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Abstract—Optical coherence tomography (OCT) is widely used 

in the assessment of retinal nerve fibre layer thickness (RNFLT) 

in glaucoma. Images are typically acquired with a circular scan 

around the optic nerve head. Accurate registration of OCT scans 

is
 
essential for measurement reproducibility and longitudinal 

examination. This study developed and evaluated a special image 

registration algorithm to align the location of the OCT scan 

circles to the vessel features in the retina using probabilistic 

modelling that was optimised by an expectation-maximization 

algorithm. Evaluation of the method on 18 patients undergoing 

large numbers of scans indicated improved data acquisition and 

better reproducibility of measured RNFLT when scanning circles 

were closely matched. The proposed method enables clinicians to 

consider the RNFLT measurement and its scan circle location on 

the retina in tandem, reducing RNFLT measurement variability 

and assisting detection of real change of RNFLT in the 

longitudinal assessment of glaucoma. 

 
Index Terms—image registration, probabilistic modelling, 

expectation-maximization, optical coherence tomography, scan 

circle alignment 
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I. INTRODUCTION 

LAUCOMA is a leading cause of irreversible visual 

impairment, being a progressive optic neuropathy 

resulting in the loss or damage of retinal ganglion cells 

(RGCs) and their axons. In human eyes, light rays are focused 

and sensed on the retina, which is the tissue layer at the back 

of the eye. Simply put, the top ‘layer’ of the retina consists of 

retinal ganglion cells and their axons (nerve fibres) with 

photoreceptors (rods and cones) underneath. The retinal nerve 

fibres converge to form the optic nerve head (ONH) where 

they exit the eye to enter the brain. The retinal nerve fibres 

carry the signals from across the retina into the brain so the 

damage or ‘thinning’ of RGCs and their axons caused by 

glaucoma results in the irreversible visual impairment. 

Estimates of RGC axon loss can be made by the surrogate 

measurement of retinal nerve fibre layer (RNFL) thickness 

using modern imaging techniques such as optical coherence 

tomography (OCT) [1, 2]. Similar to ultrasound technique, 

OCT detects the backscattered light from the retina and 

produces high resolution, cross-sectional images. This 

technique has formed time-domain OCT (TD-OCT) systems 

such as the StratusOCT (Carl Zeiss Meditec, Inc., Dublin, CA) 

that has been successfully used in the clinic as a clinical 

standard for measuring the RNFL thickness (RNFLT) in 

glaucoma in recent years [3-7]. In the StratusOCT system 

measurement of the retinal layers is acquired by an axial-scan 

in depth (A-scan) and a cross-sectional scan (B-scan). The 

A-scans are sampled under a scan circle (typical diameter of 

3.4 mm) which is manually centred on the optic nerve head 

(ONH; Figure 1(I)) as guided by a ‘live’ image of the fundus 

but the location of the scan circle is unknown during the image 

acquisition. The RNFLT is then analysed by segmentation 

algorithms provided by the software. One difficulty during 

image acquisition is the displacement of the circular scan due 

to the operator’s subjective placement of the scan circle or the 

eye movement after the manual adjustment. This displacement 

means that the RNFLT is not necessarily sampled at the same 

location and this contributes to the variability and error in the 

measurement [8-10], restricting the use of the technique 

especially in determining the deterioration of the RNFLT in 

the longitudinal assessment or follow-up of glaucoma. 

Moreover, the problem of RNFLT reproducibility due to 

image acquisition difficulties was also recently identified as a 
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limiting factor for this technology in the diagnosis or 

management of multiple sclerosis [11]. Therefore, a method 

for identifying and aligning the location of the scan circle 

would be clinically useful as it may offer better tracking of the 

same area of RNFLT over time. 

Newer spectral-domain OCT (SD-OCT) [12, 13] operates 

with faster scans [14] giving improved signal-to-noise ratio in 

the measurements [15, 16] compared to TD-OCT. Although 

some commercially available SD-OCT (e.g. Cirrus, Carl Zeiss 

Meditec, CA, USA) scan protocols extract the circular scan 

from 3D volume scan, most other SD-OCT systems (e.g. 

RTVue-100, Optovue, Fremont, CA, USA) still provide 

circular scan as one of the scan protocols or include circular 

scans in more complex protocols (e.g. RTVue-100 NHM4 

protocol consisting of 6 circle and 12 line scans) so they may 

still be affected by displacement between scans [8, 17]. 

Therefore, improvements in this image acquisition protocol, or 

at least knowing the area of RNFLT that has been acquired, 

will still be beneficial for SD-OCT devices with such scan 

acquisition protocols. Moreover, TD-OCT has been used to 

follow up the progression of glaucoma long before the 

emergence of the SD-OCT, and it is still widely used by 

glaucoma services where clinicians (or research study 

co-ordinators) are reluctant to abandon series of data collected 

with TD-OCT over time since this provides important 

information about the longitudinal characteristic of glaucoma. 

The method proposed in this study may facilitate migration 

from TD-OCT to SD-OCT, for instance, by aligning TD-OCT 

scan circles on the volumetric images acquired by SD-OCT, 

so that longitudinal series are not wasted. 

The effect of scan circle location on the RNFLT 

measurement has been previously investigated by simulating 

different scan circle locations on a volumetric image around 

the ONH taken by ultrahigh-resolution OCT [8]. The circular 

scans were simulated by sampling the A-scans under a scan 

circle (3.4 mm diameter) shifted with known displacements 

horizontally (x-shift), vertically (y-shift) and diagonally from 

the centre of the ONH. This
 
method allowed for systematic 

investigation of the variable circle
 
placement effect. The 

results from this study clearly demonstrated that location of 

the OCT scan circle adds substantial
 
variability to the RNFLT 

measurements. Since registration of OCT scans is imperative 

for measurement reproducibility and longitudinal examination 

it would be very useful to have a method that could estimate 

the location of the scan circle on the retina. Kim et al. [18] 

proposed a method to align the circular scan image to a 

volumetric image around the ONH acquired by SD-OCT by 

using simulated cross-sectional images under scan circles at 

various locations sampled from the volumetric image. The 

circular scan was then aligned to the most similar sampled 

SD-OCT scans where the similarity was assessed by cross 

correlation between retinal structures in the A-scans from two 

images. One limitation is that the technique uses retinal 

structures that typically change during the worsening of 

glaucoma, giving it limited appeal in following up RNFLT 

changes if the circular scan and volumetric scans are acquired 

in different periods of time. This approach might help
 
bridge 

the gap in RNFLT measurements between the TD-OCT
 

circular scan and SD-OCT volumetric scan, providing 

longitudinal
 
comparability. However this approach is only 

useful when both TD-OCT and SD-OCT are available and it 

will not be helpful in a common situation where a clinic might 

be following patients with TD-OCT technology alone for 

years. 

