
Pagano, M. & Volpin, P. (2012). Securitization, transparency, and liquidity. Review of Financial 

Studies, 25(8), pp. 2417-2453. doi: 10.1093/rfs/hhs074 

City Research Online

Original citation: Pagano, M. & Volpin, P. (2012). Securitization, transparency, and liquidity. 

Review of Financial Studies, 25(8), pp. 2417-2453. doi: 10.1093/rfs/hhs074 

Permanent City Research Online URL: http://openaccess.city.ac.uk/3276/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/20540074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Securitization, Transparency,
and Liquidity

Marco Pagano (University of Naples Federico II)

Paolo Volpin (London Business School)

(Review of Financial Studies 25, 2417 – 2453, August 2012)

Send correspondence to Paolo Volpin, London Business School, Sussex Place, London, NW1
4SA, United Kingdom; Telephone +44 20 7000-8217. E-mail: pvolpin@london.edu.

Acknowledgments: We are grateful to Anat Admati, Ugo Albertazzi, Cindy Alexander, Fer-
nando Alvarez, Elena Asparouhova, Hendrik Bessembinder, Giovanni Dell’Ariccia, Ingolf
Dittmann, Avinash Dixit, Paolo Fulghieri (the editor), Vito Gala, Itay Goldstein, Gary Gor-
ton, Denis Gromb, Gustav Loeffler, Deborah Lucas, Gustavo Manso, Thomas Philippon,
Guillaume Plantin, Matt Pritsker,Timothy Riddiough, Ailsa Röell, Daniele Terlizzese, An-
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Abstract

We present a model in which issuers of asset-backed securities choose to release coarse infor-

mation to enhance the liquidity of their primary market, at the cost of reducing secondary

market liquidity. The degree of transparency is inefficiently low if the social value of sec-

ondary market liquidity exceeds its private value. We show that various types of public

intervention (mandatory transparency standards, provision of liquidity to distressed banks,

or secondary market price support) have quite different welfare implications. Finally, we ex-

tend the model by endogenizing the private and social value of liquidity and the proportion

of sophisticated investors. (JEL D82, G21, G18)
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It is widely agreed that the securitization of mortgage loans has played a key role in the

2007-2008 subprime lending crisis (Adrian and Shin 2008; Brunnermeier 2009; Gorton 2008;

Kashyap, Rajan and Stein 2008; among others). In particular, it is commonplace to lay

a good part of the blame for the crisis on the poor transparency that accompanied the

massive issues of asset-backed securities (ABS), such as mortgage-backed securities (MBS)

and collateralized debt obligations (CDO): see, for instance, Financial Stability Forum (2008)

and IMF (2008).

Both securities issuers and rating agencies are responsible for the lack of transparency

in the securitization process. The prospectus of MBS only provided summary statistics

about the typical claim in the underlying pool. Even though detailed information on the

underlying mortgage loans was available from data providers, subscription to these data sets

is expensive and considerable skills are required to analyze them. As a result, most investors

ended up relying on ratings, which simply assess the default probability of the corresponding

security (S&P and Fitch) or its expected default loss (Moody’s). These statistics capture

only one dimension of default risk and fail to convey an assessment of the systematic risk

of CDOs, as pointed out by Coval, Jurek, and Stafford (2009) and Brennan, Hein, and

Poon (2009), and of the sensitivity of such systematic risk to macroeconomic conditions, as

noted by Benmelech and Dlugosz (2009). Moreover, in their models, rating agencies assumed

correlations of defaults in CDO portfolios to be stable over time, rather than dependent on

economic activity, house prices, and interest rates.1

The implied information loss is seen by many not only as the source of the precrisis

mispricing of ABS but also as the reason for the subsequent market illiquidity. After June

2007, the market for ABS shut down, because most market participants did not have enough

information to price and trade these securities. This market freeze created an enormous

overhang of illiquid assets on banks’ balance sheets, which in turn resulted in a credit crunch

1Ratings were coarse also in the sense that they were based on a very limited number of loan-level
variables, to the point of neglecting indicators with considerable predictive power (Ashcraft, Goldsmith-
Pinkham, and Vickery 2010). Indeed, it was only in 2007 that Moody’s requested from issuers loan-level
data that itself considered to be “primary,” such as a borrower’s debt-to-income (DTI) level, the appraisal
type, and the identity of the lender that originated the loan (Moody’s 2007). In addition, rating agencies
failed to re-estimate their models over time to take into account the worsening of the loan pool induced by
securitizations themselves (Rajan, Seru, and Vig 2008).
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(Brunnermeier and Pedersen 2009).

However, the links between securitization, transparency, and market liquidity are less

than obvious. If the opaqueness of the securitization process affects the liquidity of ABS, why

should ABS issuers choose opaqueness over transparency? After all, if the secondary market

is expected to be illiquid, the issue price should be lower.2 But the precrisis behavior of

issuers and investors alike suggests that they both saw considerable benefits in securitization

based on relatively coarse information. The fact that this is now highlighted as a major

inefficiency suggests that there is a discrepancy between the private and the social benefits

of transparency in securitization. What is the source of the discrepancy, and when should

it be greatest? How do different forms of public intervention compare in dealing with the

problem? These questions are crucial in view of the current plans of reforming financial

regulation in both the United States and Europe.

In this article, we propose a model of the impact of transparency on the market for

structured debt products, which addresses these issues. Issuers may wish to provide coarse

information about such products in order to improve the liquidity of their primary market.

This is because few potential buyers are sophisticated enough to understand the pricing

implications of complex information, such as that required to assess the systematic risk of

ABS. Releasing such information would create a “winner’s curse” problem for unsophisticated

investors in the issue market.3

This point does not apply only to ABS; it extends to any security, insofar as it is complex

and therefore difficult to value. For instance, accurate valuation of the equity issued by a

multidivisional firm would require detailed accounting information about the performance of

each division. Yet, few investors would be equipped to process such detailed information, so

that disclosing it may put many potential market participants at a disadvantage. Similarly,

rating the bonds of a large financial institution, such as Citigroup, is at least as complex as

rating an ABS, since the details of the bank’s portfolio are largely unobservable. Hence, such

2This insight is consistent with the results by Farhi, Lerner, and Tirole (2008), who present a model
where sellers of a product of uncertain quality buy certification services from information certifiers. In their
setting, sellers always prefer certification to be transparent rather than opaque.

3The point that disclosing information about ABS may hinder their liquidity is also made intuitively by
Holmstrom (2008).
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a firm may prefer to limit disclosure of its division-level data in order to widen its shareholder

base to less sophisticated investors.4 Another example is that of “block booking,” that is,

the practice of selling securities or goods exclusively in bundles, rather than separately

(Kenney and Klein 1983). Asset managers are shown to lower trading costs by 48% via

“blind auctions” of stocks, whereby they auction a set of trades as a package to potential

liquidity providers, without revealing the identities of the securities in the package to the

bidders (Kavajecz and Keim 2005).5 In general, when some investors have limited ability

to process information, releasing more public information may increase adverse selection

and thus reduce market liquidity. Incidentally, this highlights that the standard view (that

transparency enhances liquidity) hinges on all market participants being equally skilled at

information processing and asset pricing.

Although opaqueness enhances liquidity in the primary market, it may reduce it, even

drastically, in the secondary market, and cause ABS prices to decline more sharply when the

underlying loans default. This is because the information not disclosed at the issue stage

may still be uncovered by sophisticated investors later on, especially if it enables them to

earn large rents in secondary market trading.6 So limiting transparency at the issue stage

induces more subsequent information acquisition by sophisticated investors and shifts the

adverse selection problem to the secondary market, reducing its liquidity or even inducing

4In keeping with this argument, Kim and Verrecchia (1994) show that earnings announcements lead to
lower market liquidity if they allow sophisticated traders to increase their informational advantage over
other traders. The same argument is used by Goel and Thakor (2003) to rationalize earning smoothing: to
maintain a liquid market for their stocks, companies will smooth earnings so as to reduce the informational
rents of sophisticated investors. A similar argument is used by Fishman and Hagerty (2003) to discuss the
welfare implications of voluntary and mandatory disclosure.

5An often-quoted example of the same practice is the sale of wholesale diamonds by de Beers: diamonds
are sold in prearranged packets (“sights”) at nonnegotiable prices. This selling method may eliminate the
adverse selection costs that would arise if diamond buyers were allowed to negotiate a price contingent on
the packets’ content. Another (possibly complementary) rationale for “block booking” sales is that it avoids
the duplication of information processing costs by investors, as argued by French and McCormick (1984).

6This is witnessed by a survey conducted by the Committee on the Global Financial System in 2005:

“Interviews with large institutional investors in structured finance instruments suggest that
they do not rely on ratings as the sole source of information for their investment decisions
... Indeed, the relatively coarse filter a summary rating provides is seen, by some, as an
opportunity to trade finer distinctions of risk within a given rating band. Nevertheless, rating
agency ‘approval’ still appears to determine the marketability of a given structure to a wider
market.” (p. 3)

– 5 –



it to become inactive.7 Conversely, disclosing information at the issue stage eliminates the

sophisticated investors’ incentive to seek it before secondary market trading (being a form of

“substitute” disclosure in Boot and Thakor’s (2001) terminology), even though it generates

adverse selection in the primary market. Thus, in choosing the degree of transparency,

issuers effectively face a tradeoff between primary and secondary market liquidity.

We show that issuers never choose to release detailed information, even though they

anticipate that this may reduce secondary market liquidity. The reason is that under trans-

parency, adverse selection arises in the primary market and therefore is invariably borne by

the issuer in the form of a discounted issue price; conversely, under opaqueness the adverse

selection cost arises in the secondary market only insofar as investors are hit by a liquidity

shock, and therefore with a probability less than one.

In general, however, the degree of transparency chosen by issuers will fall short of the

socially optimal whenever secondary market liquidity has a social value in excess of its private

one. This will be the case if the illiquidity of the secondary market triggers a cumulative

process of defaults and premature liquidation of assets in the economy, for instance, because

of inefficient fire sales by banks (Acharya and Yorulmazer 2008). In this case, the socially

efficient degree of transparency is higher than that chosen by the issuers of structured bonds,

thus creating a rationale for regulation. In practice, regulation can raise the transparency

of the securitization process either by requiring issuers of structured debt to release more

detailed data about underlying loan pools or rating agencies to provide more sophisticated

ratings, for instance, multidimensional ratings that not only estimate the probability of

default but also the correlation of default risk with aggregate risk.

