                                 

Equation 7.4 

 

If comparison logic was found to be equal to 0, then this would mean that bubbles in both 

nozzle holes are travelling inwards to the sac; if equal to 1, then the bubble motion in both 

holes was in the opposite direction (i.e. top hole bubble moving outwards whereas bottom 

hole bubble moves inwards and vice versa; and if equal to 2 then bubble in both holes are 

moving outwards in the positive direction. 
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Injection number 
n 

Top hole logic Bottom hole logic 
(Summation) and 

direction 
n 0 1 (1) Opposite travel 
n 1 0 (1) Opposite travel 
n 1 1 (2) Both outwards 
n 0 0 (0) Both inwards 
n 1 No bubble (-) No comparison 

Table 7.2 Interpretation of top and bottom hole logic summation per injection event. 

 

In the final analysis the bubble motions were analysed with respect to the entrance to the hole 

and the nozzle length and checked for their proximity to the hole entrance (Equation 7.5). 

                             
 √[                       ]  [                       ]               

Equation 7.5 

 

As the bubble coordinates were subtracted from the hole inlets, the value from Equation 7.5 

would provide the length relative, entrance relative bubble position. That is it would pinpoint 

how close the bubble was to the nozzle hole entry. Values less than 0.05 were presumed to be 

closer to the hole entry or have entered the sac. A value of 1 would mean the bubble is near 

the nozzle exit. The focus here was how close the bubbles got to the sac as this would then 

mean there was a possibility of the hole travelling into the sac volume. A logical analysis was 

carried out on the results from Equation 7.5, if the value of                             was  

<0.05 then it would result in a logical 1. A summation of the 1’s was carried out over the 

injections and a bubble count close to the sac proximity produced over the number of 

injections. A sequence of 100 injections were analysed for fuels A and B whereas 70 for Fuels 

D. The results are shown in Table 7.3 - Table 7.5. 
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Table 7.3 and Table 7.4 show the overall two phase bubble motion directions in the top and 

bottom nozzle holes as a percentage and a comparison of the bubbles in two holes in 

synchronous injections. Table 7.5 provides information about the bubble proximity to the sac 

volume. 

 

 
Fuel 

Name 

Overall Motion Overall 
percentage (%) 

Top Hole (%) Bottom Hole (%) 

Outwards Inwards 
No 

Bubble 
Outwards Inwards 

No 
Bubble 

Outwards Inwards 

A 43 51 6 7 85 8 25 68 

B 100 0 0 11 67 22 55.5 33.5 

D 60 23 17 7 79 14 33.5 51 

Table 7.3 Overall bubble motion per hole 

  

Fuel 
name 

Top/Bottom relative motion (%) 

Opposite 
Both 

Inwards 
Both 

Outwards 
A 42 40 4 

B 67 0 11 

D 49 20 3 

Table 7.4 Relative motion of bubbles in both holes 

 

Fuel 
name 

Proximity to sac volume 
(count/no. of injections) 

Top Hole Bottom Hole 

A 2/100 11/100 

B 0/100 3/100 

D 10/70 26/70 

Table 7.5 Bubble proximity to sac volume count 
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Figure 7.14 Displacement distributions of bubbles with time for Fuel A showing the change in displacement per 0.1 ms 

time steps after injection for 100 injections for bubbles observed in the top hole 

 

 

Figure 7.15 Displacement distributions of bubbles with time for Fuel A showing the change in displacement per 0.1 ms 
time steps after injection for 100 injections for bubbles observed in the bottom hole 

 

Results obtained from Fuel A show that 43% of bubbles in the top hole travelled outwards 

whereas 51 % travelled inwards towards the sac. 7 % of bubbles in the bottom hole were 
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observed to travel outwards whereas 85 % travelled back inwards towards the sac volume. 

From Table 7.5, 2 of the bubbles from the top hole whereas 11 bubbles in the bottom hole 

travelling inwards reached close proximity or entered the sac volume. Most of the bubbles 

travelled in opposite directions or inwards. Only in 4% of cases in both holes combined were 

observed to travel out wards. Overall 68 % of bubbles found in the nozzle holes after injection 

were observed to travel inwards.  Figure 7.14 and Figure 7.15 shows the change in 

displacement against time for the top and bottom holes respectively. The figures show high 

initial changes in displacement which decay with time. The figures show a distribution of the 

changes in displacement against time using Equation 7.1 for 100 end injections of fuel A.  

 

Results from Fuel B show a very biased account especially with respect to the top hole. This 

is because the bubble boundaries could not be defined until later due to phenomena observed 

in Figure 7.8 occurring for a long period. The motion could not be properly defined however 

it was noticed that the large bubbles spent a long time in the sac-hole intersection. They 

seemed to be initially traveling into the sac as observed in the Figure 7.8 after which they start 

moving outwards. This was only observed in the top hole. 11 % of fuel B bubbles in the 

bottom hole travelled outwards whereas 67% travelled back towards the sac volume however 

only 3 bubbles came to close proximity of the sac volume entrance. A high number 

percentage of bubbles were observed travelling in opposite directions. The overall motion is 

dominated by the outward motion in the top hole and only 33.5% of bubbles observed travel 

outwards. 
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Figure 7.16 Displacement distributions of bubbles with time for Fuel B showing the change in displacement per 0.1 ms 

time steps after injection for 100 injections for bubbles observed in the top hole 

 

 
Figure 7.17 Displacement distributions of bubbles with time for Fuel B showing the change in displacement per 0.1 ms 

time steps after injection for 100 injections for bubbles observed in the bottom hole 

 

Figure 7.16 and Figure 7.17 show change in displacement distributions for fuel B in the top 

and bottom hole respectively. The top hole figure identifies the phenomena written in the 
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earlier paragraphs where the bubble edge is only defined later and this is shown by the later 

peaks occurring in the graph. These do not appear in the consequent bottom hole figure. Some 

bubbles also display motion described earlier where the bubble exits the sac and re-enters and 

then re-exits these are shown by the later negative peaks in the chart which represent inwards 

motion after which the bubble slowly flows outwards. The top hole figure also clearly 

identifies the positive motion bias of the holes described earlier. The bottom hole has a more 

mixed distribution of negative and positive motions parameterised earlier as percentages. The 

effects maybe occurring as a result of a possible fuel separation occurring between the light 

and heavy components present in the gap fuel. The lighter components are evaporating and 

the heavier components setting downwards into the nozzle sac. The interaction between these 

maybe resulting in the phenomena observed where the bubble is seen to move in and out of 

the nozzle due to the opposing forces of the bubble trying to sink and float combined by the 

effects of vorticity in the sac volume. Once the heavier components of the fuel have settled 

into the sac, the lighter components continue to evaporate and thus the bubble is observed to 

move upwards in the hole towards the exit. This phenomenon is not observed in the bottom 

hole as motion of the heavier fuel dominates the outwards pull of the bubble. The momentum 

of the heavier fuel over the lighter fuel drives the bubble out of the bottom nozzle. 
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Figure 7.18 Displacement distributions of bubbles with time for Fuel D showing the change in displacement per 0.1 ms 

time steps after injection for 100 injections for bubbles observed in the top hole 

 

 
Figure 7.19 Displacement distributions of bubbles with time for Fuel D showing the change in displacement per 0.1 ms 

time steps after injection for 100 injections for bubbles observed in the bottom hole 

 

The results from Fuel D show a high number of inwards bubble travel toward the sac volume. 

Of the bubbles travelling into sac volume or into close proximity of the sac volume 10 were 

from the top hole whereas a large 26 were from the bottom hole out of the 70 injections. 
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Around 46% of the bubbles in the bottom hole ended up near or into the sac volume taking 

into account the number of occasions bubbles were not observed. 60% of bubbles in the top 

hole travelled outwards whereas 23% travelled in the direction of the sac. In the bottom hole, 

7% of bubbles were observed to travel outwards where 79% travelled inwards. A large 

number of bubbles still travel in opposite direction in the relative hole travel comparison. 

 

The observations here again relate to its lower distillation profile. Fuel D has a very low 

distillation profile and thus a lower evaporation point. The fuel vapour fractions in the bubbles 

created are lighter than the surrounding fuel and thus they are largely influenced by the sac 

vorticity which further drives their movement. Most bubbles in the bottom hole move inwards 

towards the sac whereas the bubbles in the top hole move outwards towards the hole exit.  

 

Fuel D injections were blurring the side of the imaging section and providing blurred views of 

the interior holes. Each image seemed to worsen the view and thus only 70 images could be 

viewed over two sets of nozzles. The blurring also caused problems with tracking programme 

as unwanted scattering from the coating occurring outside disrupted bubble view. Only clear 

hole views of both top and bottom nozzles have been selected. Figure 7.18 and Figure 7.19 

show the change in displacement distributions of the bubbles observed with time per 

injection.  

 

In the figures above (Figure 7.14-Figure 7.19) the distributions show the high initial change in 

displacement of the bubbles decreasing with time. This was observed similarly in the sac 

volume where the initial vorticity of the liquid was high but dissipated its energy with time as 

a result of the liquid viscosity. A number of liquid properties such as liquid viscosity and 

liquid surface tension, and nozzle characteristics such as nozzle wall friction, may be affecting 
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the travel of bubbles in the nozzle holes. High liquid viscosity and high wall friction will 

resist liquid flow. The wall friction impact however depends on the surface area of the bubble 

in contact with the nozzle walls. 

 

The hypothesis developed as a result of the above observation is that the vorticity in the sac is 

causing a lot of high and low pressure gradients which in turn are causing suction and 

extraction points in the nozzle holes as observed by the movements of the bubbles in the 

nozzle holes. The pressure gradients may be constantly changing as observed during some 

injections whereby the bubble travel direction constantly changes. The properties of the fuels 

are supplementing this motion where the lighter fractions require a lower force to be 

displaced, while heavier components which require higher force thus sink into the sac from 

the top hole or move outwards from the sac in the bottom hole. 

 

 In -nozzle bubble flow conclusions 7.1.3

 

It has been observed that during needle return and seal, the vorticity of the flow is retained in 

the sac volume even after injector seal. The flow angular momentum is high immediately post 

injection but subsides over time. The vorticity in the sac volume has been observed to cause 

points of suction and discard in the nozzle holes by creating regions of high and low pressure. 

The effect of a region of low pressure induced by the vorticity in the sac near an injection hole 

results in a suction of bubbles as observed, whereas regions of high pressure induced by the 

vorticity in the sac volume in the vicinity of an injection hole results in the bubble being 

pushed outwards. 
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The suction observed may be drawing external gases (exhaust) from outside to at least inside 

the nozzle holes or maybe even as far as the sac volume. The vorticity effect causes suction 

and expulsion as observed in two holes however four other holes are out of view in the 

imaging plane. For the vorticity drawing in bubbles mechanism to be true, it also has to expel 

them and this may be occurring in the other holes as well as the ones in the imaging plane as 

has been shown by the results. The bubbles formed are a two phase gas-liquid mixture of 

highly reactive fuel vapour and degased air. A mixture of hot air and a volatile gas-liquid 

bubble on a very hot injector metal surface in an engine situation is the ideal place for 

reactions to occur. Furthermore it has been observed that pyrolysis like effects may occur in 

the fuels at higher temperatures leading to the formation of particulates.  

 

Carbon deposit formation from diesel fuels mainly involves the chemical conversion of 

precursors to species of higher molecular weight with limited fuel instability. The precursors 

include nitrogen and sulphur containing compounds, organic acids, and reactive olefins. 

Pedley et al. [189] established a mechanism by which insolubles are formed in the acid-

catalysed conversion of phenalenones and indoles to complex indolylphenalene salts. 

Phenalenones are formed by oxidation of certain reactive olefins; indoles occur naturally in 

certain blend components of diesel fuel. Certain dissolved metals, especially copper, 

contribute by catalysing oxidation reactions. Venkataraman et. al [190] analysed solid 

deposits from commercially available high pressure diesel injectors to study the solid deposit 

formation and compared it to the deposits formed by thermal oxidative stressing of n- 

hexadecane. Both deposits formed contained PAH with oxygen moieties. The formation of 

PAH from n-hexadecane showed that aromatization of straight chain alkanes and 

polycondensation of aromatic rings was possible at temperatures as low as 160°C in the 

presence of oxygen. They suggest the cycloalkanes form aromatics with the presence of 
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oxygen and heat and this was responsible for the deposit formation. Heat would be present in 

an engine as a result of the continuous combustion raising the temperature of the surfaces 

through conduction and convection. 

 

In an engine situation where higher pressure exists in cylinder, the motion of the piston to 

exert exhaust gases maybe pushing and enhancing in the nozzles that draw the bubbles in, 

with the possibility of exhaust gases being drawn in as well. For a four-stroke diesel engine 

running at various speeds as shown in r/min, the time between injection, combustion and 

exhaust stroke (piston moving 1 complete revolution) is 24 ms. In 12 ms the combustion 

gases start being ejected outwards. The time for reaction is sufficient at all engine run speeds 

per cylinder as seen in Table 7.6  

 

Engine speed  
(r/min) 

Injection to exhaust (1 rev) 
(ms) 

Injection to injection (2 revs) 
(ms) 

1800 33.33 66.67 

2000 30 60 

2500 24 48 

3000 20 40 

3500 17.14 34.28 

4000 15 30 
Table 7.6 The time between injection and full exhaust cycle and injection to injection cycle for a four stroke engine 

running at different speeds. 
 

A possible mechanism for the entry of air into the nozzle passages as a result of the vorticity 

in the sac volume creating low pressure regions in the vicinity of passages inducing suction of 

reactive bubbles towards the hole is presented here. There is also a possibility of the 

formation of highly reactive fuel-gas bubbles in the sac volume as a result of needle cavitation 

(sheet cavitation occurring on the lower surface of the needle). The bubble formation in the 

nozzle holes is as a result of nozzle cavitation evolving and is as a result of receding stress on 

bubble nuclei. The result may be a formation of gas bubbles rather than a cavitation bubbles.  
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Gas bubbles would be bubbles with gas/air entrained in liquid fuels whereas a cavitation 

bubble would be fuel vapour entrained in fuel. The hypothesis is that these bubbles formed 

maybe highly reactive vessels as they may contain fuel vapour and degassed air. The presence 

of the fuel vapour plus the thermal effects in an engine situation in the presence of oxygen 

may lead to the formation of deposits. The deposits formation may take place post engine 

switch off where the bubbles in the nozzle hole and sac are susceptible to longer periods of 

thermal stressing. 