This study proposes a new OCT scan circle alignment 

algorithm using blood vessel features which are considered to 

be relatively stable landmarks when considering longitudinal 

images in glaucoma. The algorithm can align multiple OCT 

circular scans to a retinal fundus image that is generally 

available in the glaucoma clinics from various imaging 

techniques, such as scanning laser polarimetry (SLP), 

scanning laser ophthalmoscope or even a fundus camera. The 

algorithm has been developed to have general applicability to 

any type of fundus and OCT images but is demonstrated in 

this study on StratusOCT images using fundus images 

acquired with SLP (GDxVCC; Carl Zeiss Meditec, Inc., 

Dublin, CA, USA). It has been successfully used in a recent 

study that assessed the axonal birefringence of RNFL by 

aligning the OCT scan circle onto the SLP image [19]. 

 

II. METHODS 

The proposed method aligns an OCT scan circle on the 

retinal fundus image by a registration technique using the 

blood vessel features available in both types of images. The 

vessels in OCT images typically appear as shaded bands along 

the retinal pigment epithelium (RPE; Figure 1(II)). The RPE is 

detected as the tissue layer with the strongest intensity peaks 

in the OCT image. The ‘shaded band’ feature of vessels is 

then detected as the local minimums on the averaged pixel 

intensities around the RPE (Figure 1(II)). The vessel features 

in the retinal fundus images differ with the imaging techniques 

used, and the vessel segmentation in retinal images have been 

extensively studied previously [20-25]. In the implementation 

of vessel detection for SLP fundus image, a measure of 

‘vesselness’ serves as a pre-processing step for segmentation 

of vessels in the retinal fundus image. A technique using the 

multi-scale second order local structure of an image (Hessian) 

[26] is used for this purpose. The vessels are then analytically 

reconstructed using cubic splines (Figure 1(I)) [27]. 

A scan circle around the ONH and the detected vessels in 

the OCT (white circles superimposed on the blue scan circle) 

and fundus image (red lines) are shown in Figure 1. That the 

scan circle is displaced is indicated by the poorly aligned 

vessels. The method proposed in this work infers the scan 

circle location by aligning the vessels from both images. 

 

A. Problem formalisation 

In an acquisition of an OCT image (Figure 1), the circular 

scan starts from the mid-temporal area at 180° (blue arrow on 

scan circle in Figure 1(I) and traverses in a clock-wise 

direction to superior (90°), nasal (0°), inferior (-90°) and 

finally back to the mid-temporal area. The circular scan is then 
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‘straightened’ to a ‘line’ in two dimensions (Figure 1(II)). 

Each column in the OCT image is therefore associated with an 

angular value on the scan circle. The locations of detected 

vessels in the OCT image are converted to angular values (e.g. 

Figure 1(III)) and are denoted as { }
1

N

i i=
X  where N is the 

number of OCT vessels. The x- and y-coordinates of each 

vessel in the retinal fundus image are expressed as two cubic 

splines [27] respectively, each of which is essentially a 

piecewise function defined over a parameter u . The cubic 

spline has H-1 segments divided by H knots 
1( ,...,  )

H
u u  on u 

and the one having an intersection with the scan circle is 

assumed to be the hth segment, so the coordinate ( ),  jh jhx y  of 

this segment of the jth fundus image vessel are: 
3 2

3 2

( ) ( ) ( )

( ) ( ) ( )

jh jxh h jxh h jxh h jxh

jh jyh h jyh h jyh h jyh

x a u u b u u c u u d

y a u u b u u c u u d

⎧ = − + − + − +⎪
⎨

= − + − + − +⎪⎩

 (1) 

The location of a scan circle with radius r=3.4mm is 

defined by three parameters: centre coordinate ( ),  s t , and 

rotation θ  (in degree) around the centre. The circle rotation θ  

rotates all OCT vessels around the scan circle centre by θ  
degrees and, in the ‘straightened’ two dimensions image 

(Figure 1(II)), it shifts the OCT vessels (and the whole image) 

on horizontal by θ  degrees. Given the parameters of a scan 

circle, the intersection between a vessel defined by Equation 

(1) and the scan circle can be calculated by solving the 

following polynomial equation with respect to u: 
2

3 2

2
3 2 2

( ) ( ) ( )

( ) ( ) ( )

jxh h jxh h jxh h jxh

jyh h jyh h jyh h jyh

a u u b u u c u u d s

a u u b u u c u u d t r

⎡ ⎤− + − + − + −⎣ ⎦

⎡ ⎤+ − + − + − + − =⎣ ⎦

  

(2) 

with the constraint 
1h h

u u u
+

≤ <  and inserting the root û  back 

to Equation (1) to calculate the solutions of ˆ
jhx  and ˆ

jhy . The 

angular value of the intersection is then calculated as: 

( )

1

1

1

ˆ
ˆtan

ˆ

ˆ
ˆ ˆ,  ,  tan 180 ,  

ˆ

ˆ
ˆ ˆtan 180 ,  

ˆ

jh

jh

jh

jh

j jh jh

jh

jh

jh jh

jh

y t
x s

x s

y t
f s t x s y t

x s

y t
x s y t

x s

θ

θ θ

θ

−

−

−

⎧ ⎛ ⎞−
+ ≥⎪ ⎜ ⎟⎜ ⎟−⎪ ⎝ ⎠

⎪
⎛ ⎞−⎪

= + + < ≥⎜ ⎟⎨ ⎜ ⎟−⎪ ⎝ ⎠
⎪

⎛ ⎞−⎪
+ − < <⎜ ⎟⎪ ⎜ ⎟−⎝ ⎠⎩

o

o

 
 

(3) 

for ( ){ }
1

,  ,  
M

j j
f s t θ

=
 where M is the number of vessels in the 

fundus image. ( ),  ,  jf s t θ
 
is also used to represent the 

corresponding fundus image vessel. 

