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Abstract
This paper investigates a compressible reactive gas model with homogeneous
Dirichlet boundary conditions. Under the parameters and the initial data satisfying
some conditions, we prove that the solutions have global blow-up, and the blow-up
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|u(t)|∞ and |v(t)|∞ are precisely determined.
MSC: 35K05; 35K55; 35D55

Keywords: degenerate parabolic system; nonlocal sources; finite time blow-up;
blow-up rate

1 Introduction andmain results
In this paper, we investigate blow-up and the blow-up rate of nonnegative solutions for
the following degenerate reaction-diffusion system with nonlocal sources:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ · (um∇u) + aup‖v‖pB,α , (x, t) ∈ B× (,T),

vt = ∇ · (vn∇v) + bvq‖u‖qB,α , (x, t) ∈ B× (,T),

u(x, ) = u(x), v(x, ) = v(x), x ∈ B,

u(x, t) = v(x, t) = , (x, t) ∈ ∂B× (,T),

(.)

where B = B(,R) ⊂ R
N (N ≥ ) is a ball centered at the origin with the radius R ∈ R

+,
a,b > , exponents p,q,α,α ≥ , m,n,p,q > , and T < ∞ is the maximal existence
time of a solution, ‖ · ‖α

B,α =
∫
B | · |α dx.

The system (.) models such as heat propagations in a two-components combustible
mixture gases []. This problem is worth studying because of the applications to heat
and mass transport processes (see [, ]). In addition, there exist interesting interactions
among the multi-nonlinearities described by these exponents in the problem (.).
In the past decades, many physical phenomena have been formulated into nonlocal

mathematical models and studied by many authors. Here, we will recall some of those
results concerning the first initial boundary value problem.
At first, the global solutions and blow-up problems for a single parabolic equation with

nonlocal nonlinearity sources had been studied extensively, see [–] and references
therein. As a typical example, in [] Souplet considered the equation with spatial integral
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term

ut = �u + g
(∫

�

f
(
u(x, t)

)
dx

)
(.)

and the equation with both local and nonlocal terms

ut = �u +
∫

�

f
(
u(x, t)

)
dx + h

(
u(x, t)

)
. (.)

These two equations are related to some ignition models for compressible reactive gases.
The author introduced a method to investigate the profile of blow-up solutions of (.)
and (.) and observed the asymptotic blow-up behaviors of the solutions. In addition,
an important model in the theory of nuclear reactor dynamics can be described by the
following equation with the space-time integral term:

ut = �u + f
(∫ t



∫
�

g
(
u(y, s)

)
β(y) dyds

)
. (.)

The blow-up of its solutions was studied by Pao [], Guo and Su [].
In , Li and Xie [] considered the following problem:

vτ = �vm + avp
∫

�

vq dx. (.)

By introducing some transformations u = vm, t =mτ (.) takes the form

ut = up
(

�u + aur
∫

�

us dx
)
. (.)

Then they proved that the solution of (.) blows up in finite time for large initial data
and obtained the blow-up rate. Recently, Liu et al. in [] investigated the blow-up rate of
solutions to diffusion equation (.). Their approachwas based on sub- and super-solution
methods which were very different from those previously used in the study of the blow-up
rate. They proved, by using the maximum principle, that the solutions have global blow-
up, and the rate of blow-up is uniform in all compact subsets of the domain. Here the
global blow-up means that there exists  < T < +∞ such that

lim
t→T–

∣∣u(·, t)∣∣ = ∞ or lim
t→T–

∣∣v(·, t)∣∣ = ∞ for all x ∈ �.

Secondly, we should point out that in the case of m = n = , the system (.) becomes a
semilinear system. To our knowledge, there do not seem to be any results in the literature
on blow-up problems of these types. But other related works of the semilinear case have
been deeply investigated by many authors, e.g., see [, ], and the authors of this paper
in [] studied the system

ut = �u + a(x)up (x, t)vq (, t), vt = �v + b(x)vp (x, t)uq (, t),

where the simultaneous and non-simultaneous blow-up criteria were obtained by using
the fundamental solution of the heat equation. On the other hand, there are many known
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results concerning the global solutions and blow-up problems for the parabolic system
with local nonlinearities, localized nonlinearities and nonlinear boundary conditions, see
[–] and references therein. In particular, Ling andWang in [] considered the follow-
ing degenerate parabolic system:

ut = �um + vp‖u‖pα , vt = �vn + uq‖v‖qβ

in a bounded domain �, with the help of the super- and sub-solution methods, the crit-
ical exponent of the system was determined. Motivated by the above works, under the
following conditions:

 <m < p < ,  < n < q < , pq > ( – p)( – q), (.)

we consider amore general degenerate parabolic system (.) which includes the problems
considered in [, ] and [] as special cases. Employing the ideas in [, ], we describe the
blow-up rate of the radially symmetric solutions to (.). Here we discuss the blow-up
of radially symmetric solutions as well as derive their blow-up rate. Moreover, we get the
accurate coefficient of the blow-up rate. For the related discussion on a radially symmetric
solution, we refer the readers to [] and references therein.
In this paper, we always assume that the initial data (u, v) ∈ V (V is defined by (.))

and satisfies the following (H)-(H) or (H):
(H) u(x), v(x) ∈ C+α(B)∩C(B), α ∈ (, ).
(H) u(x), v(x) >  in B, u(x) = v(x) = , ∂u

∂ν
, ∂v

∂ν
<  on ∂B.

