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1 Introduction
It is well known that Ky Fan minimax inequalities play a very important role in many

fields, such as variational inequalities, game theory, mathematical economics, control

theory, and fixed point theory. Because of its wide applications, Ky Fan minimax

inequalities have been generalized in various ways. Since 1960s, Ky Fan minimax theo-

rems of the real-valued functions have been discussed, such as [1-4] and references

therein.

In recent years, based on the development of vector optimization, a great deal of

articles have devoted to the study of the Ky Fan minimax theorems for vector-valued

functions. In [5], Chen proved a Ky Fan minimax inequality for vector-valued map-

pings on H-spaces by using a generalized Fan’s section theorem and a generalized

Browder’s fixed point theorem. Chang et al. [6] obtained a Ky Fan minimax inequality

for vector-valued mappings on W-spaces by applying a generalized section theorem

and a generalized fixed point theorem. Li and Wang [7] established the following Ky

Fan minimax inequalities for vector-valued mappings:

Minw

⋃
x∈X0

Maxwf (x,X0) ⊂ Max
⋃
x∈X0

f (x, x) − S,

Maxw
⋃
x∈X0

f (x, x) ⊂ Min
⋃
x∈X0

Maxwf (x,X0) + S.

Luo [8] also obtained some generalized Ky Fan minimax inequalities for vector-

valued mappings by applying the classical Browder fixed point theorem and the Kaku-

tani-Fan-Glicksberg fixed point theorem.

There are also many articles to study the minimax theorems for vector-valued

mappings.
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Nieuwenhuis [9] proved that

Min
⋃
y∈Y0

Maxwf (X0, y) ⊂ Max
⋃
x∈X0

Minwf (x,Y0) − S,

Max
⋃
x∈X0

Minwf (x,Y0) ⊂ Min
⋃
y∈Y0

Maxwf (X0, y) + S,

where the vector-valued function is f(x, y) = x + y. Tanaka [10-12] obtained minimax

theorems of the separated vector-valued function of the type f(x, y) = u(x) + v(y) and

investigated some existence results of cone saddle points for general vector-valued

functions. Furthermore, by using the existence results of cone saddle points for vector-

valued mappings, he obtained the following result:

∃ z1 ∈ Min
⋃
y∈Y0

Maxwf (X0, y) and ∃ z2 ∈ Max
⋃
x∈X0

Minwf (x,Y0)

such that

z1 ∈ z2 − S.

Shi and Ling [13] proved, respectively, a minimax theorem and a cone saddle point

theorem for a class of vector-valued functions, which include the separated functions

as its proper subset. Ferro [14,15] studied minimax theorems for general vector-valued

functions. Gong [16] obtained a strong minimax theorem and established an equivalent

relationship between the strong minimax inequality and a strong cone saddle point

theorem for vector-valued functions. Li et al. [17] investigated a minimax theorem and

a saddle point theorem for vector-valued functions in the sense of lexicographic order,

respectively.

To the best of authors’ knowledge, there are few articles to investigate minimax pro-

blems for set-valued mappings. Li et al. [18] obtained some minimax inequalities for

set-valued mappings by using a section theorem and a linear scalarization function.

Li et al. [19] studied some generalized minimax theorems for set-valued mappings by

using a nonlinear scalarization function. Zhang et al. [20] investigated some minimax

problems for set-valued mappings by applying the Fan-Browder Fixed Point Theorem.

Motivated by the study of [7,10,13,18,20], we obtain two types of Ky Fan minimax

inequalities for set-valued mappings.

The rest of the article is organized as follows. In Section 2, we introduce notations

and preliminary results. In Section 3, we obtain two types of Ky Fan minimax inequal-

ities for set-valued mappings. We also give some examples to illustrate our results.

2 Preliminaries
Let X and V be real Hausdorff topological vector spaces. Assume that S is a pointed

closed convex cone in V with its interior int S �= ∅ . Some fundamental terminologies

are presented as follows.

Definition 2.1 [21] Let A ⊂ V be a nonempty subset.

(i) A point z Î A is said to be a minimal point of A iff A⋂(z-S) = {z}, and Min A

denotes the set of all minimal points of A.