We find that mandatory transparency is likely to be socially efficient when secondary

market liquidity is very valuable and the adverse selection problem in the secondary market

is very severe–indeed so severe that in the absence of transparency the secondary market

7The point that opaqueness may encourage information collection by investors has already surfaced in
the literature. For instance, Goldman (2005) shows that investors may have greater incentives to acquire
information about a conglomerate firm than about single-division firms. Gorton and Pennacchi (1990), Boot
and Thakor (1993), and Fulghieri and Lukin (2001) show that security design affects investors’ incentives to
acquire information by changing the information sensitivity of the security issued. We do not study security
design in this article.
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would be inactive. In our setting, this occurs only if the variance of the signal, which

only sophisticated investors can process, is sufficiently large, that is, for securities that are

sufficiently exposed to aggregate risk. Instead, mandating transparency would be inefficient

for safer securities, since it would damage their primary market liquidity with no offsetting

advantage in the secondary market. This result neatly applies to the ABS market. The

crisis saw the freeze of the market for privately issued MBS, which were uninsured against

default risk, whereas the market for agency MBS, which carried a public credit guarantee,

remained very liquid throughout 2008-2009.8 This is in spite of the fact that agency MBS are

extremely opaque when placed via the “to-be-announced”(TBA) market, where MBS sellers

specify only a few basic characteristics of the security to be delivered (Vickery and Wright

2010). At the normative level, our model suggests that mandating greater information

disclosure would have been warranted for privately issued MBS but not for agency MBS,

where greater disclosure would likely damage the liquidity of the TBA market.

We also analyze the effects of two forms of ex post public liquidity provision—one targeted

to distressed bondholders when the ABS market is inactive; the other aimed at supporting

the ABS secondary market price. Both policies eliminate the negative externality arising

from secondary market illiquidity, yet they are not equally desirable for society. Liquidity

provision to distressed bondholders is optimal whenever the secondary market is inactive,

provided that the benefits (in terms of larger proceeds from the ABS sale and no liquidity

externality) exceed the costs due to distortionary taxes. Price support to the ABS market

by the government is instead warranted under more restrictive conditions, as it does not

increase the ABS issue price (which is socially beneficial) and instead raises sophisticated

investors’ informational rents, thus prompting them to seek more information (which entails

no social gain or even a social loss).

Finally, we endogenize the private and social value of liquidity, and the proportion of

sophisticated investors. First, we show how the liquidity externality assumed in the model

can arise. In the presence of severe adverse selection in the ABS secondary market, a

liquidity shock may induce investors to engage in fire sales of real assets used in production,

8Gorton and Pennacchi (1990) make a similar point on the effect of deposit insurance on the liquidity of
bank debt and deposits.
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and thereby hurt suppliers of complementary inputs (e.g., workers), inflicting a deadweight

cost to society. Second, we endogenize the proportion of sophisticated investors faced by an

issuer, by assuming that these investors can become sophisticated by undertaking a costly

investment before they know the details of the issue. This extension allows us to study how

the fraction of sophisticated investors depends on the parameters of the model. For instance,

we show that financial sophistication is increasing in the probability of default and in the

magnitude of informational rents.

Although our adverse selection setting provides a reason for why issuers may prefer

coarse and uninformative ratings, another explanation for this outcome has been proposed

by the cheap talk models of rating agencies, built upon Lizzeri’s (1999) model of certification

intermediaries. Doherty, Kartasheva, and Phillips (forthcoming) and Goel and Thakor (2010)

show that rating agencies have an incentive to produce coarse ratings by pooling together

several types of borrowers within the same rating class to increase the total rating fees

that they can charge. Like ours, these models imply that ratings will be coarse but not

inflated. In this respect, they differ from recent research contributions in which ratings are

inflated because issuers can engage in “rating shopping” (Skreta and Veldkamp 2009; Spatt,

Sangiorgi, and Sokobin 2008), and possibly collude with rating agencies (Bolton, Freixas, and

Shapiro 2012). In contrast, in our setting, rating agencies report information faithfully; in

the opaque regime, they simply do not disclose security characteristics that many investors

would be unable to price.9 In practice, both the coarseness of ratings and their inflation

induced by rating shopping and collusion are likely to have played a role in the crisis, and

indeed may have amplified each other’s effects.

The article is organized as follows. Section 1 lays out the structure of the model. Section

2 solves for the equilibrium secondary market prices, whereas Section 3 characterizes the

issuer’s choice between opaqueness and transparency. In Section 4 we determine the cases

in which the socially efficient level of transparency may be higher than the privately optimal

level, and we consider various forms of public intervention, some ex ante such as mandatory

9Another difference is that our unsophisticated investors rationally take into account their unsophistica-
tion in their investment decisions, while rating shopping models assume some näıve investors who are gullied
by inflated ratings.
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transparency, and other ex post, such as liquidity provision in the secondary market for

ABS. Section 5 presents two extensions that endogenize magnitudes taken as exogenous

parameters in the baseline model. Section 6 concludes.

1. The Model

An issuer owns a continuum of measure 1 of financial claims, such as mortgage loans or

corporate bonds, and wants to sell them because the proceeds can be invested elsewhere at a

high enough net rate of return r. For brevity, we shall simply refer to these financial claims

as “loans.”

There are three future states of nature: a good state (G), which occurs with probability p,

and two bad states (B1 and B2), occurring with probability (1−p)/2 each.10 The good state

corresponds to an economic expansion, whereas of two bad states, B1 corresponds to a mild

slowdown and B2 to a sharp contraction of aggregate consumption. Therefore, the marginal

utility of future consumption is highest in state B2, intermediate in state B1, and lowest in

state G, that is, qB2 > qB1 > qG, where qs denotes the stochastic discount factor of state-s

consumption. These stochastic discount factors are common knowledge. For simplicity, the

risk-free interest rate is set at zero, that is, the price of a certain unit of future consumption

is one: pqG + [(1− p)/2](qB1 + qB2) = 1.

The issuer’s pool is formed by two types of loans, 1 and 2, in proportions λ and 1 − λ,

respectively. As shown in Table 1, both type-1 and type-2 loans pay 1 unit of consump-

tion in state G but have different payoffs in bad states. Type-1 loans yield x < 1 units of

consumption in state B1 and 0 in state B2, whereas the opposite is true of type-2 loans.

Therefore, type-1 loans are more sensitive to aggregate risk than type-2 loans and are ac-

cordingly less valuable by an amount equal to the difference between their state prices,

[(1− p)/2](qB2 − qB1)x > 0.11

10The assumption that the two bad states occur with equal probability is completely inessential to our
results, and is made only for notational simplicity.

11We assume the two loans to have negatively correlated payoffs across defaults states in order to emphasize
the portfolio’s correlation as the source of uncertainty, holding its expected payoff constant. The results are
qualitatively unaffected if one loan has greater exposure to default states than the other, that is, it repays x
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Table 1. Loan payoffs

State Probability

Payoff

of type-1

claim

Payoff

of type-2

claim

State

price

Payoff

of claim

pool

G p 1 1 pqG 1

B1 (1− p)/2 x 0 1−p

2
qB1 λx

B2 (1− p)/2 0 x 1−p

2
qB2 (1− λ)x

1.1 Securitization

We assume that the issuer must sell these claims as a portfolio because selling them one-by-

one would be prohibitively costly.12 The portfolio’s payoff is 1 in state G when both loan

types do well, λx in state B1 and (1 − λ)x in state B2. The portfolio is sold as an ABS,

promising to repay a face value F = 1, which will be shown to be the face value that issuers

will choose in equilibrium. So the ABS’s payoff equals its face value F only in the good

state, whereas default occurs in the two bad states.

The actual composition λ of the ABS in any period is random. It can take two values

with equal probability: a low value λL = λ − σ or a high value λH = λ + σ. Therefore,

the ABS composition λ has mean λ and variance σ2, where σ 6 min(λ, 1− λ) ensures that

λ ∈ [0, 1]. Instead of λ, below it will often be convenient to use the deviations from its mean

λ̃ ≡ λ− λ, which equal −σ or σ with equal probability.

The randomness of the portfolio composition adds a layer of complexity to the ABS

payoff structure relative to that of its underlying claims. For the ABS, there are six payoff-

relevant states rather than three, because λ creates uncertainty about the ABS’s exposure to

systematic risk, as illustrated in Table 2. Specifically, since a high realization of λ lowers the

payoff in the worst state (B2) while raising it in the intermediate state (B1), it corresponds to

in state B1 and 0 in state B2, whereas the other repays x in both states B1 and B2. In this case, the safer
loan would also pay a larger expected payoff.

12The high cost is because the payoff of each claim has an idiosyncratic random component that is known to
the issuer and can be certified by the rating agency at a cost but unknown to investors. So overcoming adverse
selection problems would require each individual claim to be rated by the agency–as noted, a prohibitive
expense. Pooling the claims diversifies away this idiosyncratic risk, removing the need for the rating agency
to perform the detailed assessment.
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a higher systematic risk. Therefore, λ measures the ABS systematic risk in each contingency.

Table 2. ABS payoffs

State Probability ABS payoff State price

1H: G, λ = λH
p

2
1 p

2
qG

2H: B1, λ = λH
1−p

4
λHx =

(
λ+ σ

)
x 1−p

4
qB1

3H: B2, λ = λH
1−p

4
(1− λH)x =

(
1− λ− σ

)
x 1−p

4
qB2

1L: G, λ = λL
p

2
1 p

2
qG

2L: B1, λ = λL
1−p

4
λLx =

(
λ− σ

)
x 1−p

4
qB1

3L: B2, λ = λL
1−p

4
(1− λL)x =

(
1− λ+ σ

)
x 1−p

4
qB2

The correct price of the ABS will depend on its actual composition, that is, on the realized

value of λ:

V (λ) = pqG +
1− p

2
x [λqB1 + (1− λ)qB2] . (1)

This expression takes two different values depending on the realized value of λ, i.e. the

ABS’s actual exposure to systematic risk. We assume that the realization of λ ∈ (λL, λH) is

not observed, but can be estimated from an information set Λ that the issuer has and can

reveal to investors.

The key assumption of the model is that not all investors are able to use the information

Λ, if it is publicly disclosed, to estimate the realization of λ. Only a fraction µ of investors

(say, hedge funds) are sophisticated enough as to do so and thus can price the ABS according

to Equation (1). The remaining 1 − µ investors are not skilled enough to learn λ, even if

they can condition on information Λ. As a result, each pair of states indexed by H and

L in Table 2 (for instance, states 1H and 1L) are indistinguishable to them. Therefore,

their best estimate of the value of the ABS is obtained by setting λ at its average λ in

the pricing formula (1) so that on average they do not make mistakes in pricing the ABS.

However, unsophisticated investors are rational enough to realize that they incur pricing

errors. Hence, they are aware of the pricing variance and are willing to buy the ABS only

at a discount large enough to offset their expected losses.

