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ABSTRACT. An edge-ordered graph is an ordered pair (G,f), where G is a graph and

f is a bljective function, f:E(G) {1,2 IE(G) I}. A monotone path of length k

in (G,f) is a simple path Pk+l:VlV2...Vk+l in G such that either

f({vl,vi+l}) < f({vi+l,Vi+2}) or f({vi,vi+l}) > f({vi+l,Vl}) for i 1,2 k-l.

It is proved that a graph G has the property that (G,f) contains a monotone

path of length three for every f iff G contains as a subgraph, an odd cycle of

length at least five or one of six listed graphs.
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I. INTRODUCTION.

Graphs in this paper are finite, loopless and have no multiple edges. We denote

by G G(V,E) a graph with E(G) as its edge-set of cardlnallty e(G) and V(G)

as its vertex-set. Let Kn’ Pn C be the complete graph, the path and the cycle,
n

on n vertices, respectively. The vertex-chromatlc number of G is denoted by

x(G), and d(v) is the degree of a vertex v V(G). By H G we mean that H is

a subgraph of G and H G is the negation of this fact.

Definitions and Notation

I. An edge-ordered graph is an ordered pair (G,f), where G is a graph and f

is a bijective function, f:E(G) {1,2,3 e(G)}.

2. A monotone path of length k, k 3 in (G,f), denoted by MPk+I, is a simple

path Pk+l:VlV2...Vk+l in G such that either

f({vl,vi+l}) < f({vi+l,Vi+2})
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or

f({vi,vi+l} > f({vi+l,Vi+2} for i 1,2 k-l.

3. We denote by G MP
k

the fact that (G,f) contains an MP
k

for every

function f, and let

{GIG MPk}, k 3

The following Theorem i.I is well known, see [I], [2], [3], for a proof and

generalizations:

THEOREM I.I. For every positive integer k, there is a minimal integer g(k),

such that Kn Ak for every n a g(k).

The main result of this paper is:

THEOREM 1.2. A graph G belongs to A
4

iff G contains either C2n+l, n 2,

or one of the following graphs:

Fig.

REMARK. Notice that a graph G belongs to A
3

iff G contains a path P3"
2. PROOFS

The following lemmas are essential for the proof of Theorem 1.2.

LEMMA 2.1. The graphs H H2, H3, H4, H5, H6, and C2n+l where n Z 2 belong

to A4.
PROOF. The proof is a straightforward verification for each of the graphs. We

prove that H
4

A4. The proof of the remaining cases is similar. Assume that

there is an f such that no MP
4

occurs in (H4,f). It turns out that up to

isomorphism, the integers 1,2,3 can be assigned to the edges of H
4

in the

following 5 ways:
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Now, one can see that in each case it is impossible to complete the labeling of the

edges such that (H4,f) does not contain an MP4.
The following definition is needed for the next lemma.

DEFINITION. Let a,b,Cl,C2,...,Cm+l,a ,a2n be non-negative integers where

m 0 and n 2. The graph Ll(m,a,b,cl,c2 Cm+l), L2(a,b), L3(a,b), and

R2n(al,a2 a2n) are defined in Fig. 2.

L1(m,a,b,cl,c ,Cm

edges

Lz(.b)

edges

ItZn(a! ’aZ ’ab,)

edges

edges

L$(a .b)

eZn edges
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LEMMA 2.2. (i). For all non-negative integers a,b,Cl,C2,...Cm+l,a a2n
where m 0 and n 2, the graphs L I, L2(a,b), L3(a,b), and R2n(al,a2 a2n
do not belong to A4.

(ii). The complete graph K
4 does not belong to A4.

PROOF. We set e for e(G). For the proof of (1), a partial labeling of the

edges of the graphs in question is presented in Fig. 3. The labeling of the remaining

edges is arbitrary. An MP
4

will not occur. A labeling of E(K4) is also presented

in Fig. 3.

Fi. 3a
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x
m even-- 2 Wt odd

Y " w even
c

3 ta Odd

r

Z- " 2 W even

e_ _l+
tm Odd

LI L1(m’a’b’c1’c2 Cm*1

Fig. 3b

PROOF OF THEOREM 1.2. Clearly, every graph G that contains C2n+l, n 2, or

an H
i

i 1,...,6 belongs to A4. To prove the opposite containment let G e A4.
We may assume that G is connected and contains a P4’ hence x(G) 2. We consider

two cases: x(G) 2 and x(G) 3.

CASE I. Let X(G) 2. If G is a tree, let Pt:XlX2 x
t

be its longest

path. If t 4, then G is double star yielding G A4, a contradiction. Hence,

t 5. Note that the maximality of Pt implies that there is no vertex-disjolnt path

to Pt’ say Pn’ where n 3, with initial vertex x
2

or xt_ I. If for a certain i,

3 i t-2 there is a vertex-disjoint path to Pt’ say Pm’ where m 3, whose

initial vertex is xi, then HI G, and we are through. Otherwise, G can be embedded
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in a graph R2n(al,a2 a2n) for a certain n and non-negatlve integers

al,a2, a2n and in view of Lema 2.2, G A4, a contradiction. Thus we may assume

that G is not a tree.

Let C2t be the shortest cycle in G. Assume first t 2, i.e., C2t is a

4-cycle. One can see that if H
2

G and H
3

G then G R4(al,a2,a3,a4) for

some non-negative integers al,a2,a3,a4 and hence by Lemma 2.2, G A4, a contradic-

tion. Thus we may assume that t 3. Similarly in view of the mlnlmallty of C2t
it follows that if H G then G R2t(al,a2,...,a2t for some non-negatlve

integers al,a2 ,a2t implying that G A4, a contradiction. Hence, the proof of

Case is completed.

CASE 2. Let (G) 3. Hence G contains an odd cycle C2n+l. If n 2 then

we are through. So we may assume that G contains only triangles. Let C
3

be any

triangle in G with a vertex-set {x,y,z}. Consider two cases:

(i Let d(x), d(y), d(z) 3. It follows that either H4 G and we are

through, or K4 G or L2(O,I G. By Lema 2.2, G # K4, hence K
4

G implies

that H
6

G. Again Lemma 2.2, G # L2(a,b) for all non-negatlve integers a and b.

Hence L2(O,I) G implies that one of the graphs H2, H4, or H
6

is contained in G.

This completes the proof of case (1).

(li) Assume that at least one of the vertices x,y,z is of degree 2. By Lema 2.2,

G is not a subgraph of L or L2(0,b) or L3(a,b) for any non-negatlve integers

a, b, and c; hence G must contain one of the graphs H H2, H3, or H5. This

completes the proof of case (ll) and of the theorem.
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