 

Diesel fuel contains a certain amount of air dissolved in it depending on the fuel temperature, 

pressure on the fuel, density and the amount of aeration to which the fuel has been subjected. 

A reduction in pressure on the fuel or an increase in the temperature of fuel releases the air 

from the fuel. The amount of release depends on the degree of fuel saturation with air and the 

magnitude of pressure reduction or temperature increase. This could happen in the fuel tank, 

fuel filters or fuel pumps. There are many reasons for the fuel tank being a problem area: hot 

fuel under pressure being dumped into the tank via the fuel injection return lines; fuel sloshing 

around in the tank while driving; less-efficient pumps (suction type, inline pumps); and the 

fact that most fuel tanks are mounted below the height level of the injectors. All of these 

things contribute to agitation, which then leads to additional unwanted air particles becoming 

trapped in the fuel. The solubility of air in hydrocarbons is discussed in by Battino et al in 

[191,192]. 

 

During this phase of needle cavitation, the air dissolved in the fuels may be coming out of 

solution. If this is the case then this would create an ideal reaction sequence where there is the 

presence of fuel, air and high temperature (combustion temperature in the engines). The 

combination leads to reactions in the fuels which maybe leading to the formation of deposits 
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in the sac and further into the injector. Needle cavitation occurring during the final moments 

of needle closure is the mechanism to bring out the dissolved air from the fuel. This occurs as 

there is a sudden decrease of pressure and the presence of high temperatures in these regions. 

Once the air is out of solution and present in the sac, the higher combustion temperature on 

the walls of the sac and injector nozzle holes form ideal places for deposit formation reactions 

to occur.  

 

The formation of deposits can impact on the quality of the combustion process leading to: - 

power loss, increase in smoke, higher noxious emissions level and a reduced fuel economy 

[12]. Recent technical advances in fuel injection systems require components to be smaller 

and lighter to ensure highly dynamic response. They need to be manufactured to very exacting 

tolerances and have to operate within very small clearances to minimise any leakage at the 

very high pressures encountered in modern systems. Therefore, it is essential that the FIE is 

kept free from deposits of any kind and is operated with fuel which is fit for purpose, 

otherwise problems of power loss, emissions non-compliance, reduced fuel economy, poor 

driveability and difficulty in starting are likely to be observed. 

 

 Observation of string cavitation 7.1.4

 

During the initial testing period where the focusing of the nozzle holes onto the camera was 

being carried out. A test was carried out with the camera focus slightly on the foreground of 

the two holes in the plane. The camera was focusing close to the entry of two holes injecting 

to the foreground of the images as seen in Figure 7.20 and Figure 7.21 below. As a result, two 

different occasions of hole to hole string cavitation in a real size replica of an injector nozzle 

was captured occurring at the inlet of the two holes injecting on the foreground as seen in 
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these images. The injection pressure at this point was 400 bar as this was still the test and 

setup phase. The strings are thins line of light scattering observed joining two holes at the 

entrance. 

 

 
 
 

Figure 7.20 Hole to hole cavitation at 400 bar injection pressure observed during 1.5ms after needle lift began [Image 
scale 1cm=0.227] 

 

 
 
 

Figure 7.21 Hole to hole string cavitation at 400 bar injection pressure observed at 1.3ms after needle lift began 
(Successive images at 10kHz) [Image scale 1cm=0.227] 

 

 
Figure 7.22 and Figure 7.23 show two single events showing the occurrence of string 

cavitation between two holes. These images were obtained during pilot testing of a new 

nozzle. It was observed that one nozzle hole next to the bottom hole on the foreground was 

blocked. And thus the string came in to focus as it went from the hole close to the top hole in 

1 cm 

1 cm 
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the foreground into the bottom hole as seen in these images. It was observed for long periods 

of time as seen in Figure 7.23. 

 

 

 
 
 

Figure 7.22 Hole to hole String cavitation observed at 350 bar injection pressure at 1.9 ms, 4.3ms, 4.6ms and 4.7ms 
after needle rise begun occurring during a single injection event [Image scale 1cm=0.227] 
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Figure 7.23 Hole to hole String cavitation observed at 350 bar injection pressure at 1.7 ms, 3.2-3.4 ms, 3.6- 3.9ms, 4.2-
4.3 ms and 4.6-4.7 ms (left to right after needle rise begun occurring during a single injection event following Figure 

7.21. [Image scale 1cm=0.227] 
 

Strings are found at the core of recirculation zones. They originate either from pre-existing 

cavitation sites forming sharp corners inside the nozzle where the pressure falls below the 

vapour pressure of the flowing liquid, or even from suction of outside air downstream of the 

hole exit [23]. The frequency of appearance of the strings has been correlated with the 

Strouhal number of the vortices developing inside the sac volume; the latter has been found to 

be a function of needle lift and hole shape. The presence of strings significantly affects the 

3.4 ms 3.6 ms 3.7 ms 

4.3 ms 4.6 ms 4.7 ms 

3.8 ms 3.9 ms 4.2 ms 
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flow conditions at the nozzle exit thus influencing the injected spray. The presence of strings 

results in the alteration of cavitation structures in the nozzle hole and a variation in the 

instantaneous fuel injection quantity.  String cavitation and their implications have been 

observed and discussed by [23,26,27,82–86].  

 

7.2 External Spray Dropsizing Distribution 

 

From the images obtained on the LSD camera, Sauter mean diameter distributions were 

calculated by determining a ratio of LIF to Mie image for fuels A, B and D to enable a 

comparison of the fuels. 

 

 
Figure 7.24 A LIF-MIE combined image captured in the LSD camera showing LIF scattering from the dye on the left 

and Mie scattering from the spray on the right hand side. 

 

The 1024 x 512 images captured had both sets of LIF and Mie image as observed in Figure 

7.24. A mean background was obtained from the range of background images obtained prior 

to experiment. The mean background images were then subtracted from the experimental 
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images and then the images were separated into two 512 x 512 pixel images of LIF and Mie 

images. 

 

In order to express the processing of the data images mathematically, the pixel intensity on 

the raw data images was represented by       , where        represented the intensity of the 

pixel located on the CCD chip at the position defined by the row index i and the column index 

j,    512...3,2,1,0,1024...3,2,1,0  ji . The index number k represents the frame number 

within a set of 100 images at 10 kHz for a single injection event, ranging from frame 1 to 

frame 100; while the index number l refers to the specific injection event, ranging from 

injection 1 to injection 100. The index number m refers to the diesel fuel sample tested, and 

ranges from A, B and D. A thousand background images were obtained for each experimental 

session. The pixel intensity data are represented by the indexed intensity variable      , where the 

index numbers i, j, and m retain their meaning from above, while the index number q refers to 

background image 1 to 1000. A mean background image was calculated for each experimental 

session. This is expressed by Equation 7.6 

 

    ̅̅ ̅̅       ∑       
    

Equation 7.6 

 

The mean background subtracted image is represented as        and is equal to            . 

The image        is then split into two images of   512...3,2,1,0, ji  namely,          and          respectively. 
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Figure 7.25 Split LIF and Mie images into two 512 x 512 images 

 

As it can be observed from the above images the ratio cannot directly be taken as the Mie 

image is translated with respect to the LIF image. The image was translated with reference to 

the LIF image. However even after translation, the ratio still cannot take place as the images 

are homographically incorrect. The images are being reflected onto the camera chip via 

mirrors which act independently to each other and thus cause projective (homography) 

transformations having 8 degrees of freedom. The transformations will be carried out on the 

Mie image using the LIF image as a reference. The 8 degrees of freedom are translation, 

rotation, shear and scaling across both the i and j axis of the image. 

 

A 2D point (x; y) in an image can be represented as a 3D vector x = (x1; x2; x3) where         and       . This is called the homogeneous representation of a point and it lies on the 

projective plane P2. A homography is an invertible mapping of points and lines on the 

projective plane P2. Hartley and Zisserman [193] provide the specific definition that a 

homography is an invertible mapping from P2 to itself such that three points lie on the same 

line if and only if their mapped points are also collinear. They also give an algebraic 
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definition by proving the following theorem: A mapping from P2 →P2 is a projectivity if and 

only if there exists a non-singular 3x3 matrix H such that for any point in P2 represented by 

vector x it is true that its mapped point equals Hx. This tells us that in order to calculate the 

homography that maps each    to its corresponding     it is sufficient to calculate the 3x3 

homography matrix, H. It should be noted that H can be changed by multiplying by an 

arbitrary non-zero constant without altering the projective transformation. Thus H is 

considered a homogeneous matrix and only has 8 degrees of freedom even though it contains 

9 elements. This means there are 8 unknowns that need to be solved for. Typically, 

homographies are estimated between images by finding feature correspondences in those 

images. The most commonly used algorithms make use of point feature correspondences. 

Since the work is being carried out in homogeneous coordinates, the relationship between two 

corresponding points x and x´ can be re-written as:       where: 

 

               [                         ]          

 

In H, h11-h32 represents the 8 degrees of freedom and this matrix has to be solved to be able to 

map two images. Evangelidis and Psarakis [194,195] have developed an enhanced correlation 

coefficient ECC algorithm  to map between coordinate systems of two or more images. The 

references define their code which is freely available on their website and on the mathworks 

file exchange [196,197]. It is a gradient based image registration algorithm which achieves 

high accuracy in parameter estimation. Its performance is invariant to global illumination 

changes since it considers the correlation coefficient as an objective function. The algorithm 

uses gradient based iterative optimization techniques for optimum estimation of the 

parameters. The parametric image alignment problem consists of finding a transformation 
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which aligns two image profiles. In order to match image transformations of the projective/ 

homographic nature, the algorithm produces with an appropriate performance measure which 

when optimized will yield optimum parameter estimation using gradient based non-linear 

optimization techniques. It applies a Gaussian filter to the images to compensate for 

photometric distortions in contrast and brightness. Further information on the algorithm can 

be found in the references provided. 

 

The only change made to the algorithm is an addition of an iteration check that if achieved 

would end the iteration and continue to the next one. In the original algorithm the amount of 

iterations had to be specified, however for aligning the enormous dataset acquired here would 

create either too little or too many iterations. Thus a check was employed to find the 

difference in all 8 parameters at the current and previous iteration and if the difference divided 

by the value at the previous iteration approached to 10-6, the iteration would be stopped and 

the next image sets loaded.  

 

The programme allowed a template image and the image to be transformed to be input and it 

would then compute the transformation of the input image with respect to the template. It 

would then output the transformed image with its corresponding H matrix of transform 

linking it to the template image. The LIF sequence of images          was used as the template 

image with its corresponding time step Mie image          as input to be transformed to            . 

 

The algorithm was then input into a wider programme written in matlab. The programme was 

a colloquial one to allow storage of important parameters. The programme also carried out a 

double image ratio of the LIF image over the corresponding time resolved Mie image in 
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double precision to calculate the Sauter mean diameter distribution and stored in the same 

format for later use. 

                             

Equation 7.7 

 

The LSD image was later loaded up and converted into false colour in the Sauter mean 

diameter range of 0 – 1.5 pixel intensity of the LSD image which was converted to Black – 

Blue – Cyan - Green – Yellow – Orange – Red – Magenta – White; equally from 0 – 1.5, 

where 0 starts is black and 1.5 is white. 

 

LIF scattering intensity depends on the fluorophore which in turn will have different 

fluorescent yields depending in the solution it is in. Thus the LIF images have to be calibrated 

with this yield factor in different solutions. From the Rhodamine B in solution calibration 

results obtained previously, the calibrations of the Rhodamine B in decanol and Rhodamine B 

in octanol were carried out and the transmission intensity with respect to laser power 

obtained. The calibration was carried out for diesel – RhB – decanol mixtures and kerosene 

like light diesel-RhB- octanol mixture. Using the diesel-RhB-Decanol (Fuel A-decanol-RhB 

mixture) reading as reference, the Fuel D-octanol-RhB was divided by 1.04. 

 

                                                

Equation 7.8 

 

As Fuel B was a mixture of diesel-RhB-decanol, and thus no calibration would be required. 

The calibration would enable a comparison between fuels with respect to their fluorescence 
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yields using the fluorescence yield of Rhodamine B in decanol as a reference. Thus the Sauter 

mean distributions plotted in false colour and any other post processing past this calibration is 

comparable between the fuels. 

 
Figure 7.26 A false colour image in the range of 0- 1.5 pixel intensity at 4.1 ms after needle lift began for Fuel A. 

 

Before the conversion into false colour, the real image which had multiple scattering effects 

had to be eliminated along the edges of the spray. This was done by applying a Gaussian edge 

detection which finds edges by looking for zero crossings after filtering the image with a 

Gaussian filter. After applying the Gaussian edge detection to define the spray boundary, the          image is reproduced in false color as defined above and seen in Figure 7.26.  

 

Intensity frequency histograms of the          images produced with 100 SMD bins between 

0.015 and 1.5 for each injection frame over a complete set of injections i.e. 1, 101, 201, 

301……λλ01, frames 2, 102, 202, 302, … λλ02, frames 3, 103, 203, 303, … 9903, and so on 

up to frames 100, 200, 300, … 10000, for all fuels; to produce probability density histograms 

over a time resolved analysis. The frequency of occurrence of the SMD bin would be carried 
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out in each time resolved frame for all the injections. The histograms were produced for 100 

injections for fuels A and B, and 65 injections for Fuel D as seen in Figure 7.27 which shows 

the probability density histogram of 4.0 ms time after needle lift began for 100 injections 

combined. The histograms were plotted between 1.5 ms after needle lift to 5.9 ms after needle 

lift. Figure 7.27 shows the probability density distribution at 4.1 ms for 100 injections. These 

histograms contain spray image intensity data compiled at the time set over the total number 

of injections. 

