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A counterexample concerning the

variance-optimal martingale measure

Aleš Černý Jan Kallsen

City University London∗ TU München†
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Abstract

The present note addresses an open question concerning a sufficient characteriza-

tion of the variance-optimal martingale measure. Denote by S the discounted price

process of an asset and suppose that Q⋆ is an equivalent martingale measure whose

density is a multiple of 1 − ϕ • ST for some S-integrable process ϕ. We show that Q⋆

does not necessarily coincide with the variance-optimal martingale measure, not even

if ϕ • S is a uniformly integrable Q⋆-martingale.
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1 Introduction

Suppose that the continuous semimartingale S denotes the discounted price process of some

asset and fix a time horizon T ∈ (0,∞]. An equivalent martingale measure Q⋆ is called

variance-optimal martingale measure (VOMM) if its density dQ⋆

dP
has minimal variance

among all equivalent martingale measures. Here, equivalent martingale measure (EMM)

refers to probability measures Q ∼ P such that S is a Q-local martingale. The VOMM

plays a key role for mean-variance hedging in incomplete markets (cf. Pham 2000; Schwei-

zer 2001). Its existence is guaranteed under the following mild assumption (cf. Delbaen and

Schachermayer 1996).
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Assumption 1.1 Process S admits an EMM Q with E
(
(dQ

dP
)2
)

< ∞.

In this paper we are concerned with criteria for practical determination of the VOMM.

The following dual characterization of the VOMM has been observed and applied repeatedly

(see Schweizer 1994; Delbaen and Schachermayer 1996; Delbaen et al. 1997; Mania and

Tevzadze 2003).

Proposition 1.2 Let Q⋆ ∼ P denote some EMM with square-integrable density, i.e. with
dQ⋆

dP
∈ L2(P ). Then Q⋆ is the VOMM if and only if there exists some S-integrable process ϕ

(with finite limit ϕ • S∞ if T = ∞) such that

1.
dQ⋆

dP
=

1 − ϕ • ST

E(1 − ϕ • ST )
, (1.1)

2. ϕ is admissible in the sense that ϕ • S is a uniformly integrable Q-martingale for any

EMM Q with square-integrable density.

PROOF. ⇒: This is shown in this form in Delbaen and Schachermayer (1996), Lemma 2.2.

⇐: We recall the simple proof for future reference. Note that EQ(dQ⋆

dP
) = 1

E(1−ϕ•ST )
for

any EMM Q with square-integrable density. This implies

E
(
(dQ

dP
)2
)

= E
(
(dQ⋆

dP
)2
)

+ 2E
(

dQ⋆

dP
(dQ

dP
− dQ⋆

dP
)
)

+ E
(
(dQ

dP
− dQ⋆

dP
)2
)

= E
(
(dQ⋆

dP
)2
)

+ 2EQ

(
dQ⋆

dP

)
− 2EQ⋆

(
dQ⋆

dP

)
+ E

(
(dQ

dP
− dQ⋆

dP
)2
)

≥ E
(
(dQ⋆

dP
)2
)

(1.2)

for any such Q. �

This result can be extended to discontinuous processes if one allows for signed rather

than positive measures (cf. Černý and Kallsen 2007) but we consider only continuous price

processes in the present paper. The integrand ϕ in Proposition 1.2 minimizes E((1 − ϕ •

ST )2) among all admissible strategies. In that sense, it corresponds to an optimal quadratic

hedging strategy for the constant claim 1 given initial endowment 0. Alternatively, it can be

interpreted as an efficient strategy in a Markowitz sense, i.e. there exists no other strategy

with at most the same variance yielding a higher expected return.

The literature has generated a number of alternative characterizations of the VOMM that

on the surface look very different from each other and also from Proposition 1.2. But they

all share the basic structure of Proposition 1.2: They contain i) a recipe for constructing a

candidate measure, and ii) a verification procedure to check that the candidate measure is

the true VOMM. We review and unify the different approaches in Section 3. For the time

being we will illustrate the main idea in the setup of Proposition 1.2.

Admissibility of a given integrand may be hard to verify. One easily shows that Condi-

tion 2 of Proposition 1.2 can in fact be replaced by the seemingly weaker condition

2



2’. ϕ • S is a uniformly integrable Q-martingale for the VOMM Q.

