
Ozkaya, M. & Kloukinas, C. (2013). Are we there yet? Analyzing architecture description languages

for formal analysis, usability, and realizability. Paper presented at the 39th Euromicro Conference

Series on Software Engineering and Advanced Applications, SEAA 2013, 4th - 6th September

2013, Santander, Spain.

City Research Online

Original citation: Ozkaya, M. & Kloukinas, C. (2013). Are we there yet? Analyzing architecture

description languages for formal analysis, usability, and realizability. Paper presented at the 39th

Euromicro Conference Series on Software Engineering and Advanced Applications, SEAA 2013,

4th - 6th September 2013, Santander, Spain.

Permanent City Research Online URL: http://openaccess.city.ac.uk/3412/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/20540201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Are We There Yet?

Analyzing Architecture Description Languages for

Formal Analysis, Usability, and Realizability

Mert Ozkaya

Department of Computer Science

City University London

London, EC1V 0HB, UK

Email: mert.ozkaya.1@city.ac.uk

Christos Kloukinas

Department of Computer Science

City University London

London, EC1V 0HB, UK

Email: C.Kloukinas@city.ac.uk

Abstract—Research on Software Architectures has been active
since the early nineties, leading to a number of different archi-
tecture description languages (ADL). Given their importance in
facilitating the communication of crucial system properties to
different stakeholders and their analysis early on in the develop-
ment of a system this is understandable. After all these years one
would have hoped that we could point to a handful of ADLs as
the clear winners as the languages of choice of practitioners for
specifying software system architectures. However it seems that
ADLs have still not entered the mainstream. We believe this is so
because practitioners find the current offering either too difficult
to use or not supporting automated analysis commensurate to
the level of effort they require for specifying a system, especially
so for complex systems.

In this paper we present a comparative analysis of a number
of ADLs, both of first generation and more recent ones, against
a small set of language properties that we believe are crucial for
an ADL that would be easy for practitioners to adopt in their
design and development practices. These properties are: formal
semantics, usability, and realizability.

Keywords—Architecture Description Language, Comparison,
Formal Semantics, Usability, Realizability

I. INTRODUCTION

The main notions in software architectures were identified
already from the early papers on the subject [16], [41] –
components abstracting computations and data repositories and
connectors abstracting the interaction protocols used among
components. Researchers have developed a number of ADLs,
experimenting with different ways of specifying architectures
of complex systems, e.g. Darwin [27], UniCon [45], Wright
[1], Rapide [24], C2 [49], LEDA [7], and Koala [51].

Design patterns [14] were also introduced during the
same period. While design patterns have by now entered the
mainstream [19] and are part of the vocabulary of software
developers, software architectures have still not matured in the
same way. We believe that among the reasons for this is the fact
that the ADLs developed so far have a number of shortcomings
that hinder their application in practice. Indeed, as shown in
[30], practitioners insist on using UML even though it is known
that UML has very weak support for architecture specification
(e.g., no first-class connectors, no formal semantics, etc.) [21].
First of all, some ADLs do not have any formal semantics

either, thus making early analysis of system architectures
difficult, if not impossible. This decreases substantially the
benefit of having an architectural description of a system.
Such specifications are difficult to produce and one would
need to be able to perform some early analysis with them
instead of simply using them as documentation. Approaches
that use architectural descriptions to produce code skeletons
are in our view pushing too far too fast. An architecture is
usually at a much higher level of abstraction than actual code
and can be implemented in different ways, just like “high-
level design” classes do not need to be reflected in “low-level
design” classes in OO. With major frameworks like CORBA,
JavaBeans, OSGi, Web Services, etc. been revised so often
and falling out of fashion quickly 1, it is also extremely
difficult for a code-generation tool to keep up-to-date and
runs the danger of simply becoming irrelevant quite quickly,
unlike tools that analyze architectures. The ADLs that do have
formal semantics, usually require practitioners to use formal
languages that are far from what they are familiar with, e.g.
process algebras. As also discussed in [30], this results in
steep learning curve for practitioners. Furthermore, the chances
that they will get their specifications wrong would highly be
likely too because they do not understand the semantics of the
language they are using. Usability is in fact a main source of
problems and it goes beyond the use of some formal language –
sometimes ADLs fail to even support user-defined abstractions
of complex architectural units, such as complex connectors.
Finally, a number of ADLs use constructs that are not so
easy to map to lower-level designs – some even allow the
description of systems that are unrealizable.

In our attempt to produce a new ADL [23], we have ana-
lyzed a number of early and the most well-known ADLs like
those aforementioned, as well as more recent ones like SOFA
[43], PiLar [44], PRISMA [40], COSA [38], AADL [12], and
CONNECT [20]. We analyzed these ADLs against three main
properties: (i) support for formal analysis of system architec-
tures in principle 2, (ii) level of usability of their notations for
specifying large and complex system architectures, and (iii)
protection against the accidental specification of unrealizable
designs. Usability in particular is further subdivided into two

1See Google Trends http://bit.ly/14uaUNZ
2Tool availability is a secondary problem.

sub-properties: (a) easy-to-use formal behavioural specifica-
tions and (b) support for user-defined, complex connectors.
We have used these properties to guide our analysis of thirteen
different ADLs in the rest of the paper. The analysis is split
into two sections – one considering the first-generation ADLs
and the other considering the more recent ones. The paper then
summarizes the results of the analysis before considering the
related work and concluding.