The scan circle alignment can be decomposed into two 

tasks: vessel matching and displacement parameter inference. 

The vessel matching links an OCT vessel 
i
X  and a fundus 

image vessel ( ),  ,  jf s t θ  if they belong to a same vessel. The 

displacement parameter inference infers the parameters ( ),  s t  

and θ  to minimise the distances between the matched vessels 

in two images. These two steps are both non-trivial and affect 

each other in a complex way. For instance, the OCT and 

fundus image vessels in Figure 1 cannot be matched without 

knowing the location parameters. An OCT vessel cannot be 

simply matched to the nearest fundus image vessel. In the 

example in Figure 1, the nearest-matching criterion (Figure 

1(III)) results in obvious erroneous vessel pairs (c-C, f-J, i-M 

and j-N in Figure 1(I)). On the other hand, the displacement 

parameters cannot be inferred without knowing how the 

vessels in two images are matched. Because of the 

complicated interaction between vessel matching and 

parameter inference, treating them independently would result 

in suboptimal solutions. 

 
Figure 1. A retinal fundus image and OCT circular scan for the same eye. The detected vessels are modelled and delineated by cubic splines, shown here as red 

curves superimposed on the fundus image (I) and labelled with letters in uppercase (A to N). The image acquisition begins with a circle placed in an arbitrary 

position around the ONH, e.g. the blue line in (I). The scan starts from the mid-temporal area at 180° (blue arrow on scan circle) and traverses in a clock-wise 

direction to superior (90°), nasal (0°), inferior (-90°) and finally back to the mid-temporal area. The circular scan is ‘straightened’ to a line (in 2D) as shown in 
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(II). The results of the OCT vessel detection technique are indicated in (II) as crosses and are superimposed as white circles in the fundus image (I). The OCT 

vessels are numbered by letters in lowercase (a to j). The angular values of the indicated position of the OCT vessels and the intersections between the scan circle 

and fundus image vessels are plotted in (III). The lines in (III) link each OCT vessel to the nearest fundus image vessel.  

   

B. Probabilistic modelling  

The complex relationship between the vessel matching and 

scan circle displacement parameter inference is modelled with 

a probabilistic model with unobserved variable. The task of 

vessel matching can be divided into two processes. First, 

whether the OCT vessel 
i
X  can be matched to a fundus image 

vessel is examined. If this can be done accurately then an 

inference about what M vessels in the fundus image it needs to 

be matched to. Two groups of unobserved variables are 

introduced to model these two processes. The binary vector 

( ){ }0 1 1
,  

N

i i i
i=

=Y Y Y  is encoded with 1-out-of-2 notation in 

which only one of the two elements can be equal to 1 in 
i
Y : 

1
1

i
=Y  if the ith OCT vessel 

i
X  can be accurately aligned to a 

fundus image vessel, otherwise 
0
1

i
=Y . A prior probability 

over 
i
Y  is introduced such that ( )1ik k

P = =Y u  for 0 or 1k =  

so: 

( ) ( )
1

0

ik

i k

k

P

=

=∏
Y

Y u  (4) 

It is also required that probability values satisfy 
1

0

1
k

k=

=∑u . 

Another binary vector ( ){ }1 1
,...,  

N

i i iM
i=

=Z Z Z  adopts 

1-out-of-M notation so that only one of the M elements in 
i
Z  

can be equal to 1, and 1
ij
=Z indicates that the ith OCT vessel 

is matched to the jth fundus image vessel. Similarly, a prior 

probability over 
i
Z  is set as ( )1ij j

P = =Z π  for 1 to k M=  

so: 

( ) ( )
1

ij
M

i j

j

P
=

=∏
Z

Z π  (5) 

where { }
1

M

j j=
π  are probability values satisfying 

1

1

M

j

j=

=∑π . 

The posterior probability of 
i
X  given 1

ij
=Z is defined as a 

mixture of two Gaussian distributions centred on the same 

mean of ( ),  ,  jf s t θ  but with different variance 
2

k
δ  that is 

decided by the value of 
i
Y :  

( )( )( )
1

2

0

( | ,  1) | ,  ,  ,  
ik

i i ij i j k

k

P f s t θ δ
=

= =∏
Y

X Y Z XN  (6) 

where the parameters { }
1

2

0
k

k

δ
=

 are set to satisfy 2 2

1 0
δ δ<< . 

This can be interpreted as if the OCT vessel 
i
X  can be 

accurately aligned to the fundus image vessel ( ),  ,  jf s t θ  

(
1
1

i
=Y ), then 

i
X  needs to be close to ( ),  ,  jf s t θ  in order to 

‘score’ a high probability, otherwise a small divergence 

(defined by small 
1

δ  such as 2°) from ( ),  ,  jf s t θ  would 

result in a probability near to zero. On the other hand, if the 

OCT vessel 
i
X  cannot be accurately aligned to a fundus 

image vessel (
0
1

i
=Y ), 

i
X  distributes more ‘uniformly’ 

(defined by large 
0

δ  such as 45°) with a small probability 

value, so the divergence from ( ),  ,  jf s t θ  has minimal effect 

on the probability. 

From Equation (6), the posterior probability ( )| ,  
i i i

P X Y Z  

can be defined as:  

( ) ( )( )
1

2

1 0

| ,  | ,  ,  ,  

ij

ik
M

i i i i j k

j k

P f s t θ δ
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏ ∏

Z

Y

X Y Z XN  (7) 

from which the joint probability ( ),  ,  
i i i

P X Y Z  can be 

calculated as the multiplication of Equation (4), (5) and (7):  

( ) ( )( )( )
1

2

1 0

,  ,  | ,  ,  ,  

ij

ik
M

i i i j k i j k

j k

P f s t θ δ
= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏ ∏

Z

Y

X Y Z π u XN  (8) 

The joint probability ( ),  ,  
i i i

P X Y Z
 
defines a mixture of 

Gaussian mixture. This ‘mixture of mixture’ model structure 

was previously used for classification problems [28] and in 

other applications where the model was named after 

‘compound mixture model’ [29]. 

