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Abstract
It is known that certain convolution sums can be expressed as a combination of
divisor functions and Bernoulli formula. One of the main goals in this paper is to
establish combinatoric convolution sums for the divisor sums σ̂s(n) =

∑
d|n (–1)

n
d –1ds.

Finally, we find a formula of certain combinatoric convolution sums and Bernoulli
polynomials.
MSC: 11A05; 33E99
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1 Introduction
The symbols N and Z denote the set of natural numbers and the ring of integers, respec-
tively. The Bernoulli polynomials Bk(x), which are usually defined by the exponential gen-
erating function

text

et – 
=

∞∑
k=

Bk(x)
tk

k!
,

play an important and quitemysterious role inmathematics and various fields like analysis,
number theory and differential topology. The Bernoulli polynomials satisfy the following
well-known identities:

N∑
j=

jk =
Bk+(N + ) – Bk+()

k + 
(k ≥ )

=


k + 

k∑
j=

(–)j
(
k + 
j

)
BjNk+–j. (.)

The Bernoulli numbers Bk are defined to be Bk := Bk(). For n ∈ N, k ∈ Z, we define
some divisor functions

σk(n) :=
∑
d|n

dk , σ ∗
k (n) :=

∑
d|n

n
d odd

dk , σ̃k(n) :=
∑
d|n

(–)d–dk ,

σ̂k(n) :=
∑
d|n

(–)
n
d –dk , σk,l(n; ) :=

∑
d|n

d≡l(mod)

dk .
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It is well known that σ ∗
k (n) = σk(n) – σk( n ) and σ̂k(n) = σk(n) – σk( n ) [, (.)]. The

identity

n–∑
k=

σ (k)σ (n – k) =



σ(n) +
(




–


n
)

σ (n)

for the basic convolution sum first appeared in a letter from Besge to Liouville in  [].
Hahn [, (.)] considered


∑
m<n

σ̂ (m)σ̂ (n –m) =

⎧⎨⎩–σ̂ (n) + σ̃(n) if n is odd,

–σ̂ (n) – σ̃(n) + σ̃( n ) if n is even.
(.)

For some of the history of the subject, and for a selection of these articles, we mention
[, ] and [], and especially [, ] and []. The study of convolution sums and their ap-
plications is classical, and they play an important role in number theory. In this paper, we
investigate the combinatorial Bernoulli numbers and convolution sums. For k and n being
positive integers, we show that the sum

k∑
j=

(
k + 
j

)
Bjσ̂k+–j(n)

can be evaluated explicitly in terms of divisor functions and a combinatorial convolution
sum. We prove the following.

Theorem  Let k, n be positive integers. Then

k∑
j=

(
k + 
j

)
Bjσ̂k+–j(n)

= (k + )σ ∗
k+(n) –

(
k + 



)
σ̂k+(n) –

(
k(k + )



)
σ̂k–(n)

– (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σ̂k–s–(m)σ̂s+(n –m).

Remark  Let n be positive integers. In Theorem , replace k by , we find easily that

n–∑
m=

σ̂ (m)σ̂ (n –m) =


σ ∗
 (n) –




σ̂(n) –



σ̂ (n), (.)

and in particular, if q ∈ N , p = q + , an odd prime integer, then

q∑
m=

σ̂ (m)σ̂ (p –m) =


q(q + )(q + ) =

q∑
m=

k =


B(q + ). (.)

Equations (.) and (.) are in (.) and [, Corollary .]. Using these combinatoric
convolution sums, we obtain the following.

http://www.advancesindifferenceequations.com/content/2013/1/310


Kim and Yildiz Ikikardes Advances in Difference Equations 2013, 2013:310 Page 3 of 11
http://www.advancesindifferenceequations.com/content/2013/1/310

Theorem  If k is a positive integer, then

∑
u+v+w=k+

v–k–
(
k + 
u, v,w

)
Bv · (l + )w = Bk+(l + ),

where
(k+
u,v,w

)
= (k+)!

u!v!w! and l = , , , , , , , , , , , .

Thus, we can pose a general question regarding Bernoulli polynomials.

Question For all k, l ∈N, does the identity

∑
u+v+w=k+

v–k–
(
k + 
u, v,w

)
Bv · (l + )w = Bk+(l + ) hold?

The problem of convolution sums of the divisor function σ(n) and the theory of
Eisenstein series has recently attracted considerable interest with the emergence of quasi-
modular tools. In connection with the classical Jacobi theta and Euler functions, other
aspects of the function σ(n) are explored by Simsek in []. Finally, we prove the follow-
ing.