 

Lastly a time resolved mean was obtained for          images for a set of 100 injections by 

finding the mean images associated with frames 1, 101, 201, 301……λλ01, frames 2, 102, 

202, 302, … λλ02, frames 3, 103, 203, 303, … 9903, and so on up to frames 100, 200, 300, 

… 10000, for all fuels. This is expressed mathematically by  

 

       ̅̅ ̅̅ ̅̅ ̅̅ ̅      ∑           
    

Equation 7.9 
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Figure 7.27 Intensity frequency histogram showing pixel frequency in SMD bins of 0.015 counts from 0.015-1.5 at 

time 4.1ms for 100 injections 

 

 External spray Sauter mean diameter distribution 7.2.1

 

The results obtained above of the dropsizing distribution, time resolved histograms and time 

resolved mean dropsizing images produced will be analysed herewith. In order to make a 

comparison between fuels, the dropsizing images were reproduced in false colour. For the 

purpose of this work, only images obtained in the regions of maximum needle lift between 3.9 

- 4.5 ms are analysed of the full spray. The results at high lift will produce a good comparison 

for the spray characteristics between the different fuels. As there were hundreds of injections 

captured, it will be a good place to begin the analysis with time resolved mean images 

between times 3.9 - 4.5 ms over the 100 injection for fuels A and B and 65 injections for Fuel 

D. 
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The time resolved mean images between 3.9 ms and 4.5 ms at maximum needle lift show 

differences in the spray dropsizing as observed in Figure 7.28.  The colour bar here represents 

the relative Sauter mean diameter through the LIF-Mie ratio. The images seen do not show 

any spray structure as seen in the single time event images (Figure 7.26), however they give 

an overview of the drop sizing distribution throughout the time event over the number of 

injections carried out for comparison between the fuels.  
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Figure 7.28 Time resolved mean images of time 3.9 - 4.5 ms (in rows) after injection trigger showing Fuels A, B and D 
in columns 1, 2 and 3 respectively. False colour range 0 – 1.5 as shown at the end of image [Image scale 1cm =2.69mm] 

 

Fuel A displays a more consistent drop size distribution as observed from images in Figure 

7.28. The drop size distribution ranges from approximately 1 count in the core spray region 

and decreasing towards finer drop sizes towards the spray boundary. Sprays for fuel B on the 

other hand contain a much larger drop size distribution in the spray core in the region of 1 -1.5 

counts and finer- much smaller drop sizes in the spray boundary region. The sprays for Fuel D 

4.5 ms 

4.4 ms 

1 cm 

FUEL A FUEL B FUEL D 
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consist of even finer drop size distributions in the spray core in the range of 0.5 - 1 counts and 

finer spray boundaries. 

 

The spray jet images observed are non-symmetrical about their centres. This is consistent for 

all fuels. The asymmetry of the jet occurs as a result of the geometric cavitation occurring 

inside the nozzle holes causing instabilities in the spray. Geometric cavitation occurs due to 

the sharp edges at nozzle hole entry and develops into the nozzle hole. The geometric 

cavitation leads to the formation of turbulence and instabilities in the nozzle hole which travel 

outwards on to the external spray. Sheet cavitation resulting from the upper edge of the hole 

creates a spatial asymmetry. Further on, this gives to the rise in an asymmetric spray structure. 

This phenomenon in combination with the vortex flow occurring in the nozzle holes [84,86] 

flowing outward into the spray results in an asymmetric spray formation. 

 

 
Figure 7.29 Injection pressure profile of Fuel A, B and D from injection trigger to 6.0ms covering the injection 

duration 

 

Figure 7.29 shows the time resolved mean injection pressure averaged over the total number 

of injections per time event comparison pinpointing the point of maximum needle lift. The 

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6

P
re

ss
u

re
 (

b
a

r)
 

Time (ms) 

Fuel A Fuel B Fuel D

Maximum 

Lift 



 

 

323 
 

pressure variation is of 12 bar between the fuels B and D. The time resolved mean pressure 

was calculated by averaging the pressure at each time point over the total number of 

injections. Injection pressures observed were consistent for all fuels and thus the results 

obtained would be independent of the injection pressure variation between the fuels. 

 

The histograms of the corresponding time resolved mean drop size images are in Figure 7.30 - 

Figure 7.32. The histograms quantify the distributions seen in Figure 7.28 with respect to the 

frequency of the dropsizing over the injection events per frame captured. The distributions 

shown in these figures have been obtained from the whole of the spray image captured. The x 

axis labelled pixel intensity is the SMD whereas the y axis is the count of this SMD from the 

whole of the spray region. 

 

 

3.9 ms 4.0 ms 

4.1 ms 4.2 ms 
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Figure 7.30 Intensity frequency histograms for 3.9 - 4.5ms (left to right) over 100 injections for fuel A showing the 

distribution of drop sizes against drop size frequency 
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Figure 7.31 Intensity frequency histograms for 3.9 - 4.5ms (left to right) over 100 injections for fuel B showing the 

distribution of drop sizes against drop size frequency 
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Figure 7.32 Intensity frequency histograms for 3.9 - 4.5ms (left to right) over 100 injections for fuel D showing the 
distribution of drop sizes against drop size frequency 

 

The histograms in Figure 7.30 - Figure 7.32 agree with the above statements. Histograms for 

Fuel A show a normal distribution with the maximum frequency (mode) of SMD at 

approximately 0.85 counts at 4.1 ms after injection pulse (Figure 7.30). The frequency of the 

much higher SMD (between 1 - 1.5) is larger than the very SMD (between 0 - 0.5) observed 

at the tails of the distribution. This is consistent with the fuel distillation profiles discussed in 

the earlier chapter were Fuel A had a more linear distillation profile ranging from 170 – 340 

ºC. 

 

Histograms from Fuel B show a mode occurring at larger Sauter mean diameters of 

approximately 1 count. Fuel B had a gap distillation profile with smaller distillation 

components between 160 – 205 ºC (0 – 20 % distillation recovery), a mid-point at 240 ºC 

(50% distillation recovery) and then larger distillation components between 300-350 ºC (60-

100% distillation recovery). In comparison to Fuel A it has lower distillation components and 

thus has the frequency of the small drop sizes has increased in comparison. The time resolved 

mean sprays for the fuel show very large regions of high intensity in the core region and then 

finer particles in the spray boundary. The spray size distribution is not as evenly distributed as 

4.5 ms 
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observed in the Fuel A sprays. The time resolved sprays of Fuel A show a spray core with 

high intensity which gradually decreases to the spray boundaries. The difference occurring 

may be due to there being a gap in the Fuel B distillation and thus the spray images show this 

step from a large drop size spray core to much finer boundary edge, whereas the images of 

Fuel A which has a near linear distillation profile shows gradual changes in drop size from the 

spray core to the boundary. 

 

Fuel D histograms in Figure 7.32 show much lower Sauter mean drop size distribution as 

compared to the other two fuels A and B. From the histograms it shows a SMD mode 

occurring at around 0.65 counts at 4.3 ms after needle lift. The histograms also show a very 

low frequency of large SMDs between 1 -1.5. The highest frequency of drop sizes is between 

0.4 and 1. The fuel also has a more linear distillation profile and thus the time resolved spray 

images similarly to those of Fuel A show a gradual change in drop sizes from the spray core 

to the spray boundary. However the spray core in Fuel D is much finer (lower SMD) than 

Fuel A. 

 

The distributions show how the full width of half maximum (FWHM) of the fuels vary and 

this is observed well in Figure 7.33.  The FWHM of the fuel distribution is very similar; 

however the location of the SMD mode is changing. The mode occurs at lower SMD 

intensities for the lighter fuel and at higher SMD intensities for the heavier fuels.  The 

difference occurring between fuels A and B can be further supported as a result. This 

evidence adds to the observations that there is a gradual change in intensity distribution from 

the spray core to the boundary, which are shown in the distribution. However for a similar 

FWHM, fuel B has shift to higher spray drop sizes.  
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From the above results, histograms and time resolved images between 3.9 - 5ms after the start 

of injection, it can be concluded that fuels with lower distillation profile curves demonstrate 

smaller spray drop size distribution and thus smaller drop sizes, whereas fuel with higher 

distillation profiles curves have shown large drop sizes distributions in the spray and thus 

overall larger drop sizes. The mean time resolved images clearly distinguish between drop 

sizes and distillation profiles where larger distillation profile fuels (heavier fuels) had a larger 

drop size distribution in the spray core and a less large drop size distribution along the spray 

boundary.  
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Figure 7.33 Comparisons of distributions of time resolved intensity frequency relative to the sum  intensity frequency 
over the SMD between 0-1.4 for each fuel against pixel intensity count for fuel A, B and D over 3.9 - 4.5ms at peak lift 

(top to bottom). 
 

The distributions in Figure 7.33 show the comparisons of the drop size distributions of the 

fuels. The distributions plots earlier have been compiled into one plot showing the maximum 

frequency profile per SMD intensity of the fuel distributions. It can be observed that the fuels 

have distinguishable drop size distributions. Figure 7.34 shows the fuel relative mean and 

standard deviation across the fuels samples at each SMD intensity bin in the time step over 

the peak lift. The difference in the fuels drop size distributions is clearly identifiable. Fuel D 

lies on the lower SMD size range throughout. Fuel B shows the largest drop size distributions 
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owing to its higher maximum distillation point, and Fuel A lies in the middle. There are some 

occurrences where the profiles of Fuel A and Fuel B show similar spray size distributions 
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Figure 7.34 Mean and standard deviation comparisons of fuels from charts in Figure 7.33 between 3.9 - 4.5ms at peak 
needle lift over 100 SMD Bins (top to bottom). 

 

The time resolved intensity frequency distributions in Figure 7.33 show a comparison of the 

distributions of the fuels relative to the overall frequency count per image. The charts show 

that fuels A and B are quite similar up to needle return from maximum lift. Both these fuels 

are significantly different to fuel D which has lower peak intensity as compared to fuels A and 

B over the peak needle lift analysis. Fuels A and B have peaks occurring at higher SMD 

intensities. Fuel D has a peak at a lower SMD distribution than fuels A and B. Fuel B has a 

slightly larger SMD distribution than fuel A. Thus the lighter fuels result in lower SMD 

distributions and heavier fuels have displayed larger SMD distributions. 
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Frame Time (ms) 
Maximum Standard Deviation 

between fuels 

43 3.8 0.0125 

44 3.9 0.0124 

45 4 0.0131 

46 4.1 0.0144 

47 4.2 0.0134 

48 4.3 0.0123 

49 4.4 0.0118 

50 4.5 0.0121 

Table 7.7 Maximum standard deviation values obtained at maximum needle lift of fuels A, B and D  

 

Figure 7.34 is just for comparison to the nozzle manufacturing consistency results. The results 

showed a standard deviation of 0.0035 over peak lift whereas the distribution seen in Figure 

7.34 show standard deviations as shown in Table 7.7 which is significantly larger. The sudden 

drop observed in these graphs occurs as a result of the fuel drop size matching the fuels 

average profile, however this occurs at varying frequencies.  

 

Lower distillation profile fuels (lighter fuels) have shown smaller drop sizes distributions in 

the spray core and even smaller drop size distributions at the spray boundary.  The result is 

not because of the difference injection pressure of max. 12 bar lower than the other fuels tests, 

as an increase in injector pressure would result in an increase in atomisation efficiency 

[115,120] and thus smaller drop size distributions.  

 

The results here have been distinguished by their distillation profiles, however their 

viscosities also vary similarly, i.e. the heavier fuels (Fuel B) have a higher viscosity, the 

medium fuel (Fuel A) has a medium viscosity in comparison and the light fuel (Fuel C) has 

the lowest viscosity as in Table 6.1. As liquid viscosity increases, flow rate is generally 

reduced and the development of instabilities in the liquid core is hindered. As a result, the 

disintegration process is delayed and a spray with a narrow spray angle and large droplets is 
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produced. Liquid viscosity is highly dependent on the temperature and decreases generally 

with increasing temperature [108]. Lower viscosity fuels produce smaller droplet diameters 

than fuels with higher viscosity [120]. Thus in this situation of non-evaporating spray 

conditions, it cannot be determined without further analysis whether the changes in SMD 

distributions are as a result of the change in distillation profile of the fuels or as a result of 

viscosity differences. There has been insufficient time at this stage to analyse the internal 

nozzle cavitation images. The hypothesis will require relating the spray to the internal nozzle 

hole cavitation to deduce the cause of the changes in SMD. Preliminary visual observations of 

the images showing cavitation occurring in the nozzle holes for the fuels shows differences 

however this yet has not been quantified and will form part of further publications. The sprays 

are also in non-evaporating conditions (injecting into atmospheric pressure) and thus the spray 

atomisation is most likely cavitation induced. If this is the case and the cavitation structures in 

the nozzle holes can be identified to be deferring between the fuels then it may form a strong 

case that the effects observed in the Sauter mean diameter distributions of the spray are as a 

result of the differences in distillation profile of the fuels.   



 

 

337 
 

Chapter 8 Conclusions and Further Work 

 

This body of work examined here has been achieved by using two novel diesel injection rigs 

that have been developed at City University London for the novel experimental investigations 

of the effects of cavitation on fuels by using optical techniques. The following sections 

summarise the key conclusions and findings 

 

8.1 Effects of Sustained Hydrodynamic Cavitating Flow 

 

A novel recirculation, continuous cavitating flow rig was designed and manufactured in order 

to test the effect of high pressure cavitating flow on the chemical stability of diesel fuels. The 

novelty lies in the design of the rig to examine fuels under long term cavitating flow 

conditions to test their robustness. To date, this is the only type of rig built for the purpose of 

investigating the effects of sustained cavitating flows for diesel fuels. The change in 

composition and/or stability of the fuel was determined through the continuous measurement 

of the spectral attenuation coefficients of the cavitated diesel samples at 405 nm as a function 

of the cavitation time. A commercial tea urn was modified in order to immerse diesel samples 

in heated water, in order to mimic the temperature history of the diesel samples in the 

cavitating flow rig. This was carried out in order to differentiate the effect of temperature 

from the effect of cavitation on the diesel samples. 

 

Commercial diesel samples were tested in the cavitating flow rig and immersion in the water 

bath. Two model fuels were also tested as above. The commercial diesels consisted of fresh 

samples that were subjected to cavitating flow testing within three months of purchase, and 
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aged samples that were stored in a fuel store for twelve to fifteen months, and then subjected 

to cavitating flow testing and water bath immersion. The model diesel tested comprised of a 

paraffinic blend and a 20% FAME paraffinic fuel. 

 

The fresh commercial diesel samples were observed to undergo a continuous increase in 

spectral attenuation coefficients during cavitating flow, leading to 8 % to 25 % increase in 

spectral attenuation over forty hours. The aged commercial diesel samples were observed to 

undergo an even greater increase in spectral extinction during the cavitation period, leading to 

a 14 % to 50 % increase in spectral attenuation coefficient after forty hours cavitation. These 

results show that the fuels are undergoing chemical breakdown which is causing their 

attenuation to increase. 

 

The paraffinic model diesel produced almost no variation in spectral attenuation coefficient, 

and hence almost no variation in spectral absorption and scattering during and after the forty 

hour cavitation period. This suggests that any variation that occurred in the composition of the 

model diesel sample during cavitation had a negligible effect on the spectral attenuation 

coefficient of the model diesel sample. The model diesel containing FAME produced a 

decrease in spectral attenuation coefficient, which suggests that the FAME content of the 

fuels does also not result in an increase in spectral attenuation coefficient. However the 

presence of FAME affects the overall change in spectral attenuation coefficient. 