(ii) A point z Î A is said to be a weakly minimal point of A iff A⋂(z - intS) = Ø, and

MinwA denotes the set of all weakly minimal points of A.
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(iii) A point z Î A is said to be a maximal point of A iff A⋂(z + S) = {z}, and MaxA

denotes the set of all maximal points of A.

(iv) A point z Î A is said to be a weakly maximal point of A iff A ⋂(z + intS) = Ø,

and Maxw denotes the set of all weakly maximal points of A.

It is easy to verity that

MinA ⊂ MinwA and MaxA ⊂ MaxwA.

Definition 2.2 [22] Let F : X ® 2V be a set-valued mapping with nonempty values.

(i) F is said to be upper semicontinuous (u.s.c.) at x0 Î X, iff for any neighborhood N

(F(x0)) of F(x0), there exists a neighborhood N(x0) of x0 such that

F(x) ⊂ N(F(x0)), ∀x ∈ N(x0).

(ii) F is said to be lower semicontinuous (l.s.c.) at x0 Î X, iff for any open neighbor-

hood N in V satisfying F(x0) ⋂N ≠ Ø, there exists a neighborhood N(x0) of x0 such that

F(x)
⋂

N �= ∅, ∀x ∈ N(x0).

(iii) F is said to be continuous at x0 Î X iff F is both u.s.c. and l.s.c. at x0.

Remark 2.1 [22] The nonempty compact-valued mapping F is said to be u.s.c. at x0
Î X0 if and only if for any net {xa} ⊂ X with xa ® x0 and for any ya Î F(xa), there

exist y0 Î F(x0) and a subnet {yb} of {ya}, such that yb ® y0.

Definition 2.3 Let X0 be a nonempty convex subset of X, and let F : X0 ® 2V be a

set-valued mapping with nonempty values.

(i) F is said to be properly S-quasiconvex on X0, iff for any x1, x2 Î X0 and l Î [0, 1],

either

F(x1) ⊂ F(lx1 + (1 − l)x2) + S or F(x2) ⊂ F(lx1 + (1 − l)x2) + S.

F is said to be properly S-quasiconcave on X0, iff - F is properly S-quasiconvex on X0.

(ii) F is said to be S-quasiconvex [23] on X0, iff for any point z Î V, the level set

LevF(z) := {x ∈ X0 : ∃t ∈ F(x) s.t. t ∈ z − S}

is convex. F is said to be S-quasiconcave on X0, iff - F is S-quasiconvex on X0.

Remark 2.2 If F is a vector-valued mapping, then properly S-quasiconvex reduces to

the ordinary properly S-quasiconvex in [14].

Lemma 2.1 Let X0 be a compact subset of X. Suppose that F : X0 × X0 ® 2V is a con-

tinuous set-valued mapping and for each (x, y) Î X0 × X0, F(x, y) is a compact set.

Then �(y) = Minw
⋂

x∈X0
F(x, y)and �(x) = Maxw

⋃
y∈X0

F(x, y)are u.s.c. and compact-

valued on X0, respectively.

Proof. It follows from Lemma 2.2 in [18] that Γ and F are u.s.c. By the compactness

of X0 and the closeness of weakly minimal (maximal) point sets, Γ and F are also com-

pact-valued.

□
Lemma 2.2 [22]Let X0 be a nonempty subset of X, and let F : X0 ® 2V be a set-

valued mapping with nonempty values. If X0 is compact and if F is u.s.c. and compact-

valued, then F(X0) =
⋃

x∈X0
F(x)is compact.
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Lemma 2.3 [14]Let A ⊂ V be a nonempty compact subset. Then (i) Min A ≠ Ø; (ii) A

⊂ Min A + S; (iii) A ⊂ MinwA + intS∪{0V}; (iv) MaxA ≠ Ø; (v) A ⊂ MaxA - S; and (vi)

A ⊂ MaxwA - intS∪{0V}.
Lemma 2.4 [24](Kakutani-Fan-Glicksberg fixed point theorem) Let X0 be a nonempty

compact convex subset of X. If T : X0 → 2X0is u.s.c, and for any x Î X0, T(x) is a none-

mpty, closed and convex set, then T has a fixed point.

