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Abstract

This paper deals with the critical parameter equations for a degenerate parabolic
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Mathematics Subject Classification (2000). 35K55; 35K57.

Keywords: degenerate parabolic system, global existence, blow-up

1 Introduction
In this paper, we consider the following degenerate parabolic equations

∂ui
∂ t = (upii )xx, (i = 1, 2, . . . , k), x > 0, 0 < t < T, (1:1)

coupled via nonlinear boundary flux

−(upii )x(0, t) = uqi+1i+1 (0, t), (i = 1, 2, . . . , k), uk+1 := u1, qk+1 := q1 0 < t < T, (1:2)

with continuous, nonnegative initial data

ui(x, 0) = u0i(x), (i = 1, 2, . . . , k), x > 0, (1:3)

compactly supported in ℝ+, where pi > 1, qi > 0, (i = 1, 2, ..., k) are parameters.

Parabolic systems like (1.1)-(1.3) appear in several branches of applied mathematics.

They have been used to models, for example, chemical reactions, heat transfer, or

population dynamics (see [1] and the references therein).

As we shall see, under certain conditions the solutions of this problem can become

unbounded in a finite time. This phenomenon is known as blow-up, and has been

observed for several scalar equations since the pioneering work of Fujita [2]. For

further references, see the review by Leivine [3]. Blow-up may also happen for systems

(see [4-7]). Our main interest here will be to determine under which conditions there

are solutions of (1.1)-(1.3) that blow up and, in the blow-up case, the speed at which

blowup takes place, and the localization of blow-up points in terms of the parameters

pi, qi, (i = 1, 2, ..., k).

As a precedent, we have the work of Galaktionov and Levine [8], where they studied

the single equation
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u1t = (up11 )xx, x > 0, 0 < t < T,

−(up11 )x(0, t) = uq21 (0, t), 0 < t < T,

u1(x, 0) = u01(x), x > 0.

(1:4)

It was shown if 0 <q2 ≤ q0 = (p1 +1)/2, then all nonnegative solutions of (1.4) are

global in time, while for q2 >q0 there are solutions with finite time blow-up. That is, q0
is the critical global existence exponent. Moreover, it was shown that qc := p1 + 1 is a

critical exponent of Fujita type. Precisely, qc has the following properties: if q0 <q2 ≤ qc,

the all nontrivial nonnegative solutions blow up in a finite time, while global nontrivial

nonnegative solutions exist if q2 >qc.

We remark that there are some related works on the critical exponents for (1.1)-(1.3)

in special cases.

In [9-11], the authors consider the case for pi = 1, (i = 1, 2, ..., k).

In [12], the authors consider the case for k = 2.

For the system (1.1)-(1.3), instead of critical exponents there are critical parameter

equations, one for global existence and another of Fujita type. This is the content of

our first theorem.

To state our results, we introduce some useful symbols. Denote by

A =

⎛
⎜⎜⎜⎜⎝
1 + p1 −2q2 0 0 · · · 0 0 0
0 1 + p2 −2q3 0 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1 + pk−1 −2qk

−2q1 0 0 0 · · · 0 0 1 + pk

⎞
⎟⎟⎟⎟⎠

A series of standard computations yield

detA =
k∏
l=1

(1 + pl) −
k∏
l=1

2ql.

We shall see that det A = 0 is the critical global existence parameter equation. Let

(a1, a2, ..., ak)
T be the solution of the following linear algebraic system

A(α1,α2, . . . ,αk−1, αk)T = (1, 1, . . . , 1, 1)T ,

that is

αi =

∏k
l=1 (1 + pl)

2qi[
∏k

l=1 (1 + pl) − ∏k
l=1 2ql]

k+i−1∑
m=i

m∏
j=i

2qj
1 + pj

, qk+i = qi, pk+i = pi (i = 1, 2, · · ·, k). (1:5)

We define

βi =
1 + (pi − 1)αi

2
, (i = 1, 2, · · ·, k). (1:6)

Theorem 1.1.

(I) If
∏k

l=1(1 + pl) ≥ ∏k
l=1 2ql(i.e. det A ≥ 0), every nonnegative solution of (1.1)-(1.3) is

global in time.