II. EARLY ADLS

A number of different ADLs were developed during the
early days of research in software architectures, with re-
searchers experimenting on the proper structures needed for
supporting architectural descriptions and their relations. Here
we consider the main ones from that period, presented in an
almost chronological order.

A. Darwin

Darwin is one of the first ADLs, intended as a general-
purpose language for specifying distributed systems as config-
urations of components [27].

Connector support As opposed to what has been sug-
gested in [16], [41], Darwin does not support specification of
connectors in architectural designs. Components interact with
each other through bindings described in composite component
specifications. However, such bindings cannot give the seman-
tics of the way interaction occurs between components (i.e.,
the interaction protocol), thus resulting in complex connector
information being hard-wired inside components.

Behaviour Specification Originally Darwin focused on
structural architectural aspects and dynamic component cre-
ation [26]. It was later on extended in the Tracta approach
[17] so that the formal behaviour of components can be
specified using the Finite State Process (FSP) [28]. Primitive
FSP processes are attached to simple component types that
offer or require services only. For composite components, a
composite FSP process composes in parallel the processes
corresponding to sub-components of the composite type.

Semantics of Darwin The semantics of Darwin were
initially defined [26] using π-calculus [36], so as to support
dynamic architectures and later [17] using FSP so as to
facilitate automated analysis.

B. Wright

The Wright ADL is well-known for its formal and explicit
treatment of connectors in architectural designs [1].

Connector support In Wright, besides first-class com-
ponent elements, connector elements also have first-class,
thus enabling the explicit specification of interactions among
components. Indeed, one can describe with Wright connectors
either simple interconnection mechanisms (e.g., procedure call)
or complex ones (e.g., complex interaction protocols such as
an auction).

Connectors in Wright are instantiated from connector types,
which enables reuse of the same interaction pattern on different
contexts and also the analysis of connectors in isolation. A

Fig. 1: Alur’s Nuclear Power Plant Unrealizable MSCs [3]

connector Plant Connector =
role Incrementor = ur→na→Incrementor ; shown as P1

role Doubler = ur→na→Doubler ; shown as P2

role NA = inc→ NA ⊓ double→NA
role UR = inc→ UR ⊓ double→UR
glue = Incrementor.ur→UR.inc→Incrementor.na→NA.inc→

Doubler.ur→UR.double→Doubler.na→NA.double→ glue
� Doubler.ur→UR.double→Doubler.na→NA.double→

Incrementor.ur→UR.inc→Incrementor.na→NA.inc→glue

Fig. 2: Wright’s (unrealizable) connector for Alur’s Nuclear
Power Plant

connector type is described with roles representing the partic-
ipating components and a glue coordinating the behaviour of
the roles. Roles and glue are each specified with a protocol
representing their behaviours.

Behaviour specification Behaviour specification in Wright
is done in CSP [18]. The behaviour specification of com-
ponent types is structured in two parts: port processes (or
protocols) and spec process, where the ports represent the
external (visible) behaviour of components and spec their
internal behaviour for complex, composite types. Similarly, the
behaviour of connector types is structured as role processes and
glue process.

Semantics of Wright Semantics of Wright are also defined
in CSP. Connectors are the parallel composition of the CSP
role processes with the glue CSP process that coordinates
them. Similarly, component semantics are defined by compos-
ing the port CSP processes with the spec process that coor-
dinates the ports. In a configuration participating component
ports replace connector roles, when they are “compatible” [1],
i.e., the ports restricted over the traces of the roles refine the
roles. Apart from this compatibility check, role processes are
not used, instead the glue process is composed with the port
processes directly.

Realizability Glue specifications used in Wright connec-
tors serve two purposes. First, they connect together com-
ponent port actions, e.g., Incrementor.ur→UR.inc. Second,
they impose a global ordering of component actions, e.g.,
UR.inc→NA.inc. Unfortunately, this second feature can lead to
potentially unrealizable system specifications. Components in
distributed systems have partial observability of system state.
That is, they cannot know at which state the other components
are at all points in time. However, with glue specification, one
can easily specify a global ordering of actions that is only
possible if all components can always observe the full system
state. As shown in [3], [4] for Message Sequence Charts,

Fig. 3: An unavoidable bad behaviour in Alur’s plant [3]
(hidden by Wright’s glue specification)

connector Plant Connector2 =
...
role Cntrl = incI→incUR→incNA→Cntrl
⊓ dblI→dblUR→dblNA→Cntrl
glue = Incrementor.ur→Cntrl.incI→ glue
� Doubler.ur→Cntrl.dblI→glue
� Incrementor.na→ glue � Doubler.na→ glue
� Cntrl.incUR→UR.inc→glue � Cntrl.incNA→ . . .
� Cntrl.dblUR→UR.double→glue � Cntrl.dblNA→ . . .