 

A comparison of the composition of the paraffin-rich model diesel, together with the absence 

of variation in spectral attenuation during cavitation, with the composition of the commercial 

diesels and the consistent increase in the spectral extinction coefficients of these samples 

during cavitation, leads to the conclusion that the cavitation affected the aromatics in the 
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commercial diesels. It is likely that the aromatics were undergoing pyrolysis-like reactions 

during cavitation to form complex polycyclic aromatic hydrocarbons (PAHs), and even small 

particles in suspension. This hypothesis would explain the relative increase in the spectral 

extinction produced by the aged diesel samples when compared with that produced by the 

fresh commercial diesel samples, in terms of the reduced chemical stability of the aged 

samples when compared with the fresh samples. 

 

The GC x GC results show a mixture of changes in the paraffinic content of the fuels, where 

some fuels show an increase in paraffin content. This is described by the chemical modelling 

in Appendix B and could be the effect of aromatics and FAME in the fuels breaking down to 

form paraffins. The chemical modelling carried out in the Appendix has also shown a possible 

pathway leading from paraffins to aromatics and soot formation without any initial presence 

of aromatics. This agrees with the GC results that aromatics are leading to the formation of 

soot particles. 

 

The key result from this experiment is the large increase in particles/soot as a result of long 

hours of cavitating flow on the fuels. A similar change has not been observed in the heat test 

analysis, leading to the conclusion that the effect of cavitation on the fuels is leading to a 

formation in particulates. The key component of the fuel identified in the formation of 

particulates is the presence of aromatics, however even during its absence, at higher pressures 

and temperatures, paraffins have the propensity to from particulates and soot. 

 

In relation to engine cycles discussed in Chapter 1, a lot of high pressure fuel is recirculated 

and constantly cavitates on release to lower pressure at the exits of orifices at the high- low 

pressure interfaces in the system. The high-low pressure systems release high pressures from 
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the pumps, common rails and injectors into low pressure sides via valves. During this release 

past the valves the fuel on return is constantly cavitating. The observations made here, that the 

impacts of sustained cavitation on diesel fuels is leading them to pyrolysis like reactions 

forming particulates opens areas for further development of these fuels by fuel manufacturers 

to either improve the stability of the fuels by varying fuel components or by developing 

further additives to prevent the degradation into particulates as a result of sustained cavitation. 

 

The work here has described the effects on the fuels by the constant recirculation under 

cavitating conditions. This could also be identified as a cause for the appearance of deposits 

on the fuel filters. There is also a possibility of prior air dissolved in the fuel (if any) to come 

out of solution in the form of bubbles, due to a very sudden decrease in pressure in the sac 

volume, at the end of injection. The combination of high temperature surfaces and gases and 

the presence of an air-fuel mixture for durations depending on the engine speed form the ideal 

points for reactions to occur.  

 

Pyrolysis modelling of a model fuel bubble collapse approximating polytropic conditions 

ranging from atmospheric conditions to temperatures and pressure of 2000 K and 1.37 GPa 

respectively has shown the pathways to the formation of particulates and soot molecules from 

both aromatics presence in the fuels and paraffins presence. This has been presented in the 

appendix section as it as a very qualitative approach and a non-validated kinetic model. The 

objective of this study was to show how imposing likely pressure and temperature conditions 

and a creating a gaseous model of a collapsing cavitation bubble with a temperature and 

pressure history. The result of a high temperature and pressure history may lead to pyrolysis 

and particulate formation. 
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The reaction leading to formation of particulates from pyrolysis is the formation of the phenyl 

group C6H5 and methane via the hydrogen subtraction reaction of benzene and methyl 

radicals. Phenyl would then react with benzyl (C7H7) radicals formed as a break up of ethyl 

benzene to form benzyl benzene (C13H12). Mono-aromatic benzene would react with methyl 

radicals formed during paraffin break up to form toluene. It would also break down to form 

C4H5 and acetylene which at higher residence time saw the reverse process dominate and 

more benzene produced. The phenyl radical reacts with acenaphthylene to form small 

particulates. Furthermore reactions in di-aromatic naphthalene with methyl radicals form 1- 

and 2-naphthylacetylene which was another precursor onto the formation of small 

particulates. It would react with biphenyl, acenaphthylene, pyrene, phenanthrene already 

present in the diesel model for kinetics to form these particles. Methyl-naphthalene and 

biphenyl have been identified as soot precursors. Reaction of primary particles with phenyl 

leads to the formation of larger particulate classes. Reactions between phenyl and biphenyl 

would also lead to the formation of particulates. Naphthylacetylene species start forming at 5 

µs and continue till the end of analysis by the reaction. The evidence to particulate formation 

in diesel fuels as a result of cavitating flow conditions over a sustained period have been 

observed by the decrease in laser attenuation of fuels undergoing cavitating flow conditions 

and the particle count results of these fuels. Particles in the laser path would lead to 

attenuation of laser light as measured. Seen here is a summary of the possible routes to the 

formation of particulates from aromatics and even paraffins at higher residence times, 

pressures and temperatures. The kinetic model is not validated and thus this is just a 

qualitative hypothesis of the possible routes. 

 

Various soot precursors have been identified in the pyrolysis of diesel fuel as a result of 

sustained high pressure cavitation. These soot precursors react with mono and di-aromatics to 
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form particulates. The particulates formed later increase in size due to coagulation of 

particles. Paraffinic fuels could also result in the formation of particulates however they 

would have to form aromatics first which was a slightly longer process and would only occur 

at higher residence times. The move towards higher injection pressures in diesel FIE means 

that these residence times will easily be achieved as a result of the higher injection pressures 

which will further increase the local temperatures and pressure occurring at bubble collapse. 

 

8.2 Sac Vortex Flow effect and External Spray Drop Sizing 

 

A novel high pressure, common rail injection rig was manufacture at City University London 

which could adopt a modified injector body. The novelty of the experiment lies in the optical 

setup to simultaneously capture internal flow cavitation and external spray dropsizing at 10 

kHz. The design of the injector-nozzle compression using the double acting hydraulic arm 

with a balance and the spray extraction system was novel too. The modified injector body had 

its sac end cut-off and replicated in acrylic for optical access into the nozzle holes and sac. 

The elastic light scattering technique was used to observe the cavitation phenomena in the 

nozzle holes from one side. On the other side a novel laser sheet drop sizing setup enabled the 

capture of LIF and MIE images of the external near nozzle spray on two halves of a single 

camera. A dual camera system was utilised which was synchronised with the laser and 

injection timings. One camera captured the internal nozzle cavitation whereas the other 

captured the LIF-Mie images of the external spray. During initial setup, key features were 

discovered occurring in the sac volume and thus the imaging was setup to capture a side view 

of two nozzle holes and the sac through the injection period and 8.5 ms post injection to be 

able to observe these phenomena. 
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Three different fuels were analysed at 350 bar injection pressure, 4.0ms injection duration. 

Synchronised images of the internal nozzle flow cavitation and the corresponding external 

spray were obtained. However for the purpose of this thesis, only the bubble formation in the 

sac and a very brief analyse of the laser sheer dropsizing distribution of the fuels has been 

reported. The remainder will be published in due course. 

 

 Sac vorticity effects on bubble movement in the nozzle holes 8.2.1

 

During the final stages of injector needle return, needle cavitation occurred which resulted in 

the formation of bubbles in the sac volume and possibly in the nozzle holes. Due to the initial 

momentum and vortex structure of the flow, this was maintained once the needle had sealed 

and the bubbles were observed to move with high initial angular momentum which slowly 

resided. The effect of this vorticity in the sac volume was that it created regions of high and 

low pressure in the vicinity of the hole entries and this resulted in suction and extraction of 

bubbles observed in the nozzle holes. Initially the pressures would be high enough to 

suddenly change the momentum of an out flowing bubble and draw it inwards to the sac. With 

the observations of bubble motions into the sac volume, there is a possibility of external gases 

entering as well. In engine conditions this would be hot combustion exhaust gases at high 

temperature entering the nozzle holes and possibly into the sac volume. Reactions of the 

bubbles at the high temperature with the added exhaust gas mixture may lead to the formation 

of particulates in the nozzle holes and sac volume. In addition the bubbles may have degassed 

air inside them and may not be purely fuel vapour. Air may have dissolved within the fuel in 

the fuel filters and fuel tanks where conditions arise as a result of pressure differences and 

high temperature fuel returning into the tank. The air comes out of solution during the sudden 

decrease in pressure at needle return to form bubbles inside the sac volume. These bubbles 
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form a highly reactive air, fuel vapour mixture in the presence of hot surfaces which may lead 

to the formation of deposits on the nozzle surfaces and sac volume. This may also lead all the 

way inside the injector volume as deposits have been observed on the needle surface itself. 

 

 External spray drop sizing 8.2.2

 

The three fuels analysed had different distillation profiles. LIF-MIE images obtained were 

homographically aligned by software and checked for validation by matching structures on 

the matched images. False colour images were produced of time resolved LIF over MIE 

ratioed images showing the spray SMD distributions. Probability distributions were then plot 

to show the ranges in SMD drop size for the fuels with different distillation profiles between 

0-1.5 SMD intensity. In conclusion, the fuel D with the lower distillation ranges showed 

lower spray Sauter mean diameter distributions in comparison to the heavy/higher distillation 

point fuels A and B. Fuels A and B which both had higher distillation profiles also differed in 

their SMD distributions observed of the sprays. The probability distribution at high needle lift 

showed large differences in SMD distributions of the fuel sprays relative to their distillation 

profiles.  

 

The effects of viscosity differences in the fuels on the spray SMD distribution have thus far 

not been investigated as they are beyond the scope of the thesis and will form part of further 

publications. It is thought that the atomisation occurring is cavitation induced, due to the 

spray ejecting into non-evaporative conditions. Thus further clues of the cause the differences 

in the SMD lies in the images captured of the cavitation occurring inside the nozzle holes. 
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The work here has shown different pathways onto deposit formation as a result of cavitation 

occurring in the fuels using various optical techniques to characterise cavitation and deposit 

formation resulting from cavitation. It has also shown the spray Sauter mean diameter 

distributions of fuels will different viscosities and distillation curves. The distinction on 

whether the resulting Sauter mean distributions are as a result viscosity or distillation profiles 

will form part of future publications post analysis of the internal nozzle cavitation images. 

 

8.3 Further Work 

 

The work reported here, the sustained cavitating flow analysis has been conducted at medium 

pressure of 550 bar. A higher pressure evaluation is required for further analysis of fuels 

under sustained cavitation in order to match current FIE injection pressures. The effects of 

higher pressure on paraffinic fuels is of interest as long term cavitating flow conditions at 550 

bar did not show any effects on the laser attenuation through the fuel. It is also of interest on 

the GC analysis of the paraffinic fuels post sustained cavitating flow conditions. This would 

confirm the changes occurring in the paraffinic fuels and whether they react to form 

particulates as a result of sustained cavitation. 

 

The temperature effects on the laser attenuation were observed in 4.1.1. The analysis was very 

brief; however a more detailed time resolved temperature profile relation to the temperature at 

measurement point is of interest. If the results are comparable to those seen here, the laser 

attenuation measurement setup could be used effectively as a thermometer once calibrated for 

a specific liquid. 
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In order to confirm the routes to the formation of particles in diesel fuels undergoing 

cavitating flow conditions, a validated kinetic model containing a range of species is required. 

Once obtained, this will also allow a comparable quantitative analysis where the laser 

attenuation could be worked back to from the results of the kinetic modelling. A 

comprehensive GC x GC analysis with the full set of results would provide a comprehensive 

analysis of the breakdown of the species. The results obtained here were summarised to class 

and the results were provided as images as in Figure 4.32 obtained without any detailed 

information. If the full comprehensive information was available it would be possible to 

observe the detailed changes in hydrocarbon species and also possibly calibrate a kinetic 

model. 

 

It has been observed here that long term cavitating flow conditions are leading to the 

formation of soot particles in suspension, however it is unknown how these fuels will perform 

under combusting conditions. It is also not known how these cavitated fuels containing 

particles will defer to the non cavitated fuels in the characterisation of the internal nozzle flow 

and external spray dropsizing. It would have been ideal to test the cavitated fuels in the LSD 

experiment and how the external spray dropsizing would have deferred to that of the original 

non-cavitated version of the fuels. That is, test FuelX in the LSD rig, then put a fresh sample 

of fuel X in the sustained cavitation rig and after 40 hours place this fuel in the LSD rig. It 

was not possible here due to sponsor obligations. It has been shown here that the fuels may 

change composition chemically and physically; however it is of interest on how these fuels 

would perform when injected. The comparison would involve carrying out the analysis 

described in Chapter 5 to Chapter 7 with a non-cavitated fuel and then running the non-

cavitated fuel in the analysis as in Chapter 3 to Chapter 4 to produce a sustained cavitating 

flow fuel sample and then running this fuel back to the analysis in Chapter 5 to Chapter 7. The 
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comparison of these two fuels would be of great interest in the quality of spray formation and 

internal nozzle cavitation. The particulates formed in the fuels as a result of sustained 

cavitating flow conditions may form additional nucleation sites for the formation of nuclei 

and result in cavitation occurring over a larger are of the hole thus increasing flow choking 

and thus resulting in lower fuel mass injected. 

 

Further analysis of the vortex flow in the sac volume in order to correctly match its vorticity 

to the bubble motion in terms of speed is required for a quantitative analysis. A better 

characterisation of the sprays using the LIF images has to be conducted with the remaining 

data which will give more conclusive evidence of flow conditions observed in the sprays 

relative to the distillation profiles, which so far have not been reported but will be published 

later. It is also of interest whether these bubbles formed post injection are degassed bubbles of 

air in the fuel. This setup may provide the thinking here, however the results will confirm the 

hypothesis that if this is the case then engine conditions, in the presence of high temperatures, 

they may form sites for particle formation. 