(II) If
∏k

l=1(1 + pl) <
∏k

l=1 2ql (i.e. det A < 0) and there exists j (1 ≤ j ≤ k) such that aj

+ bj ≤ 0, then every nonnegative, nontrivial solution blows up in finite time.
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(III) If
∏k

l=1(1 + pl) <
∏k

l=1 2ql (i.e. det A < 0), with ai + bi > 0 (i = 1, 2, ...,k), there

exist nonnegative solutions with blow-up and nonnegative solutions that are global.

Therefore, the critical global existence parameter equation is

k∏
l=1

(1 + pl) =
k∏
l=1

2ql ( i.e. det A = 0)

and the critical Fujita type parameter equation is

min{α1 + β1, α2 + β2, . . . ,αk + βk} = 0.

The values of ai, bi (i = 1, 2, ..., k) are the exponents of self-similar solutions to pro-

blem (1.1)-(1.2). Such self-similar solutions are studied in Section 2, and play an

important role in the proof of Theorem 1.1.

Let us observe that if we take k = 2, the critical parameter equations coincide with

those found in [12].

The rest of this paper is organized as follows. In the next section, we study the exis-

tence of self-similar solutions of different type. In Section 3 we give some results con-

cerning existence, comparison, monotonicity and uniqueness. In Section 4 we find the

critical parameter equations (Theorem 1.1).

2 Self-similar solutions
In this section, we consider different kinds of self-similar solutions of problem (1.1)-

(1.2). We have the following results.

Theorem 2.1. Let

ui(x, t) = (T − t)αi fi(ξi), ξi = x(T − t)−βi , i = 1, 2, . . . , k. (2:1)

If

k∏
l=1

(1 + pl) <

k∏
l=1

2ql, (2:2)

there is a self-similar solution of problem (1.1)-(1.2) blowing up in a finite time T > 0,

of form (2.1). Moreover, the support of fi is ℝ+ if bi > 0, and a compact set if bi ≤ 0 (i =

1, 2, ..., k).

Theorem 2.2. Let

ui(x, t) = tαi fi(ξi), ξi = xt−βi , i = 1, 2, . . . , k. (2:3)

(a) If

k∏
l=1

(1 + pl) >

k∏
l=1

2ql, (2:4)

then there exist functions fi positive in ℝ+, such that ui given in (2.3) is a self-similar

solution of problem (1.1)-(1.2) global in time. These solutions have ai > 0 and thus their

initial data are identically zero. Then bi < 0 (i = 1, 2, ...,k).

(b)If

αi + βi > 0, i = 1, 2, . . . , k,
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then there exist functions fi, compactly supported in ℝ+, such that ui given in (2.3) is a

self-similar solution of problem (1.1)-(1.2) global in time. These solutions have ai < 0

and thus they decay to zero as t ® ∞. Then bi > 0, and hence their supports expand as

time increases.

Remark 2.2. If there exists j (1 ≤ j ≤ k) such that a j + bj ≤ 0, there are no profiles fi
Î L1(ℝ+) such that ui (i = 1, 2, ..., k,) given by (2.3) is a solution. Indeed

∞∫
0

uj(x, t)dx = tαj+βj

∞∫
0

fj(ξj)dξj.

Then, if aj + bj ≤ 0, the mass of uj would not increase, a contradiction.

Theorem 2.3. Let

ui(x, t) = eαit fi(ξi), ξi = xe−βit, i = 1, 2, . . . , k. (2:5)

If

k∏
l=1

(1 + pl) =
k∏
l=1

2ql, (2:6)

for any a1 > 0, there is a self-similar solution of problem (1.1)-(1.2) global in time of

form (2.5) where

αi = α1

i∏
j=2

1 + pj−1

2qj
(i = 2, . . . , k), βi =

(pi − 1)αi

2
(i = 1, 2, . . . , k). (2:7)

Moreover, the supports of fi (i = 1, 2, ..., k) are compact.

Remark 2.3. The solutions are in principle weak. However, if they are positive every-

where, they are also classical.

In order to prove these theorems, we will use the following results of Gilding and

Peletier (see [13-15]):

Theorem 2.4. Let a, b, V Î ℝ and U ≥ 0. For fixed a and b, let SA denote the set of

values of (U, V) such that there exists a weak, nonnegative, compactly supported solu-

tion f1 of

(f p11 )′′(η) + aηf ′
1(η) = bf1(η), 0 < η < ∞, (2:8)

f1(0) = U, (2:9)

(f p11 )′(0) = V, (2:10)

and let S B denote the set of values (U, V) for which there exists a bounded, positive,

classical solution f1 of (2.8)-(2.10).