Fig. 4: A realizable connector
(contains an extra, centralized controller, role Cntrl)

realizability of a globally ordered protocol is an undecidable
problem in general. For instance, Alur described in [3] an
unrealizable MSC representing a simplified nuclear power
plant, shown in Fig. 1. The interaction therein involves an
Incrementor (P1) and a Doubler (P2) client updating the
amounts of Uranium fuel (UR) and Nitric Acid (NA) in a
nuclear reactor. After the update operations, the amounts of
UR and NA must be equal to avoid any nuclear accident.
The interaction of the two clients with the NA and UR
variables, can easily be specified in Wright as in Fig. 2.
This specification is however unrealizable as Alur has shown
because it is impossible to implement it in a decentralized
manner with these four roles (P1, P2, UR, NA) in a way that
avoids behaviours excluded by the glue, such as the one shown
in Fig. 3. In order to realize it one needs to transform the
protocol to a centralized one, introducing a central controller
as in Fig. 4. As the realizability problem is undecidable in
general, there is no way to verify a design against it.

C. UniCon

UniCon is another early ADL allowing designers to specify
components and connectors [45].

Connector support Connectors are introduced as connec-
tor templates in UniCon. A connector template is essentially
described with a protocol, acting as a mediator of interaction
among components. Protocols, just like Wright connectors,
consist essentially of roles. However, unlike Wright, UniCon
restricts protocols to be of certain types, e.g., Pipe, DataAc-
cess, ProcedureCall, thus preventing designers from freely
specifying their own (complex) types.

Behaviour Specification Unlike Darwin and Wright, Uni-
Con does not allow for formal behavioural specification of
architectural elements. Nevertheless, UniCon offers a set of
built-in attributes for component/connector templates and also
players/roles. Through the attributes, designers can specify
further details, e.g., non-functional properties and constraints,

about the architectural elements. It is however still problematic
that designers are restricted with certain attributes and certain
set of values for each.

Semantics of UniCon UniCon does not have formally
defined semantics as its focus is rather upon early code
generation from architecture specifications. UniCon offers a
tool-set for mapping architectures into C source code. While
this enables system simulation, it is problematic for formal
verification.

D. Rapide

Rapide ADL is known with specific support for dynamic
system architectures and simulation of architectures [24], [25].

Connector support Like Darwin, Rapide adopts an ap-
proach that considers system architectures as collections of
components which are wired together via mere connections.
Unlike Wright, there is no first-class connector element offered
thus leading to complex interaction patterns being implicitly
specified in component specifications. With Rapide, one can
only specify explicit links between the required and provided
services of components.

On the other hand, Rapide introduces architectural con-
straints through which interaction protocols among compo-
nents can be specified. But, unlike Wright, where connectors
are independent elements, Rapide constraints are embedded
within an architecture specification (corresponding to compos-
ite component types in Darwin), and thus cannot be re-used
by different architecture specifications.

Behaviour Specification Rapide adopts event patterns to
formally specify the behaviour of interface types (correspond-
ing to component types in Darwin). Interface types essentially
include service specifications (in and out actions for asyn-
chronous communication, provided and required features of
functions for synchronous communication). Furthermore, it
can include behavior part through which one can specify event
pattern rules imposed on actions or functions. These rules,
just like Wright protocols, represent the expected behaviour of
components.

Semantics of Rapide The event pattern language is also
used for defining the precise semantics of Rapide [25]. Indeed,
component semantics (described as interface types) are defined
as a partially ordered set of events that can have either
dependency (causality) or timing relationships with each other.

Realizability As aforementioned, Rapide allows architec-
tural constraints to be imposed on the interaction of com-
ponents within architecture specifications. These architectural
constraints coordinate the actions taken by the components,
ensuring their compliance to some specific protocol. However,
these constraints are global ones and thus suffer from the
same issues as Wright’s glue – they permit the specification
of unrealizable protocols.

E. C2

C2 is a message based architectural style with a particular
focus on architectural descriptions of event-driven applications,
where complex, distributed components operate concurrently
and communicate via message exchange [31], [32], [49].

Connector support Connectors in C2 are just a medium
of message routing and broadcasting, which can also perform
message filtering. Unlike Wright, they cannot be used for
representing interaction protocols. Nor can they be specified
independently as abstractions. Instead, in C2, connectors are
embodied within the architecture elements, which represent
architectural configurations comprising component instances,
connectors and also their topologies. Thus, unlike Wright,
connector specifications cannot be re-used in different con-
figurations and be analyzed in isolation independently of their
use.

Behaviour specification Behavioural specification in C2 is
limited to component behaviours. C2 component types com-
prise method and behavior parts. The method part is a list of
procedures representing internal component functionality. The
behavior part describes what message (receipt of notification
or request) causes what procedure to be executed or message
(emission of notification or response) to be triggered.

Semantics of C2 C2 is formally specified using the Z
notation [47], as explained in [31].

F. LEDA

LEDA, like Darwin, views architectures as collections of
components [7].

Connector support Like Darwin, LEDA does not support
connectors. Indeed, it only offers as interaction mechanism
the attachments embodied within composite component types
for linking the interfaces of ports (called roles). As such, the
independent specification of complex interaction mechanisms
is not possible with LEDA; these have to be embedded in
component specifications.

Behaviour Specification Behaviour specification for com-
ponents in LEDA is two fold: external (i.e., observable) be-
haviour and internal behaviour. External behaviour is specified
through role types, which are specified separately and instan-
tiated within component types; internal behaviour is specified
using (optional) spec construct in component types. The role
types and the spec part of component types are specified
formally as processes in π-calculus.

Semantics of LEDA Like the original Darwin components
and bindings, the semantics of components and attachments in
LEDA are formally defined using π-calculus [36] too.

G. Koala

Inspired by Darwin, Koala ADL aims at specifying archi-
tectures of consumer electronics products [51].