 

The results of the external spray sizing as seen in 7.2 do not distinguish clearly whether the 

effects are as a result of distillation profile differences of the fuels or the differences in 

viscosity of the fuels. Further analysis of the cavitation in the internal nozzle hole captured 

simultaneously to the spray and providing a link to the cause of the drop size distributions 

may lead to a conclusion. These results are readily available and the analysis may be carried 

forward and form future publications. 
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Appendix A 

 

A.1 Laser Absorption Calibration for Optics 

 

The optical calibration of the absorption of laser light through the optics will be presented 

here. The laser power incident on the diesel samples I0 has to pass through the reference beam 

splitter, followed by the fused silica window into the optical cell, i.e.            , where    is the transmission factor through the OD 0.03 filter,      is the transmission factor through 

a fused silica window and    is the total laser power emitted.    can be expressed in terms of 

the laser power reflected from the neutral density filter onto the reference detector IR. 

 

       (    )     

Equation A.1 

 

where    is the reflectivity of the OD 0.03 neutral density filter being used as a beam splitter. 

 

The laser power exiting the diesel samples passes through a fused silica window before being 

reflected onto the transmission power detector. The laser power measured at the detector is 

denoted by IT3 (M) and it is related to the laser power exiting the diesel sample in the optical 

cell IE by, 

               

Equation A.2 
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where      is the transmission coefficient for the exit fused silica window and   is the 

reflectivity of the final mirror. The time derived spectral attenuation coefficient is then 

derived from Equation 3.5 to be, 

 

                         (    )          

Equation A.3 

 

where   is the optical path length of the laser through the diesel fuel sample in the optical cell. 

This was measured to be 1.03 cm ± 0.01 cm. 

 

The calibrations were carried out with no fuel present in the optical cylinder in the setups it 

was utilized in, apart from the fused silica transmissivity test where, room temperature 

paraffinic model fuel was used. The windows were cleaned of any fuel and dirt that would 

cause any small errors. The measurements were calibrated and run under a covering box 

similar to the cavitation analysis measurement runs. 

 

Three different setups were used in the approach. These setups are seen in Figure A.1. The 

first setup was the actual setup that replicated the cavitation analysis optical setup. The second 

setup replicated the first excluding the end mirror that reflected the laser beam onto the 

transmission detector. An analysis between these two approaches and changing the beam 

intensity by changing the beam splitter to a lower transmitting filter enables the calculation of 

the mirror absorbance. An equation will be developed to relate the intensity measured at the 

transmission detector IT3 (m) and the intensity of the beam prior to the mirror IT3.  
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Figure A.1 Laser beam detector setup and nomenclature (1)Actual setup, (2) No mirror Setup (3) Double splitter 
setup 
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The nomenclature in the Figure A.1 denotes intensities at different beam regions and is as 

follows: 

Actual Setup 

IT  - Total intensity emitted by laser  

IR - Part of Intensity IT reflected to by beam splitter  

IT2 - Part of intensity IT transmitted through filter/splitter      - Intensity IT2 absorbed by window 1 

I o  - Intensity at laser entry into fuel 

IE  -  intensity before window 2      - Intensity absorbed by window 2  

IT3 (M) - Final intensity into detector 2 (mirrored) 

 

No Mirror Setup 

IT3 (A) - Final intensity onto detector 2 (un-mirrored) 

 

Double splitter setup 

IT1- Laser intensity past First beam splitter 

 

In the second and third setup, the transmission detector was repositioned so that the beam 

would travel the same distance as in setup 1 past the fuel exit, i.e. 17.5 cm. The third setup 

replicated the second and included an extra beam splitter placed before the actual splitter that 

was used in the experimental analysis setup. This setup will be used solely to calculate a 

relationship between the reference detector intensity readings IR and the intensity transmitted 

past the splitter IT2.  

 

By using second approach solely through only one window in the optical cylinder and 

changing the beam intensities would give an approximation of the window absorbance. An 
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equation that relates the laser beam intensity past the beam splitter IT2 and the window 

absorbance Iabs1 will be developed to determine the laser beam intensity Io at the entry to fuel. 

One that relates the intensity prior to the mirror IT3(A) and the exit window will be developed 

to calculate the fuel exit laser beam intensity IE. 

 

In setups 1-2, three beam splitters were used to create a change in beam intensities. Beam 

splitter 1 was a neutral density filter that transmitted approximately 90% and reflected 

approximately 10% of the incident laser beam. This splitter/neutral density filter is the same 

one used in the optical setup during the cavitation analysis. Beam splitter 2 was also a neutral 

density filter that transmitted ~85% and reflected ~15% of the incident beam. The third one is 

an actual 50:50 beam splitter and transmitted ~50% of the incident light. 

 

During setup 3, splitter 1 was placed in its original position and splitter 2 and splitter 4 placed 

simultaneously ahead of this to create a change in incident beam. Splitter 2 has been described 

in the earlier paragraph. Splitter 4 is a neutral density filter that transmits ~55% of incident 

beam. 

 

The following subchapters will elaborate on the development of the beam relationships to 

eradicate the absorbance through the components and finally a formula developed to calculate 

the time resolved linear attenuation. 

 

A.1.1 Mirror absorption (relationship between IT3(m) and IT3(A)) 

 

By following setup 1 six measurements were obtained as seen in Figure A.2 by changing the 

components in the laser path. Tests 1, 4 and 5 were repeated with two other neutral density 
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filters, each transmitting less than the other. The first beam splitter used was splitter 1, 

followed by splitter 2 and then splitter 3. The beam splitter/neutral density filter 

characteristics have been described earlier. Different transmission filters enables a change in 

incident laser beam intensity and further analysis of the mirror absorption can be carried out 

relative to the incident intensities. 

 

Signal test 1 replicates the optical setup used in the cavitation analysis. In signal tests 2, 3 and 

6 the beam splitters are absent. Signal test 3 measures the full mirrored beam power and 

signal test 4, both the reference and transmission detector powers, both setups without the 

optical cylinder. Signal tests 5 and 6 are intensity measurements with one fused silica window 

on the optical cylinder. 

 

Following these measurements, no mirror setup 2 was employed to carry out further laser 

intensity signal tests as seen in Figure A.3. As earlier described, three splitters were used to 

change the incident laser beam. The splitters used were the same as the ones used when 

carrying out signal tests using the actual setup, i.e. Splitters - 1, 2, and 3. The difference in 

these tests is that the end mirror that reflects the laser beam past the optical cylinder has been 

omitted.  

 

Simultaneously comparing the transmission detector intensity readings for each test carried 

out following the actual setup and the corresponding test with the no mirror setup, and 

plotting these values on a graph for comparison will inhibit the development of a relationship 

between the IT3(A) and IT3(m). Comparing the transmission detector results for tests from both 

setups, for example test 1 will give one result with a mirror present and the other without a 

mirror present, and a relationship can be developed to calculate IT3(A) using IT3(m). 
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Figure A.2 Laser intensity signal intensity tests carried the actual setup 1 

 

Table A.1 shows the results obtained. These will be plot on a graph as IT3(A) vs. IT3(m), and a 

trend line with a zero XY intercept plot to determine the line equation and thus their 

relationship. The zero intercept was set as with no incident intensity there would be no 

transmission intensity and thus there would be no absorption of the incident laser intensity by 

the optical component. That is at IT = 0, there would be no laser absorption as there is no 

incident laser beam. 
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Figure A.3 Laser intensity signal test setups following no mirror setup 

 

 
 

Test 
No. 

Splitter 1 Splitter 2 Splitter 3 
Actual 

Setup Test 
Results-  
IT3(m) (y) 

No Mirror 
Setup Test  

Results-IT3(A)  
(x) 

Actual 
Setup Test 
Results-
IT3(m)  (y) 

No Mirror 
Setup Test  

Results-IT3(A)  
(x) 

Actual 
Setup Test 
Results- 
IT3(m)  (y) 

No Mirror 
Setup Test  

Results-  IT3(A) 
(x) 

1 12.02 
 

13.89 10.11 11.59 6.37 7.3 

2 13.5 15.26 - - - - 

3 15.56 17.82 - - - - 

4 13.84 15.91 11.65 13.43 7.36 8.55 

5 12.78 14.72 10.81 12.4 6.81 7.91 

6 14.35 16.48 - - - - 

Table A.1 Comparison of Mirrored and no mirrored data using three different beam splitters 

 

 
Figure A.4 Graph of IT3(A) vs. IT3(m) with a equation trend line 
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From the trend line equation as seen in Figure A.4, 

                      
Equation A.4 

 

Therefore, 

               

Equation A.5 

 

With a linear correlation of R2=0.993. Using Equation A.5 and known value of IT3(m), IT3(A) 

can be calculated. Using Equation A.3 and IT3(m) results obtained, IT3(A) values were calculated 

and compared to the previously determined values of IT3(A) via calibration setup to 

approximate the errors created. From Table A.2 a comparison between the values of derived 

and actual IT3(A) produced a mean relative error of 0.5%. The final mirror is determined to 

reflect 0.871 ± 0.001 of the incident laser power on it, therefore    = 0.871. 

 

Actual No mirror IT3(A) 
(mW) (±0.01) 

Calculated IT3(A) 
(mW) (±0.01) Error (%) 

13.89 13.80 0.644 
15.26 15.49 -1.549 
17.82 17.85 -0.211 
15.91 15.89 0.148 
14.72 14.67 0.402 
16.48 16.48 0.009 
11.59 11.61 -0.158 
13.43 13.38 0.398 
12.40 12.41 -0.099 
7.30 7.31 -0.222 
8.55 8.45 1.185 
7.91 7.82 1.118 

Table A.2 Comparisons of actual and calculated IT3(A). 

 



 

 

374 
 

A.1.2 Beam splitter transmission-reflection (relationship between IR and IT2) 

The splitter transmissivity can be determined by predicting a relationship experimentally 

between the reflected intensity IR and the transmitted intensity IT2. Out of these two, IR is the 

only known value from cavitation experiments, thus a relationship of beam IR and IT2 will 

enable the determination of the later by this relationship. Signal tests 3 and 4 as seen in Figure 

A.3 were used in conjunction with intensity signal tests 7 and 8 seen in Figure A.5 below. 

Test 7 and 8 had two beam splitters, the first splitter was to decrease the incident laser 

intensity arriving on to the second beam splitter which the reflected light onto the reference 

detector and allowed transmission onto the transmission detector. The beam splitter that split 

between the reference and transmission detectors was splitter 1, that is, the splitter used in the 

cavitation analysis optical setup. Two neutral density filters were used i.e. splitter 2 and 4 to 

vary light onto splitter 1. The objective was to determine a relationship between the reflected 

and transmitted light of splitter 1 with varied incident intensity. Splitters 2 and 4 filtered light 

at different magnitudes. 

 

 

Figure A.5 Laser intensity signal tests following double splitter setup 

 

The above tests were repeated thrice to reduce errors and results are shown in Table A.3 

below. 

 

For the signal tests with 2 splitters, IT is determined using the transmission detector reading of 

signal test 8. IR and IT2 are determined using signal test 7. For single beam splitter tests 3 and 

Signal Test 7 Signal Test 8 
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4, the IT is determined by test 3 and the later test determines intensities IR and IT2. A scatter 

graph of IR vs. IT2 with a trend line to determine the equation of their relationship was plot. 

 

Repeat number  Intensity Signal Test 
number 

I T  (mW) 
(±0.01) 

I R (mW) 
(±0.01) 

I T 2(mW) 
(±0.01) 

1 Splitter 4 test 7 & 8 9.65 0.95 8.68 

Splitter 2 test  7 & 8 14.02 1.40 12.56 

Test 3 & 4 17.81 1.77 16.02 

2 Splitter 4 test 7 & 8 9.56 0.96 8.62 

Splitter 2 test  7 & 8 13.93 1.37 12.46 

Test 3 & 4 17.68 1.78 15.82 

3 Splitter 4 test 7 & 8 9.56 0.94 8.59 

Splitter 2 test  7 & 8 13.98 1.37 12.58 

Test 3 & 4 17.77 1.77 15.98 

Table A.3 IT, IR, IT2 obtained from setup tests 3 

 

 
Figure A.6 Graph of IR vs. IT2 with a trend line 

 

From the graph and trend line,             

Equation A.6 

 

with a linear correlation coefficient of R2=0.9982. Replacing IR values from Table A.3 and 

inserting them into Equation A.6 will provide calculated data for IT2. Comparing these 

calculated values to actual values from Table A.3 will give an estimation of errors created by 
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using this equation to estimate IT2 given IR. A comparison between the values of IT2 derived 

from the proportional relationship with the measure values produced a mean relative error of 

0.8%. The neutral density OD0.03 filter reflected 0.099±0.001 of the incident laser power on 

it, onto the reference detector. Therefore, in Equation A.3,  (    )   = 9.03. 

 

IT2 (mW) 
(±0.01) 

Calculated IT2 (mW) 
(±0.01) 

Error (%) 
(±0.01) 

8.68 8.58 1.214 

12.56 12.68 -0.7 

16.02 15.98 0.227 

8.62 8.67 -0.573 

12.46 12.41 0.376 

15.82 16.07 -1.612 

8.59 8.49 1.178 

12.58 12.37 1.654 

15.98 15.98 0.055 

Table A.4 Comparison of actual and calculated IT2, and an estimate of errors. 

 

A.1.3 Fused silica window transmissivity Tfs 

The fused silica windows had to be calibrated with a transparent fluid flowing through the 

optical cell during calibration measurements, with the transparent fluid having a refractive 

index matching those of the diesel samples. This was in order to calibrate the effect of the 

laser passing from air into the fused silica window then into the diesel sample, to be followed 

by the laser exiting the fuel and entering the fused silica window and into the air. 

 

Paraffinic model fuel blend was employed as a model diesel in order to calibrate the optical 

transmission of the laser through the fused silica windows sealing the optically accessible cell. 

The fuel was almost transparent to the diode laser light at 405nm. Intensity signal tests 3-6, 

shown in Figure A.3 were used as the experimental arrangement necessary to calibrate the 

transmission through the fused silica windows. 
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The transmission through the fused silica windows were measured using Signal setup 3 and 

Signal setup 7 in Figure A.3. The beam power transmitted through the fused silica windows 

were compared with the beam incident directly on the transmission detector. The transmission 

through the fused silica windows and the transparent cold paraffinic model fuel was 

determined to be 0.970±0.001. Therefore the combination effect of the two windows          

as seen in Equation A.3 is 0.970.  

 

A.1.4 Determination of linear attenuation coefficient α 

The optical setup during the cavitation analysis only provides IR and IT2(m) as a function of 

time. The linear attenuation coefficient Equation 3.5 requires the inputs Io and IE. Using the 

calibration analysis in sections A.1.1 to A.1.3 above these values can be calculated to 

determine the linear attenuation coefficient. Replacing the values obtained in sections A.1.1 to 

A.1.3 in Equation A.3 gives, 

     (            )         

Equation A.7 

 

This will be used with time resolved reference and transmission detector readings to calculate 

a time resolved linear attenuation coefficient for the commercial fuels. 