(a) If b < 0 and 2a + b < 0, then S A = {(0, 0)} and SB = Ø.

(b) If b < 0 and 2a + b = 0, then S A = {(0, V): 0 ≤ V < ∞} and S B = Ø.

(c) If b ≤ 0 and 2a + b > 0, then there exists a unique V* such that

SA = {(U,U(p1+1)/2V∗) : 0 ≤ U < 1}and S B = {(U, V): 0 ≤ U < ∞,

U(p1+1)/2V∗ < V < ∞}, where V* > 0 if a + b < 0, V* = 0 if a + b = 0, and V* < 0 if a +

b > 0.
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(d) If b > 0 and a ≥ 0, then there exists a unique V* < 0 such that

SA = {(U,U(p1+1)/2V∗) : 0 ≤ U < 1}and S B = Ø.

(e) If b > 0 and a < 0, or b = 0 and a ≤ 0, then S A = {(0, 0)} and there exists a

unique V* such that S B = {(U, U(p1+1)/2V*): 0 ≤ U < ∞}, where V* < 0 if b > 0 and V* =

0 if b = 0.

Moreover, for each (U, V) Î S A ∪ S B there exists at most one weak solution of (2.8)-

(2.10).

Remark 2.4. In the case where a = ((p1 - 1)/2)b > 0, we have V* = -1. This is a con-

sequence of the existence for a self-similar solution of exponential form for the scalar

problem (1.4) with q2 = (p1 + 1)/2 (see [8]).

Proof of Theorem 2.1. We consider solutions of form (2.1). Imposing that the por-

ous equations (1.1) are fulfilled, we get the following relations for the parameters:

αi − 1 = αipi − 2βi, i = 1, 2, . . . , k. (2:11)

On the other hand, the boundary conditions (1.2) imply that

αipi − βi = αi+1qi+1, i = 1, 2, . . . , k, αk+1 = α1, qk+1 = q1. (2:12)

Solving the linear systems (2.11)-(2.12), we get that ai, bi (i = 1, 2, ..., k) are given by

(1.5) and (1.6). Therefore, ai < 0 (i = 1, 2, ..., k) if and only if
∏k

l=1(1 + pl) <
∏k

l=1 2ql.

On the other hand, the profiles must satisfy

(f pii )
′′(ξi) − βiξif

′
i (ξi) = −αifi(ξi), i = 1, 2, . . . , k, (2:13)

plus the boundary conditions

−(f pii )′(0) = f qi+1i+1 (0), i = 1, 2, . . . , k, qk+1 = q1, fk+1 = f1. (2:14)

Then fi satisfy (2.8) with coefficients ai = -bI, bi = -ai (i = 1, 2, ..., k). Thus, Theorem

2.4 parts (d) and (e) says that there is an one-parameter family (parameter Ui) of (2.8)

satisfying

fi(0) = Ui, (f pii )
′(0) = U(pi+1)/2

i V∗i,

where V*i < 0 (i = 1, 2, ..., k) are constants. The profile fi has compact support if bi ≤
0 and is positive in ℝ+ if bi > 0. We choose Ui such that the boundary conditions

(2.14) are fulfilled, that is

−U(pi+1)/2
i V∗i = Uqi+1

i+1 , i = 1, 2, . . . , k, Uk+1 = U1, qk+1 = q1.

Taking logarithms, this is equivalent to

A(lnU1, lnU2, . . . , lnUk−1, lnUk)T = −2(ln |V∗1|, ln |V∗2|, . . . , ln |V∗k−1|, ln |V∗k|)T . (2:15)

As
∏k

l=1(1 + pl) �= ∏k
l=1 2ql (i.e. det A ≠ 0), the above system has a unique solution. □

Proof of Theorem 2.2. We are considering solutions of the form (2.3). Imposing

that the equations (1.1) and that boundary conditions (1.2) are fulfilled, we get that the

exponents should satisfy the relations (2.11)-(2.12). Hence they are given by (1.5)-(1.6).

Moreover, the boundary conditions for the profiles are given by (2.14). However, the

equations for the profiles are now different:
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(f pii )
′′(ξi) + βiξif

′
i (ξi) = αifi(ξi), i = 1, 2, . . . , k. (2:16)

Thus, fi satisfy (2.8) with coefficients ai = bi, bi = ai (i = 1, 2, ..., k).