Connector support Like Darwin and LEDA, Koala does
not support connectors in system architectures. Interaction
between components are merely specified by connects in
composite component types. Being simple links, these cannot
be used to specify complex interaction protocols independently
of components.

Behaviour Specification Koala supports only a structural
view of software architectures and does not allow for be-
havioural specifications. Indeed, it places its main emphasis on
automatic code-generation from structural specifications, rather
than early formal analysis of behaviours.

Semantics of Koala Like UniCon, Koala does not have
formally defined semantics, as it focuses on code generation
through mappings to the C language.

III. RECENT ADLS

Experience with the first-generation ADLs led to the
development of further ones, usually with a focus on code
generation. This section considers a number of the most
prominent of these.

A. SOFA

SOFA is a second-generation ADL, focusing mainly on
components and their formalization [6], [42], [43].

Connector support As it was initially intended as a
component-only approach [42], SOFA did not first treat con-
nectors explicitly. However, it was later on extended with
constructs for explicit specification of connectors [6]. It sup-
ports four basic styles of communication (procedure call,
messaging, streaming, and blackboard) that designers can use
when specifying their connectors.

Behaviour specification Behaviour in SOFA is essentially
centred on components. Components are instantiated from
component templates which comprise a component frame
and optionally a component architecture (if composite). The
behaviour of a template is specified in terms of the behaviours
of frame, architecture, and the interface types whose instances
are employed as the template’s provided/required services.
Each of these parts are augmented with a protocol specified
in Behaviour Protocols (BP) [43]. BP is a simplified form of
CSP, with additional support for regular expressions. Using BP,
protocols are described as agents. An agent is simply an event
processing unit, e.g., CSP process or Rapide’s event pattern,
that orders the events (corresponding to interface methods)
which are emitted or received by the element for which the
agent is specified.

The behaviour of connectors is, by contrast, not specified
using BP; instead, one can only specify values for built-in non-
functional properties attached to connectors. This is because
SOFA focuses on automatic code generation from connector
specifications [5], rather than their formal analysis as is the
case in Wright.

Semantics of SOFA BP is also used for defining the
semantics of SOFA.

B. PiLar

PiLar is another recent ADL which separates architecture
specification into two levels – base-level and meta-level –
where the former represents primitive (controlled) elements
and the latter the complex, composite (controlling) elements
[44].

Connector Support PiLar views connectors as first-class
elements in software architecture, which can be specified at
either base-level or meta-level. While the former is speci-
fied as bindings (just like Darwin and LEDA), the latter is
specified as typed bindings. Typed bindings are essentially
(meta-)component specifications consisting of services and
constraints; the services herein are matched with the respective

primitive component services that the bindings link together
and the constraints are glue-like units that coordinate the linked
component services – this is in effect similar to Wright.

Behaviour Specification Behaviour of components and
connectors is specified in a process-algebraic form inspired
by CCS [35]. Alternatively, PiLar also provides a more un-
derstandable syntax for specifying constraint rules so that
designers do not need to use CCS directly.

Semantics of PiLar Just like Darwin and LEDA, the
semantics of PiLar are defined using π−calculus – the use
of the CCS-inspired language is not inconsistent with these
semantics.

Realizability As aforementioned, connector constraints are
essentially similar to the centralized glues of Wright. There-
fore, they can also lead to unrealizable architectures.

C. PRISMA

PRISMA is an Aspect-Oriented ADL that aims at com-
bining Component-based Software Engineering with Aspect-
Oriented Software Engineering [40].

Connector Support Inspired from Wright, PRISMA also
views connectors as first-class elements. Connector types are
specified with a set of roles representing the participating
components and an aspect which coordinates the behaviour
of the roles.

Behaviour Specification The behaviour of components
and connectors are specified through the aspect constructs
embodied within them. An aspect can serve different purposes
such as coordination for connectors and functional for compo-
nents. Those aspects are formally specified using an extended
form of the OASIS language [39].

Semantics of PRISMA PRISMA is defined using the
Modal Logic of Actions [48] and π-calculus.

Realizability The connector coordination aspect is similar
to a Wright glue, thus unrealizable designs are possible in
PRISMA as well.

D. COSA

The COSA ADL adopts an approach combining the prin-
ciples of component-based engineering with those of object-
oriented (OO) paradigm (e.g., inheritance) [38], [46].

Connector support Like Wright and UniCon, COSA treats
connectors explicitly as the mediators of interactions among
components. A connector type is described in terms of an
interface that, like Wright connectors, comprises a collection
of roles for participating components and a glue represent-
ing an interaction protocol. Moreover, like component types,
connector types also allow to specify complex interaction
mechanisms via composition and inheritance.

Behaviour Specification Behaviour in COSA is specified
via protocol specifications for component ports, connector
roles and also glues. A protocol here specifies a sequence
of port/role actions that describes how the elements are to
behave in their environments. However, unlike Wright where
protocols are specified formally with CSP, COSA does not
adopt a formal approach.

Semantics of COSA The semantics of COSA are defined
using a UML 2.0 profile [2].

Realizability Like Wright, COSA introduces a glue ele-
ment in connector specifications, through which component
interaction protocols are specified. As aforementioned, this
permits the specification of potentially unrealizable architec-
tures.