Interestingly, unsophisticated investors are at a disadvantage compared to sophisticated

ones only in pricing the ABS but not the individual loans of which the ABS is composed,
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since to value these only the payoffs in the three states G, B1, and B2 (and their prices)

are relevant. It is the complexity of the ABS that determines their disadvantage in security

pricing.

1.2 Transparency regimes

The issuer knows the probability of repayment p, the loss in each default state (x or 1),

the distribution of λ and the information set Λ required to infer the realized value of λ.

He can choose between two regimes: a “transparent” regime where the issuer discloses all

his information, and an “opaque” regime where he withholds the information Λ. In both

cases he credibly certifies the information via a rating agency (for simplicity, at a negligible

cost). The agency is assumed to be trustworthy, because of penalties or reputational costs

for misreporting. Note that the information available in the opaque regime is akin to that

reflected in real-world ratings, where S&P and Fitch estimate the probability of default 1−p

and Moody’s assesses the expected loss from default (1− p)(1− x/2). We assume both the

issuer and the rating agency to be unsophisticated, and therefore unable to infer the realized

value of λ from Λ, so that they do not have an informational advantage over investors.13

In the opaque scenario, where Λ is not disclosed, investors are on a level playing field.

They all ignore the true ABS payoffs λx and (1 − λ)x in the two default states B1 and

B2 so that both sophisticated and unsophisticated investors must rely on the average loan

composition λ to value the ABS. For all of them, its risk-adjusted present discounted value

(PDV) is

VO = pqG +
1− p

2
x
[
λqB1 + (1− λ)qB2

]
= pqG +

1− p

2
xqB, (2)

where the subscript O stands for “opaque” and qB ≡
[
λqB1 + (1− λ)qB2

]
is the average

discount factor of the ABS in each of the two default states. So in this regime, the superior

13The assumption that the issuer is less informed about its asset than some specialized investors is com-
monplace in the literature on IPOs (e.g., Benveniste and Spindt 1989), and is also made by Dow, Goldstein,
and Guembel (2007) and Hennessy (2008), who show that companies may gain information about their in-
vestment opportunities from market prices. The assumption that rating agencies are also unable to extract
information about λ from available data is in line with the fact that before the crisis they did not adjust their
ratings to reflect changes in the sensitivity of ABS to aggregate risk, and that much evidence has underscored
the limitations of their credit scoring models (Ashcraft et al. 2009; Benmelech and Dlugosz 2009; Johnson
et al. 2009).
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pricing ability of sophisticated investors (i.e., their ability to price separately consumption

in states B1 and B2) is irrelevant.

Instead, in the transparent scenario, Λ is disclosed so that sophisticated investors can

infer the actual risk exposure λ of the loan pool. As a result, they correctly estimate the

PDV of the ABS according to Equation (1) as

VT = V (λ) = VO −
1− p

2
xλ̃(qB2 − qB1). (3)

This expression shows that with transparency the correct valuation of the ABS, VT , is equal

to the opaque-regime valuation VO minus a term proportional to λ̃, that is the deviation

of the ABS aggregate risk sensitivity λ from its average. This term captures the superior

risk-pricing ability of sophisticated investors.

In contrast, unsophisticated investors are unable to use the information about the ac-

tual loan pool quality λ and therefore will estimate the PDV of the ABS as Equation (2).

Therefore, they will misprice the ABS. If the sensitivity of the ABS to aggregate risk is high

(λ̃ = σ), they will overestimate its PDV by

(1− p)
σx

2
(qB2 − qB1) , (4)

and in the opposite case (λ̃ = −σ), they will underestimate it by the same amount. As

they incur either pricing error with equal probability, this expression measures their av-

erage mispricing, which is increasing in the variability of the ABS risk sensitivity, σ, and

in the difference between the two state prices ((1− p) /2) (qB2 − qB1). By the same token,

Equation (4) also measures the informational advantage of sophisticated investors, or more

precisely their expected informational rent (1 − p)R. As we shall see, whenever they know

λ, sophisticated investors can extract a rent

R ≡
σx

2
(qB2 − qB1) (5)

in default states, that is with probability 1 − p. However, unsophisticated investors are

fully rational. They know that they are at an informational disadvantage when bidding in

the initial ABS sale under transparency (or when trading in the secondary market under

opaqueness if some sophisticated investors have become informed later on).
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Sophisticated investors are assumed to lack the wherewithal to buy the entire ABS issue.

Since the price they would offer for the entire issue is the expected ABS payoff conditional on

the realized λ, the relevant condition is that their total wealth AS < VT (λL).
14 In contrast,

unsophisticated investors are sufficiently wealthy to absorb the entire issue. Their wealth

AU > VO, since their offer price for the entire ABS issue is the unconditional expectation of

its payoff.15 As in Rock (1986), these assumptions imply that for the issue to succeed, the

price of the ABS must be such as to induce participation by the unsophisticated investors.

1.3 Time line

The time line is shown in Figure 1. At the initial stage 0, the composition of the pool (λ) is

determined, and the issuer learns information Λ about it.

At stage 1, the issuer chooses either transparency or opaqueness, reveals the correspond-

ing information Λ, and sells the ABS on the primary market at price P1 via a uniform price

auction to a set of investors of mass 1.16 If the issuer sets a price that cannot attract a

sufficient number of investors to sell the entire issue, the ABS sale fails and the issuer earns

no revenue.

At stage 2, people learn whether or not the ABS is in default. At the same time, a

fraction π of the initial pool of investors is hit by a liquidity shock and must decide whether

to sell their stake in the secondary market or liquidate other assets at a fire-sale discount ∆.

(Alternatively, ∆ may be seen as the investors’ private cost of failing to meet obligations to

their lenders or the penalty for recalling loans or withdrawing lines of credit.) Liquidity risk

is uncorrelated with CDO payoffs.

14The relevant constraint arises when λ = λL. In fact, if AS ∈ (PDV (λH), PDV (λL)], sophisticated
investors can buy the entire issue if λ = λH at its PDV. If instead λ = λL , sophisticated investors are not
wealthy enough, so unsophisticated investors are needed. However, the latter cannot distinguish between
the two scenarios and can only participate in both cases or in neither. Hence, if AS is in this range, placing
the issue in all contingencies requires that prices are set so as to draw uninformed investors into the market.

15We assume that agency problems in delegated portfolio management prevent unsophisticated investors
from entrusting enough wealth to sophisticated ones as to overcome this limited wealth constraint.

16In principle, the issuer may rely on another type of auction so as to elicit pricing information from
sophisticated investors, such as a book-building method. However, even in this case sophisticated investors
would earn some informational rents at the issue stage in the transparent regime, whereas they would not
in the opaque one.
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If default is announced, the sophisticated investors not hit by the liquidity shock may

try to acquire costly information to learn the realization of λ, unless of course Λ was already

disclosed at stage 1. Their probability φ of discovering λ is increasing in the resources spent

on information acquisition; they learn it with probability φ by paying a cost Cφ. To ensure

equilibrium existence, we assume that (1) before acquiring information about λ, sophisticated

investors observe if liquidity traders have or have not sold other assets;17 and (2) there is a

zero-measure set of sophisticated investors who always become informed at no cost.18

At stage 3, secondary market trading occurs. Competitive market makers set bid and

ask quotes for the ABS so as to make zero profits, and investors who have chosen to trade

place orders with them. Market makers are sophisticated, in that they are able to draw the

pricing implications of the information Λ if this is publicly disclosed. Moreover, they have

sufficient market-making capital as to absorb the combined sales of liquidity and informed

traders. However, they cannot become informed themselves.19

At stage 4, the payoffs of the underlying portfolios and ABS are realized.

This sequence of moves assumes that under opaqueness sophisticated investors wait for

the secondary market trading to invest in information collection, rather than seeking it

before the initial sale of the ABS. The rationale for such an assumption is that ABS risk

is concentrated in default states, so that it pays to seek costly information about λ only

once default is known to be impending. Indeed, for sophisticated investors the NPV from

collecting information at stage 2, (1− p)
(
R
2
− C

)
, exceeds that of collecting it at stage 1,

(1− p) R
2
−C, where R is defined by Equation (5). In the former case they incur the cost C

17If we were to reverse the order of moves, letting sophisticated investors play before liquidity traders,
there will be no symmetric pure-strategy equilibrium. To see this, suppose that sophisticated investors do
not acquire information: liquidity traders will then expect the ABS market to be perfectly liquid and will want
to participate to the market; but this will induce sophisticated investors to acquire information. If instead
sophisticated acquire information, the market will be illiquid, deterring liquidity traders’ participation, and
thus eliminating the informed investors’ incentive to acquire information.

18This assumption implies that, even in the absence of liquidity traders, market makers anticipate that
some informed investors may place orders with them, and therefore pins down their beliefs and thus the
prices that they will quote in this contingency. As we shall see below, these beliefs ensure the existence of
the equilibria in our game.

19Note that, even if market makers could become informed, they would have no incentive to do so: market
making activity requires them to post publicly observable quotes at all times. Hence, even if they collected
information about λ, their quotes would reveal this information to other market participants, and therefore
they could not profit from it.
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only once default is known to occur, rather than always as in the latter.

1.4 Private and social value of liquidity

As we have seen, the investors who may seek liquidity on the secondary market are “dis-

cretionary liquidity traders.” Their demand for liquidity is not completely inelastic, because

they can turn to an alternative source of liquidity at a private cost ∆. If the hypothetical

discount at which the ABS would trade were to exceed ∆, these investors will refrain from

liquidating their ABS. In this case, as explained above, they may resort to fire sales of other

assets; default on debt and incur the implied reputational and judicial costs; or forgo other

investments, for instance, by recalling loans to others.

However, each of these alternatives may entail costs for third parties too. For instance,

the illiquidity of the market for structured debt is more costly for society at large than for

individual investors whenever it triggers a cumulative process of defaults and/or liquidation

of assets in the economy, for instance because of “fire sale externalities” or the knock-on

effect arising from banks’ interlocking debt and credit positions. Fire-sale externalities can

arise if holders of structured debt securities, being unable to sell them, cut back on their

lending or liquidate other assets, thereby triggering drops in the value of other institutions

holding them, as in Acharya and Yorulmazer (2008) and Wagner (2010). Alternatively, the

illiquidity of the market for structured debt securities may force their holders to default on

their debts, damaging institutions exposed to them, and thus triggering a chain reaction of

defaults, as in Allen and Gale (2000) or Freixas, Parigi, and Rochet (2000).