 

When carrying out measurements for paraffinic model fuel and paraffinic model fuel - B20, 

the setup had been changed by removing the mirror and having the final transmission laser 

power detector directly in line with the laser. The calibrations were redone without having to 

calibrate for the reflectivity of the mirror. The linear attenuation coefficient equation for these 

two fuels is, 
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     (            )         

Equation A.8 
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Appendix B 

B.1  Kinetic Modelling for the Pyrolysis of a Surrogate Fuel 

 

Chemical kinetics deals with the rates of reactions. In order for a reaction to occur, a collision 

must occur; the collision must be of sufficient energy to break the necessary bonds and be of 

proper orientation. This is the basis of reaction rates. Factors effecting reaction rates are 

concentration of the reacting species found in the rate law, temperature and the presence or 

absence of a catalyst. The reaction rate is defined as the change in concentration of a reactant 

with time. Consider a reaction:      

Equation B.1 

 

The rate of reaction with respect to A is, 

       [ ]   

Equation B.2 

 

Whereas with respect to B is, 

      [ ]   

Equation B.3 

 

In the equations, the squared brackets represent the concentration or the number of moles of 

the species present. The negative sign seen in Equation B.2 represents a species being 

consumed. 

 



 

 

380 
 

Now consider a reaction,             

Equation B.4 

 

Where the lowercase letters represent the concentration or the number of mole of the higher 

case species. 

          [ ]       [ ]      [ ]      [ ]   

Equation B.5 

 

The rate law of the chemical equation is however,       [ ] [ ]  

Equation B.6 

 

Where x and y are the reactant orders determined from experiment and k is the rate constant. 

The rate law is an equation that tells us how fast the reaction proceeds and how the reaction 

rate depends on the concentrations of the chemical species involved. There are several types 

of orders of reaction described powers or sum of powers of the rate law equation as seen in 

Table B.1 

Rate law Order 
Rate = k Zero 

Rate= k[A] 
First order with respect to A  
First order overall 

Rate= k[A]2 
Second order with respect to A 
Second order overall 

Rate= k[A][B] 
First order with respect to A 
First order with respect to B 
Second order overall 

Rate= k[A][B][C] 

First order with respect to A 
First order with respect to B 
First order with respect to C 
Third order overall 

Table B.1 Relationship between Rate law, order and rate constant k 
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Only a small fraction of the collisions between reactant molecules convert the reactants into 

the products of the reaction. Another factor that influenced whether reaction will occur is the 

energy the molecules carry when they collide. Not all of the molecules have the same kinetic 

energy. This is important because the kinetic energy molecules carry when they collide is the 

principal source of the energy that must be invested in a reaction to get it started. Before the 

reactants can be converted into products, the overall collision energy must overcome the 

activation energy for the reaction. However this is not always the case, even if collision 

energy does not surpass the activation energy the reaction may still go ahead by a process 

known as quantum tunnelling. Quantum tunnelling is the quantum-mechanical effect of 

transitioning through a classically-forbidden energy state. To understand the phenomenon, 

particles attempting to travel between potential barriers can be compared to a ball trying to 

roll over a hill; quantum mechanics and classical mechanics differ in their treatment of this 

scenario. Classical mechanics predicts that particles that do not have enough energy to 

classically surmount a barrier will not be able to reach the other side. Thus, a ball without 

sufficient energy to surmount the hill would roll back down. Or, lacking the energy to 

penetrate a wall, it would bounce back (reflection) or in the extreme case, bury itself inside 

the wall (absorption). In quantum mechanics, these particles can, with a very small 

probability, tunnel to the other side, thus crossing the barrier. Here, the ball could, in a sense, 

borrow energy from its surroundings to tunnel through the wall or roll over the hill, paying it 

back by making the reflected electrons more energetic than they otherwise would have been 

[198]. 

 

The activation energy Ea is the minimum energy that must be input into a chemical system in 

order for a chemical reaction to occur. The Arrhenius equation gives the quantitative basis of 

the relationship between the activation energy and the rate at which a reaction proceeds. 
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Equation B.7 

 

Where A is the frequency factor for the reaction, R is the universal gas constant and T is the 

temperature in Kelvin. 

 

Many factors influence rates of chemical reactions, and these are summarized below.  

 Nature of Reactants- Acid-base reactions, formation of salts, and exchange of ions are 

fast reactions. Reactions in which large molecules are formed or break apart are 

usually slow. Reactions breaking strong covalent bonds are also slow. 

 Temperature- Usually, the higher the temperature, the faster the reaction. The 

temperature effect is discussed in terms of activation energy. 

 Concentration Effect- The dependences of reaction rates on concentrations are called 

rate laws. Rate laws are expressions of rates in terms of concentrations of reactants. 

Keep in mind that rate laws can be in differential forms or integrated forms. They are 

called differential rate laws and integrated rate laws.  

 Heterogeneous reactions- reactants are present in more than one phase. For 

heterogeneous reactions, the rates are affected by surface areas. 

 Catalysts- substances used to facilitate reactions. By the nature of the term, catalysts 

play important roles in chemical reactions. Catalysts increase the rate of reaction and 

are not consumed by the reaction 

 

The experimental results have led to hypothesis of particulate/soot formation which may be 

the results of a pyrolysis like process occurring as a result of sustained cavitating flow. Many 

researchers have studied and modelled the formation of soot/particulates as a result of poly 
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aromatic hydrocarbon PAH formation [182,199–205]. The particles formed then grow by 

coagulation and surface reactions. From a study by Tosaka et. al [182], they found that n- 

hexadecane disintegrated into low boiling point hydrocarbons as a result of thermal pyrolysis, 

and subsequently formed Benzene and alkyl-benzenes by the Diels-Ader reaction. Heating n-

hexadecane to temperatures between 600-1200ºC created polycyclic compounds by 

condensation polymerization which then formed PAHs. They concluded that the carbon-

carbon bonds in aliphatic hydrocarbon (paraffin, olefin, and napthenes) are thermally 

decomposed to low boiling point hydrocarbons, and benzene rings are then formed by 

dehydrogenation, condensation polymerization and polycyclization. This may be the basic 

process of primary particle formation passing through polycyclic aromatic hydrocarbons to 

become primary particles. The bond dissociation energies of aliphatic hydrocarbons depend 

on carbon links, and the dissociation energies are small. The temperature where fine particle 

formation is initiated may be lower when the formed amounts are higher.  They found the 

thermal decomposition process of aromatic hydrocarbons clearly different from that of 

aliphatic hydrocarbons. The benzene ring was not decomposed and the formation of 

particulate took place by condensation polymerization via PAH. 

 

Soot is mostly carbon and it is produced during the high temperature pyrolysis or combustion 

of hydrocarbons. As hydrocarbons pyrolyze, they produce primarily smaller hydrocarbons, in 

particular acetylene. The initial step in the production of soot is the formation of the first 

aromatic species from these aliphatic hydrocarbons [206]. The aromatic species grow by the 

addition of other aromatic and smaller alkyl species to form larger PAHs. Continued growth 

of the PAH leads eventually to the smallest identifiable soot particles with diameters of the 

order of 1 nm and with masses of around 1000 amu. Once soot particles are formed through 
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the inception process, they can grow by two mechanisms i.e., collisional coagulation and 

surface growth. The former process is physical while the latter process is chemical in nature.  

 

When particles are small and surface growth is active, collisions between particles generally 

lead to the formation of a larger spheroid via the process of coalescence. Older particles 

undergo agglomeration in which the individual spheroids are retained in long chains with a 

fractal like geometry. The formation of large amounts of PAH and aromatics compounds is 

troublesome as these species are precursors of the formation of soot and even coke at high 

temperature [207] which generate solid deposits in the injection channels and a fouling in the 

combustion chamber. 

 

In the furnace process, carbon black is produced by the continuous pyrolysis of hydrocarbons, 

which are sprayed into a high-temperature field (1500–2000 K) inside the furnace. The 

process is complicated owing to the fact that chemical reactions occur rapidly with heat and 

mass transfer, and therefore, it is difficult to control the aggregate shape. The formation 

mechanism for carbon black is considered to be as follows. Large molecules are considered to 

be the precursors of carbon black particles. Although various theories have been proposed for 

the reaction mechanism of pyrolysis, all of the recent studies conclude that in both pyrolytic 

systems and flame systems, PAHs are the precursors of carbon nuclei [208,209]. The primary 

soot particles expand either by the addition of molecules from a gas phase, such as acetylene, 

or by reaction with smaller PAHs [39]. At the start of the reaction, a large number of particles 

are produced. These particles collide to produce larger spherical particles, which then 

aggregate into final carbon black clusters. The particles are converted into amorphous Carbon 

and a progressively more graphitic material in the furnace. This is because graphite is the 
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most thermodynamically stable form of carbon. With a long residence time, it is believed that 

aggregate growth occurs as a result of fusion among primary particles [210].  

 

Herbinet et. al [211] found the production of hydrogen, methane, ethane, 1,3 butadiene and 1-

alkenes from ethylene to 1 undecene in the thermal decomposition of n-dodecane in a jet 

stirred reactor at temperatures from 793 K to 1093 K, for residence times between 1 and 5 

seconds at atmospheric pressure. For higher temperatures and residence time’s acetylene, 

allene, propyne, cyclo-pentene, 1, 3 cyclo-pentadiene and aromatic compounds from benzene 

to pyrene through naphthalene were also observed by the author. 

 

 
Figure B.1 Sketch of the main pathways from the fuel components to the formation of the first soot particle [212] 
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The chemical mechanism, depicted in Figure B.1 describes the decomposition of the different 

molecular components, the oxidation of the smaller species, and the formation of larger 

hydrocarbon molecules.  

 

The processed involved in PAH and soot formation are summarised as in [39]: 

 Formation of molecular precursors of soot- the molecular precursors of soot are 

thought to be heavy PAHs of molecular weight 500 - 1000 amu. The growth process 

from small molecules such as benzene to larger and larger PAH appears to involve 

both addition a C2, C3 or other small units, among which acetylene has received much 

attention, to PAH radicals, and reactions among the growing aromatic species, such as 

PAH–PAH radical recombination and addition reactions. The relative contribution of 

the different types of growth reactions seems to depend on the fuel. In the case of 

aromatic fuels such as benzene, acetylene and other active reactants for aromatics 

formation are formed in relatively large concentrations in the breakdown of the fuel, 

whereas in the case of aliphatic fuels such as acetylene, ethylene or methane, the first 

aromatic ring must be formed from fuel decomposition products by a sequence of 

elementary reactions in which the active ring formation reactants are in lower 

concentrations than in the aromatics flames.  

 Nucleation or inception of particles from heavy PAH molecules- in this process mass 

is converted from molecular to particulate systems, i.e. heavy PAH molecules form 

primary soot particles with a molecular mass of approximately 2000 amu and an 

effective diameter of about 1.5 nm. PAH of increasing size are mainly formed by 

sequences of chemical reactions of radicals of smaller PAH with acetylene, PAH or 

PAH radicals. At some size, PAH species react with each other while individual PAH 

keep on growing; particle inception (nucleation) occurs. 
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 Mass growth of particles by addition of gas phase- After the formation of the primary 

soot particles their mass is increased via the addition of gas phase species such as 

acetylene to the PAH, including PAH radicals. PAH growth via the addition of 

acetylene to the initial adduct may play a significant role in the formation of larger and 

larger PAH, especially at high pressure and relatively low temperature. In addition 

molecule size may favour the stabilization of the initial PAH–C2H2 adducts and 

therefore their contribution to the growth process. Wang and Frenklach [213] as 

reviewed by Ritcher [39], addressed not only the issue of acetylene addition to PAH 

radicals containing up to three aromatic rings but also the formation of acenaphthalene 

in competition with the formation of 1-naphthylacetylene or the corresponding 1-

C10H7C2H2 adduct. Another key reaction investigated by Wang and Frenklach was the 

second step of the H-abstraction/ C2H2-addition sequence which leads from the first 

to the second aromatic ring, i.e. the reaction of the 2-phenylacetylene radical followed 

by cyclization. 

 Coagulation via reactive particle-particle collisions- Sticking collisions between 

particles during the mass growth process significantly increases particles size and 

decreases particle number without changing the total mass of soot present. Particle 

sizes increase further by collision of growing soot particles. Initially, colliding 

particles coalesce completely yielding new spherical structures while later they 

agglomerate into, chainlike structures [214]. 

 Carbonization of particulate matter - At higher residence times under pyrolytic 

conditions in the post flame zone, the polyaromatic material comprising the yet 

formed particles undergoes functional group elimination, cyclization, ring 

condensation and ring fusion attended by dehydrogenation and growth and alignment 

of polyaromatic layers. This process converts the initially amorphous soot material to 
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a progressively more graphitic carbon material, with some decrease in particle mass 

but no change in particle number. 

 

Blanquart [212] analysed the effects of temperature between 450K to 2000K, on the 

prediction of soot volume fraction in flames and found that the soot model predicted a bell 

shaped curve. The soot volume fraction increases until a threshold temperature and then 

decreases as the temperature is further increased. It was found that nucleation and 

condensation dominate at low temperatures while growth by surface reaction is more active at 

intermediate to high temperatures. The chemical composition of soot particles has been 

investigated by considering the surface reactivity and the volumetric carbon-to-hydrogen 

ratio. As postulated in many soot models, the surface reactivity was shown to decrease with 

increasing temperature. However, the reactivity of large aggregates was found to be much 

larger than that of small spherical particles. On the other hand, large aggregates exhibit a 

larger C/H ratio characteristic of a more carbonized particle resulting from strong surface 

reactions. 

 

Diesel fuels as discussed in earlier sections consist of paraffins, napthenes and aromatics. As 

per the references above, given the right conditions, any of these constituents can break down 

to form aromatics and thus PAHs.  