E. AADL

AADL is an ADL that aims to support software, hardware,
and mixed system architectures [12], [13], specialized for
embedded systems. Perhaps due to its specialization, AADL
has the highest usage rate among ADLs [30]. However,
unlike all other ADLs, AADL does not provide a generic
component type. Instead, component types are categorized
into three groups. There is one group for specifying soft-
ware architectures: thread, thread group, process, data, and
subprogram. Another group serves for hardware architectures:
processor, memory, device, and bus. The last group consists of
a single system type for specifying composite types containing
component types of the other two groups.

Connector support Like some of the aforementioned
ADLs, AADL provides no support for connectors. Com-
ponents interact via ports or via subprogram-calls and the
interactions are restricted to the following mechanisms: port
connections, component access connections, subprogram calls,
and parameter connections.

Port connections represent sending or receiving data/events
asynchronously. Component access connections are used for
shared data. Subprogram calls and parameter connections are
for synchronous interactions between components through
subprogram calls.

However, there is no support for specifying new connector
types that can represent complex interaction protocols.

Behaviour specification Behaviour specification in AADL
is performed via a behavior annex attached to component spec-
ifications [13]. The behavior annex is essentially an automaton.

Semantics of AADL AADL was not originally developed
with a precise semantics; instead, the semantics of its archi-
tectural constructs are described in natural language. However,
several attempts have been made in this sense later on, e.g.,
[9], [37].

F. CONNECT

One of the most recent ADLs has been developed in
the CONNECT EU project [20]. While following the general
approach of Wright, CONNECT has made it easier to describe
interaction behaviours by adopting the FSP process algebra
rather than the more complex one CSP. CONNECT has also
extended their ADL in order to be able to perform stochastic
analyses of systems.

Connector support Just like Wright connectors, con-
nectors in CONNECT are described with roles and a glue,
where the roles represent the expected interaction behaviour
of the participating components and the glue composes and
constrains these roles into an entire (sub-)system.

TABLE I: ADL survey results

Usability

ADL High-level

components

User-

defined

connectors

Formal

behaviour

specification

Formally

analyzable
Always

Realizable

Darwin [27] Yes No FSP Yes Yes

Wright [1] Yes Yes CSP Yes No

Rapide [24] Yes No
Event

patterns
Yes No

UniCon [45] Yes No No No Yes

C2 [32] Yes No
Method call

ordering, Z
Yes Yes

LEDA [7] Yes No π Calculus Yes Yes

Koala [51] Yes No No No Yes

SOFA [43] Yes Yes
Behaviour

Protocols †

Only for

components
Yes

PiLar [44] Yes Yes CCS Yes No

PRISMA [40] Yes Yes OASIS Yes No

COSA [38] Yes Yes No No No

AADL [12] No ‡ No Automata Yes Yes

CONNECT [20] Yes Yes FSP Yes No

† Simplified CSP ‡ Built-in low-level components

Behaviour specification As aforementioned, CONNECT
adopts the FSP process algebra for specifying components,
connectors, and their configurations, instead of CSP that is
used by Wright.

Semantics of CONNECT In specifying software archi-
tectures, CONNECT adopts not only the FSP syntax but also
its semantics [29]. A component corresponds to a composite
process comprising the component port primitive processes.
Similarly, a connector is the parallel composition of the con-
nector role primitive processes with the glue process. Finally,
a system configuration is again a composite process that
composes the processes corresponding to the components and
connectors.

Realizability Just like Wright specifications, CONNECT
specifications are potentially unrealizable, due to the glue
element in connector specifications.

IV. EVALUATION

TABLE I summarizes the results of our analysis and shows
that none of the surveyed ADLs are easy-to-use, formally
analyzable, and ensure realizable designs at the same time –
each suffers from at least one of these problems.

Difficult to use ADLs As TABLE I shows, the ADLs
considered are not so easy to use for specifying the architecture
of large and complex systems. Indeed, they either lack support
for user-defined, complex connector specification, or adopt a
notation for specifying the behaviours of architectural elements
that practitioners consider as imposing a “steep learning curve”
[30]. In fact, AADL, one of the newer ADLs, has also limited
its support for specifying high-level, generic components,
possibly in its quest to support code-generation better. AADL
restricts designers to use only built-in components. As AADL
built-in types are rather low-level, this leads to architectural
designs that look more like low-level designs [11]. In this way,
software architectures become difficult to manage, requiring
extra work to develop and analyze.

The bulk of the current ADLs (e.g., Wright, LEDA,
Darwin, PiLar, PRISMA, CONNECT, and SOFA) adopt a
formal notation for specifying the behaviours of architectural
elements. The notation is usually some process algebra (e.g.,

FSP [28], CSP [18], CCS [35], or π-calculus [36]), even
though other formalisms are also used (e.g., Z [47]). Although
it is important that they provide a formal means of specifying
behaviours of architectures, process algebras, etc., are unfor-
tunately not viewed favourably by practitioners [30].

Support for user-defined connectors seems to be another
major concern over existing ADLs (especially the early ones).
Darwin, LEDA, Koala, and AADL view connectors at best
as simple interconnection mechanisms, e.g., procedure call
and event broadcasting, providing no support for complex
interaction protocols, or worse as mere connection links com-
municating no interaction information at all. With minimal
support for connectors, components have to incorporate spe-
cific interaction protocols, thus reducing their re-usability and
increasing their complexity. If architects choose to omit these
protocols from their component specifications they may end
up facing the architectural mismatch problem [15], i.e., the
inability to compose seemingly compatible components into
a whole system due to wrong assumptions they make about
their interaction. This also hinders the formal analysis of
architectural designs, as protocols can no longer be analyzed in
isolation from components. UniCon, Rapide, C2 provide only
partial support for connectors too, by either restricting design-
ers with simple built-in connectors or restricting their existence
as part of other elements (e.g., components, architecture).

