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Abstract—We present a novel mixed time and frequency do-
main approach to the formal verification of oscillators properties
which are specified in the frequency domain. We use robust
periodogram specification to specify the oscillator behaviour in
the close vicinity of the limit cycle. Using SAT modulo ODE
(SMO) for Bounded Model Checking (BMC) of the non-linear
hybrid automata, we show that the oscillator hybrid timed traces
satisfy frequency domain specifications.

I. INTRODUCTION

Significant time is spent, in the industry, verifying analog

and mixed signal (AMS) circuits using SPICE simulations.

Formal methods have been successfully used to verify digital

circuits and could provide better solutions for more reliable,

less time consuming AMS circuits design too.

This paper describes the formal verification of the frequency

domain properties of a non-linear oscillator when it operates in

the close proximity of its limit cycle. We propose a mixed time

and frequency domain approach for this purpose, and show

that the hybrid timed traces of an oscillator, robustly belongs to

the frequency domain power spectral envelop specified as con-

straints on periodogram at harmonic frequencies. We model an

oscillator circuit by the non-linear hybrid automaton and use

the recent SMO technique for BMC of hybrid automata [1],[2],

to compute the periodic invariant set (Limit Cycle). This limit

cycle is verified against the robust frequency domain properties

specification represented as constraints on its periodogram [3]

at frequencies of interest.

A survey of the recent formal Analog and Mixed Signal

(AMS) verification approaches can be found in [4]. Frequency

domain approaches have been limited to the small signal AC

analysis of a more approximate linearized model around an

equilibrium point [5],[6].

II. PRELIMINARIES

A. Non-linear Dynamical Systems as Hybrid Automata

Definition 1 (Non-linear Hybrid Automata).

A Non-linear Hybrid Automata [7] is a tuple,

H=(Loc, Var, Flow, Inv, Trans) where,

• Loc is a finite set of locations.

• Var is a set of continuous variables,

Var= {x1, x2.....xn} ⊂ R
n.

• Flow is the set of vector fields, i.e. Flow(ℓ) is an

autonomous subsystem for each ℓ ∈ Loc and is of the

form,

ẋ = fℓ(x, u) (1)

fℓ : Dn
ℓ × Um 7→ Dn

ℓ is a non-linear but at least

locally Lipschitz function of continuous vector x ∈ Dn
ℓ ,

and a non deterministic vector u ∈ Um of inputs and

parameters.

• Inv is a constraint on the domain Dn
ℓ of each location

ℓ ∈ Loc,

Inv(ℓ) = Iℓ(x(t), u) ≥ 0 (2)

• Trans is a set of discrete transitions; Each transition

τ ∈ Trans, is a tuple τ = (ℓ, guardτ , rτ , ℓ
′); where

(ℓ,ℓ′) ∈ Loc are the pre and post modes respectively,

and guardτ is a switching conditions given by system of

equations,

guardτ = Gτ (x(t), u) = 0 (3)

here (guardτ ⊂ Dn
ℓ ) ∈ G, G being the set of guards.

When a guard condition is met, a discrete transition takes

place. rτ ∈ R is a reset, where for each τ ∈ Trans, it is

a relation between elements of guardτ and elements of

Dn
ℓ′ , i.e., rτ ⊂ guardτ ×D

n
ℓ′ . Here R is the set of resets.

We use D =
⋃

ℓD
n
ℓ .

B. Non-linear Hybrid Automata Verification Using SAT mod-

ulo ODE

Andreas et al. in [1], presented SMO technique for the

non-linear hybrid automata verification. Essentially, it is a

technique based on the BMC of the non-linear hybrid au-

tomata, encoded as a large number of constraints; involving

boolean, linear and non-linear algebraic, and non-linear ODE

constraints. Establishing reachability of a target region (inter-

val), predicative encoding of the hybrid transition system is

used, i.e.,

Φ = DECL[0] ∧ .. ∧DECL[N ] ∧ Init[0] ∧ Trans[0, 1] ∧
.. ∧ Trans[(N − 1), N ] ∧ Target[N ].