Insofar as secondary market liquidity spares these additional costs to society, its social

value exceeds its private value. For simplicity, we model the additional value of liquidity

to third parties as γ∆, where γ ≥ 0 measures the negative externality of secondary market

illiquidity. Thus, the total social value of liquidity is (1 + γ)∆, and the limiting case γ = 0

captures a situation in which market liquidity generates no externalities.
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2. Secondary Market Equilibrium

In this setting, what degree of transparency will issuers choose? In this section we solve

for the symmetric perfect Bayesian equilibrium of the game. By backward induction, we

start determining the secondary market equilibrium price at stage 3, conditional on either

repayment or default. We first determine the market price and the sophisticated investors’

information-gathering decision depending on whether or not liquidity traders sell their ABS,

both under transparency and opaqueness. Then we turn to liquidity traders’ optimal trading

decisions at stage 2 in both regimes.

2.1 Secondary market price

In the good state G, the ABS is known to repay its face value 1, and therefore its secondary

market price at time 3 is simply PG
3 = qG. The market is perfectly liquid: if hit by liquidity

shocks, investors can sell the ABS at price PG
3 , and obviously collecting information about

λ would be futile.

The interesting states, instead, are those in which the ABS is expected to be in default

(states B1 or B2), since only in this case may the secondary market be illiquid, as we shall

see below. Therefore, all our subsequent analysis focuses on the subgame in which default

occurs at stage 3. In this subgame, to determine the level of the ABS price PB
3 , we must

consider three cases, depending on the information made available to investors at stage 1

and on the sophisticated investors’ decision to collect information.

In the transparent regime, investors and market makers learn the realization of λ. Since

market makers are sophisticated, they interpret the information Λ provided to the market

and impound the relevant state prices in their secondary market quotes. The ABS’s price

at stage 3 is simply the expected value of the underlying portfolio conditional on default,

which can be computed as the sum of the payoffs in B1 and B2 shown in Table 1, each of

which occurs with probability 1/2 conditional on default:

PB
3,T =

x

2
[λqB1 + (1− λ)qB2] , (6)

where the subscript T indicates that this price refers to the transparent regime. In this case,
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the secondary market is perfectly liquid, as prices are fully revealing. Liquidity traders face

no transaction costs. In this case the market price is a random variable, whose value depends

on the realization of λ (or equivalently of λ̃) and on average is equal to

E(PB
3,T ) =

x

2
qB, (7)

which is the unconditional ABS recovery value in the default states B1 and B2. So the

secondary market price in the transparent regime can be rewritten as the sum of the expected

ABS recovery value and a zero-mean innovation:

PB
3,T =

x

2
qB − λ̃

x

2
(qB2 − qB1). (8)

In the opaque regime, the secondary ABS market is characterized by asymmetric infor-

mation. For the sophisticated investors who have discovered the true value of λ, the value

of ABS is given by Equation (8), whereas for all other investors, the ABS value is given by

Equation (7). In the default states, the market maker will set the bid price PB
3,O so as to

recover from the uninformed investors what he loses to the informed, as in Glosten and Mil-

grom (1985). The choice of this price by the market maker will differ depending on whether

liquidity traders choose to sell the ABS or an alternative asset.

Consider first the subgame in which liquidity traders sell the ABS. Then, in the ABS

market there will be a fraction π of liquidity sellers. A fraction φµ of the remaining 1 − π

investors will be informed, and will sell if the bid price is above their estimate of the ABS

value. This occurs if λ equals λH , or equivalently λ̃ = σ, that is with probability 1/2.

To avoid dissipating their informational rents, informed traders will camouflage as liquidity

traders, placing orders of the same size. Hence, the frequency of a sell order is π+φµ(1−π)/2.

The market maker gains (x/2)qB−PB
3,O when he buys from an uninformed investor, and loses

PB
3,O − (x/2) [qB − σ(qB2 − qB1)] when he buys from an informed one. Hence, his zero-profit

condition is

π
(x
2
qB − PB

3,O

)
= (1− π)

φµ

2

[
PB
3,O −

x

2
qB + σ (qB2 − qB1)

]
, (9)
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and the implied equilibrium bid price is

PB
3,O =

x

2
qB −

(1− π)φµ

2π + (1− π)φµ

σx

2
(qB2 − qB1)

=
x

2
qB −

(1− π)φµ

2π + (1− π)φµ
R, (10)

where R is the rent that an informed trader extracts from an uninformed one (conditional

on both trading), from Equation (5). The rent R is weighted by the probability of a sell

order being placed by an informed trader, (1 − π)φµ/[2π + (1 − π)φµ]. This expected rent

translates into a discount sustained by liquidity traders in the secondary market; if hit by

a liquidity shock, they must sell the ABS at a discount with respect to the unconditional

expectation of its final payoff.

Consider what happens if liquidity traders decide to sell the alternative asset and keep

the ABS. Then, market makers will rationally anticipate that any incoming order must orig-

inate from an informed investor (recall that, by assumption, there are always sophisticated

investors who acquire information about λ at zero cost). Formally, in this case the market

makers’ belief is that their probability of trading with an uninformed investor equals zero.

Since informed investors sell only if λ equals λH , the break-even bid price set by market

makers is

PB
3,O =

x

2
qB −

σx

2
(qB2 − qB1) =

x

2
qB −R, (11)

which is the lowest possible price at which any trade can occur and can be obtained by

setting π = 0 in Equation (10). At this price, informed investors are indifferent between

selling and not selling.

2.2 Decision to acquire information

In the transparent regime, sophisticated investors do not need to spend resources to acquire

information since λ is public knowledge and therefore is impounded in market makers’ quotes.

In contrast, in the opaque regime the sophisticated investors who are not hit by a liquidity

shock at stage 2 may want to learn the realization of λ. Their willingness to acquire this

information depends on whether or not liquidity traders are also selling the ABS (which

they know because of the assumed sequence of moves). If liquidity traders are not in the
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ABS market, there are no rents from informed trading and therefore no gain from acquiring

information. If instead liquidity traders are in the ABS market, the gain from learning λ

equals the market makers’ expected trading loss as determined above:

PB
3,O −

x

2
[qB − σ (qB2 − qB1)] =

2π

2π + (1− π)φµ
R, (12)

where in the second step the gain is evaluated at the equilibrium price in Equation (10).

This gain accrues to informed investors with probability 1/2 since they make a profit by

selling the ABS only when λ = λH .
20 Hence, the expected profit from gathering information

for a sophisticated investor i is

φi

2

2π

2π + (1− π)φµ
R− Cφi, (13)

where each sophisticated investor i chooses how much to invest in information, taking the

benefit of information ( 2π
2π+(1−π)φµ

R) as given. From the first-order condition,

φ∗

i =





0 if π
2π+(1−π)φµ

R < C,

φi ∈ [0, 1] if π
2π+(1−π)φµ

R = C,

1 if π
2π+(1−π)φµ

R > C.

(14)

In a symmetric equilibrium, φ∗

i = φ for all i. Hence, the equilibrium probability of becoming

informed will be

φ∗ =





0 if R < 2C,
π

µ(1−π)

(
R
C
− 2

)
if R ∈

[
2C, 2C + 1−π

π
µC

]
,

1 if R > 2C + 1−π
π
µC.

(15)

Therefore, sophisticated investors acquire information (i.e., φ∗ > 0) only if informational

rents are sufficiently high relative to the corresponding costs (R > 2C). For intermediate

values of R, in equilibrium sophisticated investors choose their probability φ∗ of becoming

informed so as to earn zero net profits from information. If R is so high as to make them

always willing to become informed in equilibrium (i.e., φ∗ = 1), sophisticated investors will be

at a corner solution where they expect to earn a net profit from information, π
2π+(1−π)µ

R−C >

0.

20With the same probability, sophisticated investors learn that λ = λH . But this piece of information
cannot be exploited by buying the ABS, since by assumption there are no liquidity buyers.
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2.3 Liquidity traders’ participation decision

In the transparent regime, liquidity traders always sell the ABS, since the realization of λ is

public knowledge, and therefore the ABS market is perfectly liquid. In the opaque regime,

the choice of each liquidity trader depends on his expectation of the ABS bid price and

of the behavior of sophisticated investors and of other liquidity traders. Intuitively, if an

individual liquidity trader envisages sophisticated investors searching information with high

intensity φ∗, he will expect the ABS market to be illiquid and therefore will be less inclined

to participate to it. His participation decision will be also affected by the choice of other

liquidity traders since more participation means a more liquid ABS market. In other words,

the ABS market features a participation externality.

Since we restrict our attention to symmetric equilibria, there are two candidate equilibria

in the liquidity traders’ participation subgame: (A) one in which all liquidity traders sell the

alternative asset, sophisticated investors do not seek information, and the market makers

set the bid price (11); and (B) another candidate equilibrium in which all liquidity traders

sell the ABS, sophisticated investors search for information with intensity φ∗ from Equation

(15), and market makers set the bid price (10). In case (A), the ABS market is virtually

inactive, since sell orders may only come from the zero-measure set of sophisticated investors

who receive information at no cost: for brevity, we will refer to this as an “inactive market”.

In the Appendix, we derive the conditions under which (A) or (B) are equilibria, by checking

whether an individual liquidity trader wishes to deviate from his assumed strategy (we do

not need to check deviations by other players, since by the sequential nature of the game

their strategies are optimal). We prove that:

Proposition 1. In the opaque regime, there are three cases: (1) if R ≤ ∆, there is a unique

equilibrium where the ABS market is active; (2) if R ∈

(
∆,max

(
2C +∆,∆+ 2π

(1−π)µ
∆
)]

,

there are two equilibria, one where the ABS market is inactive and one where it is active;

(3) otherwise (R > max
(
2C +∆,∆+ 2π

(1−π)µ
∆
)
), there is a unique equilibrium where the

ABS market is inactive.
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The results in this proposition are illustrated in Figure 2. The probability of the liquidity

shock π is measured along the horizontal axis, and the informational rent in the secondary

market R is measured along the vertical axis. For R < ∆, the informational rent in the

ABS market is so small compared to the discount in the alternative market that a liquidity

trader would participate in the ABS market even if he expected to be the only uninformed

investor. Hence, in this case the only equilibrium features an active ABS market. In the

polar opposite case in which R is above the upper curve in Figure 2, the informational rent

in the ABS market is so high as to exceed both the discount in the alternative market ∆ and

the cost 2C of gathering information about λ. In this case, liquidity traders will always prefer

to sell an alternative asset, so that the only equilibrium features an active ABS market. In

the intermediate region, instead, there are two symmetric equilibria, one with inactive and

another with active ABS market. This multiplicity results from strategic complementarity

in the liquidity traders’ participation decision. The ABS market discount decreases in the

fraction of liquidity traders selling on the market, because this reduces adverse selection in

the ABS market. To overcome this multiplicity of equilibria, we assume that liquidity traders

coordinate on the equilibrium, where the ABS market is active, because its outcome entails

a higher welfare for them, being associated with a lower discount.21

Based on this analysis, we can characterize the equilibrium in each parameter region

by determining the secondary market price of the ABS and the fraction of sophisticated

investors acquiring information.