3 Ky Fan minimax inequalities for set-valued mappings
First, we prove the following interesting lemma.

Lemma 3.1 Let X0 be a nonempty compact convex subset of X, and let F : X0 × X0 ®
2V be a continuous set-valued mapping with nonempty compact values.

(i) If for each x Î X0, F(x, ⋅) is properly S-quasiconcave on X0, then there exists

x̄ ∈ X0such that

F(x̄, x̄)
⋂

Maxw
⋃
y∈X0

F(x̄, y) �= ∅.

(ii) If for each y Î X0, F(⋅, y) is properly S-quasiconvex on X0, then there exists

ȳ ∈ X0such that

F(ȳ, ȳ)
⋂

Minw

⋃
x∈X0

F(x, ȳ) �= ∅.

Proof. (i) We define a multifunction T : X0 → 2X0 by the formula

T(x) =

⎧⎨
⎩y ∈ X0 : F(x, y)

⋂
Maxw

⋃
y∈X0

F(x, y) �= ∅
⎫⎬
⎭ , for x ∈ X0.

First, we show that T(x) ≠ Ø, for each x Î X0. Since F(x, ⋅) is u.s.c. with compact

values and X0 is compact, by Lemma 2.2,
⋃

y∈X0
F(x, y) is a compact set for each x Î

X0. By Lemma 2.3, Maxw
⋃

y∈X0
F(x, y) �= ∅. For each x Î X0, let

zx ∈ Maxw
⋃

y∈X0
F(x, y) . Then, there exists yx Î X0 such that zx Î F(x, yx). Namely,

yx ∈ T(x) =

⎧⎨
⎩y ∈ X0 : F(x, y)

⋂
Maxw

⋃
y∈X0

F(x, y) �= ∅
⎫⎬
⎭ .

Hence, for each x Î X0, T(x) ≠ Ø.

Second, we show that T(x) is a closed set, for each x Î X0. Let a net {ya : a Î I} ⊂ T

(x), for each x Î X0 and ya ® y0. By the definition of T, there exists {za} such that za

Î F(x, ya) and zα ∈ Maxw
⋃

y∈X0
F(x, y). Since F(x, ⋅) is u.s.c. with nonempty compact

values, by Remark 2.1, there exist a subnet {zb} of {za} and z0 Î F(x, y0) satisfying zb ®

z0. By the closeness of the weakly maximal point set, z0 ∈ Maxw
⋃

y∈X0
F(x, y) . Thus,

we have that

y0 ∈ T(x) =

⎧⎨
⎩y ∈ X0 : F(x, y)

⋂
Maxw

⋃
y∈X0

F(x, y) �= ∅
⎫⎬
⎭
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and hence for each x Î X0, T(x) is a closed set.

Now, we show that T(x) is a convex set, for each x Î X0. For each x Î X0, let y1, y2
Î T(x) and l Î [0, 1]. Suppose that there exists l0 Î [0, 1] such that

F(x, l0y1 + (1 − l0)y2)
⋂

Maxw
⋃
y∈X0

F(x, y) = ∅.

Since F(x, l0y1 + (1 - l0)y2) ⊂ F(x, X0), by Lemma 2.3,

F(x, l0y1 + (1 − l0)y2) ⊂ Maxw
⋃
y∈X0

F(x, y) − intS. (1)

Then, by assumptions and (1), we have that either

F(x, y1) ⊂ F(x, l0y1 + (1 − l0)y2) − S ⊂ Maxw
⋃
y∈X0

F(x, y) − intS

or

F(x, y2) ⊂ F(x, l0y1 + (1 − l0)y2) − S ⊂ Maxw
⋃
y∈X0

F(x, y) − intS.

Thus, we claim that either

F(x, y1)
⋂

Maxw
⋃
y∈X0

F(x, y) = ∅ or F(x, y2)
⋂

Maxw
⋃
y∈X0

F(x, y) = ∅. (2)

In fact, if (2) does not hold, i.e., there exist z1, z2 Î V such that

z1 ∈ F(x, y1)
⋂

Maxw
⋃
y∈X0

F(x, y) and z2 ∈ F(x, y2)
⋂

Maxw
⋃
y∈X0

F(x, y).