Potentially unrealizable designs Realizability of system
architectures is a major issue with a number of the existing
ADLs. As shown in TABLE I, all ADLs (apart from SOFA)
supporting user-defined connectors allow the specification of
unrealizable architectures. SOFA does not suffer from potential
un-realizability because its connectors contain no behavioural
specifications at all and therefore impose no constraints on the
behaviour of the connected components. Wright, COSA, and
CONNECT require architectural connectors to include a glue
element, that is, a centralized unit coordinating the behaviour
of components that interact through the connector. Likewise,
Rapide’s global event pattern constraints, PiLar’s constraint
construct, and PRISMA’s coordination aspects, all act like a
Wright glue. However, the glue is deeply problematic, as we
have shown by using it to specify Alur’s unrealizable protocol
[3]. As shown in [3], [4], realizability is undecidable in general,
which means that not only these ADLs do not guard architects
against specifying unrealizable protocols, but that there is no
general method that we could use to warn them after the fact.
Indeed, this may be the reason why recent ADLs focusing on
code generation such as AADL, LEDA, Koala, and SOFA do
not offer support for user-defined connectors.

Early vs Recent ADLs As discussed so far, the more
recent ADLs have no major difference with the earlier ones
when compared against the properties of interest here. This
is because the recent ADLs have taken the basic structures
more or less as granted, either following Darwin’s component-
only approach or Wright’s component-and-connector one, and
focused more on other issues such as how to better support
code generation.

UML and derivatives The most successful language for
specifying architectures in practice is UML [30] – it is used
by more people than all the other languages put together. This
is probably because it is well known and used extensively for
lower-level designs, despite the fact that it is not yet a very

good solution for specifying architectures [22]. Indeed, UML
lacks formal semantics (though tools exist to analyze tool-
specific versions of it), and it does not support user-defined
connectors well. Apart from AADL and Rapide a language that
is used rather often for specifying architectures is ArchiMate
[50]. ArchiMate introduces three views for architectures: a
business, an application, and a technology one. The business
layer is described using a business process and it is linked to
the application one that is described using essentially UML.
We view these two layers as a component diagram (the
application layer) upon which one maps a centralized pro-
tocol/connector (the business layer), with the aforementioned
problems that this creates (potential un-realizability).

A way forward We are currently working on a new
ADL called XCD [23], which attempts to avoid these prob-
lems by supporting user-defined connectors but doing so in
a way that does not employ a glue entity. Each connector
role describes the behaviour constraints for the component
that will assume it only, behaving as a sort of a component
wrapper. In this manner, XCD architectures are realizable by
construction, as there is no element that introduces global
interaction constraints. Indeed, the connector of Fig. 2 is
impossible to specify in XCD– one can specify the roles and
their behaviour but not the glue. Essentially, the glue is broken
down into the part that connects actions, which is kept, and
the part that defines global interaction constraints, which is
removed. In XCD global interaction constraints can be verified
but not imposed – this turns an undecidable problem (how
to realize a glue) into a decidable one (how to verify that
the roles’ composition satisfies the glue). Behaviours in XCD

are specified in a formal manner but this is done through
a Design-by-Contract approach [34], that practitioners have
already embraced as it is close to the programming languages
they are accustomed to (e.g. JML [8]) and it allows them to
improve their testing methods.

V. RELATED WORK

There have already been different surveys conducted about
ADLs, e.g, Vestal’s [52], Clements’s [10], Medvidovic and
Taylor’s [33], Woods and Hilliard’s [53], and Malavolta et
al.’s [30]. The first three [10], [33], [52] primarily focused
on identifying the defining characteristics of an ADL and
its architectural elements. While they are quite helpful in
understanding what an ADL is, their possible features, and
the degree of support that current ADLs provide for them, our
survey focuses on what we believe keeps industry away from
using ADLs. This is why we assessed ADLs for usability and
considered explicitly the problem of realizability of architec-
tural designs specified with ADLs. After all, no one wants to
produce a design that is impossible to implement. Furthermore,
these surveys did not cover new-generation ADLs, e.g., SOFA,
AADL, COSA, LEDA, etc., that were developed more recently.
The latter two surveys [30], [53] considered the use of ADLs
in the industry, so ADL usability was a main concern in them.
Practitioners seemed to agree that code generation is not very
useful [30], as we believe. There was also almost a consensus
that formal analysis is less important than effective commu-
nication of architectures. We believe that this is indeed the
case, as the primary purpose of an architecture is to establish
a common understanding of what a system is supposed to do
and the main ways it will achieve so. However, the two are

not contradictory. The formal languages used so far (CSP, Z,
etc.) hamper understanding and require a lot of investment
to produce architectural specifications. We strongly believe
that were the formal specification done in a language similar
to JML [8], practitioners would adopt it overwhelmingly and
actively use tools to analyze their designs, even those that cur-
rently only use them for communication. After all, effectively
communicating flawed architectural designs through the use
of informal languages is not the way forward – discovering
an architectural flaw during implementation, integration, or
system use is too costly.