Proposition 2. In the transparent regime, the secondary market is perfectly liquid, the

ABS price is PB
3 = x

2
qB − λ̃x

2
(qB2− qB1), and no sophisticated investor invests in information

(φ∗ = 0). In the opaque regime

(1) if R ≤ 2C, the secondary market is perfectly liquid with ABS price equal to PB
3 = x

2
qB,

and no sophisticated investor acquires information (φ∗ = 0);

(2) if R ∈ (2C,min(2C +∆, R1], the secondary market is illiquid, with ABS price equal to

21If liquidity traders were to play the other equilibrium, the results that follow would be qualitatively
similar, except that the region of the parameter space with inactive ABS market would be larger.
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PB
3 = x

2
qB−(R−2C), and sophisticated investors acquire information with probability

φ∗ ∈ (0, 1);

(3) if R ∈ (R1, R2], the secondary market is illiquid, with ABS price equal to PB
3 =

x
2
qB −

(1−π)µ
2π+(1−π)µ

R, and all sophisticated investors acquire information (φ∗ = 1);

(4) if R > max (2C +∆, R2), the secondary market is inactive, with price PB
3 = x

2
qB −R,

and no sophisticated investors acquire information (φ∗ = 0),

where R1 ≡ 2C + (1−π)µ
π

C and R2 ≡ ∆+ 2π
(1−π)µ

∆.

The results in Proposition 2 are graphically illustrated in Figure 3 for the opaque regime,

which is the only interesting one because the transparent market is perfectly liquid for all

parameter values. In the lowest region (1), the ABS market is perfectly liquid since the rents

from information do not compensate for the cost of its collection. Hence, the secondary

market price does not contain any discount due to adverse selection. In the polar opposite

region (4) at the top of the diagram, the ABS market is inactive. The ABS trades at the

largest possible discount, and is sold only by a zero-measure of sophisticated and informed

investors.

There are two intermediate regions, in both of which the ABS market is active but

illiquid. The difference between them is that in region (2) sophisticated investors play a

mixed strategy in acquiring information, so that they become informed with a probability

φ∗ ∈ (0, 1) and earn zero net rents from such information. In region (3), instead, sophisticated

investors find it optimal always to acquire information (φ∗ = 1) and earn a positive net

informational rent. This happens if the probability of liquidity trading is sufficiently large

(π > µC/(∆ + µC)) because liquidity trading increases the rents to informed investors. In

this area, informational rents R are large enough that informed investors expect to earn

positive net profits (graphically, we are above the downward sloping curve in Figure 3), but

low enough that liquidity traders still want to participate to the ABS market (graphically,

we are below the upward sloping curve in Figure 3).
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3. Primary Market Price and Choice of Transparency

With opaqueness, at the issue stage all investors share the same information so that there

is no underpricing due to adverse selection in the primary market. In contrast, with trans-

parency sophisticated investors have an informational advantage in bidding for the ABS so

that unsophisticated investors participate only if the security sells at a discount.

3.1 Issue price with opaqueness

If the realization of λ is not disclosed, at stage 1 the two types of investors are on an equal

footing in their valuation of the securities, so that the price is simply the unconditional

risk-adjusted expectation of the ABS payoff, pqG+(1−p)xqB/2, minus the expected stage-3

liquidity costs, namely, the product of the default probability 1 − p, the probability of the

liquidity shock π, and the relevant stage-3 discount. By Proposition 2, this discount is zero

in region (1), and equals R− 2C in region (2), (1−π)µ
2π+(1−π)µ

R in region (3), and ∆ in region (4).

It is important to notice that in region (4), where liquidity traders do not sell the ABS, the

relevant stage-3 discount is given by the liquidity traders’ cost of liquidating the alternative

asset, ∆, rather than by the larger discount R that they would have to bear on the ABS

market. Hence, the price of the ABS at the issue stage is

P1,O =





pqG + (1− p)x
2
qB if R ≤ 2C,

pqG + (1− p)
[
x
2
qB − π(R− 2C)

]
if R ∈ (2C,min(2C +∆, R1)] ,

pqG + (1− p)
[
x
2
qB − π (1−π)µ

2π+(1−π)µ
R
]

if R ∈ (R1, R2] ,

pqG + (1− p)
(
x
2
qB − π∆

)
if R > max(2C +∆, R2).

(16)

3.2 Issue price with transparency

With transparency, the equilibrium price in the primary market is such that unsophisticated

investors value the asset correctly in expectation, conditional on their information and on

the probability of their bids being successful:

P1,T = ξV (λL) + (1− ξ)V (λH) , (17)
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where ξ is the probability that unsophisticated investors successfully bid for a low-risk ABS,

if sophisticated investors play their optimal bidding strategy, and V is the risk-adjusted PDV

of the security conditional on the realization of λ.

Recalling that at stage 1 the ABS is allocated to investors via a uniform price auction,

the probability ξ, with which unsophisticated investors secure a low-risk ABS, depends on

the bidding strategy of informed investors, which in turn depends on the realization of λ. To

see this, consider that for sophisticated investors the value of the ABS is given by Equation

(3), so that they are willing to bid a price P > VT (λ) if λ = λL (i.e., λ̃ = −σ), but they

place no bids if λ = λH (i.e., λ̃ = σ). As a result, if λ̃ = −σ, both types of investors bid.

Sophisticated investors manage to buy the ABS with probability µ and the unsophisticated

do so with probability 1− µ. If λ̃ = σ, instead, unsophisticated investors buy the ABS with

certainty.

Thus, the probability of an unsophisticated investor buying the ABS if λ̃ = −σ is ξ =

(1− µ)/(2− µ) < 1/2, and using Equation (17), the issue price is

P1,T = pqG + (1− p)

(
x

2
qB −

µ

2− µ
R

)
, (18)

where (1−p)µR/(2−µ) is the discount required by unsophisticated traders to compensate for

their winner’s curse. This price is decreasing in the fraction of sophisticated investors µ and

in their informational rent R, as both these parameters tend to exacerbate adverse selection

in the primary market. So, with transparency there is no discount because of secondary

market illiquidity, but there is underpricing arising from adverse selection in the primary

market.

3.3 Face value of the ABS

Equations (16) and (18) for the issue price are predicated on the assumption that the issuer

sets the face value of the ABS equal to its payoff in the good state, that is, F = 1. Clearly,

choosing F < 1 would reduce the proceeds from the sale of the ABS. Since the issuer invests

any proceeds from the sale of the ABS at a net return r > 0, he wants to choose F as high as

possible, while avoiding default in the good state. Hence, he will set F = 1 independently of
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the choice of transparency (to be analyzed in the next section). This verifies the assumption

made in Section 2.1 about the face value of the ABS.

3.4 Choice of transparency

Initially, the issuer chooses the disclosure regime that maximizes the issue price. This choice

boils down to comparing expressions (16) and (18). As shown in the Appendix, the result is

that

Proposition 3. Issuers choose opaqueness for all parameter values.

The intuition for this finding is that under opaqueness the costs due to adverse selection

are borne “less often” than under transparency. Under opaqueness, the discount due to

adverse selection is paid by investors only when they are hit by a liquidity shock, which

only happens with frequency π. Under transparency, instead, the adverse selection problem

arises on the primary market, and therefore invariably leads to a discounted issue price.

Proposition 3 implies that the issue price of the ABS is simply the initial price under the

opaque regime, P1,O, given in Equation (16).

The remaining question to analyze is whether the issuer, who is the initial owner of the

loan portfolio, will want to sell the portfolio as an ABS or hold it on his books to maturity.

If he holds it to maturity, his payoff would be VO because he does not know λ; if instead he

sells the ABS and reinvests the proceeds, he will gain (1 + r)P1. Hence, the net gain from

securitization is

(1+r)P1−VO = rVO−





0 if R ≤ 2C,

(1 + r)(1− p)π(R− 2C) if R ∈ (2C,min(2C +∆, R1)] ,

(1 + r)(1− p)π (1−π)µ
2π+(1−π)µ

R if R ∈ (R1, R2]

(1 + r)(1− p)π∆ if R > max(2C +∆, R2),

(19)

where for brevity we replace the unconditional risk-adjusted expectation of the ABS payoff

pqG + 1−p

2
xqB with VO, by Equation (2). To make the problem interesting, we assume that
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the rate of return r that the issuer can obtain on alternative assets is high enough as to make

the net gain (19) positive – this induces him to issue the ABS at stage 1.

3.5 The crisis

It is interesting to consider what the model can tell us about the ABS market in the 2007–

2008 financial crisis. This can be analyzed by looking at the behavior of the secondary

market prices as the economy moves from stage 1 to stage 3, that is, as it becomes known

that the ABS will not repay its face value.

If default is announced at stage 3, the market price will obviously drop because of the

negative revision in fundamentals, even if the market stays liquid because informational rents

are low (R ≤ 2C). But, if informational rents are larger (R > 2C), the ABS price drops

further because of the illiquidity of the market. Drawing the secondary market price PB
3,O

from Proposition 2 and the primary market price P1,O from Equation (16), one obtains the

following expression for the price change:

PB
3,O − P1,O = −p(qG −

x

2
qB)−





0 if R ≤ 2C;

[1− (1− p)π](R− 2C) if R ∈ (2C,min(2C +∆, R1)] ;

[1− (1− p)π] (1−π)µ
2π+(1−π)µ

R if R ∈ (R1, R2] ;

[R− (1− p)π∆] if R > max(2C +∆, R2).
(20)

Equation (20) indicates that if informational rents are sufficiently high, the announce-

ment of the ABS default can trigger a market crash and the transition from a liquid primary

market to an illiquid or inactive secondary market. This is what Gorton (2010) describes

as a “panic”, that is, a situation in which structured debt securities turn from being infor-

mationally insensitive to informationally sensitive, and “some agents are willing to spend

resources to learn private information to speculate on the value of these securities ... This

makes them illiquid” (pp. 36–37).22 It is worth underscoring that this steep price decline

and drying up of liquidity would not occur if the initial sale were conducted in a transparent

fashion.
22The crisis also triggered an increase in leverage (via a drop in fundamentals), which may also have

contributed to rendering both debt and equity more informationally sensitive and therefore less liquid, as
shown by Chang and Yu (2010).

– 27 –



The financial crisis of 2007–2008 featured first a drop in ABS prices and then a market

freeze. In our model, this would occur if the rents from informed trading were to rise over

time, moving the economy first into the illiquidity region and then into the region in which

the ABS market becomes inactive. This increase in R may arise from an increase in the

variability of the risk sensitivity of ABS (σ), in the discrepancy between the marginal value

of consumption in the two default states (qB2 − qB1), or from both. In other words, there

is greater uncertainty about the quality of ABS, the gravity of the recession, or both. This

argument also illustrates why the drop in ABS prices and the market freeze occurred only for

nonagency MBS, which were not insured against default risk, and not for agency MBS, which

were insured by government agencies. In our setting the difference in exposure to credit risk

of the two types of securities would be captured by a larger value of σ for nonagency than

for agency MBS.