PROOF. 1 − ϕ • S is nonnegative because it is a Q-martingale with positive final value.

Since it is a local Q⋆-martingale, it is a Q⋆-supermartingale as well, which in turn implies

EQ⋆(dQ⋆

dP
) ≤ 1

E(1−ϕ•ST )
. The same reasoning as in (1.2) now yields that the density of Q⋆

does not have larger variance than the density of the VOMM Q. �

In applications, however, this modification does not help much. Typically one deter-

mines a candidate measure Q⋆ whose density is of the form (1.1). But since one has no prior

knowledge of the true VOMM, proving 2’ is not easier than proving 2.

Considering the difficulty of verifying Condition 2 and the circular nature of Condition

2’ one is naturally lead to investigate the validity of the following

Claim 1.3 Proposition 1.2 holds with Condition 2 replaced by

2”. ϕ • S is a uniformly integrable Q⋆-martingale.

Put differently, uniform integrability of the local martingale ϕ • S is merely supposed to hold

relative to the candidate measure. Since this candidate measure is often known explicitly,

such a result would be extremely useful for verification. Furthermore, Condition 2” implies

that the candidate martingale measure Q⋆ has a square-integrable density as required by

Assumption 1.1, hence no further computations would be needed.

The main contribution of this paper is in showing that Claim 1.3 fails to hold, that is one

cannot replace the unpleasant condition 2 with the more amenable condition 2”. Since all

P -martingales are continuous in our counterexample, it shows that Corollary 2 in Mania and

Tevzadze (2000) does not hold in general. Note, however, that the corresponding statement

in Mania and Tevzadze (2003), Corollary 3 is correct. In Section 3 we discuss variants of

Claim 1.3 that are used in Biagini et al. (2000, Theorem 2.16); Hobson (2004, Theorem 3.1);

Sekine (2004, Lemma A.2). These papers impose additional conditions on the underlying

filtration. Since we cannot verify whether our example satisfies these extra conditions, we

do not know whether it applies in their setup. At the same time, it is not obvious from the

proofs in the literature that the cited statements do hold in the setup of these papers. It rather

seems that the stronger condition 2 was left out accidentally in the assertions.

The paper is organized as follows. In Section 2 we construct a counterexample to Claim

1.3 based on a modification of the celebrated all-purpose example put forward by Delbaen

and Schachermayer (1998). The modification achieves certain integrability needed for our

purposes. The actual application of the modified example is non-trivial because our con-

struction starts under a risk-neutral measure Q rather than the objective measure P . In

Section 3 we relate Proposition 1.2 to alternative characterizations of the VOMM from the

literature.

We use the notation of Jacod and Shiryaev (2003). In particular, M , Mloc denote the

sets of uniformly integrable martingales and of local martingales, respectively. If these

properties refer to some probability measure Q rather than P , we write M Q, M
Q
loc.
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2 The counterexample

The goal in this section is to find a continuous semimartingale S on some filtered probability

space (Ω, F ,F, P ) and an EMM Q⋆ ∼ P with square-integrable density of the form (1.1)

which is not the VOMM but satisfies 2” in Claim 1.3. For ease of exposition we work with

an infinite time horizon but by a simple deterministic time change R+ → [0, 1] it could be

transformed to a finite time horizon as usual (cf. Section 3).

We commence by modifying the construction of Delbaen and Schachermayer (1998).

The reason for doing so is that otherwise Statement 5 in Lemma 2.1 would not hold. Let

B, W be independent Brownian motions and

Mt := E (B)t = exp(Bt −
1
2
t),

Nt := E (W )t = exp(Wt −
1
2
t).

Define stopping times

σ := inf{t ≥ 0 : Nt = 2},

τ := inf{t ≥ 0 : Mt = 1
2
∧ Nt}.

It is easy to see that τ is almost surely finite. Indeed, we have

τ = inf{t ≥ 0 : Bt −
1
2
t ≤ log 1

2
∧ (Wt −

1
2
t)}

= inf{t ≥ 0 : Bt − Wt ≤ 0 and Bt ≤
1
2
t + log 1

2
}.

The second condition in the second line holds for any t which is large enough, the first

condition is met again and again because any Brownian motion returns to 0 infinitely often.

Finally define stopped processes

X := Mσ∧τ ,

Y := Nσ∧τ .

Lemma 2.1 X and Y defined above have the following properties.