Theorem  If a (≥ ) and k are positive integers, then
(i)

k–∑
s=

(
k

s + 

) a–∑
m=

σk–s–,

(
m

; 

)
σs+

(
a –m

)

=
(


(k + )

)
Bk+

(
a

)
+

(
 – k

(k + )

) a–∑
i=

Bk+
(
i

)
+



(
(k+)a – 
k+ – 

– a+ + 
)
,

(ii)

k–∑
s=

(
k

s + 

) a–∑
m=

σk–s–,

(
m

; 

)
σs+

(
a –m

)

=
(

 + k

(k + )

) a–∑
i=

Bk+
(
i

)
+



(
(k+)a – 
k+ – 

)

+



(
k(a+) – k(a+)– + ka– – 

k – 

)
+ a–

(
 – (k–)(a+) – (k–)a+

k– – 

)
+ a– –



,

(iii)

k–∑
s=

(
k

s + 

) a–∑
m=

σk–s–

(
m


)
σs+

(
a –m

)

=
(


(k + )

)
Bk+

(
a

)
+

(


(k + )

) a–∑
i=

Bk+
(
i

)
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+



(
(k+)a – 
k+ – 

)
+



(
k(a+) – k(a+)– + ka– – 

k – 

)
+ a–

(
 – (k–)(a+) – (k–)a+

k– – 

)
.

2 Properties of convolution sums derived from divisor functions
Proposition  ([]) Let k, n be positive integers. Then

k∑
j=

(
k + 
j

)
Bjσk+–j(n) = –

(
k + 



)
σk+(n) – (k + )

(
k

– n

)
σk–(n)

+ (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σk–s–(m)σs+(n –m).

Proposition  ([, ]) Let k, n be positive integers. Then

(i)
k–∑
s=

(
k

s + 

) n–∑
m=

σ ∗
k–s–(m)σ ∗

s+(n –m) =


(
σ ∗
k+(n) – nσ ∗

k–(n)
)
,

(ii)
k–∑
s=

(
k

s + 

) n∑
m=

σk–s–(m – )σs+(n – m + ) =



σ ∗
k+(n).

Proof of Theorem  Let k,n ∈N. By Proposition  and Proposition , we obtain

T :=
k–∑
s=

(
k

s + 

) n–∑
m=

σ̂k–s–(m)σ̂s+(n –m)

=
k–∑
s=

(
k

s + 

) n–∑
m=

(
σk–s–(m) – σk–s–

(
m


))

×
(

σs+(n –m) – σs+

(
n –m


))
.

It is easily checked that

σk–s–

(
m


)
σs+(n –m) + σk–s–(m)σs+

(
n –m


)
= σk–s–

(
m


)
σs+

(
n –m


)
+ σk–s–(m)σs+(n –m)

+
(

σk–s–(m) – σk–s–

(
m


))(
σs+(n –m) – σs+

(
n –m


))
.

Thus,

T =
k–∑
s=

(
k

s + 

) n–∑
m=

(
σk–s–(m)σs+(n –m) + σk–s–

(
m


)
σs+

(
n –m


))

– 
k–∑
s=

(
k

s + 

) n–∑
m=

(
σk–s–

(
m


)
σs+

(
n –m


)
+ σk–s+(m)σs+(n –m)

)
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– 
k–∑
s=

(
k

s + 

) n–∑
m=

(
σk–s–(m) – σk–s–

(
m


))

×
(

σs+(n –m) – σs+

(
n –m


))

= 
k–∑
s=

(
k

s + 

) n–∑
m=

(
σk–s–(m) – σk–s–

(
m


))(
σs+(n –m) – σs+

(
n –m


))

–
k–∑
s=

(
k

s + 

) n–∑
m=

(
σk–s–(m)σs+(n –m) – σk–s–

(
m


)
σs+

(
n –m


))

= 
k–∑
s=

(
k

s + 

) n–∑
m=

σ ∗
k–s–(m)σ ∗

s+(n –m)

–

{(
k + 
k + 

)
σk+(n) +

(
k

– n

)
σk–(n) +


k + 

k∑
j=

(
k + 
j

)
Bjσk+–j(n)

}

+ 

{(
k + 
k + 

)
σk+

(
n


)
+

(
k

–
n


)
σk–

(
n


)

+


k + 

k∑
j=

(
k + 
j

)
Bjσk+–j

(
n


)}

=
(
σ ∗
k+(n) – nσ ∗

k–(n)
)
–

(
k + 
k + 

){
σk+(n) – σk+

(
n


)}
–
k


{
σk–(n) – σk–

(
n


)}
+ n

{
σk–(n) – σk–

(
n


)}

–


k + 

k∑
j=

(
k + 
j

)
Bj

{
σk+–j(n) – σk+–j

(
n


)}

= σ ∗
k+(n) –

(
k + 
k + 

)
σ̂k+(n) –

k


σ̂k–(n) –


k + 

k∑
j=

(
k + 
j

)
Bjσ̂k+–j(n).