Because { }
1

N

i i=
Y  and { }

1

N

i i=
Z  are all unobserved variables as 

opposed to directly observed variables, the likelihood  can be 

calculated by marginalising the joint probability over these 

unobserved variables and assuming that { }
1

N

i i=
X  are 

independent and identically distributed: 

( ) ( )( )( )

( )( )

1
2

1 1 0, 

1
2

1 01

| ,  ,  ,  

| ,  ,  ,  

ij

ik

i i

N M

j k i j k

i j k

N M

j k i j k

j ki

P f s t

f s t

θ δ

θ δ

= = =

= ==

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∏ ∏ ∏∑

∑ ∑∏

Z

Y

Y Z

X π u X

π u X

N

N

 
(9) 

Because only one element in vectors 
i
Y

 
and 

i
Z  can be equal 

to ‘1’ respectively, the summation 
,  
i i

∑
Y Z

and multiplication 

over j and k in the first step of Equation (9) represent the 

exhaustive summation of all possible 

( )( )2| ,  ,  ,  j k i j kf s t θ δπ u XN  over j and k. Therefore, in the 

second step, 
,  
i i

∑
Y Z

and the multiplication over j and k were 

substituted with summation over j and k. 

 

C. Expectation-maximization algorithm 

An expectation-maximization (EM) algorithm [30] is used 

for finding maximum likelihood estimates of the parameters in 

Equation (9). In the expectation (E) step, the posterior 

probability of the unobserved variables ( ),  |
i i i

P Y Z X  is 

calculated as: 
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( )
( )

( )

( )( )( )

( )( )

1
2

1 0

1
2

1 0

,  ,  
,  |

| ,  ,  ,  

| ,  ,  ,  

ij

ik

i i i

i i i

i

M

j k i j k

j k

M

j k i j k

j k

P
P

P

f s t

f s t

θ δ

θ δ

= =

= =

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

∏ ∏

∑ ∑

Z

Y

X Y Z
Y Z X

X

π u X

π u X

N

N

 

 

 

 

(10) 

by using Equation (8) and the ith component in Equation (9). 

The expectations of 
ij
Z  and 

ij ikZ Y  w.r.t. the distribution 

( ),  |
i i i

P Y Z X  are then calculated in the E-step and will be 

used in the following maximization (M) step, which computes 

parameters maximising the expected log likelihood found in 

the E step: 

( ) ( )

( )( )

( )( )

, |

1
2

0

1
2

1 0

( 1| )

| ,  ,  ,  
   

| ,  ,  ,  

i i i
ij ij ij iP

j k i j k
k

M

j k i j k
j k

P

f s t

f s t

θ δ

θ δ

=

= =

= = =

∑

=

∑ ∑

Y Z X
α Z Z X

π u X

π u X

N

N

E

  

(11) 

and 

( ) ( )

( )( )

( )( )

, |

2

1
2

1 0

( 1,  1| )

| ,  ,  ,  

| ,  ,  ,  

i i i

k

ij ij ik ik ij iP

j k i j k

M

j k i j k
j k

P

f s t

f s t

θ δ

θ δ
= =

= = = =

=

∑ ∑

Y Z X
β Z Y Y Z X

π u X

π u X

N

N

E

  

(12) 

In the M-step, the expectation of the complete likelihood 

( )( )log ,  ,  P X Y Z  under the distribution of ( ),  |P Y Z X  is 

calculated and maximised w.r.t. the parameters ( ),  s t , θ , 

{ }
1

0k k=
u  and { }

1

M

j j=
π :  

( ) ( )( )( )

( ) ( )

( ) ( )( )( )

( )( )

,  |

1

1 1 1 1 0

1
2

1 1 0

1

1 1 1 1 0

2
1

2
1 1 0

log ,  ,  

log( ) log( )

log | ,  ,  ,  

log( ) log( )

,  ,  1

2

P

N M N M

ij j ij ik k

i j i j k

N M

ij ik i j k

i j k

N M N M
k

ij j ij k

i j i j k

k
N M

ij i j

i j k k

P

f s t

f s t

θ δ

θ

δ

= = = = =

= = =

= = = = =

= = =

= +

+

= +

−
−

∑∑ ∑∑∑

∑∑∑

∑∑ ∑∑∑

∑∑

Y Z X
X Y Z

Z π Z Y u

Z Y X

α π β u

β X

E

E E

E N

const+∑

 

 

 

 

 

 

 

 

 

(13) 

where Equation (11) and (12) have been used. This target 

function is divided into three components each of which 

contains a group of the parameters. Note that the components 

of this function that do not include any parameters were 

grouped into a constant term as they are irrelevant to the 

maximisation of the objective function. 

 Similar to the mixture of Gaussian mixture model [28] and 

compound mixture model [29], the Equation (13) is 

maximized w.r.t. parameters { }
1

M

j j=
π  under the constraint of 

1

1

M

j

j=

=∑π  by adding a Lagrange multiplier 
1

1

M

j
j

λ
=

⎛ ⎞∑ −⎜ ⎟
⎝ ⎠π

π  into 

Equation (13) and setting the derivative of the objective 

function w.r.t. 
j
π  to 0: 

1

N

ij

i

j
N

=
=

∑α

π  (14) 

Similarly, { }
1

0k k=
u  are found by using the Lagrange multiplier 

1

0

1j
k

λ
=

⎛ ⎞∑ −⎜ ⎟
⎝ ⎠u

u : 

1 1

N M
k

ij

i j

k
N

= =

=

∑∑β
u  (15) 

The optimization of Equation (13) w.r.t. parameters ( ),  s t , 

and θ  is more complex because setting the derivative of 

Equation (13) w.r.t. these parameters to zero does not give a 

closed solution for these parameters. Therefore, the iterative 

Quasi-Newton optimization algorithm [31] is used to find the 

maxima of the third component in Equation (13) 

( )( )
2

1

2
1 1 0

,  ,  1
E

2

k
N M

ij i j

i j k k

f s t θ

δ= = =

−
= − ∑∑∑

β X
 (16) 

w.r.t. ( ),  s t , and θ  in every M-step. Quasi-Newton algorithm 

is based on Newton's method [32, 33] that uses the first and 

second derivatives (gradient vector and Hessian matrix) to 

find the local maximum. Instead of explicitly calculating the 

Hessian matrix, which is computationally expensive, 

Quasi-Newton avoids the exact computation of the second 

derivatives and updates the Hessian matrix by analysing 

successive gradient vectors [31, 33]. This allows the 

Quasi-Newton algorithm to be implemented with 

computational efficiency and consequently forms an efficient 

M-step in the EM algorithm. The Quasi-Newton algorithm 

makes use of the gradient of the Equation (16) w.r.t. ( ),  s t , 

and θ , which can be simply derived from Equation (1),  (2) 

and (3) by using the chain rule of the derivative. 