 

B.1.1 Kinetic model and setup 

 

The purpose of this study was to investigate soot formation from the pyrolysis of a kinetic 

model. The study is not qualitative as it is not possible to work backwards to work out the 

absorptivity determined earlier.  The model has not being validated and is used here just as a 
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indicative tool. The composition of the model fuel was developed using various references 

found in the literature review section and the GC x GC analysis results. Kinetic mechanisms 

were obtained from two sources and thereafter combined to include a wider set of chemistry 

as will be discussed later in this section. The model fuel was input into chemical kinetics 

software and a chemical kinetics analysis carried out to detect the formation of 

soot/particulates from the pyrolysis of the fuels. The temperature and pressure profiles were 

modelled as polytropic process (n=1.25) as an approximation of bubble collapse using time 

steps of 1 microsecond as seen in Table B.2. The volume was modelled to half at each time 

step to try and replicate a bubble collapsing. The polytropic relationships of pressure and 

temperature to volume ratio are as follows: 

 

        
      

Equation B.8 
 

 

        
        

Equation B.9 
 

Where p(t) and T(t) represents the pressure and temperature at time t seconds respectively, n 

is the polytropic constant, the subscript o represents the values at time 0 s, Vo/V(t) represents 

the volume ratio which double at every time step (halves with respect to the initial volume at 

time t= 0 s). The pressure and temperature at t= 0s were taken to be ambient i.e. 1 atm and 

300 K respectively. The polytropic process was modelled up till the pressure reached 1 GPa 

as observed by many researchers theoretically and experimentally as the collapse pressure 

[215]. The polytropic constant was chosen that would link peak pressure of about 1 GPa to 

about 2000K temperature. 



 

 

390 
 

 

Time 
(s) 

Temperature(t) 
(K) 

Pressure(t) 
(atm) 

v0/v (t) 

0.0E+00 300.00 1.00 1 

1.0E-06 356.76 2.38 2 

2.0E-06 424.26 5.66 4 

3.0E-06 504.54 13.45 8 

4.0E-06 600.00 32.00 16 

5.0E-06 713.52 76.11 32 

6.0E-06 848.53 181.02 64 

7.0E-06 1009.08 430.54 128 

8.0E-06 1200.00 1024.00 256 

9.0E-06 1427.05 2435.50 512 

1.0E-05 1697.06 5792.62 1024 

1.1E-05 2018.15 13777.25 2048 

Table B.2 Polytropic profile for the analysis of pyrolysis caused as a result of bubble collapse 

 

The pressure and temperature time profile were entered into kinetics software which would 

model the pyrolysis in a gas reactor given the kinetic reaction mechanism and thermodynamic 

input file. The software allows simulation of both transient and steady-state reactor systems. 

For transient systems, the user may specify controlling conditions that vary as a function of 

time. The programme requires an input gas-phase kinetics reaction file and a corresponding 

thermodynamics file containing the thermodynamics data for species present in the reaction 

file. The thermodynamics file contains: the species identification information; its phase; 7 

coefficient polynomials at two temperature ranges for fitting the Cpo ⁄ R, Ho ⁄ RT and So ⁄ R 

equations in the kinetics. 

 

Researchers from the Massachusetts Institute of Technology MIT have carried out detailed 

modelling of soot particles with diameters of up to 0.7 nm and provided chemical reaction 

mechanisms files for atmospheric pressure conditions taking into account pressure 

dependence of chemically activated reactions. The model is discussed in detail in [216] by 
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Richter et. al and used by Ergut et. al [217] in flame conditions. Their model is presented on a 

website link [218]. To gain more quantitative insight, detailed reaction networks describing 

the formation and depletion of PAH have been extended to particle formation. Most 

mechanisms are based on the above outlined scheme, i.e., they assume PAH of a certain size 

to be soot nuclei. However, also rapid polymerization of acetylene was advocated as route 

leading to carbon structures of increasing size. Two major concepts have been applied: the 

method of moments and the sectional approach. In the discrete sectional technique, the 

particle ensemble was divided into classes (BINs), properties such as mass, the numbers of 

carbon and hydrogen atoms are averaged within each section. The word BIN here refers to 

soot particles and not class sizes as in the distributions in chapters 6-7. An appealing feature 

of the sectional approach is the similarity of the description of gas phase and aerosol 

chemistry, they are directly coupled and are both written in the common form A + B → C + 

D. The main objective of the creators of this mechanism was to provide a reliable predictive 

tool for PAH and soot based on a realistic understanding of the formation process. They have 

not made any steady state assumptions in the kinetic model. Further references and 

information of this reaction mechanism can be found on [216]. This chemical kinetic 

mechanism however does not include paraffins. It is solely based on the formation of poly 

aromatic compounds from aromatics. The mechanism also had very large compounds of soot 

formed as a result of aggregation and this could not be supported by the software version 

used. They were removed from the kinetic code and thus this would mean only small 

emerging soot particles will be considered. In order to concentrate solely on pyrolysis process 

and not oxidation as this was not a flame condition, oxygenated compounds in the mechanism 

were removed. This included any oxygen containing species and reactions.  

 



 

 

392 
 

A separate reaction mechanism for the pyrolysis of n-hexadecane to aromatics was obtained 

from Olivier Herbinet at Nancy. The author is found in reference [211]. He was unable to 

provide us with the mechanism found in the reference however he was kind enough to 

generate a model for the pyrolysis of n-hexadecane using EXGAS. This initially did not have 

any aromatics formation in it however the author was once again kind enough to add the 

chemistry leading to the formation of aromatics.  

 

This reaction mechanism from Nancy was combined with the mechanism from MIT carefully. 

The reaction files were checked to identify identical species and reactions in both files. Any 

duplication was removed from the NANCY mechanism before they were both merged. The 

thermodynamic data was then compared and combined eliminating species that had been 

previously removed keeping constant care that the property data was consistent. 

 

The combined NANCY-MIT chemical reaction file was then used with the corresponding 

thermodynamic data of the species to perform the modelling. The combined file consisted of 

447 different gas phase species and 3796 possible gas phase reactions for these species. A set 

of the original and merged mechanisms and their thermodynamic data is provided in the 

supplementary CD pack. 

 

The detailed kinetic model describes the formation and consumption of PAH and soot 

developed by MIT now includes hexadecane pyrolysis species and reactions. In the 

mechanism large PAH and carbonaceous particles with diameters of up to ~70nm are defined 

as classes (BINs) covering given mass ranges. BIN radicals are denoted by BINJ are formed 

by Hydrogen abstraction from the parent BIN molecule. Classes (BINs) of very large PAH 

and of particles covering certain mass ranges have been defined. The average molecular mass 
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and the number of carbon and hydrogen atoms are assigned to each BIN. Characteristics of 

the BINs are given in Table B.3. Diameters have been determined based on the assumption of 

spherical structures and a density of 1.8 g/cm3.  BINs 4 and larger are considered as 

‘‘particles’’ while BINs 1 to 3 are conceptually treated as ‘‘large PAH.’’ This description is 

consistent with the definition of species with a molecular mass of 2000 amu and a diameter of 

1.5 nm as primary soot particles and the definition of soot as ‘‘unextractables’’ in the case of 

gravimetric determination of its concentration [216]. 

   

BIN Mass (amu) CxHy Diameter 

(nm) 

H/C 

1 201–400 C24H12 0.85 0.500 

2 401–800 C48H24 1.07 0.500 

3 801–1600 C96H48 1.34 0.500 

4 1601–3200 C193H84 1.69 0.435 

5 3201–6400 C388H144 2.13 0.371 

6 6401–12,800 C778H264 2.68 0.339 

Table B.3 Definition of classes of molecules (BINs) describing large PAH molecules and soot particles [216]. 

 

As mentioned earlier, due to the capability of the older freeware version of Chemkin not 

being able to handle large mass species, BINs larger than BIN6 have been eliminated and thus 

the analysis will show the formation of smaller soot particles of diameters between 1.69 - 2.68 

nm, and very large PAHs. 

 

The model fuel constituents are described in Table B.4. The table shows reactant names as 

present in the kinetic mechanism. The process was modelled to be a transient case. The 

polytropic pressure and temperature model were varied in time steps of 1 microsecond (Table 

B.2) with the fuel reactants being input as seen in Table B.4 and results obtained. 
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Model fuel 
Class Reactants Number of moles 

Paraffins (75% v/v) C16H34-1 (n-hexadecane) 0.75 

Mono- aromatics (20% v/v) 

C8H10 (Ethyl-Benzene) 0.1 

C6H6 (Benzene) 0.03 

C7H8 (Toluene) 0.01 

Indane 0.03 

Indene 0.03 

Di-aromatics (4% v/v) 

C10H8 (Naphthalene) 0.01 

A2CH3-1 (Methyl-naphthalene) 0.02 

C12H10 (Biphenyl) 0.005 

A2R5 (Acenaphthylene) 0.005 

Tri(+) aromatics (1% v/v) 

A3L (Anthracene) 0.002 

Pyrene 0.003 

A3 (Phenanphthrene) 0.004 

A4 (Tetraphene) 0.001 

Table B.4 The constituents of the model diesel fuel used to model the formation of soot particulates under pyrolysis. 

 

 

B.1.2 Model results 

 

The results here are based on kinetic modelling carried out using the aurora code of Chemkin 

software package using the polytropic pressure and temperature profile with respect to 1 µs 

time steps described in Table B.2, the diesel fuel model in Table B.4, the modified chemical 

reaction database and modified thermodynamic data files. The reaction files are provided in a 

separate CD attached herewith. The CD contains the NANCY and MIT mechanisms and the 

combined mechanism used in the modelling here. 

 



 

 

395 
 

Changes in mole fractions as a result of the polytropic modelling can be seen in Figure B.2 - 

Figure B.5, and the percentage changes in species with respect to their initial mole fractions 

can be found in Table B.5. 

 

 

Figure B.2 Change in mole fractions of Paraffins 

 
Figure B.3 Change in mole fractions of mono aromatics present in the model fuel 
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Figure B.4 Change in mole fractions of di- aromatics present in the model fuel 

 

 

Figure B.5 Change in mole fractions of tri (+) aromatics present in the model fuel 
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Model fuel 

Class Reactants 
Percentage change in moles 

decrease/increase (%) 

Paraffins (75% v/v) 

 Overall change 38.69% 
C16H34-1 (n-hexadecane) 100.00 / 0 

Mono- aromatics (20% v/v) 

Overall Change 72.41% 

C8H10 (Ethyl-Benzene) 99.30 / 0 

C6H6 (Benzene) 76.51 / 387.2 

C7H8 (Toluene) 17.35 / 157.1 

Indane 100.00 / 0 

Indene 97.35 / 0 

Di-aromatics (4% v/v) Overall 

change 41.257% 

C10H8 (Naphthalene) 72.35 / 157.3 

A2CH3-1 (Methyl-

naphthalene) 
86.86 / 0 

C12H10 (Biphenyl) 88.54 / 0 

A2R5 (Acenaphthylene) 78.68 / 35.16 

Tri(+) aromatics (1% v/v) 

Overall change 38.75% 

A3L (Anthracene) 90.29 / 0 

Pyrene 96.27 / 0 

A3 (Phenanthrene) 76.90 / 18.99 

A4 (Tetraphene) 84.22 / 0 

Table B.5 Percentage change species mole fractions present in the model fuel with respect to the initial mole fractions 
present 

 

As seen in the figures above displaying the changes in mole fraction of species present in the 

model diesel fuel, changes only start occurring after  8 µs due to the temperature and pressure 

aft this point being high (past 1000K and 1700atm). Hence the graphs start changing post 8 

µs. The highest overall changes occurred in the mono-aromatics and di-aromatics species 

present in the model fuel. Some of the species present show a sudden increase in mole 

fraction in the last two time steps i.e. Benzene, toluene, naphthalene, acenaphthylene and 

phenanthrene, as observed in Figure B.2 - Figure B.5. In Table B.5, the percentage decrease 

has been calculated with respect to the minimum mole fraction reached and the mole fraction 

of the species at the start. The percentage increase has been calculated between the minimum 

mole fraction reached and the following increase in mole fractions of species in the following 
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time step as observed in the graphs. An increase in mole fraction of the species occurs if the 

rate of production of the species is higher than its rate of consumption. Hexadecane and 

Indane are totally consumed as shown in the table.  These results however do not show the 

full picture. The changes overall changes occurring may be high but the detail of the species 

break down and, their rate of productions and consumption and furthermore, the pathway 

leading is leading to the formation of the BIN (Soot) particles is important. 

 

The classification of the BIN classes 1 - 6 is described in Table B.3. Table B.6 shows the 

increase in BINs with time due to the polytropic model of bubble collapse.  Mole fractions of 

all BINs are increasing with time showing formation of large PAHs and particles. There are 

particulates forming at lower temperature and pressures however they are in very small 

amounts as seen in the table. 

 

Time (s) 
Temperature 

(K) 
Pressure 

(atm) Mole fractions of BINs 

BIN1 BIN2 BIN3 BIN4 BIN5 BIN6 

0 300.00 1.00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

1.00E-06 356.76 2.38 3.68E-53 9.06E-61 1.16E-110 8.14E-157 3.35E-203 8.90E-250 

2.00E-06 424.26 5.66 6.50E-43 7.93E-51 2.81E-91 2.29E-128 1.09E-165 3.31E-203 

3.00E-06 504.54 13.45 3.66E-34 2.42E-42 1.54E-74 1.07E-103 4.29E-133 1.10E-162 

4.00E-06 600.00 32.00 1.39E-26 5.71E-35 7.38E-60 5.59E-82 2.44E-104 6.80E-127 

5.00E-06 713.52 76.11 1.49E-20 4.76E-29 6.79E-48 3.22E-64 7.84E-81 1.07E-97 

6.00E-06 848.53 181.02 1.49E-15 1.34E-23 1.80E-37 5.50E-49 8.73E-61 7.87E-73 

7.00E-06 1009.08 430.54 1.38E-11 3.38E-18 1.54E-18 4.61E-19 5.91E-20 1.08E-21 

8.00E-06 1200.00 1024.00 9.56E-08 3.90E-13 1.84E-18 4.87E-19 2.10E-19 4.74E-21 

9.00E-06 1427.05 2435.50 1.01E-05 4.24E-09 5.74E-13 9.00E-15 7.77E-17 4.03E-19 

1.00E-05 1697.06 5792.62 1.87E-05 4.54E-07 2.01E-09 1.05E-09 3.18E-10 6.32E-11 

1.10E-05 2018.15 13777.25 9.55E-04 1.37E-04 1.36E-06 1.72E-06 3.66E-07 5.27E-06 

Table B.6 Increase in mole fractions of BINs 1-6 with reaction time 

  

The analysis that proceeds was carried out by the analysis of the rate of production of species 

function in software. This analysis also provided the chemical equation breakdown of the 
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production or the consumption of all the species. Hexadecane started to break up at a time 

early on between 1-4 µs to a variety of CnH2n+1 (n=3 to 16), ethyl (C2H5) and methyl (CH3) 

radicals. The hexadecane at later time steps reacted with previously formed methyl radicals, 

via hydrogen subtraction to form Methane (CH4) and large C16H33 radicals. These breakdown 

reactions were sustained up till 7 µs at which the hexadecane further broke up into propane 

(C3H8), butane (C4H10) and large C16H33 radicals by reacting with previously formed propyl 

and butyl radicals (at 4 µs). It carried on its breakdown at the next time step further more into 

ethane (C2H6) by hydrogen subtraction when reacting with ethyl radicals. During the final 

time step hexadecane reacted with hydrogen radicals formed during various preceding 

reactions to form hydrogen and large C16 radicals. At 10 µs, the radicals would break down 

into ethylene (C2H4) and methyl radicals. Ethylene would further break down into acetylene 

(C2H2) by hydrogen subtraction Equation B.10. The radicals would also disintegrate to form 

olefins and furthermore radicals as in Equation B.11. At this stage we have only gone through 

the break up regime of the hexadecane molecule over the polytropic analysis, however as 

further outcomes occur due to the breakup of the rest of the species present in the initial 

model fuel further analysis will be made. 