(H) u(x), v(x) are radially symmetric, u′
(r), v′

(r) ≤  for r ∈ (,R), r = |x|.
Denote the set of initial data, depending only on the radial variable in the spherical co-

ordinate system of RN :

V =
{(
u(r), v(r)

)|	(r) > ,	(r) > 
}
, (.)

where

	(r) =m
(
u′
(r)

)um–
 (r) + um (r)

(
u′′
(r) +

N – 
r

u′
(r)

)
+ aup (r)

∥∥v(r)∥∥p
B,α

,

	(r) = n
(
v′
(r)

)vn– (r) + vn(r)
(
v′′
(r) +

N – 
r

v′
(r)

)
+ bvq (r)

∥∥u(r)∥∥q
B,α

.

It is noted that the set V is not empty. For example, for the simplest case N = R = 
and a = b = , for any constant exponents m, n and pi, qi, αi, i = , , there exist positive
constants a, a such that (u, v) ∈ V with u(r) = a/ – ar/, v(r) = a/ – ar/,
r ∈ [, ).
(H) Let δ, k, k be positive constants (will be given in Section ), and there exists a

constant δ > δ such that
⎧⎨
⎩�u + a( +m – p)‖v‖σ

B,μ
– δuk+–r ≥ ,

�v + b( + n – q)‖u‖σ
B,μ

– δvk+–r ≥ ,
(.)

here u, v and σi, μi, ri are defined by (.) and (.).

http://www.boundaryvalueproblems.com/content/2012/1/101
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Then, our main results read as follows in detail.

Theorem  Assume that (u, v) ∈ V and satisfies (H)-(H). If ρ > 
a(+m–p)


b(+n–q)

, then
the positive solution (u, v) of (.) blows up in finite time, where ρ is defined by (.).

Theorem  Under the assumptions of Theorem , if �u,�v ≤  on�B and (u, v) satis-
fies (H), then the following statements hold uniformly on any compact subset of B:

lim
t→T

u–p (x, t)
( – p)G̃(t)

= a, lim
t→T

v–q (x, t)
( – q)G̃(t)

= b, (.)

where G̃(t) and G̃(t) are defined by (.).

Theorem  Under the assumptions of Theorem , if ( – q)( +m – p) < p(q –m) and
( – p)( + n – q) < q(p – n), then

lim
t→T

u(x, t)(T – t)

k

=
( +m – p)


–p |B|θ

d

k

(
β

a( +m – p)

) –q
d

(
β

b( + n – q)

) p
d
, (.)

lim
t→T

v(x, t)(T – t)

k

=
( + n – q)


–q |B|θ

d

k

(
β

b( + n – q)

) –p
d

(
β

a( +m – p)

) q
d
, (.)

uniformly on compact subsets of B, where

θ = –
(

σ

μ
+

σ

β

(
σ

μ
–

σ

μ

))

k
,

θ = –
(

σ

μ
+

σ

β

(
σ

μ
–

σ

μ

))

k
.

This paper is organized as follows. The result pertaining to blow-up of a solution in finite
time is presented in Section , while results regarding the blow-up rates are established in
Section . Some discussions are given in Section .

2 Proof of Theorem 1
In this section, we will discuss the blow-up of the solution to (.) and prove Theorem .
By a simple computation, we have

∇ · (um∇u
)
=mum–|∇u| + um�u, (.)

�u+m–p = ( +m – p)(m – p)um–p–|∇u| + ( +m – p)um–p�u. (.)

Since  +m – p > ,m < p, from (.), we can derive the inequality

um–p�u≥ 
 +m – p

�u+m–p . (.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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Moreover, by (.), (.) and (.), we have


 – p

∂u–p
∂t

= u–put = u–p
(
mum–|∇u| + um�u + aup‖v‖pB,α

)
≥ 

 +m – p
�u+m–p + a‖v‖pB,α .

Thus,

 +m – p
 – p

∂(u+m–p )
–p

+m–p

∂t
≥ �u+m–p + a( +m – p)‖v‖pB,α . (.)

Similarly,

 + n – q
 – q

∂(v+n–q )
–q

+n–q

∂t
≥ �v+n–q + b( + n – q)‖u‖qB,α . (.)

Denote u = u+m–p , v = v+n–q and

⎧⎨
⎩r = m

+m–p
, σ = p

+n–q
, μ = α

+n–q
,

r = n
+n–q

, σ = q
+m–p

, μ = α
+m–p

.
(.)

Then  < r, r < , σ,σ,μ,μ >  and u, v satisfy

⎧⎨
⎩ut ≥ ur (�u + a( +m – p)‖v‖σ

B,μ
),

vt ≥ vr (�v + b( + n – q)‖u‖σ
B,μ

).
(.)

Consider now the following problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ur (�u + a( +m – p)‖v‖σ
B,μ

), (x, t) ∈ B× (,T),

vt = vr (�v + a( + n – q)‖u‖σ
B,μ

), (x, t) ∈ B× (,T),

u(x, t) = v(x, t) = , (x, t) ∈ ∂B× (,T),

u(x, ) = u(x), v(x, ) = v(x), x ∈ B,

(.)

where

⎧⎨
⎩‖v‖σ

B,μ
= ‖v‖pB,α , ‖u‖σ

B,μ
= ‖u‖qB,α ,

u(x) = (u(x))+m–p , v(x) = (v(x))+n–q .
(.)