(I) If ai > 0, that is, if (2.4) holds, then bi < 0 (i = 1, 2, ..., k). Therefore, applying

Theorem 2.4 part (d) as in the proof of Theorem 2.1, and taking the solutions of (2.15)

as values for parameters, we obtain that there exist positive profiles fi (i = 1, 2, ..., k)

solving (2.16) and satisfying (2.14).

(II) If ai < 0 and ai + bi > 0 (i = 1, 2, ..., k), we can apply Theorem 2.4 part (c) as in

the proof of Theorem 2.1 and taking the solutions of (2.15) as the parameters, we

obtain that there exist compactly supports profiles fi (i = 1, 2, ..., k) solving (2.16) and

satisfying the boundary conditions (2.14).

Proof of Theorem 2.3. We are considering solutions of the form (2.5). Though the

boundary conditions (1.2) impose (2.12) again, now equations (1.1) impose different

relations for the exponents. Namely

αi = αipi − 2βi, i = 1, 2, . . . , k. (2:17)

Thus,

A(α1,α2, . . . ,αk−1, αk)T = (0, 0, . . . , 0, 0)T . (2:18)

There are nontrivial solutions of (2.18) if and only if
∏k

l=1(1 + pl) =
∏k

l=1 2ql (i.e. det

A = 0). In this case, b1, aI, bi (i = 2, ...,k) are related to a1 by (2.7).

The boundary conditions for the profiles are again given by (2.14), while the equa-

tions for the profiles are given by (2.16). If a1 > 0, then b1, ai, bi > 0 (i = 2, ..., k) and

bi = ((pi - 1)/2)ai (i = 1, ..., k). Hence, using Remark 2.4, we have solutions of (2.16)

with V*i = -1 (i = 1, 2, ...,k). Choosing one of the solutions of (2.15) with right-hand

side zero (again we are using
∏k

l=1(1 + pl) =
∏k

l=1 2ql (i.e. det A = 0)), we obtain that

there exist compactly supported profiles fi (i = 1, 2, ..., k) solving (2.16) and satisfying

(2.14).

3 Existence and uniqueness
First, we state a theorem that guarantees the existence of a solution. It can be obtained

using a standard monotonicity argument following ideas from [16].

Theorem 3.1. Given continuous, compactly supported initial data u0i(x) (i = 2, ..., k),

there exists a local in time continuous weak solution of (1.1)-(1.3). Moreover, if the

initial data are smooth and compatible in sense that

−(upi0i)x(0) = uqi+10i+1(0), i = 2, . . . , k, u0k+1(x) = u01(x),

then the solution has continuous time derivatives down to t = 0.

Proof. Let us consider the Neumann problem

wt = (wr)xx, x > 0, 0 < t < τ ,

−(wr)x(0, t) = h(t), 0 < t < τ ,

w(x, 0) = w0(x), x > 0,

(3:1)

with r > 1. We define the operator Mqi+1 : C([0, τ ]) → C([0, τ ]) as

Mqi+1(h)(t) = wqi+1(0, t), where w(x, t) is the unique solution of (3.1) with r = pi and

initial condition w0(x) = u0i(x)
(
i = 1, 2, . . . , k,Mqk+1 = Mq1 ,w

qk+1 = wq1
)
.
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It has been proved in [17] that Mqi(i = 1, 2, ..., k) is continuous and compact. More-

over, they are order preserving.

Now let A(h) = Mqk ◦ Mqk−1 ◦ · · · ◦ Mq2 ◦ Mq1(h). Using the method of monotone

iterations, one can prove that there exist τ > 0 such that A has a fixed point in C([0,

τ]). This fixed point provides us with a continuous weak solution of (1.1)-(1.3) up to

time τ.

In order to obtain the regularity of the solution with compatible initial data, we only

have to observe that the solution of (3.1) is regular if −(wr
0)x = h(0) (see [18]).

Remark 3.1. If the initial data are compactly support, the solution ui (i = 1, 2, ..., k)

also has compact support as long as it exists.

Remark 3.2. If the initial data are nontrivial, we can assume that they satisfy u0i(x) >

0 (i = 1, 2, ..., k). If not, ui(0, t) (i = 1, 2, ..., k) eventually become positive (compare

with a Barenblatt solution of the corresponding equation).

Next, we define what called a subsolution and a supersolution for (1.1)-(1.2).