1. X ∈ Mloc

2. X /∈ M

3. Y ∈ M

4. XY ∈ M (and hence E(X∞Y∞) < ∞)

5. E(X∞

Y∞

) < ∞

6. Y
X

is a bounded submartingale.
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PROOF. 1. This is obvious.

2. We start by showing that

E(Mσ∧τ1{σ<∞}) = P (σ < ∞). (2.1)

The argument is basically the same as in Delbaen and Schachermayer (1998) but one has to

argue a little more formally. For continuous functions α : R+ → R+ set

τα := inf{t ≥ 0 : Mt ≤
1
2
∧ α(t)},

σα := inf{t ≥ 0 : α(t) = 2}.

For fixed α we have that τα is a stopping time and σα ∈ R ∪ {∞} is deterministic. Conse-

quently,

E(Mσ∧τ1{σ<∞}) = E(MσN∧τN 1{σN<∞})

=

∫
E(MσN∧τN 1{σN<∞}|N = α)PN(dα)

=

∫
E(Mσα∧τα1{σα<∞}|N = α)PN(dα)

=

∫
E(Mσα∧τα)1{σα<∞}P

N(dα)

=

∫
1{σα<∞}P

N(dα)

=

∫
1{σN<∞}dP

= P (σ < ∞),

where PN denotes the law of N on the space of continuous functions. The fourth equation

follows from the independence of M and N . The fifth equation holds because M is a

martingale with M0 = 1 and σα ∧ τα is a bounded stopping time for fixed α.

Now we can proceed with the proof of Statement 2. Indeed, we have

E(X∞) = E(Mσ∧τ )

= E(Mσ∧τ1{σ=∞}) + E(Mσ∧τ1{σ<∞})

≤ 1
2
P (σ = ∞) + P (σ < ∞)

< P (σ = ∞) + P (σ < ∞)

= 1 = X0,

which implies that X is not a uniformly integrable martingale.

3. Y is a bounded local martingale and hence a uniformly integrable martingale.

4. By independence of B, W we have that XY is a positive local martingale and hence

5



a supermartingale. It remains to be shown that E(X∞Y∞) = 1. This follows from

E(X∞Y∞) = E(Mσ∧τE(Nσ|Fσ∧τ ))

= E(E(Mσ∧τNσ|Fσ∧τ ))

= E(Mσ∧τNσ)

= E(2Mσ∧τ1{σ<∞})

= 2E(1{σ<∞})

= E(Nσ) = 1.

Here, the first and the last equality hold because Nσ is a bounded and hence uniformly

integrable martingale. The fifth equality follows from (2.1).

5. We have

X∞

Y∞

=





1
2
Mσ on σ ≤ τ,

1

2
∧Nτ

Nτ
≤ 1 on τ ≤ σ.

Since M is a positive martingale, we have E(Mσ) ≤ M0 = 1 < ∞ (cf. e.g. Jacod and

Shiryaev 2003, I.1.39). Consequently, Statement 5 holds.

6. Since N/M = exp(W − B) is a submartingale, the same is true for Y/X . The

boundedness follows from

Yt

Xt

=
Nt

Mt

≤
Nt

1
2
∧ Nt

≤ 1 ∨ 2Nt ≤ 4

for t ≤ τ ∧ σ. �

We apply the previous lemma in order to construct a counterexample to Claim 1.3. Note,

however, that we start with a probability measure Q rather than P , i.e. B, W are supposed

to be Q-Brownian motions, Lemma 2.1 holds under Q etc. Measure P will only be defined

later. Set S := X and define probability measures Q⋆ ∼ Q, P ∼ Q in terms of their

Radon-Nikodym densities

dQ⋆

dQ
:= Y∞,

dP

dQ
:=

Y∞

cX∞

with c = EQ

(
Y∞

X∞

)
. (2.2)

By Statement 6 of Lemma 2.1 we have 1 ≤ c < ∞.

We now take the perspective of P as given probability measure. From Statements 1–3

in the following lemma we conclude that Q⋆ satisfies Condition 1 and 2” in the previous

section. Nevertheless, it is not the VOMM by Statement 7. It is a natural and interesting

albeit open question what the true VOMM looks like in the present example.