Since u(x), v(x) satisfy (H)-(H), then (.) has a unique classical solution (u, v) (see
[]). In the meantime, by the comparison principle, we observe

u(x, t)≤ u+m–p (x, t), v(x, t)≤ v+n–q (x, t), (x, t) ∈ B× (,T). (.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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Let G be a bounded domain of RN . Consider the problem

⎧⎪⎪⎨
⎪⎪⎩

ωt = dωr (�ω + a
∫
G ωdx), x ∈G, t > ,

ω(x, t) = c, x ∈ ∂G, t > ,

ω(x, ) = c, x ∈G,

(.)

where  < r <  and d,a, c >  are some constants. By the standard method (see []), we
can show that (.) has a unique classical solution ω(x, t) and ω(x, t) ≥ c. Denote by ϕ(x)
the unique positive solution of the linear elliptic problem

–�ϕ(x) = , x ∈G; ϕ(x) = , x ∈ ∂G.

Set ρ =
∫
G ϕ(x) dx, then we have:

Lemma  If ρ > /a, then the positive solution ω(x, t) of (.) blows up in finite time.

Proof Set H(t) =
∫
G ω–rϕ dx, then


 – r

H ′(t) = d
(∫

G
�ωϕ dx + a

∫
G

ωdx
∫
G

ϕ dx
)

≥ d(aρ – )
∫
G

ωdx ≥ d(aρ – )
(∫

G
ωϕ dx

)/
M,

whereM =maxx∈Ḡ ϕ(x). Let z = ω–r , then

∫
G
zt(x, t)ϕ(x) dx ≥ d( – r)(aρ – )

(∫
G
z/(–r)ϕ dx

)/
M.

Since /( – r) > , from Jensen’s inequality, it follows that

∫
G
zt(x, t)ϕ(x) dx ≥ d( – r)(aρ – )(ρ)–r/(–r)

(∫
G
zϕ dx

)/(–r)/
M.

That is H ′(t) ≥ CH/(–r)(t). In view of H() > , it follows that there exists T < ∞ such
that limt→T H(t) = +∞, and hence ω(x, t) blows up in finite time. �

Let ϕ(x) be the unique positive solution of the following linear elliptic problem:

–�ϕ(x) = , x ∈ B, ϕ(x) = , x ∈ ∂B

and

ρ =min
{
ρ = ‖ϕ‖σ

B,μ
,ρ = ‖ϕ‖σ

B,μ

}
. (.)

Lemma  If ρ > 
a(+m–p)


b(+n–q)

, then for the solution (u, v) of (.), there exists a suf-
ficiently small constant ε >  such that

εϕ(x) ≤ u(x, t), εϕ(x)≤ v(x, t)

for all (x, t) ∈�B× [,T).

http://www.boundaryvalueproblems.com/content/2012/1/101
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Proof From (H) and (H) we see that there exists a sufficiently small constant ε >  such
that

εϕ(x) ≤ u(x), εϕ(x) ≤ v(x), x ∈�B (.)

and

a( +m – p)ρ > ε–σ ≥ εσ– >
(
b( + n – q)ρ

)–. (.)

Let s(x, t) = εϕ(x), s(x, t) = εϕ(x), then we have by (.)

⎧⎪⎪⎨
⎪⎪⎩
st – sr (�s + a( +m – p)‖s‖σ

B,μ
)≤ sr (ε – a( +m – p)εσρ)≤ ,

st – sr (�s + b( + n – q)‖s‖σ
B,μ

) ≤ , x ∈ B,  < t < T ,

s(x, t) = s(x, t) = , x ∈ ∂B,  < t < T .

(.)

Thus it follows from (.) and (.) that (s, s) is a sub-solution of (.). Hence,
(εϕ, εϕ) ≤ (u, v) by the comparison principle. �

Lemma  The solution (u, v) of (.) blows up in finite time if ρ > 
a(+m–p)


b(+n–q)

and
u, v satisfy (H)-(H).

Proof In view of ρ > 
a(+m–p)


b(+n–q)

, we can choose a smooth sub-ball B ⊂⊂ B such
that

ρ
 >


a( +m – p)


b( + n – q)

,

where ρ =min{ρ = ‖ϕ‖σ
B,μ

,ρ = ‖ϕ‖σ
B,μ

} and ϕ(x) >  satisfies

–�ϕ(x) = , x ∈ B; ϕ(x) = , x ∈ ∂B.

On the other hand, there exists a sufficiently small ε >  such that

∫
B

ϕ(x) dx≥ ε‖ϕ‖σ
B,μ

,
∫
B

ϕ(x) dx ≥ ε‖ϕ‖σ
B,μ

. (.)