Then, for z1, z2, there exist z′1, z
′
2 ∈ Maxw

⋃
y∈X0

F(x, y) such that either

z1 ∈ z′1 − intS or z2 ∈ z′2 − intS.

Clearly, this is a contradiction. Therefore, (2) holds, which also contradicts the

assumption about y1 and y2. Hence, T(x) is a convex set, for each x Î X0.

Next, we show that T is u.s.c. on X0. Since X0 is compact, we only need to show that

T is a closed map (see [22]). Let a net

{(xα, yα)} ⊂ GraphT :=

⎧⎨
⎩(x, y) ∈ X0 × X0 : F(x, y)

⋂
Maxw

⋃
y∈X0

F(x, y) �= ∅
⎫⎬
⎭

and (xa, ya) ® (x0.y0). By the definition of T, there exists {za} satisfying za Î F(xa,

ya) and zα ∈ Maxw
⋃

y∈X0
F(xα, y) . By assumptions and Lemma 2.2, {za} must have a

convergence subnet. For convenience, let the convergence subnet be itself. Since F is u.

s.c. with nonempty compact values, by Remark 2.1, there exist a subnet {zb} of {za} and

z0 Î F(x0, y0) satisfying

zβ → z0.
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By Lemma 2.1, Maxw
⋃

y∈X0
F(·, y) is u.s.c. and compact-valued. Then, by Remark

2.1, there exist a subnet {zg} of {za} and z′0 ∈ Maxw
⋃

y∈X0
F(x0, y) satisfying

zγ → z′0.

Clearly, z0 = z′0 . That is (x0, y0) Î GraphT. Hence, T is u.s.c. on X0.

Therefore, by Lemma 2.4, there exists x̄ ∈ X0 such that x̄ ∈ T(x̄) , i.e.,

F(x̄, x̄)
⋂

Maxw
⋃
y∈X0

F(x̄, y) �= ∅.

(ii) We also define a multifunction W : X0 → 2X0 by the formula

W(y) =

⎧⎨
⎩x ∈ X0 : F(y, y)

⋂
Minw

⋃
x∈X0

F(x, y) �= ∅
⎫⎬
⎭ , for y ∈ X0.

Similar to the above proof, we can prove that all conditions of Lemma 2.4 are satis-

fied. By Lemma 2.4, there exists ȳ ∈ X0 such that ȳ ∈ W(ȳ) , i.e.,

F(ȳ, ȳ)
⋂

Minw

⋃
x∈X0

F(x, ȳ) �= ∅.

□
Remark 3.1 When F is a real-valued function, Lemma 3.1 (i) reduces to Lemma 6 in

[7].

Theorem 3.1 Let X0 be a nonempty compact convex subset of X. Suppose that the fol-

lowing conditions are satisfied:

(i) F : X0 × X0 ® 2V is a continuous set-valued mapping with nonempty compact

values;

(ii) for each x Î X0, F(x, ⋅) is properly S-quasiconcave on X0.

Then,

∃ z1 ∈ Max
⋃
x∈X0

F(x, x) and ∃ z2 ∈ Min
⋃
x∈X0

MaxwF(x,X0)

such that

z1 ∈ z2 + S. (3)

Proof. By assumptions and Lemmas 2.1-2.3,

Max
⋃
x∈X0

F(x, x) �= ∅ and Min
⋃
x∈X0

MaxwF(x,X0) �= ∅.

Then, by Lemma 3.1, there exists x̄ ∈ X0 such that

F(x̄, x̄)
⋂

Maxw
⋃
y∈X0

F(x̄, y) �= ∅.

By Lemmas 2.1 and 2.2,
⋃

x∈X0
F(x, x) and

⋃
x∈X0

MaxwF(x,X0) are two compact

sets.
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Thus, by Lemma 2.3, we have

F(x̄, x̄) ⊂
⋃
x∈X0

F(x, x) ⊂ Max
⋃
x∈X0

F(x, x) − S

and

Maxw
⋃
y∈X0

F(x̄, y) ⊂
⋃
x∈X0

MaxwF(x,X0) ⊂ Min
⋃
x∈X0

MaxwF(x,X0) + S.