4. Public Policy

The social value of liquidity may exceed the private value, ∆, placed on liquidity by distressed

investors. As we saw in Section 1.4, this point is captured by denoting the social value of

stage 3 liquidity as (1+γ)∆, where γ measures the intensity of the liquidity externalities, and

therefore the deadweight loss of secondary market illiquidity. This creates the potential for

welfare-enhancing public policies. A regulator can intervene ex ante by imposing on issuers

mandatory transparency on the primary market or ex post by injecting liquidity at the stage

of secondary market trading. This liquidity injection can be targeted to investors hit by

the liquidity shock or aimed at supporting the price on the ABS market. In this section we

illustrate the effects of these interventions on transparency and social welfare.

4.1 Mandating transparency

Suppose the government can mandate transparency at the issue stage, by forcing the issuer

to disclose information Λ at the issue stage. In which parameter regions is this socially

efficient? The first step in answering this is to define social welfare. Notice that in this
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model any profits made by sophisticated investors come either at the expense of the issuer

(in the primary market) or at expense of liquidity traders; and in turn any losses inflicted on

liquidity traders are initially borne by the issuers in the form of a lower issue price. Hence, in

the absence of externalities, social welfare is measured by the expected value of the issuer’s

net payoff:

W = (1 + r)E(P1)− VO, (21)

where the value of P1 will differ depending on the transparency regime. It is P1,T in Equation

(18) under transparency and P1,O in Equation (16) under opaqueness.

Under transparency, the secondary market is always liquid so that there are no external-

ities due to illiquidity. Hence, social welfare is

WT = rVO − (1 + r)(1− p)
µ

2− µ
R, (22)

which shows that in this regime inefficiency arises only from adverse selection in the primary

market (captured by the second term). With opaqueness, instead, welfare is

WO = rVO −





0 if R ≤ 2C,

(1 + r)(1− p)π(R− 2C) if R ∈ (2C,min(2C +∆, R1)] ;

(1 + r)(1− p)π (1−π)µ
2π+(1−π)µ

R if R ∈ (R1, R2] ;

(1 + r + γ)(1− p)π∆ if R > max(2C +∆, R2).

(23)

This expression shows that in the opaque regime inefficiencies may arise from adverse selec-

tion in the secondary market and that the externality from illiquidity contributes to lower

welfare in the region in which the ABS market is inactive (as indicated by the presence of

the parameter γ in the bottom line).

The socially optimal choice depends on the comparison between expressions (22) and

(23). The result of this comparison is obvious for all the cases in which there is no illiquidity

externality. In these cases, opaqueness is the socially preferable regime, since social welfare

coincides with the issuer’s payoff, which by Proposition 3 is larger under opaqueness. A

difference between social welfare and issuers’ private payoff exists only in the region in which

the ABS market is inactive and the liquidity externality arises. Graphically, this occurs

in the top region of Figure 4, where R > max
(
2C +∆,∆+ 2π

(1−π)µ
∆
)
, which is shown in

Figure 4 as an upward sloping convex curve.
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In this region, the social gain from transparency WT −WO is the sum of the issuer’s net

gain (1+ r)[ µ

2−µ
R−π∆] and the social gain γπ∆. Transparency is therefore socially optimal

in the region in which R < 2−µ

µ

(
1 + γ

1+r

)
π∆, whose upper bound in Figure 4 is a straight

line in the space (π,R). Hence, the region where transparency is socially–but not privately–

optimal is the shaded area in Figure 4. It is easy to show that this region is nonempty for

sufficiently large values of the externality parameter γ relative to the private rate of return

r. To summarize,

Proposition 4. Mandating transparency increases welfare if and only if R ∈(
max

(
2C +∆,∆+ 2π

(1−π)µ
∆
)
, 2−µ

µ

(
1 + γ

1+r

)
π∆

)
.

Notice that, according to this proposition mandating transparency is not universally

welfare-improving. Quite to the contrary, it is never efficient in the area in which the market is

active even if illiquid, that is, whenever the informational rents are sufficiently low. Therefore,

such a prescription would not apply to ABS that feature little credit risk and therefore low

information sensitivity, such as agency MBS, whereas it might apply to riskier and potentially

information sensitive ones, such as nonagency MBS.

Mandating transparency is not the only public policy that can address the inefficiency

arising from the lack of transparency. Another type of effective policy would be for the

government to precommit to gathering and disseminating information about the ABS’s risk

sensitivity λ at the stage of secondary market trading. This would enable issuers to reap the

benefits from opaqueness on the primary market while avoiding the attendant costs in terms

of secondary market illiquidity. In principle, issuers themselves may wish to commit to such

a delayed transparency policy, but such a promise may not be credible on their part: ex post

they may actually have the incentive to reveal their information about λ to a sophisticated

investor so as to share into his informational rents from secondary market trading.
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4.2 Liquidity provision to distressed investors

An alternative form of policy intervention is to relieve the liquidity shortage when the sec-

ondary market is inactive at t = 3, that is, when R > max
(
2C +∆,∆ 2π

(1+π)µ
+∆

)
. In

this case ABS holders hit by the liquidity shock choose to sell other assets at the “fire-sale”

discount ∆. Hence, the government may target liquidity L ≤ ∆ to these distressed investors,

for instance, by purchasing their assets at a discount ∆− L rather than ∆. In the limiting

case L = ∆, it would make their assets perfectly liquid. Alternatively, the government may

acquire stakes in the equity of distressed ABS holders and thereby reduce the need for fire

sales of assets. In either case, the liquidity injection reduces the reservation value of liquidity

from ∆ to ∆− L. This has a social cost (1 + τ)L, where the parameter τ > 0 captures the

cost of the distortionary taxes needed to finance the added liquidity.

How large should the liquidity injection L be when the ABS market is inactive? In this

case, social welfare has three components: (1) the net value of the ABS, rVO − (1 + r)(1−

p)π(∆ − L); (2) the negative externality −(1 + r)(1 − p)γπ(∆ − L); and (3) the expected

cost of distortionary taxation −(1 + τ)π(1− p)L. Therefore, social welfare is

W = rVO − (1 + r + γ)(1− p)π(∆− L)− (1 + τ)π(1− p)L. (24)

If the government chooses L ∈ [0,∆] so as to maximize W , its optimal liquidity injection is

L∗ =





0 if τ > r + γ,

L ∈ [0,∆] if τ = r + γ,

∆ if τ < r + γ.

(25)

The following proposition summarizes these results.

Proposition 5. The public provision of liquidity to traders who need liquidity is welfare-

enhancing if R > max
(
2C +∆,∆ 2π

(1+π)µ
+∆

)
and τ < r + γ.

Providing liquidity to distressed ABS holders is optimal in the entire “inactive market”

region in Figure 4 (which combines the light and dark gray areas), provided that the net
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benefits from ex post liquidity (given by the sum of the net proceeds from the ABS sale

r and the liquidity externality γ) exceeds the net costs of liquidity (given by the marginal

cost of taxes τ). If this condition is satisfied, the region in which the ex post injection of

liquidity is optimal is larger than the area in which transparency is optimal (the dark gray

area in Figure 4). This happens because imposing transparency reduces the proceeds for

ABS issuers. Conversely, ex post liquidity provision does not affect the proceeds from the

ABS sale. However, it is important to realize that, in the dark gray area, where investors are

more likely to need secondary market liquidity (high π), mandating transparency ex ante

dominates ex post liquidity provision. Here transparency not only dominates opaqueness

but removes the need for ex post intervention and thus avoids distortionary taxes. In the

light gray area, where investors are less likely to need liquidity (low π), instead, mandatory

transparency is unwarranted, whereas an ex-post provision of liquidity is socially optimal,

provided that τ < r + γ. Hence, our model provides a role for both ex ante mandatory

disclosure and for ex post liquidity provision.

4.3 Public price support in the ABS market

In the previous section, the government was assumed to target the liquidity injection to the

investors hit by a liquidity shock. Alternatively, the government may intervene to support

the market price for ABS without targeting liquidity sellers, either by standing to buy the

ABS at a per-set price or by subsidizing market makers. This was the main feature of

the initial version of Paulson plan in the United States, which envisaged “reverse auctions”

aimed at buying back securitized loans from banks–a plan later replaced by an approach

targeted at recapitalizing distressed banks and thus closer to the intervention described in

the previous section. However, in July 2009 the Federal Reserve started engaging in forms

of indirect support of the ABS market by providing cheap loans to investors, such as hedge

funds, for the purchase of commercial MBS. In this section, we consider what would be the

effect of such a public intervention in the ABS market.

Since in our setting a negative externality arises only when the ABS market is inactive,

it is natural to assume that the government intervenes only in this case, that is, only when
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R > max
(
2C +∆,∆ 2π

(1+π)µ
+∆

)
. The least-cost government policy to keep the ABS market

active is buying the ABS at a discount ∆ (or at slightly higher price, so as to break the

indifference of the liquidity traders). In other words, the government replaces the market

makers at t = 3 and buys the ABS at the price

PB
3,O =

x

2
qB −∆. (26)

This relieves the investors hit by a liquidity shock but also increases the sophisticated in-

vestors’ incentive to acquire information. To see this, consider that the net profit, which

sophisticated investors can now expect, from information gathering is

φi

2
(R−∆)− Cφi, (27)

where the first term is the gain that the informed investor obtains from selling at the price

(26) the ABS, whose true value in the bad state is x
2
qB − R. As before, informed investors

obtain this gain only with probability 1/2, namely, when the information about λ is negative.

From the first-order condition, the equilibrium probability of becoming informed is

φ∗ =





0 if R < 2C +∆,

φ ∈ [0, 1] if R = 2C +∆,

1 if R > 2C +∆.

(28)

In the parameter region in which the government intervenes (R >

max
(
2C +∆,∆ 2π

(1+π)µ
+∆

)
), the bottom inequality in Equation (28) always holds

so that the expression simplifies to φ∗ = 1. Hence, sophisticated investors always gather

information.

How does the government decide whether to intervene? The gains from intervention come

from avoiding the negative externality, which costs π(1 − p)γ∆ to society. The cost is the

deadweight loss associated with the taxes that the government must raise to cover its market-

making losses in the secondary market. In its market-making activity, the government gains

π(1 − p)∆ from liquidity traders but loses (1 − π)(1 − p)µR−∆
2

to sophisticated investors.

Because R > ∆ 2π
(1+π)µ

+∆, on balance it loses money.