Quasi-Newton algorithm stops when the following parameter 

convergence criteria are met: 1) the absolute difference 

between the values of ( ),  s t  between two successive 

iterations is less than 10
-5
µm; and 2) the absolute difference 

between the values of θ  between two successive iterations is 

less than 10
-5

 degrees. 

In all, the EM algorithm starts with initial values of the 

parameters ( ),  s t , θ , { }
1

0k k=
u  and { }

1

M

j j=
π  and iterates 

between the E-step and M-step. The whole process of the 

algorithm is summarized in Figure 2. The parameter ( ),  s t , 

θ , { }
1

0k k=
u  and { }

1

M

j j=
π are initialised at the beginning of the 

algorithm. More details about initialisation will be given in the 

next section. In the E-step, 
ij
α  and k

ijβ  in Equation (11) and 

(12) are calculated using the current parameter values: 

initialized parameters in the first iteration or the parameters 

formed by the M-step in the previous iteration afterwards. In 

the M-step, 
ij
α  and k

ijβ  calculated in the E-step are used and 
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the expected complete log likelihood in Equation (13) is 

maximized using Equation (14), (15) and Quasi-Newton 

optimization to form the new estimate of parameters 

( ),  
new new
s t and

 
new

θ  that will be used in the next E-step. The 

iteration terminates if the scan circle falls outside of the 

borders of the fundus image or when the following  parameter 

convergence criteria are met: 1) the absolute difference 

between the values of ( ),  s t  between two successive EM 

iterations is less than 10
-5
µm; 2) the absolute difference 

between the values of θ  between two successive EM 

iterations is less than 10
-5

 degrees; 3) the absolute difference 

between the values of { }
1

0k k=
u

 
and { }

1

M

j j=
π between two 

successive EM iterations is less than 10
-6

. 

 

 
Figure 2. A summary of the EM algorithm. 

 

D. Evaluation and parameter initialisation 

The algorithm was evaluated using the mean absolute 

angular difference (MAAD) between the matched vessels in 

the OCT and fundus images. The vessel matching is 

determined by the probability ( )|
i i

P Y X  and ( )|
i i

P Z X , 

which can be calculated from ( ),  |
i i i

P Y Z X  in Equation (10) 

by marginalization after the termination of the algorithm. The 

ith OCT vessel is aligned to the jth fundus image vessel if 

( ) ( )1 01| 1|
i i i i

P P= > =Y X Y X  and ( )1|
ij i

P =Z X  is the 

largest among ( )' |ij i
P Z X  for ' 1 to j M= . In the unlikely 

case that multiple OCT vessels are so close that they are 

matched to the same fundus image vessel, only the OCT 

vessel closest to the fundus image vessel is matched. The 

vessel matching guarantees that the same number of vessels is 

matched in both OCT and fundus images so those matched 

vessels in two types of images form vessel pairs. The MAAD 

is then calculated as the mean of the absolute angular 

difference between these vessel pairs. 

The criteria for a successful inference include: 1) 
1
0.7≥u ; 

2) the number of matched vessels is larger than 5; 3) the 

MAAD between the matched vessels is smaller than 
1

δ  which 

is set at 2
o
 in the implementation with 

0
δ  set at 45

o . The 

choice of 
1

δ
 
and 

0
δ  will be explained in next section; 4) the 

inferred scan circle is within the border of fundus image. The 

first two criteria ensure that the inferred scan circle 

displacement is ‘agreed’ by adequate number of vessels. The 

third criterion guarantees that the distance between the 

matched vessels is sufficiently small.  

Without losing generalisation, the parameters θ , { }
1

0k k=
u  

and { }
1

M

j j=
π  are initialised to be 0θ =

o , 
1
0.95=u , 

0
0.05=u  

and 
1

j
M

=π . The choice of 
1
0.95=u  results from the 

expectation that most OCT vessels can be aligned to the 

fundus image vessels. There are multiple initialisation options 

for the parameters ( ),  s t  in order to cope with the potential 

large displacement of scan circles: they are initialised to be at 

nine locations shifted by 0 and 200µm± from the centre of the 

ONH on both the x- and y-axis. The algorithm starts with 

different parameter initialisation and if the inferred values of 

parameters are different with different initialization, the 

displacement is chosen as the one with the lowest MAAD 

from a successful inference. 

 

E. Choice of 
1

δ  and 
0

δ  

The parameters
 1
δ  and 

0
δ  were set such that 

1
δ <<

0
δ . 

Quantitatively, it was defined that the two intersections 

between the two Gaussian distributions defined by 
1

δ  and 
0

δ
 

in Equation (6) are 
1

2.5δ  from the mean. Therefore, given the 

value of 
1

δ , 
0

δ
 
can be calculated thereafter. To find the 

optimal 
1

δ , various values of 
1

δ  are used and the mean 

MAAD and mean 
1
u

 
are examined (Figure 3). To illustrate 

the effect of 
1

δ , the first two criteria of successful inference 

are not used because, as it will be shown below, fewer 

(
1
0.7<u ) OCT vessels can be matched to the fundus image 

vessels with small 
1

δ
 
values.  

1
δ

 
defines the necessary ‘closeness’ of the OCT vessel to 

the fundus image vessel in order to match the two vessels. As 

shown in Figure 3(a), small 
1

δ
 
allows for a smaller difference 

between the OCT and fundus image vessels and thus gives 

better (lower) MAAD for the matched vessels. However, 

smaller 
1

δ
 
also excludes more OCT vessels so fewer OCT 

vessels can be matched to the fundus image vessels, which is 
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quantified by lower value of 
1
u

 
(Figure 3(b)). For instance, 

although 
1
0.5δ =

o

 
gives a low mean MAAD of 0.29°, but less 

than 70% (
1
0.59<u ) of the OCT vessels can be matched to 

the fundus image vessels. On the other hand, large 
1

δ
 
allows 

for more OCT vessels to be matched to the fundus image 

vessels but the MAAD also increases at the same time.   