Namely, for every u ∈ F(x̄, x̄) and v ∈ Maxw
⋃

y∈X0
F(x̄, y) , there exist

z1 ∈ Max
⋃

x∈X0
F(x, x) and z2 ∈ Min

⋃
x∈X0

MaxwF(x,X0) such that

u ∈ z1 − S and v ∈ z2 + S.

Particularly, taking u = v, we have z1 Î z2 + S. This completes the proof. □
Corollary 3.1 Let X0 be a nonempty compact convex subset of X. Suppose that the

following conditions are satisfied:

(i) f : X0 × X0 ® V is a continuous vector-valued mapping;

(ii) for each x Î X0, f(x, ⋅) is properly S-quasiconcave on X0.

Then,

∃ z1 ∈ Max
⋃
x∈X0

f (x, x) and ∃ z2 ∈ Minw

⋃
x∈X0

Maxwf (x,X0)

such that

z1 ∈ z2 + S. (4)

Proof. Since Min
⋃

x∈X0
Maxwf (x,X0) ⊂ Minw

⋃
x∈X0

Maxwf (x,X0) , by the proof of

Theorem 3.1, the conclusion follows readily. □
Remark 3.2 Corollary 3.1 is different from Theorems 3 and 4 in [7] and Corollary

3.8 in [8]. The following example illustrates that when Theorem 3 in [7] and Corollary

3.8 in [8] are not applicable, Corollary 3.1 is applicable.

Example 3.1 Let X = R, V = R2, X0 = [0, 1] and S = {(u, v)|u ≥ 0, v ≥ 0}. Let f : [0, 1]

× [0, 1] ® R2

f (x, y) =
{
(x, 0), x ≤ y;
(x, 2(x − y)), x ≥ y.

Obviously, f is continuous and f(x, ⋅) is properly S-quasiconcave for each x Î X0. All

conditions of Corollary 3.1 are satisfied. So, inclusion (4) holds. Indeed, by the defini-

tion of f, we have

f (x, x) = (x, 0)

and for each x Î X0,

Maxw
⋃
y∈X0

f (x, y) = {(x, u) |0 ≤ u ≤ 2x }.
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Then, by computing,
⋃
x∈X0

f (x, x) = {(u, 0) |0 ≤ u ≤ 1 }

and
⋃
x∈X0

Maxwf (x,X0) = {(u, v) |0 ≤ u ≤ 1, 0 ≤ v ≤ 2u}.

Thus,

Max
⋃
x∈X0

f (x, x) = {(1, 0)}

and

Minw

⋃
x∈X0

Maxwf (x,X0) = {(u, 0) |0 ≤ u ≤ 1}.

Taking (0, 0) ∈ Minw
⋃

x∈X0
Maxwf (x,X0) ,

(1, 0) ∈ (0, 0) + S.

However, taking x0 ≠ 1, we have

Minw

⋃
x∈X0

Maxwf (x,X0) �⊂ Maxw
⋃
y∈X0

f (x0, y) − S = f (x0,X0) − S.

Namely, the condition (iii) of Theorem 3 in [7] and the condition (ii) of Corollary 3.8

in [8] do not hold. So, Theorem 3 in [7] and Corollary 3.8 in [8] are not applicable.

Theorem 3.2 Let X0 be a nonempty compact convex subset of X. Suppose that the fol-

lowing conditions are satisfied:

(i) F : X0 × X0 ® 2V is a continuous set-valued mapping with nonempty compact

values;

(ii) for each y Î X0, F(⋅,y) is properly S-quasiconvex on X0.

Then,

∃ z1 ∈ Min
⋃
x∈X0

F(x, x) and ∃ z2 ∈ Max
⋃
y∈X0

MinwF(X0, y)

such that

z1 ∈ z2 − S. (5)

Proof. By assumptions and Lemmas 2.1-2.3,

Min
⋃
x∈X0

F(x, x) �= ∅ and Max
⋃
y∈X0

MinwF(X0, y) �= ∅.