Notice that the intervention in the secondary market does not change the issue price

since the government is buying the ABS at the same discount (∆) that the liquidity traders

would suffer by selling the alternative asset.
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Hence, the government’s choice about whether to support the ABS market depends on

whether πγ∆− τ
[
(1− π)µR−∆

2
− π∆

]
is positive. Re-expressing this inequality as an upper

bound on R, the government will support the ABS market if

R ≤ ∆

[
1 +

2π

(1− π)µ

(
1 +

γ

τ

)]
. (29)

Recalling that R must also be large enough to place the economy in the region in which the

ABS market would otherwise be inactive, we have the following result.

Proposition 6. It is optimal for the government to provide price support to the ABS market

if R ∈

(
max

(
2C +∆,∆ 2π

(1+π)µ
+∆

)
,∆+ 2π

(1−π)µ

(
1 + γ

τ

)
∆
]
.

This result is illustrated in Figure 5, in which the region where ex post intervention

in the ABS market is socially efficient is shaded in dark gray. The size of this region is

increasing in π, ∆, and γ, namely, in the private and social value of liquidity. Indeed, this

locus would disappear if γ = 0. Conversely, its size is decreasing in the magnitude of τ , C,

and µ. Intuitively, a large τ implies that government intervention is socially more costly, a

large C reduces the scope for such intervention because sophisticated investors have little

incentive to seek information anyway, and a large µ increases the adverse selection cost that

the government faces in supporting the ABS market.

It is worth noting that the region, where ABS price support by the government is optimal

(the dark gray area in Figure 5), is smaller than the area in which liquidity provision targeted

to distressed investors is optimal (which also includes the light gray area in Figure 5). Both

policies eliminate the negative externality. But they differ in another respect: targeting

liquidity at distressed investors raises the ABS issue price (which produces a social gain

r), without generating profits for sophisticated investors; in contrast, giving public support

to the secondary market price leaves the ABS issue price unaffected, and instead increases

sophisticated investors’ informational rents, and thus their incentive to seek information

(which yields no social benefit, and may cause social losses).
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5. Extensions

In this section we explore two extensions of the basic model. First, we endogenize the

liquidity discount ∆ and the externality γ. We assume that investors in ABS securities also

own real assets that are directly used in production, and may have to liquidate them at a

discount if adverse selection in the secondary market for ABS is too severe. Liquidation of

these assets disrupts the productivity of other input suppliers, such as employees used to

work with these assets, so that extreme adverse selection in the ABS market generates a

deadweight loss for society.

Second, we endogenize the fraction of sophisticated investors to deliver predictions on

which markets can be expected to have more of them. We suppose that investors choose

whether to become sophisticated at some cost before knowing the degree of asymmetric

information R associated with the security and the probability of the liquidity shock π.

5.1 Endogenous value of liquidity

Recall that, if the secondary market for the ABS were perfectly liquid, in the opaque regime,

sellers hit by a liquidity shock could sell their holdings in default states at the fair price qBx/2.

Suppose that this is precisely the sum of money that they need to offset their liquidity shock.

If instead the ABS is illiquid and were to sell at a discount larger than ∆ from this fair value,

these investors abstain from selling the ABS, being able to liquidate an alternative asset in

their portfolio at the fire-sale discount ∆. However, the liquidation of this alternative asset

is associated with a deadweight cost γ∆ for society.

In this section, we endogenize both the private and the social value of liquidity, by

assuming that the alternative asset owned by investors is a real asset used in production by

a firm that they own, for instance, a piece of manufacturing equipment or a plot of farmland.

If an investor hit by the liquidity shock chooses to sell this alternative asset, he will need to

sell enough of it as to raise the amount qBx/2. But, having invested in firm-specific know-

how, the asset is more valuable to him than to potential acquirers. Specifically, assume that

to the current firm owner the value of a unit of this asset is vH , which exceeds the price, vL,
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at which it can be sold to a potential buyer. To cover his need for liquidity, the owner would

need to sell k units of this productive asset, with k = qBx

2vL
. Hence, adopting the terminology

used before, the fire-sale discount on this alternative asset is ∆ = qBx

2
vH−vL

vL
.

Now suppose that this productive asset is used jointly with labor–for simplicity, in equal

proportions–and that, just like the owner of the firm, workers made firm-specific investments

in human capital, which allow them to earn a quasi-rent, w. Thus, liquidating k units

of productive capital implies firing k workers, who collectively lose kw. This loss is not

internalized by ABS holders when they choose to liquidate productive capital instead of their

illiquid ABS. Hence, the fire sale induced by an illiquid ABS market generates a negative

externality γ∆ = qBx

2vL
w. The intensity of the externality, γ = w

vH−vL
, is the ratio between the

workers’ loss, w, and the entrepreneur’s loss, vH − vL, per unit of productive capital being

liquidated. The analysis in Propositions 3 and 4 follows unchanged with these specific values

for ∆ and γ.

5.2 Endogenous sophistication

So far the proportion µ of sophisticated investors who buy a security has been treated

as a parameter. In this section, we extend the model to encompass investors’ choice to

become sophisticated before the securities are issued, so that the fraction µ of sophisticated

investors is determined endogenously in equilibrium. A first result follows immediately from

the previous analysis. Whenever the government mandates transparency, there is no scope

for incurring any cost to become financially sophisticated, because there are no rents to be

had in secondary market trading. The fraction µ of sophisticated investors can be positive

only when the secondary market is expected to be opaque. Sophisticated investors gain from

opaqueness, just as issuers do (by Proposition 3). The next question is: assuming opaqueness,

under which circumstances should we expect more investment in financial sophistication, and

thus greater adverse selection in secondary market trading?

Recall that sophisticated investors earn positive net profits from investing in information

only if R ∈

(
2C + (1−π)µ

π
C,∆+ 2π

(1−π)µ
∆
]
, which corresponds to region (3) in Figure 3.

Only in this region they have the incentive to become sophisticated. To make the problem
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interesting, we assume that the decision about whether or not to become sophisticated is

made under uncertainty. Specifically, we assume that at date t = −1 (before securities

are issued) each investor i ∈ [0, 1] chooses how much to spend on financial education. By

spending more on financial education, the investor raises the probability µi of becoming

sophisticated. For concreteness, the cost borne by the investor is taken to be a linear function

sµi of the probability of becoming sophisticated, where the parameter s determines the

costliness of financial education. When this decision is made, investors are assumed to be

still uncertain about the degree of asymmetric information R associated with the ABS to

be issued. Specifically, R is a Bernoulli-distributed random variable, which can take values
{
0, R

}
with ρ being the probability that R = R.

Denoting the expected gain from being sophisticated by g (yet to be determined), each

investor i will choose the investment in financial education—and therefore the level of µi—

that maximizes his net gain from financial education, gµi − sµi. The expected gain g from

being sophisticated is

g = (1− p)(1− π)ρ

[
π

2π + (1− π)µ
R− C

]
(30)

if R ∈

(
2C + (1−π)µ

π
C,∆+ 2π

(1−π)µ
∆
]
and is zero otherwise. To understand this expression,

notice that the term in square brackets is the rent that sophisticated investors earn from

information, given by Equation (13) if φi = φ∗ = 1 (which is the case in the region being

considered). This rent accrues to sophisticated investors only if there is default (which

happens with probability 1−p), if they are not hit by a liquidity shock (which happens with

probability 1− π), and if R = R (which happens with probability ρ), since for R = 0 there

is no informational rent to be gained. In the Appendix we prove the following results.

Proposition 7. If the cost of financial education is sufficiently high (s > s) and the maxi-

mum informational rent sufficiently large (R > 2C+ 2s
ρ(1−p)(1−π)

), there is a unique symmetric

equilibrium where the fraction of sophisticated investors is µ∗ = π
1−π

[
R

s
ρ(1−p)(1−π)

+C
− 2

]
> 0.

If instead R < 2C + 2s
ρ(1−p)(1−π)

, the unique symmetric equilibrium features no sophisticated

investors (µ∗ = 0). For all other parameter values (s < s and R > 2C + 2s
ρ(1−p)(1−π)

), there is
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no symmetric equilibrium.

The threshold s mentioned in Proposition 7 is computed in the Appendix. The intuitive

rationale for our results is as follows. If R < 2C+ 2s
ρ(1−p)(1−π)

, the expected rent from becoming

sophisticated is not large enough to cover the costs of financial education, so that investors

have no incentive to become sophisticated. Conversely, when R > 2C + 2s
ρ(1−p)(1−π)

, the rent

from becoming sophisticated is high enough to induce investment in financial education.

However, this is an equilibrium only if the cost of becoming sophisticated is high enough

(s > s) to prevent excessive competition for these informational rents. If this condition on

the cost of financial education is not met (s < s), there is no equilibrium. Intuitively, the

fraction of informed investors–and thus adverse selection in the ABS market–would be so

high that liquidity traders would be driven out of the market.

The most interesting case is that in which s > s and R > 2C + 2s
ρ(1−p)(1−π)

, so that

in equilibrium there is a positive fraction µ∗ of sophisticated investors. From the expres-

sion for µ∗ in Proposition 7, it is easy to see that the fraction of sophisticated investors is

increasing in the likelihood 1 − p of default states (because only in these states the ABS

becomes informationally sensitive and thus can yield informational rents), in the likelihood

ρ and magnitude R of the informational rent (which both increase the payoff to financial

sophistication), and in the probability of liquidity trading π (since informed investors gain

at the expense of liquidity traders). Hence, investment in financial sophistication is elicited

by the issuance of risky and informationally sensitive securities, and/or by the expectation

of a strong volume of liquidity trading. Conversely, as one would expect, the fraction of

sophisticated investors is decreasing in the cost parameter of financial education s and in

the cost C of acquiring information.

6. Conclusions

Is there a conflict between expanding the placement of complex financial instruments and

preserving the transparency and liquidity of their secondary markets? Put more bluntly, is
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“popularizing finance” at odds with “keeping financial markets a safe place”? The subprime

crisis has thrown this question for the designers of financial regulation into high relief.

The answer we provide is that indeed the conflict exists, and that it may be particularly

relevant to the securitization process. Marketing large amounts of ABS means selling them

also to unsophisticated investors, who cannot process the information necessary to price

them. In fact, if such information were released, it would put them at a disadvantage vis-

à-vis the “smart money” that can process it. This creates an incentive for ABS issuers to

negotiate with credit rating agencies a low level of transparency, that is, relatively coarse

and uninformative ratings. Ironically, the elimination of some price-relevant information is

functional to enhanced liquidity in the ABS new issue market.

However, opaqueness at the issue stage comes at the costs of a less liquid or even totally

frozen secondary market and of sharper price decline in case of default. This is because with

poor transparency sophisticated investors may succeed in procuring the undisclosed infor-

mation. Therefore, trading in the secondary market will be hampered by adverse selection,

whereas with transparency this would not occur.