Lemma 2.2 The process X and measures P, Q, Q⋆ defined in (2.2) have the following prop-

erties.
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1.
dQ⋆

dP
=

1 + 1 • X∞

EP (1 + 1 • X∞)

2. dQ⋆

dP
∈ L2(P )

3. X ∈ M Q⋆

(and hence 1 • X ∈ M Q⋆

)

4. dQ

dP
∈ L2(P )

5. X ∈ M
Q
loc

6. X /∈ M Q (and hence 1 • X /∈ M Q)

7. Q⋆ is not the VOMM (relative to P ).

8. If we assume the filtration to be generated by (B, W ), then all P -local martingales

are continuous.

PROOF. 1.
dQ⋆

dP
= dQ⋆

dQ
/dP

dQ
= cX∞ = c(1 + 1 • X∞)

2.

EP

(
(dQ⋆

dP
)2
)

= EQ⋆

(
dQ⋆

dP

)
= EQ

(
dQ⋆

dP

dQ⋆

dQ

)
= cEQ(X∞Y∞) < ∞

3. This holds because XY is a uniformly integrable Q-martingale (cf. Lemma 2.1(4)).

4.

EP

(
(dQ

dP
)2
)

= EQ

(
dQ

dP

)
= cEQ

(
X∞

Y∞

)
< ∞

5. see Lemma 2.1(1)

6. see Lemma 2.1(2)

7. For ε ∈ [0, 1] set Q = (1−ε)Q⋆ +εQ. Then Q is a martingale measure whose density

is in L2(P ). We have

EP

(
(dQ

dP
)2
)

= EP

(
(dQ⋆

dP
)2
)

+ 2EP

(
dQ⋆

dP
(dQ

dP
− dQ⋆

dP
)
)

+ EP

(
(dQ

dP
− dQ⋆

dP
)2
)

= EP

(
(dQ⋆

dP
)2
)

+ 2εEP

(
dQ⋆

dP
(dQ

dP
− dQ⋆

dP
)
)

+ ε2EP

(
(dQ

dP
− dQ⋆

dP
)2
)

= EP

(
(dQ⋆

dP
)2
)

+ 2εc (EQ(X∞) − EQ⋆(X∞)) + ε2EP

(
(dQ

dP
− dQ⋆

dP
)2
)
.

The last term is finite because dQ

dP
, dQ⋆

dP
have finite L2(P )-norm. Since X is in M Q⋆

but not

in M Q, we have EQ⋆(X∞) = 1 and EQ(X∞) < 1. Consequently, we have

EP ((dQ

dP
)2) < EP ((dQ⋆

dP
)2)

for ε small enough.

8. The filtration is generated by a bivariate Q-Brownian motion. According to the

martingale representation thereom every Q-local martingale is continuous because it can

be written as stochastic integral relative to (B, W ). In particular, the density process Z of

P relative to Q is continuous. Now let U be any P -local martingale. This is equivalent

to saying that UZ is a Q-local martingale (cf. e.g. Jacod and Shiryaev 2003, III.3.8). In

particular, UZ and hence also U is continuous. �
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3 Alternative characterizations of the VOMM

In this section we review other, more explicit characterizations of the VOMM, which involve

an admissibility condition in the spirit of Proposition 1.2. We will see that it cannot be

relaxed in these cases either. For ease of exposition, we consider as before a univariate

continuous semimartingale S and assume F0 to be trivial. Moreover, we suppose that T is

finite and Assumption 1.1 is satisfied.

We denote the canonical decomposition of S into a local martingale and a process of

finite variation as

S = S0 + MS + BS.

By Schweizer (1995, Theorem 1) there exists an S-integrable process λ such that

BS = λ • [MS, MS]. (3.1)

One can always write the processes BS, [MS, MS] in integral form

BS = bS
• A, [MS, MS] = cS

• A

with some increasing semimartingale A and predictable processes bS, cS . For Itô processes

one typically chooses At = t. If K denotes another special semimartingale with canonical

decomposition

K = K0 + MK + BK ,

we write similarly

BK = bK
• A, [MK , MS] = cKS

• A.

To begin with we translate the characterization of Černý and Kallsen (2007) to the

present setup.