Definition 3.1. (u1, u2, . . . , uk−1, uk)is a subsolution of (1.1)-(1.2) if it satisfies

∂ui
∂t

≤ (upii )xx x > 0, 0 < t < T, i = 1, 2, . . . , k, (3:2)

−(upii )x(0, t) ≤ uqi+1i+1 (0, t), u
qk+1
k+1 = uq11 , 0 < t < T, i = 1, 2, . . . , k. (3:3)

Definition 3.2. We call (ū1, ū2, . . . , ūk−1, ūk) a supersolution of (1.1)-(1.2) of it satis-

fies (3.2)-(3.3) with the opposite inequalities.

With these definitions of super and subsolutions, we can state a comparison lemma.

Lemma 3.1 Let (ū1, ū2, . . . , ūk−1, ūk)be a supersolution and (u1, u2, . . . , uk−1, uk)be a

subsolution. If

ui(x, 0) ≤ ūi(x, 0), i = 1, 2, . . . , k,

with

ui(0, 0) ≤ ūi(0, 0), i = 1, 2, . . . , k,

then

ui(x, t) ≤ ūi(x, t), i = 1, 2, . . . , k,

as long as both super and subsolutions exist.

Proof. It is standard, therefore we omit the details. Assume that the result is false.

Let t0 be the maximum time such that

ui(x, t) ≤ ūi(x, t), i = 1, 2, . . . , k,

up to t0. This time t0 must be positive, by continuity. At that time, we must have

uj(0, t0) = ūj(0, t0) for some j (1 ≤ j ≤ k). Let us assume that u1(0, t0) = ū1(0, t0). Now

the result follows by an application of Hopf’s lemma. Indeed, ū1 − u1 satisfies a uni-

formly parabolic equation in a neighborhood of x = 0, attains a minimum at (0, t0),

and the corresponding flux is greater or equal than zero, a contradiction.

Now we state a lemma that guarantees that, for certain initial data, the solution of

(1.1)-(1.3) increases in time.
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Lemma 3.2 Let u0i(x) be the initial data for (1.1) -(1.3) such that u0i(x) are smooth,

satisfy the compatibility condition at the boundary and (upi0i)xx ≥ 0. Then ui(x, t)

increases in time, i.e., uit(x, t) ≥ 0 (i = 1, 2, ...,k).

Proof. Let wi = uit. Then, as the solutions are smooth (Theorem 3.1), we can differ-

entiate to obtain the (w1, ..., wk) is a solution of

wit = (piu
pi−1
i wi)xx, i = 1, 2, . . . k, (3:4)

−(piu
pi−1
i wi)x(0, t) = qi+1u

qi+1−1
i+1 wi+1(0, t), qk+1 = q1, uk+1 = u1, wk+1 = w1, (3:5)

with initial data satisfying

wi(x, 0) ≥ 0, i = 1, 2, . . . , k.

To conclude the proof we apply the maximum principle. Due to the degeneration of

the equations this cannot be done directly. A standard regularization procedure is

needed (see [8] for details).

Next, we deal with the problem of uniqueness versus non-uniqueness for (1.1)-(1.3)

on the case of vanishing initial data (u0i(x) = 0, i = 1, 2, ..., k).

Theorem 3.2

(a) Let
∏k

l=1(1 + pl) >
∏k

l=1 2ql. Then there exists a nontrivial solution with zero

initial data that becomes positive at × = 0 instantaneously. Then there is no uniqueness

for problem (1.1)-(1.3) with zero initial data.

(b) Let
∏k

l=1(1 + pl) ≤ ∏k
l=1 2ql. Then the solution of (1.1)-(1.3) with zero initial data

is unique.

Proof.

(a) The self-similar solutions constructed in Theorem 2.2 become positive at x = 0

instantaneously.

(b) We can construct small supersolution with the aid of the self-similar ones of

exponential form that we found in Theorem 2.3. First, choose q̃1 ≤ q1 such that

ūi(x, t) = eαi(t+τ)fi(xe−βi(t+τ)), i = 1, 2, . . . , k,.

ūi(x, t) = eαi(t+τ)fi(xe−βi(t+τ)), i = 1, 2, . . . , k,

where a1 > 0 is arbitrary and b1, ai, bi, (i = 2, ..., k) are given by (2.7). Now we

observe that (ū1, ū2, . . . , ūk−1, ūk) be a supersolution is a supersolution of (1.1)-(1.3) as

long as u1(0, t) ≤ 1. By the comparison Lemma 3.1, we obtain that every solution has

initial data identically zero satisfies

ūi(x, t) ≥ ui(x, t), i = 1, 2, . . . , k.