Though privately optimal, opaqueness may be socially inefficient if the illiquidity of the

secondary market has negative repercussions on the economy, as by triggering a spiral of

defaults and bankruptcies. In this case, regulation making greater disclosure mandatory for

rating agencies is socially optimal. Our model therefore offers support for current regulatory

efforts to increase disclosure of credit rating agencies. However, it also indicates that there

are situations in which opaqueness is socially optimal, for instance, when the rents from

private information are too low to shut down the secondary market or when its liquidity has

little value.

We also show that, when opaqueness results in a frozen secondary market, ex post public

liquidity provision may be warranted, and that targeting such liquidity to distressed bond-

holders is preferable to providing it via support to the ABS secondary market price. The

reason is that by supporting ABS prices, public policy ends up enhancing the trading profits

of sophisticated investors, and thus subsidizes their information collection effort, which is

not beneficial and may actually be harmful from a social standpoint. Anyway, whenever
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transparency is socially efficient, ex ante mandatory transparency makes any form of ex post

liquidity provision unnecessary, thus sparing society the cost of the implied distortionary

taxes.

Finally, we extend the analysis by endogenizing two parameters of the baseline model of

this article. First, we show that the liquidity externality assumed in the model can arise from

the fact that an illiquid ABS market can trigger fire sales of productive assets, and thereby

the socially wasteful loss of workers’ firm-specific human capital. Second, we endogenize the

proportion of sophisticated investors, by assuming investors can invest in financial education

before the issuance of securities.

Interestingly, the problems analyzed in this article—the complexity of the information

required to invest in ABS and its implications for liquidity—have resurfaced as investors

and policy makers debated how to restart securitizations after the crisis. An article on the

Financial Times reports that “Investors want to buy more securitizations but many admit

that they cannot fully analyze deals” (Hughes 2010), whereas a 2009 public consultation

launched by the European Central Bank on loan-by-loan information requirements for ABS

reveals that for the vast majority of market participants “the provision of more detailed

information would help the market assess the risks associated with ABS ... it would unques-

tionably benefit all types of investors, as well as the general level of liquidity in the market”

(European Central Bank 2010, p. 1).
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Appendix

Proof of Proposition 1. Consider first candidate equilibrium (A). If all liquidity traders

choose to sell the alternative asset, they will not sell the ABS and therefore the price is given

by Equation (11). Hence, if any of them were to deviate by selling the ABS, he would suffer

a loss R. This is to be compared to the discount ∆ that he would face on the alternative

asset; hence, he will not deviate if R > ∆. So (A) is an equilibrium if R > ∆.

Let us now consider candidate equilibrium (B). If all liquidity traders choose to sell the

ABS, individual deviations will not be profitable if the discount in the ABS market (from

Equation 10) does not exceed the reservation value ∆ in the alternative market, namely, if

∆ ≥
(1− π)φ∗µ

2π + (1− π)φ∗µ
R. (A1)

Substituting for φ∗ from Equation (15), we find that this condition becomes

∆ ≥





0 if R < 2C,

R− 2C if R ∈
[
2C, 2C + 1−π

π
µC

]
,

(1−π)µ
2π+(1−π)µ

R if R > 2C + 1−π
π
µC.

(A2)

This condition implies that the set of strategies (B) are an equilibrium if either R < 2C

or R ∈
[
2C,min(2C +∆, 2C + 1−π

π
µC)

]
or R ∈

(
2C + 1−π

π
µC,∆+ 2π

(1−π)µ
∆
]
. Hence, more

compactly, equilibrium (B) exists if R ≤ max
(
2C +∆,∆+ 2π

(1−π)µ
∆
)
.

Summarizing, (A) is the only equilibrium if R > max
(
2C +∆,∆+ 2π

(1−π)µ
∆
)
;

(B) is the only equilibrium if R ≤ ∆; both (A) and (B) are equilibria if R ∈(
∆,max

(
2C +∆,∆+ 2π

(1−π)µ
∆
)]

.

Proof of Proposition 2. Recall that in the transparent regime PB
3 is given by Equation

(8), and since information about λ is already impounded in PB
3 , sophisticated have no reason

to acquire it.

In the opaque regime, consider first the case in which equilibrium (A) is played because

R > max(2C +∆,∆+ 2π
(1−π)µ

∆). In this case, φ∗ = 0 and PB
3 = x

2
qB −R.
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In all other cases (where R ≤ max(2C +∆,∆+ 2π
(1−π)µ

∆)), equilibrium (B) is played, so

that φ∗ is given by Equation (15) and PB
3 by Equation (10). Hence,

φ∗ =





0 if R < 2C,
π

µ(1−π)

(
R
C
− 2

)
if R ∈

[
2C,min(2C +∆, 2C + (1−π)µ

π
C)

]
,

1 if R ∈ (2C + (1−π)µ
π

C,∆+ 2π
(1−π)µ

∆].

(A3)

and

PB
3 =





xqB
2

if R < 2C,
xqB
2

− (R− 2C) if R ∈

[
2C,min(2C +∆, 2C + (1−π)µ

π
C)

]
,

xqB
2

−
µ(1−π)

2π+µ(1−π)
R if R ∈ (2C + (1−π)µ

π
C,∆+ 2π

(1−π)µ
∆].

(A4)

Proof of Proposition 3. The difference in issue price between opaqueness and transparency

is

P1,O − P1,T =





(1− p) µ

2−µ
R > 0 if R ≤ 2C;

(1− p)
[

µ

2−µ
R− π(R− 2C)

]
if R ∈ (2C,min(2C +∆, 2C + (1−π)µ

π
C)];

(1− p)
[

µ

2−µ
− π (1−π)µ

2π+(1−π)µ

]
R if R ∈

(
2C + (1−π)µ

π
C,∆+ 2π

(1−π)µ
∆
]
;

(1− p)
[

µ

2−µ
R− π∆

]
if R > max(2C +∆,∆+ 2π

(1−π)µ
∆).

(A5)

There are four cases to consider, which correspond to the four regions in Figure 3.

Region (1): In this region, where R ≤ 2C, the issuer chooses opaqueness. As the profits

from information do not compensate for the cost of its collection, the secondary market is

perfectly liquid. Hence, the issuer’s only concern is to avoid underpricing in the primary

market, which is achieved by choosing opaqueness.

Region (2): In the intermediate region, where R ∈ (2C,min
(
2C +∆, 2C + (1−π)µ

π
C
)
],

the discount associated with transparency is µR

2−µ
, whereas the discount with opaqueness

is π(R − 2C). Hence, the regime with transparency dominates if R
(
π −

µ

2−µ

)
> 2πC or

R > 2πC
π−

µ

2−µ

. This condition is violated, because 2πC
π−

µ

2−µ

≥ 2C + (1−π)µ
π

C and in this region

R ≤ 2C + (1−π)µ
π

C. Thus in this region opaqueness is optimal.

Region (3): In the intermediate region, where R ∈

(
2C + (1−π)µ

π
C,∆+ 2π

(1−π)µ
∆
]
, the

discount associated with transparency is µR

2−µ
, whereas the discount with opaqueness is
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π (1−π)µ
2π+(1−π)µ

R. It is easy to show that µ

2−µ
≥ π (1−π)µ

2π+(1−π)µ
. Hence, also in this region opaqueness

is optimal.

Region (4): In the top region, where R > max
(
2C +∆,∆+ 2π

(1−π)µ
∆
)
, opaqueness is

also optimal. To see this, consider that by choosing opaqueness, the issuer bears the expected

liquidity cost π∆, while saving the underpricing cost µ

2−µ
R. Transparency dominates only

if R < (2−µ)π
µ

∆. This condition is violated because in this region R > ∆+ 2π
(1−π)µ

∆, and we

can show that ∆ + 2π
(1−π)µ

∆ ≥
(2−µ)π

µ
∆, which proves the result.

In conclusion, in no region transparency is optimal.

Proof of Proposition 7. Each investor i chooses µi noncooperatively, taking the choice of

µ made by other investors as given. Since the gain g from financial sophistication depends

on the fraction µ of sophisticated investors but not on the individual probability µi, each

investor i will take g as given in his choice. Hence, each investor i solves the following

problem:

max
µi∈[0,1]

gµi − sµi, (A6)

subject to

g =

{
(1− p) (1− π) ρ

[
π

2π+(1−π)µ
R− C

]
if R ∈

[
2C + 1−π

π
µC,∆+ 2π∆

(1−π)µ

]
,

0 otherwise.
(A7)

Since the objective function is convex in µi, the necessary and sufficient condition for a

maximum is

µi =





0 if g < s,

µ ∈ [0, 1] if g = s,

1 if g > s.

(A8)

In a symmetric equilibrium µi = µ. In equilibrium, µ cannot be equal to 1. In this case all

investors would be sophisticated and thus there would be no informational rent, which in

turn implies that the optimal choice would be µi = 0, leading to a contradiction. Hence, in

a symmetric equilibrium µ must be either 0 or take a value between 0 and 1 such that g = s.

The condition for µ = 0 to be an equilibrium is obtained by replacing Equation (A7) in the

condition g < s:

R < 2

[
C +

s

ρ(1− p)(1− π)

]
. (A9)
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The condition for µ ∈ (0, 1) to be an equilibrium is obtained by replacing Equation (A7) in

the condition g = s:

µ =
π

1− π

[
R

C + s
ρ(1−p)(1−π)

− 2

]
. (A10)

Equation (A10) is positive if and only if R ≥ 2
[
C + s

ρ(1−p)(1−π)

]
, and it is smaller than 1 if

and only if R <
[
C + s

ρ(1−p)(1−π)

] (
1 + 1

π

)
. The latter constraint is satisfied if and only if

s >
ρ(1− p)(1− π)

1 + π

[
πR− (1− π)C

]
≡ s. (A11)

Summarizing, there is a unique symmetric equilibrium in which µ equals

µ∗ =





0 if R < 2
[
C + s

ρ(1−p)(1−π)

]
,

π
1−π

[
R

C+ s
ρ(1−p)(1−π)

− 2
]

if R ≥ 2
[
C + s

ρ(1−p)(1−π)

]
and s > s,

(A12)

whereas there is no symmetric equilibrium if R ≥ 2
[
C + s

ρ(1−p)(1−π)

]
and s < s.
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Figure 1. Time line 
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not to sell the ABS. • Sophisticated investors 
decide whether to seek 
costly information about λ .  
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Figure 2. Secondary market equilibria with opacity 
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Figure 3. Characterizing secondary market equilibrium regions with opacity 
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Figure 4. Socially optimal choice of transparency 
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Figure 5. Social optimality of ABS support 
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