Let η = εminB ϕ, here ε is determined by Lemma . Then η >  and

u(x, t)≥ η, v(x, t)≥ η, (x, t) ∈ B × (,T)

by Lemma . Therefore, (u, v) in B × (,T) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ur (�u + a( +m – p)‖v‖σ
B,μ

)

≥ ur (�u + a( +m – p)‖v‖σ
B,μ

),

vt = vr (�v + b( + n – q)‖u‖σ
B,μ

) ≥ vr (�v + b( + n – q)‖u‖σ
B,μ

),

u(x, t)≥ η, v(x, t)≥ η, (x, t) ∈ ∂B × (,T),

u(x, ) = u(x)≥ η, v(x, ) = v(x)≥ η, x ∈ B.

(.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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Now, consider the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ur (�u + a( +m – p)‖v‖σ
B,μ

), x ∈ B, t > ,

vt = vr (�v + b( + n – q)‖u‖σ
B,μ

), x ∈ B, t > ,

u(x, t) = v(x, t) = η, x ∈ ∂B, t > ,

u(x, ) = v(x, ) = η, x ∈ B.

(.)

Similarly, we can show that there exists a nonnegative classical solution (u, v) of (.)
for (x, t) ∈ B × (,T ′), where T ′ denotes the maximal existence time. The standard com-
parison principle for a parabolic system implies that T ′ ≥ T and

u(x, t)≥ u(x, t), v(x, t)≥ v(x, t), (x, t) ∈ B × (,T). (.)

Therefore, it suffices to show that (u, v) blows up in finite time, because if so, its upper
bound (u, v) does exist up to a finite time T .
Since the initial data (η,η) is a sub-solution of (.), the standard super-solution and

sub-solution methods assert that ut ≥ , vt ≥ , which implies that

�u + a( +m – p)‖v‖σ
B,μ

≥ , �v + b( + n – q)‖u‖σ
B,μ

≥ .

Hence u, v ≥ η for (x, t) ∈ B × [,T ′). Thus, (u, v) satisfies⎧⎨
⎩ut ≥ ηr–rur(�u + a( +m – p)‖v‖σ

B,μ
), (x, t) ∈ B × (,T ′),

vt ≥ ηr–rvr(�v + b( + n – q)‖u‖σ
B,μ

), (x, t) ∈ B × (,T ′)
(.)

with the corresponding initial and boundary conditions and  < r <min{r, r}.
Since ρ

 >


a(+m–p)


b(+n–q)
, there exist positive constants l, l with l, l > , and l such

that ⎧⎪⎨
⎪⎩
a( +m – p)ρ > l

l
> 

b(+n–q)ρ
,

ρ > 
l >

l|B|
μ–
μ

εa(+m–p)l
σ

, ρ > 

l >
l|B|

μ–
μ

εb(+n–q)l
σ

.

(.)

Let

ω(x, t) = lω(x, t), ω(x, t) = lω(x, t),

where ω(x, t) is a unique positive solution of (.) with

d =min
{
ηr–r ,ηr–r

}
, r = r, a =

l
ε

, c =min

{

l
,

l

}
η, G = B.

From (.) and Lemma , we know thatω(x, t) blows up in finite timeT <∞.Moreover,
ωt ≥ , that is, �ω + a

∫
B

ωdx ≥ , since the initial data is a sub-solution of (.). In
addition, from σ,σ >  and Hölder’s inequality, we have

⎧⎨
⎩

∫
B

ωdx ≤ |B|
μ–
μ (

∫
B

ωμ dx)


μ ≤ |B|
μ–
μ ‖ω‖σ

B,μ
,∫

B
ωdx ≤ |B|

μ–
μ (

∫
B

ωμ dx)


μ ≤ |B|
μ–
μ ‖ω‖σ

B,μ
.

(.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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Thus, a series of computations yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωt – ηr–rωr
(�ω + a( +m – p)‖ω‖σ

B,μ
)

= ldωr(�ω + l
ε

∫
B

ωdx) – lηr–r(lω)r(�ω + a(+m–p)l
σ


l
‖ω‖σ

B,μ
)

≤ ldωr(�ω + l
ε

|B|
μ–
μ ‖ω‖σ

B,μ
)

– lηr–r(lω)r(�ω + a(+m–p)l
σ


l
‖ω‖σ

B,μ
)≤ ,

ωt – ηr–rωr
(�ω + b( + n – q)‖ω‖σ

B,μ
) ≤ , x ∈ B,  < t < T,

ω(x, t) = lc≤ η, ω(x, t) = lc≤ η, x ∈ ∂B,  ≤ t < T,

ω(x, ) = lc≤ η, ω(x, ) = lc≤ η, x ∈ B.

(.)

It follows from (.), (.) and the comparison principle that (ω,ω) ≤ (u, v). Hence
(u, v) blows up in finite time, and so does the solution (u, v) of (.) from (.). The
proof now is completed. �

Considering Lemma  and (.), we directly obtain the results of Theorem .

3 Proofs of Theorems 2 and 3
In this section, we assume that the solution (u, v) of (.) blows up in finite time T and will
prove Theorems  and . We use c or C to denote the generic constant depending only on
the structural data of the problem, and it may be different even in the same formula.
For the problem (.), denote

g̃(t) = ‖v‖pB,α , g̃(t) = ‖u‖qB,α ,

G̃(t) =
∫ t


g̃(s) ds, G̃(t) =

∫ t


g̃(s) ds.

(.)

Then we have

Lemma  Suppose that u, v satisfy (H)-(H), then we have

lim
t→T

G̃i(t) = lim
t→T

sup g̃i(t) = ∞, i = , .