Then, by Lemma 3.1, there exists ȳ ∈ X0 such that

F(ȳ, ȳ)
⋂

Minw

⋃
x∈X0

F(x, ȳ) �= ∅.
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By Lemmas 2.1 and 2.2,
⋃

x∈X0
F(x, x) and

⋃
y∈X0

MinwF(X0, y) are two compact

sets. Thus, by Lemma 2.3, we have

F(ȳ, ȳ) ⊂
⋃
x∈X0

F(x, x) ⊂ Min
⋃
x∈X0

F(x, x) + S

and

Minw

⋃
x∈X0

F(x, ȳ) ⊂
⋃
y∈X0

MinwF(X0, y) ⊂ Max
⋃
y∈X0

MinwF(X0, y) − S.

Namely, for every u ∈ F(ȳ, ȳ) and v ∈ Minw
⋃

x∈X0
F(x, ȳ) , there exist

z1 ∈ Min
⋃

x∈X0
F(x, x) and z2 ∈ Max

⋃
y∈X0

MinwF(X0, y) such that

u ∈ z1 + S and v ∈ z2 − S.

Particularly, taking u = v, we have z1 Î z2 - S. This completes the proof. □
Theorem 3.3 Let X0 be compact convex subset of X. Suppose that the following condi-

tions are satisfied:

(i) F : X0 × X0 ® 2V is a continuous set-valued mapping with nonempty compact

values;

(ii) for each x Î X0, and any z ∈ Min
⋃

x∈X0
MaxwF(x,X0) , the level set

LevF(z) = {y ∈ X0 : ∃t ∈ F(x, y) s.t. t ∈ z + S}

is convex.

(iii) for any x Î X0,

Min
⋃
x∈X0

MaxwF(x,X0) ⊂ F(x,X0) − S.

Then,

Min
⋃
x∈X0

MaxwF(x,X0) ⊂ Max
⋃
x∈X0

F(x, x) − S. (6)

Proof. By assumptions and Lemmas 2.1-2.3,

Min
⋃
x∈X0

MaxwF(x,X0) �= ∅.

Let β ∈ Min
⋃

x∈X0
MaxwF(x,X0) . We define a multifunction W : X0 → 2X0 by the

formula

W(x) =
{
y ∈ X0 : F(x, y)

⋂
(β + S) �= ∅

}
, for x ∈ X0.

Obviously, by the conditions (ii) and (iii), we have that W(x) is a nonempty convex

set, for all x Î X0.

Now, we show that W(x) is a closed set, for any x Î X0. Let a net {ya : a Î I} ⊂ W

(x), for each x Î X0 and ya ® y0. By the definition of W, there exists {za} such that za
Î F(x, ya) and za Î b + S. Since F(x, ⋅) is u.s.c. with compact values, by Remark 2.1,
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there exist a subnet {zb} of {za} and z0 Î F(x, y0) satisfying zb ® z0. By the closeness of

S, z0 Î b + S. Thus, we have

y0 ∈ W(x) = {y ∈ X0 : F(x, y)
⋂

(β + S) �= ∅}

and hence for each x Î X0, W(x) is a closed set.

Next, we show that W is upper semicontinuous on X0. Since X0 is compact, we only

need to show W is a closed map (see [22]). Let a net

{(xα, yα)} ⊂ Graph W :=
{
(x, y) ∈ X0 × X0 : F(x, y)

⋂
(β + S) �= ∅

}

and (xa, ya) ® (x0.y0). By the definition of W, there exists {za} satisfying za Î F(xa,

ya) and za Î b + S. Since F is u.s.c. with compact values, by Remark 2.1, there exist a

subnet {zg} of {za} and z0 Î F(x0, y0) satisfying zg ® z0. By the closeness of S, z0 Î b +

S. That is (x0, y0) Î GraphW. Namely, W is upper semicontinuous on X0.

Therefore, by Lemma 2.4, there exists x̄ ∈ X0 such that x̄ ∈ W(x̄) , i.e.,

F(x̄, x̄)
⋂

(β + S) �= ∅. (7)

By (7) and Lemma 2.3, we have

β ∈ F(x̄, x̄) − S ⊂
⋃
x∈X0

F(x, x) − S ⊂ Max
⋃
x∈X0

F(x, x) − S.