Proposition 3.1 Suppose that L is a semimartingale such that

1a) L, L− are (0, 1]-valued,

1b) LT = 1,

1c) semimartingale K defined by L = L0E (K) satisfies bK = (bS + cKS)2/cS ,

2a) a := (bS + cKS)/cS is S-integrable,

2b) the local martingale ZQ⋆

:= E (K)E (−a • S) is a martingale,

2c) the Q-local martingale E (−a • S) is a Q-martingale for any EMM Q with square-

integrable density.

Then Q⋆ with density dQ⋆

dP
:= ZQ⋆

T is the VOMM.
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PROOF. Conditions 1c), 2a) and integration by parts yield that ZQ⋆

and ZQ⋆

S are local mar-

tingales. Condition 2b) implies that Q⋆ is an EMM with density process ZQ⋆

. In particular,

we have

E
(
(dQ⋆

dP
)2
)

= EQ⋆(E (−a • S)T )/L0 < ∞

because E (−a • S) is a positive Q⋆-local martingale and hence a Q⋆-supermartingale. De-

fine the predictable process ϕ by 1 − ϕ • S = E (−a • S). The assertion follows now from

Proposition 1.2. �

Černý and Kallsen (2007) show that the process L above always exists (provided that

Assumption 1.1 holds). a is called adjustment process and L is the so-called opportunity

process, i.e. L−1
t −1 measures the square of the maximal Sharpe ratio attainable by dynamic

trading in the asset between dates t and T (cf. also Černý and Kallsen (2006), Theorem 2.8

in this respect). For the purposes of the above proof, one can in fact do without the condition

L ≤ 1 in 1a).

Remark 3.2 The proof of Proposition 3.1 shows that the stronger condition,

2’b) the local martingale ZQ⋆

is a square-integrable martingale,

is in fact implied by conditions 1a)-2b).

Biagini et al. (2000) and Hobson (2004) characterize the VOMM in terms of some fun-

damental equation. In their language Proposition 1.2 reads as follows.

Proposition 3.3 Suppose that η is some predictable process, R some local martingale with

[R, MS] = 0, and c some positive number such that

1)

exp(λ • BS
T )E (R)T = cE (η • (MS + 2BS))T (3.2)

or, if R is continuous (note that R may generally have jumps although S is supposed

to be continuous in this paper),

λ • BS
T = η • (MS + 2BS) −

1

2
η2

• [MS, MS] − RT +
1

2
[R, R]T + log c, (3.3)

2a) η is S-integrable,

2b) the local martingale ZQ⋆

:= E (−λ • MS + R) is a martingale,

2c) for a := λ − η the Q-local martingale E (−a • S) is a Q-martingale for any EMM Q

with square-integrable density.

Then Q⋆ with density dQ⋆

dP
:= ZQ⋆

T is the VOMM.

9



PROOF. The existence of the stochastic integrals follows from 2a). It is easy to see that

(3.2) and (3.3) are equivalent for continuous R. Condition 2b) implies that Q⋆ is a proba-

bility measure with density process ZQ⋆

. It is even an EMM because [R, MS] = 0. The

fundamental equation (3.2) and straightforward calculations yield

ZQ⋆

T = cE ((η − λ) • S)T .

In particular, we have that

E
(
(dQ⋆

dP
)2
)

= cEQ⋆(E ((η − λ) • S)T ) < ∞

because E ((η − λ) • S) is a positive Q⋆-local martingale and hence a Q⋆-supermartingale.

Defining ϕ by 1 + ϕ • S = E ((η − λ) • S), the assertion follows from Proposition 1.2. �

Remark 3.4 Given processes a, K, L that satisfy conditions of Proposition 3.1 one con-

tructs the processes of Proposition 3.3 as follows

η = −
cKS

cS
,

R = MK + η • MS,

c = 1/L0.

Conversely, given η, R, c that satisfy conditions of Proposition 3.3 the processes a, K, L of

Proposition 3.1 can be obtained from

a = λ − η,

K = −λ • MS + R + a • S +
(
a2cS − abS

)
• A,

L = E (K) /c.

Biagini et al. (2000, Theorem 2.16) leave out Condition 2c) and instead impose the

condition that ZQ⋆

T is square integrable, which follows already from Conditions 1), 2a) and

2b) (cf. Remark 3.2). They require, in addition, that the filtration is a product of a P -

Brownian motion filtration with another filtration generated by a finite-dimensional (but not

necessarily continuous) P -martingale. Hobson (2004, Theorem 3.1) replaces 2c) with the

requirement that E (−a • S) is a Q⋆-martingale, i.e. with Condition 2”c) below. He assumes

in addition that the filtration is generated by two independent P -Brownian motions.