As ūi can be chosen as small as we want (using τ negative and large enough) we con-

clude that ūi ≡ 0 (i = 1, 2, . . . , k).

4 Blow-up versus global existence
We devote this section to prove Theorem 1.1. We borrow ideas from [8]. However, the

fact that we are dealing with a system instead of a single equation forces us to develop

a significantly different proof. We will organize the proof in several lemmas.

Our first lemma proves part (I) of Theorem 1.1.
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Lemma 4.1. If
∏k

l=1(1 + pl) ≥ ∏k
l=1 2ql(i.e. det A ≥ 0), every nonnegative solution of

(1.1)-(1.3) is global in time.

Proof. It is enough to construct global supersolutions with initial data as large as

needed. We achieve this with the aid of the self-similar solutions of exponential form

that we found in Theorem 2.3.

First we choose q̃1 ≥ q1 such that 2̃q1
∏k

l=2 2ql =
∏k

l=1(1 + pl) and we let

ūi(x, t) = eαi(t+τ)fi(xe−βi(t+τ)), i = 1, 2, . . . , k,

where a1 > 0 is arbitrary and b1, ai, bi, (i = 2, ..., k) are given by (2.7). Now we

observe that (ū1, ū2, . . . , ūk−1, ūk) is a supersolution of (1.1)-(1.3) as long as

ū1(0, t) ≥ 1. This can be done by choosing τ large enough. This also allows to assume

ūi(x, 0) ≥ u0i(x)(i = 1, 2, . . . , k). Then, by the comparison Lemma 3.1, we obtain that

every solution is global.

Now we construct subsolutions with finite time blow-up.

Lemma 4.2. Let
∏k

l=1(1 + pl) <
∏k

l=1 2ql (i.e. det A < 0), then there exist compactly

supported functions gi (i = 1, 2, ..., k), such that

ui(x, t) = (T − t)αi gi(ξi), ξi = x(T − t)−βi , i = 1, 2, . . . , k,

is a subsolution of (1.1)-(1.2).

Proof. To satisfy (3.2) and (3.3), we need that

(gpii )
′′(ξi) ≥ −αigi(ξi) + βiξig

′
i(ξi), i = 1, 2, . . . , k,

−(gpii )
′(0) ≤ gqi+1i+1 (0), i = 1, 2, . . . , k, qk+1 = q1, gk+1 = g1.

We choose

gi(ξi) = Ai(ai − ξi)1/(pi−1)
+ , i = 1, 2, . . . , k.

Inserting this in the equation, we get

pi
(pi − 1)2

Api−1
i ≥ −αi(ai − ξi)+ − βi

pi − 1
ξi for 0 ≤ ξi ≤ ai, i = 1, 2, . . . , k.

Hence, it is enough to impose

pi
(pi − 1)2

Api−1
i ≥ −αiai +

|βi|
pi − 1

ai, i = 1, 2, . . . , k,

that is

CiA
pi−1
i ≥ ai, i = 1, 2, . . . , k. (4:1)

The boundary conditions impose

pi
pi − 1

Api
i a

1/(pi−1)
i ≥ Aqi+1

i+1 a
qi+1/(pi+1−1)
i+1 , i = 1, 2, . . . , k, Ak+1 = A1, qk+1 = q1, ak+1 = a1. (4:2)

Let

bi = Aia
1/(pi−1)
i , i = 1, 2, . . . , k.
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Then conditions (4.2) become

pi
pi − 1

Api−1
i bi ≥ bqi+1i+1 , i = 1, 2, . . . , k, bqk+1k+1 = bq11 . (4:3)

We fix bi = 1 (i = 1, 2, ..., k) and then Ai large enough (and thus ai small) to satisfy

(4.1) and (4.3).

Corollary 4.1 Let
∏k

l=1(1 + pl) <
∏k

l=1 2ql (i.e. det A < 0). Then there exist solutions of

(1.1)-(1.3) that blow up in a finite time.

Proof. We only have to apply Lemma 3.1, to obtain that every solution (u1, ..., uk)

that begins above the subsolutions provided by Lemma 4.2 has finite time blow-up.