Proof According to the hypotheses, we know that u(, t) ≥ u(x, t), v(, t) ≥ v(x, t), (x, t) ∈
B× (,T). Let

Ũ(t) =max
x∈�B

u(x, t) = u(, t), Ṽ (t) =max
x∈�B

v(x, t) = v(, t). (.)

Then, Ũ(t), Ṽ (t) are Lipschitz continuous (see []) and ∇Ũ = ∇u(, t) = , ∇Ṽ =
∇v(, t) = . Since (u, v) is radially symmetric and non-increasing in r = |x|, (u, v)
is also a radially symmetric and non-increasing function, i.e., ur(r, t), vr(r, t) ≤  with
r = |x|. Thus, u(x, t) and v(x, t) always reach their maxima at x = , which means that
�u(, t),�v(, t) ≤  for any  < t < T , i.e., �Ũ ,�Ṽ ≤  for any  < t < T . Therefore, it
follows from (.) and (.) that

Ũ ′(t)≤ aŨp (t)g̃(t), Ṽ ′(t)≤ bṼ q (t)g̃(t). (.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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Integrating (.) over (, t), we obtain

⎧⎨
⎩


–p

Ũ–p (t) ≤ aG̃(t) + 
–p

Ũ–p (),


–q
Ṽ –q (t)≤ bG̃(t) + 

–q
Ṽ –q ().

(.)

From limt→T Ũ(t) = limt→T Ṽ (t) = ∞ and  < Ũ(), Ṽ () <∞, we get

lim
t→T

G̃i(t) = lim
t→T

sup g̃i(t) = ∞, i = , . �

Next, we first give some auxiliary lemmas about the solutions of (.), which will be used
in the proofs of theorems. Similar to (.), we let

U(t) =max
x∈�B

u(x, t), V (t) =max
x∈�B

v(x, t). (.)

By (.), we see that U(t) and V (t) satisfy

Ut ≤ a( +m – p)|B| σ
μ UrV σ ,

Vt ≤ b( + n – q)|B| σ
μ VrUσ , a.e. t ∈ (,T).

(.)

Let β =  – r + σ, β =  – r + σ, then β,β > . By Young’s inequality, we have

(
Uβ +V β

)
t ≤ (

βa( +m – p)|B| σ
μ + βb( + n – q)|B| σ

μ
)
Uβ

σ
β V β

σ
β

≤ C
(
Uβ +V β

) σ
β

+ σ
β .

Integrating the above inequality over (t,T), we obtain

Uβ +V β ≥ C(T – t)–
ββ
d , (.)

where d = σσ – ( – r)( – r) >  by (.).

Lemma  Suppose that u, v satisfy (H)-(H) and the solution (u, v) of (.) blows up
in finite time T. Then, we have

lim
t→T

sup gi(t) = lim
t→T

Gi(t) = ∞, i = , ,

where

g(t) = ‖v‖σ
B,μ

, g(t) = ‖u‖σ
B,μ

,

G(t) =
∫ t


g(s) ds, G(t) =

∫ t


g(s) ds.

(.)

Proof Let U(t),V (t) be as (.), then from (.), we have

U ′(t) ≤ a( +m – p)Ur (t)g(t),

V ′(t) ≤ b( + n – q)Vr (t)g(t), a.e. t ∈ [,T).
(.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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Integrating (.) over (, t), we obtain

⎧⎨
⎩


–r

U–r (t) ≤ a( +m – p)G(t) + 
–r

U–r (),


–r
V –r (t) ≤ b( + n – q)G(t) + 

–r
V –r ().

(.)

Similar to the proofs of G̃i(t) and g̃i(t), we have

lim
t→T

Gi(t) = lim
t→T

sup gi(t) = ∞, i = , .

�

Lemma  Suppose that u, v satisfy (H)-(H). Then, we have

ut – δuk+ ≥ , vt – δvk+ ≥ , (x, t) ∈ B× (,T), (.)

here k = d/β, k = d/β.

Proof Set J(x, t) = ut – δuk+ , J(x, t) = ut – δuk+ . Then,

lim
x→∂B

J(x, t)≥ , lim
x→∂B

J(x, t) ≥ ; J(x, )≥ , J(x, )≥ ,x ∈ B.

A series of computations yields Jt = utt – δ(k + )uk ut and

utt = ru–
(
J + δuk+ J + δuk+

)
+ ur �J + δ(k + )kuk–+r |∇u|

+ δ(k + )uk+r �u + a( +m – p)σur ‖v‖σ–μ
μ

∫
B
vμ–


(
J + δvk+

)
dx

= ur �J +
(
rδuk + δ(k + )uk

)
J + ru– J + δ(k + )kuk–+r |∇u|

+
(
rδ + (k + )δ

)
uk+ – (k + )a( +m – p)δuk+r ‖v‖σ

μ

+ a( +m – p)σur ‖v‖σ–μ
μ

∫
B
vμ–
 J dx

+ a( +m – p)σδur ‖v‖σ–μ
μ ‖v‖μ+k

μ+k .