This proves the theorem. �

Example  Let n be a positive integer. In Theorem , put k = , we get

n–∑
m=

σ̂ (m)σ̂(n –m) =


σ ∗
 (n) –




σ̂(n) –



σ̂(n) +



σ̂ (n).

Corollary  Let k, n be positive integers. Then, we obtain
(i)

k∑
j=

(
k + 
j

)
Bjσ̂k+–j(n)

=
(
k + 


)
σ ∗
k+(n) –

(
k + 



)
σ̂k+(n) –

(
k(k + )



)
σ̂k–(n)

– (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σ̂k–s–(m)σ̂s+(n – m),
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(ii)

k∑
j=

(
k + 
j

)
Bj

{
σk+–j(n) + σk+–j

(
n


)}

= –σk+(n) – (k + )σk+

(
n


)
–
(k + )(k – n)


σk–(n)

–
(k + )(k – n)


σk–

(
n


)

+ (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σk–s–

(
m


)
σs+(n –m),

(iii)

k∑
j=

(
k + 
j

)
Bjσ

∗
k+–j(n)

= kσ ∗
k+(n) –

k(k + )


σ ∗
k–(n) –

n(k + )


σ̂k–(n)

– (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σ ∗
k–s–(m)σ̂s+(n –m)

= –(k + )σ ∗
k+(n) –

(k – n)(k + )


σ ∗
k–(n) +

n(k + )


σk–

(
n


)

+ (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σ ∗
k–s–(m)σs+(n –m).

Proof (i) We note that

k–∑
s=

(
k

s + 

) n–∑
m=

σ ∗
k–s–(m)σ ∗

s+(n – m)

=
k–∑
s=

(
k

s + 

) n–∑
m=

σ ∗
k–s–(m)σ ∗

s+(n –m)

–
k–∑
s=

(
k

s + 

) n–∑
m=

σ ∗
k–s–(m – )σ ∗

s+
(
n – (m – )

)
.

(ii) and (iii) are applied in a similar way. �

3 Bernoulli polynomials and convolution sums
Proposition  ([]) Let k, n be positive integers. Then

k–∑
s=

(
k

s + 

) n–∑
m=

k–s–σk–s–(m/)σs+(n –m)

=



σk+(n/) –



(
σk(n) – k+σk(n/) – kσk(n/)

)

http://www.advancesindifferenceequations.com/content/2013/1/310
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–
n


(
σk–(n) + kσk–(n/)

)
+


σk,(n; ) +

k–

k + 

k∑
j=

(
k + 

j

)
Bjσk+–j(n/)

+


(k + )

k∑
j=

(
k + 

j

)
Bjk+–jσk+–j(n/)

+


(k + )

k∑
j=

(
k + 

j

)
Bjσk+–j,(n; )

–


(k + )
∑

u+v+w=k+

v–
(
k + 
u, v,w

)
Bvσw,(n; ).

It is well known that σk–s–,(m ; ) = k–s–σk–s–(m ). Using Proposition , we get
this lemma.

Lemma  Let k, n be positive integers. Then
(i)

k–∑
s=

(
k

s + 

) n–∑
m=

σk–s–,

(
m

; 

)
σs+(n –m)

=



σk+

(
n


)
+


(k + )

σk+,(n; ) +


(k + )
σk+,

(
n

; 

)
+


(k + )

σk,(n; ) –



σk(n) +


σk,(n; ) –




σk,(n; ) +



σk,(n; )

–
n


σk–(n) +
k


σk–,(n; ) +
(

k


–
n


)
σk–,

(
n

; 

)

+
k


σk–,(n; ) +
k

(k + )

k∑
j=

(
k + 
j

)
Bjσk+–j

(
n


)

+


(k + )

k∑
j=

(
k + 
j

)
Bjσk+–j,

(
n

; 

)

+


(k + )

k∑
j=

(
k + 
j

)
Bjσk+–j,(n; )

–


(k + )
∑

u+v+w=k+

v–
(
k + 
u, v,w

)
Bvσw,(n; ),

(ii)

k–∑
s=

(
k

s + 

) n–∑
m=

σk–s–,

(
m

; 

)
σs+(n –m)

=
(


(k + )

)
σk+(n) +

(
k + 
k + 

)
σk+

(
n


)
+

(
k – n


)
σk–(n)

+
(
k – n


)
σk–

(
n


)
–



σk+

(
n


)

http://www.advancesindifferenceequations.com/content/2013/1/310
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–
(


(k + )

)
σk+,(n; ) –

(


(k + )

)
σk+,

(
n

; 

)
–

(


(k + )

)
σk,(n; ) +




σk(n)

–


σk,(n; ) +




σk,(n; ) –



σk,(n; )

+
n


σk–(n) –
k


σk–,(n; ) –
(

k


–
n


)
σk–,

(
n

; 

)
–

k


σk–,(n; )

–
k

(k + )

k∑
j=

(
k + 
j

)
Bjσk+–j

(
n


)

–


(k + )

k∑
j=

(
k + 
j

)
Bjσk+–j,

(
n

; 

)

–


(k + )

k∑
j=

(
k + 
j

)
Bjσk+–j,(n; )

+


(k + )
∑

u+v+w=k+

v–
(
k + 
u, v,w

)
Bvσw,(n; ).