VI. CONCLUSIONS

Since the early nineties, various architecture description
languages (ADLs) have been proposed allowing designers
to specify their system architectures in a formal, precise
way. ADLs are generally known with their comprehensive
support for system architecture specification and its early
formal analysis. However, despite the advantages promised by
ADLs, they still have not entered the mainstream. The lack
of interest shown is we believe a consequence of three main
problems that no ADL has managed to solve at the same time:
(i) lack of support for formal analysis of architectures, (ii)
notations that sometimes make specifying large and complex
system architectures harder than it should be, and (iii) potential
un-realizability of system architectures. This paper surveyed
thirteen different ADLs, half of which are widely-known early
ADLs and the other half are recent works, identifying some
of the above stated problems in all these ADLs. As we stand,
practitioners are still unable to find an ADL that facilitates
the specification of complex systems in a way that enables
early formal analysis and at the same time guarantees that the
architecture is realizable. Our work on the XCD ADL aims at
developing such a language.

VII. ACKNOWLEDGEMENTS

This work has been partially supported by the EU project
FP7-257367 IoT@Work – “Internet of Things at Work”.

REFERENCES

[1] R. Allen and D. Garlan. A formal basis for architectural connection.
ACM Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[2] A. Alti, T. Khammaci, and A. Smeda. Representing and formally mod-
eling COSA software architecture with UML 2.0 profile. International

Review on Computers and Software, 2:30–37, 2007.

[3] R. Alur, K. Etessami, and M. Yannakakis. Inference of message
sequence charts. IEEE Trans. Software Eng., 29(7):623–633, 2003.

[4] R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification
of MSC graphs. Theor. Comput. Sci., 331(1):97–114, 2005.

[5] T. Bures, M. Malohlava, and P. Hnetynka. Using DSL for automatic
generation of software connectors. In ICCBSS, pages 138–147. IEEE
Computer Society, 2008.

[6] T. Bures and F. Plasil. Communication style driven connector config-
urations. In C. Ramamoorthy, R. Lee, and K. Lee, editors, Software

Engineering Research and Applications, volume 3026 of Lecture Notes

in Computer Science, pages 102–116. Springer Berlin Heidelberg, 2004.

[7] C. Canal, E. Pimentel, and J. M. Troya. Specification and refinement of
dynamic software architectures. In P. Donohoe, editor, WICSA, volume
140 of IFIP Conference Proceedings, pages 107–126. Kluwer, 1999.

[8] Y. Cheon and G. T. Leavens. A simple and practical approach to unit
testing: The JML and JUnit way. In B. Magnusson, editor, ECOOP,
volume 2374 of Lecture Notes in Computer Science, pages 231–255.
Springer, 2002.

[9] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating
AADL into BIP - application to the verification of real-time systems.
In M. R. V. Chaudron, editor, MoDELS Workshops, volume 5421 of
Lecture Notes in Computer Science, pages 5–19. Springer, 2008.

[10] P. C. Clements. A survey of architecture description languages. In
Proceedings of the 8th International Workshop on Software Specifica-

tion and Design, IWSSD ’96, pages 16–, Washington, DC, USA, 1996.
IEEE Computer Society.

[11] D. Delanote, S. V. Baelen, W. Joosen, and Y. Berbers. Using AADL to
model a protocol stack. In ICECCS, pages 277–281. IEEE Computer
Society, 2008.

[12] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture Analysis &
Design Language (AADL): An Introduction. Technical report, Software
Engineering Institute, 2006.

[13] R. B. França, J.-P. Bodeveix, M. Filali, J.-F. Rolland, D. Chemouil, and
D. Thomas. The AADL behaviour annex - experiments and roadmap.
In ICECCS, pages 377–382. IEEE Computer Society, 2007.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:

Elements of reusable object-oriented software. Addison Wesley, Oct.
1994. ISBN-13: 978-0201633610.

[15] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or
why it’s hard to build systems out of existing parts. In ICSE, pages
179–185, 1995.

[16] D. Garlan and M. Shaw. An introduction to software architecture. In
V. Ambriola and G. Tortora, editors, Advances in Software Engineering

and Knowledge Engineering, pages 1–39, Singapore, 1993. World
Scientific Publishing Company. Also appears as SCS and SEI technical
reports: CMU-CS-94-166, CMU/SEI-94-TR-21, ESC-TR-94-021.

[17] D. Giannakopoulou, J. Kramer, and S.-C. Cheung. Behaviour analysis
of distributed systems using the Tracta approach. Autom. Softw. Eng.,
6(1):7–35, 1999.

[18] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[19] S. Holzner. Design Patterns For Dummies. John Wiley & Sons, May
2006. ISBN-13: 978-0471798545.

[20] V. Issarny, A. Bennaceur, and Y.-D. Bromberg. Middleware-layer con-
nector synthesis: Beyond state of the art in middleware interoperability.
In M. Bernardo and V. Issarny, editors, SFM, volume 6659 of Lecture

Notes in Computer Science, pages 217–255. Springer, 2011.

[21] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and J. R. O.
Silva. Documenting component and connector views with UML
2.0. Technical Report CMU/SEI-2004-TR-008, Software Engineering
Institute (Carnegie Mellon University), 2004.