Lemma 4.3 Let
∏k

l=1(1 + pl) <
∏k

l=1 2ql(i.e. det A < 0). If there exists j (1 ≤ j ≤ k) such

that aj + bj ≤ 0, then every nontrivial solution of (1.1)-(1.3) blows up in finite time.

Proof. Without loss of generality, we consider the case a1 + b1 ≤ 0.

Assume that there exists a global nonnegative nontrivial solution of (1.1)-(1.3), we

make the following change of variables

ϕi(ξi, τ ) = (1 + t)−αi ui(ξi(1 + t)βi , t), τ = log(1 + t), i = 1, 2, . . . , k. (4:4)

These functions satisfy

ϕiτ = (ϕpi
i )ξiξi + βiξiϕiξi − αiϕi, i = 1, 2, . . . , k, (4:5)

−(ϕpi
i )ξi(0, τ ) = ϕ

qi+1
i+1 (0, τ ), i = 1, 2, . . . , k, ϕ

qk+1
k+1 = ϕ

q1
1 . (4:6)

As ui(x, t) (i = 1, 2, ..., k) are by hypothesis global, the same is true for �i (i = 1, 2, ...,

k,). We will construct a solution (ϕ̂1, . . . , ϕ̂k) to system (4.5)-(4.6) increasing with time,

with initial data (ϕ̂01, . . . , ϕ̂0k) such that ϕ̂0i(ξi) ≤ ui(ξi, 0) (i = 1, 2, . . . , k). We will

prove that (ϕ̂1, . . . , ϕ̂k) cannot exists globally, thus contradicting the global existence of

(u1, ..., uk). In order to achieve our goal, we use an adaptation for systems of the gen-

eral monotonicity for single quasilinear equation described in [19].

We take initial data (ϕ̂01, . . . , ϕ̂0k) satisfying

(ϕ̂pi
0i)ξiξi + βiξi(ϕ̂0i)ξi − αiϕ̂0i ≥ 0, i = 1, 2, . . . , k,

and the compatibility conditions

−(ϕ̂pi
0i)ξi(0) = ϕ̂

qi+1
0i+1(0), i = 1, 2, . . . , k, ϕ̂

qk+1
0k+1 = ϕ̂

q1
01.

Hence, arguing as in Lemma 3.2, we have that ϕ̂iτ ≥ 0 (i = 1, 2, . . . , k).

Following an idea for scalar equation from [8], we set

ϕ̂01(ξ1) = h(ξ1 + b),

where h is the Barenblatt profile

h(ξ1) = ap1(c − ξ21 )
1/(p1−1)
+ .
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Then we have

(ϕ̂p1
01)ξ1ξ1 + β1ξ1(ϕ̂01)ξ1 −α1ϕ̂01 = − 1

p1 + 1
bhξ1 (ξ1 + b)

+(β1 − 1
p1 + 1

)ξ1hξ1(ξ1 + b) + (−α1 − 1
p1 + 1

)h(ξ1 + b).

The last expression is nonnegative if b1 - 1/(p1 + 1) ≤ 0 and -a1 - 1/(p1 + 1) ≥ 0. But

these two conditions are equivalent a1 + b1 ≤ 0.

Now we take α̃i, β̃i > 0 such that α̃i ≥ αi, β̃i ≥ βi(i = 1, 2, . . . , k). We take as ϕ̂0i a

solution to

(ϕ̂pi
0i)

′′ = −β̃iξiϕ̂
′
0i + α̃iϕ̂0i, i = 1, 2, . . . , k.

There is one-parameter family of solution to this equation (see Theorem 2.4), with

ϕ̂0i ≥ 0, ϕ̂′
0i ≤ 0(i = 2, · · ·, k). Hence,

(ϕ̂pi
0i)

′′ ≥ −βiξiϕ̂
′
0i + αiϕ̂0i, i = 2, . . . , k.

Moreover,

ϕ̂0i(0) = Ui, (ϕ̂
pi
0i)

′(0) = U(pi+1)/2
i V∗i, i = 2, . . . , k,

where V*i < 0 is a constant and Ui is the free parameter.

We still have to control the boundary conditions. In order to do this, we choose the

constants c, b and Ui (i = 2, ...,k) conveniently. They have to satisfy

2p1ap1
p1 − 1

b(c − b2)1/(p1−1) = Uq2
2 , b ∈ (0, c1/2),

−V∗iU
(pi+1)/2
i = aqi+1p1 (c − b2)qi+1/(p1−1), i = 2, . . . , k.