Therefore, the choice of 
1

δ
 
reflects the trade-off between 

lower MAAD and having adequate number of matched 

vessels. In this implementation, 
1

δ
 
is chosen as the value 

giving the lowest mean MAAD with mean 
1
0.7≥u  

as 

required by the criteria of successful inference. This value of 

1
δ

 
was found to be 2°, and 0

δ
 is calculated to be 45°. 

 
Figure 3. The mean MAAD and 

1
u

 
under different values of 

1
δ . 

 

F. Validation experiments 

The OCT scan circle alignment algorithm was developed 

and implemented in MATLAB (version 7.9.0 R2009b, The 

MathWorks, Inc., Natick, MA). An executable version of this 

software is freely available from the authors. 

The algorithm was initially developed using Stratus OCT 

data from patients with glaucoma made available from the Eye 

Center of University of Pittsburgh Medical Centre (data not 

shown) [18, 34]. The algorithm was then validated by 

investigating the impact of scan circle displacement on the 

RNFLT measurement repeatability using a separate dataset 

acquired for the purpose from Moorfields Eye Hospital NHS 

Trust, London. Eighteen patients (mean age of 65 (range 50 to 

82) years) with a clinical diagnosis of glaucomatous optic 

neuropathy (primary open angle or normal tension glaucoma) 

with reproducible visual field defects were recruited. The 

study was approved by an ethics committee and informed 

consent, according to the tenets of the Declaration of Helsinki, 

was obtained prior to examination from each subject. In the 

study protocol, a chosen eye from each subject was imaged 23 

times with the StratusOCT system using the Fast RNFL 

Thickness (3.4) protocol. This protocol acquired three 

consecutive single scans in one image acquisition giving 69 

single scans for each eye. Fundus images were acquired with 

the GDxVCC which covers an area of 5.9mm×5.9mm around 

the ONH. Patient identifiers were removed from the data 

before being transferred to a secure database at City 

University London. 

III. RESULTS 

The algorithm was used to align all 69 OCT circular scans 

onto the corresponding fundus images for each eye. On 

average, the EM algorithm took 10.3 iterations before 

convergence. In each M-step, the average number of 

Quasi-Newton optimisation was 23.2. Computational time for 

aligning each OCT scan circle to the fundus image was 2.3s 

(SD 0.6s) on a typical desktop PC with one core of Intel Core 

2 Due 2.53GHz CPU and 2GB RAM. 

 

A. Algorithm performance 

An example of the results from the alignment algorithm for 

one of the eyes is shown in Figure 4. The initial location of the 

OCT circular scan and its vessels are described in Figure 1(I). 

The EM algorithm took 11 iterations to estimate the location 

of the scan circle in this example. Relative rotation of this scan 

circle w.r.t. the fundus image was 3.5
o  and was corrected 

when plotting the OCT vessels in Figure 4(I). The algorithm 

was successful in aligning the vessels in the images and this is 

quantified by the MAAD between the matched vessels having 

a relatively small value of 0.4
o . In this example, most OCT 

vessels (from a to i) could be aligned to the fundus image 

vessels, as indicated by the large posterior probabilities 

( )1 1|
i i

P =Y X  which are also given in Figure 4(I). On the 

other hand, one OCT vessel (x) could not be aligned to any 

fundus image vessel because in this case ( )1 1|
i i

P =Y X =0. 

The OCT image in Figure 1(II) shows that the detection of this 

‘vessel’ may be a false positive result by the OCT vessel 
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detection algorithm because it isn’t clear from looking at the 

image alone that there should be a vessel at that location. The 

vessel matching was decided by the largest posterior 

probabilities among ( )' |ij i
P Z X  for ' 1 to j M=  which were 

denoted in Figure 4(I).  

The algorithm produced successful inference of scan circle 

displacement for all OCT images. On average, the mean and 

SD of MAAD for all OCT circular scans (n=1242) in this 

sample of eyes were 0.82 0.34±
o o . The average number of 

detected vessels in these OCT images was 11.6. On average, 

86% of the OCT vessels could be aligned to fundus images 

with posterior probabilities ( ) ( )1 01| 1|
i i i i

P P= > =Y X Y X . 

Therefore, the average number of matched vessels is 10 

(11.6×86%), suggesting that, although 14% of the vessels 

were not matched, the algorithm could terminate with 

successful inference (criteria described in Section IID) 

‘agreed’ by the majority of the vessels and was able to align 

the OCT vessels to the fundus image vessels with minimal 

angular difference. 

Locations of the 69 repeated circular scans from the same 

example eye are shown in Figure 4(II). Although the operator 

aimed to scan the same circular area on the retina, the scan 

circles, as inferred by the algorithm, are displaced from each 

other and covered a wide annulus area around the ONH. The 

distance (relative shift in microns and as degrees of relative 

rotation) between the centre of each scan circle, as determined 

by the algorithm, was calculated for all possible pairs of scans 

(n=2346).  In the example shown in Figure 4, the mean 

distance between two scan circles was 143um (SD of 130µm) 

and relative rotation was 1.9º (SD of 1.8º). 

 

 
 

Figure 4. An example of OCT scan circle alignment algorithm. The initial location of the OCT scan circle and its vessels were described in Figure 1(I) and the 

initial rotation was 0°. The OCT scan circle and its vessels were superimposed on the fundus image (I) at the inferred location (black dot) and rotation (3.5°). The 

path of the scan circle centre at each step of the EM algorithm was plotted as a black curve on the fundus image. The posterior probability P(Yi1=1|Xi) and 

P(Zij|Xi) for the matched fundus image vessel is denoted in the bracket beside each OCT vessel in the format of (P(Yi1=1|Xi), matched vessel pair: P(Zij|Xi)).  

 

 

TABLE 1. DISTANCES AND ROTATION DIFFERENCE (MEAN±SD) BETWEEN 

TWO CIRCULAR SCANS 

 All scans Three consecutive scans 

Distance on x-axis 88±91µm 29±36µm 

Distance on y-axis 117±103µm 34±43µm 

Overall distance 153±122µm 49±77µm 

Rotation difference 1.7°±1.8° 0.8°±1.6° 

 

During the OCT image acquisition, 3 scans are taken 

consecutively within 1.92 second after the manual placement 

of scan circle so the locations of the scan ‘triplet’ are expected 

to be affected less by the circle placement. To examine the 

assumption, the distances on the x-axis, y-axis, the overall 

distances in microns and the rotational distances in degree 

between all pairs of scan circles were calculated for each eye. 