Hence, inclusion (6) holds. This completes the proof. □
Remark 3.3 (i) The condition (ii) of Theorem 3.3 can be replaced by “for any x Î

X0, F(x, ⋅) is S-quasiconcave on X0“.

(ii) If F is a scalar set-valued mapping, the condition (iii) of Theorem 3.3 always

holds.

(iii) When F is a vector-valued mapping, Theorem 3.3 reduces to corresponding ones

in [7,8].

Theorem 3.4 Let X0 be a compact convex subset of X. Suppose that the following con-

ditions are satisfied:

(i) F : X0 × X0 ® 2V is a continuous set-valued mapping with nonempty compact

values;

(ii) for each y Î X0, and any z ∈ Max
⋃

y∈X0
MinwF(X0, y) , the level set

LevF(z) = {x ∈ X0 : ∃t ∈ F(x, y) s.t. t ∈ z − S}

is convex.

(iii) for any y Î X0,

Max
⋃
y∈X0

MinwF(X0, y) ⊂ F(X0, y) + S.

Then,

Max
⋃
y∈X0

MinwF(X0, y) ⊂ Min
⋃
x∈X0

F(x, x) + S. (8)
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Proof. By assumptions and Lemmas 2.1-2.3,

Max
⋃
y∈X0

MinwF(X0, y) �= ∅.

Let γ ∈ Max
⋃

y∈X0
MinwF(X0, y) . We define a multifunction K : X0 → 2X0 by the

formula

K(y) =
{
x ∈ X0 : F(x, y)

⋂
(γ − S) �= ∅

}
, for y ∈ X0.

From the proof process of Theorem 3.3, inclusion (8) holds. This completes the

proof. □
Remark 3.4 (i) The condition (ii) of Theorem 3.4 can be replaced by “for any y Î

X0, F(⋅, y) is S-quasiconvex on X0“.

(ii) If F is a scalar set-valued mapping, the condition (iii) of Theorem 3.4 always

holds.

Next, we give an example for explaining Theorem 3.4.

Example 3.2 Let X = R, V = R2, X0 = [0, 1] ⊂ X, S = {(u, v)|u ≥ 0, v ≥ 0}, and M =

{(u, v)|0 ≤ u ≤ 1,0 ≤ v ≤ 1}. Let f: [0, 1] × [0, 1] ® R2 and F : [0, 1] × [0, 1] → 2R
2 ,

f (x, y) = x(1, y), for (x, y) ∈ [0,1] × [0,1]

and

F(x, y) = f (x, y) +M.

Obviously, F is continuous with nonempty compact values and F(⋅, y) is S-quasicon-
vex for every y Î X0. By the definition of F,

⋃
u∈X0

MinwF(X0, y) = {(u, 0) |0 ≤ u ≤ 2 }
⋃

{(0, v) |0 ≤ v ≤ 1 }

and for each y Î X0,

F(X0, y) = {(u, yu) ∣∣u ∈ [0, 1] } +M.

Moreover, by computing,

Max
⋃
y∈X0

MinwF(X0, y) = {(0, 1)}
⋃

{(2, 0)}.

Then, for each y Î X0,

Max
⋃
y∈X0

MinwF(X0, y) ⊂ F(X0, y) + S,

namely, the condition (iii) of Theorem 3.4 holds. Thus, all conditions of Theorem 3.4

are satisfied. So, inclusion (8) holds. Indeed, we have that

f (x, x) = (x, x2)

and

⋃
x∈X0

F(x, x) = {(u, v) ∣∣0 ≤ u ≤ 1, 0 ≤ v ≤ 1 + u2 }
⋃

{(u, v)
∣∣∣1 ≤ u ≤ 2, (u − 1)2 ≤ v ≤ 2 }.
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Then,

Min
⋃
x∈X0

F(x, x) = {(0, 0)}.

Hence, we have that

Max
⋃
y∈X0

MinwF(X0, y) ⊂ Min
⋃
x∈X0

F(x, x) + S.
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