Thus, we choose

U2 = c2b2q3/(2q2q3−p2−1), Ui = cib2(p2−1)qi+1/((pi + 1)(2q2q3 − p2 − 1)), (i = 3, . . . , k, qk+1 = q1),

c = b2 + γ b(p1−1)(p2−1)/(2q2q3−p2−1),

where ci (i = 2, ..., k) and g are positive constants. Taking b small enough, the initial

data (ϕ̂01, . . . , ϕ̂0k) is below (u1(ξ1,0), ...,uk(ξk, 0)). This can be done as u0i (i = 1, 2, ... k)

can be assumed to be positive at the origin.

To conclude the proof, we will show that (ϕ̂1, . . . , ϕ̂k) converge to a self-similar pro-

file that does not exist in this range of parameters.

Lemma 4.4. There exists j (1 ≤ j ≤ k) such that

lim
τ→∞ ϕ̂j(ξj, τ ) = ϕ̃j(ξj) < ∞, ∀ξj > 0. (4:7)

Proof. It is clear that ϕ̂iξi ≤ 0 (i = 1, 2, . . . , k). Let us suppose that

ϕ̂i(ξi, τ ) → ∞ uniformly in (0, ξi0), i = 1, 2, . . . , k.

In the original variables (̂u1, . . . , ûk), we have that for any M > 0 there is a value such

that

(1 + t0)αiM ≤ ûi(x, t0) for 0 < x(1 + t0)−βi < ξi0, i = 1, 2, · · ·, k. (4:8)
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Now we will check that, under these conditions, we can put one of the blowing up

subsolutions constructed in Lemma 4.2 below these data. This would lead to a contra-

diction, as (̂u1, . . . , ûk) is global. In order to do this, we need

(1 + t0)a1M ≥ A1a
1/(p1−1)
1 Tα1 ,

ξ10(1 + t0)β1 ≥ a1T
β1 .

(4:9)

The first equation says that the height at x = 0 of û1 is bigger than that of u1, and

the second says that the support of û1 is bigger than the support of u1. Imposing ana-

logous conditions for ûi and ui(i = 2, . . . , k) we get

(1 + t0)aiM ≥ Aia
1/(pi−1)
i Tαi ,

ξi0(1 + t0)βi ≥ aiT
βi .

(4:10)

Taking T = 1 + t0, then ai small enough and Ai large enough (i = 1, 2, ..., k), and

then M large, then the 2k conditions (4.9)-(4.10) are fulfilled.

Let us remark this parametric evolution comparison method to prove global non-

existence for arbitrary data first introduced in [20], for scalar quasilinear heat equation.

End of the proof of Lemma 4.3. Let us assume that (4.7) holds. Using standard

arguments, see [8], we may pass to the limit to obtain that

(ϕ̃p1
1 )ξ1ξ1 + β1ξ1ϕ̃1ξ1 − α1ϕ̃1 = 0. (4:11)

Let z = ϕ̃
p1
1 , then

zξ1ξ1 +
β1

p1
ξ1z

(1−p1)/p1zξ1 ≤ 0.

Hence, in (0, ξ10), z ≥ c > 0,

zξ1ξ1 ≤ Czξ1 .

We conclude that z and therefore ϕ̃1 cannot be unbounded at ξ1 = 0. In particular,

0 < ϕ̃1(0) ≤ C. Then, considering the regularity of ϕ̃1 in the region where ϕ̃1 > 0, we

can pass to the limit in the boundary condition for (ϕ̂p1
1 )ξ1 to obtain that

−(ϕ̃p1
1 )ξ1(0) = ϕ̃

q2
2 (0). (4:12)

However, as a1 + b1 ≤ 0, problem (4.11)-(4.12) does not have a nontrivial solution,

see Theorem 2.4.

If (4.7) holds for some j > 1, we can proceed as before to obtain that ϕ̃j(0) < ∞.

Thus, we can pass to the limit in the boundary condition for ϕ̂j, obtaining

−(ϕ̃
pj
j )ξj(0) = ϕ̃

qj+1
j+1 (0).

As ϕ̃j+1(0) ≥ ϕ̃j+1(ξj+1), this implies that ϕ̃j+1 is finite for every ξj+1 ≥ 0. We get the

same contradiction as before.
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