These distances were compared with those calculated with 

scan circle pairs from three consecutive scans during the same 

image acquisition. The mean and SD of these distances were 

summarized in TABLE 1, showing that, on average, the 

distance between two circular scans tends to be smaller if they 

belong to the scan triplet from the same image acquisition. 

B. Effect of scan circle displacement on RNFLT 

The impact of scan circle displacement on RNFLT 

measurement was examined. Quadrant RNFLT measurements 

(temporal, superior, nasal and inferior) were plotted against 

x-axis and y-axis displacements of the centre of each scan 

circle. Linear regression then gave estimates of the average 

change of quadrant RNFLT caused by the displacement of 

scan circle. An example from one eye is shown in Figure 5.  
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The superior and nasal RNFLT are negatively correlated 

with the scan circle location on y- and x-axis respectively. 

Similarly the inferior and temporal RNFLT are positively 

correlated with the scan circle location on y- and x-axis 

respectively. On average, the inferior RNFLT increases by 

3.9 0.4µm±  and the superior RNFLT decreases by 

4.2 0.4µm±  when the y-coordinate of scan circle centre 

increases by 100µm; the temporal RNFLT increases by 

3.5 0.4µm±  and the nasal RNFLT decreases by 4.2 0.5µm±  

when the x-coordinate of scan circle centre increases by 

100µm. 

 

 
 

Figure 5. Plot of quadrant RNFLT measurements against the scan circle centre locations on x- and y-axis from one eye with fitted linear regression lines. The 

origin point (0µm) of the scan circle centre was arbitrarily chosen within the ONH. The slopes of the lines all differ from 0 (p<0.01). 

 

The impact of scan circle displacement on RNFLT can also 

be observed by the change of RNFLT profile under scan 

circles at different locations. Figure 6 shows four scan circles 

relatively displaced towards superior, inferior, temporal and 

nasal directions. Note that the RNFLT profiles feature a 

‘double hump’ shape where the RNFLT in superior and 

inferior areas is thicker than that in temporal and nasal 

regions. It is clear that moving the scan circle inferiorly 

increases the superior RNFLT and decreases the inferior 

RNFLT, and vice versa. Similarly, the scan circle on the nasal 

side has relatively thicker temporal RNFLT and thinner nasal 

RNFLT compared with the scan circle on the temporal side. 
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Figure 6. The RNFLT profile under scan circles at different locations on the retina. The scan circles at different locations were superimposed on the fundus 

image. These four scan circles were relatively superior (red), inferior (black), temporal (blue) and nasal (green) to each other. The tendency of change on RNFLT 

profile caused by the displacement of the scan circle location is indicated by the arrows in RNFLT profile plots. In each RNFLT profile plot, the x-axis is the 

peripapillary angle in the OCT circular scan. 

C. RNFLT measurement variability 

The RNFLT change caused by the scan circle displacement 

contributes to the variability of RNFLT measurement. The 

effect of scan circle displacement on mean and quadrant 

RNFLT measurement variability was investigated. Variability 

was scored as two times the standard deviation of three 

repeated scans [35], which were drawn from the exhaustive 

combination of all repeated scans of each eye. The average 

variability was calculated with all repeated scans and those 

scans with average distance among scan circle centres smaller 

than 50µm and larger than 300µm (Table 2). In short, the 

former represent a group of circular scans that the technique 

revealed to be closely matched, while the latter are scans that 

are more disparate. 

RNFLT measurements (both mean and quadrant RNFLT) 

under the scan circles that are close to each other (average 

distance <50µm) demonstrates significantly lower (paired 

t-test; p<0.001) variability compared with those measured 

under scan circles that are far away from each other (average 

distance >300µm). This shows that the variability of RNFLT 

measurement is affected by the scan circle displacement and 

the scan circles that are close to each other provide RNFLT 

measurements with significantly better reproducibility.  

 
TABLE 2. MEAN AND QUADRANT RNFLT VARIABILITY WITH ALL REPEATED 

SCANS AND SCANS WITH DIFFERENT AVERAGE DISTANCES AMONG SCAN 

CIRCLE CENTRES 

 <50µm >300µm All scans 

Mean RNFLT 4.3 7.4 6.2 

Temporal RNFLT (µm) 6.8 10.7 8.9 

Superior RNFLT (µm) 8.5 14.9 12.7 

Nasal RNFLT (µm) 9.7 15.1 13.9 

Inferior RNFLT (µm) 8.3 14.7 11.2 

 

IV. DISCUSSION 

Retinal vessels, compared with other RNFL structures, are 

relatively stable features for tracking a patient with glaucoma 

over time. This makes it possible to align multiple OCT 

circular scans, acquired in time, to a uniform coordinate 

formed by the vessel structures in the retinal fundus image. 

The two tasks in scan circle alignment, vessel matching and 

scan circle displacement inference, however, interact in a 

complicated way and have not been studied previously. The 

scan circle alignment algorithm proposed in this study 

integrated these two interactive steps into an EM framework: 

the iterative E- and M-steps in the algorithm incorporate the 

vessel matching, parameter inference and their interaction in a 

natural way. The algorithm guarantees to find a local 

maximum that gives an optimal alignment between two types 

of images.  

Despite the superior specifications of the new SD-OCT, 

recent studies found that the diagnostic capability of TD-OCT 

is no worse than that of SD-OCT in clinical management of 

glaucoma [36-38] and other retinal diseases [39]. Particularly, 

the reproducibility for TD-OCT, for 'closely-matched' scans 

(average distance among scan circles <50µm in Table 2) 

identified by the algorithm, is close to reported reproducibility 

for SD-OCT [40, 41]. Therefore, many glaucoma services 
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'inheriting' TD-OCT from their retina specialist colleagues as 

they migrate to SD-OCT, may be confident that the TD-OCT 

provides similar monitoring capabilities for glaucoma as 

current SD-OCT devices. 

The rate of RNFLT change caused by scan circle 

displacement demonstrated in Section IIIB (3.5µm in 

temporal, 4.2µm in superior, 4.2µm in nasal and 3.9µm in 

inferior when scan circle displaces by 100µm on x- and y-axis) 

is significant when compared with the variability of RNFLT 

measurement in Table 2. Dividing the rate of RNFLT change 

by the RNFLT variability with all scan circles in Table 2 

shows that, on average, 39%, 33%, 30%, 35% of the 

variability in the temporal, superior, nasal and inferior 

quadrants can be explained by the scan circle displacement of 

100µm, which is a significant amount of displacement 

compared with the average displacement in TABLE 1 (88µm 

on x-axis, 117µm on y-axis and overall 153µm). 