From the condition (.), it is easy to calculate that k +  > r. Then, it entails

Jt – ur �J – rδuk J – a( +m – p)σur ‖v‖σ–μ
μ

∫
B
vμ–
 J dx

≥ rδuk+ + a( +m – p)σδur ‖v‖σ–μ
μ ‖v‖μ+k

μ+k

– (k + )a( +m – p)δuk+r ‖v‖σ
μ

= a( +m – p)(k + )δur

(
rδuk+–r

a( +m – p)(k + )

+
σ

k + 
‖v‖σ–μ

μ ‖v‖μ+k
μ+k – uk ‖v‖σ

μ

)
. (.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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By the Hölder inequality, for any  < θ < , it follows that

‖v‖σ
μ = ‖v‖(σ–μ)θ

μ ‖v‖σ–(σ–μ)θ
μ ≤ ‖v‖(σ–μ)θ

μ ‖v‖σ–(σ–μ)θ
μ+k |B|

k[σ–(σ–μ)θ ]
μ(μ+k) .

Furthermore, by Young’s inequality, for any ε >  and l, l >  satisfying /l + /l = , the
following inequality holds:

uk ‖v‖σ
μ ≤ uk ‖v‖(σ–μ)θ

μ ‖v‖σ–(σ–μ)θ
μ+k |B|

k[σ–(σ–μ)θ ]
μ(μ+k)

≤ |B|
k[σ–(σ–μ)θ ]

μ(μ+k)

(
(εuk )l

l
+


l

(

ε
‖v‖(σ–μ)θ

μ ‖v‖σ–(σ–μ)θ
μ+k

)l)
. (.)

Now, we take

l =
k + σ

k
, l =

k + σ

σ
, θ =

σ

k + σ
, ε =

(
k + 
k + σ

|B|
kσ

μ(k+σ)

) σ
k+σ

.

Therefore, by (.) and (.), it follows that

Jt – ur �J – rδuk J – a( +m – p)σur ‖v‖σ–μ
μ

∫
B
vμ–
 J dx

≥ rδ(δ – δ)uk+ ≥ ,

where

δ =
a( +m – p)k

r
|B| σ

μ

(
k + 
k + σ

) σ
k

+

.

We can determine a number δ in the similar way. Let δ = max{δ, δ}, similar to the
above, one has

Jt – vr �J – rδvk J – b( + n – q)σvr ‖u‖σ–μ
μ

∫
B
uμ–
 J dx ≥ .

By the comparison principle of Lemma  in [], we have J, J ≥ . This completes the
proof. �

Lemma  Suppose that u, v satisfy (H)-(H), then there exist positive constants c and
C such that⎧⎨

⎩c≤ maxx∈�B u(x, t)(T – t)/k ≤ C,

c≤ maxx∈�B v(x, t)(T – t)/k ≤ C.
(.)

Proof It follows from (.) that

Ut ≥ δUk+, Vt ≥ δVk+, t ∈ (,T). (.)

Combining with (.), we can obtain

Uk+–r ≤ a( +m – p)
δ

|B| σ
μ V σ , Vk+–r ≤ b( + n – q)

δ
|B| σ

μ Uσ . (.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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The direct computation yields k +  – r = σβ/β, k +  – r = σβ/β. It follows from
(.) that

Uβ ≤
(
a( +m – p)

δ

) β
σ |B| β

μ V β , V β ≤
(
b( + n – q)

δ

) β
σ |B| β

μ Uβ . (.)

Therefore, combining (.) with (.) gives

c≤ U(t)(T – t)/k , c ≤ V (t)(T – t)/k .

Integrating (.) from t to T , we end the proof. �

Lemma  Suppose that u, v satisfy (H)-(H) and �u,�v ≤ , then

lim
t→T

u–r (x, t)
( – r)G(t)

= a( +m – p), lim
t→T

v–r (x, t)
( – r)G(t)

= b( + n – q) (.)

uniformly on compact subsets of B.

Proof Here we consider the first eigenvalue problem

–�φ(x) = λφ(x), x ∈ B; φ(x) = , x ∈ ∂B.

Normalize φ(x) as φ(x) >  in B and
∫
B φ(x) dx = . Define

z(x, t) = a( +m – p)G(t) –


 – r
u–r (x, t), γ (t) =

∫
B
z(y, t)φ(y) dy.

A series of computations yields

γ ′(t) =
∫
B

(
a( +m – p)g(t) – u–r ut

)
φ(y) dy

= –
∫
B
�u(y, t)φ(y) dy = λ

∫
B
u(y, t)φ(y) dy

= λ( – r)


–r

∫
B

(
a( +m – p)G(t) – z(y, t)

) 
–r φ(y) dy

≤ λ( – r)


–r

∫
B

(
a( +m – p)G(t) + z–(y, t)

) 
–r φ(y) dy

≤ C
(
G


–r
 (t) +

∫
B

(
z–(y, t)

) 
–r φ(y) dy

)
,

where z– =max{–z, }. By (.), we know that infB z(x, t) ≥ –C, which means z–(x, t)≤ C.
Then

γ ′(t) ≤ CG


–r
 (t) +C. (.)

Integrating (.) from  to t yields

γ (t) ≤ C
(
 +

∫ t


G


–r
 (s) ds

)
.

http://www.boundaryvalueproblems.com/content/2012/1/101
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That is

∫
B

∣∣z(y, t)∣∣φ(y) dy ≤ C
(
 +

∫ t


G


–r
 (s) ds

)
. (.)