This is a N-step unfolding of the transition system; where

DECL[N ] are the simple bounds on variables in the N-th



step, Init[0] is the predicate for initial conditions at the 0-

th step, Trans(N,N − 1) is the transition relation between

variables during N-th and (N-1)th step, and Target[N ] is the

instantiation of the target predicate at the N-th step.

C. Limit Cycles in Hybrid Systems

Here we introduce concepts of the limit sets, periodic orbits,

and the limit cycles in hybrid automata. We define a map

ΦH : R × D 7→ D, which describes piecewise smooth flow

over the hybrid domain D.

Definition 2 (Hybrid Limit Sets).

A point z ∈ D is called an ω-limit point of y ∈ D if there is

a sequence tn → ∞ for which, limn→∞ΦH(tn, y) = z. The

set of all such points of z, is the hybrid ω-limit set LH
ω (y).

Definition 3 (Hybrid periodic Orbits).

An orbit η is a closed periodic orbit if, for some x ∈ η, it is

not an equilibrium (i.e. ΦH(t, x) 6= x), and ΦH(T, x) = x,

for some smallest T 6= 0. T is called the fundamental period

of η. If η belongs to multiple domains Dℓ, then it is called a

hybrid periodic orbit.

Definition 4 (Hybrid Limit cycle).

A closed hybrid orbit η, is called a hybrid limit cycle if, η ⊂
LH
ω (y) for some y /∈ η.

III. FREQUENCY DOMAIN PROPERTIES SPECIFICATION OF

HYBRID LIMIT CYCLE

This section introduces robust frequency domain properties

specification of the hybrid limit cycle using periodogram based

power spectral envelop.

A. Robust Specification of a Periodic Function in Frequency

Domain

A scalar function g is periodic with period T if g(t) =
g(t + nT ), ∀t ∈ R and ∀n ∈ Z. We denote by P , the

set of all functions, which apart from being T periodic, also

have the property of square sumability over a period T , i.e.,

P ⊂ L2[0, T ]. All such periodic functions g(t) ∈ P can be

represented by the sum of an infinite number of T -periodic

sinusoids as,

g(t) =
∞
∑

k=0

(ak cosωkt+ bk sinωkt) (4)

where ωk = 2πk/T , ak, bk ∈ R. Instead of an infinite series

representation of the periodic functions, we use notion of the

almost periodic functions [8], which are represented by at

most a countable number of sinusoids. We denote such set

of almost periodic functions by AP , and therefore g(t) ∈ P
is represented by its approximation Sk(t) ∈ AP ,

SK(t) =
∑

ωk∈ΩK

(ak cosωkt+ bk sinωkt) (5)

where ΩK is the set of K frequencies. The finite series

representation SK(t) is the best approximation of g(t), and it

has a least mean square error property. Let εK = max‖g(t)−
SK(t)‖ represent the maximum approximation error, then g(t)

can be conservatively represented by SK(t) − εK ≤ g(t) ≤
SK(t) + εK . The set F of all pairs {(a0, b0), ...(ak, bk)},

of the Fourier coefficients is called the frequency domain

representation of a periodic function g(t). Instead of specifying

a periodic function g(t) in the frequency domain in terms

of the set F , we use the periodogram specification which is

defined below.

Definition 5 (Periodogram).

The energy content of a signal at each frequency ωk is called

a periodogram, and is given by, pk = (a2k+b
2
k). We denote by

P = {p0, .....pK}, the set of all periodograms at frequencies

ωk ∈ ΩK .

To cater for parameter variations, temperature and uncer-

tainty in initial conditions, we introduce the idea of robust

periodogram specification.

Definition 6 (Robustness of Periodogram).

We specify P such that pairs of the Fourier series coef-

ficients (ak, bk) for all ωk ∈ ΩK , result in the function

SK(t) (Eq. 5), which is the approximate representation of

the periodic function g(t) and satisfy the inequality constraint

SK(t) − εK ≤ g(t) ≤ SK(t) + εK . We say that p′k ∈ P has

ǫk degree of robustness, if it can tolerate an ǫk amount of

perturbation such that, ∃pk ∈ P : {pk − ǫk ≤ p
′

k ≤ pk + ǫk}.