[22] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and J. R. O.
Silva. Documenting component and connector views with UML 2.0.
TR CMU/SEI-2004-TR-008, 2004.

[23] C. Kloukinas and M. Ozkaya. Xcd - Modular, realizable software
architectures. In C. S. Pasareanu and G. Salaün, editors, FACS, volume
7684 of Lecture Notes in Computer Science, pages 152–169. Springer,
2012.

[24] D. C. Luckham. Rapide: A language and toolset for simulation of
distributed systems by partial orderings of events. Technical report,
Stanford University, Stanford, CA, USA, 1996.

[25] D. C. Luckham and J. Vera. An event-based architecture definition
language. IEEE Trans. Software Eng., 21(9):717–734, 1995.

[26] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. In W. Schäfer and P. Botella, editors, ESEC,
volume 989 of Lecture Notes in Computer Science, pages 137–153.
Springer, 1995.

[27] J. Magee and J. Kramer. Dynamic structure in software architectures.
In SIGSOFT FSE, pages 3–14, 1996.

[28] J. Magee and J. Kramer. Concurrency – State models and Java programs

(2. ed.). Wiley, 2006.

[29] J. Magee, J. Kramer, and D. Giannakopoulou. Analysing the behaviour
of distributed software architectures: A case study. In FTDCS, pages
240–247. IEEE Computer Society, 1997.

[30] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang. What in-
dustry needs from architectural languages: A survey. IEEE Transactions

on Software Engineering, 99, 2012.

[31] N. Medvidovic. Formal Definition of the Chiron-2 Software Architec-

tural Style. Technical report (University of California, Irvine. Dept.
of Information and Computer Science). Department of Information and
Computer Science, University of California, Irvine, 1995.

[32] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using
object-oriented typing to support architectural design in the C2 style.
In SIGSOFT FSE, pages 24–32, 1996.

[33] N. Medvidovic and R. N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Trans.

Software Eng., 26(1):70–93, 2000.

[34] B. Meyer. Applying “Design by Contract”. IEEE Computer, 25(10):40–
51, 1992.

[35] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980.

[36] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
i. Inf. Comput., 100(1):1–40, 1992.

[37] P. C. Ölveczky, A. Boronat, and J. Meseguer. Formal semantics and
analysis of behavioral AADL models in real-time Maude. In J. Hatcliff
and E. Zucca, editors, FMOODS/FORTE, volume 6117 of Lecture Notes

in Computer Science, pages 47–62. Springer, 2010.

[38] M. Oussalah, A. Smeda, and T. Khammaci. An explicit definition of
connectors for component-based software architecture. In ECBS, pages
44–51. IEEE Computer Society, 2004.

[39] O. Pastor, I. Ramos, and J. H. C. Cerdá. Oasis v2: A class definition
language. In N. Revell and A. M. Tjoa, editors, DEXA, volume 978 of
Lecture Notes in Computer Science, pages 79–90. Springer, 1995.

[40] J. Pérez. PRISMA: Aspect-Oriented Software Architectures. PhD thesis,
Universidad Politécnica de Valencia, Valencia, 2006.

[41] D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, Oct. 1992.

[42] F. Plasil, D. Bálek, and R. Janecek. SOFA/DCUP: Architecture for
component trading and dynamic updating. In CDS, pages 43–51. IEEE,
1998.

[43] F. Plasil and S. Visnovsky. Behavior protocols for software components.
IEEE Trans. Software Eng., 28(11):1056–1076, 2002.

[44] C. E. C. Quintero, P. de la Fuente, M. Barrio-Solórzano, and M. E. B.
Gutiérrez. Coordination in a reflective architecture description language.
In F. Arbab and C. L. Talcott, editors, COORDINATION, volume 2315
of Lecture Notes in Computer Science, pages 141–148. Springer, 2002.

[45] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik. Abstractions for software architecture and tools to support
them. IEEE Trans. Software Eng., 21(4):314–335, 1995.

[46] A. Smeda, M. Oussalah, and T. Khammaci. A multi-paradigm approach
to describe software systems. In Proceedings of the WSEAS Interna-

tional Conferences on Software Engineering, Parallel and Distributed

Systems, Salzburg, Austria, 2004.

[47] J. M. Spivey. Z Notation – A reference manual (2. ed.). Prentice Hall
International Series in Computer Science. Prentice Hall, 1992.

[48] C. Stirling. Handbook of logic in computer science (vol. 2). chapter
Modal and temporal logics, pages 477–563. Oxford University Press,
Inc., New York, NY, USA, 1992.

[49] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. W. Jr., J. E.
Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow. A component-
and message-based architectural style for GUI software. IEEE Trans.

Software Eng., 22(6):390–406, 1996.

[50] The Open Group. Archimate 1.0 specification. Technical standard, Feb.
2009.

[51] R. C. van Ommering, F. van der Linden, J. Kramer, and J. Magee.
The Koala component model for consumer electronics software. IEEE

Computer, 33(3):78–85, 2000.

[52] S. Vestal. A cursory overview and comparison of four architecture
description languages. Technical report, Honeywell Technology Center,
1993.

[53] E. Woods and R. Hilliard. Architecture description languages in practice
session report. In Proceedings of the 5th Working IEEE/IFIP Conference

on Software Architecture, WICSA’05, pages 243–246, Washington, DC,
USA, 2005. IEEE Computer Society.