Denote B� = {y ∈ B : � ≤ |y| < R}. Since –�z ≤ , using Lemma . in [], we obtain

sup
B�

z(x, t)≤ C
�N+

(
 +

∫ t


G


–r
 (s) ds

)
. (.)

It follows from (.) and (.) that

–
C

G(t)
≤ a( +m – p) –

u–r
( – r)G(t)

≤ C( +
∫ t
 G


–r
 (s) ds)

G(t)
(.)

for any x ∈ B� . On the other hand, we know from (.), (.) and �u,�v ≤  that

c≤ (T – t)
(–r)(–r+σ)

d G(t)≤ C.

Therefore,

⎧⎨
⎩c≤ (T – t)

–r+σ
d G


–r
 (t) ≤ C,

c≤ (T – t)
(–r)(–r+σ)

d +G′
(t) ≤ C.

Noting that

 – r + σ

d
<
( – r)( – r + σ)

d
+  ⇐⇒  – r < σ(σ – r).

Then

lim
t→T

∫ t
 G


–r
 (s) ds
G(t)

= lim
t→T

G


–r
 (t)
G′

(t)
= .

Thus

lim
t→T

u–r (x, t)
( – r)G(t)

= a( +m – p).

Similarly,

lim
t→T

v–r (x, t)
( – r)G(t)

= b( + n – q). �

Proof of Theorem  According to u ≤ u+m–p , it follows from (.), (.), (.) and (.)
that

lim
t→T

inf
u–p (x, t)

( – p)G̃(t)
≥ lim

t→T

u–r (x, t)
( – r)G(t)


 +m – p

= a. (.)

http://www.boundaryvalueproblems.com/content/2012/1/101
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On the other hand, from (.), we estimate

lim
t→T

sup
Ũ–p (t)

( – p)G̃(t)
≤ a. (.)

Combining (.) with (.), we obtain

lim
t→T

u–p (x, t)
( – p)G̃(t)

= a.

Similarly,

lim
t→T

v–q (x, t)
( – q)G̃(t)

= b.

This completes the proof of the theorem. �

Proof of Theorem  By Theorem , we have that, as t → T ,

⎧⎨
⎩G̃′

(t) = ‖v‖pB,α ∼ |B| pα (b( – q))
p
–q G̃

p
–q
 (t),

G̃′
(t) = ‖u‖qB,α ∼ |B| qα (a( – p))

q
–p G̃

q
–p
 (t),

where the notation u ∼ vmeans that limt→T u(t)/v(t) = . Hence, we obtain

dG̃

dG̃
∼ |B| pα – q

α
(
a( – p)

)– q
–p

(
b( – q)

) p
–q G̃

– q
–p

 G̃
p
–q
 .

A series of computations yields

⎧⎪⎨
⎪⎩
G̃(t)∼ |B|θ(–p)d–

β(–p)
d

a(–p)(+m–p)
( β
a(+m–p)

)
(–p)(–q)

d ( β
b(+n–q)

)
p(–p)

d (T – t)–
β(–p)

d ,

G̃(t) ∼ |B|θ(–q)d–
β(–q)

d
b(–q)(+n–q)

( β
b(+n–q)

)
(–p)(–q)

d ( β
a(+m–p)

)
q(–q)

d (T – t)–
β(–q)

d .

Combining with Lemma , we obtain the results of Theorem  immediately. �

4 Discussions
The results in this paper show the interactions among the multi-nonlinearities in the
reaction-diffusion system (.). Roughly speaking, either large exponents m, n, large cou-
pling exponents p, q or large constants a, b benefit from the occurrence of the finite
blow-up. For example, to make a finite blow-up to the problem (.), for fixed m, p, p,
α and n, q, q, α, constants a and b should be properly large such that the following
inequality

ρ >


a( +m – p)


b( + n – q)

holds.

http://www.boundaryvalueproblems.com/content/2012/1/101


Ling and Wang Boundary Value Problems 2012, 2012:101 Page 16 of 16
http://www.boundaryvalueproblems.com/content/2012/1/101

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Author details
1College of Mathematics and Information Science, Yulin Normal University, Yulin, Guangxi 537000, P.R. China. 2College of
Mathematics and Information Science, Jiangxi Normal University, Nanchang, 330022, P.R. China.

Acknowledgements
The authors are supported by National Natural Science Foundation of China and they would like to express their many
thanks to the editor and reviewers for their constructive suggestions to improve the previous version of this paper. This
work is supported by the NNSF of China (11071100).

Received: 19 May 2012 Accepted: 29 August 2012 Published: 11 September 2012

References
1. Escobedo, M, Herrero, M: Boundedness and blow-up for a semilinear reaction-diffusion system. J. Differ. Equ. 89(1),

176-202 (1991). doi:10.1016/0022-0396(91)90118-S
2. Galaktionov, V, Kurdyumov, S, Samarskii, A: A parabolic system of quasilinear equations I. Differ. Equ. 19, 1558-1574

(1984)
3. Souplet, P: Blow up in nonlocal reaction diffusion equations. SIAM J. Math. Anal. 29, 1301-1334 (1998)
4. Souplet, P: Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear sources.

J. Differ. Equ. 153, 374-406 (1999). doi:10.1006/jdeq.1998.3535
5. Pao, C: Nonexistence of global solutions for an integrodifferential system in reactor dynamics. SIAM J. Math. Anal.