B. Encoding Membership of the Limit Cycle in the Robust

Power Spectral Envelop

Let η is a vector of scalar valued functions of time,

η(t) := {η1(t), ..., ηn(t)} : R 7→ D. In other words,

η(t) = ΦH
t (x); ∀x ∈ η, i.e., η(t) represent the information

about the hybrid limit cycle η at each time t. We define a

power spectral envelop H(ωk) : ΩK 7→ R
+, which maps each

discrete frequency ωk ∈ ΩK to a periodogram pk. The set

APǫk of all almost periodic functions belongs to the power

spectral envelop H(ωk) with ǫk degree of robustness, if the

Fourier series coefficients satisfy the following constraints [9],

• ∀k ∈ N, (ωk > ωK) =⇒ pk = 0,

• ∀k ∈ N, H(ωk) − ǫk ≤ pk ≤ H(ωk) + ǫk, such that

0 ≤ ωk ≤ ωK .

We require that for each Sn,K(t) ∈ cl(APǫk), the scalar

periodic orbit ηn(t) satisfies the constraint Sn,K(t)− εn,K ≤
ηn(t) ≤ Sn,K(t) + εn,K . Here cl(APǫk) denotes closure of

APǫk . We encode this by introducing the following set of

constraints for the vector η(t),

ψ1 =

N
∧

n=1













K
∧

k=0

(Hn(ωk)− ǫn,k ≤ pn,k ≤ Hn(ωk) + ǫn,k)













,

ψ2 =
N
∧

n=1
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.

Here the first constraint ψ1 puts upper and lower bounds

on the periodograms at K frequencies in the presence of

ǫn,k perturbation for N scalar periodic functions. The second

constraint ψ2 ensures that for all time t all the N periodic

variables are approximated by K sinusoids. The last constraint

ψ3 conservatively over-approximate the periodic function ηn
taking in to consideration the error generated by the almost

approximate periodic function Sn,K . The universal quantifi-

cations in the last two constraints are implicit, i.e. the BMC

algorithm using SAT modulo ODE verify, whether there is any

time instant t, at which any of these constraints are violated.

C. Membership as BMC Target Predicate

We determine the membership of the hybrid timed traces

in the robust power spectral envelop by incorporating

the additional set of constraints ψ1, ψ2, , ψ3, in the BMC

algorithm discussed in section II.B. The initial conditions to

the BMC is given in the form of a box Binitial (Considering

two dimensional system). Apart from the BMC ODE

constraints, we add the set of constraints ψ1, ψ2, , ψ3, for

each scalar variable xn to the BMC algorithm. In the ‘Target’

of the BMC algorithm, we introduce the following predicate,

i.e.,

¬(time > 0 ∧ time <= tmax ∧ xn ∈ Binitial) ∨
¬(‖ηn(t)− xn(t)‖ ≤ σ)
This target predicate is actually a disjunction of two predicates.

The predicate ¬(time > 0∧ time <= tmax ∧ xn ∈ Binitial),
ensures that starting in the box Binitial, the trajectories

would return back to the same box before the maximum

time limit is elapsed. A satisfiable valuation of this predicate

is a counterexample of the periodicity property. The second

predicate ¬(‖ηn(t) − xn(t)‖ ≤ σ), ensures that for all the

time, the distance of the hybrid timed traces from the possible

time domain periodic trajectories obtained from the frequency

domain specification, must be less than a user defined error.