The results from the validation experiment indicate that the 

variable location of the scan circle adversely affects the 

reproducibility of RNFLT measurements. RNFLT 

measurements and estimates of the corresponding 

displacement of the scan circles used together would be 

clinically useful when following a patient over time. The 

alignment algorithm, when applied retrospectively to data, will 

identify measurements that might be expected to have high 

variability. The technique, therefore, could provide a quality 

measure of scan acquisition, and this could even be achieved 

at the point of image acquisition. Moreover, the scan circle 

alignment algorithm can be used to identify those RNFLT 

measurements from areas that are close to each other. For 

multiple scans acquired at different periods of time, the 

RNFLT measurements that are identified as more reproducible 

may better reveal the real physiological change of the RNFLT 

in the longitudinal assessment of glaucoma. This will, 

therefore, have clinical impact on monitoring the progression 

of glaucoma over time. A recent study about the rate of 

RNFLT change caused by glaucoma reported decrease rates 

between −1.2µm/year and −15.4µm/year of mean RNFLT 

over a 5-year period [42]. We have shown that the scan circle 

alignment yields about a 30% reduction in the variability 

associated with average RNFLT measurements (Table 2: 

6.2µm to 4.3µm). This better reproducibility (lower 

variability) of the RNFLT measurement means that fewer 

scans would be needed to detect the ‘progression signal’, 

potentially saving patient visits and resources. Moreover, the 

better reproducibility allows for earlier identification of 

progression and more accurate determination of a progression 

rate in a shorter period of time, which leads to more 

appropriate treatment, targeting more aggressive treatment of 

fast progressors and not over-treating those falsely believed to 

progressing rapidly because of noisy data. 

The algorithm proposed in this study also helps to bridge 

OCT to the other imaging techniques such as SLP so the 

power of these techniques can be improved by their 

combination. It was shown, in a recent study [19], that the 

reproducibility of the calculated RNFL birefringence was 

improved when the OCT scan circle is aligned to the SLP 

image using the alignment algorithm. 

 

 
Figure 7. Illustration of the mixture of Gaussian distributions in Equation (6) 

for vessel matching. The two Gaussian distributions centre on the same mean 

( ),  ,  jf s tµ θ=  but have different standard deviations satisfying 
1 0

δ δ<< . 

The two Gaussian distributions intercept at two points that are δΔ
 
from µ . 

 

The vessel matching in the scan circle alignment algorithm 

is ‘encoded’ by two unobserved variables 
i
Y  and 

i
Z . The 

mixture of Gaussian distributions conditioned on 
i
Y  in 

Equation (6) indicates whether the OCT vessel 
i
X  can be 

aligned to a fundus image vessel and plays a key role in the 

algorithm. Figure 7 illustrates the mixture of Gaussian 

distributions with the same mean centred on a fundus image 

vessel but with different standard deviations 
1 0
δ δ<< . An 

OCT vessel follows a peaked distribution around the fundus 

image vessel and scores a high probability if these two vessels 

are close enough. The ‘closeness’ is defined by the two 

interceptions of two Gaussian distributions that are δΔ  away 

from the mean. On the other hand, if the distance between the 

two vessels is not close enough (beyond the two 

interceptions), the probability of the Gaussian defined by 
1

δ  

drops under the Gaussian defined by 
0

δ . In this case, the OCT 

vessel is ‘forced’ to follow the more ‘uniform’ distribution in 

order to score a relatively higher probability. 

OCT vessels that cannot be aligned to any fundus image 

vessel (named here as ‘noisy’ vessels such as OCT vessel ‘j’ 

in Figure 4(I)) considerably mislead the parameter inference 

because their large distances from fundus image vessels 

dramatically affect the maximisation of the third term in 

Equation (13). The usage of the Gaussian mixture model helps 

to isolate the effect of these ‘noisy’ vessels. As an illustration, 

these ‘noisy’ vessels are all forced to follow a more uniform 

distribution (Figure 7) and thus have low probability values 

(defined in Equation (6)) near to zero. This, in turn, results in 

small 
ij
α  and k

ijβ  for the corresponding ‘noisy’ vessels in the 

E-step. These near-to-zero values, once substituted into the 

objective function Equation (13) in the M-step, have minimal 
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effect on the objective function as well as its derivatives with 

respect to the scan circle displacement parameters. This 

process ensures that the ‘noisy’ vessels do not interfere with 

the parameter inference. 

Instead of using fixed values for the standard deviation 
1

δ
 

and 
0

δ ,  the model was adjusted to infer (data not shown) 
1

δ
 

and 
0

δ
 
from the data in the EM algorithm. However, the 

inference algorithm tended to increase 
1

δ
 
and decrease 

0
δ

 
so 

that more OCT vessels are matched to the fundus image vessel 

even with a large angular difference. This approach increased 

the likelihood in Equation (9) because more OCT vessels 

follow the ‘peaked’ Gaussian distribution in the Gaussian 

mixture even if they are not well aligned, but the accuracy of 

the alignment is worse (larger MAAD) at the same time due to 

the larger 
1

δ
 
(Figure 3). Therefore, 

1
δ

 
and 

0
δ

 
are fixed as 

described in Section IIE. The chosen standard deviation of 

1
2δ =
o is small enough to meet the requirement of alignment 

accuracy and can incorporate the possible variance of vessel 

locations caused by factors such as potential eye movement 

during the image acquisition and possible physiological vessel 

shift over a long period of time. If the interceptions between 

the two Gaussian distributions are defined to be at 
1

2.5δ δΔ =  

away from the mean, the 
0

δ  is calculated to be 45
o . 

Last but not least, as illustrated in Figure 4, if a large 

sample of repeated circular scans were acquired, then they 

might cover an annulus area around the ONH potentially 

allowing for a three-dimensional RNFLT profiles to be 

reconstructed. We have previously shown that this might be a 

way of bridging measurements acquired with StratusOCT and 

those volume measurements from more recently established 

SD-OCT systems [43]. 
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