11(3), 559-564 (1980)
6. Guo, JS, Su, HW: The blow-up behaviour of the solution of an integrodifferential equation. Differ. Integral Equ. 5(6),

1237-1245 (1992)
7. Li, F, Xie, CH: Global existence and blow-up for a nonlinear porous medium equation. Appl. Math. Lett. 16, 185-192

(2003). doi:10.1016/S0893-9659(03)80030-7
8. Liu, QL, Li, YX, Gao, HG: Uniform blow-up rate for a nonlocal degenerate parabolic equations. Nonlinear Anal. TMA 66,

881-889 (2007). doi:10.1016/j.na.2005.12.029
9. Deng, WB, Li, YX, Xie, CH: Existence and nonexistence of global solutions of some nonlocal degenerate parabolic

equations. Appl. Math. Lett. 16, 803-808 (2003). doi:10.1016/S0893-9659(03)80118-0
10. Liu, QL, Li, YX, Gao, HG: Uniform blow-up rate for diffusion equations with nonlocal nonlinear source. Nonlinear Anal.

TMA 67, 1947-1957 (2007). doi:10.1016/j.na.2006.08.030
11. Quirós, F, Rossi, JD: Non-simultaneous blow-up in a semilinear parabolic system. Z. Angew. Math. Phys. 52(2), 342-346

(2001). doi:10.1007/PL00001549
12. Li, FC, Huang, SX, Xie, CH: Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete

Contin. Dyn. Syst. 9(6), 1519-1532 (2003). doi:10.3934/dcds.2003.9.1519
13. Ling, ZQ, Wang, ZJ: Simultaneous and non-simultaneous blow-up criteria of solutions for a diffusion system with

weighted localized sources. J. Appl. Math. Comput. (2012). doi:10.1007/s12190-012-0570-z
14. Li, HL, Wang, MX: Critical exponents and lower bounds of blow-up rate for a reaction-diffusion system. Nonlinear

Anal. TMA 63(8), 1083-1093 (2005). doi:10.1016/j.na.2005.05.037
15. Li, HL, Wang, MX: Blow-up behaviors for semilinear parabolic systems coupled in equations and boundary

conditions. J. Math. Anal. Appl. 304(1), 96-114 (2005). doi:10.1016/j.jmaa.2004.09.020
16. Song, XF, Zheng, SN, Jiang, ZX: Blow-up analysis for a nonlinear diffusion system. Z. Angew. Math. Phys. 56, 1-10

(2005).
17. Deng, WB, Li, YX, Xie, CH: Blow-up and global existence for a nonlocal degenerate parabolic system. J. Math. Anal.

Appl. 277, 199-217 (2003). doi:10.1016/S0022-247X(02)00533-4
18. Ling, ZQ, Wang, ZJ: Blow-up and global existence for a degenerate parabolic system with nonlocal sources. Discrete

Dyn. Nat. Soc. 2012, Article ID 956564 (2012). doi:10.1155/2012/956564
19. Gidas, B, Ni, WM, Nirenberg, L: Symmetry of positive solutions of nonlinear elliptic equations in Rn . In: Nachbin, L (ed.)

Math. Anal. and Applications, Part A. Advances in Math. Suppl. Studies, vol. 7A, pp. 369-402. Academic Press, San
Diego (1981)

20. Li, HL, Wang, MX: Global solutions and blow-up problems for a nonlinear degenerate parabolic system coupled via
nonlocal sources. J. Math. Anal. Appl. 333(2), 984-1007 (2007). doi:10.1016/j.jmaa.2006.11.023

21. Friedman, A, Mcleod, B: Blow-up of positive solutions of semilinear heat equations. Indiana Univ. Math. J. 34(2),
425-447 (1985). doi:10.1512/iumj.1985.34.34025

doi:10.1186/1687-2770-2012-101
Cite this article as: Ling and Wang: Blow-up problems for a compressible reactive gas model. Boundary Value
Problems 2012 2012:101.

http://www.boundaryvalueproblems.com/content/2012/1/101
http://dx.doi.org/10.1016/0022-0396(91)90118-S
http://dx.doi.org/10.1006/jdeq.1998.3535
http://dx.doi.org/10.1016/S0893-9659(03)80030-7
http://dx.doi.org/10.1016/j.na.2005.12.029
http://dx.doi.org/10.1016/S0893-9659(03)80118-0
http://dx.doi.org/10.1016/j.na.2006.08.030
http://dx.doi.org/10.1007/PL00001549
http://dx.doi.org/10.3934/dcds.2003.9.1519
http://dx.doi.org/10.1007/s12190-012-0570-z
http://dx.doi.org/10.1016/j.na.2005.05.037
http://dx.doi.org/10.1016/j.jmaa.2004.09.020
http://dx.doi.org/10.1016/S0022-247X(02)00533-4
http://dx.doi.org/10.1155/2012/956564
http://dx.doi.org/10.1016/j.jmaa.2006.11.023
http://dx.doi.org/10.1512/iumj.1985.34.34025

	Blow-up problems for a compressible reactive gas model
	Abstract
	MSC
	Keywords

	Introduction and main results
	Proof of Theorem 1
	Proofs of Theorems 2 and 3
	Discussions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