A satisfiable valuation of this predicate indicates the violation

of the frequency domain specification implicitly.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Methodology

We have used Tunnel diode Oscillator (TDO) and Voltage

Controlled Oscillator (VCO) benchmarks for the evaluation of

our proposed methodology Figs. 1, that have been taken from

[10],[11]. Equations Eq. 6, and Eq. 7, represent the non-linear

ODE model of the TDO, where Id(Vd) is the non-linear model

of the tunnel diode. Mathematical model of VCO is given

in Eqs. 8, 9, 10, where IDS(VGS , VDS) is the Schichman-

Hodges PMOS model [11]. For TDO we have used parameters,

C = 1nF ± 2%, L = 1mH ± 2%, R = 0.2Ohm and Vin ∈

Figure 1: Oscillators Circuit Diagrams,Left:TDO,Right:VCO

Vd Below 0.055

Vd Between 0.055-0.35

Vd Above 0.35

V d ≥ 0.055V d ≤ 0.055

V d ≤ 0.35 V d ≥ 0.35
Lin1/Cut2

Lin1/Sat2 Sat1/Sat2 Sat1/Lin2

Cut1/Lin2

Figure 2: Hybrid Automaton,Left:TDO,Right:VCO

[0.35, 0.36]. Similarly, for VCO we have set, C = 3.43nF ±
2%, L = 2.85mH ± 2%, Vctr = 0 and VDD ∈ [1.8, 1.85]. We

have used the SMO solver iSAT-ODE [1], to exercise BMC

formulations of the non-linear hybrid automata, and Matlab

[12] to compute periodogram specifications. We have used a

2.6 GHZ Intel(R) Core(TM) i5 machine with 4 GB of memory

for all the experiments.

V̇d =
1

C
(−Id(Vd) + IL) (6)

İL =
1

L
(−Vd + IL.R+ Vin) (7)

V̇D1 =
−1

C
(IDS1(VD2 − VDD, VD1 − VDD) + IL1) (8)

V̇D2 =
−1

C
(IDS2(VD1 − VDD, VD2 − VDD) + Ib − IL1)

(9)

İL1 =
1

2L
(VD1 − VD2 −R(2IL1 − Ib)) (10)

B. Results

Based on the non-linear diode and PMOS models in

[10],[11], we got the non-linear hybrid automatons of TDO

and VCO Fig. 2. Simulation traces are shown in Fig. 3a,

Fig. 3b, whereas periodogram specifications for these traces

are in Fig. 4a,. 4b, for TDO and VCO respectively. Here we

have only shown specification for the fundamental frequency

of the variables (Vd for TDO, and V D1 for VCO). The

upper and lower bounds on these periodograms have been

found based on the designer judgement, i.e., we chose random

values in the parameter spaces and correspondingly varied

the “ power spectral envelop" and arrived at these bounds.

Taking Vd ∈ [0.55, 0.58], IL = 0.0 as the initial conditions

for the state variables, we model checked the TDO hybrid

automaton for eight unwindings of the BMC formula Tab. IIa.

Similarly for VCO, we considered initial conditions V D1 ∈
[−1.5,−1.4]volts, V D2 ∈ [−0.9,−0.8]volts, IL = 0.06mA
and obtained the BMC results for eight unwindings of the

formula Tab. IIb.



(a) TDO Limit Cycle Simulation (b) VCO Limit Cycle Simulation

Figure 3: Simulation Traces of Hybrid Automata

(a) TDO Robust Periodogram Specification (b) VCO Robust Periodogram Specification

Figure 4: Frequency Domain Properties Specifications

Depth Decision Time(Seconds)

0 Unsatisfiable 0

1 Unsatisfiable 81.07

2 Unsatisfiable 83.22

3 Unsatisfiable 304.37

4 Unsatisfiable 352.44

5 Unsatisfiable 1299.64

6 Unsatisfiable 1448.71

7 Unsatisfiable 26779.75

8 Unsatisfiable 27096.21

(a) TDO Verification Results

Depth Decision Time(Seconds)

0 Unsatisfiable 0

1 Unsatisfiable 6.13

2 Unsatisfiable 206.45

3 Unsatisfiable 538.39

4 Unsatisfiable 947.10

5 Unsatisfiable 2237.89

6 Unsatisfiable 3457.43

7 Unsatisfiable 11672.11

8 Unsatisfiable 15892.13

(b) VCO Verification Results

Table I: Experimental Results.

V. CONCLUSION

In this paper we have presented a novel mixed time and

frequency domain approach to verify frequency domain prop-

erties of oscillators when they operate in the close vicinity of

the limit cycle.
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