Proposition 1.2 in the language of Sekine (2004, Lemma A.2) reads:

Proposition 3.5 Suppose that a is a predictable process and R a local martingale with

[R, MS] = 0 such that

1) the local martingale ZQ⋆

:= E (−λ • MS + R), satisfies

ZQ⋆

T

ZQ⋆

t

= Vt

E (−a • S)T

E (−a • S)t

, t ∈ [0, T ], (3.4)

10



where

Vt := E



(

ZQ⋆

T

ZQ⋆

t

)2
∣∣∣∣∣∣
Ft


, (3.5)

2a) a is S-integrable,

2’b) ZQ⋆

is a square-integrable martingale,

2c) the Q-local martingale E (−a • S) is a Q-martingale for any EMM Q with square-

integrable density.

Then Q⋆ with density dQ⋆

dP
:= ZQ⋆

T is the VOMM.

PROOF. Q⋆ is a probability measure with density process ZQ⋆

. It is even an EMM because

[R, MS] = 0. Define the predictable process ϕ by 1 − ϕ • S = E (−a • S). From (3.4) for

t = 0 we obtain (1.1). The assertion follows now from Proposition 1.2. �

Remark 3.6 The opportunity process L of Proposition 3.1 corresponds to 1/V in Proposi-

tion 3.5.

Sekine (2004, Lemma A.2) leaves out Condition 2c) but, in line with Hobson (2004), re-

quires additionally that the filtration is generated by two independent P -Brownian motions.

We note that the Conditions 1), 2a) and 2’b) already imply Condition 2”c) below. Indeed,

from (3.4) it follows that ZQ⋆

equals E (−a • S)/V up to some constant. By (3.5), V (ZQ⋆

)2

is a martingale, which in turn implies 2”c).

Let us turn back to the counterexample from Section 2 to demonstrate that it applies

also in the more structured environment of Propositions 3.1, 3.3 and 3.5. To this end we

formulate a weakened version of the admissibility condition 2c),

2”c) the Q⋆-local martingale E (−a • S) is a Q⋆-martingale.

Proposition 3.7 Propositions 3.1, 3.3 and 3.5 do not hold if the Condition 2c) is replaced

with the weaker Condition 2”c).

PROOF. We formulate the proof in the language of Proposition 3.1. The proof for Proposi-

tions 3.3, 3.5 is straightforward, using the definitions of η, R, V and c below.

Consider the processes X, Y of Lemma 2.1 constructed under measure Q, and define

the measures P, Q⋆ and the constant c as in (2.2). Denote by Z the uniformly integrable

Q-martingale with terminal value Y∞/X∞. Since the results in this section require T to be

finite, we consider the time-changed filtration F̃t := Ftan πt

2T

and time-changed processes

X̃t := Xtan πt

2T

etc. for t ∈ [0, T ]. By abuse of notation we denote the time-changed processes

X̃, Ỹ , Z̃ again by X, Y, Z. One easily verifies that the statements of Lemmas 2.1 and 2.2

remain true for these processes with ∞ replaced by T .

11



Define

S := X, a := − 1
X

, L := Y
XZ

, K := 1
L

• L,

η := λ − a = − cKS

cS , R := MK + η • MX , V := 1
L
.

We have L > 0, LT = 1 and by Statement 6 of Lemma 2.1 L ≤ 1, hence L meets conditions

1a), 1b). The process E (K)E (−a • S) = Z0Y/Z is a P -martingale if and only if Y is

a Q-martingale. The latter holds by construction (cf. Statement 3 of Lemma 2.1), hence

condition 2b) is satisfied. Yor’s formula and zero drift condition under P yield

0 = BK − a • BS − a • [K, S]. (3.6)

By construction (cf. Statement 3 of Lemma 2.2) E (−a • S) = X ∈ M Q⋆

and the Girsanov

theorem yields

BS + [K, S] − a • [S, S] = 0. (3.7)

Equations (3.6) and (3.7) imply

BK = a2
• [S, S],

a =
bS + cKS

cS
.

Hence conditions 1c), 2a) and 2”c) are satisfied as well. However, by Statement 7 of Lemma

2.2 Q⋆ is not the VOMM. �
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