Remark  (i) Using Lemma , we obtain

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bvσw,(n; )

=
(
k + 


){
σk+

(
n


)
– σk(n) + σk,(n; ) + σk,

(
n

; 

)}
–

(
n(k + )



){
σk–(n) + σk–,

(
n

; 

)}
+ (k + )σk,(n; )

+ k
k∑
j=

(
k + 

j

)
Bjσk+–j

(
n


)
+

k∑
j=

(
k + 

j

)
Bjσk+–j,

(
n

; 

)

+
k∑
j=

(
k + 

j

)
Bjσk+–j,(n; )

– (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σk–s–,

(
m

; 

)
σs+(n –m)

= –
(
k + 


){
σk+

(
n


)
– nσk–,

(
n

; 

)
+ σk,

(
n

; 

)}

–
k∑
j=

(
k + 

j

)
Bjσk+–j(n) +

(
k – 

) k∑
j=

(
k + 

j

)
Bjσk+–j

(
n


)

+
k∑
j=

(
k + 

j

)
Bjσk+–j,

(
n

; 

)
+

k∑
j=

(
k + 

j

)
Bjσk+–j,(n; )

+ (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σk–s–,

(
m

; 

)
σs+(n –m).

http://www.advancesindifferenceequations.com/content/2013/1/310
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(ii) If n is an odd integer, then

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bvσw,(n; )

= (k + )
k–∑
s=

(
k

s + 

) n–∑
m=

σk–s–,

(
m

; 

)
σs+(n –m). (.)

(iii) In (.), put k = , we get

∑
u+v+w=

v–
(


u, v,w

)
Bvσw,(n; ) = 

n–∑
m=

σ,

(
m

; 

)
σ(n –m),

and thus,

n–∑
m=

σ,

(
m

; 

)
σ(n –m) =




(
σ(n) – σ(n)

)
.

In (.), replace k by , we find that

∑
u+v+w=

v–
(


u, v,w

)
Bvσw,(n; )

= 

( n–∑
m=

σ,

(
m

; 

)
σ(n –m) +

n–∑
m=

σ,

(
m

; 

)
σ(n –m)

)
,

and thus,

n–∑
m=

σ,

(
m

; 

)
σ(n –m) +

n–∑
m=

σ,

(
m

; 

)
σ(n –m)

=



(
σ(n) – σ(n) + σ(n)

)
.

Proof of Theorem  If n = , compare both sides of (.), we obtain

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv = . (.)

If we put n =  in (.), we obtain

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv · ( + w

)
=

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv · w

= (k + )
k–∑
s=

(
k

s + 

)
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/310
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From (.) and (.), we get

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv · w = (k + )k . (.)

By combining (.) and (.), we obtain

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv · w = kBk+().

Others cases follow in a similar way. This completes the proof. �

Proof of Theorem  (i) If a is a positive integer, then

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv · σw,

(
a; 

)
=

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv = 

by (.). According to Remark (i), we deduce that

 = (k + )
k–∑
s=

(
k

s + 

) a–∑
m=

σk–s–,

(
m

; 

)
σs+

(
a –m

)

–
k∑
j=

(
k + 

j

)
Bjσk+–j

(
a

)
+

(
k – 

) k∑
j=

(
k + 

j

)
Bjσk+–j

(
a



)

+
k∑
j=

(
k + 

j

)
Bjσk+–j,

(
a


; 

)
–

(
k + 


){
σk+

(
a



)
– 

(
a

)
+ 

}
.

If a = , it is clearly evident. We suppose that a > . We check that

k∑
j=

(
k + 

j

)
Bj ·

(
a

)k+–j
=

k∑
j=

(
k + 

j

)
(–)jBj ·

(
a

)k+–j + 
(
k + 



)
B · (a)k

= (k + )
a∑
j=

jk + (k + )
(
–


)(
a

)k
= Bk+

(
a

)
(.)

by (.).
(ii) and (iii) are applied in a similar way. �

Remark  If p is a prime integer, then

∑
u+v+w=k+

v–
(
k + 
u, v,w

)
Bv · pw = (k + )

k–∑
s=

(
k

s + 

) p–∑
m=

σk–s–,

(
m

; 

)
σs+(p–m)

by (.) and (.).
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