 

C3H7 radical→ CH3 + C2H4 

C4H9 radical → C2H5 +C2H4 

C2H4 + M → C2H2 +H2 +M 

Equation B.10 

 

C16 Radical→C4 radical + dodecene 

Equation B.11 
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In summary, the paraffins broke down to form smaller chained paraffins and olefins, and 

various radicals. Larger radicals were formed back to paraffins and olefins by hydrogen 

subtraction and larger radical break up. So far the presence of these compounds has not found 

any direct link to the formation of BIN class compounds.  

 

Analysis of the mono-aromatics found that ethyl-benzene broke down to form benzyl C7H7 

and methyl radicals; and butynyl radicals. Further on, reactions between Benzene and ethyl 

radicals led to the formation of ethyl-benzene. Towards the end of the time steps the ethyl-

benzene via hydrogen subtraction produced benzothiophene C8H9 by hydrogen subtraction, a 

heterocyclic compound with one benzene ring and one cyclo-pentene ring. At higher 

residence time the reverse process took place and ethyl benzene was formed. Reactions 

between benzene and ethyl radicals, and 2 butynyl radicals lead to the formation of ethyl 

benzene at higher residence times. The rate of consumption was preceded by its formation and 

thus between the last two time steps, ethyl-benzene mole fraction increased. Of the aromatic 

compounds, benzene underwent the largest amount of change in terms of breaking down into 

various other species. The reaction leading to formation of BINs is the formation of the 

phenyl group C6H5 and methane via the hydrogen subtraction reaction of benzene and methyl 

radicals. Phenyl reacts with benzyl radicals (C7H7) formed by the breakup of ethyl benzene to 

form benzyl benzene (C13H12). Benzene reacts with methyl radicals formed during 

hexadecane break up to form toluene. It also broke down to form C4H5 and acetylene which 

at higher residence time saw the reverse process dominate and more benzene being produced. 

The phenyl radical later reacts with acenaphthylene (A2R5) to form BIN1 particles. 

Furthermore reactions in di-aromatic naphthalene with methyl radicals form 1- and 2-

naphthylacetylene which is another precursor onto formation of BIN particles. It reacts with 

biphenyl, acenaphthylene, pyrene, phenanthrene already present in the model diesel to form 
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these particles. Methyl-naphthalene is another precursor to forming naphthylacetylene. Phenyl 

is also another soot precursor as it leads to the formation of larger BIN classes by reactions 

with smaller BIN classes. Reactions between phenyl and biphenyl have also lead to the 

formation of BIN compounds. Naphthylacetylene species start forming at 5 µs and continue 

till the end of analysis by the reaction: 

 

C10H8+CH3→ Naphthylacetylene +CH4 

Equation B.12 The formation of BIN precursor naphthylacetylene from naphthalene 

 

Naphthylacetylene also reacts with aromatics present to form larger PAHs i.e. fluoranthene 

(C16H10), benzo[k]fluoranthene (C20H12), benzo[a]fluorene (C17H12) and perylene 

(C20H12). An increase in benzene production over its consumption was observed at higher 

residence times. Reactions between benzene and naphthylacetylene form fluoranthene and 

phenylnapthalene (C16H12).  

 

The production of BIN1 radicals started at lower residence time (5 µs) due to reactions 

between acenaphthylene and biphenyl with phenyl radicals; acenaphthylene, phenantherene, 

pyrene with naphthylacetylene. 

 

The other precursor C6H5 is formed from reactions between benzene and methyl radicals as 

seen in Equation B.13 

C6H6+CH3↔C6H5+CH4 

C6H6+C2H5↔C6H5+C2H6 

C7H7+C6H6↔C7H8+C6H5 

C12H10+CH3↔C7H8+C6H5 

Equation B.13 The formation of C6H5 from benzene and naphthalene 
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C6H5 reactions have led to the formation of fluoranthene, benzyl benzene (C13H12), styrene 

(C8H8) and phenyl naphthalene (C16H12) and other smaller PAH.  

 

The decomposition of aromatics has also shown production of smaller alkane hydrocarbons. 

This may however be different if other constituents of aromatics were present and the 

presence of other paraffins and olefins in the reaction file. One downfall of the combined 

kinetic mechanism reaction file is that it does not include a lot of large paraffins and olefins 

which are present in diesel fuels and thus the pathways to their formation is unavailable. 

However from whatever species present, breakdown in aromatics has shown formation of 

small paraffins.  

 

A2R5(Acenanaphthalene)+C6H5→ 7.50E-01BIN1+ 1.50H2+H 

A2R5+ Naphthylacetylene → 9.17E-01BIN1+ 1.50H2+H 

C12H10+C6H5→ 7.50E-01BIN1+ 2.50H2+H 

C12H10+ Naphthylacetylene → 9.17E-01BIN1+ 2.50H2+H 

A3+ Naphthylacetylene →BIN1+2H2+H 

PYRENE+ Naphthylacetylene → 1.08BIN1+ 1.50H2+H 

Equation B.14 Formation of BINs by reaction between PAH and naphthylacetylene and phenyl 

 

Increase in BIN classes has been caused by reactions by lower BIN classes with 

naphthylacetylene, phenyl or methyl naphthalene. Reactions of PAH species with the lower 

BIN radicals has also led to the formation of the lower BIN radicals and BIN radicals of the 

next class via hydrogen subtraction from the PAH and PAH break down. 

BIN1+H→BIN1J+H2 

BIN1→BIN1J+H 

 Equation B.15 Formation of BINJ radicals from BIN  
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C6H5+BIN1→ 7.50E-01BIN1+ 2.50E-01BIN2+ 5.00E-01H2 

Naphthylacetylene +BIN1→ 5.83E-01BIN1+ 4.17E-01BIN2+ 5.00E-0H2 +H 

C6H6+BIN1J→ 7.50E-01BIN1+ 2.50E-01BIN2+ 5.00E-01H 

C10H8+BIN1J→ 5.83E-01BIN1+ 4.17E-01BIN2+ 5.00E-01H 

A2CH3-1+BIN1J→ 5.42E-01BIN1+ 4.58E-01BIN2+ 1.25H2 

A2R5+BIN1J→ 5.00E-01BIN1+ 5.00E-01BIN2+H 

C12H10+BIN1J→ 5.00E-01BIN1+ 5.00E-01BIN2+H2+H 

A3+BIN1J→ 4.17E-01BIN1+ 5.83E-01BIN2+ 5.00E-01H2+H 

A3L+BIN1J→ 4.17E-01BIN1+ 5.83E-01BIN2+ 5.00E-01H2+H 

PYRENE+BIN1J→ 8.33E-01BIN2+H 

A4+BIN1J→ 8.75E-01BIN2+ 5.00E-01H2+H 

Equation B.16 Formation of higher BIN classes from BIN and BINJ radicals 

 

The presence of tri(+) aromatics in the diesel fuel was not crucial to the formation of BIN 

particles as reactions between mono- and di- aromatics present in the fuels with each other or 

the phenyl and naphthylacetylene have led to the formation of large PAHs and thus BINs. In 

the reactions seen in Equation B.16 and Equation B.14, most of them are reactions of mono-

and di- aromatics with precursors. The formation of very large BINs i.e. BIN6 was formed by 

reactions of BIN5 with phenyl and naphthylacetylene and napthylvinyl, the later to have been 

formed by reactions between methyl radicals and naphthylacetylene.  

  

A search was carried out to find the link for the formation of aromatics from paraffins, to find 

out whether paraffins itself would lead to the formation of BINs through aromatics. 

Researchers have shown large reductions in soot formations during combustion of purely 

paraffins fuels such as GTL however soot formations still exist and thus however low their 

propensity to form soot, there must still be a link from paraffins to aromatics and thus soot 
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formation. Researcher at Sasol in conjunction with DaimlerChrysler have shown a reduction 

of up to 35% soot formation during combustion of GTL as compared to conventional diesel 

fuels [219]. Wu et. al [220] found a reduction in soot and particulate matter of up to 27.6 % of 

GTL combustion when compared to diesel fuel combustion. Results obtained from 

experimental investigations by Soltic et.al [221] show a reduction of soot mass by 

approximately 45 % obtained prior to exhaust gas treatment.  

 

It was found that the link to formation of C6H6 from hexadecane occurred at higher residence 

times when the decomposition of hexadecane had led to formation of acetylene as previously 

mentioned. During the middle residence times large radicals formed from decomposition of 

hexadecane resulted in forming olefins (C16-C6) of which the formation of dodecene has 

been previously shown. Reactions between the olefins and methyl radicals lead to the 

formation of butadiene (C4H6), methane and radicals. Butadiene further reacts with methyl 

radicals at high residence times to form C4H5 isomers (CH//CHCH//CH2) and methane. The 

isomers would then react with acetylene to form benzene and hydrogen radical as seen in 

Equation B.17. 

 

DODECENE (C12H24) +CH3→CH4+BUTADIENE+C8 RADICAL 

BUTADIENE+CH3→C4H5+CH4 

C4H5+C2H2→C6H6+H 

Equation B.17 

 

Once the benzene was formed it would react with methyl radicals to form C6H5 and methane. 

The C6H5 formed would open doors to various other aromatics and BINS formation at higher 

residence times. 
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C6H5+C6H6→C12H10+H 

C6H5+C2H4→C8H8+H 

C6H5+CH3→C7H8 

Equation B.18 

 

The formation of acetylene was the key for the link for the formation of aromatics from 

paraffins. Another route was the formation of the vinyl radical by the reaction of C2H4 and 

C2H5 radicals earlier formed. The vinyl radical would break up into acetylene at higher 

residence time. Reaction between the vinyl radical and methyl radicals would also produce 

C3H6 which would then react with C2H5 to form allyl radicals. Reactions between vinyl 

radicals and C4H5 isomers would lead to the formation of benzene. Reaction between vinyl 

radicals (C2H3) would also lead in the formation of butadiene. The allyl radical could react 

with benzene to form the BIN precursor C6H5.  

 

Butadiene+Vinyl radical→C4H5+C2H4 

Equation B.19 

 

C2H3 would be formed at higher residence times by reactions between C2H4 and methyl or 

C2H5 radicals. Ethynyl (C2H) radicals were formed between reactions of acetylene and C2H5 

radicals. Ethynyl radicals would then react with C2H4 radicals to form C4H4 and hydrogen 

radicals. The C4H4 would react with C2H3 formed to produce benzene. These reactions are 

seen in Equation B.18. This has just been a summary however they may be a lot of other 

possible ways to form aromatics from hexadecane.  
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C2H4+CH3→C2H3+CH4 

C2H4+C2H5→C2H3+C2H6 

C2H4+Ethynyl radical→C4H4 +H 

C4H4+C2H3→C6H6+H 

C4H4+C2H2→C6H6 

C4H4+Vinyl radical→C6H6 +H 

Equation B.20 

 

In summary of the above analysis of the pyrolysis of a model diesel fuel, it can be concluded 

that the presence of aromatics in the fuel leads to formation of particles (BINs). The paraffins 

were found to breakdown into lower chained compounds and olefins and would lead into the 

formation of aromatic compounds at higher residence times. The kinetic mechanism 

employed does not include a lot of large chained paraffins and olefins and thus the breakdown 

into smaller chained alkanes is not clearly distinguishable. Aromatics have broken down and 

reacted to form smaller chained paraffins, however as earlier mentioned due to there not being 

a large number and variety of paraffins present in the kinetic model employed the breakdown 

into other paraffins is not clearly identified. The presence of aromatics presence has led to the 

formation of naphthylacetylene and phenyl groups which have been found as key to the 

formation of BIN classes. The presence and formation of these species are essential in 

forming larger BIN classes. Furthermore only a few out of the thousands of species present in 

diesel fuels has been included in this analysis. Diesel fuels vary in composition from their 

origin and refining and thus changes to the composition will lead to changes in the species 

being formed as part of the analysis. The analysis here has been carried out to obtain the 

bigger picture of the routes to particle formation when a diesel fuel undergoes a pyrolysis like 

process which has been modelled as a polytropic process. The analysis has shown the routes 
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to the formation of BIN (Soot) precursors which lead to the formation and growth of BIN 

particles. 

 

The intention of the work here was to use a qualitative mechanism to determine the amount of 

soot formed from a polytropic model of a small bubble collapse and relate to the GC x GC 

measurements and optical absorptivity in order to check whether the indication of aromatic 

components leading to soot formation was viable. No validated models were available for the 

decomposition of diesel fuel to soot formation and thus the data available from two separate 

models was combined to be able to perform an indicative study of the cause of soot formation. 

 

The work here is to check the plausibility of hydrocarbon species being subjected to pressure 

and temperature conditions occurring during bubble collapse, leading to soot formation. The 

modelling shows this and the particle counter results previously discussed support these 

results.  
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Appendix C 

C.1 Nozzle Manufacturing Consistency- Calibration Charts 
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Figure C.1 Sum of BIN frequency relative SMD distributions obtained at the start of injection between 2.1 - 2.4 ms 

(top to bottom) for cases 1 – 4 and their corresponding mean and standard deviation  
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Figure C.2 Sum of BIN frequency relative SMD distributions obtained at the peak needle lift  between 3.9 – 4.5 ms 

(top to bottom)  for cases 1 – 4 and their corresponding mean and standard deviation  
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Figure C.3 Sum of BIN frequency relative SMD distributions obtained at the peak needle lift  between 5.1 – 5.5 ms 

(top to bottom)  for cases 1 – 4 and their corresponding mean and standard deviation 
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